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Abstract

Near free edges of fibre reinforced composite laminates modelled with homogeneous material
layers, the presence of high gradient interlaminar stresses has been found by theoretical means.
The steep gradient in stresses has come to be known as the free edge effect. Over a span of
nearly 50 years, the free edge stresses have been studied through various methods. The
high gradient stresses, sometimes to an extent of a singularity, have been found to be a
mathematical artefact. Hence, the analysis of such high gradient stresses near free edges
could be computationally expensive. At the same time, it is imperative that an estimate of
interlaminar stresses at the free edge be made because the interlaminar stresses play a part
in initiating delamination and hence, to be able to predict delamination initiation through
a convenient criterion for prediction of delamination initiation, their values in the free edge
region need to be known.
The abrupt material discontinuity at the interface between dissimilar layers when laminates
are modelled with homogeneous layers is identified as a reason for generation of such high
gradient interlaminar stresses. Therefore, the concept of taking constituent material prop-
erties of fibre and matrix into account while modelling layers of a laminate might mitigate
the problem of high gradient stresses near free edges and hence, is interesting. Modelling the
laminate heterogeneously would eliminate abrupt material discontinuity between dissimilar
layers and hence could eliminate the high gradient stresses, the convergence study of which
is found to be computationally expensive. This idea of modelling heterogeneous composite
laminates with explicit definition of fibres and matrix in an attempt to analyse free edge
stresses has inspired the execution of this thesis project.
Investigations of interlaminar stresses have been carried out at interfaces of [0/90]s cross-
ply laminate on both, homogeneous layer and heterogeneous layer models. Correspondingly
equivalent stresses in both models have been compared with a view to understand the differ-
ence in their profiles at interface between layers near free edges. The use of average stresses
obtained by averaging of interlaminar stresses up to a characteristic distance from free edge
has been reported in literature to predict delamination initiation effectively with reference to
experimental findings. Hence, the average of interlaminar stresses along the interface between
layers has been investigated in both homogeneous and heterogeneous models. The study of
average stresses has been carried out with an intention to find an averaging distance for a
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given material which could be incorporated with a suitable criterion for prediction of delam-
ination initiation. Further, investigation of average stresses would allow the comparison of
computational expenses while studying convergence of high gradient interlaminar stresses and
convergence of their averages.

The laminates are loaded under longitudinally extensional strain and linear Finite Element
Analysis (FEA) has been conducted throughout the course of this work. In case of homoge-
neous layer laminates, uniform displacement boundary condition is simulated. Whereas, in
case of heterogeneous layer model, strain loading has been simulated through Periodic Bound-
ary Condition (PBC). To be able to compare the results from homogeneous and heterogeneous
layer models, homogenisation on heterogeneous Unit Cell (UC) has been conducted through
PBCs. Upon obtaining relevant results from both models, the comparison of results has
been made to form the basis for correlation between average stresses from homogeneous and
heterogeneous layer models to arrive at the averaging distance from free edge.

It is found that compared to stresses in homogeneous layer models, no such high gradient free
edge stresses exist in heterogeneous layer model. The analysis on heterogeneous model helps
in determining definite values at free edge unlike in the case of homogeneous layer model in
which the high gradient stresses either require computationally expensive convergence studies
or are sometimes even singular in nature. Further, the overall profile of corresponding stresses
in two models is found to be similar except near the free edge. An approach has been pro-
posed for correlation of average stresses between the homogeneous and heterogeneous layer
models and an averaging distance of 0.125 mm has been found for T300/934 material. This
averaging distance when incorporated in criterion for prediction of delamination initiation re-
sults in predicting delamination initiation successfully in the range of experimentally reported
delamination initiating strain for [±25/90]s laminate made of T300/934 material. Finally, a
comparison of computational time required for convergence of high gradient interlaminar
stress and computational time required for convergence of average of the high gradient inter-
laminar stress in homogeneous layer [±25/90]s laminate reveals that convergence of average
stress could be computationally less expensive. This highlights an efficient prediction of de-
lamination initiation through use of average stresses in vicinity of free edges.
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“Imagination is more important than knowledge. For knowledge is limited, whereas
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lution.”
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Chapter 1

Introduction

Since the discovery of interlaminar stresses near the free edge of composite laminates, a vast
amount of research has been done over the years in an attempt to investigate the nature of
these stresses. The assumption of homogeneous material layers while modelling of composite
laminae introduces sudden differences in material properties between layers of different ma-
terial orientations at their interfaces. The deformation compatibility of the laminate at these
interfaces introduces interlaminar stresses. Some of these interlaminar stresses have been
theoretically found to be high gradient stresses near the free edges [2]. This high gradient in
stress is a matter of concern as the danger of delamination initiation in laminates arises due
to such stress states.

A simple force equilibrium state of a laminate under linear elastic tensile loading is introduced
for a description of the stress states near the free edge.

Interlaminar stresses in vicinity of laminate’s free edges at interface of two layers

To understand the effect of homogeneous laminate layers towards generation of free edge
stresses, the force equilibrium condition of a laminate is studied. Mittlestedt et al [1] provide
a comprehensive study of a laminate’s equilibrium under longitudinal tensile displacement.
Since the difference in adjacent layers is most contrasting between the zero and ninety degree
layers of a cross-ply laminate, the force equilibrium is illustrated conveniently with the help
of a cross-ply laminate.
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Figure 1.1: Longitudinal extensional strain in a [0/90]s cross-ply laminate [1]
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In figure 1.1, fibres in the zero degree layers are aligned with the x axis and that of the ninety
degree layers are aligned with y axis. For once, let’s consider the layers of the laminate to
not be bonded to each other. The displacement is applied in the x direction to provide a
tensile load in the laminate. It is notable that the zero degree layers have lower stiffness in the
transverse (y) direction. Contrastingly, the ninety degree layers have higher stiffness in the
transverse direction. This difference in stiffnesses is abrupt at the interface of zero and ninety
degree layers (highlighted in orange). This results in greater contraction of zero degree layers
in comparison to contraction of ninety degree layers in the y direction due to Poisson’s effect
(νxy). Essentially in a de-bonded laminate, the in-plane displacement in y direction would
be comparatively higher in the zero degree layer. This suggests a discontinuous displacement
at the zero-ninety degree layers’ interface. However, in reality, the layers of a laminate are
completely bonded to each other and this strain compatibility at interface results in generation
of transverse normal stress σy in both zero and ninety degree layers. Since the zero degree ply
contracts more than the ninety degree ply, transverse tensile stress is introduced in the zero
degree ply and transverse compressive stress is introduced in the ninety degree ply. Transverse
normal stress σy vanishes at free edges because of traction free edge condition.
Since, the overall resultant stress σy must vanish through the laminate’s thickness direction
(z) , the following could be inferred for a laminate of thickness d as shown in figure 1.2.

∫ d/2

−d/2
σydz = 0 (1.1)
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d
d=4

d=2
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Figure 1.2: Schematic geometry of [0/90]s laminate [1]

Since the boundary conditions require the free edges to be traction free, the equilibrium of
forces in the y direction must be satisfied. In order to achieve this, interlaminar shear stress
τyz arises at the zero-ninety degree layers’ interface i.e. at z = ±d/4 as shown in detailed
view in figure 1.3.

0 degree

90 degree

τyz

τyz

Figure 1.3: Detail A: Generation of shear stress σyz at zero-ninety degree layers’ interface [1]
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Thus, the following condition holds true for a high enough value of y [1]:∫ y

0
τyzdy =

∫ d/2

d/4
σydz (1.2)

The stress resultants of σy and τyz discussed above do not act along a common line of action
and thus a moment is generated about the x axis. In order to maintain an equilibrium of
moments about the x axis, interlaminar normal stress σz is generated at the zero-ninety degree
layers’ interface. The tendency of σz is to counter the moment generated by σy.

The region at zero-ninety degree layers’ interface suggests the presence of stresses as shown
in figure 1.4. The stress state is shown before the free edge at an interior location of upper
zero degree layer.

y

z

0 degree

90 degree

90 degree

0 degree

0 degree σy

τyzσz σz

d

d=2
d=4

Figure 1.4: State of stresses at interface between zero and ninety degree layers of [0/90]s cross-
ply laminate [1]

This results in the following equation to hold true:∫ y

0
σzydy = −

∫ d/2

d/4
σy(z −

d

4)dz (1.3)

Since, σz acts alone in z direction, for a sufficiently wide laminate, the resultant stress in z
direction must vanish. Hence, the equation 1.4 must also hold true.∫ y

0
σzdy = 0 (1.4)

The equilibrium of forces and moments suggests the presence of a three-dimensional (3D)
stress state in the vicinity of laminate’s free edge. Further, a study of the nature of these
stresses reveals an intriguing finding. Strictly speaking of the interlaminar normal stress σz, it
has been observed that the highest point of the stress occurs at the free edge. However, since
there is no other force in the z direction, σz must be self-equilibrated and hence it is expected
to change its sign across the width of the laminate i.e. along y direction. Further, theoretical
studies highlighted in the following chapters, have revealed the presence of a high gradient at
the intersection of the free edge and interface of layers in laminates with homogeneous layer
models. The difference of material properties is most contrasting at the interface of zero-
ninety layers of a cross-ply laminate and thus, the presence of steep gradient could be studied
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conveniently at the zero-ninety interface of a cross-ply laminate. The findings at this stage
open the doors for studying the nature of free edge stresses in laminates with homogeneous
material layers.

Therefore, the analysis of stress fields at free edge vicinity becomes imperative to laminate
designing. Several analysis methods ranging from analytical to numerical have been employed
over the years to get as close an estimate as possible of free edge region stress fields and to
find the peak value of these stresses [1]. Delamination initiation has been cited as a potential
mode of failure at the free edges and therefore accurate prediction of interlaminar stresses
which are responsible for initiating delamination, has been an area of concentration. The
application of methods for delamination initiation prediction often involve free edge region
stresses. However, a high gradient stress profile results in high computational investment for
convergence studies of these stresses and sometimes these stresses might show a singular ten-
dency as well which makes prediction of peak stress values cumbersome. One of the methods
used to determine a definite stress value near the free edge region is the averaging of high gra-
dient stresses over a characteristic distance from the free edge along the laminate’s width in an
attempt to represent the peak stress value with an equivalent averaged value of interlaminar
stress components. Over the years, several approaches have been followed to determine the
characteristic averaging distance for a given combination of material properties and laminate
layup. Some of these approaches include experimental procedures and determination of strain
energy release rate.

An approach to arriving at an averaged interlaminar stress value near free edge region has
been proposed in the course of this thesis. The main hurdle in mitigating steep stress gra-
dients at free edge is the consideration of homogeneous layer laminates. To overcome this
hurdle, heterogeneous model of cross-ply laminate is built to study the nature of stresses
near the free edge region through Finite Element Method (FEM). The FEA of stresses on
both homogeneous and heterogeneous models allows a correlation of stresses on models with
equivalent stiffness. Thereafter, an effort has been made to propose an approach for determi-
nation of averaging distance by taking into consideration the high gradient free edge stresses
from homogeneous layer laminates and free edge stresses obtained from detailed modelling
of laminate’s constituent materials. Through determination of averaged stresses, delamina-
tion initiation prediction could be done by employment of a suitable delamination initiation
criterion. This leads us to defining the title of the project as

‘A Study of Free Edge Stresses and Delamination Initiation in Fibre Reinforced Composite
Laminates.’

Linear FEM analysis has been carried out throughout this research on Abaqus FEA software
tool. Upon analysis, the obtained averaging distance is found to be predicting delamination
initiation in the reported experimental range for [±25/90]s laminate which is reported to be
susceptible to delamination initiation [9] through the use of average stress based Quadratic
Delamination Criterion (QDC) [12]. Delamination initiation index of the QDC is found based
on the determined averaging distance. The applicability of averaging distance on different
layups for a given material system has been reported [12]. This encourages the use of the pro-
posed averaging distance on suitable laminates for predicting delamination initiation. Since
FEM modelling and analysis of detailed constituent elements of a laminate could be a time
consuming and computationally expensive task, determination of the averaging distance once
through this approach for a given material, enables an application on a range of layups. This
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enables saving computational time and modelling effort while making a judicious use of FEA
codes.

In the following chapters of this thesis report, literatures studied, the results obtained for
various analyses and the conclusions derived from the research are discussed. Chapter 2 deals
with the state of the art methods on analysis of high gradient free edge stress fields, modelling
of detailed constitutive elements of composite laminates, application of suitable boundary
conditions, application of a suitable delamination initiation criterion and layup suitable for
verification of averaging distance has been highlighted. Following this, chapter 3 is about
modelling and analysis of homogeneous layer models and determination of free edge stresses.
Further in chapter 4, modelling and analysis of stress states in heterogeneous layer models has
been reported. Following this, in chapter 5, an approach for homogenisation of heterogeneous
laminate to model a homogeneous laminate with equivalent stiffness is highlighted. Chapter
6 illustrates the approach for correlation and verification of proposed approach on a suitable
homogeneous layer composite model. Finally in chapter 7, the conclusion of results has been
reported along with recommendations for future works on the topic.
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Chapter 2

State of the Art

2.1 Background

A long-standing area of research in composite laminate design is the study of nature and
consequences of the free edge effect. The free edge stresses may exhibit high gradients near
free edges of homogeneous layer models and could be a potential source for causing delamina-
tion initiation. This chapter aims at covering a range of state of the art literatures proposed
over a span of nearly 50 years on the various methods for detection and analysis of the free
edge stresses in composite laminates. Further, study of heterogeneous model with constituent
materials of composite laminates is done. This includes the use of appropriate modelling ap-
proaches and application of suitable boundary conditions. This enables determination of the
stress state without imposing material homogeneity in a lamina. Further, delamination crite-
ria are studied which provide a framework for determining the initiation of delamination due
to the stresses with high gradient near free edges of equivalent layer models. This is followed
by study of methods to extract engineering properties from Representative Volume Element
(RVE) of a composite lamina. Finally, a study related to laminates prone to delamination
due to high gradient free edge stresses is done.

Before moving to the next section, it is worth highlighting that for laminates made of or-
thotropic laminae, the implication of Saint Venant’s principle suggests that at a far-off dis-
tance from the location of load application, the displacements in the directions y and z become
independent of the longitudinal (x) coordinate in a laminate of sufficient length with refer-
ence to figure 1.1. Thereby making the strain and hence the stress at a far-off distance from
point of load application, independent of x coordinate. This understanding could be impor-
tant to reduce computational effort by avoiding unnecessary modelling of the entire laminate
where possible. Sometimes, a mid-section along the laminate’s transverse direction could be
good enough to analyse free edge effect in transverse (y) direction under uniform extensional
loading in linear deformation regime.
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2.2 Study of free edge stresses: Their detection and nature

This section deals with major works carried out on the discovery and analysis of free edge
interlaminar stresses. Since the discovery of the presence of interlaminar stresses in the free
edge region in the work of Puppo et al [4] and the pioneering work of Pipes et al [2] on
highlighting the presence interlaminar stresses near free edges possibly to an extent of a
singularity, various methods including analytical, semi-analytical and numerical have been
employed over the years for their further analysis. The existence of 3D stress fields due to
interlaminar stresses has been explained in chapter 1. The presence of interlaminar stresses
is mostly confined to the free edge region and their presence becomes negligible away from
the vicinity of the free edge.

The methods through which the free edge interlaminar stresses have been analysed can be
broadly categorised into numerical and analytical methods along with approximately closed
form and closed form solutions. Particularly with respect to numerical methods, FEM has
been widely used and hence, major works related to the use of FEM have been highlighted
until 2016.

2.2.1 Numerical studies on free edge effect

One of the landmark works related to the analysis of free edge stresses can be traced to the
work of Pipes et al [2] in which finite difference solution methods are employed to study the
free edge stresses. The fact that Classical Laminate Theory (CLT) assumes the existence of
in-plane stresses in response to in-plane tractions in symmetric laminates, implies boundary
traction on the free edge when the laminate consists of differently oriented layers, which
cannot be possible. Hence, the nature of the stress field in the free edge region in this paper
is studied. A schematic laminate geometry has been shown in the figure 2.1.
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Figure 2.1: Schematic laminate geometry as shown in Pipes et al (1970) [2]

Symmetry boundary conditions are applied at the x−y and x−z planes. Material properties
of a typically high modulus graphite-epoxy material (listed in table 3.1) is used to carry out
analyses in this paper, the results of which are shown in figure 2.2. It has been indicated
through the reported plots in figure 2.2 that while the results correlate well for τxy and σx
with Puppo et al (1970) [4] (results described in section 2.2.2), the presence of a possible
singularity is indicated for τxz unlike in Puppo et al (1970) [4] wherein τxz is shown to have
a finite value at free edge. Thus, the study suggests the requirement of significant amount of
interlaminar shear for shear transfer between layers of the laminate. Moreover, the possibility
of existence of singularity in interlaminar shear stress in a region equal to laminate’s thickness
from free edge has been proposed.
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(a) Rise in τxz and σz stresses near free edge
at interface z = h (h = h0) [2]

(b) Shear stress τxz distribution
through laminate’s thickness [2]

Figure 2.2: Interlaminar stress distribution along laminate’s interfacial width and through thick-
ness along free edge [2]

In the work of Rybicki (1971) [13], an approximate solution has been proposed using FEA
based on complementary energy formulation for a laminate under in-plane loading. The
method satisfies all equilibrium conditions and stress boundary conditions exactly but the
compatibility and displacement boundary conditions are satisfied approximately. An analysis
on a [90/0/0/90] laminate shows that the sign of σz at the free edge is negative like that of
σy of the top ply. It is indicated that σz reaches its maximum value at the free edge and has
the same sign as that of σy in the top laminate. The reason behind this is cited to be the
equilibrium of moment at centre section. Further, it is reported that a significant value of τyz
is found at the ends of the laminate.

One of the most highly cited works using FEA in the field of free edge analysis has come
from Wang et al (1977) [14]. This paper proposes an approach using displacement based
multi-purpose finite elements. For carrying out the analysis, plane strain triangular elements
are used near the free edge region. A total of 392 elements with 226 nodes are used with
substantial mesh biasing towards the free edge region. The material used for analysis is same
as the one used in Pipes et al (1970) [2]. The result of σz along the zero-ninety degree ply
interface shows a rise in the stress levels as the free edge is approached. Further, it has been
reported that while in case of [0/90]s laminate σz shows a sharp rise near free edge and hence
a possible singularity, σz in case of [90/0]s laminate attains a finite value at free edge. This
noticeable difference in the nature of the two plots makes the author to remark that the two
laminates behave fundamentally differently.

Quasi 3D FEA has been carried out by Raju et al (1981) [15] on [θ/θ− 90]s laminate family.
In the analysis, eight node isoparametric elements have been used to model homogeneous
elastic orthotropic plies of four-ply laminates. With regard to the meshing strategy, it is
considered that the singularity exists along the radial line from the singular point. Therefore,
radial/polar meshing strategy is adopted to capture the singularity. If R is considered to be
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the radial distance from the singular point, then for regions close to the singularity or for
smaller R values the stress distribution could be approximated as:

σij ' A1R
−α (2.1)

or

log σij = logA1 − α log(R) (2.2)

where α is the power of singularity and A1 is the strength of singularity. Thus, if the equation
is fitted well to the computed stresses on a log scale plot, then the nature of stress near free
edge could be studied. With respect to cross-ply laminates, near intersection of dissimilar
layers and free edge, σz is reported to be tensile for both [0/90]s and [90/0]s laminates while
τxz at the same location is found to be zero for both laminates.

A work by Whitcomb et al (1982) [16] highlights that upon analysing [±45]s graphite/epoxy
laminate through FEM for free edge stresses, the stress σz is found to be compressive in nature
at intersection of interface between +45 and -45 degree plies and free edge as opposed to the
tensile nature showed by other studies through finite difference method and perturbation so-
lution. A displacement formulated FEM is incorporated using 8 node isoparametric elements
and a converged solution is found with the exception of two elements closest to the free edge.
Upon further comparison with known problems of exact solution, it is indicated that the dis-
placement formulated FEM shows the same behaviour in case of [±45]s laminates. Also for
symmetric cross-ply laminates, the stress distribution agrees qualitatively and hence, FEM is
indicated to be a highly accurate method for calculating interlaminar stresses in laminates.

The next study suggests an effective approach to FEM based analysis of the free edge problem.
This work by Lessard et al (1996) [3] deals with 3D analysis of edge effect in symmetric cross-
ply laminates under uniaxial tensile loading. For the analysis, a slice model has been created
with a view to optimise mesh refinement and computational time. 20 node 3D quadratic
brick elements are used for finite element meshing. Thus, an approach has been taken for
simulating the actual stress state near free edge. The figure 2.3 shows the slice model set up
and the meshing of the model using aforementioned brick elements.

Figure 2.3: Slice model set up using quadratic brick elements [3]

A quarter of the laminate is modelled using the transverse slice of length 0.0156 mm. A
uniaxial tensile load is applied to the nodes on one side of the elements while constraining the
other side’s Degree of Freedom (DoF) longitudinally. A total of 856 elements have been created
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using 6225 nodes for a fine mesh while not exceeding the element aspect ratio of 2:1 near the
free edge. Use of this model could be extended to analyse 8 layered laminates effectively.
Further this model is indicated to behave better than quasi 3D models. A comparative
analysis of interlaminar normal σz stress has been shown in figure 2.4. The figure suggests a
higher peak stress compared to the peak stresses observed in some of the earlier studies on
σz at the free edge of zero-ninety interface. The study uses the same material as used in [2].

Figure 2.4: Comparative analysis of σz along 0/90 interface of [0/90]s laminate [3]

Figures 2.5 and 2.6 show the distribution of σz and τyz stresses along the free edge and
zero-ninety layers’ interface of [0/90]s laminate.

(a) Distribution of σz along interface of [0/90]s
laminate [3]

(b) Distribution of σz along free edge of [0/90]s
laminate [3]

Figure 2.5: Distribution of interlaminar tensile stress along interface and along the free edge
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(a) Distribution of τyz along interface of [0/90]s
laminate [3]

(b) Distribution of τyz along free edge of [0/90]s
laminate [3]

Figure 2.6: Distribution of interlaminar shear stress along interface and free edge

In the work of Kant et al (2000) [17] a review of the methods adopted for interlaminar stress
determination is done. While referring to the work of Salamon (1980) [18], it has been shown
that while two-dimensional (2D) elements can predict accurate results away from the free
edge, they cannot predict complex stress states near any geometric or material discontinuities
or near traction free edges, accurately.

Work by Lindemann et al (2000) [19] is based on boundary finite element method. This
method combines the boundary element method and FEM for analysing the free edge effect
by taking an example of symmetric cross-ply laminate. Analogous to the boundary element
method, only the boundary needs to be discretised while the element formulation is finite
element based. The analysis result is suggested to be in good agreement qualitatively and
quantitatively with σz and τyz results obtained from FEM.

In a paper by Nailadi (2002) [20], free edge effect has been analysed using numerical method
(FEM) and experimental results using a [+454/−454]s angle-ply laminate subjected to uniform
axial strain. Singular finite elements are used in regions close to free edge and interface
regions with element length in the order of 2.54 microns in singular region, whereas, 8 node
quadrilateral elements had are used at other locations. A quasi 3D approach is followed and
it is found that an agreement between the FEM analysis and experimental data exists.

Paper by Nguyen et al (2006) [21] suggests that the accurate prediction of interlaminar stresses
is not possible with two-dimensional finite elements. Thus, a need for the use of 3D elements
or layer wise 2D finite elements is highlighted. In this proposal, an eight node isoparametric
multi-particle quadrilateral element is developed. The result is indicated to be valid by
comparison with 3D finite element results. In a work of Ramesh et al (2009) [22], a higher
order triangular plate element is used. It is suggested that transverse shear stresses are not
predicted effectively using 3D finite elements at the free surfaces because the shear stresses
do not vanish completely after discretisation and the stresses are still speculated to appear.
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As a result, the proposed element is suggested to be more effective in terms of providing DoF
and in handling complex problems involving stress singularities efficiently.

Other numerical studies on free edge effect

In a work by Spilker et al (1980) [23], a special single purpose element has been incorporated
which is reported to exactly satisfy the traction free free-edge conditions. A multi-layered
element formulation is used that complies to conditions of equilibrium and compatibility at
the interfaces as well as at traction free edges and surfaces. The versatility of hybrid finite
elements is due to allowance of an independent stress distribution in the interior of the element.
As a result, interlaminar traction continuity and traction free upper and lower surfaces could
be obtained. It is reported that high gradients are observed in interlaminar normal stress
(likewise in interlaminar shear stress) near the traction-free edges which is in agreement with
FEA of Wang et al [14].

For the analysis of traction free straight boundaries, 3D hybrid stress elements with trac-
tion free planar surface has been proposed by Tian et al (2004) [24]. It is mentioned that
boundary conditions and continuity conditions along with material property changes, lead
to singularity. Further, it has been mentioned that for general 3D elements, increasing the
order of interpolation polynomial does not improve the rate of convergence of results and
hence, while dealing with smaller aspect ratios at free edge region, computational difficulties
are encountered. The results obtained are suggested to be as efficient and effective as with a
coarse mesh and an agreement in results with existing elasticity solutions could be found.

2.2.2 Analytical studies on free-edge effects

One of the earliest literatures on findings related to interlaminar stress near the free edge was
based on analytical method. Since then, several analytical and semi-analytical studies have
been proposed on the topic over the years of which a few are reported herein chronologically.
Puppo et al (1970) [4] propose an analysis on the interlaminar shear stresses (stresses dis-
tributed on faces of laminate layers) subjected to generalised plane stresses. The laminates
are modelled with anisotropic layers bonded by isotropic adhesive layers. In this paper, an an-
alytical approach based on simple equilibrium based method has been adopted and solutions
have been obtained for infinite and finite width laminates. The adhesive layer is assumed
to be developing only shear stresses while the anisotropic layers are assumed to be under
generalised plane stress state. Using constitutive relations for anisotropic layers and isotropic
adhesive layer, the equilibrium equations have been solved by applying tensile displacement
boundary conditions in longitudinal (x) direction.

Figure 2.7: Stress distribution across the laminate’s width in transverse direction [4]
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Figure 2.7 gives an overview of the obtained results (b is the half width of the laminate).
Zero interlaminar shear stresses are obtained for infinite width laminate at the edges along
transverse (y) direction, but finite interlaminar shear stresses depending on y coordinate are
reported for a finite width laminate.

Pipes et al (1974) [25] propose an approximate elasticity solution for a finite width angle-
ply laminate loaded under uniform axial strain. The displacements are expanded as Fourier
series. During solution formulation, considerably large number of terms are used to arrive
at sufficiently accurate results. This tendency indicates the possibility of an existence of
singularity in the interlaminar shear stresses in the free edge region. In a study by Kassapoglou
et al (1986) [26], an analytical approach towards studying interlaminar stresses under uniaxial
loading is proposed. Stress shape functions represented as product of functions dependent on
transverse an interlaminar coordinates, is solved. Force balance method and minimisation of
complementary energy of entire laminate are used to obtain the solutions which are compared
with FEM based results by Wang et al [14]. The free edge stresses are reported to be higher
in magnitude compared to those by Wang et al [14].

An analytical work by Tahani et al (2003) [27] investigates the free edge stresses in a general
cross-ply laminate. A quasi-3D problem is considered. The approach is based on providing
more kinematic freedom across thickness of a layer. A comparison is drawn with results
obtained from FEA results of Wang et al [14] and the results have been shown to correlate
closely. Another study by Dhanesh et al (2016) [28] proposes a new 3D elasticity based
analytical solution which satisfies all boundary conditions and interfacial continuity conditions
exactly. The results are suggested to successfully capture singularity at free edge. The results
show a rise in interlaminar normal stress near the free edge and a tendency of interlaminar
shear stress to approach zero in the free edge region of zero-ninety degree layers’ interface
of [0/90]s laminate. Through a semi-analytical approach, Peng et al (2016) [29] present the
potential of mechanics of structure genome for free edge stress analysis of composite laminates.
The results obtained are suggested to be in good agreement with 3D FEA results.

An equilibrium based approximate closed form analysis is carried out by Pagano et al (1971)
[30]. The interlaminar normal and shear stresses are investigated and it is indicated that
these stresses have a significant effect in precipitating delamination initiation and strength
reduction. It has been shown in the study that in a cross-ply laminate, the sequence of
arrangement of zero degree and ninety degree plies has an effect on the interlaminar normal
strength of the laminate. In a paper by Kassapoglou et al (1987) [31], a closed form solution
based on force balance method and minimisation of complementary energy has been proposed
which shows that interlaminar normal stress σz in a cross-ply laminate have a pronounced
rise in peak stress at the zero-ninety ply interface of a [0/90]s laminate.

