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Abstract
Non-linear finite element analysis (NLFEA) is a powerful numerical solution method that can enhance
accurate determination of the structural resistance for a more efficient design. However, the implemen-
tation of NLFEA for the design of reinforced concrete structures is lagging behind as related uncertain-
ties have not been quantified adequately yet.

Multiple studies have been conducted to evaluate the effect of modelling choices, which has led to the
RTD1016 Dutch Guideline. This guideline enables a better quantification of the uncertainties related
to NLFEA for the proposed solution strategy. In this research, a full probabilistic approach is applied
to improve the quantification of uncertainties related to NLFEA, and thereby enhance its application for
the design of reinforced concrete structures. In particular, to the ultimate limit state (ULS) of simply
supported beams subjected to both ductile and brittle failure modes.

To achieve this goal, 48 benchmark beams were selected from literature for calibration purposes. Mate-
rial induced uncertainties of concrete and reinforcement were incorporated through an optimized Latin
hypercube sampling strategy. The beams were modelled in a 2D plane in software program Diana
based on a total strain crack model and Von Mises plasticity. A displacement-controlled analysis was
performed to determine the numerical ultimate resistance. In total, 1104 analysis were performed of
which the model uncertainty was quantified and the failure mode was determined by the ductility index.
Based on this, a global reliability method was defined as a function of the failure mode. A comparison
with existing reliability methods was made in terms of accuracy and robustness. Furthermore, a stan-
dalone multivariate non-parametric Bayesian network (NPBN) was developed that allows for extensive
reliability assessment possibilities.

The research has shown how a full probabilistic approach with benchmarking can be applied. A reliabil-
ity method as a function of the failure mode was proposed that showed improved efficiency compared
to existing reliability methods (GRF,PRF,ECOV). For a 50 year design lifetime, a mean unity check of
77% was attained for the ductile failure mode and 66% for the brittle failure mode. For specific types of
concrete and reinforcement, even higher efficiency can be obtained by reduced coefficients of variation
of the material parameters. Furthermore, a NPBN was constructed which describes the NLFEA behav-
ior of reinforced concrete beams. Additional research is necessary to improve the model application,
but it has been demonstrated how such a model can be established and used for reliability assessment
of reinforced concrete beams.

The findings of this study suggest that the design of reinforced concrete beams by NLFEA can be ap-
plied for efficient design, while respecting safety standards. The full probabilistic approach enabled an
improved quantification of the design resistance. Thereby, this research contributes to the implemen-
tation of NLFEA for the design of reinforced concrete structures.

Keywords: Non-linear finite element analysis (NLFEA), Latin hypercube sampling (LHS), reinforced
concrete beams, reliability method, ductility index, non-parametric Bayesian network (NPBN).
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1 | Introduction
A large amount of civil engineering works in the Netherlands has been built in the period of 1955-1970,
during economic resurgence after World War II. Many of this infrastructure has typically been designed
for a lifetime of 50 to 70 years and are entering their end of lifetime in the coming decade. Existing
structures either need replacement or should be reassessed for their remaining capacity based on their
current status and present traffic loads. With economical and sustainable requirements in mind, both
cases have led to an increased demand for accurate determination of the resistance of reinforced con-
crete structures. A large share of the reinforced concrete structures comprises bridges. Therefore, this
research focuses on reinforced concrete beams as part of a bridge superstructure.

To date, the design of reinforced concrete structures has been carried out according to design rules as
prescribed in the Eurocode (EN 1992-1-1) [1] and linear finite element analysis (LFEA). These methods
have proven to result in safe structures for their designed lifetime, but are also known to be conserva-
tive as only the linear behaviour of materials is considered. The non-linear material behaviour beyond
the linear response is not taken into account, while this has a significant impact on the ultimate limit
state. In this context, non-linear finite element analysis (NLFEA) could offer a solution that considers
the full mechanical behaviour and thereby enables a more accurate determination of the resistance of
reinforced concrete structures.

Meanwhile, the application of NLFEA is already common practise in other fields of engineering. Amongst
these fields of engineering are for example the design of shore protections and geotechnical design.
The use of NLFEA in these engineering fields is widely used and accepted, which can be explained by
the high complexity of problems dealing with either non-linear effects concerning geometry, contact or
typical non-linear behaviour of materials. This raises the question of why the use of NLFEA is accepted
in these fields of engineering, but not yet for the design of reinforced concrete structures.

The aversion to design reinforced concrete structures by NLFEA can be explained by the fact that the
associated uncertainties have not been properly identified and quantified. General modelling choices
and reliability methods were prescribed in fibModel Code 2010 [2]. In correspondence, Rijkswaterstaat1
published guidelines on modelling choices for girder members. (Hendriks et al., Belletti et al.) [3,4] Mul-
tiple research have been conducted to further investigate the model uncertainty of NLFEA for different
types of modelling choices and civil engineering structures. (Engen et al., Pacoste et al., de Putter) [5–7].
The combined efforts have resulted in a better understanding of modelling choices in NLFEA. However,
existing reliability methods do not consider the failure mode while this has a significant impact on the
model uncertainty. (Castaldo et al.) [8] Moreover, the model uncertainty is quantified through deter-
ministic input parameters in these research. This semi-probabilistic approach does not adequately
guarantee reliability levels and does not show the effect of related input parameters on the output.

To fill this gap in literature, a full probabilistic approach is considered that takes into account uncertain-
ties due to material heterogeneity and modelling choices separately. It is presumed that an improved
reliability method is feasible that complies with safety standards. Simultaneously, a more efficient re-
liability model can be obtained by distinction of the failure mode. An objective distinction between a
ductile and brittle failure mode can be obtained by the ductility index, defined as a measure of the plastic
energy absorbed by the reinforcement with respect to the total plastic energy dissipated in the system.
(Engen et al.) [5] Therefore, this research aims to formulate an improved reliability method in terms of
accuracy and robustness, and thereby enhance the implementation of NLFEA for design of reinforced
concrete structures.
1Rijkswaterstaat: Institution for Dutch Ministry of Infrastructure and Environment.
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1.1. Problem Definition
The construction sector takes a large share in the emission of carbon-dioxide, accounting for 39% of
worldwide emissions in 2018, of which 11% comes directly from the production of construction mate-
rials including concrete and steel. (UN) [9] With the global effect of climate change in mind, the need
for efficient design of civil engineering structures is increasing to meet both sustainable and economi-
cal demands. Non-linear finite element analysis is a numerical solution method that can provide such
accurate assessment, and thereby, efficient design. However, the applicability has been questioned
within the civil engineering community due to a lack of quantification of associated uncertainties.

With the publication of Hendriks et al. [3], a solution strategy for girder members was provided in order to
minimize model uncertainties. This led to the possibility to better define uncertainties related to NLFEA
for the given solution strategy. In combation with a proposed ductility index from Engen et al. [5], a
better quantification of the uncertainties related to NLFEA is possible, leading to a more accurate and
robust reliability model.

Classical methods like Monte Carlo simulation are unfeasible as computational times are large within
NLFEA. Instead, a reliability model that can provide a quick estimate of the resistance is desired, while
avoiding over prediction. Currently, three reliability methods are available from fibModel Code 2010 [2].
These methods have either shown to predict the ultimate resistance inaccurately due to large safety
factors, or to lack robustness as failure modes are predicted incorrectly. The methods and their deficits
are elucidated accordingly.

1. Partial Resistance Factor (PRF): Analysis is performed with very low partial material strengths,
which may result in wrong failure mode prediction and structural instability. Serious concerns
about its application are mentioned in fib Model Code 2010 [2].

2. Global Resistance Factor (GRF): Applies global safety factors after analysis with mean material
parameters, which often leads to conservative results due to a relatively large safety factor without
failure mode distinction.

3. Estimation Coefficient of Variation (ECOV): Based on interpolation between two analysis with
mean and characteristic material strength parameters. The design resistance is assumed to
be log-normal distributed, which only applies if both analysis have a similar failure mode. For
optimised structures this may not be the case and method ECOV becomes unusable, which can
be regarded as a lack of robustness.

In a comparative study of these reliability methods, Castaldo et al. [8] stated the following:

”This analysis implies that when the design ultimate resistance is estimated by means of a
safety format, which does not take into account the actual distribution of the structural re-
sistance as a function of the possible failure modes, the safety level is not adequately guar-
anteed.” … ”a methodology able to capture the mechanical behaviour of the structure
depending on the values assumed by material properties is necessary (i.e., failure mode
sensitivity). At the same time, themethodology should be easy andwith a limited required
computational effort.”

This indicates that if the resistance is defined as a function of the failure mode, an improved reliability
model that meets the required safety level could be established. As mentioned before, the failure mode
can be determined objectively by means of a ductility index. (Engen et al.) [5] An improved reliability
model can enhance the applicability of NLFEA within the design of reinforced concrete structures. The
reliability method should require little computational time, while guaranteeing accuracy, robustness and
safety.

Apart from the lack of proper quantification of uncertainties, attention should be paid to the fact that ex-
tracting towards the maximum capacity should be done with caution. Overestimation of the resistance
is undesirable and should be clearly quantified in terms of an allowable probability of failure. Addition-
ally, correct application of NLFEA requires extra effort and knowledge from the engineer.
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1.2. Research Goal
As stated previously, the quantification of uncertainties related to design of reinforced concrete struc-
tures by NLFEA is lacking behind. Multiple research have investigated the effect of different solution
strategies and led to suggestions on how to capture the failure mode objectively by a ductility index.
With use of this knowledge, a better quantification of the uncertainties related to NLFEA is possible for
the prescribed solution strategy, enabling an improved reliability method. Therefore, the goal of this
research is to improve the quantification of uncertainties related to NLFEA and enhance its application
in the design of reinforced concrete structures by defining a reliability model. Specifically, for simply
supported reinforced concrete beam elements with and without shear reinforcement as part of a bridge
superstructure. An accurate, robust and efficient reliability model is required to assess the design re-
sistance of reinforced concrete beams by NLFEA. The main research question can be formulated as
the following:

Can the quantification of uncertainties related to NLFEA be improved to enhance safe and effi-
cient application for the design of reinforced concrete beam elements?

To answer the main research question, several sub-questions are specified. The sub-questions are
specified with a short comment as follows:

1. Can an efficient sampling strategy be applied to adequately describe the total space of
design-related uncertainties?
Uncertainties induced due to material heterogeneity, execution deviation and modelling choices
should be considered to obtain a full view of the uncertainties associated with design by NLFEA.
A large sample generally results in a better description of the uncertainties, but as computational
times are large, an optimum for the number of samples and accuracy is desirable.

2. Can the benchmarks be modelled efficiently in NLFEA according to a single solution strat-
egy?
Simplifications of the actual benchmarks are needed to limit the computational time. A single
solution strategy is desirable to obtain a sufficiently large data-set by an automated process.

3. What is the relation between the ductility index and the model uncertainty?
The analysis is based on failure mode distinction by means of the ductility index. The ductility
index boundary will be investigated, and the model uncertainty is evaluated with respect to the
ductility index.

4. Does distinction of the failure mode based on the ductility index enable a more accurate
and robust reliability method?
The proposed reliability model is compared to existing reliability methods (GRF,PRF,ECOV) to
indicate their relative performance. Accuracy, robustness and efficiency are the assessment cri-
teria.

5. Can the NLFEA response of concrete beams be captured by a standalonemodel to be used
for extensive analysis possibilities?
Amultivariatemodel may be able to capture the NLFEA response in a standalonemodel bymeans
of a non-parametric Bayesian network, which can be used for extensive conditional analysis.

In the thesis outline (section 1.4), an overview is given for in which part the sub-questions are treated.
The approach to answering the research questions is further elaborated in the methodology (chapter 3).
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1.3. Scope
The research focuses on defining a reliability model for the ultimate limit state of an essential element
of bridges: simply supported reinforced concrete beams. Available experimental tests from literature
are used for calibration purposes. The test set-up of these experiments can be categorised in one- or
two-point loading, and with or without shear reinforcement, as shown in Figure 1.1. All benchmarks are
rectangular reinforced concrete beams with different material parameters for concrete and reinforce-
ment and different layouts for span length, depth, width and reinforcement configuration. The beams
are expected to experience a variety of failure mechanisms, either failing in a brittle or ductile manner.
Full details of the 48 selected benchmarks are provided in Appendix A.

Figure 1.1: Overview of the experimental set-ups of the 48 selected benchmarks, of which six do not contain shear reinforcement.

Three types of uncertainties should be considered for determination of the resistance by NLFEA: Mate-
rial properties, deviations in geometry and model uncertainties. Together they define the resistance as
displayed in Figure 1.2. The model uncertainty implicitly contains all uncertainties that are not explicitly
taken into account. In previous research, the model uncertainty has been quantified based on deter-
ministic input variables. In this research, a full probabilistic approach is applied that explicitly accounts
for material induced uncertainties besides the model uncertainty. Material properties such as concrete
compressive strength and reinforcement yield strength are difficult to quantify exactly on forehand, and
should therefore be evaluated with their prior known distributions from experiments. The model uncer-
tainty can be assessed by calibration of the mean numerical resistance to the experimental resistance
of the selected benchmarks.

Figure 1.2: Combined resistance parameters that together define the design resistance. Uncertainties due tomaterial parameters
and modelling choices are explicitly taken into account.

Geometric uncertainties due to execution deviations are not considered in this research, as they may be
identified after construction by quality control. This could eliminate the uncertainties due to execution
deviations, and additional construction works can be carried out if found necessary. The magnitude of
execution uncertainties is also very project-specific and was found insignificant compared to the mate-
rial induced uncertainties for the selected benchmarks. For the selected benchmark experiments, the
main geometric parameters, e.g. the effective depth, were measured with ±1millimeter accuracy. This
corresponds to a coefficient of variation of 0.5%, which is negligible compared to the 30% of concrete
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mean compressive strength for example.

In non-linear finite element analysis, a large amount of modelling choices needs to be made. These
engineering choices are accompanied by significant variations in results. In order to minimize model
uncertainties and user factors, guidelines for NLFEA are followed from Rijkswaterstaat’s document
Hendriks et al. [3]. The research is not focused on comparing different modelling choices, but to quan-
tify the design-related uncertainties for the prescribed solution strategy and to formulate a reliability
model.

The research is carried out in non-linear finite element modelling software program Diana based on a
total strain crack model and Von Mises plasticity. Different software may be based on different models
and could give different outcomes. As computational times are significant in NLFEA, some simpli-
fications were made. The benchmark reinforced concrete beams are numerically analysed on their
maximum resistance in a 2D model, assuming plane stress. Furthermore, the problem is simplified
by the use of symmetry boundary conditions. This simplification is valid under the assumption of a
perfect symmetric experimental set-up, for which uncertainties for boundary and symmetry conditions
are neglected. More on modelling choices is described in chapter 5. The used constitutive models,
kinematic assumptions and equilibrium conditions are specified in Table 5.1.

1.4. Thesis Outline
The report consists of nine chapters in ascending order: Introduction, literature review, methodology,
Latin hypercube sampling, non-linear finite element model, probabilistic analysis, comparison with ex-
isting models, non-parametric Bayesian network and a discussion. A diagram with the research ques-
tions and corresponding chapters is displayed in Figure 1.3. Subsequently, the content per chapter is
described.

In chapter 2, a literature study is carried out. The relevant knowledge about reinforced concrete beam
failure mechanisms, probabilistic analysis tools and modelling choices for non linear finite element
analysis is addressed. This includes the theoretical background about Latin hypercube sampling, non-
parametric Bayesian networks, non-linear finite element analysis and definitions of the ductility index
and model uncertainty.

In chapter 3, the applied methodology to answer the research questions is described. This includes
the sampling strategy, modelling choices and probabilistic analysis tools.

In chapter 4, the sampling strategy is described to answer sub-question (1). An Latin hypercube
sampling strategy with spatial optimisation is applied to generate efficient samples that. In total, nine
material parameters for concrete and reinforcement were included with their prior known distributions
from Graubner and Brehm, Strauss et al. [10,11].

In chapter 5, sub-questions (2) and (3) are addressed. The applied constitutive, kinematic and equilib-
rium conditions are defined. The numerical output is compared to the experimental results and quan-
tified by the model uncertainty. The ductility index boundary of 𝜒 = 0.6 and the effect of geometry
parameters on the model uncertainty are evaluated.

In chapter 6, sub-question (4) is answered. Distributions are fitted to the ductile and brittle failure
modes based on the ductility index. From the fitted log-normal distributions, safety factors are derived
to define a global reliability model. The empirical distributions of the resistance of both failure modes
are discussed, and the sensitivity of the material parameters with respect to the model uncertainty is
reviewed.

In chapter 7, a comparison of the proposed and existing reliability models is presented in addition to
sub-question (4). A comparison is made based on accuracy and robustness with the methods PRF,
GRF and ECOV.



1.4. Thesis Outline 15

In chapter 8, a non-parametric Bayesian network is constructed in correspondence with sub-question
(5). The construction of the model is substantiated by physical logic. The model is validated based on
a calibration score 𝑑-Cal. Furthermore, the model application is demonstrated for a random selection
of input parameters and compared to the output of NLFEA.

In chapter 9, the discussion, conclusion and recommendations are addressed in order to discuss lim-
itations, answer the research questions, and formulate recommendations for further research.

Figure 1.3: Thesis structure for answering the research questions.



2 | Literature Review
A literature review is carried out to address the knowledge and findings of other studies related to
the scientific field of interest for this research. Three main categories of interest can be assigned:
Beams failure mechanisms, non-linear finite element analysis and probabilistic analysis. Background
information on these aspects is described consecutively.

2.1. Beams Failure Mechanisms
In this section, the main material behaviour of concrete and reinforcement is explained. Furthermore,
the failure mechanisms for reinforced concrete beams are elaborated for transverse loading. This con-
cerns ductile flexural failure and brittle shear failure. The analysis will focus on shear and bending
moment resistance, which can suffer different types of failure mechanisms.

The relevant stress-strain (𝜎/𝜀) behaviour of reinforcing steel and concrete is shown in Figure 2.1. This
material behaviour can be referred to as the constitutive model. Typical ultimate strains for reinforce-
ment and concrete are 𝜀፬፮ = 25‰ and 𝜀፜፮ = 3.5‰.

(a) Steel tensile. (b) Concrete compression and tensile. (Xiao et al.) [12]

Figure 2.1: Stress-strain behaviour of (a) reinforcing steel and (b) concrete.

2.1.1. Ductile Failure
Ductile failure occurs for a bending moment that exceeds the bending moment resistance of the beam
member. Three types of flexural failure can be addressed: tension failure, compression failure and
balanced failure. The flexural capacity is determined by the reinforcement tensile strength with respect
to the concrete compressive strength in the compressive zone. Flexural tension (FT) failure is a duc-
tile failure that occurs If the bottom concrete undergoes flexural cracking and the reinforcement steel
is activated, which may yield and deform plastically. The service limit state (SLS) is initialised before
the ultimate limit state (ULS) is reached, and maintenance or replacement can be carried out. If the
concrete strength is relatively low, the concrete under compression at the top can crush and may fail.
The flexural compression (FC) failure type is a quasi-brittle failure mechanism accompanied with con-
crete crushing at the top and can be prevented in the design stage by limits of 𝜌፦ፚ፱, or by addition of
top reinforcement. The last type is a balanced failure, where yielding of reinforcement and crushing of
concrete occur simultaneously.

A quick estimate on the design bending moment for a distributed load can be obtained from well known
mechanics by:

𝑀ፄ፝ =
1
8𝑞𝑙

ኼ where 𝑞 = 𝜓ፆ𝑞ፆ + 𝜓ፐ𝑞ፐ (2.1)
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And for three point bending by:

𝑀ፄ፝ =
1
4𝐹𝑙 (2.2)

The bending moment resistance depends on the type of cross section and internal lever arms of the
concrete compression force and tensile reinforcement force. (Walraven and Braam [13])

𝑀ፑ፝ = 𝑁፬ ∗ 𝑧፥፞፯፞፫ፚ፫፦

where 𝑧፥፞፯፞፫ፚ፫፦ = 𝑑 − 𝑐 − ⌀፬፭።፫፫፮፩ −
1
2⌀፥ − 𝛽𝑥፮ or 𝑧 ≈ 0.9𝑑

(2.3)

For the concrete and steel forces in the cross section it holds:

𝑁፬ = 𝐴፬𝑓፮,፬; 𝑁፜ = 𝛼𝑏𝑥፮𝑓፜፝
where ∑𝐻 = 0 → 𝑁፜ = 𝑁፬

(2.4)

with 𝛼 = 0.75 and 𝛽 = 0.39 for concrete classes (CC) ≤C50/60, and 𝛾ፆ = 1.2 for permanent loads,
𝛾ፐ = 1.5 for variable loads and 𝛾ፏ = 1.0 for prestressing loads.

The bending moment resistance𝑀ፑ፝ is found from equilibrium of the cross section ∑𝑀 = 0 and ∑𝐻 =
0, either with or without prestressing. See Figure 2.2.

Figure 2.2: Forces acting on beam cross-section for equilibrium relations. (Walraven and Braam) [13]

2.1.2. Brittle Failure
Shear failure is a brittle failure mechanism. As this can lead to sudden failure, adequate measures
should be taken during the design stage. Concrete cracking or crushing are the main concerns for loss
of shear force capacity. The concrete material parameters are therefore normative, including concrete
compressive strength, tensile strength, ultimate strain, Young’s modulus and Poisson’s ratio.

Within the constitutive models for concrete in NLFEA, the fracture energy 𝐺፟ and compressive fracture
energy 𝐺፜ need to be specified, such that cracking and crushing of concrete can be modelled. These
are a function of the (ultimate) strain, element size and concrete tensile strength. More on fracture
energy is described in subsection 2.2.1.

For simply supported beams, the shear force under a distributed line load deviates linearly between
the supports, being zero at mid-span. This can be described by:

𝑉ፄ፝ = 𝑞(
1
2𝑙 − 𝑥) =

1
2𝑞𝑙 − 𝑞𝑥 (2.5)
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The normative shear force under four point loading test over the shear span 𝑎 is defined as:

𝑉ፄ፝ = 𝐹 (2.6)

Shear resistance without stirrups is defined in EN 1992-1-1 [1] as:

𝑉ፑ፝,፜ =min { (𝐶ፑ፝,፜𝑘100𝜌ኻ𝑓፜፤
ኻ/ኽ + 𝑘ኻ𝜎፜፩) 𝑏፰𝑑

(𝑣፦።፧ + 𝑘ኻ𝜎፜፩) 𝑏፰𝑑
(2.7)

where

𝑣፦።፧ = 0.035𝑘ኽ/ኼ𝑓ኻ/ኼ፜፤ (Shear stress minimum)

𝑘 = 1 + √ኼኺኺ
፝ ≤ 2.0 (Size effect)

𝜌፥ = ፀᑤᑝ
፛ᑨ፝

≤ 0.02 (Longitudinal reinforcement ratio)

𝜎፜፩ = ፍᐼᑕ
ፀᑔ

< 0.2𝑓፜፝ (Axial compressive stress)

Different shear failure mechanisms are classified for slender and deep beams in ASCE-ACI [14]. Each
failure mode has its own typical crack pattern, which is largely influenced by the slenderness of the
beam (𝑎/𝑑-ratio). The crack patterns for the shear failure mechanisms are displayed in Figure 2.3.

