
Investigating the correlation between prior programming experience and
cyclomatic code complexity in student software projects

Collaboration in Computer Science Education

Beatriz Barroso1

Supervisors: Dr.ir. E. Fenia Aivaloglou1, MSc Merel Steenbergen1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Beatriz Barroso1

Final project course: CSE3000 Research Project
Thesis committee: Dr.ir. E. Fenia Aivaloglou1, Ir. Merel Steenbergen1, Dr.ir. Mitchell Olsthoorn1

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Cyclomatic complexity often serves as a proxy for
code quality. While it has been previously stud-
ied within education, its relationship with prior pro-
gramming experience remains unclear. This study
analyzed the correlation between different experi-
ence metrics, including total years of programming
experience, years of experience in industry and in
academia, and cyclomatic complexity in student
projects. A thematic analysis of task difficulty fur-
ther contextualized the findings. Results indicated
mostly no significant correlations between prior ex-
perience and complexity metrics, with only two
significant correlations found. While total years
of experience and experience in industry showed
to be negatively correlated, experience gained in
academia showed no consistent findings. The find-
ings suggest that experience alone does not explain
complexity scores, indicating that when used as an
evaluation method in collaborative projects the re-
sults may be influenced by contextual factors such
as project settings and task types.

1 Introduction
Collaboration in software development is central in current
computer science education practices [1]. Yet, assessing in-
dividual student contributions still poses challenges [2]. Ver-
sion control systems and tools provide useful insights, but
overlook contextual metrics such as task difficulty or stu-
dent’s prior programming experience. Therefore, understand-
ing how their previous experience affects structural complex-
ity, such as cyclomatic complexity, could offer insights into
individual progress and contribution value.

The influence on prior programming experience on soft-
ware quality has been extensively researched [3]. Still, a clear
relationship is not yet established. Different metrics of ex-
perience and quality have been explored, with evidence that
higher project experience leads to fewer bugs [3, 4]. Addi-
tionally, experience within academia has been found to have
a positive effect on code quality and developer productivity
[5].

Cyclomatic Complexity is an important metric to assess
code quality [6], as it can be an indicator of testability, main-
tainability and possible vulnerabilities. It is able to assess per-
formance across different languages and programming styles,
which makes it very versatile [7]. While it is a widely used
metric to evaluate quality [8] and has been studied within ed-
ucational contexts [9], the effect of programming experience
on its performance has not been researched.

As such, the following research questions were formulated:

• RQ1 How does prior programming experience affect cy-
clomatic complexity?

• RQ2 What is the relationship between prior program-
ming experience gained within different contexts (aca-
demic vs industry) and the cyclomatic complexity score?

To answer the first research question, both quantitative
and qualitative data will be used. The quantitative investiga-
tion will compare performance across cyclomatic complex-
ity measurements. Furthermore, patterns between task diffi-
culty and the quantitative results will be evaluated through a
thematic analysis of scrum meeting transcriptions. There is
an expectation that prior programming experience negatively
correlates to maximum cyclomatic complexity and positively
correlates to total cyclomatic complexity. It is expected that,
experienced students write code with lower complexity scores
and higher efficiency, but that overall contribute in higher
quantity.

The second research question focuses specifically on an
analysis of experience gained within academia and in in-
dustry. Prior research [5] found that experience gained in
academia has a positive effect with code quality, whereas in-
dustry experience has no relationship. This study will test
whether the links hold when considering cyclomatic com-
plexity.

The report is divided in the following sections: Section 2
introduces related literature and background information on
cyclomatic complexity; Section 3 introduces the approaches
followed to answer each research question; Section 4 de-
scribes the results found per research question; Section 5
analyses and considers the different ethical considerations of
the study evaluating reproducibility, replicability and threats
to validity; Section 6 provides an interpretation and discus-
sion of the results; Section 7 summarizes the main findings,
outlining different approaches and research questions for fu-
ture research.

2 Related Work
The evaluation of student contributions within software en-
gineering projects has been found to be hard to assess. This
is due to the complexity of analyzing and discerning individ-
ual student contributions, as there are many quantitative and
qualitative metrics that can be chosen [1, 2, 10].

Within collaborative student projects, version control sys-
tems are often relied upon to determine value of individual
contributions and teamwork [2]. Tools such as GitReporter
and GitCanary [11, 12], have been developed to integrate
with version control systems and aid the teaching teams in
assessing contributions. Both of these systems aim to provide
further insights on the quality of contribution of the students,
analyzing details on code quantity (e.g., lines of code (LOC))
and quality measurements (e.g., cyclomatic complexity) and
considering short-comings of current version control systems
(e.g., counting documentation as implementation instances)
[11, 12]. While these tools are able to assist in grading, it is
important to consider their limitations. Guttmann, Karakas,
and Helic [11] reported that, as students learn of the metrics
evaluated, it is possible that they could change their behavior
to attain higher scores. Furthermore, as the tools only con-
sider static code analysis they fail to capture contextual fac-
tors such as task difficulty, importance of contributions and
student programming background.

During collaboration, it is common for students to have
different levels of experience in programming [1], which can

be, for instance, due to personal involvement on extracurricu-
lar projects, previous education or work experience. Because
of this, it can be hard to assess the student’s learning experi-
ences. The effect of prior programming experience on code
quality has been researched extensively [3, 5, 13]. Lopes,
Oliveira, and Figueiredo [3] conducted a systematic literature
review in which they mapped the different metrics used in
previous research to determine prior programming experience
and code quality of contributions, as well as the relationship
between these.

Figure 1: Prior experience measurement categories as outlined by
Lopes, Oliveira, and Figueiredo [3]

It was found that prior experience metrics are defined un-
der two main categories: Career Experience and Project ex-
perience - Figure 1. Furthermore, code quality was primar-
ily set under Technical Debt and Bugs. The literature re-
view highlights inconsistencies in previous findings, which
suggests that the relationship between these metrics might be
dependent on context and potentially affected by how experi-
ence and quality are measured. These results call for further
research, with clearer definitions and separation of metrics,
while also considering other aspects of experience such as
domain and complexity of projects [3].

The link between Project experience and Bugs was the
most studied pattern and the effect of Career Experience has
only been studied in regards to Bugs, with only 3 studies
having considered it. Two of these studies found a positive
correlation of career experience with code quality [14, 15].
The third study found no clear link between the metrics and
that the types of programming experience metrics may affect
software quality in different ways. Nonetheless, it found that
experience gained specifically within academia significantly
influences code quality and productivity (positively) [5].