2.3 Heterogeneous modelling of cross-ply composite laminates

The objective of heterogeneous modelling in this study is to represent the state of constituent
materials i.e. the fibre and matrix of the considered cross-ply laminate. In a periodic medium,
a UC can form a Representative Volume Element (RVE). These UCs by periodic repetition
represent the entire structure of the composite. The RVEs are statistically homogeneous
representation of a heterogeneous medium which can be used to derive macroscopic (homog-
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enized) law for the composite [6]. Further details about requirements of choice of UC is
highlighted in section 2.5. UC of a cross-ply laminate has been shown in the figure 2.8.

Figure 2.8: Unit Cell of a cross-ply laminate [5]

It might be noted in figure 2.8 that every zero and ninety degree ply has been represented by a
combination of only one fibre along the laminate’s thickness direction. However, to represent
the heterogeneous state of a lamina at micro scale, a combination of single fibre cubes could
be stacked in the thickness direction. Considering a nominal fibre diameter to be 7 microns
and fibre volume fraction of 0.6, the size of a unit cell would be around 8.018 microns using
the relation for ratio of fibre diameter to unit cell side to be 2

√
vf

π , where vf is the fibre
volume fraction. This means that a standard graphite-epoxy ply with nominal thickness of
0.134 mm [3] will have as many as 16 to 17 unit cells stacked in the thickness direction.
It must be noted that building an entire laminate with such UCs of 8.018 microns will be
computationally very expensive. A simplification of an effort to model constituent lamina
materials could thus be to use one fibre per lamina in the thickness direction as represented
in figure 2.8. Moreover, these UCs are scale independent. If homogeneous properties of a
unidirectional lamina is to be predicted, then a choice of unit cell could comprehensibly be a
cubic unit cell as shown in figures 2.13 and 2.15.

Packing of UCs

The UCs can be stacked up in different directions and in different array patterns. For example,
UCs can be arranged in a square array, in hexagonal array or in rectangular array. The
determination of overall properties of a lamina can be represented through the Halpin-Tsai
relation mentioned in Whitney et al [32]. Among the few approaches mentioned for the study
of such models, is the semi-empirical Halpin-Tsai relationship which takes into account the
packing array of UCs. The formulation establishes a relationship between the various macro
scale elastic properties of a lamina and the individual constituent properties of fibre and
matrix. The following equations (2.3) and (2.4) define these relations.

P = Pm(1 + ξχvf )
(1− χvf ) (2.3)
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where,

χ = Pf − Pm
Pf + ξPm

(2.4)

P is the effective property of the lamina while Pf and Pm are respective properties of the fibre
and matrix. The scaling parameter ξ varies while determining longitudinal and transverse
properties and is used to ensure that the properties lie between the upper bound of Voigt and
lower bound of Reuss (explained in section 2.4) [33]. χ is stated as reduced properties of the
components. As the UCs repeat to form the entire laminate, the fibre volume fraction of the
RVE is equal to the fibre volume fraction of the lamina.

The Rule of Mixtures (RoM) approach is another strength of materials based approach for
determining the effective engineering properties of a lamina based on constituent material
properties of fibre and matrix. For longitudinal modulus of elasticity and longitudinal Pois-
son’s ratio, the assumption of uniform strain in fibre and matrix is made and the effective
property can be given as mentioned in equation (2.5) [8].

P = Pfvf + Pm(1− vf ) (2.5)

Transverse moduli of elasticity and longitudinal shear moduli are calculated by assuming
uniform stress in fibre and matrix [8]. the form of equation for effective property is given by
equation (2.6).

1
P

= vf
Pf

+ (1− vf )
Pm

(2.6)

The transverse Poisson’s ratio is calculated by using the relation between transverse elastic
modulus and transverse shear modulus if the fibre has transverse isotropic symmetry as shown
in equation (2.16).

In context of the current study, as we are interested in dealing with free edge stresses, the UCs
as shown in figure 2.8 can be stacked up along the width (transverse direction) to represent a
zero-ninety layer combination of a heterogeneous cross-ply laminate. This approach enables
the use of individual properties of fibre and matrix and therefore abrupt material discontinuity
between layers could be mitigated. Unlike in homogeneous layer models, the interface between
two layers would be represented by matrix properties common to both layers. A schematic
zero-ninety layer UC is shown in figure 2.9. The heterogeneous model will not enforce abrupt
change in material properties at interface and hence, may allow examination of a definite
stress value at intersection of free edge and interface without exhibition of high gradient
stresses as in case of homogeneous layer models.
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Fibre
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zero degree layer

ninety degree layer

Figure 2.9: Zero-ninety layers’ interface made of matrix material in a heterogeneous cross-ply
UC

2.4 Appropriate boundary conditions for periodic heterogeneous
media

The main idea behind heterogeneous modelling is to be able to correlate the results obtained
from the heterogeneous model with that of the homogeneous material layer model. For this to
happen, the two models must have the same stiffness. Apart from the application of uniform
traction and uniform strain boundary conditions mentioned in subsection 2.3 for deriving
effective engineering constants, the use of Periodic Boundary Condition (PBC) by which
effective stiffness from a heterogeneous medium could be extracted, is described through
a homogenization principle in Suquet [6]. The nature of heterogeneous medium plays an
important role in choice of a suitable boundary condition for finding an effective stiffness.
Hence, it becomes pre-requisite to understand the nature of the heterogeneous model. Since,
the modelling of a heterogeneous cross-ply laminate through UC described in figure 2.9 would
result in a periodic medium, the suitable boundary conditions and homogenisation procedure
applicable to periodic heterogeneous media is highlighted.

Dependence of structural moduli on applied boundary conditions

R.Hill (1963) [34] describes the approach to derive the inequalities between structural moduli
of a two isotropic phase mixture bonded together at arbitrary concentrations due to appli-
cation of different boundary conditions. The nature of reinforcement is considered to be
arbitrary which could be of fibrous, spherical or plate-like shape. However, the phases them-
selves are considered isotropic. The paper is aimed at determining the overall or macroscopic
elastic properties which the author believes involves dependence on relative concentration of
constituents as well as on their arrangement. The paper describes the volumetric average of
stress and strain as the integral over a specified region divided by the volume of the region.
The equations (2.7) and (2.8) describe the relation for overall stress and strain tensors in
heterogeneous medium.

< Σ >= c1 < Σ1 > +c2 < Σ2 > (2.7)
< ε >= c1 < ε1 > +c2 < ε2 > (2.8)
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where < Σ > and < ε > are the average stress and strain tensors for any region in micro
heterogeneous state containing the phases while < Σ1 > and < Σ2 > are average stress tensors
of corresponding phases and < ε1 > and < ε2 > are average strain tensors for corresponding
phases. Parameters c1 and c2 are fractions of concentration by volume of the two phases in
the mixture. Replacing the average stresses in corresponding phases with respective stiffness
tensors (C1 and C2 ) and average of strain tensors (ε1 and ε2), equation (2.9) is obtained.

< Σ >= c1C1 < ε1 > +c2C2 < ε2 > (2.9)

Similarly, replacing the average strains with the respective compliance and stress tensors,
equation (2.10) is obtained.

< ε >= c1S1 < Σ1 > +c2S2 < Σ2 > (2.10)

where, S1 and S2 are compliance tensors.

In equation 2.9, if the strains in the two phases i.e. < ε1 > and < ε2 > are equal to the overall
average strain shown in equation 2.8, then we have the uniform strain condition proposed by
Voigt. Likewise, if we consider the stresses in the two phases i.e. < Σ1 > and < Σ2 >
in equation 2.10 equal to the overall average stress in equation 2.7, then we arrive at the
Reuss’s condition of uniform stress. However, application of Voigt’s condition could result in
discontinuous tractions at the interface of the two phases and application of Reuss’s condition
could result in discontinuous displacements at the interface of the two phases which means
that the two phases would no longer remain bonded. Hence, neither assumption is completely
correct.

Since the phases are isotropic, only two moduli, the bulk modulus κ and shear modulus G
are sufficient to represent the phases. By imposing the sum of two concentration fractions
c1 + c2 = 1, the moduli values in Voigt’s condition is always found to be greater than that of
Reuss’s as shown in equation (2.17).

It is described that for the mixture with two isotropic phases,

κ 6 κv, G 6 Gv (2.11)

where v represents Voigt’s moduli and

κv = c1κ1 + c2κ2, Gv = c1G1 + c2G2 (2.12)

Likewise, it is shown that

κ > κr, G > Gr (2.13)

where r represents Reuss’s moduli and

1
κr

= c1
κ1

+ c2
κ2
,

1
Gr

= c1
G1

+ c2
G2

(2.14)

Using the relations (2.15) and (2.16),
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E = 3κ(1− 2ν) (2.15)
E = 2G(1 + ν) (2.16)

where E is the Young’s modulus and ν is the Poisson’s ratio of the mixture, it follows from
equations 2.11 and 2.13 along with equations 2.12 and 2.14 that

Er 6 E 6 Ev (2.17)

Hence, the work done by R.Hill (1963) [34] indicates that the correct modulus of multi-
phase mixtures like the one discussed here needs to be dealt with boundary conditions which
are different from the homogeneous strain (Voigt’s limit) and homogeneous traction (Reuss’s
limit) conditions. This inspires the study of appropriate boundary conditions which could
tackle the difficulties posed in heterogeneous media.

2.5 Homogenisation procedure

The work by Suquet (1987) [6] provides an approach for homogenization of periodic media
with a view to calculate a homogeneous medium stiffness tensor. For this purpose, the paper
adopts the use of PBC as a means to evaluate the homogenised stiffness tensor. This method
has proven to evaluate the stiffness matrix between the bounds of stiffness tensors evaluated
through uniform traction and uniform displacement boundary conditions.

Relation between macroscopic and microscopic quantities

x

y

Representative Volume Element (RVE)

heterogeneous homogeneous

x microscopic
y macroscopic

Figure 2.10: Schematic representation of microscopic and macroscopic scale composites and a
RVE of heterogeneous medium [6]

Two scales have been defined in the literature by Suquet (1987) [6], the macroscopic scale
on which the size of the heterogeneities is very small and the microscopic scale which is
the scale of heterogeneities. The work mentions that to be able to derive macroscopic (or
homogenised) law for the composite, statistically homogeneous specimen or RVE can be
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defined in a composite. It describes that from classical arguments on oscillating functions,
the macroscopic stress and strain tensors must be the averages of microscopic stress and strain
tensors respectively. The oscillating functions have two parts, the mean part and a periodic
part. The volumetric average of the periodic part of oscillating functions is zero and hence,
the macroscopic stress and strain tensor components are an average of corresponding stress
and strain tensor components over the volume V of microscopic RVE. Hence equations (2.18)
and (2.19) could be written.

σij = 1
|V |

∫
V

Σijdx = < Σij > (2.18)

εij = 1
|V |

∫
V
εijdx = < εij > (2.19)

where σij represents the ijth macroscopic stress tensor component and εij represents the ijth
strain tensor components while < Σij > and < εij > represent the average of microscopic
stress and strain tensor components respectively. The local microscopic position vector is rep-
resented by x whereas y represents the global macroscopic position vector. The displacement
vector in the RVE is represented by u.
The procedure which relates macroscopic quantities σ and ε (and possibly their derivatives
with time and other parameters) with the help of equations 2.18 and 2.19 along with equi-
librium equation, micro constitutive relations and boundary conditions is termed as homoge-
nization [6]. The inverse procedure is termed as localization which permits the determination
of microscopic quantities like Σ(x) and ε(x) from the macroscopic ones. The following mi-
croscopic equilibrium equation is defined (when no body force or surface force is applied):

div(Σ) = 0 (2.20)

The average < . > of stress and strain tensors is defined as:

< Σ >= σ, < ε(u) >= ε (2.21)

Next, the choice of the RVE and boundary conditions are specified to solve the equilibrium
equation with the help of constitutive relations. An RVE with a volume V and boundary ∂V
is depicted in figure 2.11.

V

@V

n

RVE

Figure 2.11: Schematic representation of RVE region and normal vector on its boundary

The periodicity conditions in a periodic microscopic medium is given as follows:
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1. The microscopic traction Σn is anti-periodic.

2. The microscopic strain ε(u) is split into its average and a fluctuating term as ε(u) =
ε+ ε(u∗), where ε is the macro strain and u∗ can be shown to be a periodic field up to
a rigid body displacement that we disregard i.e < ε(u∗) >= 0.

This leads us to defining the following boundary conditions at the microscopic level on the
boundary ∂V :

uniform stresses on ∂V : Σn = σn (2.22)

uniform strains on ∂V : u = εx (2.23)

and the periodicity conditions on ∂V : Σn is anti-periodic and (2.24)

u = εx + u∗, u∗ is periodic (2.25)

where, u and n represent displacement and normal vectors respectively while u∗ is periodic
part of displacement vector u. Equations (2.22), (2.23), (2.24) and (2.25) are the set of
boundary conditions for u and Σ.

Further, for periodic microscopic media, application of periodicity conditions is suitable.
Hence, the equilibrium equation given by equation (2.20) along with mentioned boundary
conditions and constitutive relation given by equation (2.26) could be solved when σ or ε are
given for a linear elastic case.

Σ(x) = c(x)ε(u(x)) = c(x)(ε+ ε(u∗(x))) (2.26)

Suquet (1987) [6] could be referred to for a solution of macroscopic stress tensor σ which is
given by equation (2.27).

σ =< Σ >=< cε(u) >=< cDε >=< cD > ε (2.27)

where, c represents microscopic stiffness tensor and D represents the localisation tensor. For
derivation of D Suquet (1987) [6] could be referred to. Equation 2.27 could be re-written as

σ = Cε (2.28)

where, C is the homogeneous (macroscopic scale) stiffness tensor and is represented by <
cD >. The calculation of homogenized stiffness tensor (C) is rather straightforward when
calculated by internal energy approach as given in equation (2.33) than through calculation
of localisation tensor (D).
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Equality of strain energy

The Hill’s macrohomogeneity equality condition described in Suquet (1987) [6] gives the re-
lation between the microscopic and macroscopic work. For a set of boundary conditions, a
displacement field u satisfying the boundary condition is said to be admissible displacement
field, while a divergence free stress filed satisfying the boundary conditions is said to be an
admissible stress field. Now, if Σ and u be the admissible fields of stress and displacements,
then the average of microscopic work of Σ in strain field ε(u) is equal to macroscopic work
σε as shown in equation (2.29).

< Σε(u) >= σε (2.29)

Cristescu et al (2003) [35] point out the Hill-Mandel’s lemmas which describe the following
relations:

< Σε >=< Σ >< ε >=< Σ > ε (2.30)
< Σε >=< Σ >< ε >= σ < ε > (2.31)

Through interpretation of equation (2.29), the internal energy density of a RVE (with volume
V ) can be given as in equation (2.32)

U = 1
2σε (2.32)

Taking reference from equation (2.28), equation (2.32) can be written as equation (2.33).

U = 1
2ε

TCε (2.33)

where T represents transpose.

The procedure for calculating homogeneous stiffness tensor C through equation (2.33) has
been shown in the next subsection.

Calculation of strain energy through FEM

We can see from equation(2.33) that for a given macroscopic strain ε, the stiffness tensor C
can be calculated if the strain energy of the RVE is known. For a body subjected to elastic
deformation, external forces must be equal to internal elastic forces for the body to be in
equilibrium. Therefore, work will be done on the body to maintain the applied strain. Let’s
consider figure 2.12 for a general solid isotropic body.
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Figure 2.12: General elastic deformation of a cubic solid elastic body

Referring to figure 2.12 for a micro scale UC, in which for a general uniaxial load F in a given
direction produces a displacement u in that direction. The external force would be equal to
the internal elastic reaction force of the body.

F = Felastic (2.34)

The stress and strain produced in the direction of load application could be given as

Σx = F

A
(2.35)

εx = ∆u
L

(2.36)

where, for a linear elastic case, A and L are the cross-sectional area of surface normal to x
axis and length of the body in x direction respectively. Considering global equilibrium, the
average of other stress components will be zero. Now, if the volume of the body is V , the
strain energy is given by equation (2.37)

U = 1
2ΣxεxV (2.37)

Replacing Σx and εx in equation (2.37) by equations (2.35) and (2.36) we get

U = 1
2
F

A

∆u
L
V (2.38)

or
U = 1

2F∆u (2.39)

Thus, the strain energy can be represented in the form of force and displacement at nodes in
a finite element model. In case of deformation of heterogeneous RVE (of volume V ), nodal
forces (which are internal elastic forces) and nodal displacements could be determined through
FEM analysis. The work done on the RVE is equal to the strain energy generated in the RVE.
Thus, equation (2.33) could be related to work done on RVE for a given macroscopic strain
ε as shown in equation (2.40).
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1
2(εTCε)V = 1

2

n∑
i=1

(Fiui)RVE (2.40)

where, as defined earlier, C is the macroscopic stiffness tensor, V is the volume of RVE, Fi
and ui represent force and displacement in a direction at the ith nodes in RVE FEM model
along a corresponding degree of freedom, n is the number of nodes on the exterior surface of
RVE.

Python scripting can be used to extract data of nodal forces and displacements on the bound-
ary surfaces of RVE with the help of Abaqus user manual (2014) [36] and Langtangen et al
(2006) [37]. The obtained data then can be used to obtain the right hand side value of
equation 2.40. Using equation (2.40), we can define selective combinations of strain tensor
components to solve for the constants in stiffness tensor C with respect to a given symmetry
like orthotropic symmetry or transverse isotropy. Therefore sufficient number of combination
of strain components must be taken to be able to solve for all the required constants of the
stiffness tensor.

Comparison of stiffness tensors

With the help of aforementioned PBC, the following inequality of strain energies for cases of
homogeneous traction, periodic displacement and homogeneous strain boundary conditions
have been proposed in Suquet (1987) [6]:

εTĈε 6 εTCε 6 εTC̃ε (2.41)

where ε is the macroscopic strain, Ĉ, C and C̃ represent the macroscopic elasticity tensors for
the homogeneous traction, periodic displacement and homogeneous displacement boundary
conditions respectively. From the aforementioned representation, it can be deduced that for
a given macro strain, stiffness obtained by application of PBC lies in between homogeneous
traction and homogeneous strain boundary conditions. Also, it is clear that homogeneous
displacement boundary condition overestimates the stiffness of a periodic medium and homo-
geneous traction underestimates the stiffness of a periodic medium.

2.6 Application of PBC in FEM

Xia et al (2003) [7] discuss the results for a pure shear deformation mode for both PBC and
homogeneous displacement boundary condition. In application of displacement difference
boundary condition, plane remains plane constraint is not imposed after deformation while
this constraint is imposed in the case of homogeneous displacement boundary condition.
Similarly, Xia et al (2006) [38] have published findings after application of the two types of
boundary conditions discussed above.
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2.6.1 Implementation of PBC through displacement difference approach

The displacement field for periodic structure can be expressed as described Suquet (1987) [6]
through equation (2.25). This equation shows the presence of periodic part of displacement
field which can be difficult to determine. Thus, there needs to be a way by which this
difficulty could be averted for application of periodic displacement field. One such approach
for implementation of PBC is explained in the work of Xia et al (2003) [7]. The paper describes
the application of unified displacement difference PBC on RVE by specifying a displacement
difference approach between opposite faces of a RVE. Before specifying the approach described
in the paper, the following schematic RVE is shown in figure 2.13 for a unidirectional lamina.

x

y

z

∆x2

∆x3

∆x1

unidirectional lamina RVE

Figure 2.13: Representative Volume Element of a unidirectional lamina [7]

The relations involved through displacement difference approach for applying PBC is given
as follows:

ui = εikxk + u∗
i (2.42)

where, ui is the displacement vector component, εik is the average of microscopic strain tensor
component, u∗

i is a periodic part of the displacement on boundary surfaces and xk represents
the dimension of RVE along the kth axis where, k = 1, 2, 3 corresponding to x, y and z axes
respectively. This periodic part of the displacement is generally unknown and depends on
the load applied. A more suitable form of PBC for applications on parallelepiped RVEs can
be derived further. For a cubic RVE, as shown in figure 2.13, the displacements on a pair of
opposite boundary surfaces with their normals along xj axis can be given as:

uj+i = εikx
j+
k + u∗

i (2.43)
uj−i = εikx

j−
k + u∗

i (2.44)

Index j+ means along positive xj direction and j− means along negative xj direction. Since
u∗
i is the same on both the surfaces, after subtracting equation 2.44 from 2.43, we get

uj+i − u
j−
i = εik∆xjk (2.45)

For any parallelepiped RVE, ∆xjk is a constant. Therefore, the following unified PBC is ob-
tained:

uj+i − u
j−
i = cji (2.46)
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Where cji represents the average stretch or contraction of the RVE due to 3D traction including
normal and shear components.

Work done by Xia et al (2006) [38] further suggests that in equation 2.45, since ∆xjk is a
constant for each pair of opposite boundary surfaces, the equation can be interpreted as a
displacement difference boundary condition. In context of FEA, application of displacement
difference boundary condition is convenient as these displacement differences can be applied
to nodes on opposite parallel faces of a RVE through nodal constraint equations. Hence
equation 2.45 is a special type of displacement equation wherein instead of giving absolute
values of displacement, we can assign a displacement difference between two opposite bound-
aries. Therefore, displacement continuity is guaranteed with the application of displacement
difference boundary condition. However, as seen earlier the traction continuity is also vi-
tal and application of displacement difference boundary condition must also satisfy traction
continuity at opposite faces.

Xia et al (2006) [38] describe that in displacement based FEM, the solution to equation
2.45 is unique. This can be explained by the tendency of the structure to deform in a
manner that complies to the principle of minimum potential energy in displacement based
FEM and hence the unique solution to equation 2.45 for a given average strain on the RVE.
However, in displacement based finite element approach, the condition of traction continuity is
automatically satisfied with application of equation (2.45). In context of current project, the
application of PBC has to be done through a FEA package. Hence, study of the application
procedure of this boundary condition is imperative.

Wu et al (2014) [39] have presented a comprehensive approach for applying PBC in Abaqus
FEM package. For the application of PBC on opposite faces of a RVE, it is important that the
in-plane location of nodes is the same. Thus, an algorithm is needed to pair up corresponding
nodes on opposite surfaces for application of constraint equations to specify PBC.

Finite element modelling of Unit Cells and choice of material properties

Hyer (2009) [8] describes constituent material properties of a graphite fibre and epoxy matrix
for heterogeneous modelling of a lamina through which a laminate of desired fibre orientation
can be built. These material properties can be referred to for modelling of heterogeneous UC
during execution of the project. The individual fibre and matrix properties for graphite-epoxy
laminate is listed in table 4.1. The finite element modelling of the UC can be done with the
help of standard 3D elements available in finite element packages like Abaqus which offer
the use of elements like wedge or hexahedral elements. The meshing of UCs is an important
step towards determination of results in heterogeneous analysis while dealing with periodic
repetitions of cells (as described in the subsection 2.6.1). The PBCs can be applied through
nodal constraint equations in Abaqus for which it becomes important that nodal location on
opposite faces of the UC are symmetric (i.e they have same in-plane coordinates). With this
in mind, studies have been carried out to mesh the UC symmetrically with the help of 3D
elements.

Hyer(2009) [8] gives an understanding of the finite element modelling approach in square and
hexagonal packed array models in a unidirectional lamina. The figure 2.14 gives a view of the
discretisation pattern in quarter section of the two packing models.
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(a) Finite element discretisation in square UC (b) Finite element discretisation in hexagonal UC

Figure 2.14: Finite element discretisation of square and hexagonal UCs [8]

Xia et al (2003) [7] illustrate the use of 3D eight-node hexahedral elements. The finite
element mesh is constructed with the help of 1881 nodes and 1536 elements to model one
block of unidirectional RVE. The mesh is represented in the figure 2.15. The paper mentions
further that the mesh grid on the opposite faces on the RUC are the same and that the
in-plane coordinates of the nodes are therefore the same. This means that the nodes on the
x = 1 plane and x = 0 planes have the same (y, z) coordinates which provides convenience in
application of displacement difference PBCs.

Figure 2.15: (a) Meshing of unidirectional UC using hexahedral elements. (b) Deformation state
of UC upon application of periodic shear strain boundary condition [7]

Figure 2.16: Finite element meshing of heterogeneous cross-ply laminate [5]

Ellyin et al (2002) [5] through figure 2.16 describes the meshing of a [0/90]ns cross-ply laminate
(considering fibre and matrix sections) with 3D eight node hexahedral elements. The meshing
of zero-ninety layers’ interface could also be seen in the figure 2.16.
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It is observable that the mesh in the zero and ninety degree parts of a zero-ninety RVE must
be identical for them to get merged or tied together at the interface in FEM package like
Abaqus. This is achievable with the use of 3D elements like wedge or hexahedral elements.
In Abaqus, modelling with hexahedral elements gives the option of developing a structured
mesh which would enable the symmetric meshing of the RVE. However, while modelling with
hexahedral elements in particular, care needs to be taken to keep the element aspect ratio
low in critical regions so that the elements do not get distorted upon deformation.

The literature review suggests that in general two to four elements are used to discretise the
narrowest region between the fibre and side of RVE [7], [5]. Here, it is to be highlighted that
with every single increase in the number of elements in the region between fibre and RVE’s
side, there would be a large increase in the number of elements volumetrically in the UC and
subsequently in the laminate’s model.

2.7 Prediction of delamination initiation due to free edge stresses

One of the objectives of this research is to study the effect of interlaminar stresses near the
free edge region on delamination initiation. Since the determination of point stress values
at the free edge is cumbersome due to high gradient stresses and sometimes not feasible
because of the presence of singularity [12], there need to be other methods which could
take the stresses near the free edge into account for prediction of delamination initiation.
Hence, literatures in this section are studied to arrive at a suitable method through which
the prediction of delamination initiation in homogeneous model laminates could be carried
out from the perspective of free edge stresses.

Criteria for prediction of delamination initiation

C.T Herakovich (1989) [40] in his paper explores the effect of free edge stresses on delamina-
tion initiation on cross-ply, angle-ply and quasi-isotropic laminates. In context of cross-ply
laminates, analyses pertaining to stress profiles based on effect of layer stacking sequence on
[902/02]s and [02/902]s is presented. Local mismatch in properties between adjacent layers
and stacking sequence play a part in interlaminar stresses and delamination. It has been
highlighted that the free edge boundary conditions require interlaminar shear stress τyz to
be zero but there can be an existence of interlaminar normal stress σz at the free edge. The
interlaminar normal stress σz is considered responsible for delamination initiation. Further,
it has been mentioned that because tensile interlaminar normal stress initiate delamination
and compressive interlaminar normal stress suppresses delamination, sign of σz is important.
The sign of σz is reported to be a function of sign of axial load and stacking sequence of the
laminate. For elastic response, while changing the direction of axial load directly changes the
sign of stress, changing the stacking sequence does not result in exact reversal of interlaminar
normal stress.

Some of the criteria accounting for the interlaminar stresses in delamination initiation have
been proposed in this subsection. One of them is a criteria for prediction of delamination onset
by O’Brien (1982) [41]. The paper presents through-thickness and through-width distribution
of interlaminar normal stress σz for a [±30/±30/90/90]s laminate from finite element analysis.
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The peak interlaminar normal stresses are reported to be obtained at the interface of the
−30/90 layers and the value has been reported to change at the free edge with refinement in
mesh size. Thus, the use of failure criterion based on maximum interlaminar stress value was
not possible citing the presence of singularity for linear elastic analysis. Hence, an alternative
approach based on strain energy release rate was proposed. The critical stress at the detection
of delamination is determined from the load level for a given specimen. The critical stress
is used to determine the critical strain which in turn is used to determine the strain energy
release rate at delamination initiation. This value of strain energy release rate is then used
to predict the nominal strain for delamination initiation in further studies.

Brewer et al (1988) [12] propose a criterion for predicting delamination initiation which consid-
ers the interlaminar stresses and their combination near the free edge of composite laminates.
An average stress based Quadratic Delamination Criterion (QDC) is introduced. In this ap-
proach, the initiation of delamination is established by noticing a drop in load and observation
of delamination. The values of initiation stress measured is correlated using the strain en-
ergy release rate approach and it is found that the strain energy release rate is not able to
accurately correlate data for two of the three laminate families taken into consideration. The
data obtained shows that the critical strain energy release rate is dependent on ply thickness.

The QDC compares the interlaminar stresses to their related strength parameters and has
been reported to show excellent correlation with delamination initiation stress data. In this
paper, the average of a stress component σij is given as:

< σij >= 1
yavg

∫ yavg

0
σijdy (2.47)

where, y is the distance along the transverse direction of homogeneous layer laminate from
the free edge on an interface.

