Delft University of Technology
Master of Science Thesis in Embedded Systems

Battery-Free Operation in Existing Building
Automation Networking Protocol

Jeffrey Quinten Bouman

rff‘: Embedded
“wn] Systems

Battery-Free Operation in Existing Building
Automation Networking Protocol

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Jeffrey Quinten Bouman

15-09-2023

Author

Jeffrey Quinten Bouman
Title

Battery-Free Operation in Existing Building Automation Networking Protocol
MSc Presentation Date

20-09-2023

Graduation Committee
dr. Chang Gao Delft University of Technology

dr. Przemystaw Pawelczak Delft University of Technology
dr. Jasper de Winkel Delft University of Technology

Abstract

The averse reaction of lithium batteries inspired researchers to look for alternat-
ives for energy storage in electronics. Battery-free or intermittent devices intro-
duce a new paradigm with their own specific problems about power, state track-
ing, timing and communication. We implemented the battery-free paradigm in
the Thread protocol, utilizing the specific characteristics of End Devices in the
mesh network to reduce power consumption. The intermittent implementation
is fulfilled without changing the behaviour of the protocol, making the device
fully compatible without other devices being aware of the intermittent opera-
tion. During tests four implementations are tested, completely naive, semi naive
with simple power improvements, Sleepy End Device operating intermittently
and a Synchronised Sleepy End Device operating intermittently. The results of
the power measurements are used to determine the feasability of four use cases.
The intermittently operating Sleepy End Device is out performing the Naive
and Semi Naive implementation.

v

Preface

The inspiration for this topic was sparked during a presentation in one of
the classes, where research was shown on FreeBie. Inspiring me to apply the
paradigm to one of my passions, building automation.

I am thankful to dr. Chang Gao for providing their knowledge and expertise.
I am also grateful to dr.Przemystaw Pawelczak and dr.Jasper de Winkel for
their guidence during the making of this thesis. Lastly, I would be remiss in
not mentioning friends and family for their support during the making of this
thesis.

Jeffrey Quinten Bouman

Delft, The Netherlands
21st September 2023

vi

Contents

[Prefacel

[L_Introductionl

2.1.2 Emnergy Storagel oo
2.1.3 Harvesting Energy|
2.1.4 Keeping Track of Time|
2.1.5 Non-Volatile Memory|
2.1.6 Sensors and Peripherals|

2.2.1 Memory Persistency| 0.
[2.2.2 System and Peripheral State]
2.2.3 Debugging|. 0 o
2.2.4 Energy Aware Scheduling]
225 Communication].
2.3 Adjacent technologies|

Implementation|

4.1 Platform Abstraction Layer|
4.2 Application Layer|.
4.3 Transterability] o
4.4 Connecting to the Networkl
4.5 Leveraging Thread for Intermittency|

vii

10
10
10
11
11
12
13

[Tmplementation Analysis| 23
............................... 23
Bl Hardward oo oo oo 23

D.1.2 Softwarelo 24

B2 Resultd. oo 26
p.2.1 Power Consumption During Regular Operation| 26

p.2.2 Boot Power Consumption| 28

p.2.3 Average Power Consumption per Situation| 32

.3 Impact on Use Cases| 34
[6_Conclusion 39
6.1 Discussion| 41

viii

Chapter 1

Introduction

The intermittent computing paradigm tries to step away from batteries by util-
izing different energy storage options, often capacitors or super capacitors. The
trend to move away from batteries has multiple different reasons. The first issue
with batteries, especially the Lithium-ion (Li-ion) type, is the averse reaction
to mechanical and temperature stress. When Li-ion batteries are subjected to
these types of strain, the battery might burst. Secondly, batteries are dangerous
when they start leaking or get damaged. Especially when the devices utilizing
such a battery is used in a hard to reach place, like a satellite, in concrete or
inside a human body [28]. Lastly, the replacement of a battery in such hard
to reach places can be costly. At the moment a battery meets the end of its
life, a replacement is necessary, which is not always feasible. In these type of
scenarios an intermittent system with a capacitor which does not have the same
drawbacks as batteries, is an excellent solution.

1.1 Intermittent Origins

The roots of intermittent programming and systems come from the RFID world.
Where systems are designed to work with energy gathered from a wirelessly
transmitting source. This energy source is not always present, so the system
needs to be designed to directly start operating on the task at hand. However,
these RFID based systems do not need to gather information while disconnected
from their power source. Also is their wireless connectivity based on the backs-
catter of the source device. From there, research slowly transferred into other
directions with systems utilizing different energy sources, like photo-voltaic cells
and power generating buttons like the ones found in the ENGAGE [@] project.

1.2 Challenges

Designing intermittently operating devices and writing code for such devices is
greatly different from designing a system which can continuously draw energy
from a battery. These devices are only turned on for short periods of time
with relatively long delays in between, see Figure as an example. Therefore
completely different pitfalls appear. Some of these challenges consist of, but are
not limited to; time keeping, memory consistency, energy awareness, scheduling

Capacity

Time

Figure 1.1: Intermittent operation example with the red line indicating
the capacity of the device and the green rectangles the on time of the
device. At the capacity of the upper dashed line, the device turns on
and at the lower dashed line the device turns off again.

and wireless communication. For most of these challenges are multiple solutions
possible, some having both a software as well as a hardware solution. When
combining the solutions of these challenges, they might interfere with each other.

1.3 Goal

How can the characteristics of the Thread protocol be utilized to create battery-
free operating devices?

To start of, the current state of battery-free device technology described in
Chapter [

Secondly, The communication protocol chosen for this research as well as
three use cases in which the protocol is used, are written down in Chapter
In order to utilize the protocol and take advantage of its possibilities, a more
detailed insight of our approach is given in Chapter [4

Next we gathered power consumption data on the devices operating in differ-
ent network configurations. The power consumption per configuration is com-
pared against each other. Information about the test configuration, the results
of these experiments and the impact on our use cases are given in Chapter

Lastly, the thesis is concluded and discussed in Chapter [6]

Chapter 2

Related Work

Intermittent operation is a niche subject with specific problems. These different
challenges can be roughly divided into two subjects, the hardware and software
side. Below we discuss the different challenges within these subjects.

2.1 Hardware

A convergence to an all encompassing hardware platform will greatly increase
the ability for researchers to compare different software implementations, without
having to account for differences in hardware designs. We need a platform which
has the capabilities to receive power from multiple different sources and can
communicate over a variety of wireless communication protocols.

2.1.1 Platforms

In the past, a few hardware platforms were often used to compare different
software implementations with each other, for example Moo [42] and WISP [34].
However these platform mainly focus on the RFID type of devices. RFID based
platforms do only react to incoming messages by deflecting the power in different
ways or depend on power from an induction source. The closest solution for new,
non RFID, systems found in academia is, for example the Flicker [19] system,
which makes it possible to interchange different sensors on a batteryless stack.
However, due to their custom design and inability to change out storage types,
make the demand for interchangeable hardware is hard to fulfill.

2.1.2 Energy Storage

Intermittent systems still need to store power somewhere, in an overwhelmingly
number of cases this energy is stored in capacitors. Even though these type
of systems are often referred to as batteryless systems, some devices can tech-
nically still operate from energy stored in a battery. The main reasons to stop
using batteries in systems are already mentioned earlier. However one could also
reason for the opposite. Systems designed to use sensors (e.g temperature) and
oscillators which drift over time might be a bottleneck, preventing perpetual
operation. Therefore designing a system containing batteries with an expected

lifetime longer then other components in the same system, might relieve a pro-
grammer of the burden for writing hard to write intermittent code. Especially
newer battery technologies as shown in [22], like Lithium Titanate and Lith-
ium Iron Phosphate, which remove the mechanical and thermal constraints of
existing Lithium battery technologies.

Although Batteries might still be relevant in some cases, most research is
done with capacitor based systems, these systems can divided into two main
paradigms; distributed and centralized. In a distributed energy environment,
each sub device in the system has its own energy storage. This approach gives
more flexibility for subsystems to operate independently, with the drawback
of introducing a synchronization problem between the different subsystems,
GRANT [41] is a possible solution to this problem. In centralized designs, all
subsystems drain consume energy from a single point, which can still be turned
of for specific parts of the device. For example a real-time clock consumes so
little power, it can be kept on even when the MCU is turned off, as seen in
the design of FreeBie [7]. Research towards micro management of the energy
capacity is also done with Capybara [4].

2.1.3 Harvesting Energy

Intermittent systems gain their energy from different types of sources which
do not provide energy at a fixed voltage or current. In order to store the
energy correctly, special harvester hardware is needed to charge a capacitor or
other storage component. These harvesters can gain the energy from different
sources which include, but are not limited to; photo voltaic cells, piezo crystals,
generators and radio frequencies. All with their own advantages and drawbacks.
An overview of different currently used harvesters and energy sources is made
in [23].

2.1.4 Keeping Track of Time

Time keeping is, as mentioned before, one of the main problems to tackle for
intermittent systems. Devices need to keep track of time while turned off, as
well as being able to turn on at specific intervals for correct measurements and
communication. For now two paradigms are possible.

The first is to use a capacitor to relate time. Capacitors can be configured to
have a static discharge rate as achieved by BOTOKS [5]. Combined with the
direct relation between stored energy and voltage, make capacitors a candidate
for determining elapsed time when the MCU is not running. The advantage
of this technique is the ability to have different granularities compared to the
next option. However, the capacitors need to be recharged and have a fixed
maximum time which they can measure before running out of energy.

The second option is to use a Real Time Clock (RTC). This RTC consumes
significantly less power compared to the deepest sleeping states of microcontrol-
lers. Such a solution is implemented in the mote used by FreeBie [7]. Therefore,
the RTC can keep operating while the MCU is turned off completely. The ad-
vantage of an RTC over a capacitor is the ability to set a timer. The timer can
make sure the MCU can be turned on at specific irregular intervals (if enough
power is stored) and be woken up at these specific timings. Also is the accur-
acy of the RTC better compared to a capacitor, which timing determination

is correlated to the accuracy of the used Analog to Digital Converter (ADC).
The major reason to refrain from using an RTC is the operating current. Even
though the current is low. The system still consumes power.