There are different metrics that can be used to evaluate the
quality of a program. Previous research has analyzed qual-
ity from different lenses [4, 13, 16]. Furthermore, Fenton and
Bieman [6] have analyzed and laid out different approaches to
evaluate code quality, exploring size and structural integrity
measurements. Cyclomatic complexity is indicated as an im-
portant tool to evaluate structural integrity, testability and
maintainability of the code [6].

Cyclomatic complexity has been analyzed in previous re-
search within educational contexts. Mohamed, Sulaiman, and
Endut [9] tried to establish a relationship between student
performance in cyclomatic complexity and their respective
grade scores during both continuous and final examinations.
The study found no consistent relationship between these and
suggested a different type of feedback system during the con-

tinuous assessment, so that the students could improve their
code. Thus, even though cyclomatic complexity has been re-
searched within education, it has not been studied considering
larger software engineering projects and student experience.

Although there is extensive research on prior programming
experience and code quality, the metrics used are very di-
verse and few studies have analyzed the impact of prior pro-
gramming experience on structural quality within collabora-
tive projects. Furthermore, despite version control systems
being relied upon in assessment, few have examined this re-
lationship with respect to common Git metrics, namely cy-
clomatic complexity.

2.1 Cyclomatic Complexity
Cyclomatic Complexity is a mathematical measurement of
code complexity which was introduced by McCabe [17]. This
metric relies on Graph Theory, considering the different ele-
ments of a program as nodes and edges within a graph. It
assesses the number of independent paths within it to then
determine its complexity score, which is described by equa-
tion 1.

V (G) = e− n+ p (1)

Where V (G) represents the cyclomatic complexity score of
a graph, G, and e, n and p correspond to its edges, nodes
and connected components, respectively. The calculation for
cyclomatic complicity also inherently considers nestedness
within code as nested elements introduce specific indepen-
dent paths. This metric is a useful indication of code testa-
bility and vulnerability to potential bugs [18]. A higher cy-
clomatic score implies a higher number of independent paths
in the program, which in turn will require a higher number of
tests for full coverage. It is a prevalent metric used as a code
quality indicator within industry [8] and often introduced in
early stages of Software Engineering education.

3 Methodology
3.1 Data Collection
For the course of this project, the research team followed stu-
dent teams from the CSE2000 - Software Project - course at
the TU Delft. In this course, students, as teams of 5, follow
a software project for the duration of ten weeks. Each team
member from the research team observed a Software Project
team, in total 4 teams were observed (N=20).

The data collection procedure consisted of a survey, obser-
vance of scrum meetings per team and access to Git repos-
itories. This course uses GitLab as the main development
platform, where each student commits and makes changes in-
dependently of their peers. Consent for observance was ob-
tained beforehand, via the consent form in Section A.1, and
is further described in 5.

Prior programming experience was evaluated through a
self-reporting survey, which can be found in A. The survey is
composed of different questions from Feigenspan, Kästner,
Liebig, Apel, and Hanenberg [19]. These target the type, du-
ration and complexity of each student’s experience in pro-
gramming. Some additional questions were added to capture

more specific information about their academic path at the
TU Delft and their professional career (questions 8.4, 8.5 and
13 in A.3 were added to the existing survey)

To evaluate Cyclomatic complexity, the data was ex-
tracted from the respective Gitlab repositories, this process
was done using a bash script. The complexities of the code
were plotted alongside extraction using Lizard [20]. Out of
the four available repositories, two were programmed in lan-
guages not supported by Lizard. For one of which, it was
possible to adapt the extraction script and successfully ana-
lyze the repository. For the later one it was unfortunately not
feasible and it had to be discarded as there were no alterna-
tive tools to conduct the analysis within the time frame of the
Research Project.

In addition, a total of 7 scrum meetings were recorded and
transcribed. These were processed locally and labeled, so to
map each speaker to each line.

3.2 Metrics
Prior Programming Experience
As outlined in the previous section, a survey was used to de-
termine the prior programming experience of the participants.
Table 1, showcases the data features used for correlation mea-
surement.

Table 1: Experience Metrics

Metrics
Total years of experience
Years of experience in industry
Years of experience within the degree
Experience score - aggregated metrics from the survey,
each with an equal weight
Self-Reported Code complexity - student perception of
own complexity

Following the categorical analysis schema of Lopes,
Oliveira, and Figueiredo [3], outlined in 1, the collected met-
rics have been separated by type. The first metric evaluates
career experience, consisting of both years in industry and
years in academia. Additionally, this metric captures volun-
tary experience, such as contributions to open source projects.

The second metric is used to analyze solely years in indus-
try, a subcategory of career experience. Likewise, the third
metric is used to capture years in college (academia), the sec-
ond subcategory of career experience. Furthermore, the forth
metric, experience level, consists of metrics corresponding
to the Project Experience category (such as LOC Delta) and
additional ones that also encompass the type of experience
(namely, experience with different types of programming).
Lastly, code complexity will be used as a standalone metric
to identify student insights on their own complexity perfor-
mance.

Cyclomatic Complexity Assessment
To measure code quality and capture different aspects of the
student contributions two different approaches were taken.
The performance of the students was analyzed by issue and

by commit. The two different approaches allow for a detailed
analysis of student performance and behavior. Commits are
one of the smaller units of measurement within Git and, thus,
allow for a detailed analysis of student programming patterns.
Nonetheless, different students might have different commit
habits, namely different sizes of commits, so to capture a dif-
ferent dimension of student contributions, the complexity was
also measured by issue completed. In total, four different
metrics were collected per student, represented in Table 2

Table 2: Complexity Metrics

Metrics Unit of evaluation

Total complexity entire repository
Average complexity per commit single commits
Average complexity per issue branch (detailed in 3.3)
Maximum complexity entire repository

3.3 Data Analysis
RQ1
After gathering the Git repositories, an initial visual inspec-
tion identified that most of the issues were resolved within
one branch and by single students. Branches that had multiple
contributors or solved multiple issues, were marked for man-
ual inspection. If the contributions by multiple students had
a high overlap and were hard to extract, the branches were
removed from the analysis pool. Nonetheless, most of the
branches marked for inspection were successfully extracted
as the student contributions were often to different methods.

During the extraction, Lizard [20] was used to calculate
the complexity for each snapshot of the repositories. The tool
computes the complexity of each method and of each file,
and, for every changed file, two snapshots with the complex-
ities before and after the change were stored. This was done
both by commit and by issue. To evaluate each student’s con-
tributions to an issue, the data was only extracted for analysis
once the issue has been marked as finished and its respective
branch merged. Thus, only the final solution is considered for
analysis. In case students modify each other’s code, the last
version of each modification was taken into analysis (which
was identified manually). This allows for different analysis
in case students work on each other’s branches and review or
modify the code base. For this strategy authorship was deter-
mined based on commit signature and Git blame annotations.
For the commit analysis, the data was extracted and mapped
according to the commit author. For both methods, the be-
fore and after versions had their complexities calculated and
compared. The difference - ∆Complexity - was used as the
complexity score for the changes. This strategy allows for
both negative and positive values, taking into account refac-
tored code and improvements of complexity. In this case, au-
thorship was determined based solely on commit signature.