Figure 2.3: Crack patterns for different shear failure mechanisms and strut&tie model. (ASCE-ACI) [14]

Shear compression (VC) failure occurs when a crack is initialised and develops towards the top of
the beam. The concrete compressive strength is exceeded and crushing near the tip of the crack at
the beam top occurs. It is often observed for beams with large amounts of shear reinforcement and
for 1.0 ≥ 𝑎/𝑑 ≤ 2.5. Addition of top-reinforcement, lower longitudinal reinforcement ratio or higher
concrete strength can prevent shear compression failure. Diagonal tension (DT) failure initiates with
small diagonal cracks in the web, or flexural cracks on the bottom of the beam that propagate towards
the loading point. A sudden failure occurs when the concrete fails in shear along the diagonal crack.
Slender beams with 𝑎/𝑑 ≥ 2.5 are prone to diagonal tension failure, which could be prevented with
higher concrete strength or shear reinforcement. Shear tension failure occurs when the anchorage fails
after diagonal or flexural cracks have propagated to horizontal cracks along the longitudinal reinforce-
ment and the tensile transfer between reinforcement and concrete is inadequate. For deep beams with
𝑎/𝑑 ≤ 1.0, the shear force is directly transferred to the supports and a arching type of failure can occur
where the compressive strut fails.
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2.1.3. Eurocode
The Eurocode is the leading guidance for construction works in the Netherlands. Three parts are of
particular interest for design of reinforced concrete beams. In EN 1990 [15], principles are described
regarding safety, usability and durability for constructions. EN 1992-1-1 [1] describes the design and
calculations for concrete structures (bridges). Allowable inaccuracies for execution are described in
NEN-EN 13670 [16].

In EN 1992-1-1 [1], design values are specified as:

• Concrete compressive design strength 𝑓፜፝ = 𝛼፜፜𝑓፜፤/𝛾ፂ.

• Concrete tensile design strength 𝑓፜፭፝ = 𝛼፜፭𝑓፜፭፤,ኺ.ኺ኿/𝛾ፂ.

• 𝛼፜፜,፜፭ coefficient for unfavourable long term effects on strength both equal to 1.0.

• 𝛾፜ = 1.5 partial safety factor concrete; 𝛾፬ = 1.2 partial safety factor steel.

• 𝛾ፑ፝ = 1.15 partial safety factor non-linear behaviour.

Loads on Constructions
The design loads are described by EN 1991-1-1 [17]. Three type of loads are to be considered: General
loads, traffic loads and loads by cranes and machines. Partial safety factors are provided to account
for any extreme loads and dynamic load effect due to vibrations.

• Point load 𝐹 in [kN] with safety factor 𝛾ፐ = 1.5

• Variable line load 𝑞ፐ in [kN/m] with safety factor 𝛾ፐ = 1.5

• Permanent line load 𝑞ፆ in [kN/m] with safety factor 𝛾ፆ = 1.2

Service Limite State (SLS)
The limit state function for the SLS can be defined according to three principles given below.

1. Stress limits 𝜎፜ ≤ 0 [-]

2. Crack width control 𝑤፜፫ፚ፜፤ ≤ 𝑠ኺ𝜀፬፭።፫፫፮፩፬ [mm]

3. Deformations 𝑤፦ፚ፱ ≤ ፋ
ኼ኿ኺ [mm]

Ultimate Limite State (ULS)
The ULS can be checked according to three main criteria as well.

1. Moment capacity (bending stresses 𝜎፲፲)
ፌᐼᑕ
ፌᑉᑕ

≤ 1

2. Shear force (shear stresses 𝜎፱፲, 𝜎፲፱)
ፕᐼᑕ
ፕᑉᑕ

≤ 1

3. Normal force (normal stresses 𝜎፱፱)
ፍᐼᑕ
ፍᑉᑕ

≤ 1

Focus will be on shear and bending as no axial loads are applied to the benchmarks.

2.2. Finite Element Analysis
Finite element analysis (FEA) enables to design complex structures and to perform either linear or
non-linear calculations. Discrete elements form a mesh along which stresses and deformations of the
structure are described with respect to constitutive, kinematic and equilibrium relations. (Hartmann and
Katz) [18] For shear and bending, the relevant degrees of freedom are vertical displacements 𝑤, hori-
zontal displacements 𝑢 and rotations 𝜑. The accompanied stresses in a 2D plane are shear stresses
𝜎፱፲,፲፱, normal stresses 𝜎፱፱ and bending stresses 𝜎፲፲.
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For geometrically simple structures with limited deformations, linear FEA suffices to find stresses and
deformations in the service limit state (SLS). However, as large deformations or difficult geometries are
of concern, a linear analysis may be limited and give wrong results. Also an ultimate design resistance
(ULS) cannot be found by LFEA, but can be through NLFEA.

A linear analysis simplifies the problem to linear elastic behaviour of materials to allow for fast computa-
tions, which can be accurate for structures with little deformations and simple geometry. In many other
cases, large stress concentrations and wrong failure mechanism may be the result of linear analysis.
Linear analysis does not allow for yielding of material, possibly resulting in unrealistically high stresses.
Buckling or membrane state is not considered as such non-linear geometry is not allowed. The differ-
ence between linear and non-linear calculations is specified by the type of constitutive relations and
respective stiffness matrices, but also comes with additional kinematic and equilibrium conditions.

The linear stress-strain relationship is described by Equation 2.8. These relations only describe the
initial linear response of materials as can be seen for reinforcing steel and concrete in Figure 2.1. The
real behaviour is simplified significantly, and cannot account for reinforcement yielding and concrete
cracking or crushing. Yielding of reinforcement and cracking or crushing of concrete is not allowed for
SLS, but can be used to find the ULS design resistance.

𝜀 = 𝜕𝑢
𝜕𝑥 =

Δ𝑙
𝑙

𝜎 = 𝐸𝜀
(2.8)

Non-linear calculations in FEA can provide more realistic results in terms of deformations and stresses,
but it also takes a lot more computational time and to some extent extra effort of the engineer. Three
types of non-linear effects can be listed: Materials, geometry and contact. (Hartmann and Katz) [18]

1. Materials: Plastic deformations due to large stresses and/or cyclic loading.

2. Geometry: Large strains over 5‰, instability due to buckling.

3. Contact: Typically involves imposed boundary conditions which can cause large stress concen-
trations. E.g. point, line and surface contacts.

The materials type of non-linear induced effects is of particular interest for this research. By increasing
the load to the maximum design resistance, the structure will pass the linear behaviour and exhibit
non-linear behaviour until failure occurs. Cracks will develop in the concrete and steel reinforcement
may deform plastically. To minimize the effect of user factors on the model uncertainty, the guidelines
according to Hendriks et al. [3] combined with fib Model Code 2010 [2] are followed. Prescriptions on
application of constitutive models, kinematic assumptions and equilibrium conditions are discussed
accordingly.

2.2.1. Constitutive Model
The constitutive model describes the stress-strain behaviour of the materials involved: Concrete, rein-
forcement and the support and loading plates. The constitutive model is intended to describe the actual
behaviour of these material. The concrete model should include cracking and crushing behaviour, with
consecutive local strength reduction and softening behaviour expressed by Poisson’s ratio. Reinforce-
ment should capture strain hardening behaviour beyond the yield stress, until an ultimate tensile stress
is reached from which on the strain increases while incurring a loss of strength till ultimately rupture.

2.2.2. Concrete Constitutive Model
Different crack models can be applied to simulate concrete behaviour in NLFEA. A smeared crack
approach or a discrete approach can be applied. Smeared crack models use an equivalent stiffness
going to zero if the critical fracture energy 𝐺፟ is exceeded. Therefore no visual discontinuity is present
in the model. Alternatively, a discrete crack model can be used which is able to treat cracks as dis-
continuities in the model. Various studies have been performed to evaluate which method is more
appropriate. (Rabczuk et al.) [19] For reinforced concrete, a smeared crack model has shown to have
improved accuracy. Furthermore, fixed or rotating crack models can be applied. Rotating crack models
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are preferred for reinforced concrete beams with stirrups, as a fixed crack model could lead to large
stress concentrations near the tip of a crack and cause convergence problems. In contrary, a fixed
crack model has shown improved accuracy for beams without shear reinforcement. (de Putter) [7]

For NLFEA of reinforced concrete beams, it is advised to use a Hordijk tension softening curve and a
parabolic compression curve for the concrete constitutive model.

Figure 2.4: Hordijk’s tension softening curve.

𝜎 = {𝑓፭((1 + (𝑐ኻ
᎒ᑔᑣ
᎒ᑦ
)
ኽ
) exp (−𝑐ኼ

᎒ᑔᑣ
᎒ᑦ
) − ᎒ᑔᑣ

᎒ᑦ
(1 + 𝑐ኽኻ) exp(−𝑐ኼ)) 0 ≤ 𝜀፜፫ ≤ 𝜀፮

0 𝜀፜፫ > 𝜀፮
(2.9)

where 𝑐ኻ = 3.0, 𝑐ኼ = 6.93 and the ultimate strain:

𝜀፮ = 5.136
𝐺ፅ
ℎ፞፪𝑓፭

(2.10)

Figure 2.5: Concrete parabolic compression curve.

The compressive softening is based on the compressive fracture energy, which is derived from the
tensile fracture energy according to Equation 2.14.

𝑓 =

⎧
⎪⎪

⎨
⎪⎪
⎩

−𝑓፜
ኻ
ኽ
ᎎᑛ
ᎎᑔ/Ꮅ

𝛼፜/ኽ < 𝛼፣ ≤ 0

−𝑓፜
ኻ
ኽ(1 + 4 (

ᎎᑛዅᎎᑔ/Ꮅ
ᎎᑔዅᎎᑔ/Ꮅ

) − 2 ( ᎎᑛዅᎎᑔ/Ꮅᎎᑔዅᎎᑔ/Ꮅ
)
ኼ
) 𝛼፜ < 𝛼፣ ≤ 𝛼፜/ኽ

−𝑓፜(1 − (
ᎎᑛዅᎎᑔ
ᎎᑦዅᎎᑔ

)
ኼ
) 𝛼፮ < 𝛼፣ ≤ 𝛼፜

0 𝛼፣ ≤ 𝛼፮

(2.11)
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here, 𝛼፣ is the compressive strain for progressive compression part of:

{
𝛼፜/ኽ = −

ኻ
ኽ

ᑔ፟
ፄ

𝛼፜ = 5𝛼፜/ኽ
𝛼፮ = 𝛼፜ −

ኽ
ኼ
ፆᑔ
፡ ᑔ፟

(2.12)

Crack-band width
The crack bandwidth is ameasure for the crack length depending on the type and distortion of elements.
For an aspect ratio of 1:1, a Rots crack-band width suffices. For elongated elements a different crack
band model may be needed to capture the softening stress-strain relationship in the constitutive model,
for which Govindjee crack bandwidth is more appropriate. In Figure 2.6 various equivalent crack lengths
are displayed for different elements and different crack orientations.

Figure 2.6: Equivalent crack lengths for different element dimensions and crack directions. (Hendriks et al. [3])

Softening Behaviour
The softening behaviour for concrete should be included to describe the crushing of concrete and to
account for a strength reduction due to lateral tensile stresses. These are addressed as compression-
compression to include the effect of confinement, and tension-compression for the effect of lateral
cracking.

Compression-Compression
To be fully able to capture the non-linear behaviour of concrete, the effect of confinement is essential.
It would be a conservative choice to not model it, but then the crushing of concrete is not adequately
included. A suggested model for compression-compression behaviour is by Vecchio & Selby.

Tension-Compression
A reduction of the compressive strength of concrete due to lateral tensile stresses should be included.
Due to cracks the compressive strength is reduced and ignoring it would not be conservative. This
behaviour can be captured by a model of Vecchio & Collins (1993). For this application, a minimum
reduction factor is defined as 𝛽፜፫,፦።፧ = 0.4.

Fracture Energy
The fracture energy is defined as the required energy for a tensile crack to propagate of a certain unit
area. Within NLFEA the fracture energy 𝐺፟ is used to specify the strains and stresses at which concrete
cracks. This value is often determined by a concrete splitting test (three point bending on notched
beam). It depends primarily on the water/cement ratio, maximum aggregate size and concrete age.
(Strauss et al.) [11] This results in the fracture energy being very concrete specific. The formulation of
the fracture energy therefore is still under debate. However, the proposed formula in Equation 2.14 was
found to be accurate with a coefficient of variation of 20%. The mean estimates for concrete fracture
energy, compressive fracture energy and Young’s modulus can be specified as follows:

𝐺፟ = 73𝑓ኺ.ኻዂ፜፦ (2.13)
𝐺፜ = 250𝐺፟ (2.14)



2.2. Finite Element Analysis 23

𝐸ኼዂ ፝ፚ፲፬ = 𝐸፜ኺ (
𝑓፜፦
10 )

ኻ/ኽ
(2.15)

where 𝐸፜ኺ = 21.5 [𝐺𝑃𝑎] (2.16)

2.2.3. Reinforcement Constitutive Model
Reinforcement can be modelled as fully bonded (embedded) or with slip-bond interaction. Although
including slip-bond behaviour better approximates reality, assuming fully bonded reinforcement can
suffice for the design stage. It is recommended to use an elasto-plastic constitutive model with hard-
ening, for example by Von Mises criteria. The strain hardening of the reinforcement is captured in this
way. If no hardening modulus is specified, 𝐸፡ፚ፫ = 0.02𝐸፬ can be used.

Figure 2.7: Bi-linear stress-strain reinforcement curve.

2.2.4. Kinematic Compatibility
Kinematic compatibility concerns element types and size, boundary conditions and connectivity (inter-
faces). In principle, a smaller mesh size improves the accuracy of the analysis. However, it is also
comes at a cost of computational time. Typically an optimum should be reached for the relevant prob-
lem, while respecting the minimum element size as prescribed in Equation 2.17. An element size may
be determined to be sufficiently accurate for the beams, and can be expressed as a fraction of the beam
depth. Interpolation between elements may be linear or on shape. For the case of rectangular shaped
beams it is irrelevant. Lastly, a rotating crack model is preferred as most of the considered beams
contains shear reinforcement. A fixed crack model may lead to local stress accumulations which may
lead to undesired non-convergence.

In Figure 2.8 an example of a linear and non-linear element is given. The left linear element has nodes
at each corner and cannot deform along its axles. In other words, the axles will remain strait under any
loading condition. Whereas the right non-linear element can deform along its axles to better approx-
imate the real structural behaviour. A clear difference can be seen in the total number of nodes. By
adding one node per axis, complexity of the problem increases significantly, resulting in larger compu-
tational time. Nonetheless, NLFEA is becoming more popular with improving computer capacity and
improved methods for applying and assessing NLFEA.

Smaller element sizes generally provide better accuracy but calculation time increases approximately
quadratic for smaller element sizes. (Hendriks et al.) [3] Maximum element sizes for beam structures
are defined as:

2𝐷 ∶ min( 𝑙50 ,
ℎ
5)

3𝐷 ∶ min( 𝑙50 ,
ℎ
5 ,
𝑏
5)

(2.17)
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Figure 2.8: Example of linear 8-node quadrilateral element and non-linear 20-node hexahedral element. (Petrík and Ároch) [20]

Boundary Conditions
For simply supported beam elements at the support the bending moments and vertical displacements
are equal to zero.

𝑥(0) → 𝑀 = 0 and 𝑤 = 0
𝑥(𝐿) → 𝑀 = 0 and 𝑤 = 0 (2.18)

The problem can be simplified to reduce computational time by means of symmetry conditions. The
beam experiences its largest deformation at the center of the beam under symmetric loading, such that
symmetry boundary conditions can be used for zero rotation and horizontal displacement. This results
in:

𝑥(12𝐿) → 𝜑 = 0 and 𝑢 = 0 (2.19)

Interfaces
The connections for the loading and support plates can be modelled by interface conditions. The
plates are used to redistribute the point loads to the concrete and to prevent preliminary local crushing
of concrete. A low tangential stiffness of the interfaces is used to avoid the plates from contributing to
the stiffness of the concrete beam. The following values can be used:

𝐾፧ =
𝐸፜
ℎ , (ℎ = 1 𝑚𝑚) (2.20)

𝐾፭ =
𝐾፧
1000 (2.21)

The interface can be imagined as a fictitious interface of one millimeter thick concrete layer. This layer
represents a normal stiffness of concrete Young’s modulus divided by the virtual thickness of one mil-
limeter. The tangential stiffness must be much lower in order to prevent a stiffness contribution to the
beam, assuming that proper rollers were used in the experiments. A fictitious thickness of one meter
concrete can represent the tangential stiffness, resulting in the normal stiffness divided by 1000. The
following values are obtained: normal stiffness 𝐾፧=30000 N/mm3 and the tangential stiffness 𝐾፭=30
N/mm3. Interfaces between the reinforcement and concrete should also be modelled. For bond-slip
interaction this has to be done manually. For this research, the reinforcement is assumed to be fully
bonded (embedded), and the interface is generated automatically.

Bond Strength
The bond between reinforcement and the concrete concerns additional choices in modelling. The bond
strength can be modelled as fully bonded, truss bonded or beam bonded. Again, various studies have
shown advantageous and disadvantageous with respect to accuracy of the model. For assessment of
the ULS, assuming fully bonded reinforcement suffices and is easier to implement. (Hendriks et al.) [3]
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2.2.5. Equilibrium Conditions
Equilibrium conditions are related to the type of loading, load-steps, analysis control and convergence
criteria. Either displacement or load controlled analysis can be performed. For displacement controlled
analysis, a force balance and/or energy balance should be converged with respect to the convergence
criteria. (Equation 2.22) An iteration scheme has to be selected, for which a maximum iteration number
can be specified to avoid excessive loss of time due to non-convergence. A maximum number of
iterations per step of 30 is often considered appropriate, but this depends on the kinematic compatibility.

Newton-Raphson
The Newton-Raphson algorithm is used for an iterative convergence of the partial differential equations.
A first estimate is made for the displacements and forces at the nodes. A check is performed and the
iteration continues until the result is sufficiently converged within a predefined allowable margin. Critical
is the level of accuracy which comes at a cost in terms of computational time. A full Newton-Raphson
algorithm is preferred.

A convergence tolerance for the Newton-Raphson method is defined by: Hendriks et al. [3], as:

𝐿ኼ = 0, 01
𝐸𝑛𝑒𝑟𝑔𝑦 𝑛𝑜𝑟𝑚 = 0, 0001 (2.22)

where 𝐿ኼ is the norm for the unbalanced force. Using a force and energy norm leads to a displacement
controlled loading scheme. An arc-length control and line search algorithm can enhance convergen-
cence. In formula, the iteration process reads:

𝑥፧ዄኻ = 𝑥፧ −
፟(፱ᑟ)
፝፟(፱ᑟ)
𝑑𝑥 (2.23)

The iteration is terminated if the maximum number of iterations is reached, or if the result is converged
by:

|𝑥፧ዄኻ − 𝑥፧| < 𝐿፱ (2.24)

Figure 2.9: Full Newton-Raphson iteration procedure.

During the iteration the result can be converged, non-converged or divergent. In case the result is
converged, a solution is found within the specified equilibrium conditions. If the result is non-converged,
the equilibrium conditions are not met for the specific load-step. Non-converged steps are no concern
as long as converged steps are present in the model near the desired output (e.g. at the maximum
load). If divergence occurs, the iteration process is aborted and no solution could be found. Non-
convergence and divergent problems can often be solved by reducing the element size, increasing
the maximum number of iterations per step, or by adjusting the load-step. However, these actions are
accompanied with an increase in computational time.
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Arc-length Control + Line Search
To speed up the iteration process and improve convergence, an arc-length control and line search can
be activated. Arc-length control is activated to continue iteration after a snap-through or snap-back,
which is a change of direction in the load-displacement curve. A line search algorithm can be applied
to improve the initial guess of the equilibrium forces and thereby increase the convergence rate.

Load-Step
Displacement controlled load step can be performed by setting a force and/or energy norm. For ex-
ample, displacement steps of 1 millimeter can be applied for which an equilibrium force is iterated in
each step. A smaller displacement step does not necessarily improve the convergence process, as a
smaller displacement step means for each small step a new equilibrium must be found, which results
in less smooth load-displacements curves and much more computational effort.

A displacement based load-step can be activated by setting energy and force equilibrium conditions,
while for force based load steps energy and displacement based equilibrium conditions should be used.
Depending on the stiffness of the beam and its expected failure mode, the magnitude of the load-step
can be determined. A maximum displacement and a number of load-steps can be specified in Diana,
as elaborated in subsection 5.2.1.

2.2.6. Design Verification
The SLS should be checked according to three principles. (fib Model Code 2010) [2]

1. Stress limits

2. Crack width control

3. Deformations

The deflection and stresses result directly from the NLFEA, while the crack opening control should be
calculated according to Equation 2.25 where 𝑠ኺ is the space between cracks [mm] and 𝜀፬፭።፫፫፮፩፬ is the
average strain in the stirrups for shear stresses [-].

𝑤 = 𝑠ኺ ∗ 𝜀፬፭።፫፫፮፩፬ (2.25)

The ULS can be checked according to three reliability models (fib Model Code 2010) [2]

1. Global Resistance Factor method (GRF)

2. Partial Resistance Factor method (PRF)

3. Estimate of Coefficient of Variation method (ECOV)

GRF
The global resistance factor method is based on the assumption of the resistance being log-normal
distributed and uses a global analysis for mean input variables. The global resistance is considered as
a random variable for which uncertainties can be described by a global safety factor.

𝐹 ≤ 𝑅፝ , 𝑅፝ =
𝑅፦
𝛾∗ፑ𝛾ፑ፝

(2.26)

where 𝐹 is the design value of actions, 𝑅፝ the design resistance, 𝑅፦ the mean value of resistance, 𝛾∗ፑ =
1.2 a global resistance factor and 𝛾ፑ፝ = 1.06 a model uncertainty factor from fib Model Code 2010 [2].
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PRF
The partial resistance factor uses one analysis with design input parameters. The uncertainties are
separated per variable by partial safety factors. The design input values are specified as:

𝑓፜፝ = 𝑓፜፤
𝛾ፑ፝𝛾፜

𝑓፜፭፝ = 𝑓፜፭፤
𝛾ፑ፝𝛾፜

𝑓፲፝ =
𝑓፲፤
𝛾ፑ፝𝛾፬

𝐺፟፝ = 𝐺፟ኺ (
𝑓፜፝
10 )

ኺ.዁

𝐸፜፝ = 22, 000(𝑓፜፝10 )
ኺ.ኽ

(2.27)

Various safety factors are defined as 𝛾ፑ፝=1.06, 𝛾፜=1.5, 𝛾፬=1.15, leading to the definition of the
design resistance as:

𝑃 = 𝑃፮ (2.28)

It is stated that this method should not be on its own. Resistance parameters are very low, which may
result in unrealistic types of failure mechanisms. (buckling modes)

ECOV
The method estimation of coefficient of variation relies on the assumption of a log-normal distributed
resistance and involves two analysis to determine the design resistance.

𝑃 = 𝑃፮,፦
𝛾ፑፃ ∗ 𝛾ፑ

(2.29)

with 𝛾ፑፃ=1.06, 𝛾ፑ=exp(0.8𝛽𝑉ፑ), 𝛽=3.8 (lifetime), 𝛽=4.7 (one year) and the coeficient of variation
defined as:

𝑉ፑ =
1
1.65 ln(𝑃፮,፦𝑃፮,፜

) (2.30)

with 𝑃፮,፜ the ultimate load obtained by using characteristic material properties and 𝑃፮,፦ by mean mate-
rial input.

Method ECOV uses a coefficient of variation based on the characteristic and mean design resistance
for the respective resistance parameters, and estimates a safety factor based on the log-normal distri-
bution. (Cervenka) [21] Method ECOV has shown to predict results accurately as long as failure modes
are similar for both analysis. If not, the log-normal assumption is invalid and the method is inapplica-
ble and therefore lacks robustness. An extensive description on the reliability methods is described in
section 1.1.

2.2.7. Model Uncertainty
The model uncertainty 𝜃 is the main parameter used to quantify the numerical resistance with respect
to the experimental resistance. Furthermore, a coefficient of variation 𝑉 is used as ratio of the standard
deviation and mean of the model uncertainty. Various research have been performed to quantify the
model uncertainty within the NLFEA. Engen et al. [22] reported that the model uncertainty can be rep-
resented as a log-normal variable with mean 𝜇᎕ = 1.1 and standard deviation 𝜎᎕ = 0.12, resulting in a
coefficient of variation 𝑉 of 11%.