2.1.5 Non-Volatile Memory

During any point of operation an intermittently operating device can run out of
energy to operate. In order to prevent total loss of all data, intermittent systems
are designed to continue operating from a previous point in time. Information
about where this point (stack pointer and program pointer) as well as other
system memory (registers and (S)RAM) needs to be stored in a medium which
does not lose it’s content when powered down. For this non-volatile memory
type two different approaches are used. Either the information is stored in
long term storage like flash or EEPROM, which take a long time to store its
information and takes up a lot of energy compared to internal SRAM [9]. Or
the information is stored in a version of RAM which does not lose its content
when powered down, for example FRAM. This type of RAM operates a lot
quicker compared to different ROM technologies [9] and consumes a lot less
power. This is not a silver bullet though, the writing and reading speeds are
slower compared to SRAM and is more expensive to purchase per byte. Deciding
when to write data to Non-Volatile Memory (NVM) is a problem with a lot of
different approaches. Writing to NVM is often more expensive in terms of time
and energy compared to writing in regular (S)RAM. The most used solution is
checkpointing the code, where at each checkpoint all volatile data is written to
NVM. Checkpoints can be placed recurring code like loops and at specific points
in threads. However it is not always needed to write to NVM, when the energy
storage is still full enough to reach not only the current checkpoint, but also the
next. In case of such an excess of power, the device can decide to abstain from
writing a complete checkpoint to NVM.

2.1.6 Sensors and Peripherals

Sensors connected to a batteryless system cannot use significantly more energy
compared to the microcontroller. Doing so will disable the ability for the sys-
tem to correctly respond to energy availability. Also sensors which take a long
time to gather information are not always suitable for intermittent operation.
One example of such a sensor is a gas sensor which heats up a part to determ-
ine the gas concentration in the air. Although efforts are made into powering
accelerators as well [29].

2.2 Software

Even though there has not been created a single platform, effort is made into
creating different kinds of software. Different aspects important for battery free
operation are described below.

2.2.1 Memory Persistency

For battery-free devices is it important for the memory to be up to date. If
memory is stored for longer periods of time, information can become stale.

For example, if a sensor measurement indicates a flooding and right after the
measurement, the system is shut down for multiple weeks, unable to send out
the information in the meantime. When the system boots up again, it will try
to send the information about the flooding to other systems. At the time of
sending this information is already out of date.

2.2.2 System and Peripheral State

At the moment power is disconnected from the system and its connected peri-
pherals, also the state and configuration of these systems is lost. Most peripher-
als need some form of configuration in order to operate in the desired behavior,
even for simple sensors. These configurations will often be lost after a power
cycle and need to be restored efficiently for the system to operate correctly. In
case the system takes too long to reinstate the correct configuration of a system,
valuable energy and time can be lost.

2.2.3 Debugging

Creating bug-free code for sensor centered devices is already a difficult problem
to solve. To help with this task are loads of different testing and debugging tools
available. Spotting and recreating bugs for intermittently powered systems is
even more difficult, due to the frequency with which the system is turning
on and off. Regular debugging tools either require a device to be turned on
during use or actively inject power to a system. Since the fluctuations in power
can change the behavior of a system significantly. Therefore new debugging
systems need to be designed in order to test devices without interfering with
their power states or inputs. Different approaches addressed this issue went in
the direction of analysis tools [27]. Solutions with hardware centric approaches
like Shepherd [I1] or Ekho [I8], where energy harvesting logs can be replayed
on a device in order to recreate buggy behavior.

2.2.4 Energy Aware Scheduling

Systems which are highly dependent on the amount of energy present at a given
time, need to spend this energy wisely. The amount of energy consumed is not
only determined by the peripherals attached to the device, also dependent on
the energy spend on computing. In order to make sure the system does not
have to recompute the same task multiple times, which wastes energy. The
task can be split up into multiple smaller sections. The main approach in doing
so is by utilizing checkpoints. These checkpoints either store the entire, or at
the least the most important parts of the current execution. This information
often consists of the program counter, the stack pointer, (parts of) the stack
and peripheral states. Making a checkpoint costs time and energy, things that
are precious for described devices. Determining when and what to checkpoint is
an integral part of energy aware systems. One of the most studied approaches
is to utilize an operating system to create checkpoints based on the scheduler,
tasks and instructions. Example kernels are tinyOS [24], Chain [3], Mayfly [20]
and Ink [40]

Another approach is done with checkpointless systems, like Alpaca [25] and
Chinchilla [26]. These are compilers which checkpoints C code with minimal

interference of a programmer. This is done by changing the intermediate code
and inserting checkpoints on logical positions of the code, e.g. after a loop
iteration and at the end of a loop. The advantage of this approach is minimal
to no interference of the programmer on the code, even libraries which are
not specifically written with checkpointing in mind can be compiled to do so.
However, when operations are dependent on external hardware, the registers of
this Another solution, which reduces the compute time of a task, is to change
the accuracy of a result based on the amount of energy available at the current
moment. Changing the compute time this way, could prevent the need for Non
Volatile Memory. The main drawback for such an approach is the need for
an algorithm which can actually take the energy level as a parameter when
computing the result. As well as a tuning for each specific system, based on the
total and current energy levels of the device. An example of such and approach
is shown in [IJ.

2.2.5 Communication

Communication between intermittently operating devices is one of the most
difficult aspects. The first biggest hurdle is to make sure both devices are active
at the same time. Due to the lack of consistent energy supply or a guaranteed
large energy storage, are devices turned off most of the time. During these
moments a device can neither send, nor receive any data. Therefore, two devices
which want to communicate with each other, need to find a moment at which
they are both powered on. This bootstrapping problem has been looked at for
entirely intermittently operating networks in [12].

After this first contact another hurdle appears, how make these devices sure
they are active at the same time for the next communication time slot. As
mentioned before, due to the lack of large energy storage and consistent energy
delivery is there no guarantee both devices are turned on at the next commu-
nication interval. Also is the keeping a synchronized clock between the two
devices difficult, when the clock is turned off at the same time as the device
itself. Therefore, need both systems to have a robust a timing system, which
we already discussed in section One approach of staying in connection
is done by continuously tracking and adapting parameters of an offline created
model, like Bonito [I3]. This implementation enables the ability to communic-
ate between battery free devices. However, this custom implementation has no
fail recovery, after a single missed interval the connection is considered lost. A
completely new connection needs to be established after such a fail. Also is, due
to the clock drift of the crystal, the maximum interval five seconds long. Such
a short interval is too short for devices of which the power generator is based
on the sun.

The problem with aforementioned solutions is the inability to operate with
existing network technologies. For real-world solutions, interoperability is a
must, even if devices are not made by the same manufacturer. Previous re-
search made efforts to operate as a full Bluetooth peripheral device [7] or as a
Bluetooth Low Energy mote [I0]. The solutions are one-to-one or on-to-many
communication, relying on a single host to operate the network. In building
automation this would mean, placing lots of host devices in between the sensor
devices. Resulting in extra overhead and still the need to design such a device.

2.3 Adjacent technologies

Transient computing is different from Intermittent computing due to the lack
of an energy buffer. With intermittent computing the harvester stores energy
in a buffer, often a battery or a capacitor, and the buffer is used when an
interrupt if given. With transient computing the energy is not stored at all,
but rather directly consumed by the hardware, like RESTOP [33]. The direct
consumption adds extra complexity to the system (eg. decreased predictability,
power generation equivalent to or larger than consumption of the system, more
difficult time keeping). This type of computing is strongly related to the RFID
roots. Where the responses are generated based on the incoming data of the
device which also powers the RFID based device.

Energy- or Power-Neutral systems, are systems which do store energy
gathered over time. In contrary to other discussed systems, their harvested
power is equal to the power consumed over a specific amount of time. For ex-
ample with photo voltaic based systems this time is often 24 hours. These type
of devices have three different variables which can be configured, their harves-
ted power, by changing the amount or efficiency of the harvester. Secondly, the
total storage capacity of the device can be in- or decreased. Lastly, the power
consumption of a device can be changed. Especially the moment of consum-
ing the power is important, energy aware scheduling can greatly increase the
productivity of a device. When the energy storage is full and new power is
still generated, this access energy can be used to compute without having any
negative effect on future operations. Coming back to energy aware scheduling,
as discussed in [2.2.4]

The different aspects of battery-free devices is endless. We are focused on
the communication part of this problem. As discussed in [2:2.5 are solutions
already present, however none of them is usable for building operation. Either
the implementation is completely custom, making operating with other devices
a lot more complex, or the communication protocol is based on a one-to-one
principle. This makes operating in a larger network a lot more complex. Our
solution is based on the Thread protocol, which is build from the ground up for
building operation.

Chapter 3

Thread

Thread is lossy networking protocol intended to be used in the building auto-
mation industry. Due to the use of IPv6 and UDP as the base for its imple-
mentation, the network can interoperate excellent with existing Ethernet based
networks. The combination of these technologies result in a low-latency low
power mesh network. The OSI model of Thread is shown in The lower
two, Physical and Data Link, layers are based on the IEEE 802.15.4 Stand-
ard [21I]. On top is the Network layer, based on 6LowPAN [2], which provides
the addressing and routing. With the previous IP layer, can the User Datagram
Protocol [3I] be stacked. UDP is used within the Thread network to update
information between nodes in the network. For ease of implementing applica-
tion layer programs, Transmission Control Protocol [§] is supported as well. For
indicating successful connections between devices the Internet Control Message
Protocol [32] is used as well. By default, the Mbed TLS [39] library is provided
as well, for encryption. Mbed TLS can also be utilized by the programmer in
the application layer.

Application
Application
Presentation

Session

Transport

Network

Data Link ‘ IEEE 802.15.4 MAC ‘

Physical ‘ IEEE 802.15.4 PHY ‘

Figure 3.1: Network stack overview of Thread.

3.1 Roles

Depending on the capabilities of a device, said device can have one or multiple
roles within the network. In this section we will go over different roles and
expected capabilities for these roles.

3.1.1 Full and Minimal Thread Device

The first major division between different Thread devices, is the distinction of
Full and Minimal Thread Devices. A Full Thread Device (FTD) has all the
capabilities of a network baked into the firmware. FTDs are therefore capable
of routing packets through the Thread network. With these extra capabilities,
an FTD can operate as an end device as well as a router. When the FTD is
operating as an end device it is referred as a Router Eligible End Device (REED).
At the instance where an extra router is needed, a REED can be upgraded to a
Router. More information about routers will be given in Section [3.1.2}

The second device type is a Minimal Thread Device (MTD). These devices
do, as the name implies, only have the bare minimum firmware to operate on
the Thread network. This reduces their hardware requirements of volatile and
non-volatile memory as well as a reduction in power consumption, since their
radio does not need to be turned on at all times. However, operating in such a
way mandates an MTD to operate only on the edges of the network as an End
Device. In Section [3.1.3] more details about these devices will be given.