The value of yavg is determined experimentally and this characteristic length from the free
edge region along the interface is used as a normalization parameter for the high gradient in-
terlaminar stresses near free edge. The value of yavg as the upper limit of integral is the same
as the value of yavg used for averaging. But if a stress curve changes sign before the value of
yavg then the distance from free edge until where the curve changes sign is used as upper limit
of integration. This is because the portion of the curve after the cross-over point where sign
gets changed, is not considered to have a major impact in counteracting the effect of stress near
the free edge. Considering < σxz > and < σyz > as average interlaminar shear stresses and
< σz > as average interlaminar normal stress, the quadratic delamination criterion is given as:

(< τxz >

Zs1
)2 + (< τyz >

Zs2
)2 + (< σtz >

Zt
)2 + (< σcz >

Zc
)2 = 1 (2.48)

where
Zt = tensile interlaminar normal strength;
Zc = compressive interlaminar normal strength;
Zs1 = interlaminar shear strength for τxz stress and
Zs2 = interlaminar shear strength for τyz stress

The superscripts t and c indicate the tensile and compressive values of interlaminar stresses
should be compared to the corresponding values of interlaminar normal strengths. Further,
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the paper proposes a single averaging distance for a material. Thus, the averaging distances
for different layup configurations have been averaged all together statistically to propose a
single averaging distance for a particular material.

2.8 Laminates susceptible to failure by delamination initiation

This section covers the study of laminates which could be analysed for failure by delamination
initiation. Wang et al (1985) [9] report the failure of laminates with different layup orien-
tations when subjected to uniaxial strain. For T300/934 material, when [02/90n]s laminates
(where n is the number of ninety degree layers) are analysed, it is found that the free edge
effect under tension is negligible and that edge delamination alone cannot occur. Specimens
25 mm wide by 225 mm long and with nominal ply thickness of 0.132 mm are tested. For
n = 1, the paper reports that through the strain energy release rate approach, the laminate
would undergo transverse cracking at a strain value of 0.0059. Similarly, for n = 2 at 0.0036
and for n = 4 at 0.00273.

zero degree ply

ninety degree ply

zero degree ply

Transverse crack

σx

σx

Figure 2.17: Schematic representation of transverse cracks in cross-ply laminate [9]

It is calculated through strain energy release rate approach that for n = 2, free edge delam-
ination onset would happen at strain values of 0.036 and for n = 4 at 0.052. However, at
strain values of 0.01 to 0.012, the laminate is reported to fail by fibre fracture. Hence, it is
suggested that free edge delamination might never occur.

A study on laminates with [±θ/90]s configuration is conducted and it is revealed that for
[±25/90]s laminates free edge delamination is predicted to happen at 0.6 % strain. Exper-
imental range of delamination initiation is reported to be 0.58 % to 0.61 % for T300/934
material. The [±25/90]s laminate has three different interfaces between adjacent layers, the
+25/−25 interface, the −25/90 interface and the 90/90 symmetric mid-plane interface. It
becomes interesting now to study the interface at which the delamination occurs.

Wang et al (1985) [9] and Schellekens et al (1991) [10] report the delamination to occur at
the 90/90 symmetric mid-plane of the laminate when subjected to longitudinal tensile strain.
A schematic delamination in the [±25/90]s laminate is shown in figure 2.18.
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Figure 2.18: Schematic representation of delamination in [±25/90]s laminates [10]

Brewer et al (1988) [12] propose an averaging distance of 0.145 mm from for T300/934 material
for a combination of [±25/9̄0]s, [±25/90]s and [±252/90]s layup specimens. Hence, it can be
inferred that according to QDC, a single averaging distance can be proposed for a combination
of layup configurations made of T300/934 material.

2.9 Numerical integration of stresses

Equation (2.47) requires the averaging of stresses along the width (transverse direction) of a
laminate. The averaging itself involves integration of the stresses and this makes it relevant
to highlight the methods of numerically integrating the stress data points. If the mesh in
heterogeneous and homogeneous models are fine enough to produce continuous and smooth
plot of stress points, then a suitable employment of a numerical integration method could be
made conveniently. The nature of free edge stresses signals a steep rise in stresses near the free
edge. The curve flattens out as we move away from the free edge. It has also been seen that
the mesh needs to be finer near the free edge compared to far-off regions from the free edge.
Hence the spacing of data intervals is irregular based on the requirements of finite element
mesh. Given the small element size in the region of high gradient of stress, the approximation
of curves to linear line segments is feasible and therefore the error in calculation of area under
the curve numerically could be minimised. This calls for a rather simplified use of numerical
integration schemes such as the trapezoidal method. For a continuous function f divided into
n number of equally spaced intervals of size s in the domain [a,b], the trapezoidal integration
Tn(f) is defined by Davis et al [42] by equation (2.49) :

Tn(f) = s[f(a)
2 + f(a+ s) + f(a+ 2s) + · · · ·+f(a+ (n− 1)s) + f(b)

2 ] (2.49)

The implementation of trapezoidal integration scheme for n+ 1 evenly spaced points is pro-
vided in Matlab documentation as follows in equation (2.50):∫ b

a
f(x)dx = b− a

2n [f(x1) + 2f(x2) + · · · ·+2f(xn) + f(xn+1)] (2.50)

where, the spacing between each point is equal to the scalar value b− a
n

. However, for our
convenience, we need to find the area under the curve when the data points are not evenly
spaced. An unevenly spaced data plot may appear for example as in figure 2.19. For such a
distribution, the trapezoidal integration scheme is defined in Matlab documentation as follows
in equation (2.51): ∫ b

a
f(x)dx = 1

2

n=N∑
n=1

(xn+1 − xn)[f(xn) + f(xn+1)] (2.51)
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where (xn+1 − xn) is the spacing between each constitutive pair of points. Matlab function
trapz can be used to calculate numerical integration for discrete data sets.

function values

x (irregularly spaced data points)

a b

Figure 2.19: Segmented area under the plot with unevenly distributed data points

2.10 Conclusions

With the help of the studies performed in all the above sections, it is evident that among
various methods studied for analysis of free edge stresses in cross-ply composite laminates,
FEM is one of the most effective techniques which provides results up to a substantial level
of accuracy. Moreover, the availability of commercial FEM packages like Abaqus and good
computational facilities make this method viable and efficient. The large amount of literature
available for comparison of results obtained from FEM also make use of FEA a comparatively
better method to analyse the free edge effect in context of the present project. Particularly,
it has been observed that use of 3D FEA have served as benchmark analysis until as recently
as 2016. With the help of finite elements, the homogeneous material layer models of the
cross-ply laminates could be efficiently modelled with considerable detail.

The modelling of heterogeneous models has been studied through FEM. Finite element mod-
elling of heterogeneous models has been seen to be carried out effectively in the literatures
studied. For effective extraction of overall properties from RVE, application of PBC has ap-
peared to be the best approach forward. The ability of FEA package like Abaqus to facilitate
the application of PBCs in the heterogeneous models, further makes FEM a preferred analysis
method in context of the project. Use of hexahedral elements has found good application in
heterogeneous FEM models. The possibility of generating structured mesh through hexahe-
dral elements favours its usability, particularly while applying PBCs. Use of scripts through
commercially available packages like Matlab could be made for the implementation of PBCs
through Abaqus. Further, the post-processing of results from Abaqus could be carried out
by scripting tools like Python, which is readily available as well. Python scripting could also
facilitate the establishment of stiffness equivalence homogenisation between the homogeneous
material layer model and heterogeneous model.
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The last portion of the literature study deals with studying the relevant literatures available
for understanding the roles of free edge stresses in initiating delamination and further under-
standing of the suitable criteria which could facilitate the analysis of delamination initiation.
It has been found that the QDC proposed by Brewer et al (1988) [12] best suits the analy-
sis of delamination initiation due to free edge effects in context of the current project. The
criterion involves an interaction of interlaminar free edge stresses and has been reported to
provide results correlating well with experimental findings for problem at hand. The com-
bined results obtained from the homogeneous material layer model and heterogeneous models
would facilitate the delamination initiation analysis through the QDC. Further, [±25/90]s
laminate configuration has been identified as a potential layup for implementation of QDC.
Suitable materials for modelling of homogeneous laminae and heterogeneous models compris-
ing of fibres and matrix properties have been identified. Hence, during the course of following
chapters, the fibre and matrix properties used for heterogeneous modelling and effective en-
gineering constants for modelling homogeneous layer laminates have been tabulated as per
need.

Hence, the state of the art work reported in this chapter provide the basis for implementation
of suitable modelling and analysis approaches. Some of the results cited in the literature
also provide the basis for comparison of results generated during the course of the research.
Work by Lessard et al (1996) [3] provides the basis for FEM modelling of homogeneous layer
laminates. Further, a review work by Mittelstedt et al (2007) [1] advocates the use of FEM for
analysis of free edge stresses because of the reliability of FEM for free edge analysis. Works
by Suquet (1987) [6] and Xia et al (2003) [7] provide an understanding of heterogeneous
modelling and analysis of laminates. QDC proposed by Brewer et al (1988) [12] enable the
prediction of delamination initiation due to free edge stresses on a laminate susceptible to
exhibiting delamination initiation.
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Chapter 3

Free Edge Stresses in Homogeneous
Layer Model of [0/90]s Laminate

3.1 Background

Previously in literary findings, the high gradient stresses at free edges, sometimes to an effect
of a singularity, is reported to be a mathematical artefact. The essence of this project is
to overcome the barrier to be able to consider free edge stresses for assessing their effect on
delamination initiation. For this purpose, it is imperative to study the stresses in the vicinity
of free edges and to confirm the presence of high stress gradients in the first place. Literary
findings have advocated the use of FEM as a reliable method for detection and analysis of
free edge stresses. In the course of this chapter, FEA of a cross-ply laminate is conducted to
study the 3D stress fields near the free edge. An attempt will be made to verify the presence
of expected steep gradients near free edges according to literature. Also, the compliance of
analysed stress components with their expected nature would be verifiable based on laminate’s
equilibrium as described in subsection 1 of chapter 1. As seen in the previous chapter, the
Quadratic Delamination Criterion proposed by Brewer et al [12] is identified as a potential
criterion for studying delamination initiation. The criterion employs averaged stresses from
the free edge and hence, in the course of this chapter, the interlaminar stresses due to free
edge effect will be averaged along the laminate’s transverse direction.

3.2 Investigation of interlaminar of stresses near free edge

Classical Laminate Theory (CLT) suggests the presence of in-plane stresses for a laminate
under in-plane loading. However, it becomes interesting to study the presence of interlaminar
stresses for in-plane loading, especially near the free edge. The generation of interlaminar
stresses would be bolstered by the the difference in material properties at the interfacial
junction between two layers. This difference is bound to be maximum at the zero-ninety
layer interface in a cross-ply laminate and hence, a cross-ply laminate is a simple and obvious
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candidate for the study of free edge interlaminar stresses. Therefore, it’s important to frame
the best procedure for modelling of cross-ply laminates and employment of suitable FEM
practices which could allow a comprehensive study of the problem at hand. The following
subsections are concerned towards addressing these areas.

Modelling of cross-ply laminates for studying interlaminar stresses

The idea in this section is to find out the variation in interlaminar stresses along the width
of the laminate at zero-ninety degree layer interface in transverse direction. Essentially,
this would capture the free edge effects produced by the edges running through the lami-
nate’s thickness as shown in figure 1.1. Keeping in mind the fundamental of Saint Venant’s
principle, it is expected that the dependence of stresses would no longer be present on the
longitudinal coordinate after a certain distance from the point of load application. Thus, for
a laminate under in-plane longitudinal extensional strain loading, the interlaminar stresses at
a sufficiently far-off distance from the surface of applied loading would allow us to investigate
the free edge effect in transverse direction. The transverse mid-section (shaded blue) in figure
3.1 below explains the region of interest for free edge stress analysis.

x

y

z

ǫx

ǫx

Figure 3.1: Transverse mid-section of a laminate far away from boundary loaded under extensional
longitudinal strain

The analysis of free edge effect through FEM could be a computationally taxing affair because
a fine mesh would be needed around the edges to capture the state of stress as closely as
possible. It thus becomes logical to maximise the use of elements in the area of interest. This
calls for an important judgement on ‘an optimum form of model for analysis of the free edge
problem’. One of the best solutions to this questions was found through the model proposed
by Lessard et al (1996) [3]. Lessard et al call it a slice model as shown in figure 2.3. The
slice model is essentially a thin strip of laminate which represents a transverse section far-
off from from the point of load application. If the independence of stresses on longitudinal
coordinates is to be imposed, then minimising the length of the strip (in x direction) would
allow utilisation of computational effort towards capturing of the free edge phenomenon.
Thus, modelling a strip with only one element in the length direction makes for a sensible
modelling approach. Thus, the shaded region in figure 3.1 could be modelled as a slice with
one element in longitudinal (x) direction. The thin slice when modelled with 3D elements,
facilitates application of longitudinal extensional strain conveniently.
Further, it has been proposed in the literatures that 3D finite elements have the potential
of capturing free edge stresses reliably [3]. One of the elements found to have been suitable
for free edge stress detection is the 3D hexahedral element [3]. It is notable that nodes in
hexahedral elements do not have rotational degree of freedom (DoF). So, it is important
to mesh critical regions, especially the region near free edges with small element sizes to
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capture deformations in detail at the critical region. The other key approach could be the
use of quadratic elements for providing increased flexibility to hexahedral elements. Thus,
considering all factors, the use of 20 node hexahedral elements (C3D20R) in Abaqus is chosen
as the best element for modelling the slice.

3.3 Modelling of cross-ply quarter slice

A [0/90]s cross-ply laminate has been chosen for developing the slice model. A schematic
representation of the slice model is shown below in figure 3.2. The slice model, as mentioned
before, represents the transverse cross-section of the laminate. However, given the symmetry
of the [0/90]s laminate about the z = 0 and y = 0 planes referring figure 1.2, it would be
computationally optimal to model a quarter of the laminate for analysis of free edge stresses
on one of the free edges.

planes of symmetry

0 degree ply

90 degree ply

free edges

zero-ninety layer interface
x

y

z

(longitudinal)
(transverse)

(through thickness)

left surface

bottom surface

front surface

rear surface

Figure 3.2: Schematic representation of symmetric quarter slice of a [0/90]s laminate

The finite element modelling of the quarter slice in figure 3.2 of the [0/90]s laminate is done
in Abaqus FEA software (version 6.14). The objective of the analysis in this section is to
analyse through a suitable FEM model, the 3D stress states near the free edge.

As understood from the force equilibrium analysis of a laminate under extensional loading
in linear deformation regime in chapter 1, at the intersection of the free edge and interface
between the zero and ninety degree layers there must be a 3D stress state. Lessard et al (1996)
[3] have published the non-zero interlaminar stresses along the interface in the transverse (y)
direction and along the free edge itself in the through thickness (z) direction. It is worthwhile
to check the appropriateness of the chosen modelling scheme by comparing the obtained
results with those published in Lessard et al (1996) [3]. To this effect, the element, material
properties and loading conditions are the same as that in Lessard et al (1996) [3] to draw a
comparative analysis between the results and hence verify the analysis.

To be able to do so, the material properties in table 3.1 (which is also the material used by
Lessard et al (1996) [3]), is chosen for modelling.
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Table 3.1: Engineering properties of high modulus graphite-epoxy lamina [2]

Properties Value
Ex(GPa) 137
Ey (GPa) 14.5
Ez(GPa) 14.5
νxy 0.21
νxz 0.21
νyz 0.21

Gyz(GPa) 5.86
Gxz(GPa) 5.86
Gxy (GPa) 5.86

Further, C3D20R quadratic hexahedral element (with reduced integration) is chosen. A lin-
ear analysis is carried out with application of longitudinal extensional strain of 0.01. Since
the region of intersection of the zero-ninety degree layers’ interface and free edge is of prime
importance, mesh density in the region has been increased to capture the stress states suffi-
ciently. The figure 3.3 represents a generic finite element modelling approach followed for the
cross-ply quarter slice. The slice is modelled with one element in longitudinal (x) direction.

(a) FEM modelling of symmetric quarter slice
of a [0/90]s laminate in Abaqus

(b) View of intersection of free edge and zero-
ninety layers’ interface

Figure 3.3: Finite element mesh on a quarter symmetric part of [0/90]s laminate

With reference to figure 3.2, the slice (x direction) is modelled with a length of 0.001 mm
(1 micron). The size of the element at the intersection of free edge and interface (shown
in figure 3.3b) is taken such that the aspect ratio of less than 2 is maintained [3]. The ply
thickness (z direction) considered is 0.134 mm (standard nominal ply thickness for graphite-
epoxy material laminates [3] and [12]). As an initial measure, the width of the quarter part
is modelled with ten times the ply thickness in y direction.

For building the model, a script was written in Python scripting tool using Abaqus Scripting
Interface with the help of Abaqus user manual [36]. This was done to be able to parametrize
the model for carrying out subsequent parametric variations with ease and efficiency. As
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can be seen in figure 3.3, a rectangular mesh has been produced with biasing towards the
intersection of free edge and transverse interface. Since the length of the slice is taken to be
0.001 mm, the size of the element at the intersection point has been modelled as a function
of the slice length. This is important to ensure the mitigation of element distortion at the
critical region of analysis. The entire model is discretised using seed biasing by size and
structured mesh option is used to create a symmetric and structured mesh.

To begin with the analysis, the model is built with 876 C3D20R elements to come close to
the use of 856 elements by Lessard et al (1996) [3]. This approach allowed a comparison of
results between the two models in terms of interlaminar stress results with almost same level
of discretisation.

With reference to figure 3.2, the left and bottom surfaces are provided y−symmetry and
z−symmetry respectively. The rear surface is constrained in x−direction and the front surface
is provided a longitudinal extensional displacement in x−direction corresponding to a strain
of 0.01.

Analysis results of the quarter slice model

The output results obtained from analysis of the model described above is to be discussed
herein. Before analysis the two primary expectations from the results are:

1. Comparatively higher transverse deformation of zero degree layer.

2. Generation of maximum interlaminar normal stress at the point of intersection of free
edge and zero-ninety layer interface.

The figures 3.4 and 3.5 illustrate the analyses carried out for determining the interlaminar
stresses in the slice model. The convention followed for reporting of the results is based
on the coordinate system described in figure 3.2 i.e. longitudinal direction as x, horizontal
transverse direction as y and through thickness direction as z. Since the stress doesn’t vary
longitudinally (Saint Venant’s principle), a 2D representation of stress distribution has been
shown for optimum visualisation.

The interlaminar normal stress σz is represented in figure 3.4.
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Figure 3.4: Distribution of interlaminar normal stress σz (MPa) for 876 elements

The above analysis suggests a concentration of stress σz at the intersection of free edge and
zero-ninety degree layers’ interface.

Similarly, the results for interlaminar shear stresses τyz and τxz are shown in figure 3.5 as
follows:
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(a) Interlaminar shear stress τyz (MPa) for 876 elements
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(b) Interlaminar shear stress τxz (MPa) for 876 elements

Figure 3.5: Distribution of interlaminar shear stress (MPa)

The interlaminar normal stress σz and interlaminar shear stress τyz appear to have a non-zero
distribution near the free edge. The distribution of other interlaminar shear stress component
τxz appears to be zero throughout the laminate.

As expected the zero degree ply has undergone more transverse deformation than the ninety
degree layer. This is in line with lower stiffness of zero degree layer in transverse direction
compared to the ninety degree layer.

The following plots generated through Matlab software package cast a clearer picture of the
stresses along the zero-ninety degree layers’ interface in transverse direction. The ply thickness
(0.134 mm) is denoted by h.
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Figure 3.6: Interlaminar normal stress σz at zero-ninety layers’ interface

Figure 3.6 represents the interlaminar normal stress at the interface of the zero and ninety
degree layers. In Abaqus, the stresses are computed at the nodes through interpolation. Since
the nodes at the interface are shared between the elements lying in the zero degree layer and
the elements lying in the ninety degree layer, two stress data are obtained at nodes close to
the free edge due to considerable difference in interpolated stresses from elements across the
interface. In such a scenario, the stresses from elements across the interface are averaged at
the interfacial nodes to obtain the distribution of stresses along the interface. A Matlab script
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is written for the purpose of averaging the stresses. In a similar way the interlaminar shear
stress components τyz and τxz have been plotted as shown in figure 3.7.
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(a) Interlaminar shear stress τyz at zero-ninety layers’ interface
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(b) Interlaminar shear stress τxz at zero-ninety layers’ interface

Figure 3.7: Interlaminar shear stress distribution along laminate’s transverse interface

In figures 3.6 and 3.7, the zero value of abscissa represents the free edge at interface. It can be
interpreted from the figure 3.6 that the maximum value of interlaminar normal stress occurs
at the free edge. The stress changes its sign after a certain a distance (cross-over point [12])
before fading out in compliance with CLT. The stress changes its sign before reducing to zero
far away from the free edge. This nature of the plot is in alignment with physical equilibrium
in z−direction along the interface (as the sum total of forces in z−direction must be zero on
interface).

Figure 3.7a shows the behaviour of τyz. The stress component is zero far away from the
free edge. The stress goes compressive in nature before rising with high gradient in the
vicinity of free edge. This behaviour of approaching zero as free edge nears is in compliance
to the requirement of traction free boundary at the free edge and hence appears logical. The
interlaminar shear component τxz in figure 3.7b is found to be negligible (in the order of
10−11) as seen in figure 3.7b. The random distribution of data in the plot can be ascertained
to noise in calculation by finite element solver. The negligible occurrence of τxz has also been
reported in literature [3].
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Plots obtained from the analysis remain to be compared with findings in literature. For this
purpose, results published for [0/90]s laminate by Lessard et al (1996) [3] have been used
wherein the ply thickness used for analysis is also 0.134 mm. As it has been found that
the interlaminar stress component τxz is negligible, comparisons have been made only for
σz and τyz. Figure 3.8 represents the comparison along transverse (y) direction interface of
interlaminar normal stress results between the current analysis and the result published in [3].
Similarly, the comparison of interlaminar normal stress along the free edge through laminate’s
thickness (z) direction is represented in figure 3.9. The data points from Lessard et al (1996)
[3] have been reproduced using plot digitiser software for carrying out the comparison.

Distance along interface from free edge/h
0 2 4 6 8 10 12

In
te

rla
m

in
ar

 n
or

m
al

 s
tr

es
s 
σ

z (
M

P
a)

-10

0

10

20

30

40

50
Current analysis (876 elements)
Lessard et al (1996) (856 elements) 

Figure 3.8: Comparison of interlaminar normal stress σz with Lessard et al (1996) [3] along
interface in transverse (y−direction)
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Figure 3.9: Comparison of normal stress σz with Lessard et al (1996) [3] along free edge in
through thickness (z−direction)

It is also noticeable in figure 3.9 that the stress σz is at it’s highest value at the interface



3.4 Investigation of stresses at free edge 43

(h = 1) and reduces in value on either side of the interface. Similarly, the comparisons for
interlaminar shear stress component τyz is shown in figure 3.10.
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Figure 3.10: Comparison of interlaminar shear stress τyz with Lessard et al (1996) [3]

The comparison of plots suggests that the obtained results correlate closely with that in liter-
ature and hence, the adopted modelling method could be relied upon for further investigation
of interlaminar stresses near free edges.

3.4 Investigation of stresses at free edge

From the previous section it is obvious that the stresses σz and τyz rise with high gradient as
the free edge approaches. However, variation of peak stress at the free edge is to be studied
for a constant strain value. For this purpose, the elements across the interface in transverse
(y−direction) are refined in size to increase the number of elements across the width. The
minimum and maximum element sizes on the interface were divided by equal factors while
biasing the mesh towards the region of high gradient. This approach enables cutting of the
elements by a chosen factor and thereby facilitates the increase of mesh density at the critical
region. The elements are subsequently divided and this approach leads to development of
four successively refined meshes. Analyses were conducted for 876, 2420, 10212 and 42720
elements. For these meshes, the interlaminar stresses are studied to investigate stress values
at free edge.

Table 3.2 lists the sizes of element in transverse (y) direction at the intersection of free edge
and zero-ninety degree layer interface corresponding to every mesh. Along the interface, the
element dimension in transverse direction is minimum at the free edge and the size increases
as distance from free edge increases.
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Table 3.2: Dimension of element in transverse direction at the free edge on zero-ninety degree
layers’ interface corresponding to different meshes

Number of elements in mesh Element dimension at free edge in transverse direction (mm)
876 0.001
2420 0.001/1.5 = 0.00066
10212 0.001/3 = 0.00033
42720 0.001/6 = 0.0001

The results found are produced in figure 3.11.

(Distance Along Interface)/h
0 2 4 6 8 10

In
te

rla
m

in
ar

 n
or

m
al

 s
tr

es
s 
σ

z (
M

P
a)

-10

0

10

20

30

40

50

60

876 elements
2420 elements
10212 elements
42720 elements

(a) Comparison of σz along interface
in transverse direction

(Distance Along Interface)/h ×10-4

0 1 2 3 4 5 6 7

38

40

42

44

46

48

50

52

54

876 elements
2420 elements
10212 elements
42720 elements

(b) View of comparison of σz at free edge

Figure 3.11: Comparison of σz for different meshes along interface in transverse direction
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Figure 3.12: Free edge stress σz corresponding to element dimension in transverse direction

The view in figure 3.11b shows a rise in stress at free edge with mesh refinement. For 876
elements, the peak stress is found to be 40.22 MPa. Upon increasing the number of elements
to 2420, the peak stress rises to 43.28 MPa. For 10212 elements, the free edge stress is 47.69
MPa and for 42720 elements the peak stress rises to 52.2 MPa. The variation of free edge
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stress as a function of free edge element dimension in transverse direction is plotted in figure
3.12. It is clear that that with every mesh refinement the free edge stress rises by more than
5 % and even after reaching an element size as small as 0.3 microns (corresponding to 10212
elements) in transverse direction, a rise in stress is found. Hence, the analysis indicates high
computational requirement in dealing with high gradient free edge σz stress.

Similar analysis has been carried out for τyz and has been reported in figure 3.13.
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Figure 3.13: Comparison of τyz for different meshes along interface in transverse direction
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Figure 3.14: Free edge stress τyz corresponding to element dimension in transverse direction

Like in case of interlaminar stress σz, it is observable from figures 3.13 and 3.14 that reaching
convergence of τyz at free edge of zero-ninety degree layers’ interface is difficult even with
element dimension of 0.3 micron (corresponding to 10212 elements) in transverse direction.
This analysis also shows high computational requirement when dealing with high gradient τyz
at free edge.

This brings us to a point where we understand that reaching to a point of convergence of
interlaminar stresses σz and τyz with variation in mesh is rather difficult. However, the study
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of averaged stress values at distances away from free edge would yield useful information as
regards to convergence of average stress values with mesh variation. This arises the need
to study the average of interlaminar stresses across the laminate’s interface in transverse
direction. Also, the need to utilize averaged stress values for determination of delamination
initiation through QDC in later chapters necessitates the understanding and determination
of averaged stresses at this point.

3.5 Average stress states and their convergence

In this section, numerical integration of interlaminar stresses has been carried out along the
interface of zero and ninety degree layers. The average of a stress component along the
transverse (y) direction, as shown in chapter 2, is presented again for convenience in equation
(3.1).

< σij >= 1
yavg

∫ yavg

0
σijdy (3.1)

where, 0 represents the intersection of free edge and interface and yavg is the averaging dis-
tance.
With reference to figure 3.15, since the stress is invariant in longitudinal (x) direction, stress
values obtained at end nodes of interfacial elements in transverse (y) direction and their
coordinates are of importance. Hence, in figure 3.15, stress values relevant to nodes 1 and
2 have been considered. Whereas, data at nodes 3 and 4 have been neglected. At nodes 1
and 2, average of interpolated stress values from the elements sharing nodes 1 and 2 have
been considered. Likewise, for every pair of elements across the interface throughout the
transverse direction, two stress values at end nodes of an element and their corresponding
nodal coordinates are obtained.

nodes in contention for interpolated stresses

zero-ninety degree layer interface

zero degree element

ninety degree element

1

2

3

4x y

z

Figure 3.15: Data points on C3D20R element in Abaqus at interface

Likewise, every element along the interface will have two data points and hence, every element
will correspond to a segment with two stress values. Thus, a one-dimensional averaging of
stresses is carried out. Newton-Cotes quadrature makes way for a comprehensive integration
of discrete data sets for uniformly spaced data points. Since two stress function points are
available per segment (element width), implementation of trapezoidal integration scheme is a
favourable option. However, in this case the segments are not equally spaced (as the mesh is
biased), a generalised form of the trapezoidal scheme as highlighted in equation (2.51) is used
for plotting of average stress values of interlaminar stresses along the transverse direction.
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It was imperative to calculate the average stresses in a manner that the variation in mesh for
different analyses could be taken into account. This would facilitate a comparison of average
stress values corresponding to different meshes. Hence, the approach employed for calculation
of average stress independent of mesh variation is described as follows:

interval

1 2 3 4 5 6

7 8 9 10 11 12

Figure 3.16: Schematic dependence of Trapezoidal integration on interval selection

In figure 3.16 every interval for trapezoidal integration is analogous to the size of elements
used for discretisation in transverse direction. So, in this way every two stress point will define
an interval for calculation of segmented area under stress plot along the interface in transverse
direction. Subsequently, any variation in mesh is taken into account likewise. A convergence
study conducted in the following subsections highlights the point discussed herein.