To aggregate the data and identify the code owner, different
scripts were developed: a bash script to extract the data from
Git, a python script to process and format this data, and an R
script to plot the correlation analysis.

After extraction, a python script was used to compile the
results where the ∆Complexity and author per commit (or
merge commit in case of the branches) were stored. The data
was grouped by author and, from the commit analysis, the to-
tal, maximum and average cyclomatic complexity per commit
were plotted. It is important to note that when extracting the
data per commit, merge commits were ignored as the added
files were regarded with authorship of the student perform-
ing the merge. The branch analysis provided the additional
average cyclomatic complexity per issue (per student) metric.

The data collected from the survey was then processed and
appended. To set the experience score metric, questions 7,
8.1-3, 10 and 11 from the survey A.3 were aggregated, its
scores were normalized and averaged. Before evaluating the
correlations, an initial inspection was conducted to the data.
It was initially expected that the data followed linear and nor-
mal distributions, however, histograms, scatter plots and the
Shapiro-Wilk test results were observed, and proved other-
wise. Most of the metrics observed did not follow a normal
distribution and were not linear, therefore, the Spearman’s
rank correlation strategy was chosen to evaluate the dataset
as it captures non-linear patterns. To account for underlying
group patterns, the analysis was conducted both by group and
for the total.

3.4 Thematic Analysis
Each of the team meetings attended was recorded and tran-
scribed. In total 7 meetings were observed. Each of the
transcriptions were systematically annotated using a thematic
analysis framework [21]. The different student experiences
were analyzed using codes that aim to categorize the diffi-
culty of the issues each student takes on.

Each of the codes was grouped into a theme that represents
the level of difficulty each task had. The insights were gath-
ered from both individual and group opinions. The extracted
themes are outlined in Table 3.

All of the transcripts and recordings will be shared by
the Research Team for this and related research during the
course of this Research Project iteration.

RQ2
To answer the second research question, the Git extraction
procedure described in the previous section was used. The
cyclomatic complexity metrics were considered only with re-
gards to the academic and industry experience - measured by
questions 3 and 13 from the questionnaire A.3. The previous
tests had verified that the data was not linear nor uniformly
distributed, thus Spearman’s rank correlation chosen.

Table 3: Thematic analysis: extracted themes and codes

Themes Codes

High
Difficulty

new area for the student
challenging task
higher difficulty than expected
takes/will take a lot of time/work
task is big
taking more time than expected

Medium
Difficulty

student has moderate experience
new but seemingly not challenging
takes some time but doable/ok
hard task took less time than expected
easy task took more time than expected
task is doable

Low
Difficulty

area of student expertise
comfortable for the student
high confidence
lower difficulty than expected
task does not take a lot of time
task will be fast to implement
task is small
task is easy
not a lot of work

Group
progress
reflections

planning too optimistic
planning not realistic enough
.. was general group setback
takes an unknown amount of time

Task
weights

task weight assigned
task weight mentioned
task weight reevaluated

4 Results

This section is divided in two parts, quantitative and qualita-
tive results. The quantitative analysis consists of a correlation
analysis between the prior programming experience and com-
plexity metrics. The qualitative part involves a thematic anal-
ysis in which recorded scrum meetings were coded into dif-
ferent themes. This evaluation was conducted to understand
the level of difficulty experienced by the students within their
issues.

4.1 Quantitative analysis

The correlations were plotted using Spearman’s Rank Corre-
lation, through heatmaps and full tables. In the heatmaps, the
relationships are described through color coding of the corre-
lation values: negative correlations are presented in blue and
positive ones in red (the values range from 1.0 to -1.0, with
the middle, 0.0, represented as white). For the two methods,
results were marked as significant (*) if |p| < 0.05 and very
significant (**) if |p| < 0.01.

RQ1

Figure 2: Heatmap of correlations found between prior experience
and complexity metrics - All participants

In figure 2, the correlations between all of the metrics have
been plotted in a heatmap. These can be observed as well in
Table 4 in Appendix B.1, alongside all of the respective p-
values. Overall negative correlations were observed between
the metrics, with 10 observations having been found belong-
ing to the interval of [−0.60,−0.10]. The second most ob-
served trend was of no correlation, with 7 values belonging to
the interval (−0.10, 0.10). Some positive correlation scores
can be observed, particularly from Self-Reported Complex-
ity and Experience score towards the Average Complexity p/
Branch and Maximum Complexity. Two scores were found
be significant results (|p| < 0.05): the correlations from the
Years of Experience and Years in Industry towards the Total
Complexity.

To identify group trends the analysis was also conducted
for each separate group, which are represented in figures 3, 4
and 5.

Figure 3: Heatmap of correlations between prior experience and
complexity metrics found within Group A

Group A, figure 3, showed to have stronger negative cor-
relations over its metrics, particularly on metrics capturing
Time related experience. Years of Experience was found to

have a strong, significant correlation with the Average Com-
plexity p/ Commit. For Group A, the Self-Reported Complex-
ity consistently had a weak positive correlation with the com-
plexity metrics.

Figure 4: Heatmap of correlations between prior experience and
complexity metrics found within Group B

For Group B, most scores showed weaker correlations,
both positive and negative. This was the only group where
strong negative correlations were observed towards the Self-
Reported Complexity and Experience Score experience met-
rics.

Figure 5: Heatmap of correlations between prior experience and
complexity metrics found within Group C

Group C had larger disparities as two metrics showed a
positive correlation, one showed a strong negative one and
the last metrics showed mixed results. Years at TU Delft
and Years in Industry showed opposing trends, strong nega-
tive and strong positive correlations respectively. Experience
Score was found to have a weak positive correlation towards
all Complexity metrics. For groups B and C there were no
correlations marked as significant.

RQ2
Figures 6 and 7, portray the correlations found considering
the years of experience in industry and years of study at the
TU Delft, respectively. For each figure, the correlations have

been analyzed both for all of the participants and for each
individual group.

Figure 6: Heatmap of correlations between Years in Industry and the
complexity metrics collected (Groups: A, B, C and all).