3.1.2 Router

Routers form the main backbone of the Thread network, together with other
Routers they create a mesh network to relay packets around to their correct
destination. To make the routing possible, router devices are expected to have
their radio turned on all the time. This will make it possible for End Devices
to send their packets without checking if another device is able to receive its
data. Also does the router node need to keep a list of all its connected End
Devices, such that it can store and relay packets destined for the End Device.
The Router node will send the stored packet at the moment the End Device is
active and able to receive its incoming packets. Statistics about the connected
End Devices need to be stored by the Router node as well. The statistics will
determine when an End Device is released from the network, how often it is
expected to reconnect to the network. Thread will try to keep the amount of
routers inside a single network between 16 and 23. The maximum number of
routers is 32.

Border Router

Special version of the Router node is a Border Router. The Border Router has
next to a Thread interface also a connection to another network, for example
a Wi-Fi connection. The dual interface gives the device the opportunity to act
like a firewall between the two. Packets from the one network can be forwarded
to the other network and vice versa. Which packets are let through this firewall
depends on the rules set on the Border Router. Inside a Thread network can

10

be multiple Border Routers. The choice for accepting more than one Border
Router is to prevent a single point of failure inside the network.

3.1.3 End Device

End Devices are the leaf nodes of a Thread network. In contrary to Router
nodes do End Devices not need to keep their radio powered all the time (in
this case they will be a Sleepy End Device). Therefore End Devices are more
geared towards battery(less) devices. End Devices can only be connected to
Router node. Communication between a Router and End Device is initiated by
the End Device. Since Routers are always listening for incoming traffic, packets
send by the End Device are more likely to reach its destination.

A Full Thread Device can also be a Router-Eligable End Device (REED). A
REED can change its role from an End Device to a Router node in case the
network requires more Routers. This need is based on the amount of Routers
present in the network (24 is the optimal number), as well as their connectivity.
If the REED is the only device which can connect to a new End Device on the
network. It will upgrade itself to a Router. Th reverse is also true, if End Device
are lost from the network or the number of routers is exceeding 24, a Router
can be downgraded to REED.

Sleepy End Device

Sleepy End Devices (SED) are a special version of the End Device. These SEDs
are End Devices which do most of the time sleep. Starting from Thread 1.2 [38],
the specification allows for Synchronised Sleepy End Devices (SSED). Contrary
to regular SEDs, these devices return from sleep at a fixed time interval. This
interval is known by the accompanied Router node, which will send buffered
packets at these intervals. By sending at this interval, the End Device does not
need to send a request for the buffered packets anymore, reducing its on-time
even further.

3.1.4 Additional Functions

Next to the earlier mentioned Border Router, the Thread network has more ad-
ditional functions which need to be fulfilled for a correctly functioning network.
These functions are explained below.

Leader

The Leader function inside the network is given to at least one and at maximum
one of the Routers. A Leader is a self elected function, the router creating a
new network is automatically also the Leader, every subsequent Router stays
a regular Router node. In the case where the Leader is removed from the
network, one of the other Routers will take up the role as Leader. The function
of a Leader node is to distribute network configuration information to all the
connected Routers. The Leader determines whether another REED needs to be
turned into a Router or vice versa.

11

Commissioner

In order for more Thread devices to enter the network a Commissioner is need.
This role can be fulfilled both on and off the Thread network. An on-mesh
Commissioner is one of the Routers which distributes the network key to Joiner
devices. An external Commissioner is also possible, for this a Border Router
needs to be present which connects the external Commissioner to the network.
An example of an external Commissioner is a smartphone with a special com-
missioning application installed on it.

The commissioning process works as follows. There are two devices, the Com-
missioner and the Child which wants to join the network. The Commissioner
retrieves the passkey of the Child via a different medium (often a QR code is
used). With the information from the QR code, the Commissioner instructs the
Child to configure the radio the same as the rest of the devices inside the Thread
network. Also is the network key distributed to the Child, with which it can
successfully connect to the network. From the Router the Child is connected to
will the Child receive the IP address(es).

3.2 Topology

A Thread network takes the form of a mesh network, where routers can have
multiple connections between each other and end devices are connected to one
router at a time. An example of the topology of a Thread network can be seen
in Figure In this example the gray cloud represents a network different
from the Thread network, lets call this the internet. The bridge between the
Thread network and the internet is the white square with blue border, this is the
border router. The hexagons represent other routers within the network. The
black hexagon fulfills also the leader role. As can be seen the router notes have
multiple connections between each other. The circles represent End Devices,
with the color indicating the type of End Device. Circles filled with a darker
blue color represent Full Thread devices which are operating as an End Device.
These nodes are capable of becoming a Router and are therefore called Router
Eligible End Devices. The circles with a lighter blue color are Minimal Thread
Devices which are operating as regular End Devices. The white circles connected
to a router with a solid line represent Sleepy End Devices. And lastly, white
circles connected via dotted lines to a router represent the Synchronized Sleepy
End Device.

Due to the combination of creating a mesh network, the self elected leaders
and the ability for nodes to scale up and down their function, is the network
resilient and self forming. In the case where the Leader loses connection with
the rest of the Routers, one of the other Routers in the network will take up
the role as a Leader. The disconnected Leader thereby creates a new network,
separate from the old ones. If no Commissioner is present, the Leader will also
take up the role as the Commissioner, thereby completing all the necessary roles
for creating a Thread network.

12

Figure 3.2: Network topology example, square and hexagons are
Routers, cloud represents a different network, circles are End Devices.

3.3 Addressing

Thread utilizes IPv6 to address nodes inside the network, based on the 6LowPAN.
Addresses are distributed to nodes both based on their location within the net-
work topology as well as for their function.

The location based addressing can be divided into three scales, Link-Local,
Mesh-Local and Global. In Link-Local addressing, addresses are distributed
to a Router and all the devices it can communicate with a single hop. This
includes the leaf nodes connected to the router, but also the other routers which
are directly connected to the Router in question. Addresses are given based
on the extended MAC address of the device. This type addressing is used
for setting up connections between devices and configuring these connections.
With Mesh-Local addressing, all devices within the same Thread network can be
connected. This is the main way of communicating between devices within the
mesh network. The address of a device is determined on their location within
the network. Every device gets an identifier called the Routing Locator (RLOC),
this number consists of both the location number of the Router as well as the
number of the End Device. An example for Router number 1 and End Device
number 1 can be found in Figure this results in a value corresponding

13

01 2 3 4 5|6|7 8 9 0 1 2 3 4 5
Router ID R Child ID
o o0 0 0 0 1{0|0 O 0O OO OO O 1

Figure 3.3: Construction diagram of the RLOC16 numbering, 0x401 in
this example.

to 0b0000010000000001, which is equal to 0x401. In the case where an End
Device connects via different Router instead, the RLOC16 of this device will
therefore change as well. The last scope is the Global addressing, all devices
with an interface to a network outside of the current Thread mesh, get such an
address. Devices do not need to be directly connected to an outside network to
have an interface which connects to other networks. Addresses can be assigned
by a DHCP server, via Stateless Address Autoconfiguration [30], or set in the
application layer. These interfaces are used to communicate with devices outside
of the Thread mesh network, even directly with devices on the internet.

Next to the location addressing, do devices also have multicast addresses.
These addresses are used to send network change information around the net-
work. These addresses are divided into both the scopes and groups, the two
groups are only FTD and FTD with MTD. The scopes are either Link-Local
or Mesh-Local. There are not addresses specific for (S)SED, neither are they
included in any of the groups.

The ability to directly connect with services outside of the Thread network, is
one of the main selling points of this network type. This enables manufacturers
to not only let devices operate in their local network, however also connect
them directly to servers of the manufacturer. Enabling the producer to give
extra features to their devices based on the connection to their own servers.
While still being able to operate within a smaller network, for example the local
network of the building these devices are located in.

14

Chapter 4

Implementation

In this Chapter we will go over the implementation details of the Thread protocol
used in this project. The implementation for Thread is not made entirely from
scratch, the protocol is too complicated to do so. We used the OpenThread [14]
library an open source implementation of the Thread protocol made by Google.
Most hardware vendors,who make compatible radios, have taken this open im-
plementation and ported the software to work for their own devices. Nordic
Semiconductors has done it for the nRF52840 as well [15], the hardware plat-
form of our choice. From this base implementation we changed none of the
internal programming to build the intermittent version. The OpenThread im-
plementation of the Thread network can be described as seen in Figure 4.1
The OpenThread library depends on the Platform Abstraction Layer (PAL).
In this PAL interactions with the specific hardware are done, these contain a
minimum set of functions which are needed for the device to operate as an
MTD. More functions can be implemented for support to function as an FTD.
Some Advanced Features on top of the FTD can be implemented as well, these
include, but are not limited to Auto Frame pending, Energy scan with the ra-
dio and hardware acceleration for encryption. From these Advanced Features,
Auto Frame Pending is needed for devices to behave as an SED or SSED, this
advanced feature is implemented for the nRF52840. The functions needed for
HAL are split between these pillars; Alarm, Serial (UART, USB, SPI), Radio,
Entropy, Miscellaneous, Storage, Logging and optionally some platform specific
functions. Below the PAL is the Hardware abstraction layer, which is implemen-
ted by the manufacturer. On the other side of the OpenThread Core Stack is
the Application Layer, which operates based on the functions inside the Open-
Thread stack.

4.1 Platform Abstraction Layer

From the previously mentioned pillars, the Alarm, Serial, Radio and Entropy
are important to look into. This subset is important, because they either use
hardware registers which need to be set correctly upon restart or provide a basis
for the encryption library. In encryption iterators are used to create the correct
encryption chain (Entropy), these need to be restored correctly after a restart.
UART and USB are not used in our experiments for the End Device. The SPI

15

Application Layer

OpenThread Core Stack

Alarm Serial Radio | Entropy Misc Storage | Logging | Platform

Figure 4.1: Software stack of the OpenThread library, with the Applic-
ation Layer on top and Platform Abstraction Layer below it. And the
Hardware Absraction Layer on the bottom.

is used and was looked into, the configuration of the pins are set at every boot.
The reason for resetting the pins every boot, is to use the external RT'C, which
is needed to align the internal RTC.

For the Mbed TLS library is the Entropy part of the microcontroller to set
an initial seed value of the software random number generator. After setting
this initial value the hardware Entropy functions are not used anymore. By
setting the Mbed TLS library in full software mode, without any hardware
optimizations, will it store all values in memory and important information is
thereby stored in FRAM before powering down.