𝜃 =
𝑅፞፱፩፞፫።፦፞፧፭ፚ፥
𝑅፧፮፦፞፫።፜ፚ፥

(2.31)

𝑉 = 𝜎᎕
𝜇᎕
× 100% (2.32)
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2.2.8. Ductility Index
A ductility index was introduced by Engen et al. [5] to objectively determine the failure mode for rein-
forced concrete beams. A value of 𝜒፝፮፜፭።፥።፭፲ = 0.6 was found for the transition between a brittle and
ductile failure mode, hence, shear and bending failure. The ductility index is formulated as the ratio
of the plastic dissipated energy of the steel reinforcement with respect to the total plastic dissipated
energy in the system:

𝜒፝፮፜፭።፥።፭፲ =
𝑊፩፥,፬
𝑊፩፥,፬፲፬

(2.33)

For a ductility factor going towards one (>0.6), most of the plastic energy is taken by the reinforcement
indicating a ductile failure mechanism. When the ductility index tends towards zero (<0.6), the rein-
forcement has not contributed little to the total plastic energy dissipated in the system and the concrete
must have failed prematurely, indicating a brittle shear failure mechanism. In Figure 2.10, the ductil-
ity index is displayed against the model uncertainty. The boundary between brittle and ductile failure
mechanism is clearly indicated. Furthermore, it can be seen that the model uncertainty exhibits a larger
variance for the brittle failure mechanism than for the ductile failure mechanism.

Figure 2.10: Model uncertainty as function of the ductility index. A boundary at ፗᑕᑦᑔᑥᑚᑝᑚᑥᑪ ዆ ኺ.ዀ indicates a division between
brittle and ductile failure mode. (Engen et al. [5])

The total dissipated energy in the system𝑊፩፥,፬፲፬ can be derived from the load-displacement curve. It is
represented as the total area under the curve as the structure is unloaded after reaching its maximum
capacity.

The total dissipated energy in the reinforcing steel,𝑊፩፥,፬, can be calculated according to Equation 2.34.

𝑊፩፥,፬ = {
ፍ

∑
ኻ

1
2(𝜎፧ዅኻ − 𝜎፧)(𝜀፧ዅኻ − 𝜀፧) −𝑊 ፥,፬} ∗ 𝑉።፧፭ (2.34)

where the reinforcement elastic energy is equal to𝑊 ፥,፬ =
ኻ
ኼ ∗𝑓፲∗𝜀፲ and 𝑉።፧፭ is the volume per integration

point of the reinforcement, equivalent to the number of nodes in the reinforcement.

2.3. Probabilistic Model
As computational time is generally large for non-linear finite element analysis (NLFEA), a classical
method like Monte Carlo simulation is unfeasible. Instead a Latin hypercube sampling (LHS) strategy
can be used as proposed by Tran et al. [23], by which a much smaller sample size can result in a clear
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distribution of the design resistance. By using representative combinations, a distribution on the design
resistance can be well defined. From the found distribution the respective resistance and failure prob-
abilities can be found. For more information on probabilistic methods is referred to Jonkman et al. [24].

Reliability Levels
The different types of reliability levels are specified as:

Level O Deterministic, global safety factor (GRF)

Level I Semi-probabilistic, partial safety factors (PRF)

Level II Approximation (FORM, SORM, ECOV)

Level III Numerical, full probabilistic (MCS, LHS, NPBN)

Level IV Risk based

Accuracy of the probabilistic model can improve for higher reliability levels. GRF assumes a global
safety factor for all variables, and PRF may distinguish safety factors for different parameters. ECOV
uses an estimation on the distribution of the design value based on mean and characteristic material
properties. The opted model would be level III reliability level, for which the probability of failure can be
obtained through numerical integration. (Jonkman et al.) [24]

Limit State Functions
Limit state functions can be used to assess the probability of failure for empirical design formula’s.
These limit state functions can be defined by safety rules as described in EN 1992-1-1 [1]. Again a
difference is made between the SLS and ULS limit state functions. Limit state functions can be split
into resistance and load parts defined as:

𝑍 = 𝑅 − 𝑆 (2.35)

in which

Z<0: Failure

Z=0: Limit State

Z>0: No failure

The limit state functions for SLS are defined as combination of:

𝑍 = {
𝑠ኺ ∗ 𝜀፬፭።፫፫፮፩፬ −𝑤፜፫ፚ፜፤ [𝑚𝑚]
0 − 𝜎፱ [𝑁/𝑚𝑚2]
10 − 𝑤፦ፚ፱ [𝑚𝑚]

(2.36)

The limit state functions for ULS are defined as combination of:

𝑍 = {
𝑀ፑ፝ −𝑀ፄ፝ [𝑘𝑁𝑚]
𝑉ፑ፝ − 𝑉ፄ፝ [𝑘𝑁]
𝑁ፑ፝ − 𝑁ፄ፝ [𝑘𝑁]

(2.37)

2.3.1. Univariate Analysis
A univariate analysis is used to define the distribution of each variable and to analyse the distribution
of the results on the design resistances. In literature, it is found that the resistances are well described
by a log-normal distribution. (Graubner and Brehm) [10] For small variations, e.g. execution deviations,
a normal distribution may fit as well. Both cases would enable further multivariate analysis on the as-
sumption of the Gaussian copula. If 𝑋 is log-normal distributed, then 𝑌 = ln(𝑋) is normal distributed.
For results on 𝑋 it may be used that 𝑋 = exp(𝑌).
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2.3.2. Bivariate Analysis
For the resistance, multiple parameters can be addressed for both concrete and reinforcement. These
parameters may be correlated and their joint distribution can be included by a Cholesky decomposition
by using the covariance matrix. This procedure is further explained in section 4.3.

A copula can describe the joint distribution of two variables. A copula 𝐶 is defined as the description of
the joint distribution of two random variables 𝑋 and 𝑌. This copula is a distribution on the unit square
[u,v] ∈ [0,1]d with uniform marginal distributions on [0,1]. Every continuous bivariate distribution can
be represented by a copula. Moreover, an unique copula can be found which best describes the joint
continuous distribution according to:

𝐹ፗፘ(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐹(𝑦)) (2.38)

Dependency between the variables can be expressed by Spearman’s rank correlation coefficient 𝜌፧,
which is Pearson’s correlation coefficient but then applied on the rank of two random variables. (Genest
and Favre) [25] An attractive feature of the rank copula model is that the rank correlation coefficients are
preserved under any monotonic transformation. For example, the correlation coefficient of the ranks
is similar for 𝜌(𝑋, 𝑌) and 𝜌(𝑋ኼ, 𝑌ኼ) for the strictly positive data set. Pearson’s correlation coefficient is
defined as:

𝜌(𝑋, 𝑌) = 𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌]
𝜎ፗ𝜎ፘ

(2.39)

With 𝐹ፗ and 𝐹ፘ being the cumulative distribution functions of X and Y, Spearman’s rank correlation is
defined as:

𝑟(𝑋, 𝑌) = 𝜌 [𝐹ፗ(𝑋), 𝐹ፘ(𝑌)] (2.40)

2.3.3. Non-Parametric Bayesian Network
One way to represent complex interdependent relations is by means of a non-parametric Bayesian
network (NPBN). It is a tool for multivariate analysis, which represents dependencies between the
nodes (variables) which are connected through arcs in an acyclic graph. (Ickstadt et al.) [26] The data
can be used to construct relations between variables through arcs that represent the rank correlation
(Spearman’s 𝜌). By a NPBN, clear relations can be visualised and reviewed for a large number of
variables. Also, the NPBN can be easily updated or adapted if new information becomes available.
(Marcot and Penman) [27] The probabilities in the NPBN are defined by the factorization formula in
which 𝑝𝑎(𝑣) is the set of parents of 𝑣:

𝑝(𝑥) =∏
፯∈ፕ

𝑝 (𝑥፯|𝑥፩ፚ(፯)) (2.41)

In order to construct the NPBN, sufficient data for each variable is needed where a minimum sample
size of 1000 seems reasonable. The Gaussian copula enables for fast computations for large net-
works. However, the data may not always be Gaussian distributed which could enhance errors. Other
distributions may be used, but this slows computational speed drastically. The underlying Gaussian
normal copula is formulated in Equation 2.42. (Genest and Favre) [25]

Φ᎞(𝑥ኻ, 𝑥ኼ) = ∫
፱Ꮄ

ዅጼ
∫
፱Ꮃ

ዅጼ

1
2𝜋𝜎ኻ𝜎ኼ√1 − 𝜌ኼ

e
( ᑤᎳᎽᒑᎳᒗᎳ )

Ꮄ
Ꮍ( Ꮄᒖ(ᑤᎳᎽᒑᎳ)(ᑤᎴᎽᒑᎴ)ᒗᎳᒗᎴ )Ꮌ( ᑤᎴᎽᒑᎴᒗᎴ )

Ꮄ

Ꮄ(ᎳᎽᒖᎴ) d፬Ꮃd፬Ꮄ (2.42)

The NPBN can be validated based on a calibration score 𝑑-Cal or through the determinants of the
correlationmatrices. The determinants of the correlationmatrices are compared to a confidence interval
of 90%. The 𝑑-Cal is a measure for the ’distance’ between the correlation matrix and the empirical data,
empirical normal data and samples of the constructed NPBN. No clear consensus about the minimum
required sample size of the 𝑑-Cal exists, but a higher sample indicates a better description of the
dependencies.



2.3. Probabilistic Model 31

2.3.4. Sampling Strategy
Monte Carlo simulation is based on drawing a large number of random samples from predetermined
distributions. A sufficiently large data-set is needed to evaluate small probabilities of failure. The failure
probability can be obtained as:

𝑃 =
𝑛፟
𝑁 (2.43)

in which 𝑁 is the total number of generations, and 𝑛፟ is the total number of structural failures defined
by the limit state function. Monte Carlo simulation in NLFEA is unfeasible due to large computational
times per simulation in finite element analysis. Therefore, an alternative sampling strategy is consid-
ered: Latin hypercube sampling.

2.3.5. Latin Hypercube Sampling
As mentioned before, an efficient sampling strategy is needed due to large computational times in
NLFEA. A Latin hypercube sampling (LHS) strategy can be applied, which is an efficient form of Monte
Carlo simulation. Different variants of the classical LHS exist, which are intended to attain optimal spa-
tial variability or randomness. These two properties can directly be optimized by means of maximizing
the minimum distance, or to minimize the correlation between sample points for each subset.

First, the total space is split in sections of equal probability density 𝑃።,፣ =
ኻ
ፍ . Samples are generated

from an uniform distribution with 𝑋።,፣ ∈ [0, 1]. Only one sample point is used in each row and each
column as displayed in Figure 2.11. An iterative scheme is applied to optimise the spread amongst the
variables by minimizing correlation between samples, or to optimise spatial variability by maximizing
the minimum distance between the sampled points. The generated random uniform samples can then
be transformed to the known marginal distributions of the parameters. For this research, spatial vari-
ability was selected as optimisation criterion, which corresponds with the following optimisation rule for
maximizing the minimum distance between sample points:

max {min {𝑑(𝑋። , 𝑋፣)}} (2.44)

Figure 2.11: Example of Latin hypercube sampling with near perfect spatial and correlation characteristics. (Tran et al.) [23]



3 | Methodology
In this chapter, a description of the methodology is presented. The approach to answering the research
questions is substantiated, and an objective is formulated per sub-question. The reason behind choices
and the emerging benefits and limitations are discussed.

In chapter 2, a literature review has been performed to analyse all relevant aspects to the topic of this
research. The literature review has resulted in a collection of knowledge about reinforced concrete
beams failure mechanisms, modelling choices in NLFEA, and probabilistic sampling and assessment
tools. The model uncertainty and ductility index are essential parameters for the analysis.

The structure of the research is presented such that the research questions are answered in differ-
ent chapters as shown in Figure 1.3. After the literature review, data was collected for benchmark
reinforced concrete beams. For these benchmarks, an optimized Latin hypercube sampling strategy
is used to generate input samples of selected material parameters. NLFEA is executed to obtain the
output response in terms of the ultimate load and ductility index. The results are evaluated by a prob-
abilistic analysis. Distribution fitting is used to define a reliability model, which is compared to existing
reliability methods. Furthermore, a complex multivariate model is established by means of a non-
parametric Bayesian network. These methods together are used to accomplish the research goal to
better quantify uncertainties related to NLFEA to enhance its application for safe and efficient
determination of the ultimate limit state of reinforced concrete beams. In addition, a secondary
objective is to develop a transparent and efficient format which can be adapted to analyse different
types of reinforced concrete structures.

3.1. Data Collection
The numerical results are calibrated to experimental results to quantify the model uncertainty. Con-
ducting own laboratory tests is not feasible as a large sample of benchmarks of existential size are
desirable, which can be both time consuming and costly. Therefore, benchmarks were selected from
other experimental research. This included data concerning material properties, geometry and maxi-
mum load. A part of a collection of experiments by de Putter [7] was used. In total 48 symmetrical simply
supported beams were selected, of which 42 contained shear reinforcement. A detailed description of
the experiments and input parameters can be found in Appendix A.

It is inevitable that differences in testing procedures for the benchmarks are present. This could lead
to slightly biased results as the benchmarks originate from four different studies of which not all details
are fully described. Details concerning concrete mixture and drying for example, are not identical for
all experiments. It was supposed that these deviations were negligible compared to the other imposed
uncertainties, as large coefficients of variation for concrete parameters.

Symmetrical benchmarks were selected, as non-symmetrical beams would take approximately twice
the computational time. Prestressed beams are excluded as this would induce additional uncertainty
by consideration of prestressing losses. To ensure feasibility, it was opted to exclude prestressed and
non-symmetrical beams.

3.2. Sampling Strategy
Generally, a larger sample size results in a better description of the uncertainties. However, as compu-
tational times within NLFEA are substantial, an efficient sampling strategy is needed. A more efficient
form of the classical Monte Carlo simulation is the optimized Latin hypercube sampling strategy. Ran-
dom samples with similar statistics to a classical Monte Carlo simulation can be generated, but much

32
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less samples are needed due to the spatial optimisation of the samples. The entire sampling space is
covered whereas for Monte Carlo simulation clustering may occur.

The optimized Latin hypercube sampling method is fully elaborated in section 4.3. The sampling strat-
egy will be performed in Python1 and is illustrated in Appendix B. Uniform random samples are created,
which can be adjusted to the marginal log-normal distributions of the variables. The joint distribution of
variables can be applied through a Cholesky decomposition by a predefined correlation matrix. Rep-
resentative random samples are obtained from the resistance parameters to be used in the analysis.

As explained in the scope (section 1.3), the focus will be on quantifying model and material induced
uncertainties. A probabilistic guideline for distributions of concrete and reinforcement material param-
eters is followed from Graubner and Brehm [10]. The distribution type for concrete fracture energy was
taken from Strauss et al. [11]. The included material parameters are displayed in Table 3.1.

Table 3.1: Description of selected material input parameters for concrete and reinforcement.

Concrete Reinforcement
Compressive mean strength 𝑓፜፦ Yield strength 𝑓፲
Tensile mean strength 𝑓፜፭፦ Ultimate strength 𝑓፮
Elasticity modulus 𝐸፜ Elasticity modulus 𝐸፬
Fracture energy 𝐺፟ Poisson ratio 𝜈፬

Ultimate strain 𝜀፬፮

The coefficient of variation is given as measure for the material uncertainties. The coefficients of vari-
ations are based on the strength of a wide variety of material types, and could be reduced significantly
if the specific type of concrete and reinforcement are known. The geometry input was measured with a
±1 millimeter accuracy in most studies, due to which these uncertainties were insignificant compared
to those of the material parameters. (CoV 0.5% against 3-30%) Therefore, the geometry was consid-
ered as deterministic input. A sample size of 𝑁 = 20 per benchmark was chosen, such that in total a
data-set of approximately 1000 samples would be obtained. This was a trade-off between accuracy
and time efficiency, and based on the statement from Tran et al. [23] that an accurate description of the
design resistance could be obtained for a sample size of 𝑁 = 10 by Latin hypercube sampling.

3.3. Non-Linear Finite Element Analysis
Non-linear finite element models for the reinforced concrete beams are created by software program
Diana2. The analysis based on a total strain crack model, and contains useful features as logging of
the ductility index and analysis control by a Python interface. The model is made such that the dif-
ferent geometries of beams and combinations of resistance parameters can be assessed. To create
the model, Rijkswaterstaat’s guidelines are followed for the constitutive, kinematic and equilibrium con-
ditions. (Hendriks et al.) [3] The modelling choices were kept constant as much as possible to avoid
deviations inflicted by these modelling choices.

The benchmarks were modelled in a 2D plane with use of symmetry conditions. Even with these sim-
plifications, a single analysis could take up to 10 minutes. A displacement controlled analysis was
applied, for which different load-steps were used depending on the magnitude of displacements and
whether convergence was reached. (section C.1) This resulted in 20 samples for each of 48 bench-
marks, in total 960 analysis. Existing reliability methods (PRF,GRF and ECOV) were also evaluated
to compare the respective performance. An additional 144 analysis were obtained, which resulted in a
total data set of 1104 analysis. A full example of the used Python script to run in Diana is attached in
Appendix B.

1Python: used for sampling and probabilistic analysis
2Diana 10.4: Software used for NLFEA
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Three output files were obtained per analysis: The NLFEA model (.dnb), an Excel file (.xlsx) and a
logging file (.out). The Excel file was used to store the maximum applied external point load for each
load-step. From this file the maximum load was retrieved. The logging file was used to evaluate the
convergence per load-step and to obtain the ductility index at the maximum load-step. The solution
was accepted if convergence occurred near the maximum applied load. If not, the analysis was redone
with a smaller load-step.

Another simplification concerns the modelling of reinforcement. The reinforcement was assumed to be
fully bonded and modelled as line elements in accordance with Hendriks et al. [3]. This holds as advan-
tage that the anchorage of the reinforcement does not need to be modelled in detail and could be used
as most benchmarks contained externally anchored reinforcement. However, the transfer of stresses
between the reinforcement and concrete is thereby idealised, and Poisson’s effect for reinforcement is
also disregarded. This could induce a slight overestimate of the resistance. Bond-slip interaction mod-
els do exist, e.g. Shima, but this requires modelling of interfaces and additional uncertainties which
were unfeasible for the opted large amount of analysis to be performed.

The uncertainties for concrete were taken into account by prior known marginal distributions from liter-
ature. Concrete however, is eminently a heterogeneous material and shows inconsistencies along the
beam. The anisotropic character of concrete could be taken into account by spatial variability along
the beam, which could reduce the variance of the model uncertainty. For simplicity however, concrete
was modelled as an isotropic material per single analysis. As a consequence, the results should be
used with caution for larger beams as no size effect was incorporated. The size effect could induce a
strength reduction for larger structures.

3.4. Probabilistic Analysis
A probabilistic analysis is used to evaluate the obtained results. The probabilistic analysis consists of
a univariate analysis by distribution fitting and statistical hypothesis test. Distribution fitting is used to
obtain distributions for the model uncertainty, which can be compared to findings from other research.
This could lead directly to safety factors and propositions for a reliability model.

In literature it is found that resistance can typically be fitted by either a normal or log-normal distribution.
The brittle and ductile failure mechanisms are separated by the ductility index. For both, a normal and
log-normal distribution are fitted by a probability density function (PDF) and cumulative distribution func-
tion (CDF) to give a visual representation. The goodness of fit is quantified by a Kolmogorov-Smirnov
test (KS-test) for a prescribed confidence level. The KS-test verifies if the sample originates from the
fitted distribution for the specified confidence level by comparing the distance between the empirical
and fitted distribution. If no proper fit would be obtained, different types of distributions and verification
methods could be considered.

Welch’s test can be used to indicate whether the separated failure mechanisms indeed are from two
different distributions. For both failure mechanisms the fitted distributions may result in safety factors
for a given reliability level, 𝛼 = 0.8 and 𝛽 = 3.8 for a 50 year lifetime.

3.5. Comparison with Existing Models
The proposed model, based on the ductility index, will be compared to existing reliability models to
underline its performance in terms of accuracy and robustness. The benchmarks will be analysed with
the methods PRF,GRF and ECOV. The respective performances are quantified by the mean and coef-
ficient of variation of the model uncertainty. Robustness is difficult to quantify, but comments are made
whether the methods dysfunction as failure modes are predicted incorrectly.
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3.6. Non-Parametric Bayesian Network
A NPBN is a powerful tool that enables fast computation of conditional probabilities given specification
of input parameters. The standalone multivariate NPBN was constructed in Uninet3. An user-friendly
interface enables clear visualisation of the variables and relations. Only the Gaussian copula is avail-
able, such that it needs to be validated whether the data can be represented by the Gaussian copula.
The most important parameters were included in the model. The dependence between variables was
based on physical logic. The parameters of concrete, reinforcement and geometry were assumed in-
dependent, but were all related to the output of maximum load and ductility index.

To validate the NPBN, aMatlab4 toolbox was used. The model can be validated through comparing the
empirical data, empirical normal data and the simulated Bayesian network data. The validation could
be performed based on the determinants of the respective correlation matrices, but this is known to
be a sensitive indicator. (Hanea et al.) [28] Instead, the model can be validated based on a calibration
distance score, 𝑑-Cal. No clear consensus exists about the magnitude of the calibration for validation,
but generally a larger value implies a better model.

The model will also be tested to a random selection of input parameters that are captured within the
data-set. Three virtual beams could indicate if the order of magnitude of the standalone NPBN agrees
with the numerical output by NLFEA.

3Uninet: Software used for constructing NPBN
4Matlab: used for validation of NPBN by toolbox BANSHEE



4 | Latin Hypercube Sampling
In this chapter the sampling strategy is described. First, the marginal distributions of the material
properties are described. Secondly, correlation between certain variables is described by means of a
correlation matrix. The optimised Latin hypercube sampling strategy is applied and explained in de-
tail, including the Python script in Appendix B. The sampling strategy includes transformations from
the uniform to log-normal samples, and correlation is included by a Cholesky decomposition with the
correlation matrix. A sample size of 𝑁 = 20 per benchmark with combinations of nine material parame-
ters was attained. The types of distributions and correlation matrices are taken from probabilistic code
Graubner and Brehm [10]. The distribution for concrete fracture energy was taken from Strauss et al. [11].

4.1. Marginal Distributions
In literature, resistance parameters are found to be well described by normal or log-normal distribu-
tions. The mean input values are used from the selected benchmarks when possible. However, not
all parameters were tested and therefore also not specified. For concrete, often cubic compressive
tests were performed from which only the mean concrete compressive strength was measured. For
reinforcement testing was also limited, and often only the yield strength was specified. The mean input
for other concrete parameters were then derived from the mean concrete compressive strength and
reinforcement yield strength (𝑓፜፦ and 𝑓፲) as shown in Table 4.1.

Table 4.1: Design formula’s for mean input variables of concrete and reinforcement. (fib Model Code 2010) [2]

Parameter Formula Condition

Concrete characteristic compressive strength 𝑓፜፤
Concrete mean compressive strength 𝑓፜፦ = 𝑓፜፤ + 8

Concrete mean tensile strength 𝑓፜፭፦ = {
0.30𝑓ኼ/ኽ፜፤
2.12 ln(1 + 𝑓፜፦/10)

for CC ≤ C50
for CC > C50

Concrete Young’s modulus 𝐸፜ = 21, 500(𝑓፜፦/10)ኻ/ኽ
Concrete Poisson ratio 𝜈፜ = 0.20
Concrete fracture energy 𝐺፟ = 73𝑓ኺ.ኻዂ፜፦
Concrete compressive fracture energy 𝐺፜ = 250𝐺፟

Reinforcement yield strength 𝑓፲
Reinforcement ultimate strength 𝑓፮
Steel Young’s modulus 𝐸፬
Steel Poisson ratio 𝜈፬ = 0.3
Steel ultimate strain 𝜀፬፮ = 25‰

The marginal distributions of the material parameters are specified in Table 4.2. The coefficient of
variation (CoV) is specified and shall not be mistaken as the covariance (COV). The coefficient of
variation is related to the standard deviation 𝜎 and mean value 𝜇 as:

𝐶𝑜𝑉 = 𝜎
𝜇 (×100%) (4.1)
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Table 4.2: Description of the used material parameters with their marginal distributions. (Graubner and Brehm, Strauss
et al.) [10,11]

Parameter description Symbol Distribution Mean CoV
Concrete
Compressive mean strength 𝑓፜፦ LN 1.0 0.06
Tensile mean strength 𝑓፜፭፦ LN 1.0 0.30
Elasticity modulus 𝐸፜ LN 1.0 0.15
Fracture energy 𝐺፟ LN 1.0 0.20

Reinforcement
Yield strength 𝑓፲ LN 𝑓፲፬፩𝛼 exp(−𝑢𝜈) ∗ 𝐶 0.07
Ultimate strength 𝑓፮ LN 𝐵 ∗ 𝐸[𝑓፮] 0.04
Elasticity modulus 𝐸፬ LN 𝐸፬፩ 0.03
Poisson ratio 𝜈፬ LN 𝜈፬፩ 0.03
Ultimate strain 𝜀፬፮ LN 𝜀፮፬፩ 0.06

where

𝛼 = 1.0, spatial position factor
𝑢 = ∈ [-1.5; -2.0], factor for distance between nominal and mean value
𝐶 = 20 MPa, reduction difference yield strength mill test and static
𝐵 = 1.5 for structural carbon steel

The used coefficients of variation are relatively large as they account for a broad type of concrete
mixture and reinforcing steel. Significant reductions on the coefficients of variation can be obtained if
specific types of concrete and reinforcement are known. For example, in Strauss et al. [11] a maximum
coefficient of variation for concrete tensile strength of 16.8% was found instead of the applied 30% from
Graubner and Brehm [10].