In figure 6, it is possible to observe different trends per
group. While Group A shows strong negative correlations,
Group C had an opposing trend, tending towards a positive
correlation. Furthermore, Group B did not have any results as
there were no participants with experience in industry. When
plotting the results for all of the groups, correlations were
mostly negative. On a different note, the correlations for the
Average Complexity p/ Commit and Average Complexity p/
Branch consistently had similar scores. Meanwhile, the cor-
relation scores for the Maximum Complexity were the closest
to 0.0 in every iteration. Lastly, the only correlation marked
as significant (|p| < 0.05) was for the relationship between
the years of Experience of All groups and the Total Complex-
ity.

Figure 7: Heatmap of correlations between Years studying at TU
Delft and the complexity metrics collected (Groups: A, B, C and
all).

The correlation trends for experience gained within
academia had multiple records marked as strongly negative.
In figure 7, it is possible to observe that there were different
patterns in group behavior. For groups A and B there were

mixed results: some metrics showed strong negative correla-
tion and others showed either weak or no correlation. For
group C, all metrics were found to have a strong negative
correlation. When considering all the groups together differ-
ent trends were observed: Total Complexity showed to have a
slightly positive correlation score, and the remaining metrics
also had weak negative correlations.

The full correlation tables for the two experience metrics
have been included in appendix B.2.

4.2 Thematic analysis
In total 7 scrum meetings, from the three different groups,
were transcribed and thematically coded. The thematic cod-
ing was conducted to evaluate the different levels of task diffi-
culty reported by the students. The goal of the analysis was to
assess patterns between the performance of the students con-
sidering their prior programming experience as well as the
level of difficulty and challenges faced. The thematic coding
process followed the thematic schema presented in Table 3.
The qualitative analysis was used to answer the first research
question.

RQ1
Different group dynamics were observed across the teams.
The overall challenges, task distribution practices and per-
ceptions of difficulty varied considerably.

When considering prior programming experience and
complexity scores, three major trends were observed:

1. Better performance than expected: low scores on prior
experience and good performance on complexity met-
rics.

2. Performance in line with expectations: low scores on ex-
perience with lower scores on complexity; medium/high
scores on experience with better scores on complexity.

3. Performance lower than expectations: high scores on ex-
perience with low performance on complexity metrics.

The expected trends are defined according to the hypothe-
sis proposed, where a higher level of experience could indi-
cate efficient complexity results.

Most of the students fell within the the second type of pat-
tern, most of them having reported medium to high experi-
ence levels. Through the thematic analysis it was found that,
generally, these students either take on more tasks or take on
tasks with higher difficulty than their peers. Some of which
also reported no preference for tasks and were available to
take on tasks that other people would not want. Occasion-
ally these students reported challenges when reflecting on the
tasks, often describing the issue concretely. An example of a
direct quote evaluated is ”I realized my issue was a bit bigger
in scope”.

In total, 4 students had better performance than expected,
all of which had good complexity performances, particularly
in the Total Complexity and Maximum Total. When analyzing
the task difficulties reported, it was found that these students
generally took tasks with all types of difficulty. Nonethe-
less they tended to report higher difficulty within their tasks.
Most of these tasks were either bigger or harder tasks, and

often the students described challenges in retrospective, de-
scribing specific aspects of the tasks that took longer or how
it was more challenging than expected. Some of the stu-
dents followed the description with requests to increase the
assigned task weights. Often the remaining team members
confirmed the reflection through quotes such as ”That’s com-
pletely valid”. It also happened that other team members re-
ported on the struggles for these students as well.

A number of students was observed in the third category,
when analyzing the reports on task difficulty by these stu-
dents, it was found that, within team meetings, these students
had preference for tasks with lower difficulty. These students
performed worse, particularly in the Maximum Complexity
metric, introducing methods with complexity higher than 30.
Furthermore, these students were among the ones with high-
est scores on Experience Score and Years of Experience. In
some cases, the task difficulty reported by these students was
not matched with the team’s sentiment: while the student felt
the task was being harder the team viewed the task as still
having low difficulty overall.

It was observed that the teams had different practices
within their projects: only some groups explicitly discussed
task weights discussed weights; one group considered hours
of work but did not take this estimate as weights. Further-
more, some of the groups reported an overall sentiment that
their project was of higher difficulty. In some cases, the teams
had difficulty making concrete task plans as they were over-
all not familiar with the project concepts, marking tasks as
taking an unknown amount of time. Several groups, revisited
their planning in follow-up meetings, evaluating previous es-
timates: ”We were a bit optimistic at the start” as an example
quote.

5 Responsible Research
This study was approved by the Human Research Ethics
Committee (HREC) at TU Delft and was conducted in ac-
cordance with the principles of the Dutch Code of Conduct
for Research Integrity [22]. Informed consent was obtained
from all participants prior to data collections, which was col-
lected by the consent form in A.1 and verbal consent. The
dataset was anonymized, with identifiers removed to ensure
participant privacy. During the project, all data was stored
within TU Delft teams and local servers accessible only to
the project team. Upon completion, local data will be erased
and the collected transcripts and recordings will be trans-
ferred to internal TU Delft servers who will store them for
10 years. To ensure replicability, the anonymized scripts and
a detailed description of the methodology will be made avail-
able. Nonetheless, reproducibility, will not be feasible due to
participant privacy and data protection constraints.

6 Discussion
In this section, the results for each research question have
been discussed and evaluated, its applications and limita-
tions outlined. This study explored the correlation between
prior programming experience and cyclomatic complexity
in student software projects. The findings revealed that to-
tal years of experience and years of experience in indus-

try were significantly correlated with lower total complex-
ity, while academic experience showed no consistent relation-
ship. Furthermore, group-level analysis suggested conflicting
patterns, possibly explained by Simpson’s paradox. These
results challenge previous expectations and assumptions on
programming experience translates to measurable code qual-
ity, through cyclomatic complexity. The section is divided in
discussions for each of the research questions, 6.1 and 6.2,
Implications 6.3 and Limitations 6.4.

6.1 RQ1
How does prior programming experience affect cyclomatic
complexity?

The analysis revealed a negative correlation between prior
programming experience metrics -Years in Industry and Years
of Experience - and some cyclomatic complexity metrics, in-
cluding Total, Average p/ Commit and Average p/ Branch
complexity (Figure 2). Out of these, only two were marked
as statistically significant: the correlations from these ex-
perience metrics towards Total Complexity. These findings
contradict the initial hypothesis, as students with higher ex-
perience had lower complexity sums. This result suggests
a trend towards efficiency rather than a higher task volume
(with higher total complexity).

As indicated by Lopes, Oliveira, and Figueiredo [3], two
studies have linked years of experience with better perfor-
mance, considering different code metrics [14, 15]. However,
cyclomatic complexity has not been studied in this context.
Although total cyclomatic complexity was initially consid-
ered as an indicator of better performance, our findings sug-
gest that the relationship maybe be more complex, where con-
textual factors (such as task type or programming paradigms)
may play a role.