On a single device, it is possible to use multiple Thread capable radios. Storing
the information about the radio and configuration is therefore important when
building a packet. The whole OpenThread library is made with this capability in
mind. Some information about the hardware layer is therefore also stored in the
configuration of the class which manages the radio. When sending out a packet,
the configuration of the radio is checked before sending. If the configuration is
incorrect, OpenThread will instruct the hardware to take a correct configuration.
Even when the radio is in the incorrect configuration, because of for example a
restart, it is still configured correctly before sending. And, since the information
about the correct configuration is stored in memory, this information is also
stored in the FRAM before powering down. Thereby ensuring the consistency
of the radio, even after a power cycle of the system or the radio.

In the Alarm pillar of the HAL, are all the function calls to the RTC located.
For the device to operate properly it needs correct timekeeping, even between
reboots. This timekeeping is based on the implementation by Winkel, et. al. [7].
Where strong synchronization is needed between the external RTC and internal
RTC. With this implementation sub millisecond synchronization is possible
between the two real time clocks. The synchronisation interval is calculated
by finding the lowest common denominator of both the clocks frequencies. Dur-
ing these intervals, the amount of ticks per clock is always the same (although
different for each clock). Since the exact interval value is known, multiples of
this interval can also be calculated and stored for the next power up. This
sub millisecond synchronisation is especially important for devices which do
also synchronise with their Parent node, such as SSEDs. During none of the

16

SSED tests was the connection lost or a request needed to be resend. Thereby
confirming the usability of this approach.

4.2 Application Layer

On top of the OpenThread Core Stack is the Application Layer located. This
layer gives the developer the ability to interact with the network stack directly.
Here, the configuration variables can be set, callback functions set and functions
called to send out packets.

Some of the configuration settings used are for setting an MTD as an (S)SED.
For example the poll period can be set, this is the time the Router waits between
two requests for data from the End Device. A timeout value can be set as well,
with a minimal value of 62ms and a maximum value of 4.25 years, according
to the specification [I7]. These configurations are set upon the first boot and
stored in memory for every intermittent sequential boot. The OpenThread core
requests the correct configuration from the Router node when it becomes avail-
able. In the Application Layer is also tested whether the device is correctly
connected to the Thread network. Only when the device is correctly connected,
will it be allowed to entirely shut down. The library is set up with its own
instruction stack implementation. On this stack will it create and store instruc-
tion, waiting for execution until a specific function in the main loop is called.
This instruction will go through the entire stack of instructions and execute
them all. To prevent instruction from being stacked for too long, the stack is
checked to be empty before shutting down as well.

4.3 Transferability

The transferability of this project can be viewed from multiple different aspects.
The aspects discussed here are, swapping out the OpenThread to new version
of the library, swapping out the hardware to a completely new platform, or
changing out the protocol.

At the moment when a new version of the OpenThread library is published,
the amount of effort needed to put into transferring the current code base to
the new version completely depends on the OpenThread library itself. In the
case where the new version is fully backwards compatible with older versions,
no changes need to be made. This makes it a lot easier to upgrade to a new
version. The reason for this ability is the fact that all changes made to make it
run intermittently are only in the HAL and Application Layer of the project.

Porting the code base to a completely new platform, depends on whether
the implementation for regular operation is already present. In the case where
the manufacturer of the new platform already implemented the HAL with the
OpenThread network, only the changes for operating intermittently need to
be made. The changes for intermittent operation in the Application layer do
not need to be adapted, however changes in the HAL and for the external
RTC might need some changes. The main hurdle is the synchronisation of the
external RTC with the RTC internally in the microcontroller. Also might it be
needed to change the algorithm which determines the next wake-up time. The
algorithm is closely related to the hardware counters in the microcontroller.

17

Changing out the protocol for another is not possible without throwing every-
thing out and starting over. The changes made are specific to the function calls
of the OpenThread framework. Even changing the library out to another, non
OpenThread, Thread library, has little chance to be compatible. The function
calls need to overlap significantly in order to match. The combination of specific
properties makes Thread specifically well equipped to let device operate inter-
mittently. The ability to make devices operate only as leaf nodes in a network
(End Device) and thereby offload most of the routing work to other devices.
The ability to stay disconnected from the network for a long period of time,
without the need to completely reconnect every time. The ability to connect at
a fixed interval

4.4 Connecting to the Network

In a regular Thread network the joining device requests access to the network
via the Commissioner, which provides the network wide key. In order to ease
the network creation process, the key is stored in the configuration when pro-
gramming the devices. This is the case for both the Router (FTD) and the End
Device (MTD). Although the credentials are stored, the connection between the
FTD and MTD still need to take place. If this is the first time the MTD connects
to a Router in this network, the information about the MTD needs to be stored
by the Router. Since the Router determines when an End Device is kicked off
the network, it needs to store the last time it received a message from the End
Device. Also are the age, RLOC16 (for routing purposes), extended MAC and
information about the type of device stored. The second connecting type is
when the device is reconnecting to the network it already accessed before, this
might happen when the End Device runs out of energy and does a cold start. If
the device is not kicked off the Thread network by the Router yet, it will make
a quick reconnect. This form of (re)connecting is a lot quicker, since the MTD
does not need to send its preferred settings to the FTD anymore. Therefore,
reconnecting before the connection timeout happens, is more efficient compared
to making a cold connection.

4.5 Leveraging Thread for Intermittency

One of the major advantages of using Thread is the ability to be sparse with
the amount of packets sent in the network, without the device sending out the
packets being removed from the network. An End Device can be operating in
three different categories, each with their own way of communicating.

e Default configuration for an End Device, Naive (A)
e The default configuration with basic improvements, Semi Naive (B)
e Sleepy End Device (C)

e Synchronised Sleepy End Device (D)

The first is the default configuration for the End Device, Naive (A). The
device has its radio powered on at all times, like the Router. Therefore it does

18

Property Naive (A) | Semi Naive(B) | SED (C) | SSED (D)
Radio Always On Y N N N
Goes to Sleep N Y N N
Turns Off N N Y Y
Polling N N Y Y
Listening Only N N N Y
FRAM N N Y Y
External RTC N N Y Y

At Messages 4.25y 4.25y 18.6h 10.5s

Table 4.1: Device type configuration overview.

not need to set a poll time, since the device is expected to send and receive pack-
ets at any time. This type of device is intended to be used with an “unlimited”
energy source, connected to the power grid. In this setup the Router does not
buffer any messages for the End Device. Although it is possible for this device
to request a poll time from the Router, this function does not have any benefi-
cial implications. The poll will only add extra unnecessary communication, the
device can send and receive at will to and from the Router. Also does the base
implementation have none of the basic energy saving configurations implemen-
ted. For these energy saving we used the following instructions __-WFE, __WFI
and __SEV. The __WFE instruction sets the hardware in a state where it will
wait for the next event. During this wait period most other systems are not
operating, thereby reducing energy consumption. The instruction is often used
in combination with the __SEV, which sends out an event. This instruction is
used where the hardware does not send out an event by default. The __WFI
instruction is the most effective way to reduce power consumption. The system
will power down as much as possible, until it receives an interrupt, which can
only be given from a small number of peripherals (including external pins and
the internal clock). In contrary to the Naive (A) implementation, are these basic
energy saving configurations enabled on the Semi Naive (B) implementation.
In Table are properties, which differ between implementations, displayed.

The second option is a Sleepy End Device (SED, C), this device has, in
contrary to the first option, most of the time their radio turned off. Only when
expecting a potential message, or sending one out, is the radio active. This
device sets a poll period, which indicates the time between polling the Router
node, to which the device is connected, for new packets. The End Device dictates
this period. If the Router has any messages buffered for the End Device, it will
send the buffered messages right after the poll. The maximum value of the
period is constrained to approximately 18.6 hours [16].

The last option discussed, is the Synchronised Sleepy End Device (SSED,
D). This device synchronises the time on which it will turn on its radio with the
Router node. When operating in this mode, the SSED does not need to poll
the Router before receiving information. This type of implementation is best
used for End Devices which send less often compared to receiving information.
Especially is the response time is needed to be small. The longest time for this
feature, called Coordinated Sampled Listening (CSL), can be configured to be
approximately 10.5 seconds [16].

All of the mentioned intervals are used to create time slots for devices to

19

Use case Interval No connections per day
1. Thermostat 10 minutes 144

2. Valve Controller | 10 seconds 8640

3. Flood Sensor 30 seconds 2880

4. Window Sensor 1 day 1

Table 4.2: Number of times the use cases connect to the network.

operate. It is always possible for messages to get lost. However the difference
between getting completely out of the scope of the Thread network and losing
a messages get faded. To prevent devices from reserving resources for too long,
is it possible to also set a timeout value. If no connection is made before the
timeout timer reaches its end, the device is removed from the Thread network.
The value for this maximum timeout value can be requested by the End Device.
The maximum value of this timer is approximately 4.25 years [16]. The default
implementation needs to minimally send one message to the router within this
period.

4.6 Use Cases

Building a working application on top of the Thread stack falls outside the
scope of this project. Nevertheless, with the gathered power consumption data,
power estimations of a few example use cases can be made. In order to demon-
strate multiple behaviorally different implementations, the following use cases
are made. For all use cases are sensors or actuators not counted towards the
energy consumption of the devices, due to the large difference in power con-
sumption between different sensors and actuators. Each of the discussed use
cases have different connection properties, which will be explained per use case.
An overview of the different properties is given in Table

The first use case is a device which does only need to gather some date
from its surroundings, a thermostat. In a smart home, controlling the climate
control on a room by room basis decreases the power consumption of a home,
compared to centrally operated home. In order to control a room a feedback
loop with temperature and possibly humidity control is needed for the operation.
The thermostat in this scenario reads the temperature and humidity data four
times per hour, since climate control does not need a high interval reading,
the measuring interval can be relatively long. After a reading the device will
send the retrieved data out and do nothing until it has to sense for the next
moment. For this use case we will assume an inter-measurement time of 10
minutes. For an entire day this amount to 144 times of booting up and sending
out the measured data to the Router.

The second implementation is a device with a small actuator, operating with
only a few times a day combined with a sensor. For this use case we take a
valve controller for a heater. The central heating system of the building pumps
warm water throughout the building and per room there are one or more heaters
installed. These heaters are operated by a valve, which is controlled with our
controller. This implies the heater does only respond to a temperature measured
at another place in the room. So the controller does not send information out for

20

itself, it only responds to messages received by the measuring device. Since the
heating needs to stop as quickly as possible after a set temperature is reached,
the valve controller still needs to operate within a small time window after the
message about the new temperature is send out. This same valve control can be
applied to the main water valve of a building, to prevent flooding, or for plant
irrigation. The device will check every 10 seconds for a new message, 6 times
per minute, 360 times an hour or 8640 per day, ensuring quick responses even
when a flooding is detected.