4.2. Correlated Variables
Some of the reinforcement parameters are correlated, as are reinforcement yield and ultimate strength
(𝑓፲ and 𝑓፮). The correlation is specified by means of a correlation matrix. The marginal samples are
first generated, after which correlation can be added by a Cholesky decomposition. The correlation
matrix for reinforcement is specified below for the order of parameters 𝑓፲ , 𝑓፮ , 𝐸፬ , 𝜈፬ , 𝜀፬.

𝑅 =
⎡
⎢
⎢
⎢
⎣

1 0.75 0 0 −0.45
1 0 0 −0.60

1 0 0
1 0

1

⎤
⎥
⎥
⎥
⎦

(4.2)

The following relation is used to convert the correlation matrix to the covariance matrix:

𝐶𝑂𝑉(𝑋, 𝑌) = 𝜌ፗፘ ∗ 𝜎ፗ ∗ 𝜎ፘ (4.3)

which can be described in matrix notation as:

𝑆 = 𝐷᎟ ∗ 𝑅 ∗ 𝐷᎟ = 𝐿 ∗ 𝐿ፓ (4.4)

where S is the covariance matrix, D is the diagonal matrix of standard deviation and R is the correla-
tion matrix. By applying the Cholesky decomposition, the covariance matrix S can be written as the
product of a lower triangular matrix 𝐿 and the transposed matrix 𝐿ፓ. The desired correlated samples
can be obtained by multiplying the Cholesky decomposed lower triangular covariance matrix 𝐿 with the
standard normal sample matrix.
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For the concrete parameters no correlation is specified in Graubner and Brehm [10], but the mean values
are derived from the concrete mean compressive strength according to Table 4.1. The concrete param-
eters are not necessarily uncorrelated, but one clear definition is difficult to specify as it is not possible
to perform tensile splitting tests and compressive tests on the same specimen. Furthermore, different
micro-scale aspects contribute to concrete behaviour. This includes: aggregate mixture, water/cement-
ratio, curing conditions, cement type and additives. The aggregate size for example is of large influence
on the concrete tensile strength. This is difficult to incorporate due to a lack of information and would
result in an excessive analysis. Therefore, the mean concrete parameters were derived from design
formula’s and their marginal distributions were assumed independent.

4.3. Sampling Procedure
An optimized Latin hypercube sampling strategy has been applied, for which the Python script is at-
tached in Appendix B. Initially, random samples were generated from a uniform distribution 𝑈 ∼ (0, 1)
with Latin hypercube conditions. Spatial optimisation was applied by 10,000 iterations per subset, as
described in subsection 2.3.5. These random samples 𝑋 ∈ [0, 1] were then transformed to a random
normal sample 𝑌ፍ by the inverse of the normal cumulative distribution function.

𝑌ፍ = 𝐹ዅኻ(𝑋)

𝐹(𝑋; 𝜇ፘ; 𝜎ፘ) =
1

𝜎√2𝜋
∫
፱

ዅጼ
exp((𝑡 − 𝜇)

ኼ

2𝜎ኼ )𝑑𝑡
(4.5)

The mean value and standard deviation for the normal distribution were converted from the specified
log-normal distribution 𝐿𝑁 ∼ (𝜇ፙ , 𝜎ፙ) by:

𝜇ፘ = ln( 𝜇ፙ
√𝜎ኼፙ + 𝜇ኼፙ

)

𝜎ፘ = √ln(1 +
𝜎ኼፙ
𝜇ኼፙ
)

(4.6)

The obtained normal distribution is then transformed to the desired log-normal distribution by:

𝑍ፋፍ = exp(𝑌ፍ) (4.7)

An example for this transformation to obtain the uncorrelated concrete parameters 𝑓፜፦ and 𝑓፜፭፦ is
shown in Figure 4.1.

(a) Uniform random samples ፔ ∼ (ኺ, ኻ). (b) Transformed log-normal random samples ፋፍ ∼ (᎙ᑑ , ᎟ᑑ).

Figure 4.1: Transformation of ፍ ዆ ኼኺ random uniform samples to random log-normal samples that suffice the marginal distribu-
tions of ᑔ፟ᑞ and ᑔ፟ᑥᑞ.
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The reinforcement parameters are sampled in a similar way, but also includes correlation between pa-
rameters. An additional transformation by Cholesky decomposition was required. The standard normal
random samples were transformed to normal correlated samples, after which they were transformed to
the desired correlated log-normal parameters. The correlation matrix of a random sample is depicted
in Equation 4.8, which despite some deviations caused by the small sample size (𝑁 = 20), shows
resemblance with the correlation matrix in Equation 4.2.

𝑅፬ፚ፦፩፥፞ =
⎡
⎢
⎢
⎢
⎣

1.00 0.76 0.05 0.24 −0.41
0.76 1.00 0.11 0.28 −0.70
0.05 0.11 1.00 0.09 −0.03
0.24 0.28 0.09 1.00 0.09
−0.41 −0.70 −0.03 0.09 1.00

⎤
⎥
⎥
⎥
⎦

(4.8)

The Cholesky decomposition is performed on the standard normal 𝑁 ∼ (0, 1) samples. After which
they were transformed to the desired normal distribution with converted mean and sigma 𝑁 ∼ (𝜇ፘ , 𝜎ፘ).

𝑌ፍ = 𝜎ፘ ∗ 𝑋 + 𝜇ፘ (4.9)

The resulting samples are shown in Figure 4.2. The positive correlated, negative correlated and un-
correlated samples are clearly visible. In these figures, the axes are not transformed.

(a) Positive correlated ᑪ፟ and ᑦ፟ (b) Negative correlated Ꭸᑤᑦ and ᑦ፟ (c) Uncorrelated ፄᑤ and ᑦ፟

Figure 4.2: Reinforcement samples obtained after Cholesky decomposition to correlated random samples for ፍ ዆ ኼኺ. In (a)
positive correlation of ᎞ ዆ ኺ.዁኿, in (b) negative correlation of ᎞ ዆ ዅኺ.ዀኺ and in (c) no correlation.

4.4. Summary
Representative combinations of ninematerial parameters for concrete and reinforcement were obtained
through an optimized Latin hypercube sampling strategy. For each of 48 benchmarks, 20 random com-
binations of parameters were used, resulting in 960 analysis with 8640 different material parameters.

The distribution types were taken from Graubner and Brehm, Strauss et al. [10,11], and the mean input
parameters were derived through design formula’s from fib Model Code 2010 [2]. Due to unspecified
characteristics for concrete and reinforcement types, relatively large coefficients of variation were taken
into account. The variation could be reduced significantly if specific material types and their distribu-
tions would be used.

The samples were generated on the uniform space with Latin hypercube conditions and spatial opti-
misation was implemented through an iterative procedure of 10.000 iterations per sampling layer. The
uniform samples were transformed to the log-normal marginal distributions of concrete parameters. For
reinforcement, the samples were transformed to normal standard variables in advance of the Cholesky
decomposition to include correlation. These correlated standard normal samples could then be trans-
formed to the desired log-normal correlated samples.

The optimized Latin hypercube sampling strategy has shown to result in stratified samples which can
be used as input for the NLFEA. The statistical properties and marginal distributions of random samples
for concrete and the correlated samples for reinforcement are well represented in the samples.



5 | Non-Linear Finite Element Model
In this chapter, a description is given on how the benchmark beams are modelled within NLFEA. First,
the geometry and loading conditions of the beams are described including the mechanical schemes for
shear and bending. Furthermore, the choices regarding constitutive, kinematic and equilibrium relations
are elaborated. At last, the numerical and experimental failure modes are compared by evaluation of
crack patterns of the numerical model and by assessment of the ductility index.

5.1. Benchmark Beams
The benchmarks were either tested in one- or two-point loading. Typically, the one-point loading con-
figuration was used for benchmark expected to fail in shear, while the two-point bending was used for
benchmarks expected to fail in bending. The four-point bending test exerts a constant bending mo-
ment along the mid-span, whereas the three-point bending test exerts a constant shear force over the
span. In Figure 5.1, a schematic overview of the benchmark test-set up with dimensions and shear and
bending diagrams is displayed. The bending and shear diagrams display the contribution of external
loads only, and do not include the effect due to self-weight of the beam. The configuration of shear
reinforcement is not displayed as it varied per benchmark. For the full details of benchmarks is referred
to Appendix A.

(a) One-point loading. (b) Two-point loading.

Figure 5.1: Test arrangement with bending moment and shear force diagrams for three- and four-point bending.

The following parameters can be listed as geometry input of the model:

𝑏፰ Beam width [mm]

ℎ Beam height [mm]

𝑑 Beam effective depth [mm]

𝑎/𝑑 Shear over depth ratio [-]

𝜌፥ , 𝜌፬ Ratio longitudinal/shear reinforcement [%]

𝑠 Horizontal spacing of web reinforcement [mm]

𝐴፩፥ፚ፭፞ Area loading/support plate [mm2]

40



5.2. Modelling Choices 41

where
𝜌 = 𝐴

𝑏፰𝑑
(×100%) (5.1)

𝐴፩፥ፚ፭፞ = 𝑙 ∗ 𝑤 [𝑚𝑚ኼ] (5.2)

5.2. Modelling Choices
The benchmarks were modelled in a 2D plane in software program Diana. By using a 2D simulation,
the needed calculation time can be decreased significantly. Although in 3D the actual problem can
be fully replicated, a 2D analysis can give accurate results for the subjected geometries and for the
purpose of this research.

Symmetry of the beams was used to further reduce computational time per analysis. Using symmetry
at the middle of the beam gives similar results as for analysing the full length of the beam, given that the
loading and geometry conditions are perfectly symmetrical. A correct symmetry condition should be
put in place. This symmetry condition yields that the horizontal displacement is restricted (𝑢፡ = 0) and
the rotation should be zero (𝜙 = 0). In Figure 5.2, a 2D model of a four-point bending test is displayed
with use of symmetry conditions. The beam is vertically supported with a roll support at the left support
plate. Horizontal and rotational restriction are imposed by a line support as symmetry conditions at the
mid-span of the beam. By reviewing half of the problem, also the applied load should be divided by two.

(a) 2D model of four-point bending with symmetry conditions.

(b) Mesh layout for element size equal to ፡/ኻኺ.

Figure 5.2: Example of NLFEA model for benchmark B-H2 from Ashour [29].

Modelling choices were kept constant as much as possible to prevent bias in the results. This in-
cludes for example the reinforcement and concrete constitutive models, element size ℎ/10, conver-
gence norms and maximum number of iterations. A full overview of the used constitutive, kinematic
and equilibrium relations is displayed in Table 5.1. The modelling choices were made based on Hen-
driks et al. [3] as discussed in section 2.2. To enable an automated process for a large sample of anal-
ysis, some simplifications were made. These simplifications and limitations are mentioned accordingly.

The reinforcement ismodelled as 2D line elements with an equivalent area for weight purposes. Hereby,
only axial strains and stresses are taken into account. The effect of transverse strain within the rein-
forcement, Poisson’s effect, is neglected. The reinforcement is assumed to be fully bonded and is
embedded within the concrete. The advantage comprises that a detailed anchorage and interfaces for
the bond-slip behaviour between reinforcement and concrete do not need to be modelled. As a con-
sequence, the transfer of stresses between the reinforcement and concrete is idealised, which could
induce a slight overestimation of the actual strength.
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Information about the support and loading plates was not always specified. For some benchmarks, the
dimensions were assumed to be equal to the beam width and a length of 150 millimeters if unspeci-
fied in the research. The loading and support plates were modelled as linear elastic stiff elements to
redistribute the stresses from the applied point load and point support to the concrete. The connection
between the plates and concrete was modelled by an interface that contained a high normal stiffness
with respect to the local axis to transfer the vertical stresses. A low shear stiffness was used to avoid
the plates from contributing to the stiffness of the beam, which could yield a higher overall strength.

For uncracked concrete, a constant Poisson’s ratio equal to 𝜈፜ = 0.20 was assumed. For higher con-
crete strengths (CC ≥ 50), Poisson’s ratio could typically reduce to 𝜈፜ = 0.10 − 0.15. This can be
regarded a conservative assumption as the tensile transverse strain and stresses for high concrete
class may be overestimated, which causes concrete cracking and ultimately failure. For cracked con-
crete, a Poisson’s ratio of zero is applied amidst the softening behaviour. Furthermore, constant values
for the specific weights of concrete and reinforcement were assumed constant as 𝜌፜ = 2400 kg/m3 and
𝜌፬ = 7800 kg/m3. A full example of the Python script used to perform the NLFEA in Diana 10.4 is at-
tached in Appendix B.

5.2.1. Load-Step & Convergence
Displacement-controlled loading was used for the analysis, similar to the testing procedure of most
benchmarks. The load-step is inserted as 𝑥𝑥(𝑦𝑦), where 𝑥𝑥 represents the magnitude of the displace-
ment per step, and 𝑦𝑦 is the total number of loading steps to be performed. Per step, a maximum
number of iterations was set equal to 40 to avoid excessive iterations and time consumption. This
may lead to non-converged steps, which is not an issue as long as convergence is reached for critical
load-steps. A check is performed in Python to see the status of the three steps before and after the
maximum load. In case of converged results near the maximum load, the resulting maximum load was
accepted. If non-convergence occurred, a smaller increment with a larger total of load-steps was se-
lected to redo the analysis. The non-convergence can be explained by the fact that the maximum load
often comes with a deflection of the load-displacement curve due to concrete cracking, which takes
additional effort to find equilibrium for. At the sime time, an optimal load-step and maximum number of
iterations are desired to limit the computational time. The applied load-steps per beam are displayed
in section C.1.
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Table 5.1: The applied solution strategy including constitutive models, kinematic assumptions, equilibrium conditions and inter-
faces.

Concrete Constitutive Model
Material model Total strain crack model
Crack orientation Rotating
Element type Quadratic (CQ16M)
Tensile curve Hordijk
Crack bandwidth Govindjee
Tensile reduction model Damage based
Minimum reduction factor 𝛽፜፫ = 0.4
Residual tensile strength 0 MPa
Compression curve Parabolic
Compression reduction model Vecchio and Collins (1993)
Residual compressive strength 0 MPa
Confinement model Selby and Vecchio
Density 2400 kg/m3

Reinforcement Constitutive Model
Material model Von Mises plasticity
Bond type Embedded
Material model Elasto-plastic with hardening
Element type Truss element
Density 7800 kg/m3

Kinematic Compatibility
Element class Regular plane stress
Integration scheme Gaussian 3x3
Mesh order Quadratic
Mid-side node location Linear interpolation
Element size ℎ/10
Aspect ratio 1:1 (where possible)

Equilibrium Conditions
Type Displacement-controlled
Load-step Variable
Analysis control Arc-length + line search
Iteration scheme Full Newton-Raphson
Energy norm 0.0001
Force norm 0.01
Max. iteration 40

Interfaces
Element type Linear elastic
Element type 2D line (CL12I)
Integration scheme 4 point Newton-Cotes
Interpolation type Quadratic
Shear stiffness 30000 N/mm3

Normal stiffness 30 N/mm3
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5.3. Numerical Output
The numerical output to determine the model uncertainty and failure mode is retrieved as the maximum
external load and the ductility index. Other parameters like the displacement, crack widths, strains and
stresses are also logged, but only used for indirect analysis.

𝑃፮ Ultimate load (ULS) [kN]

𝜒 Ductility index [-]

The mean numerical load and the experimental maximum load are displayed in Figure 5.3. The brittle
(red) and ductile (blue) failure mechanisms are objectively determined by the ductility index boundary
𝜒 = 0.6. Results above the black dotted line indicate a numerical overestimation, and beneath indicates
underestimation. The gray shaded area indicates 20% over- or underprediction. It can be observed that
the ductile failure mechanism is estimated with higher accuracy, but in some cases also over-predicts
the ultimate limit state capacity. The mean model uncertainty and coefficient of variation for the 48
benchmarks can be expressed as 𝜇᎕ = 1.16 and 𝐶𝑜𝑉 = 0.144.

Figure 5.3: Mean numerical load displayed against the experimental load for 48 benchmarks. Markers under the dotted line
represent numerical underestimation, and above indicate overestimation.

5.3.1. Model Uncertainty & Ductility Index
The model uncertainty is a measure for the accuracy of the numerical resistance with respect to the
experimental resistance. The ductility index is formulated as the ratio of the plastic dissipated energy
in the reinforcement over the total dissipated energy in the system, as rephrased in Equation 5.3.

𝜃 =
𝑅፞፱፩
𝑅፧፮፦

; 𝜒 = 𝑊፬፭፞፞፥
𝑊፬፲፬፭፞፦

(5.3)

The ductility index can be logged in the output file. Logging can be activated by ’Analysis/Logging’ −→
’Add energy’. The output files were then used to retrieve the ductility index per load-step and were
selected at the load-step where the maximum load occurred. A validation for the implementation of the
ductility index in Diana was performed by de Putter [7].

The ductility index was retrieved at the maximum load-step, but it can be argued whether it should be
derived some load-step(s) behind the maximum load as the beam would then have truly failed. How-
ever, in case of a brittle failure mode the concrete fails and the reinforcement plastic energy would
increase, which then could indicate an erroneous ductile failure mode. In case of a ductile failure, the
opposite would occur and a wrong brittle failure mechanism could be assigned. The derivative of the
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ductility index shows agreement with the failure modes, and could be used as indicator of the failure
mode by the relative change of the ductility index between the maximum load-step and some load-
step(s) afterwards. This relation is further discussed and displayed in section C.2.

Figure 5.4: Scatter plot of the model uncertainty against the ductility index for 960 analysis. Ductile and brittle failure modes are
distinguished by ductility index boundary Ꭴ ዆ ኺ.ዀ.

In Figure 5.4, a scatter plot of the model uncertainty against the ductility index for 960 samples is
shown. The proposed boundary of 𝜒 = 0.6 is used as distinction between a ductile and brittle failure
mode. Furthermore, a distinction is made for beams without shear reinforcement (green). From the
graph, an higher model uncertainty and variance can be observed for the brittle failure mechanism
(red&green). Generally, the brittle failure mechanism is more difficult to predict, and as concrete failure
is the main cause of brittle failure, the larger variance can be explained by the heterogeneity of concrete
and accompanying larger coefficients of variation. The ductile failure mechanism (blue) shows a much
smaller variance and higher accuracy, although the resistance is also overestimated more often.

5.3.2. Ductility Index Boundary
The numerical failure mode can be determined subjectively by evaluating the crack patterns, stresses
within the reinforcement and the deformed state. Beside, the ductility index can be used as an objec-
tive measure for the failure mode. A comparison between the subjective visual failure mode based on
the deformed finite element model and the objective failure mode based on the ductility index is given
below. Separate sections were appointed for which random selected samples were visually inspected.

A first distinction can be observed for 𝜒 ≤ 0.3𝜒 ≤ 0.3𝜒 ≤ 0.3. Most of these results can be explained by the layout of
the beams as they do not contain shear reinforcement. This includes beams numbers: 20,21,22,30,31
and 32 (green). The variance is slightly larger and the model uncertainty higher, which can be sup-
ported by findings from de Putter [7] that a fixed crack model might be more suitable for beams without
shear reinforcement. The typical failure mechanism observed is a diagonal shear failure, as shown in
Figure 5.5, where 𝜒 = 0.13. One exception involves beam index 8: This beam can be appointed as
an over-reinforced beam with a very high concrete strength. The low ductility index may have been
caused by discretization problems near the loading plate, as relatively large elements accompanied
with a small concrete compressive zone could have induced a spike in the plastic dissipated energy by
the concrete. It was found later that this issue could be resolved by a smaller element size (ℎ/20).

Secondly, the brittle failure mechanism for 0.3 < 𝜒 ≤ 0.60.3 < 𝜒 ≤ 0.60.3 < 𝜒 ≤ 0.6 is reviewed. The crack pattern for the brittle
failure mode is displayed in Figure 5.6. Several diagonal shear cracks have developed between the
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Figure 5.5: Crack strain for beam index 20 (BS-OA3) without shear reinforcement and Ꭴ ዆ ኺ.ኻኽ, showing diagonal shear failure.

shear reinforcement. The concrete strength is too low to absorb the transverse tensile stresses in the
concrete compressive struts. Although it is appointed as a brittle failure mode, warnings before failure
are given by crack development along the shear reinforcement.

Figure 5.6: Crack strain for beam index 17 (BS-C3) with shear reinforcement and Ꭴ ዆ ኺ.኿ኺ, showing diagonal shear failure.

A visual inspection for failure mechanisms between 0.60 < 𝜒 ≤ 0.650.60 < 𝜒 ≤ 0.650.60 < 𝜒 ≤ 0.65 is performed to substantiate the
correctness of the failure mode boundary. Especially from an engineering point of view, it is undesirable
to overlook a brittle failure mechanism as this could lead to sudden failure. In Figure 5.7, the deformed
model and crack strains are displayed at the maximum load in (a) and one load-step afterwards in (b).
A brittle diagonal shear failure can be observed, while the ductility index varies from 𝜒 = 0.647 at the
maximum load to 𝜒 = 0.590 at one load-step afterwards. The reinforcement had not reached the yield
strength. In Table 5.2 other benchmarks are evaluated to further investigate the failure modes. From
the observations, brittle failure mechanisms would still occur up till 𝜒 = 0.652, indicating that a higher
boundary could be more appropriate. Some contradicting results are obtained as a ductile failure mode
was observed for 𝜒 = 0.656 and brittle again for 𝜒 = 0.670. The numerical observed failure modes
indicate a boundary between 0.65 < 𝜒 ≤ 0.670.65 < 𝜒 ≤ 0.670.65 < 𝜒 ≤ 0.67, which is higher than proposed by Engen et al. [5]. A
better definition of the ductility index boundary might be obtained by distinction of the longitudinal and
shear reinforcement, or by evaluating the relative change of the ductility index after occurrence of the
maximum load.

Table 5.2: Visual inspected failure mechanisms for benchmarks with a ductility index between ኺ.ዀኺ ጾ Ꭴ ጾ ኺ.ዀዂ.

Sample id. 𝜒 Visual Failure Mechanism

41_18 0.631 Brittle, diagonal shear failure
36_18 0.633 Brittle, diagonal shear failure
8_7 0.638 Quasi-brittle, concrete crushing
36_5 0.647 Quasi-brittle, concrete crushing
44_16 0.652 Brittle, diagonal shear failure

5_0 0.656 Ductile, yielding reinforcement
40_13 0.670 Brittle, diagonal shear failure
8_17 0.676 Ductile, yielding reinforcement

At last, a ductile failure mode is shown in Figure 5.8 for 𝑋 > 0.65𝑋 > 0.65𝑋 > 0.65. Flexural cracks can be observed and



5.3. Numerical Output 47

(a) At the maximum load. (Ꭴ ዆ ኺ.ዀኾ዁)

(b) At one load-step behind maximum load. (Ꭴ ዆ ኺ.኿ዃኺ)

Figure 5.7: Crack strain for beam index 36 (B311) with shear reinforcement, showing diagonal shear failure.

the reinforcement yields till its ultimate strength is reached and failure occurs. The ductility index at the
maximum load equals 𝜒 = 0.94.