Average stresses along transverse interface

To study the nature of averaged values of interlaminar stresses as a function of distance from
the free edge, the following plots have been obtained for mesh with 876 elements
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Figure 3.17: Variation of average interlaminar stresses along zero-ninety layers’ interface for 876
elements

The average values on the plot correspond to the average of all the stress points until the
corresponding abscissa (distance from free edge) on the plot. Hence, the plots represent a
continuous averaging of stresses until the corresponding point of examination. From figure
3.17a it is noticeable that the average value of interlaminar normal stress σz converges to
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zero after a certain distance for a sufficiently wide laminate. Since the model represents a
symmetric part, the other symmetric part is expected to follow a similar trend and therefore
the overall value of average stress at half laminate width would be zero. This trend also
satisfies the prediction of self-equilibrating nature of σz. Similarly, average value of τyz has
been found to be approaching zero as the distance from free edge increases. This is expected
because far away from the free edge the value of τyz itself approaches to zero after being
negative near the free edge as seen in figure 3.7a. Hence, after a certain distance away from
the free edge, the average of stresses must approach zero as well.

The plots in figure 3.17 are for a slice model with 876 elements. It would be interesting to
examine the nature of averaged stresses with variations in mesh. The next subsection pertains
to an investigation of convergence of average stresses with mesh variation along the interface.

Convergence of average stress plots

For carrying out the study under this subsection, various meshes are generated by division of
element approach explained earlier. It must be noted that all this is done while the width of the
laminate is constant at ten times the ply thickness (10h). Thus, in the present investigation,
only the effect of change in mesh is studied for a fixed laminate width of 10h. Meshes with
876, 2420, 10212 and 42720 elements have been considered for calculation of average stresses.
The average value of stresses obtain through this procedure would enable determination of
average stress value at a certain characteristic distance (determined in following chapters)
from the free edge. Usually, the characteristic distance reported thus far in literatures is
in the order of one ply thickness (h). Hence, it is vital that as we progress away from the
free edge along interface of laminate in transverse direction, we obtain a converged value of
average stress for a given material and laminate layup. This would make the average stress
value independent of mesh variation upon use of requisite number of elements and would also
enable the choice of an optimum mesh as well.

(Averaging distance Along Interface)/h
0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

d 
in

te
rla

m
in

ar
 n

or
m

al
 s

tr
es

s 
σ

z (
M

P
a)

-5

0

5

10

15

20

25

30

35

40

45

876 elements
2420 elements
10212 elements
42720 elements

(a) Comparison of average σz

(Averaging distance along Interface)/h
0 1

A
ve

ra
ge

d 
in

te
rla

m
in

ar
 n

or
m

al
 s

tr
es

s 
σ

z (
M

P
a)

0

5

10

15

20

25

30

35

40

45

876 elements
2420 elements
10212 elements
42720 elements

(b) Refined view of converged average σz around 1h
from free edge

Figure 3.18: Variation of average interlaminar σz stresses along interface for different meshes
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Figure 3.19: Variation of average interlaminar τyz stresses along interface for different meshes

The plots in figures 3.18 and 3.19 suggest clearly that as we move away from the free edge re-
gion, the average values converge completely with each other for different meshes. Moreover,
at around 1h distance from free edge, which is a region of high interest based on previously
reported averaging distance, complete convergence of average stresses is found for all meshes.
Thus, it suggests that 876 elements are in fact sufficient for determination of average stresses.
Any refinement beyond 876 elements indicates to provide a mesh sufficient enough for pro-
ducing converged average stress value.

3.6 Determination of optimum laminate width for converged av-
erage stresses

Although the mesh with 876 elements appears good enough for studying converged average
stresses, as a conservative approach, a mesh refined one step further with 2420 elements can be
chosen for investigating optimum dimension of laminate’s half width (since quarter symmetric
part is considered for analysis). Although the width over which the average stresses have been
plotted (10h) has proven to be wide enough for at least σz to approach zero completely after
a certain distance from free edge, it remains to be seen what the optimum distance is from
the free edge which proves wide enough for the average stress values to get distributed in
a converged manner across the width at the interface. Thus, an analysis in which for a
constant number of elements, the optimum width of a laminate is determined to obtain a
converging trend of average stress values with variation in widths, is needed. In this manner,
for an optimum width, the average stress for a given mesh would be converged and this
would facilitate comparison of average stresses between different meshes. This analysis bears
importance in optimising the size of the model that should be considered for analysis.

To this effect, the width of the quarter slice model was varied from three times the ply
thickness (3h) to twenty times the ply thickness (20h). The parameters for maximum and
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minimum element sizes are varied in the modelling script by factors such that the number of
elements in the mesh remained unaltered i.e. to 2420 elements. This enables designing of the
problem in such a way that the only variable left to play a part is the slice’s width towards
obtaining a converging profile of average stresses. The modelling approach is explained below
by a simple illustration.

mesh with 12 elements

mesh with 12 elements

b

2b

Figure 3.20: Schematic variation of width for a constant mesh

In figure 3.20, by increasing the size of every element by a factor of two, the mesh with 12
elements is kept constant for an increase in width from b to 2b. However, in the FEM analysis
conducted, the elements are biased towards the singular point and therefore the factor of
variation of minimum and maximum element sizes ia chosen through trial and error. For
convenience, FINER constraint option was switched on in Abaqus while generation of mesh.
This constraint enables producing a mesh finer than mesh corresponding to stipulated element
size when there is a scope. Thus, when the element division factors are close to producing the
exact number of 2420 number of elements, the FINER constraint refines the mesh to produce
2420 elements. The results obtained for various widths are reported below.
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Figure 3.21: Comparison of average stress with variation in width for 2420 elements

From figure 3.21a, it is noticed that the average σz values diverge until a width of 5h. From
7h onwards, the average value converges without variation until the examined width of 20h.
A similar trend has been observed for average τyz stress component. This suggests that
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for a given mesh, the optimum width to be considered for modelling should be at least 7h.
A conservative approach would be to model the quarter part with a width equal to 10h
as this would ensure converged average stress values for a given mesh and would also be
computationally affordable.

3.7 Interlaminar stresses at ninety-ninety layers’ interface of [0/90]s
cross-ply laminate

So far, analyses at zero-ninety layers’ interface has revealed that mesh with 876 elements is
sufficient for analysing converged average stresses. Being a rectangular mesh, the element
dimensions along the transverse (y) direction are the same at zero-ninety and ninety-ninety
layers’ interface. Hence, mesh with 876 elements can been chosen to analyse the nature of
interlaminar stresses at ninety-ninety layers’ interface. This study is being done to study the
nature of interlaminar stresses near the free edge at ninety-ninety layers’ interface.
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Figure 3.22: Interlaminar stresses at ninety-ninety layers’ interface of [0/90]s cross-ply laminate
for 876 elements
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Figure 3.22 suggests a steep gradient in σz near free edge (0 abscissa). Compared to σz,
other interlaminar shear stresses τyz and τxz are lower in value near the free edge. Figure 3.23
shows a comparative analysis of the three interlaminar stresses for 876 elements. Overall it can
be inferred that the interlaminar shear stresses are negligible compared to the interlaminar
normal stress σz at the ninety-ninety degree layers’ interface.
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Figure 3.23: Comparative analysis of interlaminar stresses at ninety-ninety layers’ interface of
[0/90]s laminate for 876 elements

It is clear that also at the ninety-ninety layers’ interface, high gradient interlaminar stress
exists. As seen from the analyses at zero-ninety layers’ interface, for high gradient free
edge stress, it could be expected that the convergence study of average stresses would be
computationally less taxing than convergence study of the actual stresses themselves.



Chapter 4

Free Edge Stresses in Constituent
Material Model of [0/90]s laminate

4.1 Background

As seen from chapter 3, the material discontinuity at a zero-ninety layer interface can intro-
duce very steep gradients in stresses near free edges. However, in reality such high gradient
stresses sometimes which even tend to a singularity, is not possible and hence this calls for
a different modelling approach to study the nature of stress profiles without sudden material
discontinuities at layer interfaces. In other words, a different modelling approach needs to
be adopted than the one implemented in chapter 3. To be able to see material behaviour at
ply interfaces in a detailed manner, there is a need to understand the material behaviour in
a manner that allows to disregard the assumption of homogeneous material layers. This is
because as a matter of fact, a lamina is made of a combination of fibres and matrix and the
distinguished roles of these constituent materials in a lamina could not be denied. Hence,
as a development to the analyses carried out in the previous chapter, it would be interesting
to investigate the nature of interlaminar stresses at interfaces of a [0/90]s cross-ply laminate
through a model with heterogeneous layers. Therefore, in this chapter, layers of a [0/90]s
laminate are modelled heterogeneously so as to avert the assumption of a homogeneous layer
laminate and to further, carry out FEA for getting interlaminar stresses on layer interfaces.
The heterogeneous model in this chapter has been modelled with symmetric boundary con-
ditions on the longitudinal and through thickness mid-planes like in chapter 3. Longitudinal
tensile strain has been simulated with the application of PBC through displacement difference
approach [7] in Abaqus.

4.2 Important considerations to heterogeneous modelling

Like in the case for homogeneous material layer model, the interest in this chapter is on as-
sessing the free edge effect across the transverse direction on interfaces of a cross-ply laminate.
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For this matter, a strip of the laminate’s transverse section could be analysed. However, this
time around with fibres and matrix modelled separately. As seen in Hyer et al (2009) [8], an
idealistic representation of a composite layer makes way for assuming a periodic arrangement
of UCs for example in square or hexagonal arrays. A periodic repetition of these UCs builds a
lamina in desired manner. Along similar lines, a cubic UC comprising of one fibre embedded
in matrix could be used to model different layers of a cross-ply laminate as shown in figure 4.1.
This would allow repetition of the cube in such a way that the fibres are aligned in longitudinal
(x) direction to represent a zero degree layer and likewise when they are aligned in transverse
(y) direction, they could represent ninety degree layer. In doing so, when the zero and ninety
degree layers are put together, the interface between layers would comprise of only matrix
material. This paves way for an important observation based on equilibrium descriptions
in chapter 1. Since the material discontinuity is being nullified at the interfaces, although
the occurrence of interlaminar stresses is expected, the convergence of stress at the free edge
is to be keenly investigated. Primarily because there is no abrupt material discontinuity at
the interfaces. The effect of free edge is expected to fade out as it did for the homogeneous
material layer case as the distance from free edge increases (in transverse direction in present
case). Nevertheless, the variations due to local changes in material properties within UCs are
expected.

zero-ninety interface

ninety-ninety interface
zero layer

ninety layer

ninety layer

zero layer

unit cell

free surface

periodic repetition of unit cells

fibre matrix

longitudinal direction transverse direction

through thickness direction

planes of symmetry

x y

z

Figure 4.1: Schematic representation of a heterogeneous slice of a [0/90]s laminate

Like in homogeneous material layer case, the analysis of free edge effect (or effect on free
surface of UCs) can be carried out through FEM. But before moving to the heterogeneous
modelling of the laminate, some key aspects are to be highlighted. In context of the current
research, a heterogeneous analysis is being carried out by modelling every layer with one unit
cell in the thickness (z) direction. This means that every layer is being modelled with one fibre
in thickness direction. Although, in general, a set of fibres are stacked through the thickness
of a layer, the work in this research has been limited to analysing laminate response with
just one unit cell through a layer’s thickness. This is because a full scale three-dimensional
micromechanical modelling of the laminate would have proven to be computationally too
expensive considering the objectives of the project and such a micromechanical modelling is
not intended during this thesis project. The adequacy of a single UC through thickness to



4.3 Finite element modelling of heterogeneous cross-ply laminate 55

represent a layer is considered sufficient in allowing the modelling of the laminate in such
a manner that the primary objective of avoiding material discontinuity at dissimilar layer
interfaces is achieved. Such a modelling approach involving one fibre in UC through layer
thickness of cross-ply laminates have been adopted in, for example, works of Ellyin et al
(2002) [5] and Chen et al (2001) [43].

The strip of laminate represented in figure 4.1 is conceptualised to analyse the free edge effect
in transverse direction. Hence, the strip is supposed to repeat periodically in longitudinal
direction for simulation of the laminate.

4.3 Finite element modelling of heterogeneous cross-ply laminate

The free edge effect analysis on heterogeneous model is being carried out using FEA to be able
to draw comparisons with results obtained from homogeneous layer models. This is based on
the results obtained from homogeneous layer modelling on free edge stresses using FEM in
chapter 3 and reliable applicability of FEM for free edge effect analysis [1]. In this section,
an effort has been made towards finite element modelling of a heterogeneous [0/90]s cross-
ply laminate using constituent fibre and matrix properties for a graphite-epoxy fibre-matrix
material combination.

Table 4.1: Fibre and matrix properties for combinations of graphite fibre and epoxy matrix [8]

Properties Graphite fibre Epoxy matrix
Exf (GPa) 233.0 -
Eyf (GPa) 23.10 -
Ezf (GPa) 23.10 -

νxyf 0.2 -
νxzf 0.2 -
νyzf 0.4 -

Gxyf (GPa) 8.96 -
Gxzf (GPa) 8.96 -
Gyzf (GPa) 8.27 -
Em (GPa) - 4.62

νm - 0.36

The properties of fibre and matrix used herein are graphite-epoxy material combination Hyer
(2009) [8]. The properties are listed in table 4.1 where, f andm represent the fibre and matrix
properties respectively while x, y and z represent the longitudinal, transverse and through
thickness directions respectively. The fibres are assumed to be transversely isotropic while
the matrix is assumed to be isotropic in nature.

Finite element modelling in Abaqus

A three-dimensional finite element model has been scripted through Abaqus Scripting Inter-
face with the help of Abaqus user manual [36] for carrying out simulations reported in this
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chapter. This is done for convenient parametrisation of the model’s dimensions and mesh cit-
ing the possibilities of parametric variations for carrying out simulations through the course
of this chapter. For building the finite element model, it has been emphasised that the cubic
UC is built symmetrically in first place. A symmetric mesh on the UC has advantages in
terms of merging (or tying) of nodes between instances, uniformity in FEA of field variables
and most importantly, in application of PBC as shown in section 4.4.

To begin with, modelling of cubic UC has been done. To be able to build the cubic UC,
one-eighth of a cube has been modelled with fibre and matrix solid sections defined by nine
engineering constants and two engineering constants respectively as described in table 4.1.
Linear and rotational patterns have been instanced subsequently to model the entire cube as
shown in figure 4.2.

one-eighth of a cubeone-eight of a cubic UC

a

fibre solid section matrix solid section

h

h

2

ρ

Figure 4.2: Schematic representation of symmetric instancing of one-eighth cubic UC part

The region denoted by a (in orange) in figure 4.2 is used as a basis for parametrising the
element size throughout the laminate. The intention is to build the model as a function of
fibre volume fraction vf . Hence the distance a is formulated as a function of vf for a given
UC cubic side h as shown in equation 4.3 with ρ as fibre radius.

ρ = h

√
vf
π

(4.1)

a = h

2 − ρ (4.2)

or, a = h

2 (1− 2
√
vf
π

) (4.3)

Hence, for example, if the region a is to be discretised by 2 elements, then the size of the
element chosen for discretisation of the laminate is chosen to be a/2. The reason behind
choosing a as the most critical location for discretisation is that a is the narrowest region
between fibre and side of the UC and hence sufficient number of elements must be present in
this location to avoid erratic deformation of model. A finite element mesh of one cubic UC
with vf 0.6 using three elements in the region a is shown in figure 4.3.
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Figure 4.3: Finite element mesh of cubic UC using C3D8 elements

During the course of this chapter three-dimensional hexahedral C3D8 elements available in
Abaqus have been used for mesh generation with reference to Xia et al (2003) [7] and Ellyin
et al (2002) [5]. Further, structured mesh has been generated throughout the model as such
a modelling practice forms a symmetric mesh which is favourable for application of PBC.

rear surface

front surface

longitudinal direction transverse direction

through thickness direction

x y

z

top surface

bottom

right

left

planes of symmetry

Figure 4.4: Schematic of a heterogeneous symmetric quarter slice of a [0/90]s laminate

As a [0/90]s cross-ply laminate has two symmetry planes, along the length (y−symmetry)
and thickness (z−symmetry) (shown in green in figure 4.1), a quarter section of the laminate
is modelled as in chapter 3. Hence, in the course of this chapter, simulation of a zero-ninety
layer combination of [0/90]s laminate of a suitable width has been carried out. To start with
as a trial, the reference for a suitable width is taken based on findings of converged average
stresses for different widths with same mesh from homogeneous layer model in section 3.6
and the heterogeneous strip is modelled with a width equal to 10h (h = 0.134 mm). For this
purpose, a combination of unit cells, one with fibre aligned in longitudinal direction and the
other with fibre aligned in transverse direction (by rotation of UC about vertical through-
thickness direction axis) together represent a combination of zero-ninety fibres. This block
of zero-ninety fibres embedded in matrix has been repeated transversely to build the zero-
ninety layers’ quarter section as depicted schematically in figure 4.4. The length of the slice
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has been taken to be equal to one ply thickness. The ply thickness as in chapter 3 is 0.134
mm and hence the sides of the UC cube is 0.134 mm (h = 0.134 mm). In this chapter, the
heterogeneous model analysed is modelled with a vf of 0.6 and three elements in the critical
region a. The choice of three elements is considered optimum for discretisation of a based
on example discretisation in literatures for example in [5], [7] and [11]. Since, every increase
in number of elements in region a further would eventually lead to increase in large number
of elements volumetrically, discretisation with three elements is considered computationally
optimum for generating sufficiently converged results. The completely meshed quarter part
of [0/90]s heterogeneous model is shown in figure 4.5. Ten of the single zero-ninety layer
blocks have been instanced along the transverse direction through a linear pattern to develop
a quarter part of width 10h. All nodes from adjoining instances are merged together with
a tolerance of one-tenth of the critical region size a using Merge instance option in Abaqus.
This tolerance value enabled creation of merged nodes without any occurrence of distortion.

Figure 4.5: Finite element mesh of quarter heterogeneous [0/90]s laminate using C3D8 elements

As a result of the meshing strategy, every single cubic UC is modelled with 6546 nodes and
5632 elements. Consequently, the entire quarter part with width 10h consists of 122098 nodes
and 112640 elements. For applying material properties, all elements belonging to the set of
fibres (both zero and ninety degree layers) and matrix are separated in two sets. To bifurcate
the fibre elements belonging to zero and ninety degree layers, element connectivity data has
been extracted through a Python script. Identification of elements of zero and ninety degree
fibres is done through ismember function in Matlab and the fibre properties are assigned
correspondingly to simulate fibre properties in zero and ninety degree layers while using the
same global coordinate system. Since the matrix is isotropic, properties have been assigned
to matrix elements throughout the model uniformly. The model thus formed is ready for
simulation through application of appropriate boundary conditions.

4.4 PBC for simulation of tensile strain

The heterogeneous model shown in figure 4.5 represents a periodically repeating structure
in the longitudinal direction. Further, the model consists of sections defined with proper-
ties of fibre and matrix separately. Thus, on front and rear boundaries, if a homogeneous
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traction boundary condition is applied, then the fibre and matrix will undergo unequal defor-
mation which means that at the interface of fibre and matrix, there would be a displacement
discontinuity. On the other hand, if homogeneous displacement is applied, then it would
result in traction discontinuity at the fibre-matrix interface. Either of the two scenarios i.e.
homogeneous traction or homogeneous displacement boundary condition are therefore un-
acceptable for the heterogeneous model. Hence, apart from mitigating the discontinuity of
traction and displacement at fibre-matrix interface, there is also a need to satisfy traction
and displacement continuity at the longitudinally opposite ends of the quarter model to be
able to simulate a periodically repeating structure in longitudinal direction. Given all the
aforementioned requirements, the choice of PBC has been made to subject the model to a
longitudinally extensional strain of 0.01 with a motive to analyse free edge stresses. This
section further deals with procedures adopted for execution of PBC.

Application of PBC for FEA in Abaqus

Wu et al (2014) [39] have proposed a rather comprehensive approach to application of PBC
in Abaqus. As shown in subsection 2.6.1, Xia et al (2003) [7] propose the concept of displace-
ment difference boundary condition as a means to eliminate the periodic part of periodic
displacement boundary condition given by equation (2.42). This equation is repeated here
for convenience.

ui = εikxk + u∗
i (4.4)

The displacement difference condition is represented through equation (2.45) as shown here
again:

uj+i − u
j−
i = εik∆xjk (4.5)

Hence, it is clear that for a ∆xjk of 0.134 mm (longitudinal dimension of quarter heterogeneous
model) and a strain of 0.01, equation (4.5) would give a displacement difference of 0.00134 mm
across the front and rear boundaries in longitudinal direction of quarter heterogeneous model
shown in figure 4.5. Effectively, we have arrived at a point where we can specify a constant
displacement difference across longitudinal boundaries based on global average strain of choice
(0.01 in this case) to simulate tensile strain through PBC in the concerned heterogeneous
model. Hereafter, it remains a matter of merely applying a displacement constraint between
nodes on longitudinally opposite faces of heterogeneous model. Application of displacement
constraint on two nodes allows the FEM solver to represent nodal displacement of one node
in relation to the other node of the pair while solving the global equilibrium equations. The
displacement difference can be conveniently applied by including nodal constraint equations
in Abaqus input file.

The nodal constraint equations in Abaqus input file are constraint equations defined for
every pair of nodes on the opposite boundaries of a finite element model. The displacement
difference between two oppositely located nodes is applied to a dummy node along a desired
direction (DoF). The direction of displacement is specified through coefficients tagged along
with nodes. Since the nodes in constraint equation are represented through a node-set, the
coefficients are tagged to node sets. An example constraint equation for simulating PBC is
described through equation (4.6) with reference to two nodes represented through node sets
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1 and 2 in the constraint equation (as Abaqus allows nodal representation through node sets
in equation). An illustration is shown in figure 4.6.

opposite boundaries

node 1

node 2

dummy node

x
y

z

(y; z)

(y; z)

Figure 4.6: Schematic representation of nodes on two oppositely located boundaries

Set-node 1 - Set-node 2 = Set-dummy node (4.6)

For applying PBC through displacement difference as in equation (4.6), the node pair on
opposite boundaries must have the same (y, z) coordinates with reference to figure 4.6.

In the current chapter, PBC has been applied on model represented in figure 4.5. The left,
bottom, front and rear surfaces of the model are indicated schematically in figure 4.4. The
quarter symmetric model in figure 4.5 has symmetry planes on the left and bottom surfaces. A
tensile strain of 0.01 is to be simulated in the longitudinal direction. For this purpose, firstly,
the nodal coordinates have been extracted through input file generated after modelling of part.
Thereafter, every node on the front and rear surfaces are paired up based on an algorithm
that from all possible combinations, a node on one surface is paired with that node on the
opposite surface which is located at the minimum distance from it [39]. In this way, nodes
located right opposite to each other were paired for applying PBC.

An important consideration made while specifying constraint equations along different DoFs
to node pairs on model shown in figure 4.5 is to avoid over-constraining of DoFs. Since
the left and bottom surfaces are already provided symmetry boundary conditions, care has
been taken to not specify transverse (y) direction DoF on left surface nodes and no DoF
has been specified in through thickness (z) direction on bottom surface nodes. Also, to the
node lying at the intersection of left and bottom surface nodes, DoF has only been specified
along longitudinal direction through PBC. To all other nodes which are neither located on
left surface nor on the bottom surface, constraint equations along all three DoFs are assigned.
Overall, all node pairs on front and rear surfaces have been assigned a constant displacement
difference in longitudinal direction while displacement difference in transverse and through
thickness direction of all these node pairs has been specified to be zero (hence, they move
together in transverse and through-thickness directions). Lastly, one node at the centre of
rear bottom edge has been conveniently fixed by constraining its DoFs for avoiding rigid body
motion.
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4.5 FEA results through application of PBC

Before analysing the stresses through application of PBC, it is prudent to check the necessary
conditions of traction and displacement continuity on opposite boundary surfaces to be able to
confirm the periodicity of the model in longitudinal direction. For this matter, the longitudinal
nodal forces on opposite boundaries (on which PBC is applied) must be equal and opposite.
On the other hand, for displacement to be continuous on opposite boundaries, the difference
in displacement must be equal between every node pair on which PBC is applied (across
front and rear surfaces). This difference in displacement must be equal to the displacement
provided (corresponding to strain to be simulated) to the dummy node involving the node
pairs.

Equal and opposite nodal forces on opposite boundaries

For the model to behave as a periodically repeating entity in longitudinal direction, it is
notable that when one of these strips is stacked behind the other, then the forces in direction
of applied PBC must cancel each other out. This suggests that the nodal forces, represented
by NFORC field output, must be equal and opposite on opposite boundaries in corresponding
directions of applied PBC.

rear surface

front surface

rear surface

front surface

strip 1

strip 2

longitudinal direction transverse direction

through thickness direction

x y

z

Figure 4.7: Periodic stacking of heterogeneous strips in longitudinal direction

In figure 4.7, if the front surface of strip 2 is to be stacked with the rear surface of strip 1
(longitudinal stacking), then the longitudinal nodal forces on the two surfaces must cancel
out. Hence, for every strip, the longitudinal nodal forces on front and rear surfaces must be
equal in magnitude but opposite in direction when PBC is applied in longitudinal direction.
Upon analysis, as a primary measure, the distribution of nodal forces has been checked on the
boundary pair subjected to PBC. According to expectation, an equal and opposite distribution
of nodal forces on opposite boundaries has been observed as shown in figures 4.8a and 4.8b
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(a) Longitudinal direction nodal force on front face
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(b) Longitudinal direction nodal force on rear face

Figure 4.8: Equal and opposite nodal forces in longitudinal direction on front and rear boundaries

A Python script has been written to extract the nodal force data from opposite boundary
surfaces. For the model analysed, the following plot in figure 4.9a represents nodal forces
on opposite boundary surfaces. Since the nodes on front and rear boundary surfaces are not
present in a rectangular grid (refer figure 4.5), the node pairs on opposite surfaces (with same
in-plane coordinates) are represented linearly. This means that all nodes are represented on
a line and every point on a line represents a pair of node on which PBC is applied. Thus, in
figure 4.9a, every point in abscissa represents a node pair on which PBC is applied and the
ordinates represent average of longitudinal nodal forces (as a node might be shared between
different elements on a surface) on opposite boundary surfaces for that corresponding node
pair. Since there are in total 6273 node pairs, the abscissa has 6273 points.
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(a) Equal and opposite nodal forces on node pairs
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Figure 4.9: Equal and opposite nodal forces on node pairs of front and rear surfaces

It is verifiable from the pot in figure 4.9a that the forces on every node pair appear to be
distributed in an equal and opposite manner. However, the summation of of forces on every
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node pair would cast a clearer picture by verifying if they cancel each other out or not. The
forces in figure 4.9a are in the order of 10−2. When the sum of forces on every node pair is
plotted in figure 4.9b, it becomes clear that the sum approaches zero as the values of sums
are in the order of 10−9. For verifying displacement continuity, the displacements of node
pairs on front and rear surfaces are plotted in figure 4.10 which shows that the difference in
displacement between opposite placed nodes is constant.
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Figure 4.10: Constant displacement difference between oppositely placed nodes on front and
rear surfaces

Interlaminar stress analysis at the zero-ninety layer interface surface

The idea behind heterogeneous modelling has been to understand how the interlaminar stress
profiles differ from the ones obtained in homogeneous layer model case. In this subsection,
stress analysis is done on zero-ninety degree layer interface. This subsection therefore deals
with the results obtained for interlaminar stress components at the interface surface between
the zero and ninety degree layers. The surface at interface shares nodes that belong to matrix
present at both zero and ninety degree layers. To be able to extract values of relevant stress
components, a Python script is written which extracts data by the means of interface surface
node set from Abaqus output database. The script extracts interpolated stress values at
the nodes of every element shared at interface surface. Hence, if a node is shared by eight
hexahedral elements at interface, then eight stress values have been obtained through the
script for that node. The stress value at common nodes are averaged through a Matlab script
to finally obtain averaged values for relevant stress components at every node throughout the
interface surface.