The thematic analysis added nuance to these findings.
Many experienced students took on varied tasks in higher
quantity, aligning with expectations. However, students with
less experience reported greater difficulty while also main-
taining their code quality. Surprisingly, a subset of students
with higher experience, tackled simpler tasks yet showed
lower performance. These patterns suggest that task diffi-
culty alone does not account for the complexity differences
in performance.

Group-based analysis showed additional dynamics. Group
A (Figure 3) tended towards strong negative correlations,
with a statistical significant correlation found between Years
of Experience and Average Complexity p/ Commit. This cor-
relation could suggest that experienced students either made
smaller commits, spreading complexity, or inherently wrote
simpler code. Other groups showed contrasting patterns (Fig-
ures 4 and 5), which hint that experience effects may be con-
text dependent.

Subjective experience metrics, Self-Reported Complexity
and Experience Score, showed contrasting or weak correla-
tions. As the scores were self-reported, the metrics may re-
flect inaccurate self-assessment. Moreover, the Experience
Score model, which is based on weighted factors, has not
been validated and may have contributed to unreliable results.

It is also possible that collaboration patterns may have
influenced complexity metrics. Some experienced students
made targetted, smaller commits on teammates branches, of-
ten reducing their. This could potentially explain the lack of
significant correlations with Average Complexity p/ Branch.

In summary, experience - particularly Years in Industry and
Years of Experience - was found to be associated with lower
code complexity. However, this relationship varied across
groups and task contexts. The findings challenge the initial
hypothesis and call for an analysis of student performance
considering external context and team-dynamics.

6.2 RQ2

What is the relationship between prior programming experi-
ence gained within different contexts (academic vs industry)
and the cyclomatic complexity score?

Experience in Industry showed a statistically significant
correlation with Total Complexity. This suggests that stu-
dents with higher professional experience code with lower
overall complexity. As in the previous section, since neither
the number nor the type of tasks were measured, it is unclear
whether this reflects lower workload or simpler implementa-
tions, with less complexity. Furthermore, the different groups
showed very distinct results, with one group having moder-
ate to strong positive correlations and while another showed
consistently strong negative correlations.

In contrast, Years at TU Delft showed no significant results
with complexity metrics. While each group displayed nega-
tive correlations, when analyzing the full dataset, the pattern
was not found. In fact, one correlation became weakly pos-
itive instead. This difference suggests that aggregation con-
cealed effects observed within groups, being a possible ob-
servation of Simpson’s paradox [23], in which trends reverse
upon combination of data.

The results do not support the hypothesis that experience
gained in academia, measured by Years of study, correlates to
better complexity performance. Furthermore, while prior re-
search found that programmer quality and productivity were
independent from experience in industry [5], it is unclear
whether our results fully support this. As such, the mixed
results suggest that project and team conditions can play a
role in this association.

6.3 Implications

The findings challenge assumptions that prior programming
experience leads to higher code quality. Educators can use
these findings to better understand student behavior and adapt
assessment criteria. The results showed that cyclomatic com-
plexity metrics can portray considerable disparities in larger
software projects. Thus, applying it in smaller, controlled as-
signments could be more useful - for instance, introductory
software testing courses. In collaborative settings, educators
could recommend teams of mixed student experience, to bal-
ance programming practices. Additionally, cyclomatic com-
plexity may be better suited as formative feedback tool, rather
than being included in assessment criterion.

6.4 Limitations
Several limitations should be acknowledged while interpret-
ing these results. Firstly, although cyclomatic complexity is
a commonly used indicator for code quality, particularly in
Object Oriented contexts, it may not generalize across all
programming paradigms used in the student projects. Differ-
ences in requirements, size and style may affect complexity
consistency.

In addition, Total complexity, average complexity per com-
mit and per branch may be hard to interpret without knowl-
edge on student tasks. Although a higher complexity can
be linked to higher participation, it could also be caused
by denser, more complex code. Additionally, the different
project settings could also have impacted Commit and Branch
evaluations, limiting their analysis.

There were also logistical constraints. The project took
place over 10 weeks, with data collection starting on week 5.
Less teams participated due to recruitment difficulties, and, as
one language was not feasible for extraction, one group was
excluded (N=15).

In addition, the sample may have been affected by re-
cruitment bias. It is possible that students with higher con-
fidence, more comfortable being recorded, were overrepre-
sented, whilst others opted out due to privacy concerns.

Besides these considerations, the survey design also
presents limitations. Some questions added to the survey have
not been validated and some of them might not capture the in-
tended information (for instance, years of study at TU Delft
can overlook other prior education).

Finally, the small sample size (N=15), particularly for
those with professional experience (only 5 participants), lim-
its generalizations. Thus, larger-scale studies are needed to
evaluate the relationships observed.

7 Conclusions and Future Work
This research investigated the relationship between prior pro-
gramming experience and cyclomatic complexity in student
projects. Results revealed negative correlations between ex-
perience - Years of Experience and Years in Industry - and
Total Complexity. Contrary to expectations, experience in
academia did not show consistent findings, and group vari-
ation highlighted potential contextual factors, namely project
type. These findings have implications for Software Engi-
neering education. While cyclomatic complexity remains a
strong metric of performance assessment, its interpretation
may vary for different projects and student experience levels.
As such, it should be applied considering team and project
contexts. For future research, could analyse the role of cyclo-
matic complexity across different programming paradigms
and types of tasks performed. This approach may help un-
cover how cyclomatic complexity patterns vary considering
project settings. Additionally, testing whether the behavioral
patterns unveiled in the thematic analysis are observed in dif-
ferent conditions would be useful to assess the validity of the
findings.

References
[1] Miroslav Tushev, Williams Grant, and Anas

Mahmoud. “Using GitHub in large soft-
ware engineering classes. An exploratory case
study”. In: Computer Science Education 30.2
(Apr. 2, 2020). Publisher: Routledge eprint:
https://doi.org/10.1080/08993408.2019.1696168,
pp. 155–186. ISSN: 0899-3408. DOI: 10 . 1080 /
08993408 . 2019 . 1696168. URL: https : / / doi . org /
10 . 1080 / 08993408 . 2019 . 1696168 (visited on
04/25/2025).

[2] Kevin Buffardi. “Assessing Individual Contributions to
Software Engineering Projects with Git Logs and User
Stories”. In: Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. SIGCSE
’20. event-place: Portland, OR, USA. New York, NY,
USA: Association for Computing Machinery, 2020,
pp. 650–656. ISBN: 978-1-4503-6793-6. DOI: 10.1145/
3328778.3366948. URL: https://doi-org.tudelft.idm.
oclc.org/10.1145/3328778.3366948.