Figure 5.8: Crack strain for beam index 37 (B312) with shear reinforcement and Ꭴ ዆ ኺ.ዃኾ, showing flexural tension failure.

5.3.3. Failure Mode Prediction
An important aspect of the analysis is whether the experimental failure mechanism is captured by the
numerical predicted failure mode. A comparison of the objective numerical failure mode and experi-
mental failure mode is given in Table 5.3. A distinction was made based on the brittle or ductile failure
mode for 𝜒 = 0.6. Furthermore, the numerical load-displacement curve is compared to the available ex-
perimental load-displacement curves in section C.3, as this also could be used as indication to whether
the numerical model describes the experimental behaviour properly.

Some deviations of the predicted failure mode may occur as material uncertainties could lead to a dif-
ferent failure mode than the one observed experimentally. As the total space for material uncertainties
was used as input, the actual failure mode should be observed ate least once in the predicted failure
modes.

From Table 5.3, it can be observed that the majority of predicted failure modes agree with the exper-
imental failure mode. All samples do capture the correct failure mode within the 20 samples at least
once. Three beams however, can be appointed to have an excess of the wrong failure mode. This
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Table 5.3: Comparison of experimental failure mode with the numerical failure modes based on Ꭴ ዆ ኺ.ዀ.

# Beam Ductile Brittle Experimental # Beam Ductile Brittle Experimental

0 20 0 Ductile 24 0 20 Brittle
1 20 0 Ductile 25 0 20 Brittle
2 20 0 Ductile 26 0 20 Brittle
3 20 0 Ductile 27 0 20 Brittle
4 20 0 Ductile 28 0 20 Brittle
5 18 2 Ductile 29 1 19 Brittle
6 20 0 Ductile 30 0 20 Brittle
7 16 4 Ductile 31 0 20 Brittle
8 6 14 Ductile 32 0 20 Brittle
9 0 20 Brittle 33 20 0 Ductile
10 0 20 Brittle 34 20 0 Ductile
11 0 20 Brittle 35 20 0 Ductile
12 0 20 Brittle 36 18 2 Ductile
13 0 20 Brittle 37 20 0 Ductile
14 0 20 Brittle 38 20 0 Ductile
15 0 20 Brittle 39 20 0 Ductile
16 0 20 Brittle 40 20 0 Ductile
17 0 20 Brittle 41 3 17 Ductile
18 0 20 Brittle 42 20 0 Ductile
19 0 20 Brittle 43 20 0 Ductile
20 0 20 Brittle 44 15 5 Ductile
21 0 20 Brittle 45 5 15 Ductile
22 0 20 Brittle 46 20 0 Ductile
23 0 20 Brittle 47 20 0 Ductile

holds for beam index 8, 41 and 45. For all three, most numerical failure modes were categorised as
brittle while a ductile failure mode was expected. Furthermore, it can be seen that for the brittle failure
modes (beams 9-32) almost all numerical failure modes correspond to the experimental brittle failure
mode, except one for beam 29. For the beams failing in a ductile manner, the number of correct pre-
dicted failure modes was much lower. (beams 0-9 and 33-47)

In total 54 shear failures were predicted where ductile failure mechanisms were expected. On the
opposite, only one ductile failure mode was predicted where experimental shear failure occurred. A
correct prediction of 94.3% was obtained for 𝜒 = 0.6. The boundary of 𝜒 = 0.65 better agreed with the
numerical observed failure mode as discussed in subsection 5.3.2, but it would result in a decrease
of the correct predicted experimental failure mode to 91.8%. Therefore, the boundary of 𝜒 = 0.6 was
maintained.

Several explanations are possible for the excess of wrong predicted ductile failure modes. As can be
seen from Figure 5.4, the brittle failure mechanisms shows on average an higher model uncertainty
and a larger variance. This is caused by the difficulty of shear failure prediction, as different crack
patterns can occur for which new equilibrium must be found with stress concentrations near crack tips.
In contrary, the assumption of fully bonded reinforcement yields an higher model uncertainty and over-
estimates the resistance more often. As a consequence, a numerical shear failure may be predicted
while a brittle experimental failure was observed.

The configuration of the benchmarks also affects the prediction of the numerical failure mode for the
different input parameters. The larger coefficients of variation for concrete might impose a larger variety
in failure modes. Furthermore, the implementation of a higher boundary of 𝜒 = 0.65 did not improve the
accuracy of the predicted failure modes. The systematic underestimation of shear capacity enhances a
wrong prediction of the numerical failure mode. This effect is deteriorated for a higher boundary, even
though this boundary better agrees with the visual observed numerical failure mode. On the contrary,
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the experimental failure mode prediction would improve for a lower ductility index boundary towards
𝜒 = 0.55. As these are two contradicting values for the ductility index boundary, the original boundary
of 𝜒 = 0.6 was maintained, given that awareness should be paid for the failure mode in case of a duc-
tility index between 0.55 ≤ 𝜒 ≤ 0.65.

5.3.4. Relation Geometry and Model Uncertainty
The effect of the main geometric input variables on the model uncertainty is investigated to establish
statements on the usability related to beams of different size. Concrete is a heterogeneous compos-
ite for which larger size structures show a relative strength reduction due to the increased chance of
imperfections, known as size effect. Dimensions of a structure and even the maximum aggregate size
are known to affect the relative strength. (Bazant and Planas) [30] No explicit reduction of strength is
included in NLFEA for this size effect, while it is included in the design formula for shear resistance
in Equation 2.7. In NLFEA, the fracture energy is defined as the energy needed to form cracks per
unit area, but this does not necessarily translate to the size of a structure. Therefore, it is investigated
whether the model uncertainty shows correlation to the main geometric parameters.

In Figure 5.9, the mean model uncertainty for 48 benchmarks is displayed relative to six relevant geo-
metric parameters: shear span over depth ratio, span length, effective depth, stirrups diameter, beam
width and longitudinal reinforcement ratio. A distinction is made between beams with and without shear
reinforcement, as it was observed in subsection 5.3.1 that the mean model uncertainty and variance
for beams without shear reinforcement is much larger. The six beams without shear reinforcement are
indicated with blue markers and the remaining 42 beams with shear reinforcement with black markers.
For each geometric input variable the observed and expected relations are commented on accordingly.

• 𝑎/𝑑: A slender beam is more likely to fail in a flexural ductile manner. Therefore, the shear span
over depth ratio is expected to have a negative effect on the model uncertainty. For the current
benchmarks, this trend is not clearly visible even if the blue samples are disregarded.

• 𝐿፬፩ፚ፧: An increased span length could induce a bending failure if the beams become relatively
more slender. The model uncertainty would than be expected to decrease for an increasing span
length. However, if the height increases in a similar extent, a size effect in the real experiment
could lead to a higher model uncertainty.

• 𝑑: If the effective depth increases, the beam is more likely to fail in shear. A shear failure is
associated with a higher model uncertainty which is clearly visible within the data.

• 𝑠፝: A clear distinction of a higher model uncertainty for the blue samples without shear reinforce-
ment is visible, in line with findings from subsection 5.3.1.

• 𝑏፰: As the benchmarks are modelled in a 2D plane, the beam width is not expected to affect the
model uncertainty. It can be observed that no clear relation is present within the data-set.

• 𝜌፥: The longitudinal reinforcement ratio is a measure for the strength of the reinforcement relative
to the concrete. For an increased reinforcement ratio, the concrete depth should decrease or the
amount of reinforcement should increase. Both are expected to have a negative relation on the
model uncertainty as is also observed in the data.

Based on the previous observations, no concise relations for all geometry parameters and the model
uncertainty could be appointed. However, it is noted that the obtained results should not be straightfor-
ward applied to beams that exceed the size of those evaluated in this research. The model uncertainty
increases with the effective depth, which could be enlarged for deep beams. Furthermore, it may be
more appropriate to model beams without shear reinforcement with a fixed crack model instead of
a rotating crack model, because the variance and model uncertainty are found to be relatively large.
(de Putter) [7] Additional safety factors or experiments should be considered for beams of higher depths,
hence, deep beams.
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Figure 5.9: Relation between mean model uncertaintiy and six geometry parameters.
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5.4. Summary
In this chapter, the modelling choices and initial results on the model uncertainty and ductility index
have been described. For the 48 benchmarks, the mean model uncertainty and coefficient of variation
could be described as 𝜇᎕ = 1.16 and 𝐶𝑜𝑉 = 0.144. However, distinction based on the ductility index
showed that for the brittle failure mode a higher variance and model uncertainty are observed than for
the ductile failure mode. By dividing failure modes based on ductility index, a better description of both
distributions may be acquired.

The correctness of defining the ductility index at the maximum load with the proposed boundary of
𝜒 = 0.6 has been thoroughly investigated. It was observed that the numerical failure mode better
agreed with a boundary of 𝜒 = 0.65. However, shifting of the boundary did not improve the prediction
of the numerical failure mode with respect to the experimental failure mode. Under this consideration,
the boundary of 𝜒 = 0.6 was found valid for practical use. By defining the ductility at the maximum load,
a correct prediction of 94.3% was achieved. It was noted that most of incorrect failure mode predictions
were caused by a systematic underestimation of the shear capacity. Random samples were checked
to evaluate whether different failure mechanisms could be captured for different ranges of the ductility
index, but no clear tendency was observed.

The effect of the main geometry parameters on the model uncertainty was evaluated. Not for all pa-
rameters clear relations could be appointed. However, two clear relations could be observed: 1) For
a larger effective depth, the model uncertainty increased accompanied with a higher variance and 2)
The model uncertainty and variance reduced for beams with shear reinforcement. This indicates that
the derived model should not straightforward be applied to beams of larger depth, hence, deep beams.
The beams without shear reinforcement exerted a relatively high model uncertainty and variance, which
consents with findings from de Putter [7] that a fixed crack model may be more appropriate to estimate
the ultimate limit state for beams without shear reinforcement.

In Appendix C the ductility index was displayed as a function of the load-step and the change of duc-
tility index was analysed. The relative change of the ductility index between the maximum load and
one step afterwards showed agreement with the expected failure mode. The relative change of the
ductility index could be a good measure to define whether the numerical model exerted a ductile or
brittle failure, but also depends on the used load-step. Furthermore, the numerical load-displacement
curves were compared to the experimental load-displacement curves. The ductile numerical failure
mode almost exactly replicated the experimental load-displacement curve. The brittle numerical failure
showed premature failure and did not replicate the load-displacement curve as good. Especially the
beams without shear reinforcement differentiated substantially, underpinning earlier statements about
an underestimation of shear capacity and an incorrect crack model for beams without shear reinforce-
ment.
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In this chapter, a univariate probabilistic analysis is performed by distribution fitting. Safety factors are
derived and a sensitivity analysis is performed. The model uncertainty is quantified for brittle and duc-
tile failure modes based on the ductility index, from which a reliability model is defined. Initially, the
total data is reviewed and thereafter the separated data based on the ductility index boundary 𝜒 = 0.6.

The results on the model uncertainty of 48 benchmarks with a sample size of 𝑁 = 20 per beam are
displayed in Figure 6.1. The mean model uncertainty is displayed with a bandwidth for the minimum
and maximum observed model uncertainties. Values above one indicate underestimation and below
one overestimate the experimental maximum load. Ductile failure was typically observed for beams
0-8 and 33-47 (light-gray), whereas brittle failure was observed for beams 9-32 (dark-gray).

Figure 6.1: Histogram displaying themeanmodel uncertainty for 48 beams with 20 samples per beam. The range of the minimum
and maximum observed model uncertainty is displayed by the error bars. Beams failing in bending are displayed in light-gray,
and shear beams in dark-gray.

6.1. Combined Design Resistance
The probability density functions for brittle and ductile are displayed together in Figure 6.2. The two
colors indicate the difference based on ductility index boundary at 𝜒 = 0.6. The brittle data (red) shows
a large variance and tends to under predict the design resistance. For the ductile data (blue) a lower
variance can be observed with a more accurate mean estimate of the design resistance. The brittle fail-
ure mode is typically more difficult to predict as distortions along the beam occur due to crack formation.
Furthermore, concrete is a heterogeneous material for which its parameters exhibit larger coefficients
of variation.

The total data could be represented by a log-normal distribution, but that would imply a very large
standard deviation. Therefore, a two-sided statistical Welch’s 𝑡-test is performed to test the hypothesis
that both populations have the same mean, and therefore originate from the same distribution. It is
more robust than student’s 𝑡-test, because Welch’s 𝑡-test can be applied to samples of unequal size
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Figure 6.2: Probability density functions of the model uncertainty of both the ductile and brittle failure mode. Separation based
on ductility index boundary Ꭴ ዆ ኺ.ዀ.

and unequal variance. Welch’s test preliminary assumes that the data is independent, approximately
normal distributed and does not contain significant outliers, which are all satisfied.

𝑡-statistic = 27.97996387433144
𝑝-value = 1.0698007222820207𝑒 − 123

The 𝑝-value rejects the null-hypothesis against a significance level of 𝛼 = 5%, from which it can be
concluded that the means of both groups are significantly different. Therefore, the analysis will further
focus on quantifying the model uncertainties for both ductile and brittle failure mechanisms separately.
Only for comparative purposes, a normal and log-normal are fitted to the full data as displayed in Ta-
ble 6.1. From the 𝑝-values, obtained by Kolmogorov-Smirnov test, it can be seen that both the normal
and log-normal fits are rejected at a 5% significance level for the combined data.

Table 6.1: Normal and log-normal fit to the model uncertainty of the full data-set.

𝜇 𝜎 . 𝑉 𝑝-value
Normal 1.17 0.18 0.15 4.21e-14
Log-normal 1.15 0.15 0.15 6.19e-03

The parameters for the log-normal distribution do not directly translate to the mean and standard devi-
ation of the variable itself. The relations are given in Equation 6.1 - Equation 6.3.

𝐸[𝑋] = exp(𝜇 + 𝜎
ኼ

2 ) (6.1)

𝑉𝑎𝑟(𝑋) = exp (2𝜇 + 𝜎ኼ) (exp (𝜎ኼ) − 1) (6.2)

𝑉 = √𝑒᎟Ꮄ − 1 (6.3)
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6.2. Bending Design Resistance
As stated before, the brittle and ductile failure mechanisms are statistically rejected to have the same
mean value. If the brittle and ductile failure mechanisms are treated separately, a better fit can be ob-
tained. The probability density function (PDF) and cumulative distribution function (CDF) for the ductile
failure mode are displayed in Figure 6.3 and Figure 6.4 respectively.

Figure 6.3: Probability density function for ductile failure mode with normal and log-normal fit.

Figure 6.4: Cumulative distribution function for ductile failure mode with normal fit (left) and log-normal fit (right).

From Figure 6.4, it can be observed that the log-normal distributions fits the empirical cumulative dis-
tribution function slightly better than the normal distribution. The results for the normal and log-normal
fitted parameters are displayed in Table 6.2. The goodness of fit is determined by a Kolmogorov-
Smirnov test which is based on a measure of the distance between the empirical data and the fitted
distribution. The result is again translated in a 𝑝-value which is tested against a 95% confidence level
for whether the data could originate from the fitted distribution. Both the normal and log-normal fitted
distributions are accepted for the ductile date as 𝑝 ≥ 0.05, but the log-normal fit is superior.

Similar results were found in Engen et al., de Putter [5,7], where the ductile model uncertainty was found
to be well represented by a log-normal distribution with a mean 𝜇᎕ = 1.0/1.045 and coefficient of vari-
ation 𝑉 = 0.10/0.10 respectively. In these research, different benchmarks were used and the model
uncertainty was approximated by use of deterministic input parameters. This however, does not guar-
antee reliability levels as important uncertainties related to material and geometry are not considered.
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Table 6.2: Normal and log-normal fit to the model uncertainty of the ductile data.

𝜇 𝜎 𝑉 𝑝-value
Normal 1.03 0.10 0.10 0.065
Log-normal 1.02 0.09 0.09 0.478

(Strauss et al.) [11] In this research, a full probabilistic approach was adapted that took into account ma-
terial induced uncertainties. To obtain similar results is promising and indicates that a correct approach
has been applied.

6.3. Shear Design Resistance
The probability density function (PDF) and cumulative distribution function (CDF) for the brittle failure
mechanism are displayed in Figure 6.5 and Figure 6.6. Again, the log-normal distribution seems to fit
the data slightly better, although the normal fit performs good as well. The derived parameters for the
fitted normal and log-normal distributions are shown in Table 6.3.

Figure 6.5: Probability density function for brittle failure mode with normal and log-normal fit.

Figure 6.6: Cumulative distribution function for brittle failure mode with normal fit (left) and log-normal fit (right).
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Table 6.3: Normal and log-normal fit to the model uncertainty of the brittle data.

𝜇 𝜎 𝑉 𝑝-value
Normal 1.27 0.17 0.13 4.31e-04
Log-normal 1.26 0.13 0.13 0.352

From Table 6.3, the 𝑝-values indicate that only the log-normal distribution has a proper fit for a 95%
confidence level. The results can be compared to other research from Engen et al., de Putter [5,7],
where similar parameters were found for the brittle failure mode: 𝜇᎕ = 1.2/1.131 and 𝑉 = 0.15/0.16.
The lower mean value found in de Putter [7] can be explained by the application of a different solu-
tion strategy for beams failing in a brittle manner. The most evident difference is that a fixed crack
model was applied for beams without shear reinforcement. Furthermore, the six beams without shear
reinforcement are also considered within the data and this induces a higher average model uncertainty.

6.4. Proposed Reliability Model per Failure Mode
From the previous sections, parameters for a log-normal distributions were obtained that satisfied the
goodness of fit by a Kolmogorov-Smirnov test. These distributions are used to define safety factors
for a global reliability model, similar to Global Resistance Factor (GRF). The resistance of both failure
modes can be represented by a log-normal distribution, such that the following equations can be used
to derive safety factors and define the reliability model.

𝑅፝ =
𝑅፧፮፦(𝑓፜፦ , 𝑓፲፦ , 𝑎፧፨፦)

𝛾ፑ
(6.4)

𝛾ፑ =
exp(𝛼ፑ𝛽𝑉ፑ)

𝜃፦
(6.5)

𝑉ፑ = √𝑉ኼ፠ + 𝑉ኼ፦ + 𝑉ኼ፟ (6.6)

where the coefficient of variation accounts for the combined effect of geometry, model, and material re-
lated uncertainties. For reasons mentioned in section 1.3, the geometry related uncertainties were not
explicitly included in the analysis. EN 1990 [15] suggests values for 𝛼ፑ = 0.8 and 𝛽 = 3.8 for a 50 year
design lifetime. This method however, does not consider the amount of samples used. A more exten-
sive approach by Bayes inference could provide more favourable safety factors, since reduction factor
for the number of samples is taken into account. (Engen et al.) [5] Following Equation 6.4-Equation 6.6,
a reliability method for simply supported reinforced concrete beams is defined as:

𝑅፝ =
⎧
⎪
⎨
⎪
⎩

𝑅፧፮፦(𝑓፜፦ , 𝑓፲፦ , 𝑎፧፨፦)
𝛾፛፫።፭፭፥፞

𝜒 ≤ 0.6 (𝑏𝑟𝑖𝑡𝑡𝑙𝑒)

𝑅፧፮፦(𝑓፜፦ , 𝑓፲፦ , 𝑎፧፨፦)
𝛾 ፮፜፭።፥፞

𝜒 > 0.6 (𝑑𝑢𝑐𝑡𝑖𝑙𝑒)
(6.7)

combined with 𝛾፛፫።፭፭፥፞ = 1.17 and 𝛾 ፮፜፭።፥፞ = 1.27. A significant difference between the safety factor for
the ductile and brittle failure mode is obtained. The safety factor for the brittle failure mode differs from
the suggested safety factor by GRF, 𝛾ፑ፝ = 1.27. The used coefficients of variation were relatively large
and could be reduced to obtain more efficient safety factors that are also reliable. The aforementioned
Bayes inference could also result in a reduction of safety factors. A full comparison between the pro-
posed model and existing reliability models is presented in chapter 7.

The empirical distribution functions of the individual benchmarks are displayed in Figure 6.7 and can
be compared to the fitted log-normal distribution. The individual benchmarks follow the same shape as
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the fitted distribution function, only differences for the mean model uncertainty are observed. A higher
accuracy and lower variance of the model uncertainty can be observed for the ductile failure mode in
(a) with respect to the brittle failure mode in (b).

(a) Ductile failure mode. (b) Brittle failure mode.

Figure 6.7: Empirical distribution functions of the 48 benchmarks displayed with respect to the fitted log-normal distributions.

6.5. Sensitivity Analysis
The relation between the model uncertainty and the material parameters is reviewed to investigate the
relative importance of the individual material parameters on the resistance. (Figure 6.8) The sensitivity
of the parameters on the model uncertainty could indicate where potentially the largest benefits can
be obtained if these parameters would be measured with higher accuracy. A distinction for the failure
mode based on 𝜒 = 0.6 was made, such that the brittle data is displayed in red and the ductile data in
blue.

Apart from the influence of geometry on the failure mode, the benchmarks are most likely to fail in
bending if the reinforcement is relatively weak compared to the concrete. Meanwhile, the beam is most
likely to fail in shear if the concrete is relatively weak compared to the reinforcement. Therefore, the
ductile failure mode is expected to be highly correlated to the reinforcement yield strength and ulti-
mate strength, whereas the brittle failure mode will be correlated to concrete compressive and tensile
strength.

The ductile failure mode (blue) shows clear correlation with the yield strength and the ultimate strength.
This makes sense, as a ductile failure mode is paired with yielding of reinforcement. A near perfect
negative correlation is reviewed, indicating that the variation of yield strength per benchmark domi-
nates the numerical response. A slight positive correlation can be observed for the ultimate strain of
reinforcement. An higher ultimate strain results in delayed yielding of reinforcement, which could result
in additional strains and cracks in concrete which increases the model uncertainty. Steel Young’s mod-
ulus only affects the linear response and therefore does not affect the model uncertainty. Furthermore,
no correlation is observed for the ductile failure mode with respect to the concrete parameters.

For the brittle failure mode (red), lower parameters of concrete strength are translated into an higher
model uncertainty. This makes sense, as lower concrete strength makes the beam vulnerable to brittle
shear failure. For concrete tensile strength, Young’s modulus and fracture energy, a negative correla-
tion with the model uncertainty is noted. A positive relation for the brittle failure mode can be observed
for the model uncertainty and reinforcement yield strength, ultimate strength and Young’s modulus,
which also can be explained due to the beam being more likely to fail in shear if the reinforcement is
relatively strong. The Poisson’s ratio of reinforcement shows zero correlation as expected, because
the reinforcement is modelled as one dimensional line elements and therefore only accounts for axial
stresses.
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Figure 6.8: Relationship between material parameters and model uncertainty.

In general, the model uncertainty reduces for higher concrete strength parameters. Conversely, higher
reinforcement strength parameters tend to increase the model uncertainty. The negative correlation
of the yield and ultimate strength for the ductile failure mode (blue) indicate a near linear response of
the resistance and model uncertainty to these parameters. The model uncertainty of the ductile failure
mode can be reduced most by an improved determination of the coefficient of variation of the yield
strength. For the brittle failure mode, all four concrete parameters seem to have quite a similar response
on themodel uncertainty. However, the used coefficient of variation could relatively be reduced themost
for the concrete mean tensile strength for specific types of concrete, according to Strauss et al. [11].
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6.6. Summary
Themodel uncertainty was evaluated for the total data-set. The meanmodel uncertainty and coefficient
of variation for the 48 benchmarks could be expressed as 𝜇᎕ = 1.16 and 𝐶𝑜𝑉 = 0.144. Nonetheless, a
clear distinction could be observed in the probability density function of both populations. A statistical
Welch’s test indicated that both samples do not have a same mean, and therefore do not originate from
the same distribution. The goodness of fit tests (KS-test) also rejected both a normal and log-normal
distribution for the total data-set.