The third example use case is a water flood sensor. This type of sensor is
often placed near a boiler, washing machine or dishwasher to detect a leakage
of these devices. This information needs checked often, the leakage need to be
detected before the water can do any damage. The device also needs to send the
information over quickly, for the owner or other systems to respond accordingly.
If any of the forementioned machines is operating, the sensor needs to keep
running and communicating with other systems to exclude water damage. To
make sure the device is always operational and sending out its last information
the device will report its state every 30 seconds, a full leak needs to be detected
within a minute to prevent major leaking issues. Sending out this often will
result in 2880 messages per day.

Another use case is a window scatter sensor. This sensor will send out in-
formation when the glass it is connected to gets shattered due to for example
a break in. This sensor does not need t update its state so often. The bare
minimum is communicating to prevent it from getting kicked off the network.
Since this is less than one message per day, the amount off messages it needs to
send out maximum is when the device either detects the scattering of glass or
when the device needs to make sure it stays connected. The maximum number
of messages per day is in both cases one per day.

21

22

Chapter 5

Implementation Analysis

In this chapter the testing of the developed system is described. First is the
test setup described, on both the hardware and the software side. Next do we
take a look at the produced results, followed by the impact of these results on
our use cases.

5.1 Test Setup

The intended goal is to gather information about the power consumption of
the device in different operating conditions. with a focus on the difference
between a regular implementation and an intermittent operating device. In
Section 3.1} we discussed different conditions in which a Thread device can op-
erate. From these different roles, we created the following four implementations
to test. Implementation A: the basic Naive implementation. Implementation B:
an improvement on the previous implementation with minor energy consump-
tion improvements, called Semi Naive. Implementation C: fulfills the role of
Sleepy End Device (SED), operating in an intermittent way. Implementation
D: a slightly different role, a Synchronised Sleepy End Device (SSED), also
operating intermittently.

In Section a few use cases are discussed. Since implementing these use
cases is outside the scope of this paper, the power consumption of these imple-
mentations is approximated, using the gathered data in Section |5.2

5.1.1 Hardware

At the heart of the hardware setup is the mote created for the research of
FreeBie [7]. To program the mote the Segger J-Link [35] is used. Power for the
device is provided by the Power Profiler Kit II by Nordic Semiconductor [37].
This Power Profiler provides 2.7 V to the mote, making sure the device is always
provided with enough power to start operation. The Power Profiler Kit IT can
detect a range from 200 nA to 1 A at 5 V and an accuracy of +£10%. The
current consumption measurement is low enough to detect the feasability of
the implementation. The power is injected on the test points VBAT and GND
using probes. The mote will be programmed as an End Device, it needs a
Router (and Leader) node to join the network. This role is fulfilled by the

23

Nordic Semiconductors nRF52840 DK [36], powered directly over USB. The
distance between the devices is set to 20 centimeters.

5.1.2 Software

For the software we started out with the default implementation given by Google
in association with Nordic Semiconductors [I5]. This implementation gives the
option to build the system for a Full Thread Device (FTD) or a Minimal Thread
Device (MTD). The Router and leader is build using this default implement-
ation, without any of the intermittent changes, as an FTD. The mote is pro-
grammed as an MTD with modifications for intermittent operation. Important
to note, all modifications are made in either Hardware Abstraction Layer of
OpenThread or the Application layer on top of the OpenThread implementa-
tion, as described in Section[d] The poll period is set on a 5 second interval, also
is the radio configured to turn off when OpenThread is idling. A timeout, the
time before getting removed from the network, is set to 11 times the poll period,
55 seconds. The version without intermittent implementation of the MTD is
used as the Naive implementation (A).

To configure the Semi Naive implementation only the functions __WFE and
__WFT (described in Section are added at a point at which the device can
afford to wait for the next interrupt. This point is the same as described for
the intermittent implementation. With these functions the nRF52840 turns off
most parts of the device down, based on which parts are not need to wait for
the next interrupt. These optimisations are implemented by the manufacturer
and build into the hardware of the microcontroller.

Intermittent Implementations

The Sleepy End Device (SED), implementation C, and Synchronized Sleepy
End Device (SSED), implementation D, are both full intermittently operating
devices. At the point where the Semi Naive (B) implementation goes to sleep,
the SED (C) and SSED (D) instead test whether it is possible to turn off. To
prevent the system from turning off when it still expects to perform work or to
receive a packet from the Router, some checks set into place. The most import-
ant check is whether the device is already connected to the Thread network.
During the connection making process, the device needs to respond quickly
and receive multiple packets with information about the network configuration.
Therefore it is unwise to turn the system off before the connection is established.
The second check is by utilizing the OpenThread task stack to check if there are
any tasks left. When there are still tasks left in the stack, the system will not
turn off. This ensures a quick handling of all outstanding tasks. Also is checked
whether the radio is in sleep mode. After use the OpenThread library is con-
figured to let the radio sleep as soon it is not used anymore. This makes sure the
system is neither sending out any packets, nor expecting to receive any packets.
The last check is the alarm, the alarm can send out an interrupt without adding
a new task to the stack, while setting another flag. At this moment the system
is expected to handle the set flag within reasonable time. The system could turn
off for multiple seconds, longer than what is seen as a reasonable time frame.
Only if all these checks are passed is it possible to schedule the turnoff time.

24

Next the system will prepare for shutting down. Before being able to shut
down, another check is needed. Whether there is still enough time left to turn
off, is calculated based on the hardware timers inside the microcontroller. These
RTCs store timers for different purposes, the timer with the shortest time left
is found. If the shortest timer will fire before the system is able return from
turning off, the device will not shut down. When there is enough time left,
the system will turn off the radio, store the current memory in FRAM and an
interrupt timer is set on the external RTC. At the moment of setting the timer
on the external RTC, the power to the system will also be removed.

When turning on again, some of the boot up code is setup to at least be able
to read out the external RTC and FRAM. The last stored breakpoint is loaded
from the FRAM and a timer is set and another timer is set on the external
timer, with the intention to start the internal timer of the microcontroller at
the synchronisation point. This synchronisation is done, such that the timers,
which were set before the shutdown, can be reduced with an exact amount of
ticks. Also does this tie all the timers used in the OpenThread stack (called
Alarms) to the external timer, resynchronising after each intermittent boot.

The full restoration of the memory, even up to the correct stack pointer,
ensures all information about the state of the networks stack and previously
stored information is recovered. With all the counters and keys are recovered,
the encryption library (Mbed TLS [39)]) is able to encrypt and decrypt the next
packet as soon as the SRAM is restored.

Both the SED and SSED work with the configuration described above. How-
ever their operation is a bit different in the Thread network. The SED sends
out a message to its connected Router at a fixed interval, polling every time
for new packets. While the SSED does not send out any messages, instead just
turns on the radio on at a specific time interval and listens for incoming packets.
In this setup the SSED needs to confirm from time to time it is still alive.

Connecting to the Thread Network

For various different reasons a device can lose connection with a network, for
Thread end devices this can happen in two different ways. These two different
connection loses do also behave differently when reconnecting to the network.
As described earlier, creating the connection with the network is not part of
the intermittent operation. However we are still interested in the amount of
energy it takes for a device to connect to the network. This information might
be needed in order to determine the amount of energy storage needed when
designing a new device. The two different ways of establishing a connection are
described below.

At the moment of the very first boot, or when the end device is removed
from the network. It needs to reestablish a connection and be verified inside the
network. This process can take a long time, relative to sending and receiving
single packets. The amount of data send back and forth is large and some
devices even need to synchronise their clocks between each other (SSED (D)).
The type of boot sequence is also referred to as reset start.

The second boot type is where the end device lost the configuration it previ-
ously had, while the network still has the data about this end device stored. In
this case only a small amount of information need to be send from the Thread
network to the end device to synchronise again. This moment can occur when

25

an intermittently operating device ran out of all of its energy, where also the
external RTC is not powered anymore, or when the checkpoint is invalidated.
This type of boot sequence is also referred to as soft reset or soft start.

Optional Optimizations

Even though the distance between devices is set to only 20 centimeters, the
radio on both devices is set to the default signal strength. The option for
adaptive power is not enabled to prevent fluctuation in the data. In practice
this configuration could be changed to reduce power consumption to a minimum.

Parsing the Results

After the power consumption data is retrieved, it needs to be parsed for determ-
ining the power consumption of the use cases later. The use cases are described
in a form of the amount of times the device needs to connect to the Router
node. The power data is therefore split into peak and low power consumption
parts. With the peaks being the moment the device needs to communicate with
the Router. The low power data describes all the time when there is no peak.
In most of the implementations, this is when the device is sleeping or turned off
(B & C & D). For the Naive implementation this difference is less clear, as we
might see in the results. However the edge of high and low is set slightly above
the average power consumption.

For the booting procedures do we define the duration of the boot sequence
as the time it takes from the first power consumption, after reprogramming or
restarting, until the first low period. In this period a first regular information
packet is already included. This first regular sending of packet does not include
the restart process of an intermittently operating device (it misses the reading
from FRAM) and should therefore not be included as one of the regular packets.

5.2 Results

In this section the results of the experiments are shown.

5.2.1 Power Consumption During Regular Operation

The first result shown in Figure [5.1] shows the current consumption in mA, on
the y-axis, for the four different implementations (Naive, Semi naive, Sleepy End
Device (SED) and Synchronized Sleepy End Device (SSED)) over a time span of
120 seconds. The part where the device connects to the network is removed and
will be looked at in Section[5.2.2] We choose to show a time span of 120 seconds
since this is the timeout of the SCL setting of the SSED node. The graph shows
a significant power consumption difference between the Naive implementation
and the other three. Peaks are visible in the consumption, which correspond
to the sending and receiving intervals of the nodes. The device needs power to
receive and decode the radio waves, resulting in a higher current consumption.
These peaks are occurring with an interval of approximately 5 seconds, matching
with the poll period of the nodes.