Surface plots have been generated to study the nature of the plots on the interface surface.
For this purpose, a grid corresponding to the mesh in the finite element model is modelled in
Matlab and the corresponding stress values are represented at grid points to arrive at the plot.
In doing so, a 161 node by 17 node rectangular grid has been generated. This study would
allow examination of variation of stresses along the transverse and longitudinal directions on
the interface. Hence, linear FEA is carried out for a tensile strain of 0.01.

The following figures represent 3D surface plots and also their corresponding two-dimensional
(2D) projections. While the 3D plots provide clear visualisation of transverse variations
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in stress values, the 2D plot provides a top view on the interface to visualise longitudinal
variation in values clearly.

Figures 4.11 and 4.12 represents the variation of interlaminar normal stress σz on the zero-
ninety layers’ interface surface. The side facing the colour bar represents the free edge (sur-
face). The location transversely opposite to free edge represents symmetry plane running
longitudinally through the laminate.

Figure 4.11: Distribution of interlaminar normal stress σz at zero-ninety interface surface

Figure 4.12: 2D projection of interlaminar normal stress σz at zero-ninety interface surface

It is noticeable in figure 4.11 that as the free edge approaches, the magnitude of σz rises before
falling to a lower value at the free edge. Further, the stress is observed to be oscillating in
proximity of fibre locations. Interestingly, both figures 4.11 and 4.12 show that the magnitude
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of σz reaches equal value at the opposite boundaries. This signifies that the stress values are
the same at opposite boundary surfaces.

Plots for τyz are shown in the similar manner in figures 4.13 and 4.14.

Figure 4.13: Distribution of interlaminar shear stress τyz at zero-ninety interface surface

Figure 4.14: 2D projection of interlaminar shear stress τyz at zero-ninety interface surface

Like in case of σz, τyz shows a high gradient as the free edge region is approached. Further,
oscillations are observed for τyz too according to figure 4.13. Also, like σz, the stresses are
found to be equal on opposite boundaries which are subjected to displacement difference
boundary conditions.

Finally, the results for stress component τxz are shown in figures 4.15 and 4.16.
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Figure 4.15: Distribution of interlaminar shear stress τxz at zero-ninety interface surface

Figure 4.16: 2D projection of interlaminar shear stress τxz at zero-ninety interface surface

The stress distribution of τxz has been found to be in a manner that suggests that stress
values vary in the longitudinal direction about a mean zero. It been seen in previous analyses
involving homogeneous layer models, shear stress component τxz is found to be negligible. It
remains to be seen what the longitudinal average of τxz comes out to be. Also, the comparison
of longitudinal average of τxz with longitudinal averages of σz and τyz would reveal if the trend
matches the one found for the homogeneous layer model (figure 3.7b).
The distribution of interlaminar stress components in heterogeneous model has a distribution
in longitudinal as well as in transverse direction. To be able to analyse the stress components
in the transverse direction, as it has been done for the homogeneous layer results in chapter 3,
there is a need to find the longitudinal average of the stresses so that their transverse behaviour
could be analysed. Work on this aspect has been conducted in the following subsection 4.5.

Longitudinal averaging of stress plots on interface surface

To compare the interlaminar stresses obtained from heterogeneous model with those obtained
from homogeneous model, the stresses are averaged in longitudinal direction. Since the finite
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element mesh comprises of 17 rows and 161 columns, average of 17 stress values obtained for
each of the 161 columns are plotted in transverse direction.

The longitudinally averaged plots are comparable with plots obtained at the corresponding
interface of homogeneous layer model shown in figures 3.6 and 3.7. In this subsection the
longitudinally averaged plots are represented individually as well as combinedly for studying
their comparative nature.
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Figure 4.17: Longitudinally averaged σz at zero-ninety layers’ interface

Figure 4.17 represents longitudinally averaged σz plotted in transverse direction. The plot
shows signs of oscillation about zero ordinate far-off from the free edge (represented by zero
value of abscissa). However, higher gradients are noticed as the free edge is approached. At
the free edge, the plot converges to a finite value of 5.467 MPa. Since, longitudinally averaged
σz is comparable to the normal stress plot of σz in figure 3.6 for homogeneous layer model, it
is worthwhile to examine the comparison of σz from homogeneous and heterogeneous models
to compare the steepness of gradient near free edge. Figure 4.18 shows the comparison of free
edge region gradient by plotting the stresses on the same scale.
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Figure 4.18: Comparison of σz gradients between homogeneous and heterogeneous models at
zero-ninety layers’ interface
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A comparison of σz plots in figures 4.18a and 4.18b from heterogeneous and homogeneous
models respectively reveals that there is indeed a comparatively steeper gradient near the
free edge in homogeneous model which can be attributed to the modelling of the layers with
homogeneous material. Plot of τyz after longitudinal averaging in heterogeneous model is
represented in figure 4.19. A comparison of free edge gradient between heterogeneous and
homogeneous models for τyz is depicted in figures 4.20a and 4.20b.
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Figure 4.19: Longitudinally averaged τyz
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Figure 4.20: Comparison of τyz gradient between homogeneous and heterogeneous models at
zero-ninety layers’ interface

The comparisons of stress gradients near free edge between homogeneous and heterogeneous
models (although with different stiffness) reveals that there clearly exists a steep gradient
near free edge in homogeneous material layer models for σz and τyz. This behaviour can
be attributed to the modelling of the layers with homogeneous materials. The steep stress
profiles pose difficulties in convergence studies at free edges. Finer meshes are needed for their
analysis and hence might get computationally taxing. The convergence of average stresses in
transverse direction appears to be comparatively convenient as seen in subsection 3.5.

Figure 4.21 represents longitudinally averaged τxz on the zero-ninety interface surface. Since
the magnitude of longitudinally averaged τxz is comparatively negligible to those of longitu-
dinally averaged σz and τyz, the comparison of free edge region gradient analysis for τxz has



4.5 FEA results through application of PBC 69

not been carried out (figure 4.22).

Distance along interface/h
0 1 2 3 4 5 6 7 8 9 10

Lo
ng

itu
di

na
lly

 a
ve

ra
ge

d 
τ

xz
 (

M
P

a)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
Longitudinally averaged τ

xz

Figure 4.21: Longitudinally averaged τxz at zero-ninety layers’ interface

It is worthwhile to examine the longitudinally averaged interlaminar stresses combinedly to
assess their comparative nature. Figure 4.22 is a collective representation of the three stress
components. It has already been seen in case of homogeneous material layer [0/90]s laminate
that τxz is negligible compared to other two interlaminar stress components at the interface.
Hence, the comparative analysis of the three interlaminar stress components for heterogeneous
model provides a concurrent information with homogeneous layer model analysis shown in
figures 3.6 and 3.7.
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Figure 4.22: Longitudinally averaged interlaminar stresses along zero-ninety layers’ interface

Transverse average of interlaminar stresses along zero-ninety layers’ interface

Figure 4.23 below shows the state of transversely averaged interlaminar stresses along the
zero-ninety degree layers’ interface. The figure shows that the transverse average of σz con-
verges to zero for a width of 10h. The overall pattern of distribution of average stress in
transverse direction is analogous to the distribution of average stresses in transverse direction
for homogeneous layer model at zero-ninety interface as shown in figures 3.18a and 3.19a
except near the free edge.



70 Free Edge Stresses in Constituent Material Model of [0/90]s laminate

Averaging distance along zero-ninety interface/h
0 2 4 6 8 10

A
ve

ra
ge

d 
In

te
rla

m
in

ar
 S

tr
es

s 
(M

P
a)

-10

-5

0

5

10

σ
z

τ
yz

τ
xz

Figure 4.23: Transversely averaged interlaminar stresses along zero-ninety layers’ interface

4.6 Interlaminar stress analysis at ninety-ninety degree layers’ in-
terface

(a) Distribution of σz (b) Distribution of τyz

(c) Distribution of τxz

Figure 4.24: Distribution of interlaminar stresses on ninety-ninety degree layers’ interface
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The results on the ninety-ninety degree layers’ interface surface is presented in this section.
Figures 4.24a, 4.24b and 4.24c show the surface plots for σz, τyz and τxz respectively. Analo-
gous to their distribution at zero-ninety layers’ interface it is observed that there is a rise in
σz near the free edge. Likewise, τyz shows higher gradient near free edge. The distribution
of τxz appears analogous to one at zero-ninety layers’ interface in a sense that there is equal
and opposite distribution longitudinally and thus, the average of τxz longitudinally appears
to be negligible.
The longitudinally averaged plots of the three interlaminar stresses is shown in figure 4.25.
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Figure 4.25: Longitudinally averaged interlaminar stresses at ninety-ninety layers’ interface

It is notable from figure 4.25 that compared to longitudinally averaged values of σz and τyz,
the longitudinally averaged value of τxz is negligible like in the case of zero-ninety layers’
interface.
Further, at ninety-ninety layers’ interface, the gradient of interlaminar stresses obtained at
bottom surface of homogeneous layer model in section 3.7 can be compared on the same scale
with longitudinally averaged σz and τyz of heterogeneous model like at zero-ninety layers’
interface.
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Figure 4.26: Comparison of σz at ninety-ninety layers’ interface between homogeneous and
heterogeneous models
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Figure 4.26 shows a comparison of equivalent σz stress distributed along the transverse di-
rection in heterogeneous and homogeneous models. It can be observed that the modelling
of layers with homogeneous material causes σz to peak higher in a steep manner at the free
edge.
The comparison of τyz in a similar manner is shown in figure 4.27. It is observed that right at
the free edge the stress has a very high gradient in homogeneous model plot in figure 4.27b.
However, such a gradient is not observed at the free edge in heterogeneous model in figure
4.27a.
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Figure 4.27: Comparison of τyz at ninety-ninety layers’ interface between homogeneous and
heterogeneous models

The gradient of τyz stress at the free edge of the two models can be seen more clearly in figure
4.28. Right at the free edge of homogeneous model in figure 4.28b, the gradient of τyz is seen
to increase comparatively more than that of figure 4.28a.
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Figure 4.28: Comparison of τyz at ninety-ninety layers’ interface between homogeneous and
heterogeneous models



Chapter 5

Homogenisation of Unit Cell through
Periodic Boundary Conditions

5.1 Background

The high interlaminar stresses near free edge can play a role in initiating delamination. While
using homogeneous layer models for prediction of delamination initiation, the high gradient
require finer meshes and hence higher computational expense for arriving at a converged value
at free edge. However, such gradients have not been observed in case of heterogeneous model.
The high gradient stresses in homogeneous models hence act as a hurdle in determining stress
value which could be incorporated in a suitable failure criterion for predicting delamination
initiation. As described in chapter 2, one such criterion used for prediction of delamination
initiation is the QDC proposed by Brewer et al (1988) [12]. This criterion focuses on deter-
mining an averaging distance (in transverse direction) from the free edge until which free edge
stresses with high gradient could be averaged. This averaging of stresses enables determina-
tion of definite stress values in vicinity of free edge which can then be brought to use in the
proposed QDC in equation (2.48). The stress profiles obtained from heterogeneous model can
thus act as a basis for determining the averaging distance by correlation of stresses between
homogeneous and heterogeneous layer models.

For correlating the stresses between homogeneous and heterogeneous models there is a need
to extract homogenised engineering properties from the fibre and matrix properties of hetero-
geneous model. The modelling of homogeneous layer laminate with homogenised properties
would enable comparison of two models with same stiffness and hence a valid correlation
could be arrived upon. As highlighted in chapter 2, homogenisation through application of
PBC has been considered the best option for extraction of homogenised engineering constants
for a periodic heterogeneous model such as the one at hand.
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5.2 Homogenisation of heterogeneous unit cell

As seen in the previous section, there is a need to find a homogenised layer model correspond-
ing to the heterogeneous layer model. The model with homogenised properties could then be
used for analysing high gradient free edge stresses. Before delving into the procedure itself,
it’s worthwhile highlighting the end goal of homogenisation in context of this chapter. As
of now a [0/90]s cross-ply model has been built with a certain set of fibre and matrix prop-
erties listed in table 4.1. The homogenisation is being carried out to establish a procedure
to eventually construct a [0/90]s cross-ply model with homogeneous material having effective
engineering constants corresponding to a set of properties for fibre and matrix. Therefore, if
on a unit cell of a unidirectional lamina (figure 2.13) homogenized is carried out, then the
effective engineering constants of a zero degree homogeneous layer could be obtained. Sub-
sequently, the ninety degree layer’s properties could be obtained from those of zero degree
layer. Hence, the choice of cubic unit cell shown in figure 5.1 has been made to carry out the
homogenisation procedure.

Homogenisation procedure of UC

This section deals with homogenisation through PBC of a graphite-epoxy heterogeneous UC
shown in figure 5.1 on the basis of homogenisation approach detailed in section 2.5. The
homogenisation of cubic UC with one cylindrical fibre embedded in matrix as shown in figure
5.1 can be a RVE of the heterogeneous medium which could enable the derivation of effective
properties of lamina and hence, the modelling of homogeneous layer cross-ply model equivalent
in stiffness to the heterogeneous cross-ply model used in chapter 4 (figure 4.5).

x

y

z

h = 0:134fibre

matrix

mm

Figure 5.1: UC to be homogenised for derivation of effective properties of lamina

The governing equation followed for derivation of homogenised stiffness tensor C through
heterogeneous UC is given by equation (2.40). The equation is reproduced here again as
equation (5.1) for convenient referencing.

1
2(εTCε)V = 1

2

n∑
i=1

(Fiui)UC (5.1)

Now, the intention is to determine engineering properties in all three directions x, y and z.
The fibre used for modelling the UC is considered to be transversely isotropic. Given the
isotropic nature of matrix, the UC could be considered to be having a transverse isotropic
symmetry. The material properties of fibre and matrix are reproduced in table 5.1.
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Table 5.1: Fibre and matrix properties for combinations of graphite fibre and epoxy matrix [8]

Properties Graphite fibre Epoxy matrix

Exf (GPa) 233.0 -
Eyf (GPa) 23.10 -
Ezf (GPa) 23.10 -

νxyf 0.2 -
νxzf 0.2 -
νyzf 0.4 -

Gxyf (GPa) 8.96 -
Gxzf (GPa) 8.96 -
Gyzf (GPa) 8.27 -

Em (GPa) - 4.62
νm - 0.36

where f and m represent fibre and matrix properties respectively.

The homogeneous stiffness tensor to be considered for derivation of stiffness tensor components
is shown in equation (5.2)

C =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66


(5.2)

Equation (5.2) suggests that to be able to derive the stiffness matrix C, the following nine
constants, namely, C11, C12, C13, C22, C23, C33, C44, C55, C66 must be evaluated. Referring
back to equation (5.1), the left-hand side of the equation can be expanded as follows:

1
2(εTCε)V = 1

2
[
εx εy εz γyz γxz γxy

]


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





εx
εy
εz
γyz
γxz
γxy


V

(5.3)

In equation (5.1), εx, εy and εz represent macroscopic (homogeneous) normal strain compo-
nents in longitudinal (x), transverse (y) and through thickness (z) directions respectively,
while γyz, γxz, γxy represent macroscopic (homogeneous) engineering shear strain compo-
nents in respective directions with reference to figure 5.1. It is notable that these macroscopic
strain components are the same as the corresponding average microscopic strain components
(or strain components provided in the heterogeneous UC). Thus, to simulate a macroscopic
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strain, the same amount of corresponding strain could be simulated in the heterogeneous UC.
V represents the volume of UC. It is given by h3 where h is the dimension of the side of UC
(also equal to ply thickness of 0.134 mm in this case). If u, v and w represent deformation of
the UC in x, y and z directions respectively, then the strain components can be represented
as follows:

εx = ∂u

∂x
(5.4)

εy = ∂v

∂y
(5.5)

εz = ∂w

∂z
(5.6)

γyz = ∂w

∂y
+ ∂v

∂z
(5.7)

γxz = ∂w

∂x
+ ∂u

∂z
(5.8)

γxy = ∂v

∂x
+ ∂u

∂y
(5.9)

Through equation (5.3) it can be deduced that to be able to derive the nine stiffness tensor
components, nine linear equations need to be solved. Thus, suitable combination of strain
components need to be chosen to solve for respective stiffness constants. The following table
5.2 provides the list of strain combinations that need to be applied to solve for various stiffness
tensor components. During the execution of homogenisation procedure the strain component
applied for derivation of every constant has been 0.01. Hence, using a value of 0.01 for every
strain component, the table 5.2 can be presented:

Table 5.2: Combination of strains for determining various stiffness tensor components

For determining the constant εx εy εz γyz γxz γxy

C11 0.01 0 0 0 0 0
C22 0 0.01 0 0 0 0
C33 0 0.01 0 0 0
C12 0.01 0.01 0 0 0 0
C13 0.01 0 0.01 0 0 0
C23 0 0.01 0.01 0 0 0
C44 0 0 0 0.01 0 0
C55 0 0 0 0 0.01 0
C66 0 0 0 0 0 0.01

Equation (5.3) with the help of equation (5.1) can be re-written as equation (5.10).
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[
εx εy εz γyz γxz γxy

]


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





εx
εy
εz
γyz
γxz
γxy


=

1
V

n∑
i=1

(Fiui)UC

(5.10)

Complete strain tensor (consisting of strain components in different combinations) in table
5.2 can be applied row wise one by one in equation (5.10). Applying the strain tensor in
different combinations of components would lead to the generation of a coefficient matrix
corresponding to each of the nine variables (C11, C12, C13, C22, C23, C33, C44, C55, C66).
Applying every strain tensor component of 0.01 in equation (5.10) would lead to the following
coefficient matrix in equation (5.11):

Coefficient matrix =



0.0001 0 0 0 0 0 0 0 0
0 0 0 0.0001 0 0 0 0 0
0 0 0 0 0 0.0001 0 0 0

0.0001 0.0002 0 0.0001 0 0 0 0 0
0.0001 0 0.0002 0 0 0.0001 0 0 0

0 0 0 0.0001 0.0002 0.0001 0 0 0
0 0 0 0 0 0 0.0001 0 0
0 0 0 0 0 0 0 0.0001 0
0 0 0 0 0 0 0 0 0.0001


(5.11)

The coefficient matrix in equation (5.11) along with the right hand side value of equation
(5.10) for each of the nine strain tensors (with different combinations of strain components)
in table 5.2 would allow the solving of a system of linear equations for the nine variables at
hand. The following form of equation has been used in context of this problem to solve for
the nine stiffness tensor constants.



C11
C12
C13
C22
C23
C33
C44
C55
C66


=



0.0001 0 0 0 0 0 0 0 0
0 0 0 0.0001 0 0 0 0 0
0 0 0 0 0 0.0001 0 0 0

0.0001 0.0002 0 0.0001 0 0 0 0 0
0.0001 0 0.0002 0 0 0.0001 0 0 0

0 0 0 0.0001 0.0002 0.0001 0 0 0
0 0 0 0 0 0 0.0001 0 0
0 0 0 0 0 0 0 0.0001 0
0 0 0 0 0 0 0 0 0.0001





W11
W22
W33
W12
W13
W23
W44
W55
W66


(5.12)
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where W11, W22, W33, W12, W13, W23, W44, W55 and W66 are right hand side values of
equation (5.10) when the strain tensor is applied as mentioned in table 5.2 row wise from top
to bottom.

At this stage, the skeleton for calculation of stiffness tensor components is ready. The pa-
rameters needed are the right hand side values of equation (5.10) corresponding to the nine
strain tensors in table 5.2. These parameters involve calculation of internal energy of the
UC when subjected to various strain combinations through PBC. This involves calculation of
nodal forces and displacements at nodes. The next subsection deals with the approach used
during the course of the work to evaluate internal energy of the heterogeneous UC.

Use of PBC through FEA to solve for components of stiffness tensor C

The work done on a UC due to applied strain would be equal to the internal energy generated
within the UC. Upon discretisation of the UC through finite elements, work done on a UC
could be calculated based on the information of forces and displacements on nodes on external
surfaces of UC. When a UC gets subjected to deformation due to applied strain, then the
nodes on external surfaces may possess a net nodal force due internal elastic reaction forces
that get generated in elements under deformation to maintain equilibrium. If there are n
nodes on the external surface of a UC, then the force and displacement data on the nodes
could lead to deriving the relation for the total internal energy generated within the UC. Let’s
consider figure 5.2.

F1

1
Undeformed body

deformed body

F6
F5

F2 F3

F4

2 3

4

5

6

Figure 5.2: Schematic representation of elastic nodal forces and nodal displacements

For an elementary displacement dui at an arbitrary node i, the elementary work dWi done
due to elastic force Fi could be given by:

dWi = Fidui (5.13)

For a nodal displacement of ui, the total work done by force Fi at node i is given by Wi.

Wi =
∫ ui

0
Fidui (5.14)

For an elastic body, the internal reaction force at a point i i.e. Fi can be given by Kiui, where
Ki is stiffness of material at node i. Substituting Fi with Kiui in equation (5.14), we get

Wi =
∫ ui

0
Kiuidui (5.15)
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∴Wi = Ki
u2
i

2 (5.16)

or, Wi = 1
2Fiui (5.17)

The total work on the whole body would thus be a summation of all such works at nodes.
Hence, the right-hand side of equation (5.1) is obtained as the total internal energy of the
UC in FEA.

Hence, all that is needed now is force and displacement data at every node on the external
boundaries of a UC through which the right-hand side values of equation (5.10) could be
obtained for a given strain tensor. This would enable the calculation of stiffness tensor
components for a given volume of UC through equation (5.12).

Deformations of UC through PBC for determination of stiffness tensor
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Figure 5.3: Application of PBC to simulate different strain combinations on UC

The PBCs are applied on the UC according to the nine combination of strain tensors listed
in table 5.2 (row wise). Thus, nine unique deformation states are obtained for the UC. These
deformation states include unidirectional normal strain deformation, bidirectional normal
strain deformation or a shear strain deformation state. The internal energy of UC can be
calculated corresponding to every deformation state. Hence, for a given volume of UC, the
nine values ofW11, W22, W33, W12, W13, W23, W44, W55 andW66 could be calculated through
the means of equation (5.10). Plugging these values of W11, W22, W33, W12, W13, W23, W44,
W55 and W66 in equation (5.12) would enable calculation of all the nine required constants
of stiffness tensor.

Now, the deformations are to be provided through PBCs. In Abaqus, the PBC is applied
through the means of dummy nodes as explained in subsection 4.4 (equation (4.6)). In a 3D
model like that of the UC in consideration, application of PBC so as to constrain all DoFs of
all the nodes can be cumbersome. More so because of common edges between different faces.
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It is to be ensured that DoFs of nodes on such edges are not over constrained to be able to
run successful simulations.

In total, six sets of constraint equations are simulated for every deformation state. Each of
these sets of equations are defined for node pairs on opposite boundaries which participate in
representing the respective strain components of a particular row in table 5.2. For simulating
a strain component, the dummy node associated with that strain component is provided
suitable displacement in the load step in Abaqus. Thus, if the dummy node is provided a
zero displacement then the strain component corresponding to that dummy node is zero and
the displacement difference between corresponding node pair is also zero.

To simulate εx, dummy node x1 (in orange) in figure 5.3 is provided displacement in x
direction. Similarly, for εy, dummy node y2 is provided the displacement in y direction
and for εz, dummy node z3 is provided displacement in z direction. For simulating εx and εy
together (like in row 4 of table 5.2), both dummy nodes x1 and y2 are provided displacements
in x and y directions respectively. Likewise, for combinations of εx and εz and for εy and εz.
For providing shear strain γyz, dummy node y23 is provided displacement in z direction and
z23 is provided displacement in y direction. Likewise for shear strains γxz similar approach
is followed using dummy nodes x13 and z13 and for γxy the same approach is followed with
dummy nodes x12 and y12.

As an example, if only εx of 0.01 is to be applied according to row 1 of table 5.2, then the
dummy node represented by x1 must be given a displacement of 0.01× 0.134 = 0.00134 mm
in x direction. At the same time, all other dummy nodes represented (in orange) by x13, x12,
y2, y12, y23, z3, z13 and z23 are provided zero displacement so as to maintain zero strain for
all other strain components. For providing the shear strain γyz of 0.01, ∂w

∂y + ∂v
∂z (equation

(5.7)) must be 0.01. Thus, the parts ∂w
∂y and ∂v

∂z could both be 0.005 to get γyz of 0.01. This
means that the dummy node y23 must be provided a displacement of 0.005× 0.134 (as length
of side in y direction is 0.134 mm) and dummy node z23 must be provided a displacement of
0.005× 0.134 (as length of side in z direction is also 0.134 mm). For providing displacements
to dummy nodes while simulating shear strains, equation (2.45) could also be referred to.
Similarly different strain components could be simulated for different rows of table 5.2 to get
all the nine deformation states of the UC.

All the DoFs of all nodes on exterior surface of the UC must be governed by constraint
equations for corresponding combination of strains according to a particular row in table
5.2. In the current work, the approach followed for applying PBC which mitigates over
constraining of DoFs of nodes at common edges is by suppressing the definition of constraint
equations along a particular DoF for one strain component if that DoF of concerned edge is
already defined by constraint equation corresponding to another strain.

For example, if the UC is to be deformed according to strain combinations of row 1 in table
5.2, then it can be seen that only strain component εx is to be provided a non-zero value.
Constraint equations corresponding to other strains will also exist but with zero displacement
to their dummy nodes. So, the constraint equations for all nodes on front and rear boundary
surfaces for εx will govern their x direction DoFs with the help of dummy node x1. This
means that for example, the constraint equation for shear strain γxy will not define the x
direction DoF of nodes on edge 1 (shown in figure 5.3) through dummy node y12. Likewise,
the constraint equation for shear strain γxz will not define the x direction DoF of nodes on
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edge 7 through dummy node z13. in this way, over constraining of nodes on common edges
has been avoided.