Subsequently, the resistances of the brittle and ductile failure mode were separated based on the duc-
tility index boundary 𝜒 = 0.6. Both the normal and log-normal distribution were accepted for the ductile
failure mode, although the log-normal distribution showed a better fit. For the brittle failure mode, only
the log-normal distribution was accepted against a 5% significance level. The resulting parameters and
a comparison with parameters found in two other research is displayed in table Table 6.4.

Table 6.4: Comparison of the model uncertainty with other research.

Ductile Brittle

Mean CoV Mean CoV

This research 1.03 0.09 1.27 0.13
Engen et al. [5] 1.00 0.10 1.20 0.15
de Putter [7] 1.05 0.10 1.13 0.16

A full probabilistic approach was applied contrary to the semi-probabilistic approach with deterministic
input of the comparative research. Nevertheless, similar magnitudes were found for the mean and
coefficient of variation of the model uncertainty with minor explainable differences. This confirms a cor-
rect application of the applied methodology. These results are promising and indicate that the model
uncertainty can be improved substantially if smaller coefficients of variation are used for specific types
of concrete and reinforcement.

From the log-normal distributions, safety factors were derived to establish a reliability model. The safety
factors were defined for a 50 year design lifetime with a sensitivity factor 𝛼 = 0.8 and reliability index
𝛽 = 3.8. The resulting reliability method relies on a global approach of one simulation with mean input
parameters to obtain the design resistance of simply supported reinforced concrete beams by:

𝑅፝ =
⎧
⎪
⎨
⎪
⎩

𝑅፧፮፦(𝑓፜፦ , 𝑓፲፦ , 𝑎፧፨፦)
𝛾፛፫።፭፭፥፞

𝜒 ≤ 0.6 𝛾፛፫።፭፭፥፞ = 1.17

𝑅፧፮፦(𝑓፜፦ , 𝑓፲፦ , 𝑎፧፨፦)
𝛾 ፮፜፭።፥፞

𝜒 > 0.6 𝛾 ፮፜፭።፥፞ = 1.27
(6.8)

At last, a sensitivity analysis was performed to investigate which parameters could most enhance accu-
racy. The reinforcement parameters for the ductile failure mode showed a low mean model uncertainty
and low variance. The brittle failure mode had much larger variance and model uncertainty for each of
concrete parameters. The variation of the brittle failure mode can be reduced significantly by a better
quantification of the concrete tensile strength, while for the ductile failure mode the yield strength was
found most relevant with a near linear response.



7 | Comparison with Existing Models
The performance of the proposed and existing reliability models is evaluated based on their accuracy
and robustness. First, accuracy of the models can be quantified by the magnitude of the mean estimate
and the coefficient of variation. Secondly, robustness is a qualitative measure which addresses to what
extent models are applicable for different type of problems.

The proposed reliability model is applied as defined in Equation 6.8. A single global analysis is per-
formed with deterministic input variables, after which a safety factor is applied depending on the type of
failure mode. For a brittle failure mode (𝜒 ≤ 0.6), the mean numerical resistance is divided by a safety
factor 𝛾፛፫።፭፭፥፞ = 1.17. For a ductile failure mode (𝜒 > 0.6), the mean numerical resistance is divided
by a safety factor 𝛾፛፫።፭፭፥፞ = 1.27. The reliability method results in a design resistance, which can be
compared to the experimental observed load as defined by the unity check (UC):

UC = 𝑅፝
𝑅፞፱፩

(×100%) (7.1)

7.1. Accuracy
Accuracy can be quantified by the estimate of the mean value (𝜇) and the coefficient of variation (𝐶𝑜𝑉).
Both quantities are displayed at the bottom of Table 7.1 for the proposed model and existing reliability
models. Based on the full comparison, the following statements can be made.

For all reliability models, no overestimation of the design resistance is observed. The highest unity
check observed is equal to 89% for method ECOV beam index 0. Furthermore, method PRF has
the lowest prediction of the design resistance with an average unity check of 61%. Subsequently are
method ECOV and GRF with a unity check equal to 66% and 69% respectively. The proposed model
shows for the ductile failure mode and brittle failure mode a mean unity check of 77% and 67% respec-
tively. Furthermore, the coefficient of variation of the proposed model is reduced compared to the other
existing reliability models. This can also be observed within the range of the minimum and maximum
values.

Remarkably, method ECOV seems to estimate the ductile failure modes with relatively high accuracy,
while the brittle failure modes are underestimated significantly compared to the proposed model and
method GRF. The combined effect results in a lower efficiency. This can also be observed as method
ECOV has the highest coefficient of variation and contains both the lowest and highest prediction of
the unity check.

It can be concluded that distinction of the failure mode by means of the ductility index allows for differ-
ent safety factors and can result in a higher mean unity check and lower coefficients of variation, while
guaranteeing safety levels. The unity check for ductile failure modes shows a mean unity check equal
to 77% and a coefficient of variation of 8%. The brittle failure modes exhibit a mean unity check of 67%
and a coefficient of variation of 13%. From this perspective, it is stimulated to design a ductile failure
mode not only to avoid sudden failure, but also to design more efficiently.
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Table 7.1: Comparison of the model uncertainty between the proposed and existing reliability models. (GRF, PRF, ECOV)

Proposed Model GRF PRF ECOV

Beam # UCductile UCbrittle UCGRF 𝜒ፆፑፅ UCPRF 𝜒ፏፑፅ UCECOV 𝜒ፄፂፎፕ,፦ 𝜒ፄፂፎፕ,፤
0 0.84 - 0.84 0.94 0.79 0.92 0.89 0.94 0.93
1 0.84 - 0.84 0.93 0.79 0.92 0.85 0.93 0.93
2 0.84 - 0.84 0.93 0.79 0.91 0.88 0.93 0.93
3 0.81 - 0.81 0.93 0.76 0.90 0.84 0.93 0.93
4 0.86 - 0.85 0.92 0.79 0.90 0.86 0.92 0.91
5 0.85 - 0.85 0.89 0.79 0.87 0.86 0.89 0.89
6 0.78 - 0.78 0.90 0.71 0.88 0.78 0.90 0.84
7 0.80 - 0.81 0.86 0.72 0.55 0.79 0.86 0.84
8 - 0.85 0.79 0.15 0.68 0.05 0.82 0.15 0.14
9 - 0.69 0.64 0.40 0.48 0.42 0.47 0.40 0.39
10 - 0.54 0.50 0.46 0.45 0.44 0.42 0.46 0.46
11 - 0.61 0.56 0.52 0.52 0.46 0.55 0.52 0.50
12 - 0.62 0.57 0.42 0.46 0.44 0.47 0.42 0.44
13 - 0.59 0.55 0.48 0.44 0.44 0.47 0.48 0.48
14 - 0.69 0.64 0.54 0.59 0.46 0.65 0.54 0.50
15 - 0.62 0.57 0.48 0.52 0.46 0.57 0.48 0.50
16 - 0.56 0.51 0.50 0.43 0.41 0.44 0.50 0.49
17 - 0.69 0.64 0.54 0.55 0.42 0.61 0.54 0.48
18 - 0.82 0.76 0.08 0.41 0.11 0.33 0.08 0.10
19 - 0.62 0.57 0.11 0.36 0.13 0.39 0.11 0.11
20 - 0.48 0.44 0.26 0.42 0.08 0.54 0.26 0.33
21 - 0.72 0.66 0.45 0.56 0.37 0.50 0.45 0.44
22 - 0.74 0.68 0.49 0.60 0.39 0.64 0.49 0.45
23 - 0.66 0.61 0.52 0.57 0.43 0.65 0.52 0.48
24 - 0.67 0.62 0.48 0.51 0.30 0.56 0.48 0.44
25 - 0.76 0.69 0.49 0.60 0.34 0.65 0.49 0.43
26 - 0.69 0.64 0.56 0.64 0.50 0.66 0.56 0.50
27 - 0.76 0.70 0.47 0.55 0.20 0.56 0.47 0.35
28 - 0.79 0.73 0.46 0.56 0.31 0.58 0.46 0.36
29 - 0.68 0.63 0.57 0.61 0.49 0.68 0.57 0.51
30 - 0.62 0.57 0.08 0.39 0.12 0.53 0.08 0.08
31 - 0.74 0.68 0.13 0.44 0.15 0.38 0.13 0.15
32 - 0.49 0.45 0.09 0.46 0.08 0.56 0.09 0.27
33 0.74 - 0.74 0.95 0.69 0.95 0.75 0.95 0.94
34 0.83 - 0.83 0.91 0.77 0.88 0.84 0.91 0.91
35 0.80 - 0.81 0.96 0.76 0.95 0.83 0.96 0.95
36 0.73 - 0.73 0.92 0.68 0.91 0.74 0.92 0.91
37 0.75 - 0.75 0.93 0.70 0.89 0.76 0.93 0.92
38 0.74 - 0.74 0.92 0.68 0.89 0.75 0.92 0.91
39 0.73 - 0.73 0.93 0.68 0.93 0.75 0.93 0.94
40 0.72 - 0.72 0.92 0.69 0.93 0.74 0.92 0.92
41 - 0.67 0.62 0.56 0.58 0.45 0.66 0.56 0.52
42 0.74 - 0.74 0.95 0.70 0.94 0.77 0.95 0.95
43 0.77 - 0.77 0.94 0.72 0.92 0.79 0.94 0.94
44 0.71 - 0.71 0.64 0.68 0.88 0.77 0.64 0.90
45 - 0.74 0.68 0.59 0.65 0.47 0.78 0.59 0.54
46 0.68 - 0.68 0.97 0.65 0.96 0.71 0.97 0.96
47 0.70 - 0.69 0.97 0.67 0.96 0.74 0.97 0.96

Mean 0.77 0.67 0.69 0.63 0.61 0.58 0.66 0.63 0.62
CoV 0.08 0.13 0.16 0.46 0.20 0.53 0.23 0.46 0.47
Min. 0.68 0.48 0.44 0.08 0.36 0.05 0.33 0.08 0.08
Max. 0.86 0.85 0.85 0.97 0.79 0.96 0.89 0.97 0.96



7.2. Robustness 62

7.2. Robustness
A second important feature is the robustness of a reliability model. Both the proposed model and
method GRF rely on a single global analysis with mean input parameters, which ensures robustness.
Only for the proposed model, analysis with a ductility index near the boundary of 𝜒 = 0.6 require atten-
tion as was discussed in subsection 5.3.2. In the sample, beams 8, 41 and 45 predict a wrong failure
mode based on the ductility index 𝜒ፆፑፅ. Beam 8 was found to experience discretization issues near
the loading plate, causing a very low ductility index as discussed in subsection 5.3.2. Beams 41 and
45 exerted a ductility index of 0.56 and 0.59, indicating that for translation to the experimental failure
mode the ductility index boundary might be lower than 0.6. On the contrary, a boundary of 0.65 showed
better agreement based on the numerical visual failure mode.

Method PRF on average results very low design resistances and has an increased wrong prediction
of the experimental failure modes based on the ductility index. The findings substantiate the concerns
related to method PRF mentioned in fibModel Code 2010 [2]. Furthermore, method ECOV is advised to
be applied only if both analysis show the same failure mode. Most benchmarks were either expected to
fail in shear or bending, but still this can be questioned for beams 26, 29, and 45 based on the ductility
index. Method ECOV does not show improved results compared to method GRF, and costs extra effort
as two analysis need to be performed.

7.3. Summary
A comparison between the proposed model and existing reliability methods was conducted. The com-
parison showed the relative performance of the different reliability methods and elucidated shortcom-
ings. The proposed model included an objective distinction of the failure mode by the ductility index
boundary 𝜒 = 0.6, which resulted in noticeable improvements.

It was observed in Table 7.1, that none of the reliability methods overestimated the resistance of the
evaluated benchmarks. The proposed method showed on average the highest prediction of the unity
check and the lowest coefficients of variation by distinction of the failure mode. The mean unity check
for ductile and brittle failure mode was found to be 77% and 66% respectively. The respective coeffi-
cients of variation were found as 8% and 13%. The range of unity checks for the ductile failure mode
varied from 68% to 85%, and for the brittle failure mode between 48% to 85%. A significant improve-
ment was found respective to the similar method GRF where a mean unity check of 69% was found
with a coefficient of variation of 16%. This affirms that it can be more efficient to distinguish per failure
mode. Design for a ductile failure mode by NLFEA was found most efficient, which is also desirable
from a safety point of view.

From the existing models, method GRF was found most efficient and robust. This was followed up
by method ECOV and the least favourable was method PRF. This substantiated the discouragement
of method PRF in fib Model Code 2010 [2]. Method ECOV lacks robustness if different failure modes
occur and takes additional effort as two analysis need to be conducted. Method ECOV showed to
predict the ductile failure modes accurately, but performed badly on brittle failure modes. Method GRF
showed on average the best prediction and assures robustness as only one global analysis needs to
be performed. Based on these findings, a global analysis approach seems most efficient and can be
improved by failure modes distinction as was included in the proposed reliability method. (Equation 6.8)



8 | Non-Parametric Bayesian Network
In this chapter, a description of a multivariate non-parametric Bayesian network (NPBN) for reinforced
concrete beams is given. The choices for creation of the model are explained, and the model is val-
idated. The model can be used independently for quick estimation of the resistance for the input of
material and geometry parameters. Furthermore, conditional probabilities can be assessed if certain
material parameters or design loads are known. The establishment, validation and usability are treated
accordingly.

8.1. Construction of the Model
The NPBN was constructed in software program Uninet. The input and output variables of the non-
linear finite element analysis are represented by nodes, and grouped into four main categories. The
different categories can be listed accordingly: Concrete (gray), reinforcement (turquoise), geometry
(beige) and output variables (green). The nodes are connected through arcs to represent their de-
pendency by rank correlation. Arcs were drawn between nodes if the variables were assumed to be
dependent based on physical logic. The order in which arcs are drawn was also considered, as this
influences the order of the conditional probability, and hence, the correlation matrix of the NPBN.

The full model, consisting of 16 nodes and 72 arcs, is displayed in Figure 8.1. The concrete, reinforce-
ment and geometry parameters are set independent of each other. The relation with the response
is complex, and therefore, arcs are considered to each output node. The concrete variables were as-
sumed to be dependent and in the following order of importance: mean compressive strength 𝑓፜፦, mean
tensile strength 𝑓፜፭፦, fracture energy 𝐺፟ and Young’s modulus 𝐸፜. The mean compressive strength was
used as input for the other three variables according to design formula’s. (See Table 4.2) For reinforce-
ment, the order of importance was set as: yield strength 𝑓፲, ultimate strength 𝑓፮, Young’s modulus 𝐸፬
and ultimate strain 𝜀፬. At last, the geometry values were connected in order of: span length 𝐿፬፩ፚ፧,
effective depth 𝑑, beam width 𝑏፰ and area of longitudinal reinforcement 𝐴፥፨፧፠.

Figure 8.1: Proposed NPBN for the NLFEA response of reinforced concrete beams.
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Figure 8.2: Proposed NPBN the showing distribution per variable by histograms.

The number of geometry parameters is limited within the proposed model. Relevant missing geom-
etry parameters are related to the shear reinforcement configuration and the type of loading. These
parameters were not included as perfect correlation between several parameters existed due to the
arrangement of experiments and the assumption of deterministic geometry variables. Furthermore,
the beams without shear reinforcement would have multiple zero values for the shear reinforcement
parameters, which caused errors in evaluating the model.

Moreover, the correlation between geometry variables is physically less substantiated than for the ma-
terial parameters, as an engineer will make sensible choices for the combination of geometry parame-
ters. For the selected range of benchmarks however, the geometry parameter were chosen such that
a certain failure mechanism was to be expected due to which the geometry parameters were strongly
related to a specific research. Therefore, correlation was assumed between the geometry nodes for
the used data-set. For different random combinations of geometry input this assumption may not be
valid, and representing the geometry variables as independent can be more appropriate. Furthermore,
the geometry nodes are discrete variables, whereas the other nodes represent continuous variables
as can be seen in Figure 8.2. The discrete nodes limit the possibilities of conditional assessment, and
the range of benchmarks also caused some deficits as will be elucidated in section 8.3.

At last, all input nodes were connected to the output nodes (green), resulting in 48 arcs. The output
nodes were connected to each other by the assumed order as will be explained accordingly. Hierarchy
in the output nodes is used to show the order in which the nodes were connected. First, the input
variables were assumed to affect the ductility index 𝜒 and thereby, the failure mode and distribution
type as discussed in chapter 6. The ductility index was connected to the remaining three output nodes.
The experimental load 𝑃 ፱፩ was assumed to be dependent on all input variables and the ductility index.
In succession, the experimental load affects the numerical load 𝑃፧፮፦ and the model uncertainty 𝜃, and
the model uncertainty is simply a division of the experimental load with the numerical load.
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8.2. Validation Model
The constructed model should describe the actual dependencies observed within the data-set. Two
aspects need to be verified: 1) whether the assumption of the Gaussian copula for the data-set is valid
and 2) if the constructed NPBN represents enough dependence. The validation process can either be
based on a comparison of the determinants of the correlation matrices of the empirical data (EC), the
empirical normal data (ENC) and the Bayesian network (BNC), or by means of a calibration score that
is a measure of the distance between the aforementioned correlation matrices. Both methods can be
reviewed by use of a Matlab toolbox: BANSHEE. (Paprotny et al.) [31]

Validation based on the determinants of the respective correlation matrices is known to be a sensitive
indicator to the number of variables, as the determinant will tend to zero if the number of variables
exceeds the number of samples or discrete states per node. (Hanea et al.) [28] As this is the case for
the span length, an alternative validation procedure is used by means of the dependence calibration
score 𝑑-Cal. This method is less sensitive to the number of nodes and discrete states, and is defined
as:

𝑑(Σኻ, Σኼ) = 1 − √1 − 𝜂(Σኻ, Σኼ) (8.1)

𝜂(Σኻ, Σኼ) =
det(Σኻ)ኻ/ኾ det(Σኼ)ኻ/ኾ

det(ኻኼΣኻ +
ኻ
ኼΣኼ)

ኻ/ኼ
(8.2)

where Σኻ and Σኻ are the correlation matrices of compared empirical, empirical normal or Bayesian net
data respectively. The dependence score will tend towards one if the respective matrices show simi-
larity, and towards zero if the correlation matrices are significantly different. (Mendoza-Lugo et al.) [32]
A sample size needs to be selected and is generated for a number of times. Generally, a large sample
indicates a good performance of the model in terms of describing the dependencies. Although, there
is no consensus yet about what the minimum sample size would need to be.

The validation of the 𝑑-score is displayed in Figure 8.3. In (a) the empirical rank correlation is compared
to the distribution of the normal rank correlation, and lies within the 90% confidence interval for a large
sample equal to 4000, generated a 1000 times. This confirms that the Gaussian copula is applicable to
the data. In (b), the normal rank correlation matrix is compared to the distribution of the rank correlation
matrix of the NPBN. A sample of 205 generated a 1000 times indicates that the constructed NPBN is
valid, but could be improved to better describe the dependency. As mentioned before, the geometry
variables could be expanded to continuous parameters, addition of shear reinforcement parameters,
addition of loading type and perhaps independent geometry parameters.

(a) Empirical rank correlation in distribution of empirical normal rank cor-
relation.

(b) Empirical normal rank correlation in distribution of Bayesian network
correlation.

Figure 8.3: Validation of the proposed NPBN based on the calibration score ፝-Cal for total data-set. (960 samples)
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After reviewing both tests, the Gaussian copula was found valid to describe the data-set, but the NPBN
could be improved in terms of describing the dependencies. Generally, a larger data-set could be
expected to improve the model. However, it was opted to exclude the six beams without shear re-
inforcement as it was shown in chapter 5 that the solution strategy and response was significantly
different. Six beams, accountable for 120 samples, were excluded from the data-set. The remaining
data-set of 840 samples only included beams with shear reinforcement. The validation based on the
𝑑-Cal is displayed in Figure 8.4.

(a) Empirical rank correlation in distribution of empirical normal rank cor-
relation.

(b) Empirical normal rank correlation in distribution of Bayesian network
correlation.

Figure 8.4: Validation of the proposed NPBN based on the calibration score ፝-Cal for beams with shear reinforcement only. (840
samples)

From Figure 8.4, it can be observed that (a) the calibration score for the empirical and empirical normal
correlation matrices is validated for a very large number of samples equal to 21000. In (b), the validation
score of the empirical normal falls within the 90% confidence interval of the correlation matrix of the
proposed Bayesian network with a relatively large sample of 1100. Based on the results from Figure 8.3
and Figure 8.4, the choice to exclude the six beams without shear reinforcement improves the quality
of the NPBN, meaning that the response is better described. The capabilities of the proposed NPBN
on the beams with shear reinforcement (840 samples) will be further discussed in section 8.3.

8.3. Model Application
In this section, the application of the NPBN is demonstrated by two examples. In example 1, the
numerical resistance is evaluated for different combinations of concrete and reinforcement strength. In
example 2, a reversed analysis is performed, in which the effect on the concrete compressive strength
is shown for a desired design resistance.

8.3.1. Example 1: Conditional Material Strength
The response of different conditional concrete and reinforcement material strengths on the numerical
resistance is shown for a beam of dimensions similar to B321 from Rashid and Mansur [33]. The input
dimensions are displayed in Equation 8.3. The material strengths are defined through the concrete
compressive strength and reinforcement yield strength in percentiles of 0-25% (Low), 25-75% (Medium)
and 75-100% (High), as displayed in Table 8.1.

𝐿፬፩ፚ፧ = 3400 𝑚𝑚, 𝑏፰ = 250 𝑚𝑚, 𝑑 = 340 𝑚𝑚, 𝐴፥፨፧፠ = 2945 𝑚𝑚ኼ (8.3)

The obtained conditional resistances for significance levels of 5%, 50% and 95% are displayed in
Table 8.2. The mean numerical response of NLFEA is displayed in the right column based on the per-
centiles 12.5%, 50% and 87.5%, which should more or less correspond to the mean estimates of the
NPBN.
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Table 8.1: Definition of the low, medium and high conditional input for concrete compressive strength and reinforcement yield
strength.

Input Node Lower Bound Upper Bound Label

𝑓፜፦ [MPa]
20.06
27.34
79.87

27.34
79.87
141.68

Low
Med
High

𝑓፲ [MPa]
383.59
449.83
535.74

449.83
535.74
634.95

Low
Med
High

Table 8.2: Numerical resistance for 5%, 50% and 95% significance level, conditional on different combinations of concrete and
reinforcement strength.

Case # 𝑓፜፦ 𝑓፲ 𝑃኿%፧፮፦ 𝑃኿ኺ%፧፮፦ 𝑃ዃ኿%፧፮፦ 𝑃ፍፋፅፄፀ፧፮፦
1 Low Low 250 516 767 391
2 Low Med 153 352 726 391
3 Low High 99 276 587 391
4 Med Low 264 654 790 570
5 Med Med 199 388 750 570
6 Med High 135 326 702 570
7 High Low 274 702 822 560
8 High Med 215 510 781 630
9 High High 149 346 734 720
Unconditional 95 330 763 570

The results in Table 8.2 can be used to assess the resistance for a desired significance level. For ex-
ample, 𝑃኿%፧፮፦ is the resistance corresponding to a 5% significance level. Suppose we want to assess the
probability of failure of reinforced concrete beams as part of a bridge superstructure. After inspection,
the current status of concrete strength and reinforcement yield strength are both identified as ’Medium’,
belonging to case 5. The mean expected resistance equals 388 kN, and the resistance corresponding
to a 5% significance level is equal to 199 kN.

