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Although the theory of isolated curved surfaces bearing 
charge is developing rapidly,'-lO the resolution of the 
problem of interacting surfaces is progressing at  a sub- 
stantially slower pace. Pincus, Joanny, and Andelman" 
have attempted to incorporate charge into the Helfrich 
theory.12 They replace the real stack of interacting and 
fluctuating membranes by one membrane undulating 
between two charged planes which are postulated to be 
perfectly flat and fixed in space. Hence, the configurations 
of the test membrane are constrained by an externally 
imposed potential which is independent of the undulations. 
Lipowsky and Leibler have earlier adopted a similar 
starting point to study the effect of attractive forces.13 
Actually, the two surrounding membranes themselves are 
not flat but perturbed by thermal fluctuations so in 
principle the test membrane is restricted by a fluctuating 
external field. This problem is of course very difficult as 
it stands, but here I introduce an average of the fluctuating 
potential which is determined self-consistently a t  the end 
of the analysis by minimizing the total free energy. My 
approach is similar in spirit to a recent theory of the ne- 
matic liquid crystal of undulating, semiflexible surfaces 
in which the fluctuating excluded-volume interactions are 
also taken into consideration on a mean-field 1 e ~ e l . l ~  

Membranes are often so highly charged that we must 
use the nonlinear Poisson-Boltzmann equation to calculate 
the electrostatic potential 6. Nevertheless, it is possible 
to investigate interacting, undulating membranes in the 
experimentally important case where nonlinear screening 
does not interfere with the undulations. First, we recall 
the form of the Poisson-Boltzmann potential a t  a distance 
x from a flat plate of positive surface charge density u (i.e. 
number of charges per unit area) 

1 + 7rZeffe-Kx [ I  1 - 7r2effe-xx 
\ k ( x )  = 2 log 

Here, Z = QU/K is a dimensionless surface charge density 
in terms of two basic electrostatic scales (the Bjerrum 
length Q = q2/ckBTand the Debye length K - ~  = (8rQ n)-1/2, 
where kg is Boltzmann's constant and T the temperature 
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of the system, q is the elementary charge, and the solvent 
of permittivity t contains an excess of monovalent elec- 
trolyte of concentration n) and the dimensionless potential 
\k q6lkBT. 

At large distances &e. when TZeff exp ( -Kx)  << 1) the 
potential has a screened form 

\k = 47rzefft?-Kx (3) 
Furthermore, in the Debye-Huckel approximation valid 
a t  low enough charge densities (Z << 11, the potential is 
given by eq 3 with Zeff = Z. Therefore, as long as we do 
not probe the inner double layer, we may as well replace 
the real plate of charge density u in the Poisson-Boltz- 
mann approximation by a plate of effective charge density 
teff KZeff/Q in the Debye-Huckel approximation. The 
effective charge density is lower than u because a number 
of counterions are "condensed" within the inner double 
layer. It is important to realize that eq 3 then results from 
a linear superposition of Debye-Huckel potentials from 
effective charges on the surface of the plate. In our analysis 
of the interactions between undulating charged mem- 
branes, we require that the average distance D between 
two membranes is somewhat larger than both the Debye 
length and the typical amplitude of the undulations. This 
ensures that the condensed counterions are not perturbed 
by the membrane fluctuations. Accordingly, in our stack 
of membranes the actual surface charge density u is 
replaced by ueff and all the effective charges in the system 
interact by simple superposition. 

Next, I assume the reference configuration of the mul- 
timembrane system is a stack of equidistant flat planes 
(distance = D). Smectic director fluctuations are disre- 
garded. A complete theory would include not only these 
but also their coupling to the undulations of the individual 
membranes (in a way analogous, say, to a recent theory 
of directed polymers15). At  this juncture one might wish 
to assume that the system is adequately described by a 
single membrane distribution function f in order to set up 
a self-consistent field theory. Even this problem turns 
out to be prohibitively difficult, so instead I postulate a 
Gaussian Ansatz, presumably correct to the leading order 

f = (7r1/2d)-le-x2/d2 (4) 
which expresses the fluctuations from the reference con- 
figuration. It depends on a variational parameter d. 
Equation 4 is valid for every membrane in the system; x 
is the distance from a point on the surface of a particular 
membrane that we happen to consider to its correspond- 
ing surface in the reference configuration. The membrane 
area is presumably very large so that end effects may be 
neglected and eq 4 pertains to every point of the fluctuating 
surface. The amplitude of the undulations is of order d, 
so we must have d << D in view of the discussion above. 
Equation 4 is normalized to unity. 