For running the analyses in Abaqus, all the DoFs of one node at centre of rear bottom surface
has been constrained to avoid rigid body motion. C3D8 elements have been chosen for
building the model as has been described in chapter 4. Periodic distribution of nodal forces is
expected on opposite boundary surfaces corresponding to every deformation state. Through
the deformations presented from figure 5.5 to 5.13, the periodic distributions of nodal forces
are verified. For nomenclature of various surfaces of the UC and identification of coordinate
axes, figure 5.4 is to be referred.

x
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z

front

right

left

reartop

bottom

Figure 5.4: Nomenclature of surfaces of UC
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(b) Nodal force distribution in x direction on rear
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Figure 5.5: Equal and opposite nodal force distribution for extensional εx strain
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(a) Nodal force distribution in y direction on right surface
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(b) Nodal force distribution in y direction on left surface

Figure 5.6: Equal and opposite nodal force distribution for extensional εy strain
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(a) Nodal force distribution in z direction on top surface

  −3.75155E−03
  −3.12629E−03
  −2.50103E−03
  −1.87577E−03
  −1.25052E−03
−625.25793E−06
 349.24597E−12
 625.25861E−06
   1.25052E−03
   1.87578E−03
   2.50103E−03
   3.12629E−03
   3.75155E−03

(b) Nodal force distribution in z direction on bottom surface

Figure 5.7: Equal and opposite nodal force distribution for extensional εz strain
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(c) Nodal force distribution in y direction on right surface
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(d) Nodal force distribution in y direction on left surface

Figure 5.8: Equal and opposite nodal force distribution for combined extensional εx and εy
strains
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(a) Nodal force distribution in x direction on front
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(b) Nodal force distribution in x direction on rear
surface
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(c) Nodal force distribution in z direction on top sur-
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(d) Nodal force distribution in z direction on bottom
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Figure 5.9: Equal and opposite nodal force distribution for combined extensional εx and εz
strains
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(a) Nodal force distribution in y direction on right surface
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(b) Nodal force distribution in y direction on left surface
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(c) Nodal force distribution in z direction on top surface
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(d) Nodal force distribution in z direction on bottom surface

Figure 5.10: Equal and opposite nodal force distribution for combined extensional εy and εz
strains
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(a) Nodal force distribution in z direction on right
surface
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(b) Nodal force distribution in z direction on left sur-
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(c) Nodal force distribution in y direction on top sur-
face
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(d) Nodal force distribution in y direction on bottom
surface

Figure 5.11: Equal and opposite nodal force distribution for γyz
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(a) Nodal force distribution in z direction on front surface
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(b) Nodal force distribution in z direction on rear surface
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(c) Nodal force distribution in x direction on top surface
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(d) Nodal force distribution in x direction on bottom surface

Figure 5.12: Equal and opposite nodal force distribution for γxz
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(d) Nodal force distribution in x direction on left surface

Figure 5.13: Equal and opposite nodal force distribution for γxy



5.2 Homogenisation of heterogeneous unit cell 89

It appears in all deformation states that opposite surfaces exhibit an equal and opposite
distribution of nodal forces in the direction of applied PBC as expected. However, plots of
nodal forces on opposite boundary surfaces would give a clearer picture. Plots of nodal forces
and nodal displacements on the opposite surfaces of the UC corresponding to εx, εy, εz, γyz,
γxz and γxy are reported. Plots for combined εx and εy, combined εx and εz and combined εy
and εz are not represented because confirmation of veracity of εx, εy and εz strains themselves
confirm the veracity of their combinations. All node pairs corresponding to opposite surfaces
are represented by points linearly on abscissa.
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(a) Nodal force distribution in x direction on front
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(b) Nodal displacement distribution in x direction on
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Figure 5.14: Representation of nodal forces and displacements on front and rear surfaces for εx

It is importantly highlighted that to avoid rigid body motion, the centre node on rear bottom
surface is fixed. It is observed that the forces are equal and opposite on node pairs on opposite
boundary surfaces (front-rear). The summation of nodal forces on front and rear surfaces is
expected to be zero or negligible as seen in figure 4.9b. Plots for the summation of forces on
opposite boundaries for deformation states could be verified by referring to plots in appendix
A.2 wherein plots for similar deformations states in UC are presented for T300/934 material.
The difference in displacement between two nodes of a pair is always constant (corresponding
to the strain applied in x direction of 0.01, the displacement difference is 0.01×0.134 = 0.00134
mm). In figure 5.14b, although the displacements on nodes of rear surface are negligible, a
corresponding variation is observed on opposite nodes on front surface so as to keep the
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displacement difference constant between front and rear surfaces. Hence both traction and
displacement continuities are satisfied on opposite boundary surfaces. Similarly, nodal force
and displacement distribution for all other strains are observed to satisfy required conditions.
Plots for εy and εz are shown in figures 5.15 and 5.16.
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(a) Nodal force distribution in y direction
on right and left surfaces
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(b) Nodal displacement distribution in y direction
on right and left surfaces

Figure 5.15: Representation of nodal forces and displacements on right and left surfaces for εy

Fixing the node at centre of rear bottom surface makes the right and left surfaces to displace
symmetrically about the fixed node in all three directions. Hence, unlike in figure 5.14, the
distribution of displacement on opposite nodes in figure 5.15 is symmetric about zero because
the right and left surfaces move in opposite directions when εy is applied. Moreover, the
presence of fibre on the front and rear surfaces leads to a different force distribution on front
and rear surfaces as shown in figure 5.14a than on right and left surfaces in figure 5.15a. For
example, in figure 5.14a, as we move from left to right on abscissa, we move from bottom to
top of front and rear surfaces of UC in figure 5.5a. Since nodal forces on fibre of front and
rear surfaces come to play in figure 5.14a, the nodal forces distribution differs to that of left
and right surfaces in figure 5.15a which doesn’t have fibre presence.
The nodal forces on front and rear surfaces in figure 5.14a exhibit higher values
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(a) Nodal force distribution in z direction
on top and bottom surfaces
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(b) Nodal displacement distribution in z direction
on top and bottom surfaces

Figure 5.16: Nodal forces and displacements on top and bottom surfaces for εz
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Plots for εz deformation state is shown in figure 5.16. The plots can be explained along similar
arguments proposed for εx and εy
Figures 5.17, 5.18 and 5.19 show the nodal force and displacement distributions for engineering
shear strains γyz, γxz and γxy respectively. Like in case of normal strains, the nodal force and
displacement distributions have been found to be in compliance with PBC requirements.

For applying shear strain γyz PBC in z direction on right and left surfaces and PBC in y
direction on top and bottom surfaces have been provided. Hence, distribution of nodal forces
in z direction has been shown on right and left surfaces while distribution of nodal force in y
direction has been shown on top and bottom surfaces. Similarly, plots for other shear strains
have been shown.
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(a) Nodal force distribution in y direction
on top and bottom surfaces
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(b) Nodal displacement distribution in y direction
on top and bottom surfaces
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(c) Nodal force distribution in z direction
on right and left surfaces
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(d) Nodal displacement distribution in z direction
on right and left surfaces

Figure 5.17: Nodal force and displacement distributions for γyz

According to expectations, the nodal force distribution on top and bottom surfaces have
been found to be equal and opposite in y direction. The same has been observed for forces
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on right and left surfaces in z direction. As far as displacements are concerned, a constant
displacement difference is observed in z direction between right and left surfaces. The same has
been observed for top and bottom surfaces in y direction. As expected, the displacement in z
direction of right and left surfaces are symmetric about zero displacement line. In case of shear
strain γyz, the combined displacements of top-bottom and right-left surface combinations
produces a strain of 0.01. This means that both surface pairs show a displacement difference
corresponding to a strain of 0.005 i.e 0.00067 mm. This displacement difference of 0.00067
mm can be seen in figures 5.17b and 5.17d. Similar trends have been observed for other shear
strain components as shown further.
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(a) Nodal force distribution in x direction
on top and bottom surfaces
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(b) Nodal displacement distribution in x direction
on top and bottom surfaces
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(c) Nodal force distribution in z direction
on front and rear surfaces
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(d) Nodal displacement distribution in z direction
on front and rear surfaces

Figure 5.18: Nodal force and displacement distributions for γxz

The shear strain components γxz and γxy involve the front-rear surface combination. This
surface combination involves fibre material and hence the distribution of nodal forces on
these two surfaces is different from the ones observed on right-left and top-bottom surface
combinations as mentioned before.
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(a) Nodal force distribution in x direction
on right and left surfaces
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(b) Nodal displacement distribution in x direction
on right and left surfaces
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(c) Nodal force distribution in y direction
on front and rear surfaces
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(d) Nodal displacement distribution in y direction
on front and rear surfaces

Figure 5.19: Nodal force and displacement distributions for γxy

The plots in figures 5.18 and 5.19 are derived from figures 5.12 and 5.13 respectively. On
the front and rear surfaces in figures 5.12 and 5.13 a different force distribution is observed
compared to force distributions on right-left and top-bottom surface combinations in figure
5.11. This difference in force distribution is reflected in plots shown in figures 5.18 and 5.19
compared to force distribution plots in figure 5.17.

Solving for stiffness tensor components

Now that the correctness of nodal forces and displacements for various deformation states is
verified, the use of nodal forces and displacements data can be made correctly. This allows to
plug in the values of W11, W22, W33, W12, W13, W23, W44, W55 and W66 through right hand
side of equation (5.10) in equation (5.12). To obtain the right hand side value of equation
(5.10), Python scripts are written (appendix B.2) to extract the nodal forces through field
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output NFORC1, NFORC2 and NFORC3 and nodal displacements U1, U2 and U3 in Abaqus
after simulating nine deformations of UC according to nine combination of strains shown by
rows of table 5.2 (all possible strains in table 5.2 have been presented from figure 5.5 to figure
5.13). After simulating a deformation according to a particular row of table 5.2, the force and
displacement data in the three directions (x, y and z) on all six external surfaces of the UC
are extracted. Forces in a particular direction at a node from every element sharing that node
are summed together. At every node, the product of force and displacement in a particular
direction is obtained. This product is obtained for all three directions. Since at a node, the
elastic force is in opposite direction to deformation, a negative sign is combined with each of
the three products of force and displacement corresponding to the three directions at a node.
On a surface, the sum total of this product is obtained for all nodes in each direction. The
addition of summed up products in every direction is obtained for all nodes on the surface.
This procedure is followed for all surfaces. Finally, the addition of sums obtained from all
surfaces along with value of volume of UC are used to calculate right hand side value of
equation (5.10) through a Matlab script.

Table 5.3: Calculated values of right hand side of equation (5.10)

Parameter Value

W11 (MPa) 14.4932
W22 (MPa) 1.6853
W33 (MPa) 1.6853
W12 (MPa) 17.4287
W13 (MPa) 17.4287
W23 (MPa) 4.8602
W44 (MPa) 0.3864
W55 (MPa) 0.4452
W66 (MPa) 0.4452

Table 5.3 lists the nine values of W11, W22, W33, W12, W13, W23, W44, W55 and W66 obtained
through the procedure mentioned. Substituting the values listed in table 5.3 in equation
(5.12) gives the values of stiffness tensor components as shown in table 5.4.

Table 5.4: Calculated values of stiffness tensor components

Stiffness tensor component Value

C11 (MPa) 144932
C12 (MPa) 6251
C13 (MPa) 6251
C22 (MPa) 16853
C23 (MPa) 7448
C33 (MPa) 16853
C44 (MPa) 3864
C55 (MPa) 4452
C66 (MPa) 4452
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The compliance tensor has been obtained by finding the inverse of the obtained stiffness
matrix. Upon back calculating the constants of compliance tensor, the engineering constants
obtained upon homogenisation of the UC are listed in table 5.5.

Table 5.5: Homogenised engineering constants for graphite epoxy material

Homogenised engineering constant Value

Ex (GPa) 141.715
Ey (GPa) 13.476
Ez (GPa) 13.476

νxy 0.257
νxz 0.257
νyz 0.432

Gyz (GPa) 3.8635
Gxz (GPa) 4.452
Gxy (GPa) 4.452

Hence, the homogeneous equivalent properties of macroscopic lamina made of graphite-epoxy
material (fibre and matrix properties are mentioned in table 5.1) are obtained and the derived
constants are listed in table 5.5. In this way for a given combination of fibre and matrix
combination, homogenised engineering constants can be obtained for building homogeneous
layer models. The correlation of stresses can then be carried out between homogeneous and
heterogeneous model results at zero-ninety or ninety-ninety layers’ interface. Subsequently,
the averaging distance can be calculated through the correlation at either of the interfaces.

5.3 Applicability of averaging distance on different layups for a
given material

In this chapter, the homogenisation approach would enable building a homogeneous layer
[0/90]s cross-ply laminate. Hence, the heterogeneous and homogeneous models (with same
stiffness) can be used to carry out correlation of stresses and eventually arrive at the averag-
ing distance (as shown in chapter 6). Brewer et al (1988) [12] have reported one averaging
distance for composites with different layups made of the same material. Hence the averaging
distance is reported as a statistical average for different composite layups analysed for a given
material. The reporting of one averaging distance for different layups forms the basis for
the use of averaging distance on different layups made of the same material. This encour-
ages the use of averaging distance obtained at corresponding interfaces of different layups as
long as the material does not change. From this perspective, the verification of applicability
of averaging distance is carried out by determining the averaging distance through correla-
tion between homogeneous and heterogeneous [0/90]s cross-ply laminates and applying the
determined averaging distance at an interface of another laminate susceptible to exhibiting
delamination initiation. Wang et al (1985) [9] have reported the susceptibility of [±25/90]s
laminates to exhibit delamination initiation at the ninety-ninety layers’ interface (symmetric
mid-plane). Moreover, Brewer et al (1988) [12] have reported experimentally determined av-
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eraging distance for use in QDC for [±25/90]s laminates. Hence, it becomes interesting to first
determine the averaging distance through correlation of stresses between homogeneous and
heterogeneous [0/90]s cross-ply models and then verify the applicability of averaging distance
through proposed correlation on [±25/90]s laminate through QDC.

Chapter 6 deals with proposal of an approach for correlation of stresses between homogeneous
and heterogeneous layer models and use of the approach for determining averaging distance
to predict delamination initiation in [±25/90]s laminate to verify the proposed approach.



Chapter 6

Implementation and Verification of
Averaging Distance

6.1 Background

If the use of Quadratic delamination Criterion (QDC) is to be made to predict delamination
initiation at an interface of two layers, then the averaging distance is required for that interface
to be able to determine average stress values for use in the QDC. As reported in Brewer et
al (1988) [12], the determined averaging distance could be used for different layups made of
the same material. Hence, if the averaging distance is determined at an interface between
two layers in a [0/90]s cross-ply laminate, then the same averaging distance can be used at a
similar interface of another layup for averaging the stresses as long as the material does not
change.
Use of this basis is made to determine averaging distance for application on an interface of
a laminate which is susceptible to exhibiting delamination initiation. It has been reported
that the ninety-ninety layers’ interface of a [±25/90]s laminate exhibits delamination initia-
tion [9], [10]. This interface of [±25/90]s laminate provides a good basis to predict delami-
nation initiation using QDC. For the use of QDC at this interface, the average interlaminar
stress values need to be determined for which the averaging distance is needed. As the av-
eraging distance can be used invariably for a combination of layups (provided the material
is unchanged), a [0/90]s cross-ply laminate can be used to determine the averaging distance
at its ninety-ninety layers’ interface. The determined averaging distance can then be used at
the ninety-ninety layers’ interface of [±25/90]s laminate for predicting delamination initiation
through QDC.

6.2 Approach for correlation

In the course of this chapter an approach has been proposed which uses a correlation between
interlaminar stresses obtained from homogeneous and heterogeneous layer models to deter-
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mine the averaging distance from the free edge at an interface. This involves homogenisation
through PBC for a given fibre-matrix material to derive effective homogenised properties
for homogeneous layer so that a correlation could be carried out between homogeneous and
heterogeneous models of equivalent stiffness.

In this section, the method by which a correlation is arrived at is described. For this purpose,
first a schematic overview of a high gradient free edge region stress is presented to show its
averaging in transverse direction in figure 6.1.
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Figure 6.1: Schematic representation of area under curve of interlaminar stress at an interface
in transverse direction

The average of a stress tensor component < σij > is given by the approach mentioned in
section 3.5. The normalisation parameter y in equation 3.1 is the distance from free edge
which normalises the area under the stress plot (shown in blue in figure 6.1) to arrive at the
average. Thus, the average of the stress component up to an averaging distance could be
calculated through equation 3.1. The averaged plots in a homogeneous layer model have been
shown in 3.17. Every point on the plot in figure 3.17 represents stresses averaged until the
corresponding abscissa (distance from free edge). The question now is: what should be the
averaging distance at which the average value must be calculated for use in QDC?

As seen earlier chapters, interlaminar stresses might experience a rise in gradient near the
free edge. However, existence of very high gradients, sometimes to an effect of a singularity is
a mathematical artefact and not a reality. The core essence of the effort towards determining
the averaging distance is to find the average stress value which could be used for prediction
of delamination initiation through QDC. Thus, the potential of stress components to initiate
delamination is considered the primary guide for determining the averaging distance.

As seen earlier, it is the interlaminar stresses in homogeneous layer models which exhibit
high gradients near free edges. However, that is not found to be the case with stresses in
heterogeneous layer models. This means that the heterogeneous layer models (with equivalent
stiffness to homogeneous layer models) could be used to determine definite stress values in the
free edge vicinity. If the interlaminar stresses in heterogeneous models in free edge vicinity
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could be assessed in terms of their effect on initiating delamination, then a definite value of
stress is achievable which could be used with QDC. The correlation of that definite average
stress value in heterogeneous layer model with corresponding average stress distribution in
homogeneous layer model would enable mapping of the average stress value in homogeneous
model’s average stress distribution and would eventually lead to determination of averaging
distance corresponding to the average stress value in homogeneous layer model.
The choice of interlaminar stress component for arriving at the correlation depends on the
effect of a stress component towards its contribution in delamination initiation. If the QDC
(equation (2.48)) is seen then for a given distance from free edge in transverse direction,
< σz > and < τyz > could be compared in the criterion in terms of their contributions. As an
example, the interlaminar normal strength is reported to be 50 MPa whereas, the interlaminar
shear strength is 112 MPa for T300/934 material [12]. At a given averaging distance from
the free edge, the square of ratio of < σij > to corresponding strength can be calculated to
assess the stress component which plays a dominant part in initiating delamination. Thus, for
instance, even if the transverse direction average values of σz and τyz are comparably equal,
the square of ratio of average σz to interlaminar normal strength ((<σz>

50 )2) would be higher
than the square of ratio of average τyz to interlaminar shear strength ((<τyz>

112 )2) by a factor
of more than five. Such a comparison of contribution of a stress component towards index of
delamination initiation criterion paves the roadmap for selection of a stress component or a
combination of stress components for obtaining the averaging distance through correlation.
For example, the distribution of an interlaminar stress in heterogeneous model is shown in
figure 6.2 . It is observed that the peak stress of around 10 MPa is found in vicinity of free
edge.
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Figure 6.2: Longitudinally averaged interlaminar stress in heterogeneous model at an interface

The peak stress is obtained at a distance let’s say y from the free edge. The average of
stress values in transverse direction until a distance y from free edge to the point where
peak stress is found in heterogeneous model would represent a collective average of stress
in free edge vicinity where the maximum effect of free edge is felt. When this transversely
averaged stress value in heterogeneous layer model is correlated with transversely averaged
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corresponding stress value in homogeneous layer model, then the averaging distance from free
edge in homogeneous layer model could be obtained.

Thus, the approach for correlation for arriving at the averaging distance involves the following
two steps:

1. Determination of average stress in heterogeneous layer model (in transverse direction)
until the point where peak stress is found and

2. Matching the average stress value from heterogeneous layer model with average stress
distribution plot (in transverse direction) of homogeneous layer model.

It is to be highlighted that for correlation of average stress values, both the models, het-
erogeneous and homogeneous, must have equivalent stiffness. For this purpose, calculation
of effective homogenized stiffness from a heterogeneous model of given volume fraction is
essential. This is detailed in the next section.

Delamination initiation in [±25/90]s laminate is reported at the ninety-ninety layers’ in-
terface [10], [9]. Therefore in this chapter, the interlaminar stresses at the ninety-ninety
layers’ interface of [±25/90]s laminate are investigated. For analysing delamination initiation
through QDC, average stress plots are needed at the ninety-ninety layers’ interface of the
[±25/90]s laminate. For this purpose, converged average stress plots for homogeneous layer
[±25/90]s laminate is obtained which would enable plugging of average stress values into the
QDC.

Further, for getting the average stress values for use in QDC, the average stress values at a
characteristic averaging distance from free edge is needed. Drawing inference from Brewer et
al [12] regarding proposal of one averaging distance for multiple laminates made of the same
material, the averaging distance is determined at the ninety-ninety degree layers’ interface of
[0/90]s cross-ply laminate through the approach proposed earlier in this section. The corre-
lation is carried out at the ninety-ninety degree layers’ interface of [0/90]s cross-ply laminate
because of the convenience in carrying out the correlation of average stresses (in transverse
direction) between the periodically repeating heterogeneous model and homogeneous layer
model (modelled upon homogenisation of properties through PBC) of [0/90]s cross-ply lami-
nate. Simulating a periodically repeating heterogeneous [±25/90]s laminate was not as viable
as simulating the periodically repeating heterogeneous [0/90]s cross-ply laminate considering
the orientation of fibres in +25, −25 and 90 degrees in [±25/90]s laminate whose periodic
repetition longitudinally is a matter of concern. Comparatively, the periodic repetition of
transverse section strips of [0/90]s cross-ply laminate allows a convenient simulation of lon-
gitudinal extensional strain through PBC. Hence, considering the limited time frame for the
current thesis, the averaging distance is determined through [0/90]s cross-ply laminate of
T300/934 material while the application is made on the [±25/90]s laminate of T300/934 ma-
terial on the basis of reported single averaging distance for different laminates made of same
material [12].

Experimentally determined averaging distance has been reported by Brewer et al (1988)
[12] for [±25/90]s laminate using T300/934 graphite-epoxy material. Hence, the averaging
distance in this chapter has been obtained for T300/934 material to compare determined
value against reported value. For this purpose, a periodic homogenisation of heterogeneous



6.3 Free Edge stresses in homogeneous [±25/90]s laminate 101

UC has been carried out in a manner described in chapter 5. A homogeneous [0/90]s cross-ply
laminate is built and correlation of average stresses between homogeneous and heterogeneous
[0/90]s laminate models of T300/934 material is carried out to obtain the averaging distance
at ninety-ninety interface of [0/90]s laminate.
Finally, the obtained averaging distance is used with QDC at strain values reported to initiate
delamination in [±25/90]s laminate experimentally. It has been verified whether the deter-
mined averaging distance predicts delamination initiation through QDC at experimentally
reported values of strain leading to delamination initiation with variation in strain across the
strain range.
As a general remark, it is to be highlighted that for a given material, the averaging distance
at an interface is invariant of strain as long as a linear analysis is conducted. This is because
with variation in strain, the stresses in homogeneous and heterogeneous models (with equal
stiffness) would be scaled in a manner that their relative distribution with respect to each
other would remain unchanged and hence, the averaging distance obtained after correlation
would also remain unchanged as well.

6.3 Free Edge stresses in homogeneous [±25/90]s laminate

For the purpose of carrying out interlaminar free edge stress analysis in a homogeneous layer
[±25/90]s laminate, FEA of the laminate is conducted with a view to determine results at
the ninety-ninety layers’ interface. A linear analysis has been conducted in Abaqus with a
longitudinal extensional loading corresponding to a strain of 0.61 %. The strain of 0.61 %
has been chosen because the reported range of experimentally determined strain at which free
edge delamination initiation is reported is 0.58 % to 0.61 % [9]. As a conservative approach,
the upper limit of the strain range has been chosen as this strain value is most likely to predict
delamination through, the to be determined averaging distance.
A specimen similar to the reported specimen for experimental testing has been modelled.
With this in consideration, the length of the laminate modelled is 225 mm, while the width is
25 mm. The material used is T300/934 for which the reported nominal ply thickness is 0.132
mm [9].
The overall objective is to capture high gradient free edge interlaminar stresses at a location
far away from the boundary on which extensional loading is applied as mentioned in chapter
3. For this purpose, the laminate is built using 3D hexahedral C3D8R elements. It is notable
that only one symmetry plane exists in the laminate. Since, the material definition in +25 and
−25 degree layers does not allow symmetry in transverse direction, entire width of the upper
part of [±25/90]s is modelled, unlike the case of [0/90]s laminate in which two symmetry
planes (y−symmetry and z−symmetry) exist. Composite layup section is used to model the
three layers of the z−symmetric part of the [±25/90]s laminate. Figure 6.3 represents an
illustration of the symmetric part.
The large size of the model has compelled the use of comparatively large number of elements
for this analysis. Keeping this in perspective, the region far away from location of applied
extensional displacement has been discretised finely. The region of interest for this analy-
sis is shown in figure 6.4. Further, since the interface between ninety-ninety degree layers
is expected to be analysed for studying free edge delamination, the mesh has been biased
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accordingly to capture high stress gradients in the free edge region of ninety-ninety degree
layers’ interface.
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longitudinal plane

transverse direction

longitudinal direction
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Figure 6.3: No symmetry across longitudinal plane (top view)
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transverse direction

region of interest

free edges

longitudinal extensional loading

Figure 6.4: Region of interest for free edge stress analysis in [±25/90]s laminate (top view)

The material properties listed in table 6.1 are the properties for T300/934 material [9]. These
properties have been chosen for modelling the homogeneous layers of the [±25/90]s laminate’s
model.

Table 6.1: Material constants for unidirectional ply of T300/934 material from literature [9]

Properties Values
Ex (GPa) 144.8
Ey (GPa) 11.7
Ez (GPa) 11.7

νxy 0.3
νxz 0.3
νyz 0.54

Gyz (GPa) 3.5
Gxz (GPa) 6.5
Gxy (GPa) 6.5
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The mesh in longitudinal direction is biased towards the transverse central region of interest
as shown in figure 6.4. further, the mesh in transverse direction is biased towards the free
edges in y direction. Figure 6.5 represents mesh on the model.

X Y

Z

Figure 6.5: Mesh generation with biasing towards transverse mid-section

The mesh in the free edge region at interface between ninety-ninety layers in the region of
interest has been shown in a detailed manner in figure 6.6.

X Y

Z

Figure 6.6: Refined view of discretisation at transverse mid-section

The idea through this model is to arrive at a converged average stress value along the trans-
verse (y) direction. As shown later in the chapter, the comparison of stresses between two
models, one with smallest element size in transverse direction of 0.01 mm and the other with
smallest element size in transverse direction of 0.02 mm prove sufficient for arriving at con-
verged average stress results. The model corresponding to smallest element size of 0.01 mm
results in a mesh with 326898 elements while the mesh with the smallest element size of 0.02
mm results in a mesh with a total of 273812 elements (C3D8R).

Plots of interlaminar stresses σz, τyz and τxz are obtained in the transverse direction at the
interface between ninety-ninety degree layers. The results presented for first analysis have
been obtained for 273812 elements (C3D8R) with smallest element size of 0.02 mm along
transverse (y) direction. As mentioned earlier, these results have been obtained at a strain
loading of 0.61 %. Figure 6.7 shows a combined plot of all three interlaminar stresses obtained.
Since the width of the laminate modelled in this case is not a multiple of layer thickness, the
distance along interface in transverse direction is not represented in terms of ply thickness.
Rather the distance is directly represented in mm.
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Figure 6.7: Interlaminar stresses at interface between ninety-ninety layers in transverse direction
for 273812 elements

It has been observed that the σz shows a high gradient in vicinity of the free edge while other
two stress components, τyz and τxz are comparatively negligible to σz. The observance of high
gradient in σz prompts to further investigation of its behaviour through discretisation with
finer elements. The discretisation is refined to a finer mesh with smallest element size of 0.01
mm along transverse direction. Thus, analysis with comparatively finer mesh comprising of
326898 elements (C3D8R) is conducted and the results obtained are presented in figure 6.8.
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Figure 6.8: Interlaminar stresses at interface between ninety-ninety layers in transverse direction
for 326898 elements

It has been found that for the mesh with 273812 elements, the peak σz stress at free edge
in the region of interest is 110.2 MPa, while that in the case of 326898 elements, the peak
σz stress changes to 115.3 MPa. The difference between the peak stresses is less than 5
%. The high gradient stress in the free edge vicinity makes a case to investigate free edge
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stress delamination initiation at the interface between ninety-ninety degree plies. Further,
it is notable from figures 6.7 and 6.8 that σz would play a dominant role among the three
interlaminar stresses in delamination initiation prediction through QDC.
Unlike in the case of cross-ply laminates discussed in previous chapters where only the quarter
symmetric part was modelled, this [±25/90]s model is built with half symmetric part with
entire width of the laminate (25 mm wide) in transverse (y) direction. Hence free edge effect
on both ends in transverse direction is observed.
As the QDC incorporates averaged values of interlaminar stresses, the average stress plots of
the three interlaminar stresses are presented in figure 6.9.
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(a) Transversely averaged interlaminar stresses for 273812 elements
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(b) Transversely averaged interlaminar stresses for 326898 elements

Figure 6.9: Transversely averaged interlaminar stresses along the ninety-ninety layer interface

Since, the average stress value is to be used in QDC, it is imperative that the two plots
converge with each other. Figure 6.10 shows a comparison of the two averaged stress plots.
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Figure 6.10: Comparison of averaged interlaminar stresses for 326898 and 273812 elements at
interface between ninety-ninety layers

It is observed that the averaged stresses for the two meshes converge with each other (almost
right from the free edge). This paves way for a use of a definitive average stress value
corresponding to an averaging distance from free edge. The free edge is the zero abscissa in
figure 6.10).
At this stage, the average stress values across the entire width of the laminate is available
through plots in figure 6.10. The only parameter which is required to predict the initiation
of delamination through QDC is the averaging distance from the free edge. The approach
mentioned earlier in this chapter will now be used to determine the averaging distance for
the interface between ninety-ninety degree layers of [±25/90]s laminate. Since the averaging
distance is required at the ninety-ninety layers’ interface of [±25/90]s laminate, the deter-
mination of averaging distance has been done at the ninety-ninety degree layers’ interface of
[0/90]s cross-ply laminate.

6.4 Determination of averaging distance at interface between ninety-
ninety layers of [0/90]s cross-ply laminate

Since the application of averaging distance is made on [±25/90]s laminate made of T300/934
material, the averaging distance also needs to be found out on the [0/90]s cross-ply laminate
made of T300/934 material. Interlaminar stress analysis has been conducted at the inter-
face between ninety-ninety degree layers of the [0/90]s cross-ply laminate. The analysis has
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been conducted on both heterogeneous and homogeneous layer models made of T300/934
material. The procedure described for determination of the averaging distance in section
6.2 has been followed with stresses obtained at the ninety-ninety degree layers’ interface of
[0/90]s laminate. The surface plots are used to eventually determine the average stresses
in transverse direction. Then, periodic homogenisation of the UC modelled with T300/934
material has been carried out to extract homogenised properties. The deformation states
and relevant plots obtained for the homogenisation procedure in this chapter are reported in
appendix A. The homogeneous engineering constants obtained upon homogenisation is used
to build homogeneous layer [0/90]s cross-ply laminate and stress analysis is conducted at the
interface between ninety-ninety degree layers. Averaged values of stresses are obtained at the
interface in transverse direction in both homogeneous and heterogeneous models. Finally, the
correlation of necessary average stress values has been carried out between plots obtained
for homogeneous and heterogeneous models to determine averaging distance for T300/934
material. Eventually, this averaging distance is used on the plot shown in figure 6.10 to find
average stress values at the characteristic averaging distance and subsequently predict delam-
ination initiation through QDC. It is to be mentioned that because the averaging distance is
independent of strain, analyses in the cross-ply models have been carried out at a strain of
0.01 (unlike at 0.0061 strain for stress analysis in [±25/90]s laminate).