Depending on the expected loads on the bridge, a Monte Carlo Simulation can be performed based on
a limit state function:

𝑍 = 𝑅 − 𝑆 (8.4)

where in this case, 𝑅 is the numerical resistance derived by the NPBN for a large number of samples,
e.g. 5 million. 𝑆 is the expected load which can be a single value, or defined as for example a normal
distribution based on measured vehicle weights. The large conditional sample can be tested against
this design load. Failure occurs if 𝑍 < 0, and the number of failures 𝑛፟ with respect to the total number
of samples 𝑁 defines the probability of failure:

𝑃 =
𝑛፟
𝑁 (8.5)

Small probabilities of failure can now be assessed quickly due to the ability of generating large repre-
sentative samples by the NPBN. No excessive amounts of time consuming analysis would be needed
to derive probabilities of failure with magnitudes 𝑃 < 10ዅኽ.

8.3.2. Example 2: Conditional Resistance
Example 2 illustrates a reversed analysis, were the conditional effect on the concrete strength is dis-
played. In Table 8.3, two cases are defined for a desired range of the ultimate resistance 𝑃፮, the ductility
index 𝜒 for a ductile failure mode and the span length 𝐿፬፩ፚ፧. A visual example with the change of dis-
tributions of the NPBN due to conditional parameters is attached in Appendix D.
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Table 8.3: Two cases for demonstration of reversed analysis by the NPBN.

Case # 𝑃፮ 𝜒 𝐿፬፩ፚ፧
Case 1 [100; 130] [0.85; 0.90] 3080 mm
Case 2 [200; 300] [0.85; 0.90] 3080 mm

Figure 8.5: Empirical cumulative distribution function of the concrete strength based on conditional resistance, ductility index
and span length.

The conditional response on the concrete strength is displayed in Figure 8.5 by the empirical cumulative
distribution functions of the unconditional sample and the two cases. The probability of exceedance
is displayed on the vertical axis. For a mean estimate of 50%, it can be observed that the concrete
strength for the unconditional sample and case 1 are nearly identical, being approximately 47 MPa.
For case 2 with a higher desired resistance, a higher concrete strength is observed equal to 67 MPa. A
quick estimates of needed type of concrete or reinforcement strength can be obtained for a particular
design load. In this case, it is advised to perform a design process for the derived parameters.

The two examples illustrate how the model can be used. A lot more different combinations are possible.
The described conditional resistances for example 1 can be particularly useful if the quality of concrete
or reinforcement is questioned. The model output can be directly compared to the expected design
loads and used to define a probability of failure by Monte Carlo Simulation. Application can be useful
to quickly assess the probability of failure for existing structures, or if after construction the quality of
materials is questioned.

In Table 8.2, the model predictions are roughly compared to the resistance found by NLFEA. The mean
estimates do not always agree, and the conditional resistance exhibits a very large standard deviation.
Some limitations of the model have been addressed in section 8.1. Most of the model deficits can be
assigned to the discrete geometry parameters instead of being continuous variables. Due to perfect
correlation between the discrete geometry parameters within the data-set, not all geometry parameters
could be included within the NPBN. Essential parameters related to shear reinforcement configuration
and the load application are not considered. The limitations of the model are further discussed in
chapter 9.
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8.4. Summary
A NPBN was constructed that included four parameters for each category of concrete, reinforcement,
geometry and output. These sixteen parameters were represented by nodes and connected through
arcs to include dependency based on physical logic. The model was validated based on a distance
calibration score 𝑑-Cal for the similarity between the empirical rank correlation (ERC), empirical normal
(NRC) and Bayesian net (BNRC) rank correlation matrices. Furthermore, two examples of the model
application were given along with a comparison to the output of NLFEA.

First, the assumption of the Gaussian copula was validated. The test on 𝑑-Cal felt within the 90%
confidence interval for a large sample of 4000, from which it could be concluded that the data can be
represented by the Gaussian copula. Secondly, the constructed NPBN is tested to the normal data
to indicate whether the NPBN could describe sufficient dependency. The 𝑑-Cal score validated the
model, but did insinuate that the NPBN can be improved as the number of samples was on the lower
side, equal to 205.

To improve the model validation, it was opted to exclude the 120 samples related to the beams without
shear reinforcement as these beams exhibit a different mechanical response. For the remaining 840
samples, the same model was found to improve substantially. The assumption of the Gaussian copula
was validated by a very high 𝑑-Cal equal to 21000 samples. For the 𝑑-Cal score on the empirical nor-
mal and Bayesian network correlation matrices, a relatively large sample of 1100 was attained. This
showed that the proposed NPBN is better defined for beams with shear reinforcement only.

Deficits of the model response were pointed out by demonstrating the model application in subsec-
tion 8.3.1. The limitations were presumed to originate mostly from the description of the geometry
parameters. The geometry variables could be extended by addition of the shear reinforcement vari-
ables including the horizontal spacing, bar diameter and yield strength. By considering the geometry
as deterministic input variables, the model is limited to the exact geometric values as collected from
the benchmarks. The NPBN could be improved significantly by input of geometry parameters as con-
tinuous instead of discrete and by addition of shear reinforcement parameters.

Furthermore, the response of the NPBN was observed to be largely influenced by the composition of
the benchmarks within the data-set. One specific research for example considered one deterministic
span length with high reinforcement strengths. Incorrect or wide estimates of the conditional resistance
could occur if for this span length low concrete strengths were assigned. This issue can be resolved by
extending the data-set of benchmarks, and by addition of analysis that include continuous overlapping
geometry and material parameters.



9 | Discussion, Conclusions and Rec-
ommendations

This chapter contains the discussion, conclusion and recommendations. In the discussion, the limita-
tions of the applied methodology will be discussed, and the results will be interpreted and compared
to other research. After the discussion on the methodology and results, conclusions will be drawn by
answering the research questions. At last, recommendations are presented for further research.

9.1. Discussion on Methodology
For implementation of NLFEA in the design of reinforced concrete structures, a better quantification
of uncertainties is required to establish a reliability method that is both safe and efficient. To achieve
this, a full probabilistic approach was applied with use of failure mode distinction based on the ductil-
ity index. The research resulted in a reliability method based on a global approach. Furthermore, a
complex standalone multivariate NPBN was developed that can be used for extensive analysis possi-
bilities. As NLFEA can be time-consuming and a large sample size was desirable, some assumptions
and simplifications were made that could affect the results. These limitations on the methodology are
discussed accordingly.

Full Probabilistic Approach
A full probabilistic approach was used that considered material induced uncertainties and the model
uncertainty in NLFEA for a particular solution strategy. For feasibility and reasons mentioned in sec-
tion 1.3, the uncertainties inflicted by deviations in geometry and boundary conditions were not explicitly
taken into account. In general, these aspects should not be overlooked in the design phase. A per-
fect symmetrical test procedure was assumed along with geometric variables that were measured with
high accuracy. Therefore, not explicitly taking into account these aspects was found justifiable for the
selected benchmarks and for the purpose of this research.

To generate efficient samples of material parameters that governed the total space of reinforce-
ment and concrete uncertainties, an optimized Latin hypercube sampling strategy was used. In Tran
et al. [23], it was shown that for a similar problem the results converged for a sample size 𝑁 = 10 per
benchmark. The used sample size 𝑁 = 20 therefore was a sensible choice considering time efficiency.

The distribution types formaterial parameters were taken according to Graubner and Brehm, Strauss
et al. [10,11], which were derived for a wide variety of concrete and reinforcement. No specific types of
concrete and reinforcement with their marginal distributions were identified. A reduced variance could
be obtained by testing of specimens, resulting in a more precise description of the design resistance.

Solution Strategy NLFEA
It was aimed to apply one consistent solution strategy to all benchmarks, to avoid bias in the results from
different modelling choices. A solution strategy was chosen in line with Hendriks et al. [3], as defined in
Table 5.1. Nonetheless, it was observed that the solution strategy was not necessarily appropriate for
all benchmarks.

It became evident that the opted solution strategy provided an adequate numerical response for
beams with shear reinforcement, but less for beams without shear reinforcement. A clear distinction
in mean model uncertainty and coefficient of variation was observed in Figure 5.4. Only six of 48
beams did not contain shear reinforcement, by which the proposed reliability method mostly applies to
beams with shear reinforcement. It could have been more appropriate to exclude beams without shear
reinforcement, as shear reinforcement is a requirement according to EN 1992-1-1 [1].

Ductility Index
The ductility index was used as an objective way to distinguish between a ductile and brittle failure
mode, based on the suggested boundary 𝜒 = 0.6 from Engen et al. [5]. This boundary could be used to
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assign the numerical failure mode for a large number of analysis. However, robustness of the boundary
itself can be improved.

Contradicting results on the numerical and experimental failure mode were obtained in subsec-
tion 5.3.2 and subsection 5.3.3. The numerical failure mode showed better correspondence with a
boundary 𝜒 = 0.65, while the experimental failure mode suggested a lower boundary up till 𝜒 = 0.55.
As this was inconclusive, it was decided to proceed the analysis with the suggested boundary of 𝜒 = 0.6
from Engen et al. [5]. For a ductility index within the aforementioned range, it is advised to perform an
additional visual inspection of the numerical failure mode.

Construction of Non-Parametric Bayesian Network
A NPBN was constructed that describes the NLFEA ultimate limit state response of reinforced concrete
beams, to enable quick assessment of the resistance for conditional material and geometry parame-
ters. (See Figure 8.1) The model can be extremely useful to assess the resistance and probability of
failure of existing structures, or for quality control of new structures. The probability of failure can be
assessed through Monte Carlo Simulation for a specific design load from EN 1991-1-1 [17].

The dependence between variables was based on physical logic. The dependency between geo-
metric variables is physically less substantiated, but clear correlation was present within the range of
benchmarks. Some limitations arose during construction of the model due to the discrete geometry
nodes. Multiple geometry nodes were perfectly correlated to the type of experiment, and therefore
would not add information to the model. As a consequence, the model application is restricted to the
typical configurations of the evaluated benchmarks.

9.2. Discussion on Results
The results have been presented and partially discussed in the previous chapters. The interpretation
of these results is described and compared to findings of other research accordingly.

Model Uncertainty
The model uncertainty has been quantified in other research based on a semi-probabilistic approach,
which cannot guarantee safety standards adequately. (Strauss et al. [11]) Moreover, the effect of dif-
ferent parameters on the model uncertainty can not be reviewed. In this research, a full probabilistic
approach was applied that does consider material uncertainties explicitly besides the model uncer-
tainty. A comparison of the model uncertainty with the semi-probabilistic approach was displayed in
Table 6.4.

The mean model uncertainty can be directly compared, and was found similar in magnitude for the
ductile failure mode. The model uncertainty of the brittle failure mode was found as 1.27, compared
to 1.13 and 1.20 in Engen et al., de Putter [5,7]. These are explainable differences, as the selection of
benchmarks varied along with noticeable differences in the used solution strategy.

Lower coefficients of variation were found for both failure modes, which can be explained by the
lower standard deviation as more samples per benchmark were used. (𝑁 = 20) In general, the re-
sults agree that the brittle failure mode is more difficult to predict as a higher model uncertainty and
coefficient of variation are observed.

Convergence & Discretization
In consideration of time efficiency, the analysis was performed with a relatively large mesh size (ℎ/10),
a low maximum number of iterations per load-step (40), and a varying load-step. For the brittle fail-
ure mode, which is more difficult to predict due to the complexity of stress redistribution for cracking
concrete, this led in some cases to non-converged results. These results were still accepted as the
accuracy for smaller mesh and more iterations per load-step did not vary significantly. To improve con-
vergence and accuracy of the brittle failure mode, it may be more appropriate to use a mesh size ℎ/20
and a maximum number of iterations >100 as suggested by de Putter [7]. This does however come at a
cost of computational time, and in Engen et al. [5] the effect of mesh size on the model uncertainty was
found insignificant.

One exception was observed for beam B-N4 from Ashour [29]. (red dots, 𝜒 < 0.3 in Figure 5.4) An
unusual low ductility index indicated a brittle failure mode whereas a ductile failure mode was expected.
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This beam was assigned as over-reinforced with a very high concrete strength. The relatively large el-
ement size induced discretization problems near the loading plate, which resulted in an erroneous high
plastic dissipated energy in the concrete, and thus a low ductility index. As the magnitude of the found
resistance was not divergent, this data was included in the analysis.

Reliability Method
The analysis was performed on a wide variety of benchmarks to establish a reliability method applicable
to different types of reinforced concrete beams. (Equation 6.8) Although a clear difference between
the model uncertainty of beams with and without shear reinforcement was observed, the total data-
set was used to define safety factors for the reliability method. The higher mean model uncertainty
and coefficient of variation of the beams without shear reinforcement can affect the magnitude of the
safety factor for the brittle failure mode. It may be more appropriate to exclude beams without shear
reinforcement, and define the safety factor for beams with shear reinforcement only.

A modest positive relation for the model uncertainty with respect to the beam height was observed,
due to which the derived models should be applied with caution to beams of larger size, deep beams
in particular. Further research on an extended set of benchmarks is recommended .

In comparison to the available reliability methods from fib Model Code 2010 [2], an exact similar
value for the ductile failure mode was found as for method GRF that is formulated for different types
of structures. This seems on the low side, as a similar safety factor was found while a specific set of
benchmarks was evaluated, and deviations in geometry and boundary conditions were not explicitly
considered. The full comparison in Table 7.1 showed that improved accuracy and reduced coefficients
of variation are feasible.

Non-Parametric Bayesian Network
The model was validated based on the calibration score 𝑑-Cal. The validation was improved signifi-
cantly when beams without shear reinforcement were excluded from the data-set. This implies that a
significant different mechanical response exists, and that the NPBN can best be formulated for a similar
type of beam configuration.

In section 8.3 the model application was demonstrated. However, the conditional results were found
unsubstantial as very large standard deviations were incurred. It was aforementioned that the model
was limited due to the discrete geometry variables and as parameters for the configuration of shear
reinforcement and the loading condition were not included. Moreover, the response was found to be
affected by the typical configurations of the experimental tests performed per benchmark study. Cer-
tain ranges of material parameters and dimensions were inherently connected to a specific research.
This implicates that the model application is limited to the specific configurations of the benchmarks.
To improve the model usability, addition of continuous geometry parameters and a wider overlapping
data-set is necessary.
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9.3. Conclusions to Research Questions
Conclusions are presented by answering the research questions as formulated in section 1.2. First,
the sub-questions are answered. Subsequently, the main research question is answered.

1. Can an efficient sampling strategy be applied to adequately describe the total space of
design-related uncertainties?
An efficient sampling strategy for a full probabilistic approach was necessary due to the large compu-
tational times in NLFEA. The Latin hypercube sampling strategy has shown to provide representative
samples of the material uncertainties that concur with the prior known marginal and joint distributions
from Graubner and Brehm, Strauss et al. [10,11]. The iterative spatial optimization ensured that the sam-
ples covered the total space of uncertainties.

Moreover, the resulting empirical cumulative distribution functions of the individual benchmarks rea-
sonably matched the fitted log-normal distributions of the ductile and brittle failure modes for a sample
size 𝑁 = 20, as shown in Figure 6.7. This indicates that an efficient data-set can be generated by an
optimized Latin hypercube sampling strategy, to perform a full probabilistic analysis with benchmarking
by NLFEA.

2. Can the benchmarks be modelled efficiently in NLFEA according to a single solution strat-
egy?
The benchmarks were modelled in a 2D plane with symmetry conditions in software program Diana
based on a total strain crack model and Von Mises plasticity. Guidelines from Hendriks et al. [3] were
followed for the constitutive, kinematic and equilibrium relations. The used solution strategy (Table 5.1)
was found applicable to beams with shear reinforcement, but less accurate for beams without shear
reinforcement. The beams without shear reinforcement exhibited a relatively large model uncertainty
and coefficient of variation, which implies that the used solution strategy is not suitable to beams with-
out shear reinforcement.

The solution strategy was kept constant as much as possible to avoid biased results due to mod-
elling choices. Most of the constitutive, kinematic and equilibrium conditions could be well applied to
the beams with shear reinforcement. The mesh size, load-step and maximum number of iterations
however, were found to be very beam specific. The chosen element size of ℎ/10 caused discretiza-
tion problems or non-converged results in a few cases. Similarly, the load-step for the displacement
controlled analysis was reduced as non-convergence could occur for beams failing in a brittle manner.
The maximum number of iterations was set equal to 40, but could be chosen higher to improve con-
vergence and accuracy of the brittle failure mode especially.

The aforementioned actions come at the cost of increased computational time, which was undesir-
able for the large amount of analysis to be performed. It can be concluded that it remains complicated
to select one solution strategy on forehand that is both time efficient and accurate for different types of
reinforced concrete structures.

3. What is the relation between the ductility index and the model uncertainty?
The ductility index was found applicable for an objective distinction between failure modes based on
the proposed boundary of 𝜒 = 0.6 by Engen et al. [5]. However, analysis with a ductility index near this
boundary require additional attention. By visual inspection, the numerical failure mode corresponded
better to a value of 𝜒 = 0.65. In contrary, the experimental failure mode was correctly predicted for
a ductility index towards 𝜒 = 0.55, which can be explained by the systematic underestimation of the
shear capacity in NLFEA. After consideration, the original boundary of 𝜒 = 0.6 was accepted for further
analysis.

A statistical significant difference of the mean model uncertainty and coefficients of variation was
observed between the ductile and brittle failure modes. (Figure 6.2) The brittle failure mode showed
a high model uncertainty with a large variance. The ductile failure mode exhibited a lower model
uncertainty and variance, but also overestimated the resistance more often. For the ductile failure
mode, a mean model uncertainty of 𝜃፝ = 1.03 with a coefficient of variation of 9% was found. Whereas
for the brittle failure mode, a mean model uncertainty of 𝜃፛ = 1.27 with a coefficient of variation of
13% was found. In comparison to the entire data-set, a mean model uncertainty of 𝜃 = 1.16 with a
coefficient of variation of 15% was found. Thereby, quantification of the model uncertainty and design
resistance with respect to the failure mode was considered appropriate and beneficial.
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4. Does distinction of the failure mode based on the ductility index enable a more accurate and
robust reliability method?
A reliability method was formulated in Equation 6.8, which relies on a global approach and failure mode
distinction. The design resistance is formulated as the numerical resistance for mean input parameters,
divided by an associated safety factor for a ductile or brittle failure mode. Safety factors were defined
for a 50 year design lifetime with a sensitivity factor 𝛼 = 0.8 and reliability index 𝛽 = 3.8. (EN 1990) [15]
This resulted in safety factors 𝛾 = 1.27 and 𝛾፛ = 1.17 for the ductile and brittle failure mode respec-
tively. More favourable safety factors may be derived by a more accurate description of the marginal
distributions for specific types of concrete and reinforcement.

A comparison between the proposed method and existing reliability methods was made by as-
sessment of the unity check. (Table 7.1) The proposed reliability method showed lower coefficients of
variation and on average a higher unity check. From the existing reliability models, the global analysis
method GRF was found most robust and efficient, followed up by method ECOV and then PRF. Method
PRF showed the least encouraging results in terms of efficiency, while method ECOV only resulted in
accurate estimates for ductile failure modes and less for brittle failure modes.

Overall, the proposed reliability method showed promising signs for an increased efficiency along
with reduced variance. The full probabilistic approach with benchmarking has shown to result in a more
efficient reliability method that respects safety standards. Especially if reinforced concrete beams are
designed to fail in a ductile manner, a considerable efficient design by NLFEA can be achieved with a
mean unity check of 77%. For a brittle failure mode, a mean unity check of 66% was attained.

5. Can the NLFEA response of concrete beams be captured by a standalone model to be used
for extensive analysis possibilities?
It has been demonstrated how a NPBN for the NLFEA response of reinforced concrete beams can
be designed and used. The model was validated based on the calibration score 𝑑-Cal. Comparison
of the empirical and empirical normal rank correlation matrices indicated that the data could be well
represented by the Gaussian copula, enabling the response to be described by a NPBN. Evaluation of
the empirical normal and Bayesian network rank correlation matrices was also validated, but suggested
that the NPBN could be improved to describe the dependencies more adequately. The model validation
was improved significantly after exclusion of the data related to beams without shear reinforcement,
indicating that the NPBN is best designed for a typical type of beam configuration.

However, limitations of the model presented itself by display of the model application in section 8.3.
The conditional results were classified as unsubstantial due to large standard deviations. The limitations
arose due to the discrete geometry parameters and the composition of the data-set. The dimensions
and material parameters were inherently connected to specific types of research, which affected the
response of the NPBN. The foundation of a NPBN for the NLFEA resistance of reinforced concrete
beams has been demonstrated, but further research is needed to improve usability.

Can the quantification of uncertainties related to NLFEA be improved to enhance safe and effi-
cient application for the design of reinforced concrete beam elements?
The research focused on two main parts. First, it has been demonstrated how a full probabilistic ap-
proach can be applied to define a reliability method for reinforced concrete beams. A reliability method
as a function of the failure mode was statistically appropriate and resulted in improved efficiency. For
a 50 year design lifetime, a mean unity check of 77% was found for the ductile failure mode and a
mean unity check of 66% for the brittle failure mode. For specific types of concrete and reinforcement,
reduced coefficients of variation for the material parameters could lead to even higher efficiency.

Secondly, a standalone multivariate NPBN was developed. Although the model itself was limited
to the specific configuration of benchmarks, it has been demonstrated how such a model can be es-
tablished and used to assess reliability of reinforced concrete beams. On this part, further research is
necessary to extend the model usability.

The findings of this study suggest that design of reinforced concrete beams by NLFEA can be ap-
plied for efficient design, while respecting safety standards. The full probabilistic approach enabled
a proper quantification of the design resistance combined with a distinction between failure modes.
Thereby, this research contributes to the implementation of NLFEA for the design of reinforced con-
crete structures.
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9.4. Recommendations
Following from the discussion, several recommendations are made for further research related to ap-
plication of NLFEA for reinforced concrete beams.

• For extensive use of the proposed reliability method, it is recommended to expand the analysis
to benchmarks of larger size (deep beams and longer span), prestressed beams and continu-
ous beams. The proposed model might be applicable, but this should be confirmed by further
research. Prestressing could induce additional uncertainty parameters by prestressing losses,
beams of larger size are susceptible to a size affect potentially accompanied with a higher model
uncertainty, and continuous beams can suffer different failure mechanisms. Further improve-
ments could be made by addition of coefficients of variation within the reliability method for spe-
cific types of concrete and reinforcement.

• A better quantification of the ductility index boundary is necessary to improve robustness of the
proposed reliability method. This might be achieved by separation of the ductility index for lon-
gitudinal and shear reinforcement, or by reviewing the relative change of the ductility index as a
function of the load-step as described in section C.2.

• Considerably more work needs to be done to improve the usability of the NPBN. A larger sample
size and a wider selection of benchmarks could improve the NPBN significantly. A more extensive
model could be made by including shear reinforcement parameters and to include uncertainties of
geometry parameters as continuous instead of discrete nodes. Preferably, the model is defined
for a specific type of beam configuration, for example for beams with shear reinforcement within
a certain range of shear span over depth ratio. The NPBN could also be coupled to a limit state
function to assess the probability of failure directly for certain design loads.
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A | Data Description
The data for experimental results on the ultimate load on reinforced concrete beams was obtained from
four different research. An overview of the configuration of the main geometry and material parame-
ters is shown in Figure A.1. The sequentially displayed parameters are: concrete mean compressive
strength, concrete mean tensile strength, reinforcement yield strength, beam span length, beam height
and longitudinal reinforcement ratio. The benchmarks govern a variety in experimental failure mech-
anisms as described in Table A.1. The test arrangements and important differences per research are
highlighted accordingly.

Figure A.1: Overview of the variety of geometry and material parameters from the benchmark experiments.
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Ashour (1998)
”Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength
concrete beam” (Ashour) [29]

In total nine beams with high-strength concrete were loaded by a four-point bending test after 28 days of
hardening. All beams failed in a flexural manner. Mean concrete compressive strengths of 48, 78 and
102 MPa were used in combination with varying longitudinal tensile reinforcement ratio’s of 1.18, 1.77
and 2.37%. The layout of the beams, including stirrups and the cross section, is shown in Figure A.2.
Shear reinforcement and top reinforcement was applied over the shear span and the longitudinal re-
inforcement was anchored within the concrete. The used reinforcement consisted of locally available
deformed steel bars. Ordinary Portland cement (Type-I) was used, for which the mean compressive
strength was derived from cylinders tested under compression. A constant distance of 500 mm be-
tween the loading points was used, while a force controlled hydraulic testing machine implemented 25
to 35 increments until failure occurred.