In this graph, the difference in power consumption between the Naive (A)
(top left graph) implementation and the other three is clearly visible (B & C

26

12 A 10.0 4
<194 < _
£ 10 £ 7.5
5 e 5 501
S 6- 3 25
T T T 0.0 L T - — T T
0 50000 100000 0 50000 100000
Time (ms) Time (ms)
15
~ 10 —
E g 10
- -
5 <l 5
5 5 97
O O
0 04

0 50000 100000 0 50000 100000
Time (ms) Time (ms)

Figure 5.1: Power consumption of the device during the first 120
seconds in different configurations. With the implementations, top
left Naive (A), top right Semi Naive (B), bottom left SED (C) and
bottom right SSED (D).

27

& D). The graph of Naive never reaches a current of less than 4 mA. Later we
will take a closer look at the average power consumption per state. The results
clearly show Naive has the highest power consumption overall. Comparing the
peaks with each other, seem the tip of the peaks to be highest with SSED (D),
followed by Naive and SED (A & C) with comparable peak heights, the lowest
peaks can be seen with Semi Naive (B). Take into account, this is only a subset
of the entire data set, so the peaks can differ over time. Also does the width of
the peak a significant impact of the total energy consumption (more about the
width when discussing the second Figure . Due to the 5 second poll period
or SCL interval, do all devices turn on with an interval of 5 seconds. This is
also visible in the power consumption graph, the regular interval of the peaks
are spaced 5 seconds apart. However, the SSED does have one extra peak at
the end, right before the 5 second interval. This is the message sent from the
SSED to the Router. The SSED does normally only listen for incoming message,
without any polling message. The Router does not receive any messages if it
has nothing to send to the SSED. Therefore does the SSED send a message to
show it is still online.

The second graph, shown in Figure zooms into one of the five seconds
poll period for every node. Here, the peaks are more distinct compared to the
previous graph. The graph shows a shorter power pulse for the Naive and Semi
Naive (A & B) approach, while the SED and SSED (C & D) take a bit longer to
finish. Later in this section we will take a closer look at the power consumption
peaks in Figure As mentioned before, the Naive implementation performs
the worst when the device is waiting for the next action to perform. When
waiting for the next operation the Semi Naive implementation seems to have a
longer tail before reducing the power consumption. However, this is not visible
in this graph.

Figure [5.3| shows a detailed view of one of the off-periods. In these figures
the x-axis indicates the time, while the y-axis is different between sub-figures,
showing the current consumption. In these graphs is the difference between
the implementations clearly visible. The Naive (A) approach consumes large
amount of power. While the Semi Naive (B) implementation a big improvements
shows compared to the Naive implementation, is it less consistent and shows less
performance compared to the real intermittently operating implementations (C
& D).

Figure [5.4] presents the regular operation of the different implementations,
taking a closer look to the individual peaks. The time interval is set to 250
ms on the horizontal axis, with the complete peak(s) shown. Important to
note is, what first seem to like a single peak for SED and SSED (C & D),
are actually two peaks close after each other. This is due to the reading and
storing of information to and from the FRAM. This shows the overhead incurred
from using the hardware needed for intermittent operation. The time from
approximately 75 ms to 175 ms for SED (C) and from 75 ms to 200 ms for
SSED (D) relatively, show a long delay from the moment booting seem to be
finished, until the sending of a packet and storing the checkpoint.

5.2.2 Boot Power Consumption

As described in Section [5.1.2] there are two different boot sequences. Both
sequences reboot the system because the checkpoint stored in FRAM is con-

28

10.0
z 101 Z 75
E E
2 8- € 5.0
g g
3 61 S 2.5
T T T 0.0 L T T T
0 2000 4000 0 2000 4000
Time (ms) Time (ms)
15
10.0 A
T 751 < 10+
2 2
o 5.0 1 o
5 5 97
O 254 O
O'O L T T T 0 L T T T
0 2000 4000 0 2000 4000
Time (ms) Time (ms)

Figure 5.2: Power consumption of the device for five seconds in dif-
ferent scenarios. With the implementations, top left Naive (A), top
right Semi Naive (B), bottom left SED (C) and bottom right SSED
(D).

29

7 [| s ‘
S
: 6 - P 1 TR TITHI T ererry R NI
g
S, (R |
Os5
0 2000 4000
Time (ms)
0.012
z
— 0.011 4+ —
IS
g
5 0.010
O
0.009]
0 2000 4000
Time (ms)

0.08 Jm
< 0.06
IS
9 0.04
5
@)
0.02
’w’
0 2000 4000
Time (ms)
_.0.013
<
E
£ 0.012 A s
g
5
© 0.011
0 2000 4000
Time (ms)

Figure 5.3: Close-up of the low power consumption during off periods.
With the implementations, top left Naive (A), top right Semi Naive
(B), bottom left SED (C) and bottom right SSED (D).

30

10.0
z 107 Z 7.5
E E
2 81 € 5.0
g g
3 6 3 257
T T T 0 0 L T L T T
0 100 200 0 100 200
Time (ms) Time (ms)
15
10.0 A
T 751 < 10+
2 2
o 5.0 1 o
5 5 97
O 254 O
0'0 L T T T 0 L T T T
0 100 200 0 100 200
Time (ms) Time (ms)

Figure 5.4: Close-up of the peak power consumption during sending
and receiving packets. With the implementations, top left Naive (A),
top right Semi Naive (B), bottom left SED (C) and bottom right
SSED (D).

31

14 -

12 A1

10 1

Current (mA)

o] L L

0 100 200 300 400 500 600
Time (ms)

Figure 5.5: Power consumption of the soft start shown over time.

sidered to be unusable. When reconnecting to the Thread network, there are
two situations left. The first is a soft start, where the device is still marked
as operational in the Thread network. The second option is the reset start,
where the device needs to create a completely new connection with the Thread
network. For both situations power measurements are made.

The first situation is the soft start, a single example of such a situation is
drawn in Figure The whole restarting and reconnecting to the network
takes approximately 600ms. In the first half, one can see the boot sequence. In
the second half two messages are send and responses received from the Router.
The peaks from operating the radio of the microcontroller are clearly visible.

For the second situation, a complete reconnect, is also a single situation chosen
and shown in the Figure The total boot sequence in this situation takes
approximately 7000 ms. During these sequences a lot of information is com-
municated back and forth between our Child device and the Router. The total
amount of messages send and received by the Child is 21 in this first sequence.
Sometimes a message is lost, however 21 messages are needed to send over all
the information. Also device needs to send an acknowledgement packet out for
every packet it receives.

5.2.3 Average Power Consumption per Situation

The data from previous subsection shown in the figures is quantified in Table
The table shows the average power consumption in each of the different scen-
arios.

Starting with the two different resets, the soft reset has on average a lower

32

14

12

10 A

Current (mA)

0 1000 2000 3000 4000 5000 6000 7000
Time (ms)

Figure 5.6: Power consumption during a complete restart of the system
until finishing the connection.

power consumption compared to the hard reset. This was also visible in Fig-
ures and the higher and longer peaks of the hard reset do have a signi-
ficant impact on the average power consumption. The hard reset takes longer
to make the connection, this is due to the large amount of information needed
to be shared before accepting the End Device into the network.

The Naive (A) implementation has high energy consumption during both the
peaks period as well as during the off period. This was already clear from
previous figures. The peaks power consumption of the Semi Naive and SSED
(B & D) implementations are comparable, while the average of the SED (C)
during peaks is lower than the other two. The Semi Naive implementation also
consumes on average more power compared to the other implementations. Both
SED and SSED (C & D) have comparable power consumption values during the
off period. This is expected, since their implementation for the off period is the
same.

An important note to take into account is the average time spent in each of
the periods. The peaks period of the two Naive implementations (A & B), is
shorter compared to the SED and SSED (C & D) implementations. The time
it takes to read and write to and FRAM as well as the time to wait for the
next time synchronisation point is included in the peak period of the SED and
SSED (C & D), this is the main reason the peak periods take longer on the two
devices (C & D). The power consumption of the devices during regular startup
is not displayed, since this is included in the peaks of the previous section.

Table is the total energy consumption of the soft reset and hard reset

33

Situation Avg. Current (uA)[| Avg. Time (ms)
During soft reset 2720.475 6070
During hard reset 8161.174 66906
Naive during peaks 9791.798 3.9
Naive during off 6120.223 4948.8
Semi naive during peaks 2903.496 11.9
Semi naive during off 44.844 5368.9
SED during peaks 2011.132 186.5
SED during off 7.893 4455.8
SSED during peaks 2740.544 164.7
SSED during off 8.585 4455.7

Table 5.1: Average power consumption during two startups (soft and
hard reset), as well as during the peaks and off period of the four
different implementations (Naive (A), Semi Naive (B), SED (C) and
SSED (D)).

Startup type | Total Energy Consumption (mC) | [Time (ms)
Soft 16.513 6070
Hard 546.31 66906

Table 5.2: Energy consumption of the different booting sequences.

startup is calculated. As expected the soft startup consumes a lot less energy
for the entire startup compared to the hard reset startup.

5.3 Impact on Use Cases

In order to conclude which implementation consumes the least amount of energy
during operation, a few more calculations need to be done. To perform the
comparison we calculate the total power consumption of the device for an entire
(theoretical) day (24 hours). If we take a look back at Section 4.6l we described
the amount of times a device needs to turn on and send out data per day. With
the measurements recovered from Section the total amount of expected
power consumption per situation can be calculated. From the results we take
the average peak power consumption and the time it spends in such a peak. The
peak power consumption is added to the total and the time spend in the peak
is removed from our theoretical day. The rest of the time is calculated, during
this time the device is considered to be in the low energy state Tjow. As seen in
the results do SED and SSED have multiple smaller peaks with a high current
consumption in the middle, these implementation will therefore take more time
per peak compared to the Naive and Semi Naive implementations. The entire
stretch from start of the first to end of the last peak is considered to part of
Tpeak, Where Tiotal = Theak + Tiow. Both timings are calculated for an entire day
and shown in Table 5.3

The power consumption per stage is shown in the same table. P,cak shows
the power consumption during the peak or active time of the system. This
value is obtained by utilizing the time mentioned above in combination with