[3] Jefferson Lopes, Johnatan Oliveira, and Eduardo
Figueiredo. “Evaluating the Impact of Developer Ex-
perience on Code Quality: A Systematic Literature Re-
view”. In: May 2024, pp. 166–180. DOI: 10 . 5753 /
cibse.2024.28446.

[4] Yilin Qiu, Weiqiang Zhang, Weiqin Zou, Jia Liu, and
Qin Liu. “An Empirical Study of Developer Quality”.
In: Reliability and Security - Companion 2015 IEEE
International Conference on Software Quality. Aug.
2015, pp. 202–209. DOI: 10.1109/QRS- C.2015.33.
URL: https://ieeexplore.ieee.org/document/7322148
(visited on 06/15/2025).

[5] Óscar Dieste Tubı́o, Alejandrina Aranda, Fernando
Uyaguari, Burak Turhan, Ayse Tosun, Davide Fucci,
Markku Oivo, and Natalia Juristo. “Empirical eval-
uation of the effects of experience on code quality
and programmer productivity: an exploratory study”.
In: ICSSP ’18: Proceedings of the 2018 International
Conference on Software and System Process. May
2018, pp. 111–112. ISBN: 978-1-4503-6459-1. DOI:
10.1145/3202710.3203163.

[6] Norman Fenton and James Bieman. Software Metrics:
A Rigorous and Practical Approach, Third Edition.
3rd. USA: CRC Press, Inc., 2014. ISBN: 1-4398-3822-
4.

[7] Dolores R Wallace, Arthur H Watson, and Thomas J
McCabe. Structured testing : a testing methodology
using the cyclomatic complexity metric. en. Tech. rep.
NIST SP 500-235. Edition: 0. Gaithersburg, MD: Na-
tional Institute of Standards and Technology, 1996,
NIST SP 500–235. DOI: 10.6028/NIST.SP.500-235.
URL: https : / / nvlpubs . nist . gov / nistpubs / Legacy /
SP / nistspecialpublication500 - 235 . pdf (visited on
05/07/2025).

[8] Christof Ebert, James Cain, Giuliano Antoniol, Steve
Counsell, and Phillip Laplante. “Cyclomatic Complex-
ity”. In: IEEE Software 33.6 (Nov. 2016), pp. 27–29.

ISSN: 1937-4194. DOI: 10.1109/MS.2016.147. URL:
https://ieeexplore.ieee.org/document/7725232 (visited
on 06/18/2025).

[9] Noraini Mohamed, Raja Fitriyah Raja Sulaiman, and
Wan Rohana Wan Endut. “The Use of Cyclomatic
Complexity Metrics in Programming Performance’s
Assessment”. In: Procedia - Social and Behavioral
Sciences. 6th International Conference on University
Learning and Teaching (InCULT 2012) 90 (Oct. 2013),
pp. 497–503. ISSN: 1877-0428. DOI: 10.1016/j.sbspro.
2013.07.119. URL: https:/ /www.sciencedirect .com/
science / article / pii / S1877042813020077 (visited on
06/02/2025).

[10] J.H. Hayes, T.C. Lethbridge, and D. Port. “Evaluat-
ing individual contribution toward group software en-
gineering projects”. In: 25th International Conference
on Software Engineering, 2003. Proceedings. ISSN:
0270-5257. May 2003, pp. 622–627. DOI: 10 . 1109 /
ICSE.2003.1201246. URL: https://ieeexplore.ieee.org/
document/1201246 (visited on 06/10/2025).

[11] M. Guttmann, A. Karakas, and D. Helic. “Attribu-
tion of Work in Programming Teams with Git Re-
porter”. In: SIGCSE 2024 - Proceedings of the 55th
ACM Technical Symposium on Computer Science Ed-
ucation. Vol. 1. 2024, pp. 436–442. DOI: 10 . 1145 /
3626252 .3630785. URL: https : / /www.scopus . com/
inward/record.uri?eid=2- s2.0- 85189288339&doi=
10.1145%2f3626252.3630785&partnerID=40&md5=
522e9cb4493f977aa69b78f99205f26d.

[12] J.J. Sandee and E. Aivaloglou. “GitCanary: A Tool for
Analyzing Student Contributions in Group Program-
ming Assignments”. In: ACM International Confer-
ence Proceeding Series. 2020. DOI: 10.1145/3428029.
3428563.

[13] Reem Alfayez, Pooyan Behnamghader, Kamonphop
Srisopha, and Barry Boehm. “An exploratory study
on the influence of developers in technical debt”. In:
Proceedings of the 2018 International Conference on
Technical Debt. TechDebt ’18. New York, NY, USA:
Association for Computing Machinery, May 2018,
pp. 1–10. ISBN: 978-1-4503-5713-5. DOI: 10 . 1145 /
3194164.3194165. URL: https: / /dl .acm.org/doi/10.
1145/3194164.3194165 (visited on 06/02/2025).

[14] Valentina Piantadosi, Simone Scalabrino, Alexander
Serebrenik, Nicole Novielli, and Rocco Oliveto. “Do
attention and memory explain the performance of soft-
ware developers?” In: Empirical Softw. Engg. 28.5
(Aug. 2023). ISSN: 1382-3256. DOI: 10.1007/s10664-
023-10316-9. URL: https://doi.org/10.1007/s10664-
023-10316-9 (visited on 06/15/2025).

[15] Zahra Karimi, Ahmad Baraani-Dastjerdi, Nasser
Ghasem-Aghaee, and Stefan Wagner. “Links between
the personalities, styles and performance in com-
puter programming”. In: Journal of Systems and Soft-
ware 111 (Jan. 2016), pp. 228–241. ISSN: 0164-1212.
DOI: 10 . 1016 / j . jss . 2015 . 09 . 011. URL: https :
/ / www . sciencedirect . com / science / article / pii /
S016412121500206X (visited on 06/15/2025).