Equation 4 implies a deflection length12J4 (also termed 
an undulation length12 or in-plane correlation length") 
for a fluid membrane 

A i= K'l2d (5) 
where K is the elastic bending modulus of the membrane 
scaled by kBT. If we suppose that the effective platelets 
are highly ordered (A >> d or K >> l ) ,  it is straightforward 
to obtain the electric potential of a particular membrane 
which is renormalized by its own fluctuations. This is a 
linear superposition of Debye potentials from all the 
undulations or equivalently a superposition of flat wall 
potentials since all points of the surface have the same 

(15) Le Doussal, P.; Nelson, D. R. Europhys. Lett. 1991, 15, 161. 

1992 American Chemical Society 



Notes 

distribution 

\kR(y)  = Jom(Y(y + X) + *(y - x)) f ( x )  dx 

= 4?rZeff exp(-Ky + '/$d2) (6) 
Here, y is the distance from the respective membrane in 
the reference configuration. If we now consider a test 
membrane surrounded by two fluctuating membranes-but 
no more in view of the electrostatic screening-it expe- 
riences on average the sum of two potentials given by eq 
6. 

(7) 
Again, because the fluctuating platelets of the test 
membrane are highly ordered, the electrostatic free energy 
per unit area is simply 

Q,t(y) = *R(D + Y) + *R(D -Y)  

Fel/kBT = ueff J-1 \ k t o J  dx 
= 87r22,fpQ-1 exp(-KD + 1/2K2d2) (8) 

As expected this increases with d and indeed very rapidly 
when ~d >> 1 because of the renormalization. On the other 
hand there is also an opposing Helfrich free energy12 of 
entropic origin which arises because the test membrane 
is confined owing to the restriction (eq 4) 

FH/kBT = c/Kd2 (9) 
The constant c is close to l/32. As we decrease d, more and 
more configurations are frozen out so that FH increases. 
On minimizing the total free energy F e l  + FH, we get 
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(10) 

For a highly charged membrane the effective charge 
density Z,ff reduces to a constant ?r-l and the bending 
modulus K to ~ / A Q K  according to recent work.293 Equation 
10 simplifies to 

A4eA2I2 N ~ ~ ( Q ~ ) ~ e ~ / 1 2 8  (11) 
In this case, A = Kd is a function of two dimensionless 
variables QK and KD, which is tabulated in Table I (recall 
that the Bjerrum length Q = 0.71 nm and the Debye radius 
K - ~  = 0.30ns-1/2 nm for an aqueous monovalent electrolyte 
of concentration n, (in M) at  room temperature). It is 
remarked that A is generally substantially greater than 
unity; i.e. the amplitude of the undulations d/21/2 is greater 
than the Debye radius. In other words the renormalizing 
factor exp(l/,A2) in eq 8 is very influential. Hence, the 
undulations of the surrounding layers exert a considerable 

Table I. Dimensionless Quantity A Kd as a Function of 
QK and KD 

KLI 

OK 10 80 100 

0.3 2.1 6.0 13.0 
0.1 1.5 5.6 12.9 
0.03 1.0 5.3 12.7 
0.01 0.6 4.9 12.5 

effect on the fluctuations of a test membrane. If we were 
to set A much smaller than unity in eq 10, we would recover 
an expression first derived by Pincus et al." This is what 
one expects since in this limit the surrounding surfaces 
are effectively flat on the scale of the Debye length. 
However, this regime occurs a t  small separations D. 

It is possible to obtain a convenient expression for the 
osmotic pressure P needed to keep the membranes 
together, from eqs 8, 9, and 10 

Accordingly, the pressure scales essentially as d4 but there 
is no simple power law in terms of the separation D as can 
be seen from Table I. 

The idea that the potential exerted on a test membrane 
is renormalized by the fluctuations of the surrounding 
layers is not new. Evans and Parsegian16 and Sornette 
and O s t r ~ w s k y ~ ~  added a compression term to the bending 
Hamiltonian parametrized by a modulus. The modulus 
was eliminated at  the end of the analysis (but not by a 
variational method). A discussion of these works is 
deferred to a forthcoming publication. It is of considerable 
interest to investigate the salt-free case, but then one has 
to come to terms with the coupling of the counterion 
distribution to the undulations. One way of tackling this 
nontrivial problem may be to suppose the counterions 
within the inner double layer condense nonuniformly for 
each membrane configuration in a manner analogous to 
the one introduced in ref 18 for linear micelles. It would 
also be useful to examine the effect of the undulations of 
all the membranes by renormalization theory. So far most 
renormalization analyses start from a Hamiltonian de- 
scribing one membrane fluctuating in a bare or unrenor- 
malized field exerted by one nearby flat plane.lg 
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