34

Use Case Implementation | Tpear(ms) | Tiow(m) | Ppeak(#C) | Piow(#C) | Piotar(1C)
1. Thermostat A. Naive 562 | 1439.99 5499 | 528764561 | 528770060
1. Thermostat B. Semi Naive 1714 | 1439.97 4976 3874099 3879075
1. Thermostat C. SED 26856 | 1439.55 54007 681743 735750
1. Thermostat D. SSED 1423008 | 1416.29 3899042 729527 4628569
2. Valve Controller | A. Naive 33696 | 1439.44 329918 | 528561780 | 528891698
2. Valve Controller | B. Semi Naive 102816 | 1438.29 298475 3869566 4168041
2. Valve Controller | C. SED 1611360 | 1413.14 3240445 669237 3909682
2. Valve Controller | D. SSED 1423008 | 1416.29 3899042 729527 4628569
3. Flood Sensor A. Naive 11232 | 1439.81 109973 | 528699260 | 528809233
3. Flood Sensor B. Semi Naive 34272 | 1439.43 99492 3872639 3972131
3. Flood Sensor C. SED 537120 | 1431.05 1080148 677716 1757864
3. Flood Sensor D. SSED 1423008 | 1416.29 3899042 729527 4628569
4. Window Sensor | A. Naive 4 | 1440.00 39 | 528767976 | 528768015
4. Window Sensor | B. Semi Naive 12 | 1440.00 35 3874175 3874210
4. Window Sensor | C. SED 241 | 1440.00 485 681953 682439
4. Window Sensor | D. SSED 1423008 | 1416.29 3899042 729527 4628569

Table 5.3: Time and power consumption of the different use cases in
combination with the different implementations introduces in Sec-
tion With Tpeak the time in peak power consumption, Tjow the
time in low power consumption, Pyeak power consumed during peak
period, Pow power consumed during low period and P;¢a) total power
consumed for this specific use case and implementation combination.

the average power consumption during the peaks. In combination with the
Piow, the power consumption during off or standby time, we can calculate the
Piota1 power consumption, where Pheak + Plow = Piotal. Here we see the core
difference between regular, battery operated, devices and the battery-less imple-
mentations. The two naive implementations (A & B) both consume less energy
during the peak period (Ppeax) compared to the low period (P), while the
battery-less implementations (C & D) both consume more energy during the low
period in all of the use cases. Optimizations during operation become therefore
becomes more important. As discussed in Chapter [f] the overhead incurred by
creating and storing checkpoints into FRAM seem to have the most effect on
these implementations. From the results, we also discovered the average power
consumption during on time to be lower.

Important to note about the results in Table [5.3} is that the energy consump-
tion of the SSED (D) implementation is for every use case the same. This is due
to the maximal interval timer which can be set for such a device (10 seconds).
This maximum interval value forces the device to communicate with the router
node more often than required by our use case, thereby increasing the energy
consumption significantly. This is also the case, to a lesser extent, for the SED
(C) implementation. The maximum interval period for the SED to communic-
ate is 18.6h, which is less than the needed interval period of the Window Sensor
use case, set at 24h. Also for the SED is the power consumption increased with
a factor 24/18.6 ~ 1.29 in order to account for this difference.

Figure depicts the total power consumption per use case and implement-
ation as a visual representation of the values from the last column of Table
The power consumption scale is set to logarithmic in order to fit all the data in
a readable manner. Only with the Valve Controller use case do the battery-free
implementations (C & D) compare in total power consumption with the Semi
Naive (B) implementation.

35

[Naive (A)
HEl Semi Naive (B)

SED (C)
I SSED (D)
8 |
G 10
2
c
°
a
€
>
)
c
8 107':
5]
2
(o)
a
10° -

Thermostat Valve Controller Flood Sensor Window Sensor

Figure 5.7: Total power consumption of different implementations per
use case.

36

From these results we can conclude the SED (C) implementation to be the
implementation consuming the least amount of energy. The implementation
requires less power than any of the other implementations needed for the same
use case. The next best solution is the Semi Naive (B) implementation, this
implementation does not use the new intermittent hardware. However due to
its short peak time, the total consumed power stays low. Next in power con-
sumption is the SSED (D), the main reason for consuming more power, is the
relatively short maximum interval time. The least performant implementation
is the Naive (A) implementation, this implementation consumes in every case
the most amount of energy.

37

38

Chapter 6

Conclusion

To conclude, we started with a brief introduction of battery-free devices in
Section [I}, including the origins, the challenges of the technology and setting the
goal of this Thesis.

Followed by the current state of the research on battery-free devices in Sec-
tion[2] We discussed different other relevant research topics for hardware about
energy storage, energy generation, different ways of keeping track of time, stor-
ing information in non-volatile memory and discussed sensors and peripherals.
For the software aspect of the battery-less paradigm, we discussed memory per-
sistency, storing system and peripheral state, the ability to debug the system,
scheduling tasks to be energy aware and most importantly for this research,
other communication options for intermittently operating devices. In addition
did we look at other adjacent technologies, transient computing and energy- or
power-neutral systems.

Section[3] takes a look at the Thread protocol. The protocol is operating in the
Network, Transport and Session layer of the OSI model. Utilizing the 6LowPAN,
UDP and TCP technologies to transfer information around and maintaining
connections, in combination with encryption and commissioning for protection
and ease of use. Thread has different roles for devices, a Full Thread Device
can be operating as a Router or End Device, the Router routing traffic to and
from End Devices. A Minimal Thread Device can operate as a regular End
Device or as a Sleepy End Device (SED). The Sleepy End Device can also
take a special form as a Synchronised Sleepy End Device (SSED), checking for
incoming packets without sending out a request. The topology of a Thread
network is focused around a mesh of Routers, with the different End Devices
directly connected to any one of the Routers.

Section [] describes the implementation of the Thread protocol in the form
of a library called OpenThread. This library consists of multiple layers. The
Hardware Abstraction Layer, implemented by the hardware manufacturers. The
Platform Abstraction Layer, which uses function calls in the Hardware Abstrac-
tion Layer to operate independently of the hardware platform used. The Open-
Thread Core Stack, where the operation is written as designed by the Thread
protocol. And an Application Layer on top, using functions exposed from the
OpenThread Core Stack to hook into the OpenThread library. By writing all
the code needed to operate intermittently or battery-free in the outer layers
of this stack, the OpenThread library and in extension the Thread protocol

39

is unaware of the changes made. By utilizing the configuration of Sleepy End
Devices and Synchronised Sleepy End Device, our implementations can run on
minimal amounts of energy. The different implementations used in our tests
are; the default implementation Naive (A), a default configuration with ba-
sic improvements called Semi Naive (B), a Sleepy End Device (C) capable of
operating intermittently and a Synchronised Sleepy End Device (D) capable
of operating intermittently. Even though these implementations are made, an
implementation on the application layer is missing. Therefore four use cases
are described with varying amount of traffic, which are used to determine the
amount of energy consumption in these situations.

Section [p| starts of with the description of the test setup. The hardware is
based on a design made in previous research, called a mote. This mote has
the capability to run intermittently with an external RTC for timekeeping and
FRAM to store checkpoints. A power profiler is used to determine the amount
of energy consumption used during operation. The system is set up to go to
sleep or turn off after the device is connected to the network and does not have
an pending jobs to do. If it is possible to sleep or turn off, a checkpoint is made
in case of the intermittently operating device, otherwise the device goes directly
to sleep for the Semi Naive implementation B and do nothing for the Naive
(A) implementation. The connection with the network is normally made by a
commissioner, however to speed up the process, information about the network
is already stored at the time of programming the device. The devices are all
operating at 5 second interval, at the interval the device checks for possible
messages pending at the Router node. The current consumption is measured
during a time of 120 seconds.

The results are divided into two parts, the power consumption during peak
periods and during low periods. For the Naive (A) implementation are both
the peak and low power consumption the most compared to the others. The
power consumption during peak is comparable for Semi Naive (B) and SSED
(D) with the SED (C) consuming the least amount of power in this stage.
However the time spend in peak period is longer for SED (C) and SSED (D),
since they need to load and store the checkpoint as well as synchronising the
clocks, which is not needed for the Semi Naive (B) implementation. The low
power consumption of Semi Naive (B) is higher compared to SED (C) and
SSED (D), which perform comparably during this period. In addition did we
also measure the power consumption during soft and hard reset, where the hard
reset is a situation where the Router does not remember the End Device during
reconnecting. A soft reset is the moment when the End Device loses connection
while the information about this device is still stored by the Router. In this
situation the amount of energy required to restore the connection after a hard
reset is a lot higher compared to the soft reset.

The impact of these results on the use cases show the SED (C) implementa-
tion out performing all the other implementation in every use case. The SSED
did not perform as well, due to the high interval rate needed for this implement-
ation. The Semi Naive (B) implementation consumes more power during the
low periods, the SED (C) performs better when the interval between messages
in longer.

40

6.1 Discussion

The results show a promising future of the intermittently operating devices in
a Thread network. However, there are always improvements possible. See the
list of improvements, with explanations below.

Extra costs

Semi Naive too simple

Long boot timings

Incomplete Thread Network

Performance optimisations
e Test result accuracy

Extra costs. In this thesis we did not include the extra cost of hardware or
development of intermittent devices. When designing and building devices the
complexity increases with every system added. Introducing the RTC and FRAM
to a hardware designs increases the overall cost per device as well as increases
the amount of designing and testing of the hardware. In the next step, writing
software for this hardware, the addition of more code does increase the cost
as well. All these different costs should be taken into account when creating a
marketable product.

Semi Naive too simple. The Semi Naive (B) implementation is too simple
for a state of the art comparison. This implementation is a simple change from
Naive implementation, however it is far from the the best optimized code pos-
sible. Due to a lack of strongly optimized code this is the best alternative for this
research. To test the intermittent version to a state of the art implementation of
an optimized implementation would be preferred. However, the current tested
implementations do paint a worthy image of the usability of the OpenThread
library.

Long boot timings. The booting sequence after a sleep period is still rel-
atively long. The time for an SED or SSED (C & D) is 186.5 or 164.7 ms on
average. As mentioned before and shown in Figure [5.4] the time between the
system ready to operate after waking and actually sending a packet out takes
a long time. If this time would be reduced, the total energy consumed for the
implementations SED and SSED (C & D) could be further improved, since the
peak time is the majority of power consumption of these devices.

Incomplete Thread network. Our implementation does not perform as a
complete Thread network. The device is programmed to only send out packets
for updating the timer at the Router. This uses the same underlying systems
as sending out a custom packet to another node in the network, however this
is never tested. Also, the End Device only receives acknowledgement packets
which are not handled the same way as a regular UDP or TCP packet would
be. This includes the ability to send and receive data from outside the Thread
network, via a border router. This detail should be taken into account for the
use cases as well, the current calculations only account for sending out a single
packet. If the use case requires to receive a message, is this not accounted for
in these calculations.