Interlaminar stress analysis in heterogeneous model

Like in section 4.3, the heterogeneous quarter symmetric part with width 10h (h = 0.134mm)
in transverse direction of [0/90]s laminate made of T300/934 material is loaded under a tensile
strain of 0.01 and a linear analysis is conducted in Abaqus. The material constants for fibre
and matrix for T300/934 combination is shown in table 6.2.

Table 6.2: Material properties for T300/934 fibre-matrix combination [11]

Properties T300 fibre 934 matrix
Exf (GPa) 233.04 -
Eyf (GPa) 23.10 -
Ezf (GPa) 23.10 -

νxyf 0.2 -
νxzf 0.2 -
νyzf 0.4 -

Gyzf (GPa) 8.27 -
Gxzf (GPa) 8.96 -
Gxyf (GPa) 8.96 -
Em(GPa) - 4.34

νm - 0.37

The tensile strain has been applied through PBC using displacement difference between front
and rear boundaries corresponding to a strain of 0.01. The plots obtained at the ninety-ninety
degree layers’ interface are shown in figure 6.11.
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(a) σz at ninety-ninety layers’ interface surface (b) Projection of σz on ninety-ninety layers’ interface
surface

(c) τyz at ninety-ninety layers’ interface surface (d) Projection of τyz on ninety-ninety layers’ interface
surface

(e) τxz at ninety-ninety layers’ interface surface (f) Projection of τxz on ninety-ninety layers’ interface
surface

Figure 6.11: Interlaminar stresses at ninety-ninety interface of T300/934 [0/90]s laminate
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Like plots at ninety-ninety layers’ interface of heterogeneous model made of graphite-epoxy
material in figure 4.24, the plots obtained for T300/934 material in figure 6.11 suggests that
the distribution of σz is same on the front and rear surfaces of the strip with high gradient near
the free edge. High gradient is also observed for τyz near the free edge but the magnitude
of distribution is comparatively lower than that of σz. Distribution of τxz in longitudinal
direction suggests that the longitudinal average of stresses would be negligible. The average
of these surface stresses in longitudinal direction are obtained as mentioned in chapter 4. Upon
averaging the stresses along the length in figure 6.11, the longitudinally averaged stresses are
obtained which are plotted in transverse direction as shown in figure 6.12.
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Figure 6.12: Longitudinally averaged interlaminar stresses at interface between ninety-ninety
layers

It is observed that there is a tendency of the interlaminar stresses to approach to zero value
at distance far away from the free edge. Hence, as expected, the free edge effect fades out
as the distance from free edge increases. Now that the stresses are averaged in longitudinal
direction, the longitudinally averaged stresses can be averaged in transverse direction starting
from the free edge. The averaged stresses in transverse direction are shown in figure 6.13.
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Figure 6.13: Transversely averaged interlaminar stresses at interface between ninety-ninety layers

While average plots for τyz and τxz settle to zero away from free edge in figure 6.13, plot for



110 Implementation and Verification of Averaging Distance

average σz is expected to approach zero in figure 6.13 with increase in distance in transverse
direction. This is expected because of tendency of longitudinally averaged σz in figure 6.12
to reach zero value as distance from free edge increases.

From figure 6.13, it is clear that in the free edge vicinity average σz attains the highest
value among the three stresses. τxz is negligible and could hence be neglected for now. For
T300/934 material, as reported in section 6.2, the interlaminar normal strength is 50 MPa
while the interlaminar shear strength is 112 MPa. Hence, from perspective of QDC, the
square of ratio of average σz (in transverse direction) to corresponding strength i.e. (<σz>

50 )2

is considerably higher than the square of ratio of average τyz (in transverse direction) to
corresponding strength i.e. (<τyz>

112 )2 near the free edge. Thus, σz plays a dominant role in
delamination initiation through QDC.

Now that the dominant stress component is identified in σz, the correlation of transversely
averaged σz can be done between the homogeneous and heterogeneous models for T300/934
material at the ninety-ninety layers’ interface to determine the averaging distance. We can
therefore refer back to figure 6.12. It is worthwhile to note the distance from free edge at
which the peak stress value is obtained for σz in figure 6.12. It has been found in figure 6.12
that the peak value of 13.26 MPa occurs at a distance y = 0.25h or at 0.0335 mm where,
h = 0.134 mm for heterogeneous [0/90]s model from free edge. Therefore, to determine the
average of σz until 0.0335 mm from free edge in transverse direction, the transversely averaged
σz plot in figure 6.13 is referred to.

At yavg = 0.0335 mm from free edge, the average σz value in transverse direction is found
to be 10.3 MPa on plot shown in figure 6.13. This averaged value of 10.3 MPa (obtained
after two dimensional averaging, first in longitudinal then in transverse direction) is to be
correlated with transversely averaged value of σz of homogeneous layer [0/90]s laminate made
of T300/934 material at ninety-ninety degree layers’ interface.

For this purpose homogenisation of the heterogeneous UC is carried out this time around
using T300/934 material through the procedure using PBC described in chapter 5. The FEA
results of homogenisation procedure is reported in appendix A. The homogenised material
properties obtained thereafter are listed in table 6.3 as follows:

Table 6.3: Derived material constants for unidirectional ply of T300/934 material upon ho-
mogenisation

Properties Values
Ex (GPa) 141.61
Ey (GPa) 13.21
Ez (GPa) 13.21

νxy 0.2613
νxz 0.2613
νyz 0.4437

Gyz (GPa) 3.6757
Gxz (GPa) 4.2684
Gxy (GPa) 4.2684
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Interlaminar stress analysis in homogeneous model

Now that the homogenised properties are obtained through homogenisation on T300/934
material UC, FEA of homogeneous layer [0/90]s laminate is conducted for the same strain as
that in heterogeneous [0/90]s model case i.e. at 0.01 strain in Abaqus. Hence, a symmetric
quarter slice model of [0/90]s has been built through material properties listed in table 6.3.
C3D8 elements have been used for discretisation and interlaminar stress analysis has been
done at interface between ninety-ninety layers. Thus, a linear analysis with a longitudinally
extensional strain of 0.01 is conducted.
Interlaminar stresses at the ninety-ninety layers’ interface of the homogeneous [0/90]s cross-
ply laminate built from homogenised T300/934 material properties is shown in figure 6.14.
For the first analysis, 29412 elements have been used from a perspective of capturing high
gradient free edge stresses at ninety-ninety layers’ interface. The smallest element size in
this mesh while biasing the mesh in transverse direction is 1 micron. The mesh is further
refined along the interface in transverse direction to study the free edge stresses with smallest
element size of 0.5 microns in transverse direction. The finer mesh resulted in a total of
36292 elements. The results obtained are shown in figure 6.14b. It has been observed from
the analysis in figure 6.14 that σz has emerged as the dominant free edge stress analogous
to the case of heterogeneous layer model plot in figure 6.12. Thus, compared to other stress
components which are comparatively negligible, σz averaged in transverse direction would
play the most dominant role in delamination initiation prediction through QDC as visible in
figure 6.13.
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Figure 6.14: Interlaminar stresses at interface between ninety-ninety layers of [0/90]s homoge-
neous layer cross-ply laminate made of homogenised T300/934 material properties

The peak stress values obtained at the interface between ninety-ninety layers is 24.65 MPa and
24.68 MPa for meshes with 29412 and 36292 elements respectively. When compared to the
longitudinally averaged interlaminar stress plots at the same interface of heterogeneous model
in figure 6.12, it is observed that the peak stress of 24.68 MPa in homogeneous layer model
with 326898 elements is much higher than 13.26 MPa in heterogeneous model, and hence, the
higher gradient in homogeneous layer model is attributable to consideration of homogeneous
layers while modelling the [0/90]s laminate. Therefore, an averaging distance determined at
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ninety-ninety interface of [0/90]s laminate, would be used for determining average stresses at
ninety-ninety interface of [±25/90]s laminate.

For getting the correlation between transversely averaged stress until 0.0335 mm in hetero-
geneous model with that of transversely averaged stress of homogeneous layer model, the
transversely averaged stress plots for homogeneous layer model are generated. Figure 6.15
presents the transversely averaged plots at ninety-ninety layers’ interface.
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(a) Average interlaminar stresses for 29412 elements
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(b) Average interlaminar stresses for 36292 elements

Figure 6.15: Average interlaminar stresses at ninety-ninety interface surface of homogeneous
[0/90]s laminate made of homogenised T300/934 material properties in transverse direction

A comparison of average stress components σz, τyz and τxz for 29412 and 36292 elements is
shown in figure 6.16. The comparisons in figure 6.16 show that the three stress components
converge with each other (τxz is negligible for both meshes). Hence, it can be inferred that
the average stress value for the mesh with 36292 elements could be used safely for correlation
with corresponding average stress value of heterogeneous model at the same interface.
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Figure 6.16: Comparison of average interlaminar stresses for 29412 and 36292 elements

As it has been pointed out before, since σz has appeared to be the most dominant of the
three stress components, the converged transverse direction average σz plot in figure 6.16a
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has been used for correlating the transversely averaged stress value of 10.3 MPa obtained
from the heterogeneous model at the same interface. Upon correlating the value of 10.3 MPa
with the plot in figure 6.16a, the averaging distance of 0.125 mm has been found. This is
illustrated in figure 6.17
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Figure 6.17: Correlation of average σz of 10.3 MPa from heterogeneous [0/90]s model with
converged average σz plot of homogeneous layer [0/90]s model made of T300/934 material

The determined averaging distance of 0.125 mm at interface between ninety-ninety degree
layers’ interface can now be comprehensively used to determine average stress values for
predicting delamination initiation at interface between ninety-ninety layer interface of homo-
geneous [±25/90]s laminate.

6.5 Application of averaging distance for predicting delamination
initiation

The converged values of average interlaminar stresses at every point along the transverse
direction at interface between ninety-ninety layers of [±25/90]s laminate are already obtained
as shown in figure 6.10. Using the determined averaging distance of 0.125 mm, the average
values of all three stress components are obtained. Since the analysis of [±25/90]s laminate
is conducted at a strain of 0.0061 (which is the upper limit of experimentally determined
range for delamination initiation in [±25/90]s laminate made of T300/934 material), use of
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QDC with the determined averaging distance of 0.125 mm is expected to predict delamination
initiation. Hence the value of criterion’s index (left hand side) is expected to be > 1. The
QDC is reproduced here as equation (6.1) for convenience.

(< τxz >

Zs1
)2 + (< τyz >

Zs2
)2 + (< σtz >

Zt
)2 + (< σcz >

Zc
)2 = 1 (6.1)

where,
Zt = tensile interlaminar normal strength;
Zc = compressive interlaminar normal strength;
Zs1 = interlaminar shear strength for τxz stress and
Zs2 = interlaminar shear strength for τyz stress

The three average stress components, σz, τyz and τxz in figure 6.10 are normalised by their
respective strength parameters. Average σz component is normalised by 50 MPa while average
τyz and τxz components are normalised by 112 MPa respectively [12]. The square of ratio of
average stress components to their respective strengths is added to obtain the index of QDC
and plotted along the ninety-ninety layer interface along transverse direction. The plot is
shown in figure 6.18. The plot 6.18 shows the index value at every averaging distance along
the ninety-ninety layer interface in transverse direction. Since, the average stress plots in
figure 6.10 are already converged, the data from finer mesh (with 326898 elements) has been
used for obtaining the plot in figure 6.18.
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Figure 6.18: Index of QDC across the ninety-ninety layers’ interface from the free edge

The sum of squares of average stress components at 0.125 mm from free edge normalised
by their respective strengths represents the left-hand side value (or index) of the QDC at
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the averaging distance of 0.125 mm. Since the applied strain of 0.0061 must already initiate
delamination according to experimental findings [9], the value of index must be > 1 at a
distance of 0.125 mm from free edge if the validity of determined averaging distance of 0.125
mm is to be verified.

A closer view of the plot in figure 6.18 is presented in figure 6.19 for analysis of index value
at the determined averaging distance of 0.125 mm.
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Figure 6.19: Closer view near free edge of index of QDC along the ninety-ninety layers’ interface
from the free edge

From the plot in figure 6.19, the value of index at 0.125 mm from free edge is found to be 1.607.
A linear interpolation is used to arrive correctly at the index value of 1.607 at 0.125 mm from
the plot in figure 6.19. The index of 1.607 suggests that at a strain of 0.0061, delamination
initiation would occur according to QDC. This observation is in line with experimentally
observed delamination initiation at the strain of 0.0061.

As the lower limit of reported experimental strain for initiating delamination is 0.0058, the
index value at a strain of 0.0058 is calculated at 0.125 mm. This is done by considering only
σz stress component out of the three components in the QDC. This is because average plots
of other components, τyz and τxz are negligible (as seen in figure 6.10) and hence the square
of ratio of average of these components at 0.125 mm after normalisation by their respective
strengths would lead to negligible contribution in the QDC index. This leads to an effective
form of the QDC as shown in equation (6.2) at the interface between ninety-ninety degree
layers of [±25/90]s laminate at a strain of 0.0061.

(< σtz >

Zt
)2 = 1.607 (6.2)

For a linear analysis, < σtz > can be represented as a product of a constant c and the
corresponding strain. Hence at 0.125 mm for a strain of 0.0061, equation (6.3) can be written.
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(< σtz >

Zt
)2 = (c× 0.0061

Zt
)2 = 1.607 (6.3)

Since Zt is considered to be 50 MPa, the value of constant c can be determined from equation
(6.3).

c = 10390.77 N2/mm4 (6.4)

Hence, for a strain of 0.0058, equation (6.3) can be written as

(< σtz >

Zt
)2 = (10390.77× 0.0058

50 )2 = 1.4528 (6.5)

Hence, the value of QDC index at 0.0058 strain at averaging distance 0.125 mm is 1.4528.
This means that at the averaging distance of 0.125 mm, QDC index value of higher than one
will be obtained for both 0.0058 and 0.0061 strains which are the limits of experimentally
reported delamination initiation strain range of 0.0058 to 0.0061.

Hence, at the averaging distance of 0.125 mm from free edge, table 6.4 could be charted.

Table 6.4: QDC index values corresponding to reported strain range at averaging distance of
0.125 mm

strain Index value
0.0061 1.6072
0.0058 1.4528

Thus, it has been shown that when the approach for determining averaging distance described
in this chapter is used to determine the averaging distance at ninety-ninety layers’ interface
of [0/90]s laminate, then the averaging distance of 0.125 mm is found for T300/934 material.
Further, when the determined averaging distance of 0.125 mm is implemented in the QDC for
predicting delamination initiation at ninety-ninety layers’ interface of [±25/90]s laminate in
the experimentally reported strain range for delamination initiation at this interface, then the
determined averaging distance has been verified to predict delamination initiation successfully.

It is further observed that the averaging distance of 0.125 mm is a conservative value because
for the strain range of 0.0058 to 0.0061, the index values obtained are 1.6072 and 1.4528
respectively which are clearly above 1. However, the primary motive of a successful verification
of the proposed approach for determining the averaging distance has been achieved through
the course of this thesis. This concludes the results obtained in this thesis.

Computational efficiency through average stress approach

For high gradient stresses near the free edge, it could be worthwhile to compare the differ-
ence in analysis time when the convergence of actual stresses is studied compared to the
convergence of average of the actual stresses. This comparison has been conducted for the
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analysis carried out on ninety-ninety layers’ interface of [±25/90]s laminate model whose gen-
eral meshing strategy is shown in figures 6.5 and 6.6. As seen through figures 6.7 and 6.8, σz
is identified as the high gradient stress near the free edge as the other two stress components
are comparatively negligible. To be able to reach a convergence in σz at the free edge, with
the meshing approach followed, the two meshes consisted of 273812 elements and 326898 ele-
ments. The smallest element size in the transverse direction at ninety-ninety layers’ interface
on which the graphs are plotted is 20 microns for 273712 elements’ mesh and 10 microns for
326898 elements’ mesh. With these element sizes at the free edge, the difference between
peak stresses came within the range of 5 % difference (as the peak stresses are 110.2 MPa
and 115.3 MPa corresponding to smallest element size in transverse direction of 20 microns
and 10 microns respectively). Figure 6.20 below shows a view of σz distribution at free edge.
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Figure 6.20: Distribution of σz at free edge for 273812 and 326898 elements

The comparison of analysis time is made for a CPU configuration with four Giga Bytes
random access memory and 3.20 Giga Hertz processor. The analysis time required for the
converged σz through mesh consisting of 326898 elements has been found to be 1264.3 seconds
(21.07 minutes) in terms of CPU time.

In this chapter, the averaging distance at ninety-ninety layers’ interface of [±25/90]s laminate
made of T300/934 material is found to be 0.125 mm. Hence a converged average stress data
is required at this averaging distance from the free edge. By coarsening the mesh by reducing
element size in transverse direction by a factor of two, the coarsest mesh for which a converged
average stress plot for σz is obtained. The smallest element size in transverse direction at free
edge on the ninety-ninety layers’ interface is found to be 40 microns for which a converged
average stress plot is obtained at 0.125 mm from free edge. The mesh consists of 229108
elements. The figure 6.21 shows a comparison of average stress plots with meshes consisting
of smallest element sizes of 10 microns and 40 microns.
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Figure 6.21: Comparison of average stress plots for mesh with 326898 elements and 229108
elements

A distribution of the stresses keeping in mind the averaging distance of 0.125 mm is shown in
figure 6.22. The average value of σz is found to converge around 63 MPa at 0.125 mm from
free edge.
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Figure 6.22: Distribution of average σz at 0.125 mm from free edge for 229108 and 326898
elements

The analysis time with the use of the same CPU for conducting the analysis with 229108
elements which has smallest element size in transverse direction of 40 microns at free edge is
845.20 seconds (14.08 minute) in terms of CPU time.
The difference in analysis time for obtaining a converged actual σz stress at free edge of ninety-
ninety layers’ interface of [±25/90]S laminate and converged average σz stress at 0.125 mm
from free edge is therefore found to be 6.99 minutes in terms of CPU time. The difference
in the analysis time is therefore considerable and hence, the analysis requiring converged
average stresses is computationally more efficient. Hence, when dealing with high gradient
free edge stresses, employment of a criterion involving average stresses could prove to be
computationally efficient.
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Table 6.5 summarises a comparison of computational time required for the convergence of σz
at free edge and for convergence of average of σz (< σz >) at 0.125 mm from free edge (the
determined averaging distance) for the homogeneous [±25/90]s model.

Table 6.5: Comparison of computational time for convergence of high gradient interlaminar
stress and convergence of average of the stress through coarsest mesh

Parameter Coarsest mesh for convergence CPU time (minutes)

σz (at free edge) 326898 elements 21.07

< σz > (at 0.125 mm) 229108 elements 14.08

Difference 97790 elements (29.9 %) 6.99 (33.17 %)

It is to be mentioned that the meshing strategy adopted for the results in table 6.5 may not
be the optimum mesh for the analysis. However, since the strategy followed for both meshes
is similar, a comparison is reported.

Scope for further verifications

It has been observed so far that proposed averaging distance of 0.125 mm at the ninety-ninety
layers’ interface of [±25/90]s laminate has predicted delamination initiation positively via
application of QDC with indices 1.6072 and 1.4528 for strains 0.0061 and 0.0058 respectively.
This means that there is a scope for increasing the averaging distance so as to predict an index
value which is either equal to or marginally higher than 1.0 compared to 1.6072 or 1.4528 (for
the respective strains of 0.0061 and 0.0058). Back tracing the data in the plot shown in figure
6.19, it has been found that an averaging distance of 0.16 mm from free edge corresponds to
an index of 1.12 at 0.0061 strain. Using the approach mentioned from equation (6.2) to (6.5),
it has been calculated that at a strain of 0.0058, the averaging distance of 0.16 mm would
correspond to an index of 1.006. Thus, the averaging distance of 0.16 mm would predict
delamination positively for experimentally reported delamination initiation strain range of
0.0058 to 0.0061 (corresponding to indices 1.006 and 1.12 respectively).

Therefore, as an observation it can be proposed that the range of averaging distance 0.125
mm to 0.16 mm from the free edge would successfully predict delamination initiation through
QDC for experimentally proposed delamination initiation strain range of 0.0058 to 0.0061.
However, the averaging distance of 0.16 mm has not been determined directly through the
approach described in this thesis and hence is not being reported as a result of this thesis.

There is a scope in future works for verifying the validity of the range of 0.125 mm to 0.16 mm
or the mean between the two through other laminates made of T300/934 material as suitable
averaging distance or range of averaging distance. In literature the reported averaging distance
for [±25/90]s laminate made of T300/934 material is 0.145 mm [12]. Since the mean of 0.125
mm and 0.16 mm would be 0.1425 mm, there is a close correlation between the two values
and hence there is a scope to work towards verifying the validity of averaging distance range
of 0.125 mm to 0.16 mm or the mean of the range 0.1425 mm at corresponding interface of
T300/934 material laminates.



Chapter 7

Conclusion and Recommendations

7.1 Conclusions

Through the course of this research, various investigations have been conducted to arrive
at important conclusions pertaining to analysis of free edge stresses in homogeneous and
heterogeneous layer fibre reinforced composite laminates which motivate the proposal of an
approach to predict free edge stress induced delamination initiation. The work in this thesis
starts with the study of interlaminar stresses in homogeneous layer [0/90]s cross-ply laminate.
In an attempt to avoid sudden material discontinuity at interface between dissimilar layers of
the homogeneous layer laminate, a heterogeneous layer [0/90]s cross-ply laminate is modelled
with incorporation of constituent material properties of fibre and matrix. Interlaminar stress
analysis is conducted in the heterogeneous layer model and differences in stress profiles have
been observed when compared to results obtained from homogeneous layer model. The find-
ings from this comparison motivate the proposal of an approach by which the interlaminar
stresses in the free edge region of the two models could be correlated. The correlation of
stresses between the two models yields an averaging distance from the free edge which when
used with QDC for predicting delamination initiation in a [±25/90]s homogeneous layer lami-
nate, proves to give positive results with reference to experimentally determined delamination
initiation data for [±25/90]s laminate.

As a key highlight, it has been observed that unlike in the case of homogeneous layer models,
where the presence of high gradient free edge stresses has been found, sometimes even to an
effect of a singularity, comparatively no such high gradient stresses have been observed in
heterogeneous layer model. However, apart from the free edge region, the overall profile of
interlaminar stresses in heterogeneous layer model has been found to be analogous to those
in the corresponding homogeneous layer model. This finding indicates that the presence of
comparatively steeper gradients which pose difficulties in convergence analysis of free edge
stresses in homogeneous layer models is a sign of a mathematical artefact. Therefore, based
on this finding, it becomes possible to propose an approach by which the difficulties posed
by interlaminar stresses due to their computationally expensive requirement of convergence
studies with a perspective of studying delamination initiation could rather be avoided by the
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use of average of interlaminar stresses, the convergence of which is found to be comparatively
much convenient.

The major conclusions derived to the best of knowledge during the course of this thesis are
as follows:

• The slice model has been found to be working adequately in terms of capturing high
gradient interlaminar stresses near free edge of homogeneous layer laminates. The re-
sults obtained are found to be correlating well when compared with results published
in literature. The convergence of high gradient interlaminar stresses near free edge is
found to be computationally expensive. Particularly at the interface between zero and
ninety degree layers of [0/90]s cross-ply laminate, the stresses interlaminar normal stress
is found to be increasing by more than 5 % with every mesh refinement. The mesh has
been refined by reducing the size of the element at free edge of an interface in a manner
by which the DoF particularly in transverse direction is increased.

• The optimum width of quarter portion of cross-ply homogeneous layer laminate (in
transverse direction) under tensile longitudinal strain for analysis of interlaminar stresses
has been investigated by determining the convergence of average stresses for different
widths while keeping the same number of elements in a mesh. With variation in width,
when the average stresses overlap with each other, then it indicates that a sufficient
width for the quarter symmetric model is attained for which average stresses are con-
verged. A further increase in size for a given mesh would therefore be a redundant
increase in size. A width equal to ten times the ply thickness for the quarter portion
of homogeneous laminate has been found to be a sufficiently wide and computationally
affordable model.

• Linear FEA of interlaminar stresses at interfaces of heterogeneous [0/90]s cross-ply
laminate under longitudinal tensile strain simulated through PBC reveals that compar-
atively there is no tendency of interlaminar stress components to rise in a high gradient
manner near the free edge like in the case of homogeneous layer model. However, the
general nature of interlaminar stresses (except at the free edge) has been found analo-
gous to those in homogeneous layer model. This correlation in nature of stresses between
homogeneous and heterogeneous models indicates that the existence of such high gra-
dient stresses at free edge (sometimes even to an extent of a singularity), is a sign of a
mathematical artefact.

• QDC has been identified as a suitable criterion for predicting delamination initiation
due to free edge region interlaminar stresses with high gradients. For this purpose, an
averaging distance has been determined corresponding to a given material and interface
through a proposed correlation. The correlation involves comparison of average stresses
between [0/90]s laminate’s heterogeneous layer model and [0/90]s homogeneous model
of equivalent stiffness at corresponding interface. This is obtained through homogeni-
sation on heterogeneous UC through PBC. A correlation for T300/934 graphite-epoxy
combination at interface between ninety-ninety degree layers (symmetric mid-plane) of
[0/90]s cross-ply laminate reveals an averaging distance of 0.125 mm from free edge (in
transverse direction).
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• A linear FEA of [±25/90]s laminate under longitudinal tensile strain reveals the presence
of high gradient interlaminar stress component σz near free edges at interface between
ninety-ninety degree layers. The reported experimentally determined longitudinal ex-
tensional strain range for initiating delamination in [±25/90]s laminate is 0.0058 to
0.0061. At a strain of 0.0061, a prediction of delamination initiation at ninety-ninety
layers’ interface through determined averaging distance of 0.125 mm from free edge re-
veals a QDC index value of 1.6072. For the same averaging distance at a strain of 0.0058,
the QDC index value has been found to be 1.4528. Hence, a positive result towards
predicting delamination initiation at interface between ninety-ninety degree layers is
obtained through determined averaging distance of 0.125 mm for T300/934 material by
the use of QDC.

• A comparison of analysis time for studying convergence of high gradient free edge σz
stress with analysis time required for studying convergence of the average of the σz at
the averaging distance of 0.125 mm at the ninety-ninety layers’ interface of [±25/90]s
laminate (at which delamination initiation is reported experimentally) reveals a differ-
ence in CPU time of 6.99 minutes. This analysis shows that indeed obtaining converged
average stresses is computationally less expensive and thus prediction of delamination
initiation through incorporation of average stresses of high gradient free edge stresses
in QDC is a proof to the concept of an efficient prediction approach.

Through the current research, the primary objectives of studying free edge stresses in ho-
mogeneous and heterogeneous models comparatively and proposing an approach by which a
suitable averaging distance could be successfully determined has been realised. The evalua-
tion of averaging distance allows determination of average stresses which averts the need for
high computational requirements in dealing with high gradient stresses or singular stresses
near the free edge. The application of determined averaging distance has revealed positive
outcomes when used through QDC, a criterion which takes account of average interlaminar
stresses near the free edge for predicting delamination initiation.

7.2 Recommendations for future work

The current research has been conducted under a limited time frame and hence, there are
scopes for futuristic works to be done in some areas of the research. Some of the primary
recommendations which could be suggested at this stage include ideas on modelling meth-
ods and application of obtained results on other suitable scenarios for further verification of
proposed approach. In this light, the following recommendations are proposed:

• In the current work, heterogeneous [0/90]s cross-ply laminate has been built for carrying
out correlation with results obtained from a homogeneous [0/90]s cross-ply laminate of
equal stiffness. However, the heterogeneous model cross-ply laminate is modelled in such
a way that there is one fibre across the thickness of a ply where the ply thickness is the
same as that considered for the homogeneous layer model. This heterogeneous model
is capable of overcoming the problem of very high gradients in interlaminar stresses
near the free edge because the intersection of free edge and interface between layers
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is modelled with same material (matrix material). However, it might not necessarily
capture the state of stresses at micromechanical scale in the free edge region. Since, the
micromechanical scale model could be a more idealistic representation of the fibre rein-
forced composite laminate, it would be interesting to carry out the proposed approach
for correlation of stresses between the [0/90]s micromechanical model and a homoge-
neous [0/90]s model of equal stiffness for the purpose of determining the averaging
distance.