https://doi.org/10.1080/08993408.2019.1696168
https://doi.org/10.1080/08993408.2019.1696168
https://doi.org/10.1080/08993408.2019.1696168
https://doi.org/10.1080/08993408.2019.1696168
https://doi.org/10.1145/3328778.3366948
https://doi.org/10.1145/3328778.3366948
https://doi-org.tudelft.idm.oclc.org/10.1145/3328778.3366948
https://doi-org.tudelft.idm.oclc.org/10.1145/3328778.3366948
https://doi.org/10.5753/cibse.2024.28446
https://doi.org/10.5753/cibse.2024.28446
https://doi.org/10.1109/QRS-C.2015.33
https://ieeexplore.ieee.org/document/7322148
https://doi.org/10.1145/3202710.3203163
https://doi.org/10.6028/NIST.SP.500-235
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-235.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication500-235.pdf
https://doi.org/10.1109/MS.2016.147
https://ieeexplore.ieee.org/document/7725232
https://doi.org/10.1016/j.sbspro.2013.07.119
https://doi.org/10.1016/j.sbspro.2013.07.119
https://www.sciencedirect.com/science/article/pii/S1877042813020077
https://www.sciencedirect.com/science/article/pii/S1877042813020077
https://doi.org/10.1109/ICSE.2003.1201246
https://doi.org/10.1109/ICSE.2003.1201246
https://ieeexplore.ieee.org/document/1201246
https://ieeexplore.ieee.org/document/1201246
https://doi.org/10.1145/3626252.3630785
https://doi.org/10.1145/3626252.3630785
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189288339&doi=10.1145%2f3626252.3630785&partnerID=40&md5=522e9cb4493f977aa69b78f99205f26d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189288339&doi=10.1145%2f3626252.3630785&partnerID=40&md5=522e9cb4493f977aa69b78f99205f26d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189288339&doi=10.1145%2f3626252.3630785&partnerID=40&md5=522e9cb4493f977aa69b78f99205f26d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189288339&doi=10.1145%2f3626252.3630785&partnerID=40&md5=522e9cb4493f977aa69b78f99205f26d
https://doi.org/10.1145/3428029.3428563
https://doi.org/10.1145/3428029.3428563
https://doi.org/10.1145/3194164.3194165
https://doi.org/10.1145/3194164.3194165
https://dl.acm.org/doi/10.1145/3194164.3194165
https://dl.acm.org/doi/10.1145/3194164.3194165
https://doi.org/10.1007/s10664-023-10316-9
https://doi.org/10.1007/s10664-023-10316-9
https://doi.org/10.1007/s10664-023-10316-9
https://doi.org/10.1007/s10664-023-10316-9
https://doi.org/10.1016/j.jss.2015.09.011
https://www.sciencedirect.com/science/article/pii/S016412121500206X
https://www.sciencedirect.com/science/article/pii/S016412121500206X
https://www.sciencedirect.com/science/article/pii/S016412121500206X

[16] Christopher Hundhausen, Adam Carter, Phillip Con-
rad, Ahsun Tariq, and Olusola Adesope. “Evaluating
Commit, Issue and Product Quality in Team Soft-
ware Development Projects”. In: Proceedings of the
52nd ACM Technical Symposium on Computer Sci-
ence Education. SIGCSE ’21. New York, NY, USA:
Association for Computing Machinery, Mar. 2021,
pp. 108–114. ISBN: 978-1-4503-8062-1. DOI: 10.1145/
3408877.3432362. URL: https: / /dl .acm.org/doi/10.
1145/3408877.3432362 (visited on 06/18/2025).

[17] T.J. McCabe. “A Complexity Measure”. In: IEEE
Transactions on Software Engineering SE-2.4 (1976),
pp. 308–320. DOI: 10.1109/TSE.1976.233837.

[18] Yahya Tashtoush, Mohammed Al-Maolegi, and Bas-
sam Arkok. “The Correlation among Software Com-
plexity Metrics with Case Study”. en. In: International
Journal of Advanced Computer Research 4.2 (2014).

[19] Janet Feigenspan, Christian Kästner, Jörg Liebig,
Sven Apel, and Stefan Hanenberg. “Measuring pro-
gramming experience”. In: 2012 20th IEEE In-
ternational Conference on Program Comprehension
(ICPC). 2012, pp. 73–82. DOI: 10.1109/ICPC.2012.
6240511.

[20] Terry Yin. terryyin/lizard. original-date: 2012-06-
21T11:31:46Z. May 2025. URL: https: / /github.com/
terryyin/lizard (visited on 05/17/2025).

[21] Virginia Braun, and Victoria Clarke. “Us-
ing thematic analysis in psychology”. In:
Qualitative Research in Psychology 3.2
(Jan. 2006). Publisher: Routledge eprint:
https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa,
pp. 77–101. ISSN: 1478-0887. DOI: 10 . 1191 /
1478088706qp063oa. URL: https://www.tandfonline.
com/doi/abs/10.1191/1478088706qp063oa (visited on
06/02/2025).

[22] KNAW, NFU, NWO, TO2-Federatie, Vereniging
Hogescholen, and VSNU. Nederlandse gedragscode
wetenschappelijke integriteit. en. 2018. DOI: 10 .
17026 / DANS - 2CJ - NVWU. URL: https : / /
phys - techsciences . datastations . nl / dataset . xhtml ?
persistentId = doi : 10 . 17026 / dans - 2cj - nvwu (visited
on 06/02/2025).

[23] E. H. Simpson. “The Interpretation of Interaction in
Contingency Tables”. In: Journal of the Royal Statis-
tical Society. Series B (Methodological) 13.2 (1951).
Publisher: [Royal Statistical Society, Oxford Univer-
sity Press], pp. 238–241. ISSN: 0035-9246. URL: https:
/ / www . jstor . org / stable / 2984065 (visited on
06/22/2025).

https://doi.org/10.1145/3408877.3432362
https://doi.org/10.1145/3408877.3432362
https://dl.acm.org/doi/10.1145/3408877.3432362
https://dl.acm.org/doi/10.1145/3408877.3432362
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/ICPC.2012.6240511
https://doi.org/10.1109/ICPC.2012.6240511
https://github.com/terryyin/lizard
https://github.com/terryyin/lizard
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://doi.org/10.17026/DANS-2CJ-NVWU
https://doi.org/10.17026/DANS-2CJ-NVWU
https://phys-techsciences.datastations.nl/dataset.xhtml?persistentId=doi:10.17026/dans-2cj-nvwu
https://phys-techsciences.datastations.nl/dataset.xhtml?persistentId=doi:10.17026/dans-2cj-nvwu
https://phys-techsciences.datastations.nl/dataset.xhtml?persistentId=doi:10.17026/dans-2cj-nvwu
https://www.jstor.org/stable/2984065
https://www.jstor.org/stable/2984065

A Questionnaire
The questionnaire used to measure prior-programming expe-
rience consisted of the sections A.1, A.2 and A.3. The ques-
tions in A.3 were extracted from Feigenspan, Kästner, Liebig,
Apel, and Hanenberg [19].

A.1 Consent
You are being invited to participate in research about Student
Software Development Project Groups. This study is being
done as part of the CS3000 Research Project at the TU Delft.
The data will be used for analysis by up to five BSc students
working on the Research Project and their supervisor. The
survey will take approximately 20 minutes to complete. We
ask that you fill out this survey honestly, and to the best of
your ability. One question asks for the link to your repository,
by filling this in, you consent to the researchers having read-
only access to your repository for the duration of the Research
Project.