41

Performance optimisations. Further intermittent operation performance
optimisations are not included. The intermittent operation itself could be fur-
ther optimised to reduce the power consumption even further. The device could
be configured to only receive a message at a specific time and store it on a spe-
cific place in FRAM without actually reading its content, at the next full boot,
when the complete stack is loaded from FRAM again, the device will process
the received packet. Also the amount of checkpointing can be reduced. If no
new interesting data needs to be stored, the creation of the checkpoint can be
skipped. In the current state the device creates a full checkpoint of the system,
this can also be reduced to only include parts of the memory which do need
storing.

Test result accuracy. The last point of attention is the accuracy of the results.
As mentioned in the description of the test setup, the accuracy of the measure-
ments are not particular accurate with £10%. Resulting in measurements which
are hard This is due to the hardware used to measure the power consumption.
Changing out this power profiler for a different tool could increase the accur-
acy of the measurements. However, the results are spaced far apart enough to
conclude with confidence which device used less energy compared to the other
devices.

42

Bibliography

1]

2]

[10]

Fulvio Bambusi, Francesco Cerizzi, Yamin Lee, and Luca Mottola. The case
for approximate intermittent computing. CoRR, abs/2111.10726, 2021.

Carsten Bormann, Zach Shelby, Samita Chakrabarti, and Erik Nordmark.
Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Per-
sonal Area Networks (6LoWPANSs). RFC 6775, November 2012.

Alexei Colin and Brandon Lucia. Chain: Tasks and channels for reliable
intermittent programs. SIGPLAN Not., 51(10):514-530, oct 2016.

Alexei Colin, Emily Ruppel, and Brandon Lucia. A reconfigurable energy
storage architecture for energy-harvesting devices. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 767-781. ACM, 2018.

Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemystaw
Pawelczak, and Josiah Hester. Reliable timekeeping for intermittent com-
puting. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS 20, page 5367, New York, NY, USA, 2020. Association for Com-
puting Machinery.

Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemystaw
Pawelczak. Battery-free game boy. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 4(3), sep 2020.

Jasper de Winkel, Haozhe Tang, and Przemystaw Pawelczak.
Intermittently-powered bluetooth that works. In Proceedings of the
20th Annual International Conference on Mobile Systems, Applications
and Services, MobiSys 22, page 287-301, New York, NY, USA, 2022.
Association for Computing Machinery.

Wesley Eddy. Transmission Control Protocol (TCP). RFC 9293, August
2022.

T. Eshita, T. Tamura, and Y. Arimoto. 14 - ferroelectric random access
memory (fram) devices. In Yoshio Nishi, editor, Advances in Non-volatile
Memory and Storage Technology, pages 434-454. Woodhead Publishing,
2014.

Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, Luca Benini, and
Rajesh K. Gupta. Pible: Battery-free mote for perpetual indoor BLE
applications, 2018.

43

[11]

[12]

[13]

[19]

[20]

[21]

[22]

Kai Geissdoerfer, Mikotaj Chwalisz, and Marco Zimmerling. Shepherd: A
portable testbed for the batteryless iot. In Proceedings of the 17th Con-
ference on Embedded Networked Sensor Systems, SenSys 19, page 83-95,
New York, NY, USA, 2019. Association for Computing Machinery.

Kai Geissdoerfer and Marco Zimmerling. Bootstrapping battery-free wire-
less networks: Efficient neighbor discovery and synchronization in the face
of intermittency. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), pages 439-455. USENIX Associ-
ation, April 2021.

Kai Geissdoerfer and Marco Zimmerling. Learning to communicate effect-
ively between battery-free devices. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22), pages 419-435,
Renton, WA, April 2022. USENIX Association.

Google. Openthread. https://github.com/openthread/openthread.
Google. ot-nrf825xx. https://github.com/openthread/ot-nrf528xxl

OpenThread Group. Link. https://openthread.io/reference/group/
api-link-1link.

Thread Group. Thread specification. https://www.threadgroup.org/
ThreadSpec.

Josiah Hester, Timothy Scott, and Jacob Sorber. Ekho: Realistic and re-
peatable experimentation for tiny energy-harvesting sensors. In Proceedings
of the 12th ACM Conference on Embedded Network Sensor Systems, SenSys
14, page 330-331, New York, NY, USA, 2014. Association for Computing
Machinery.

Josiah Hester and Jacob Sorber. Flicker: Rapid prototyping for the bat-
teryless internet-of-things. In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems, SenSys ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

Josiah Hester, Kevin Storer, and Jacob Sorber. Timely execution on in-
termittently powered batteryless sensors. In Proceedings of the 15th ACM
Conference on Embedded Network Sensor Systems, SenSys ’17, New York,
NY, USA, 2017. Association for Computing Machinery.

IEEE. Ieee standard for low-rate wireless networks. IEEFE Std 802.15.4-
2020 (Revision of IEEE Std 802.15.4-2015), pages 1-800, 2020.

Neal Jackson, Joshua Adkins, and Prabal Dutta. Reconsidering batteries in
energy harvesting sensing. In Proceedings of the 6th International Workshop
on Energy Harvesting & Energy-Neutral Sensing Systems, pages 14-18.
ACM, 2018.

Dhananjay Jagtap and Pat Pannuto. Reliable energy sources as a found-
ation for reliable intermittent systems. In Proceedings of the 8th Interna-
tional Workshop on Energy Harvesting and Energy-Neutral Sensing Sys-
tems, pages 22-28. ACM, 2020.

44

https://github.com/openthread/openthread
https://github.com/openthread/ot-nrf528xx
https://openthread.io/reference/group/api-link-link
https://openthread.io/reference/group/api-link-link
https://www.threadgroup.org/ThreadSpec
https://www.threadgroup.org/ThreadSpec

[24]

[27]

(28]

[29]

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating
System for Sensor Networks, pages 115-148. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermittent
execution without checkpoints. Proc. ACM Program. Lang., 1(OOPSLA),
oct 2017.

Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing for safe
efficient intermittent computing. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 129-144, Carlsbad,
CA, October 2018. USENIX Association.

Andrea Maioli, Luca Mottola, Muhammad Hamad Alizai, and Junaid Har-
oon Siddiqui. Discovering the hidden anomalies of intermittent computing.
In 18th ACM International Conference on Embedded Wireless Systems and
Networks (EWSN), Delft (The Netherlands), February 2021., 2021.

Phillip Nadeau, Dina El-Damak, Dean Glettig, Yong Lin Kong, Stacy Mo,
Cody Cleveland, Lucas Booth, Niclas Roxhed, Robert Langer, Anantha P.
Chandrakasan, and Giovanni Traverso. Prolonged energy harvesting for
ingestible devices. Nature Biomedical Engineering, 1(3):0022, 2017.

Vishak Narayanan, Rohit Sahu, Jidong Sun, and Henry Duwe. Bobber a
prototyping platform for batteryless intermittent accelerators. In Proceed-
ings of the 2023 ACM/SIGDA International Symposium on Field Program-
mable Gate Arrays, FPGA 23, page 221-228, New York, NY, USA, 2023.
Association for Computing Machinery.

Dr. Thomas Narten, Tatsuya Jinmei, and Dr. Susan Thomson. IPv6 State-
less Address Autoconfiguration. RFC 4862, September 2007.

J. Postel. User Datagram Protocol. RFC 768, August 1980.
J. Postel. Internet Control Message Protocol. RFC 792, September 1981.

Alberto Rodriguez Arreola, Domenico Balsamo, Geoff V. Merrett, and
Alex S. Weddell. Restop: Retaining external peripheral state in
intermittently-powered sensor systems. Sensors, 18(1), 2018.

Alanson P. Sample, Daniel J. Yeager, Pauline S. Powledge, Alexander V.
Mamishev, and Joshua R. Smith. Design of an rfid-based battery-free pro-
grammable sensing platform. IEEE Transactions on Instrumentation and
Measurement, 57(11):2608-2615, 2008.

SEGGER. J-link edu. https://www.segger.com/products/
debug-probes/j-1link/models/j-1link-edu/|

Nordic Semiconductor. nrf52840 dk. https://www.nordicsemi.com/
Products/Development-hardware/nRF52840-DK.

Noric Semiconductor. Power profiler kit ii. https://www.nordicsemi.
com/Products/Development-hardware/Power-Profiler-Kit-2,

45

https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-DK
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2

[38]

[41]

Thread Group. Thread 1.2 base features. https://www.threadgroup.org/
Portals/0/documents/support/Thread’,201.2%20Basel,20Features.
pdf, 2019. Last accessed: Sep. 16, 2022.

Mbed TLS. Mbed tls. https://github.com/Mbed-TLS/mbedtls.

Kasim Sinan Yildirim, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemyslaw Pawelczak, and Josiah Hester. Ink: Reactive kernel
for tiny batteryless sensors. In Proceedings of the 16th ACM Conference on
Embedded Networked Sensor Systems, SenSys "18, page 41-53, New York,
NY, USA, 2018. Association for Computing Machinery.

Eren Yildiz and Kasim Sinan Yildirim. Defragmenting energy storage in
batteryless sensing devices. In Proceedings of the 8th International Work-
shop on Energy Harvesting and Energy-Neutral Sensing Systems, pages
36-42. ACM, 2020.

Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu. Moo:
A batteryless computational rfid and sensing platform. University of Mas-
sachusetts Computer Science Technical Report UM-CS-2011-020, 2011.

46

https://www.threadgroup.org/Portals/0/documents/support/Thread%201.2%20Base%20Features.pdf
https://www.threadgroup.org/Portals/0/documents/support/Thread%201.2%20Base%20Features.pdf
https://www.threadgroup.org/Portals/0/documents/support/Thread%201.2%20Base%20Features.pdf
https://github.com/Mbed-TLS/mbedtls

	Preface
	Introduction
	Intermittent Origins
	Challenges
	Goal

	Related Work
	Hardware
	Platforms
	Energy Storage
	Harvesting Energy
	Keeping Track of Time
	Non-Volatile Memory
	Sensors and Peripherals

	Software
	Memory Persistency
	System and Peripheral State
	Debugging
	Energy Aware Scheduling
	Communication

	Adjacent technologies

	Thread
	Roles
	Full and Minimal Thread Device
	Router
	End Device
	Additional Functions

	Topology
	Addressing

	Implementation
	Platform Abstraction Layer
	Application Layer
	Transferability
	Connecting to the Network
	Leveraging Thread for Intermittency
	Use Cases

	Implementation Analysis
	Test Setup
	Hardware
	Software

	Results
	Power Consumption During Regular Operation
	Boot Power Consumption
	Average Power Consumption per Situation

	Impact on Use Cases

	Conclusion
	Discussion