• In the current work, the RVE consists of one UC for the purpose of homogenisation
through PBC. This is because the heterogeneous layer is modelled with one fibre across
the thickness of layer. Upon homogenisation using one UC in RVE, it is observed that
specially the shear moduli are under predicted when compared to homogeneous lamina
properties reported in literature. If the heterogeneous layer is modelled with multiple
fibres across its thickness, then there is a scope to consider a larger RVE with multiple
UCs for carrying out the homogenisation. A larger RVE would enable prediction of
shear moduli in closer approximation to experimentally reported properties because the
deformation state of the larger RVE upon use of PBC would be in closer approximation
to homogeneous deformation state and hence the magnitude of predicted shear moduli
upon homogenisation through PBC would increase.

• Results for averaging distance reported in literature [12] suggests the use of a statisti-
cally averaged averaging distance for a combination of laminates for the same material.
This has encouraged the determination of averaging distance on a simpler laminate like
a cross-ply laminate, while the application of averaging distance has been made on a
[±25/90]s laminate for predicting delamination initiation. Considering the constraints
during the research, modelling of a heterogeneous [±25/90]s laminate for carrying out
the correlation has not been possible and hence, there is a scope to determine the aver-
aging distance through the approach proposed in the current work through a straight
forward comparison of interlaminar stresses between homogeneous model [±25/90]s lam-
inate and heterogeneous model [±25/90]s laminate. Further, the averaging distance
determined from this modelling approach could be compared with the determined av-
eraging distance of 0.125 mm in the current work for T300/934 material.

• Finally, the last recommendation addresses the conservative value of determined averag-
ing distance (0.125 mm). In the current work, the application of determined averaging
distance of 0.125 mm has been made on a [±25/90]s laminate. Although the results
obtained from this averaging distance towards predicting delamination initiation are
positive for [±25/90]s laminate case, it would be interesting to verify the applicability
of this averaging distance on laminates with other configurations made of the same mate-
rial (T300/934). Also, as reported in section 6.5, there is a scope to verify if application
of the range of 0.125 mm to 0.16 mm or the mean of the range 0.1425 mm would result
in successful prediction of delamination initiation in other suitable laminates made of
T300/934 material. For the [±25/90]s laminate, the range of 0.125 mm to 0.16 mm
gives positive delamination initiation indices in experimentally reported range for the
laminate’s delamination initiation. Thus, it remains to be seen whether the application
of this range or mean of the range is able to successfully predict delamination initiation
on other suitable laminates in the strain range for their delamination initiation.
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This concludes the recommendations that have been identified as of now for future course of
work in this area of research. Carrying out studies based on these recommendations can help
in further verification of results proposed during the course of this thesis.
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Appendix A

Appendix 1: FEA results for
homogenisation on T300/934 material

A.1 Abaqus output database (odb) results

The equal and opposite distribution of nodal forces has been shown through the odb results
obtained through FEA in Abaqus. The pair of surfaces on which PBC have been simulated
through displacement difference are shown for every deformation mode. The fibres and matrix
of the UC are modelled using T300/934 material as listed in table 6.2. The homogenisation
is carried out in a similar way as described in section 5.2. Further, the distribution of nodal
forces and displacements on surfaces subjected to PBCs are found to be in compliance with
requirements of PBC. The nodal forces are equal and opposite and the displacement differ-
ence on opposite surfaces are constant (resulting in displacement continuity) across the two
opposite boundary surfaces.
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−13.89300E−03
 −6.96861E−03
−44.22572E−06
  6.88016E−03
 13.80455E−03
 20.72894E−03
 27.65333E−03
 34.57772E−03
 41.50210E−03

(a) Nodal force distribution in x direction on
front surface
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(b) Nodal force distribution in x direction on
rear surface

Figure A.1: Periodic nodal force distribution for εx strain
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(a) Nodal force distribution in y direction
on right surface
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(b) Nodal force distribution in y direction
on left surface

Figure A.2: Periodic nodal force distribution for εy strain
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(a) Nodal force distribution in z direction on top sur-
face
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(b) Nodal force distribution in z direction on bottom
surface

Figure A.3: Periodic nodal force distribution for εz strain
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(a) Nodal force distribution in x direction on
front surface
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(b) Nodal force distribution in x direction
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(d) Nodal force distribution in y direction on left sur-
face

Figure A.4: Periodic nodal force distribution for combined εx and εy strains

−42.39381E−03
−35.33239E−03
−28.27098E−03
−21.20956E−03
−14.14815E−03
 −7.08674E−03
−25.32080E−06
  7.03609E−03
 14.09751E−03
 21.15892E−03
 28.22034E−03
 35.28175E−03
 42.34317E−03

(a) Nodal force distribution in x direction on
front surface

−42.39381E−03
−35.33239E−03
−28.27098E−03
−21.20956E−03
−14.14815E−03
 −7.08674E−03
−25.32080E−06
  7.03609E−03
 14.09751E−03
 21.15892E−03
 28.22034E−03
 35.28175E−03
 42.34317E−03
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(c) Nodal force distribution in z direction on
top surface
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(d) Nodal force distribution in z direction on
bottom surface

Figure A.5: Periodic nodal force distribution for combined εx and εz strains
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(a) Nodal force distribution in y direction on
right surface
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(b) Nodal force distribution in y direction on
left surface

  −4.97995E−03
  −4.14996E−03
  −3.31997E−03
  −2.48997E−03
  −1.65998E−03
−829.99182E−06
−349.24597E−12
 829.99109E−06
   1.65998E−03
   2.48997E−03
   3.31997E−03
   4.14996E−03
   4.97995E−03

(c) Nodal force distribution in z direction on
top surface
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(d) Nodal force distribution in z direction on
bottom surface

Figure A.6: Periodic nodal force distribution for combined εy and εz strains
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(b) Nodal force distribution in z direction on
left surface
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(c) Nodal force distribution in y direction on
top surface
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(d) Nodal force distribution in y direction on
bottom surface

Figure A.7: Periodic nodal force distribution for γyz
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(a) Nodal force distribution in z direction on
front surface
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(d) Nodal force distribution in x direction on
bottom surface

Figure A.8: Periodic nodal force distribution for γxz
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(d) Nodal force distribution in x direction on
left surface

Figure A.9: Periodic nodal force distribution for γxy
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A.2 Plots for nodal forces and displacements on application of PBC

The deformation states shown in section A.1 visually suggest that the distribution of nodal
forces are equal and opposite on opposite boundary surfaces. However, plots of nodal forces
and displacements on opposite boundary surfaces would present state of equal and opposite
nodal forces and continuity of displacement across opposite boundary surfaces more clearly.

Plots for all unidirectional normal strain deformation states (εx, εy and εz) and all (engineer-
ing) shear strain components (γyz, γxz and γxy) are shown from figure A.10 to A.15. Plots
for deformation states in which combination of normal strains have been applied together
are not sown because plots for unidirectional normal strains are sufficient to represent the
distribution of nodal forces and displacements on respective boundaries when combination of
unidirectional normal strains are applied.
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Figure A.10: Representation of nodal forces and displacements on front and rear surfaces for εx
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Figure A.11: Representation of nodal forces and displacements on right and left surfaces for εy
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Figure A.12: Nodal forces and displacements on top and bottom surfaces for εz
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Figure A.13: Nodal force and displacement distributions for γyz
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Figure A.14: Nodal force and displacement distributions for γxz
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Figure A.15: Nodal force and displacement distributions for γxy



Appendix B

Appendix 2: Scripts for modelling and
post-processing

B.1 Script for pre-processing data

The FEA of homogeneous and heterogeneous layer models involved scripting of models
through Abaqus Scripting Interface for generation of cae models with the help of Abaqus
user manual [36] and Langtangen (2006) [37]. Particularly, for running analysis in the case of
heterogeneous [0/90]s cross-ply laminate, the data is extracted through input file primarily
for generation of suitable node sets for application of desired boundary conditions.

Application of PBC on 3D UC

An example Matlab script used for applying PBC nodal constraint equations on nodes be-
longing to opposite boundary surfaces is presented in this subsection. In the script l,t, and
z represent the longitudinal, transverse and through-thickness directions respectively. The
script has been written to simulate a normal strain (for which displacement needs to be ap-
plied on respective dummy node in Abaqus input file). It has been ensured that none of the
nodes is over constrained.

1 %% Example script for writing nodal constraint equations for applying
normal strain:

2 % l, t and z represent longitudinal , transverse and through -thickness
3 % directions respectively.
4 %%
5 dof_l=1;
6 dof_t=2;
7 dof_z=3;
8
9 fileID_PBC_E_tt = fopen (’PBC_equations_E_tt.inp’ ,’w’ ) ;

10 terms_t=3; % represents number of terms in constraint equation (linear)
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11 coeff_1_t=1. ; % represents coefficient on a face with normal vector along
the positive axis direction

12 coeff_2_t=−1.; % represents coefficient on a face with normal vector
along the negative axis direction

13 coeff_3_t=−1.; % represents coefficient of dummy node which decides the
dummy node’s displacement direction. Since the dummy node is expressed

on L.H.S of equation , ’-’ coefficient means displacement along +ve
axis direction and vice-versa

14 dummy_node_t = 2000000;
15 for v=1:length ( Paired_nodes_for_PBC_left_right )
16 fprintf ( fileID_PBC_E_tt , ’%d\n%4s%7d%1s%d%1s%1.0f%1s%4s%7d%1s%d%1s%1.0

f%1s%7d%1s%d%1s%1.0f\n’ , terms_t , ’Set-’ ,
Paired_nodes_for_PBC_left_right (v , 1 ) ,’,’ , dof_t , ’,’ , coeff_1_t , ’,’ ,’
Set-’ , Paired_nodes_for_PBC_left_right (v , 2 ) ,’,’ , dof_t , ’,’ , coeff_2_t
, ’,’ , dummy_node_t , ’,’ , dof_t , ’,’ , coeff_3_t ) ;

17 end
18 fclose ( fileID_PBC_E_tt ) ;
19
20 fileID_PBC_E_zz = fopen (’PBC_equations_E_zz.inp’ ,’w’ ) ;
21 terms_z=3;
22 coeff_1_z=1. ;
23 coeff_2_z=−1.;
24 coeff_3_z=−1.;
25 dummy_node_z=3000000;
26 for v=1:length ( Paired_nodes_for_PBC_bottom_top )
27 fprintf ( fileID_PBC_E_zz , ’%d\n%4s%7d%1s%d%1s%1.0f%1s%4s%7d%1s%d%1s%1.0

f%1s%7d%1s%d%1s%1.0f\n’ , terms_z , ’Set-’ ,
Paired_nodes_for_PBC_bottom_top (v , 1 ) ,’,’ , dof_z , ’,’ , coeff_1_z , ’,’ ,’
Set-’ , Paired_nodes_for_PBC_bottom_top (v , 2 ) ,’,’ , dof_z , ’,’ , coeff_2_z
, ’,’ , dummy_node_z , ’,’ , dof_z , ’,’ , coeff_3_z ) ;

28 end
29 fclose ( fileID_PBC_E_zz ) ;
30
31 fileID_PBC_E_ll = fopen (’PBC_equations_E_ll.inp’ ,’w’ ) ;
32 terms_l=3;
33 coeff_1_l=1. ;
34 coeff_2_l=−1.;
35 coeff_3_l=−1.;
36 dummy_node_l=1000000;
37 for v=1:length ( Paired_nodes_for_PBC_front_rear )
38 fprintf ( fileID_PBC_E_ll , ’%d\n%4s%7d%1s%d%1s%1.0f%1s%4s%7d%1s%d%1s%1.0

f%1s%7d%1s%d%1s%1.0f\n’ , terms_l , ’Set-’ ,
Paired_nodes_for_PBC_front_rear (v , 1 ) ,’,’ , dof_l , ’,’ , coeff_1_l , ’,’ ,’
Set-’ , Paired_nodes_for_PBC_front_rear (v , 2 ) ,’,’ , dof_l , ’,’ , coeff_2_l
, ’,’ , dummy_node_l , ’,’ , dof_l , ’,’ , coeff_3_l ) ;

39 end
40 fclose ( fileID_PBC_E_ll ) ;
41
42 fileID_PBC_E_zl = fopen (’PBC_equations_E_zl.inp’ ,’w’ ) ;
43 terms_zl=3;
44 coeff_1_zl=1. ;
45 coeff_2_zl=−1.;
46 coeff_3_zl=−1.;
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47 dummy_node_z_zl=5000000;
48 dummy_node_l_zl=4000000;
49 for v=1:length ( Paired_nodes_for_PBC_front_rear ) % To avoid

overconstraining front face’s top edge:
50 if inp_file_nodes ( find ( inp_file_nodes ( : , 1 ) ==

Paired_nodes_for_PBC_front_rear (v , 1 ) ) , 3 )~= 0.067000001700000 %
column index 3 means the through -thickness coordinate

51 fprintf ( fileID_PBC_E_zl , ’%d\n%4s%7d%1s%d%1s%1.0f%1s%4s%7d%1s%d%1s
%1.0f%1s%7d%1s%d%1s%1.0f\n’ , terms_zl , ’Set-’ ,
Paired_nodes_for_PBC_front_rear (v , 1 ) ,’,’ , dof_z , ’,’ , coeff_1_zl ,
’,’ ,’Set-’ , Paired_nodes_for_PBC_front_rear (v , 2 ) ,’,’ , dof_z , ’,’ ,
coeff_2_zl , ’,’ , dummy_node_l_zl , ’,’ , dof_z , ’,’ , coeff_3_zl ) ;

52 end
53 end
54 for v=1:length ( Paired_nodes_for_PBC_bottom_top ) % To avoid

overconstraining top face’s front edge:
55 if inp_file_nodes ( find ( inp_file_nodes ( : , 1 ) ==

Paired_nodes_for_PBC_bottom_top (v , 1 ) ) , 4 )~= 0.134000003000000 %
column index 4 means the longitudinal coordinate

56 fprintf ( fileID_PBC_E_zl , ’%d\n%4s%7d%1s%d%1s%1.0f%1s%4s%7d%1s%d%1s
%1.0f%1s%7d%1s%d%1s%1.0f\n’ , terms_zl , ’Set-’ ,
Paired_nodes_for_PBC_bottom_top (v , 1 ) ,’,’ , dof_l , ’,’ , coeff_1_zl ,
’,’ ,’Set-’ , Paired_nodes_for_PBC_bottom_top (v , 2 ) ,’,’ , dof_l , ’,’ ,
coeff_2_zl , ’,’ , dummy_node_z_zl , ’,’ , dof_l , ’,’ , coeff_3_zl ) ;

57 end
58 end
59 fclose ( fileID_PBC_E_zl ) ;
60
61 fileID_PBC_E_tl = fopen (’PBC_equations_E_tl.inp’ ,’w’ ) ;
62 terms_tl=3;
63 coeff_1_tl=1. ;
64 coeff_2_tl=−1.;
65 coeff_3_tl=−1.;
66 dummy_node_t_tl=6000000;
67 dummy_node_l_tl=7000000;
68 for v=1:length ( Paired_nodes_for_PBC_front_rear ) % To avoid

overconstraining front face’s right edge:
69 if inp_file_nodes ( find ( inp_file_nodes ( : , 1 ) ==

Paired_nodes_for_PBC_front_rear (v , 1 ) ) , 2 )~= 0.067000001700000 %
column index 2 means the transverse coordinate

70 fprintf ( fileID_PBC_E_tl , ’%d\n%4s%7d%1s%d%1s%1.0f%1s%4s%7d%1s%d%1s
%1.0f%1s%7d%1s%d%1s%1.0f\n’ , terms_tl , ’Set-’ ,
Paired_nodes_for_PBC_front_rear (v , 1 ) ,’,’ , dof_t , ’,’ , coeff_1_tl ,
’,’ ,’Set-’ , Paired_nodes_for_PBC_front_rear (v , 2 ) ,’,’ , dof_t , ’,’ ,
coeff_2_tl , ’,’ , dummy_node_l_tl , ’,’ , dof_t , ’,’ , coeff_3_tl ) ;

71 end
72 end
73 for v=1:length ( Paired_nodes_for_PBC_left_right ) % To avoid

overconstraining right face’s front edge and right face’s top edge:
74 if inp_file_nodes ( find ( inp_file_nodes ( : , 1 ) ==

Paired_nodes_for_PBC_left_right (v , 1 ) ) , 4 )~= 0.134000003000000 &&
inp_file_nodes ( find ( inp_file_nodes ( : , 1 ) ==
Paired_nodes_for_PBC_left_right (v , 1 ) ) , 3 )~= 0.067000001700000
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75 fprintf ( fileID_PBC_E_tl , ’%d\n%4s%7d%1s%d%1s%1.0f%1s%4s%7d%1s%d%1s
%1.0f%1s%7d%1s%d%1s%1.0f\n’ , terms_l , ’Set-’ ,
Paired_nodes_for_PBC_left_right (v , 1 ) ,’,’ , dof_l , ’,’ , coeff_1_tl ,
’,’ ,’Set-’ , Paired_nodes_for_PBC_left_right (v , 2 ) ,’,’ , dof_l , ’,’ ,
coeff_2_tl , ’,’ , dummy_node_t_tl , ’,’ , dof_l , ’,’ , coeff_3_tl ) ;

76 end
77 end
78 fclose ( fileID_PBC_E_tl ) ;
79
80 fileID_PBC_E_tz = fopen (’PBC_equations_E_tz.inp’ ,’w’ ) ;
81 terms_tz=3;
82 coeff_1_zl=1. ;
83 coeff_2_zl=−1.;
84 coeff_3_zl=−1.;
85 dummy_node_t_12=8000000;
86 dummy_node_z_12=9000000;
87 for v=1:length ( Paired_nodes_for_PBC_left_right ) % To avoid

overconstraining right face’s top edge and right face’s front edge:
88 if inp_file_nodes ( find ( inp_file_nodes ( : , 1 ) ==

Paired_nodes_for_PBC_left_right (v , 1 ) ) , 3 )~= 0.067000001700000 &&
inp_file_nodes ( find ( inp_file_nodes ( : , 1 ) ==
Paired_nodes_for_PBC_left_right (v , 1 ) ) , 4 )~= 0.134000003000000

89 fprintf ( fileID_PBC_E_tz , ’%d\n%4s%7d%1s%d%1s%1.0f%1s%4s%7d%1s%d%1s
%1.0f%1s%7d%1s%d%1s%1.0f\n’ , terms_tz , ’Set-’ ,
Paired_nodes_for_PBC_left_right (v , 1 ) ,’,’ , dof_z , ’,’ , coeff_1_zl ,
’,’ ,’Set-’ , Paired_nodes_for_PBC_left_right (v , 2 ) ,’,’ , dof_z , ’,’ ,
coeff_2_zl , ’,’ , dummy_node_t_tz , ’,’ , dof_z , ’,’ , coeff_3_zl ) ;

90 end
91 end
92 for v=1:length ( Paired_nodes_for_PBC_bottom_top ) % To avoid

overconstraining top face’s right edge and top face’s front edge:
93 if inp_file_nodes ( find ( inp_file_nodes ( : , 1 ) ==

Paired_nodes_for_PBC_bottom_top (v , 1 ) ) , 2 )~= 0.067000001700000 &&
inp_file_nodes ( find ( inp_file_nodes ( : , 1 ) ==
Paired_nodes_for_PBC_bottom_top (v , 1 ) ) , 4 )~= 0.134000003000000

94 fprintf ( fileID_PBC_E_tz , ’%d\n%4s%7d%1s%d%1s%1.0f%1s%4s%7d%1s%d%1s
%1.0f%1s%7d%1s%d%1s%1.0f\n’ , terms_tz , ’Set-’ ,
Paired_nodes_for_PBC_bottom_top (v , 1 ) ,’,’ , dof_t , ’,’ , coeff_1_zl ,
’,’ ,’Set-’ , Paired_nodes_for_PBC_bottom_top (v , 2 ) ,’,’ , dof_t , ’,’ ,
coeff_2_zl , ’,’ , dummy_node_z_tz , ’,’ , dof_t , ’,’ , coeff_3_zl ) ;

95 end
96 end
97 fclose ( fileID_PBC_E_tz ) ;

B.2 Script for post-processing of data

Post-processing scripts have been written in Matlab and Python tools through the course of
this thesis to reach desired results. Some of the scripts used for crucial results such as for the
purpose of homogenisation on UC and for calculation of average of stresses have been shown
in this section.
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Scripts for extraction of nodal forces and displacement from Abaqus output
database

Python scripts are written with the help of Abaqus user manual [36] and Langtangen (2006)
[37] for extracting the nodal force and displacement data on desired surfaces of the output
database model. For this purpose, suitable node sets are created and incorporated in the
scripts for extraction of data. Example scripts used for extraction nodal forces and displace-
ments on front and rear surfaces of a heterogeneous UC shown in figure 4.3 are shown in this
subsection.

The example Python script for extraction of nodal force data on front and rear surfaces of
the UC is as follows:

1 ## FOR NODAL FORCES:
2
3 from abaqusConstants import ∗
4 from viewerModules import ∗
5 from odbAccess import ∗
6 import os
7
8 odb_1h = session . openOdb ( name=’heterogeneous_UC.odb’ )
9 odbRootA=odb_1h . rootAssembly

10
11 os . chdir (r"path" )
12 session . viewports [ ’Viewport: 1’ ] . setValues ( displayedObject=odb_1h )
13 frames = odb_1h . steps [ ’Step-BC’ ] . frames
14 no_of_frames = len ( frames )
15 instance = odb_1h . rootAssembly . instances [ ’PART-MERGE -1’ ]
16 node_region = instance . nodeSets [ ’SET-REAR_NODES’ ]
17 nodes = node_region . nodes
18 no_of_nodes = len ( nodes )
19
20 outPutFileName_forces_rear_front = ’EXTRACTED_NODAL_FORCES_REAR_FRONT.txt

’
21
22 Nforce3_values_rear = odb_1h . steps [ ’Step-BC’ ] . frames [ 1 ] . fieldOutputs [ ’

NFORC3’ ] . getSubset ( region=instance . nodeSets [ ’SET-REAR_NODES’ ] ) . values
23 Nforce2_values_rear = odb_1h . steps [ ’Step-BC’ ] . frames [ 1 ] . fieldOutputs [ ’

NFORC2’ ] . getSubset ( region=instance . nodeSets [ ’SET-REAR_NODES’ ] ) . values
24 Nforce1_values_rear = odb_1h . steps [ ’Step-BC’ ] . frames [ 1 ] . fieldOutputs [ ’

NFORC1’ ] . getSubset ( region=instance . nodeSets [ ’SET-REAR_NODES’ ] ) . values
25
26 Nforce3_values_front = odb_1h . steps [ ’Step-BC’ ] . frames [ 1 ] . fieldOutputs [ ’

NFORC3’ ] . getSubset ( region=instance . nodeSets [ ’SET-FRONT_NODES’ ] ) . values
27 Nforce2_values_front = odb_1h . steps [ ’Step-BC’ ] . frames [ 1 ] . fieldOutputs [ ’

NFORC2’ ] . getSubset ( region=instance . nodeSets [ ’SET-FRONT_NODES’ ] ) . values
28 Nforce1_values_front = odb_1h . steps [ ’Step-BC’ ] . frames [ 1 ] . fieldOutputs [ ’

NFORC1’ ] . getSubset ( region=instance . nodeSets [ ’SET-FRONT_NODES’ ] ) . values
29
30 size_force_rear = len ( Nforce3_values_rear )
31 size_force_front = len ( Nforce3_values_front )
32
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33 directory=os . path . split ( odb_1h . path ) [ 0 ]
34 with open (os . path . join ( directory , outPutFileName_forces_rear_front ) ,"w" )

as file :
35 for i in range (0 , size_force_rear ) :
36 file . write ("%20s %20s %20s %20s %20s %20s %20s %20s" % (

Nforce1_values_rear [ i ] . nodeLabel , Nforce1_values_rear [ i ] . data ,
Nforce2_values_rear [ i ] . data , Nforce3_values_rear [ i ] . data ,

Nforce1_values_front [ i ] . nodeLabel , Nforce1_values_front [ i ] .
data , Nforce2_values_front [ i ] . data , Nforce3_values_front [ i ] .
data ) )

37 file . write ("\n" )
38
39 odb_1h . close ( )

The example Python script for extraction of nodal displacement data on front and rear sur-
faces of the UC is as follows:

1 ## FOR NODAL DISPLACEMENTS:
2
3 from abaqusConstants import ∗
4 from viewerModules import ∗
5 import os
6
7 odb_1h = session . openOdb ( name=’heterogeneous_UC.odb’ )
8 odbRootA=odb_1h . rootAssembly
9 os . chdir (r"path" )

10 session . viewports [ ’Viewport: 1’ ] . setValues ( displayedObject=odb_1h )
11
12 frames = odb_1h . steps [ ’Step-BC’ ] . frames
13 no_of_frames = len ( frames )
14 my_instance = odb_1h . rootAssembly . instances [ ’PART-MERGE -1’ ]
15 node_region = my_instance . nodeSets [ ’SET-REAR_NODES’ ]
16 nodes = node_region . nodes
17 no_of_nodes = len ( nodes )
18
19 outPutFileName_displacement_rear_front = ’

EXTRACTED_NODAL_DISPLACEMENTS_REAR_FRONT.txt’
20
21 displacement_rear = odb_1h . steps [ ’Step-BC’ ] . frames [ 1 ] . fieldOutputs [ ’U’ ] .

getSubset ( region=my_instance . nodeSets [ ’SET-REAR_NODES’ ] ) . values
22 displacement_front = odb_1h . steps [ ’Step-BC’ ] . frames [ 1 ] . fieldOutputs [ ’U’ ] .

getSubset ( region=my_instance . nodeSets [ ’SET-FRONT_NODES’ ] ) . values
23
24 size_displacement_rear = len ( displacement_rear )
25 size_displacement_front = len ( displacement_front )
26
27 directory=os . path . split ( odb_1h . path ) [ 0 ]
28
29 with open (os . path . join ( directory , outPutFileName_displacement_rear_front ) ,

"w" ) as file :
30 for i in range (0 , size_displacement_rear ) :
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31 file . write ("%20s %20s %20s %20s %20s %20s %20s %20s" % (
displacement_rear [ i ] . nodeLabel , displacement_rear [ i ] . data [ 0 ] ,
displacement_rear [ i ] . data [ 1 ] , displacement_rear [ i ] . data [ 2 ] ,
displacement_front [ i ] . nodeLabel , displacement_front [ i ] . data
[ 0 ] , displacement_front [ i ] . data [ 1 ] , displacement_front [ i ] . data
[ 2 ] ) )

32 file . write ("\n" )
33
34 odb_1h . close ( )

Averaging of numerical stress data

This subsections illustrates through a Matlab script, the procedure that has been adopted
throughout this work to calculate numerical average stress values. The averages are calculated
such that the changes in mesh are accounted for. The example script is shown as follows:

1 % index starts with 2 to include first interval to the start calculation
with

2
3 for j=2:length ( X_Grid_Array_From_Free_Edge )
4 Sz_Integrated_Average ( 1 , ( j−1) ) = trapz ( ( X_Grid_Array_From_Free_Edge

( 1 , 1 : j ) ) , Sz_Data_From_Free_Edge ( 1 , 1 : j ) ) /(
X_Grid_Array_From_Free_Edge (1 , j )−X_Grid_Array_From_Free_Edge ( 1 , 1 ) )
;

5 end
6
7 % ’Sz_Integrated_Average ’ has a dimension one less than that of the
8 % original array because the first value of integration is obtained at a
9 % distance of one element width and hence at second distance point of the

array
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Appendix C

Appendix 3: Comparison of
homogeneous properties

During the course of this work, homogenised properties are determined through homogenisa-
tion of UC by using PBC. As a comparison, the homogenised engineering properties obtained
from this approach are matched against those published in literature experimentally. Table
C.1 shows the values obtained for T300/934 material from the two approaches.

Table C.1: Comparison of homogenised engineering constants for unidirectional ply of T300/934
material from homogenisation through PBC and experimental findings

Properties Homogenisation (through PBC) Experimental results in literature [9]

Ex (GPa) 141.61 144.8
Ey (GPa) 13.21 11.7
Ez(GPa) 13.21 11.7
νxy 0.2613 0.3
νxz 0.2613 0.3
νyz 0.4437 0.54

Gyz (GPa) 3.6757 3.5
Gxz (GPa) 4.2684 6.5
Gxy (GPa) 4.2684 6.5

A comparison of effective engineering properties from the two approaches suggests that the
longitudinal shear moduli (Gxy and Gxz) are found to be under predicted by a comparatively
larger difference when compared with experimental results. The small size of the RVE with
a single UC considered during homogenisation through PBC is believed to be the reason for
the under predicted shear moduli. The other properties are found to be comparing with each
other with a relatively lower difference than the longitudinal shear moduli.
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