As with any online activity the risk of a breach is always
possible. To the best of our ability your answers in this study
will remain confidential. Participating in this research does
not impact your course performance, and the course instruc-
tors do not have access to the data. We will minimize any
risks by storing the data on TU Delft servers only. We will be
collecting your email address on this consent form for consent
purposes and for linking your survey answers to the observa-
tion data, but this will not be used in data analysis and can
only be accessed by the responsible researcher. This form
will not be stored together with the survey answers, but in
a separately encrypted space to minimise the risk of a data
breach. After this research, the data will be stored for at least
ten years in a restricted repository for reproduction purposes,
in line with the TU Delft Research Data Framework Policy.

Your participation in this study is entirely voluntary and
you can withdraw at any time and for any reason. You
are free to omit any questions. You can revoke consent at
any time and your data will be deleted, you do not have
to provide a reason. Please note that we cannot remove
results that have been published already. If you have any
questions, you can reach the responsible researcher at

1. By filling in your email address below, you declare
that

you have read this opening statement and explicitly consent
to participate in this research and the processing of your data.

Answer:

A.2 Demographic Information
2. What is your age?
Answer:

3. How many years of studying CSE at TU Delft have you
completed?

⃝ 0 ⃝ 1 ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5+

4. What is your gender?

Answer:

5. Please enter the link to your GitLab repository, so we
can request (read-)access

Answer:

6. What is your Gitlab name or email address?

Answer:

A.3 Programming Experience
7. How do you estimate your programming experience on a
scale from 1 to 10, where 1 is very inexperienced and 10 is
very experienced?

Answer:

Note: For legibility, question 8 will be presented as a list
of sub-questions with their respective answer options. In the
original survey these were introduced in a table

8. Please answer the following statements.

8.1 How do you estimate your programming experience
compared to your classmates?

Very inexperienced Neutral Very Experienced
⃝ ⃝ ⃝ ⃝ ⃝

8.2 How experienced are you with logical programming?
(This refers to programming based on formal logic, where
code expresses facts and rules — examples include Prolog,
Datalog, or logic-based exercises in courses like AI or Declar-
ative Programming.

Very inexperienced Neutral Very Experienced
⃝ ⃝ ⃝ ⃝ ⃝

8.3 How experienced are you with object-oriented pro-
gramming?

Very inexperienced Neutral Very Experienced
⃝ ⃝ ⃝ ⃝ ⃝

8.4 How complex do you perceive your code to usually be?
(1 = very low complexity, 5 = very complex)

Very low complexity Neutral Very Complex
⃝ ⃝ ⃝ ⃝ ⃝

8.5 How experienced are you with front-end development?

Very inexperienced Neutral Very Experienced
⃝ ⃝ ⃝ ⃝ ⃝

9. For how many years have you been programming?

Answer:

10. How many programming languages do you know at a
medium level or higher?

Answer:

11. How many courses have you taken that required you
to implement source code?

Answer:

12. For how many years have you been programming for
larger software projects, e.g., in a company?

Answer:

13. For how many years have you been programming
outside of academic context (as a job)?

Answer:

14. How long were the professional projects typically?

⃝ Not applicable
⃝ <900 Lines of Code
⃝ 900-40000 Lines of Code
⃝ >40000 Lines of Code

B Additional plots by Experience level

B.1 Group analysis RQ 1 - Correlation tables

Table 4: Spearman’s rank correlation for each of the Prior Experi-
ence and Complexity Metric variable pairs

Experience Complexity correlation p-value

Years of
Experience

Total -0.53* 0.04*
Average p/ Commit -0.40 0.14
Average p/ Branch -0.10 0.72
Max 0.01 0.96

Years in
Industry

Total -0.58* 0.02*
Average p/ Commit -0.32 0.24
Average p/ Branch -0.31 0.27
Max 0.06 0.82

Years at
TUDelft

Total 0.13 0.65
Average p/ Commit -0.16 0.58
Average p/ Branch -0.03 0.91
Max -0.21 0.46

Experience
Score

Total -0.08 0.78
Average p/ Commit -0.29 0.29
Average p/ Branch 0.09 0.74
Max 0.25 0.37

Self-
Reported
Complexity

Total 0.03 0.91
Average p/ Commit 0.05 0.87
Average p/ Branch -0.10 0.73
Max 0.15 0.61

B.2 Group analysis RQ 2 - Correlation tables

Table 5: Spearman’s rank correlation between Years of experience
in industry and Complexity Metrics, calculated for each group

Group Complexity correlation p-value

Ye
ar

so
fE

xp
er

ie
nc

e
in

in
du

st
ry

All
groups

Total -0.58* 0.02*
Average p/ Commit -0.32 0.24
Average p/ Branch -0.31 0.27
Max 0.06 0.82

Group A

Total -0.87 0.06
Average p/ Commit -0.87 0.06
Average p/ Branch -0.87 0.06
Max -0.29 0.64

Group B

Total NA NA
Average p/ Commit NA NA
Average p/ Branch NA NA
Max NA NA

Group C

Total 0.45 0.45
Average p/ Commit 0.78 0.12
Average p/ Branch 0.78 0.12
Max 0.45 0.45

Table 6: Spearman’s rank correlation between Years of study at TU
Delft and complexity metrics, calculated for each group

Group Complexity correlation p-value

Ye
ar

so
fs

tu
dy

at
T

U
D

el
ft

All
groups

Total 0.13 0.65
Average p/ Commit -0.16 0.58
Average p/ Branch -0.03 0.91
Max -0.21 0.46

Group A

Total -0.71 0.18
Average p/ Commit 0.00 1.00
Average p/ Branch -0.71 0.18
Max -0.35 0.56

Group B

Total -0.35 0.56
Average p/ Commit -0.71 0.18
Average p/ Branch 0.00 1.00
Max 0.00 1.00

Group C

Total -0.71 0.18
Average p/ Commit -0.71 0.18
Average p/ Branch -0.71 0.18
Max -0.71 0.18

	Introduction
	Related Work
	Cyclomatic Complexity

	Methodology
	Data Collection
	Metrics
	Prior Programming Experience
	Cyclomatic Complexity Assessment

	Data Analysis
	RQ1

	Thematic Analysis
	RQ2

	Results
	Quantitative analysis
	RQ1
	RQ2

	Thematic analysis
	RQ1

	Responsible Research
	Discussion
	RQ1
	RQ2
	Implications
	Limitations

	Conclusions and Future Work
	Questionnaire
	Consent
	Demographic Information
	Programming Experience

	Additional plots by Experience level
	Group analysis RQ 1 - Correlation tables
	Group analysis RQ 2 - Correlation tables