The ultimate strength of the reinforcing bars was unspecified in the research and was therefore as-
sumed as 1.08 ∗ 𝑓፲. Loading and support plate dimensions were assumed equal to the width of beam
and 150 millimeter. The mean Young’s modulus for steel was taken as 210 GPa.

Figure A.2: Experimental layout from Ashour [29].

Bresler-Scordelis (1963)
”Experimental and Analytical Reexamination of Classic Concrete BeamTests” (Bresler and Scordelis) [34]

Twelve benchmarks were included from the Bresler-Scordelis tests. Nine of the twelve beams failed
due to shear. The beams were designed with high reinforcement ratio’s to make the beams shear-
critical. The beams were designed with different longitudinal reinforcement ratio, shear reinforcement
configuration, span length, cross section dimensions, and concrete strength. The test arrangement
used a monotonic force controlled centre-point loading. The force increments were reduced in mag-
nitude if cracks started to develop. All beams were tested at an age of thirteen days, which is early
compared to the standard 28 days.

To prevent bond failure, the longitudinal reinforcement was anchored to the outside of the beams with
anchor plates and nuts. The test set-up is displayed in Figure A.3.

Figure A.3: Experimental layout from Bresler and Scordelis [34].
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Vecchio & Shim (2004)
”Experimental and Analytical Reexamination of Classic Concrete Beam Tests” (Vecchio and Shim) [35]

Twelve experimental test results were obtained. The configuration of the beams was nominally identical
to the Bresler-Scordelis beams in terms of cross section dimensions, reinforcement configuration and
concrete strength. Details related to the longitudinal reinforcement anchor plates, the loading plates,
and the support plates were also preserved. Similar failure mechanisms were observed for both re-
search. However, some differences between both experimental tests were present. A displacement-
controlled loading system was used to measure the post-peak response. The age at testing differed
from 38 to 127 days, which is significantly older than for the Bresler-Scordelis tests. Furthermore, some
deviations in concrete and reinforcement strength occurred due to heterogeneity and the use of avail-
able reinforcing bars.

Figure A.4: Experimental layout from Vecchio and Shim [35].

Rashid & Mansur (2015)
”Reinforced High-Strength Concrete Beams in Flexure” (Rashid and Mansur) [33]

In total sixteen beams were tested with varying concrete strength, reinforcement ratio’s and shear re-
inforcement spacing. The shear reinforcement was placed along the entire length of the beam and the
longitudinal reinforcement was anchored externally at shown in Figure A.5. The beams were tested
under four-point loading by a deflection-controlled hydraulic actuator.

The beams were designed to fail in a ductile manner. All sixteen beams were classified to fail in flexural-
tension. The mean concrete compressive and tensile strength were derived from several tests on
cylinders and prisms. The beams were cured for fourteen days in a moist environment and air-dried
before testing. The load was applied by displacement-controlled hydraulic actuator and a constant
gauge length of 450 millimeter was used.

Figure A.5: Experimental layout from Rashid and Mansur [33].
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Table A.1: Overview of dimensions and experimental results of selected benchmarks. (Ashour, Rashid and Mansur, Bresler and
Scordelis, Vecchio and Shim) [29,33–35]

No. Code Ref. 𝑓፜፦ 𝜌 𝑎 𝑑 ℎ FM 𝑃፮ 𝑏፰ 𝑠 𝑓፲
[MPa] [%] [mm] [mm] [mm] [kN] [mm] [mm] [MPa]

0 B-H2 [29] 102,4 1,18 1290 198 250 FT 88,06 200 150 530
1 B-H3 [29] 102,4 1,77 1290 198 250 FT 128,31 200 150 530
2 B-H4 [29] 102,4 2,37 1290 198 250 FT 167,60 200 150 530
3 B-M2 [29] 78,5 1,18 1290 198 250 FT 89,84 200 150 530
4 B-M3 [29] 78,5 1,77 1290 198 250 FT 123,89 200 150 530
5 B-M4 [29] 78,5 2,37 1290 198 250 FT 160,88 200 150 530
6 B-N2 [29] 48,6 1,18 1290 198 250 FT 90,19 200 150 530
7 B-N3 [29] 48,6 1,77 1290 198 250 FT 124,96 200 150 530
8 B-N4 [29] 48,6 2,37 1290 198 250 FT 154,34 200 150 530
9 BS-A1 [34] 24,1 1,50 1830 466 561 VC 468 307 210 555
10 BS-A2 [34] 24,3 1,89 2285 464 559 VC 490 305 210 555
11 BS-A3 [34] 35,1 2,25 3200 466 561 FC 468 307 210 555
12 BS-B1 [34] 24,8 2,01 1830 461 556 VC 446 231 190 555
13 BS-B2 [34] 23,2 2,01 2285 466 561 VC 400 229 190 555
14 BS-B3 [34] 38,8 2,53 3200 461 556 FC 356 229 190 555
15 BS-C1 [34] 29,6 1,49 1830 464 559 VC 312 155 210 555
16 BS-C2 [34] 23,8 3,04 2285 464 559 VC 324 152 210 555
17 BS-C3 [34] 35,1 3,00 3200 459 554 FC 270 155 210 555
18 BS-OA1 [34] 22,6 1,50 1830 461 556 DT 334 310 - 555
19 BS-OA2 [34] 23,7 1,88 2285 466 561 DT 356 305 - 555
20 BS-OA3 [34] 37,6 2,27 3200 462 556 DT 378 307 - 555
21 VS-A1 [35] 22,6 1,43 1830 457 552 VC 459 305 210 441
22 VS-A2 [35] 25,9 1,84 2285 457 552 VC 439 305 210 441
23 VS-A3 [35] 43,5 2,26 3200 457 552 FC 420 305 168 441
24 VS-B1 [35] 22,6 1,90 1830 457 552 VC 434 229 190 441
25 VS-B2 [35] 25,9 1,90 2285 457 552 VC 365 229 190 441
26 VS-B3 [35] 43,5 2,45 3200 457 552 FC 342 229 152 441
27 VS-C1 [35] 22,6 1,67 1830 457 552 VC 282 152 210 441
28 VS-C2 [35] 25,9 2,86 2285 457 552 VC 290 152 210 441
29 VS-C3 [35] 43,5 2,86 3200 457 552 FC 265 152 168 441
30 VS-OA1 [35] 22,6 1,43 1830 457 552 DT 331 305 - 441
31 VS-OA2 [35] 25,9 1,84 2285 457 552 DT 320 305 - 441
32 VS-OA3 [35] 43,5 2,26 3200 457 552 DT 385 305 - 441
33 A111 [33] 42,8 1,25 1200 357,5 400 FT 342,84 250 200 503,2
34 A211 [33] 42,8 2,20 1200 357,5 400 FT 461,3 250 200 460
35 B211a [33] 73,6 2,20 1200 357,5 400 FT 500,9 250 200 460
36 B311 [33] 72,8 3,46 1200 340,8 400 FT 751,96 250 200 460
37 B312 [33] 72,8 3,46 1200 340,8 400 FT 730,22 250 100 460
38 B313 [33] 72,8 3,46 1200 340,5 400 FT 742,94 250 66,7 460
39 B321 [33] 77 3,46 1200 340,8 400 FT 765,06 250 200 460
40 B331 [33] 72,8 3,46 1200 340,8 400 FT 772,8 250 200 460
41 B411 [33] 77 4,73 1200 332,5 400 FT 950,4 250 200 460
42 C211 [33] 85,6 2,71 1200 350,8 400 FT 650,42 250 200 473
43 C311 [33] 88,1 3,22 1200 346,7 400 FT 730,12 250 200 482,4
44 C411 [33] 85,6 4,26 1200 335 400 FT 901,4 250 200 473,5
45 C511 [33] 88,1 5,31 1200 322 400 FT 880,6 250 200 467,2
46 D211 [33] 114,5 2,20 1200 357,5 400 FT 605 250 200 460
47 E211 [33] 126,2 2,20 1200 357,5 400 FT 595,2 250 200 460
Diagonal-Tension (DT), Shear-Compression (VC), Flexure–Compression (FC), Flexure-Tension (FT).



B | Python Scripts

B.1. Optimized Latin Hypercube Sampling
1 __all__ = ['lhs']
2

3 def lhs(n, samples=None, criterion=None, iterations=None):
4 if criterion.lower() in ('centermaximin', 'cm'):
5 H = _lhsmaximin(n, samples, iterations, 'centermaximin')
6 return H
7

8

9 def _lhscentered(n, samples):
10 # Generate the intervals
11 cut = np.linspace(0, 1, samples + 1)
12

13 # Fill points uniformly in each interval
14 u = np.random.rand(samples, n)
15 a = cut[:samples]
16 b = cut[1:samples + 1]
17 _center = (a + b)/2
18

19 # Make the random pairings
20 H = np.zeros_like(u)
21 for j in range(n):
22 H[:, j] = np.random.permutation(_center)
23 return H
24

25

26 def _lhsmaximin(n, samples, iterations, lhstype):
27 maxdist = 0
28

29 # Maximize the minimum distance between points
30 for i in range(iterations):
31 Hcandidate = _lhscentered(n, samples)
32 d = _pdist(Hcandidate)
33 if maxdist<np.min(d):
34 maxdist = np.min(d)
35 H = Hcandidate.copy()
36 return H
37

38

39 def _pdist(x):
40 x = np.atleast_2d(x)
41 assert len(x.shape)==2, 'Input array must be 2d-dimensional'
42

43 m, n = x.shape
44 if m<2:
45 return []
46

47 d = []
48 for i in range(m - 1):
49 for j in range(i + 1, m):
50 d.append((sum((x[j, :] - x[i, :])**2))**0.5)
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51 return np.array(d)
52

53

54 ”””LHS for concrete parameters”””
55 def LHSconcrete(N,iters):
56 f_cm= 40 #MPa
57 f_ck= f_cm-8
58

59 if f_ck<= 30:
60 f_ctm=0.30*f_ck**(2/3)
61 else:
62 f_ctm=2.12*np.log(1+f_cm/10)
63

64 E_c = 21.5*(f_cm/10)**(1/3) #GPa
65 eps_uc = 3.5 #Promile
66

67 design = lhs(4, samples=N,criterion= 'centermaximin', iterations=iters)
68 means = np.array([f_cm, f_ctm, E_c, eps_uc])
69 CoV = np.array([0.06,0.30,0.15,0.15])
70 stdevs = means*CoV
71

72 mu_n = np.zeros(len(means))
73 sig_n=np.zeros(len(means))
74

75 for i in range(len(means)):
76 mu_n[i]= np.log(means[i]**2/(np.sqrt(stdevs[i]**2+means[i]**2))) #convert LN_mu to N_mu
77 sig_n[i]= np.sqrt(np.log(1+(stdevs[i]**2/means[i]**2))) #convert LN_sigma to N_sigma
78 design[:,i]= norm(loc=mu_n[i],scale=sig_n[i]).ppf(design[:,i])
79

80 design=np.exp(design)
81

82 x= np.linspace(0,1,N+1)
83 x_t = np.exp(norm(loc=mu_n[0], scale=sig_n[0]).ppf(x))
84 y_t = np.exp(norm(loc=mu_n[1], scale=sig_n[1]).ppf(x))
85

86 df_concrete = pd.DataFrame((design),columns=['fc','fctm','Ec','eps_u'])
87

88 return df_concrete
89 LHSconcrete(N=20,iters=10000)
90

91

92 ”””LHS for steel parameters incl correlation”””
93 def LHSreinfo(N,iters):
94 f_y= 435 #MPa
95 f_u= 500
96 E_s= 210 #GPa
97 nu_s= 0.30
98 eps_us=25 #promile
99

100 CoV = np.array([0.07,0.04,0.03,0.03,0.06])
101 means = np.array([f_y, f_u, E_s, nu_s,eps_us])
102 stdevs = means*CoV
103

104 design = lhs(5, samples=N,criterion= 'centermaximin', iterations=iters)
105

106 mu_n = np.zeros(len(means))
107 sig_n=np.zeros(len(means))
108 for i in range(len(means)):
109 mu_n[i]= np.log(means[i]**2/(np.sqrt(stdevs[i]**2+means[i]**2))) #convert LN_mu to N_mu
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110 sig_n[i]= np.sqrt(np.log(1+(stdevs[i]**2/means[i]**2))) #convert LN_sigma to N_sigma
111 design[:,i]= norm(loc=0,scale=1).ppf(design[:,i]) #Uniform to N(0,1) sample
112

113 corr= np.array([
114 [ 1, 0.75, 0, 0, -0.45],
115 [ 0.75, 1, 0, 0, -0.65],
116 [ 0, 0, 1, 0, 0 ],
117 [0, 0, 0, 1, 0],
118 [-0.45, -0.65, 0, 0, 1 ]])
119

120 df_std= np.ones(5)
121 df_std = np.diag([df_std[0],df_std[1],df_std[2],df_std[3],df_std[4]])
122 df_cov = np.dot(np.dot(df_std,corr),df_std) #covariance matrix
123

124 c = cholesky(df_cov, lower=False)
125 y = np.dot(design,c) # Convert the data to correlated normal variables.
126 for i in range(5):
127 design[:,i]= sig_n[i]*y[:,i]+mu_n[i] #convert to N with LN parameters
128

129 design=np.exp(design) #convert the normal sample to LN
130 df_reinfo = pd.DataFrame((design),columns=['fy','fu','Es','nu_s','eps_us'])
131

132 x= np.linspace(0,1,N+1)
133 x_t = np.exp(norm(loc=mu_n[0], scale=sig_n[0]).ppf(x))
134 y_t = np.exp(norm(loc=mu_n[1], scale=sig_n[1]).ppf(x))
135 return df_reinfo
136

137 LHSreinfo(N=20,iters=10000)
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B.2. Diana Model
1 ### INPUT
2 [f_c,f_ctm,rho,a,d,ad,h,P_u,b_w] = [42.8, 3.20, 1.25, 1200, 357.5, 1.32, 400, 342.84, 250]
3 [s_d, s, s_fy, s_fu, s_E, l_load, w_load] = [10, 200, 541, 585.3, 210000, 250, 150]
4 [l_supp, w_supp, f_y, f_u, E_s, A_long] = [250, 150, 503.2, 543.5, 210000, 1119.2]
5 [L_beam, L_span, A_top, fy_top, fu_top] = [3600, 3400, 265.5, 472, 510]
6 [Es_top, c_top, typ, mid_span] = [210000, 20, 2, 1000]
7

8 ########################################################################
9 Load_step = ”0.15(80)” #XX(YY) -> XX displacement step, YY=number of steps

10 iters= 40
11

12 Mesh_size = h/10
13 hp = 50 # height plates in mm
14 F = -P_u*1000/2 #N
15 index_num = 33 #Beam index number of excel file
16 N=20 #sample size
17

18 ########################################################################
19 ### fc, fctm, Ec,G_f
20 concr=([[ 44.2818429 , 6.00669656, 33.56112902, 176.76897704],
21 [ 40.39541737, 1.90054255, 40.9836041 , 169.37480879],
22 [ 43.21027213, 3.86017983, 30.84257711, 163.47008334],
23 [ 42.88406715, 4.21760356, 37.74089853, 125.04131621],
24 [ 46.57368302, 4.73605339, 35.50909088, 132.14792013],
25 [ 41.21935566, 5.15566739, 34.19997424, 146.12747721],
26 [ 37.98719495, 3.71005634, 36.20180264, 139.01854684],
27 [ 40.83163491, 3.07703748, 31.576492 , 207.51041337],
28 [ 45.77327015, 2.2142589 , 32.91894584, 112.07947529],
29 [ 39.19099614, 2.41044209, 32.26208077, 149.92422261],
30 [ 42.24155372, 3.44152744, 46.24435333, 116.97237822],
31 [ 42.56287131, 2.56805495, 29.07809615, 105.84099947],
32 [ 41.57670602, 3.31712666, 34.84579176, 158.44502278],
33 [ 44.70232543, 2.95737062, 27.85044474, 135.58144282],
34 [ 45.18505193, 4.4453809 , 25.77017721, 95.47556614],
35 [ 41.9148486 , 3.19628594, 39.6855815 , 142.5146115 ],
36 [ 43.90124198, 2.83496185, 36.93888156, 153.9903604 ],
37 [ 43.54707442, 3.5716399 , 42.79016696, 187.1880868 ],
38 [ 39.87630828, 4.02685574, 30.0291727 , 121.19755364],
39 [ 48.04958708, 2.7067462 , 38.63896251, 128.65853514]])
40

41 ### fy, fu, Es, nu,epsilon_su
42 reinfo=([[4.86296802e+02, 5.27280695e+02, 2.08718292e+02, 2.94536786e-01,
43 2.74301989e+01],
44 [5.75692431e+02, 5.74940412e+02, 2.02786766e+02, 2.91576178e-01,
45 2.37796980e+01],
46 [4.37691284e+02, 5.39266031e+02, 2.13702851e+02, 2.95811632e-01,
47 2.52522660e+01],
48 [5.08652872e+02, 5.39595643e+02, 2.12781866e+02, 2.99301641e-01,
49 2.30068344e+01],
50 [4.99775789e+02, 5.48545130e+02, 1.97921807e+02, 2.82745438e-01,
51 2.55397567e+01],
52 [5.29195609e+02, 5.38818920e+02, 2.09511149e+02, 3.10391808e-01,
53 2.54794570e+01],
54 [4.63180864e+02, 5.40814273e+02, 2.11099589e+02, 3.06736794e-01,
55 2.33392222e+01],
56 [5.18151792e+02, 5.55119745e+02, 2.11921254e+02, 3.05289787e-01,
57 2.54896038e+01],
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58 [5.44011161e+02, 5.41084183e+02, 2.14715756e+02, 3.03974094e-01,
59 2.65512276e+01],
60 [4.76148244e+02, 5.33520553e+02, 2.07068142e+02, 3.00429602e-01,
61 2.42797847e+01],
62 [5.04177203e+02, 5.16561726e+02, 2.19166993e+02, 2.97012922e-01,
63 2.70598878e+01],
64 [4.90912637e+02, 5.46428218e+02, 2.22614913e+02, 3.13095705e-01,
65 2.46776075e+01],
66 [5.35866472e+02, 5.55669813e+02, 2.15872748e+02, 3.18021304e-01,
67 2.38091240e+01],
68 [4.53910299e+02, 5.15714679e+02, 2.17274266e+02, 3.02744649e-01,
69 2.58022259e+01],
70 [4.70220798e+02, 5.41227625e+02, 2.05203133e+02, 3.01570842e-01,
71 2.54428448e+01],
72 [4.81425552e+02, 5.22824233e+02, 2.04103325e+02, 3.08389641e-01,
73 2.50351728e+01],
74 [5.13279840e+02, 5.34850742e+02, 2.01035498e+02, 2.98168988e-01,
75 2.41116374e+01],
76 [5.23394653e+02, 5.53761133e+02, 2.10300721e+02, 2.93147332e-01,
77 2.67950074e+01],
78 [5.55121927e+02, 5.88978259e+02, 2.07909045e+02, 2.89695380e-01,
79 2.28484914e+01],
80 [4.95378230e+02, 5.50846682e+02, 2.06175750e+02, 2.87193569e-01,
81 2.40508978e+01]])
82

83 ##############################################################################
84 newProject( ”./Base_model/Base_model”, 100 )
85 setModelAnalysisAspects( [ ”STRUCT” ] )
86 setModelDimension( ”2D” )
87 setDefaultMeshOrder( ”QUADRATIC” )
88 setDefaultMesherType( ”HEXQUAD” )
89 setDefaultMidSideNodeLocation( ”LINEAR” )
90 setUnit( ”LENGTH”, ”MM” )
91 setUnit( ”FORCE”, ”N” )
92

93 ### GEOMETRY
94 createSheet( ”Concrete”, [[ 0, 0, 0 ],[ L_beam/2, 0, 0 ],[ L_beam/2, h, 0 ],[ 0, h, 0 ]] )
95 createSheet( ”Supp_plate”, [[ 0.5*(L_beam-L_span-w_supp), 0, 0 ],
96 [ 0.5*(L_beam-L_span-w_supp), -hp, 0 ], [ 0.5*(L_beam-L_span), -hp, 0 ],
97 [ 0.5*(L_beam-L_span+w_supp), -hp, 0 ],[ 0.5*(L_beam-L_span+w_supp), 0, 0 ]] )
98 if typ==1.0:
99 createSheet(”Load_plate”,[[0.5*(L_beam-w_load),h,0],[L_beam/2,h,0],[L_beam/2,h+hp,0],

100 [ 0.5*(L_beam-0.5*w_load), h+hp, 0 ],[ 0.5*(L_beam-w_load), h+hp, 0 ]] )
101 createPointNodeGroupItem( ”Node_load”, ”Geom node group 1” )
102 attach( GEOMETRYNODEGROUPITEM, ”Node_load”, ”Load_plate”, [[ 0.5*(L_beam), h+hp, 0 ]] )
103 if typ==2.0:
104 createSheet(”Load_plate”,[[0.5*(L_beam-w_load-mid_span),h,0],[0.5*(L_beam-mid_span+w_load),
105 h, 0], [ 0.5*(L_beam-mid_span+w_load), h+hp, 0 ],[ 0.5*(L_beam-mid_span), h+hp, 0 ],
106 [ 0.5*(L_beam-w_load-mid_span), h+hp, 0 ]] )
107 createPointNodeGroupItem( ”Node_load”, ”Geom node group 1” )
108 attach(GEOMETRYNODEGROUPITEM,”Node_load”,”Load_plate”,[[ 0.5*(L_beam-mid_span), h+hp, 0 ]])
109

110 createLine( ”Reinfo_low”, [ 0, h-d, 0 ], [ L_beam/2, h-d, 0 ] )
111 addGeometry( ”Element geometry 1”, ”SHEET”, ”MEMBRA”, [] )
112 setParameter( ”GEOMET”, ”Element geometry 1”, ”THICK”, b_w )
113 rename( ”GEOMET”, ”Element geometry 1”, ”Thickness” )
114

115 ### ASSIGN TOP REINFO
116 if A_top >= 0.5:



B.2. Diana Model 87

117 createLine( ”Reinfo_top”, [ 0, h-c_top, 0 ], [ L_beam/2, h-c_top, 0 ] )
118 addMaterial( ”Reinfo_top”, ”REINFO”, ”VMISES”, [] )
119 setParameter( ”MATERIAL”, ”Reinfo_top”, ”LINEAR/ELASTI/YOUNG”, Es_top ) #Es
120 setParameter( ”MATERIAL”, ”Reinfo_top”, ”PLASTI/YLDTYP”, ”JSCE12” )
121 setParameter(”MATERIAL”,”Reinfo_top”,”PLASTI/HARDI5/REJSCE”,[ fy_top, fu_top,25/1000 ])
122 addGeometry( ”Bar_Area_top”, ”RELINE”, ”REBAR”, [] )
123 setParameter( ”GEOMET”, ”Bar_Area_top”, ”REIEMB/CROSSE”, A_top )
124 setShapeType( REINFORCEMENTSHAPE, [ ”Reinfo_top” ] )
125 assignMaterial( ”Reinfo_top”, ”SHAPE”, [ ”Reinfo_top” ] )
126 assignGeometry( ”Bar_Area_top”, ”SHAPE”, [ ”Reinfo_top” ] )
127 resetElementData( ”SHAPE”, [ ”Reinfo_top” ] )
128 setReinforcementDiscretization( [ ”Reinfo_top” ], ”ELEMENT” )
129

130 ### SUPPORT CONDITIONS
131 addSet( ”GEOMETRYSUPPORTSET”, ”Supports” )
132 createPointSupport( ”Support_left”, ”Supports” )
133 setParameter( GEOMETRYSUPPORT, ”Support_left”, ”AXES”, [ 1, 2 ] )
134 setParameter( GEOMETRYSUPPORT, ”Support_left”, ”TRANSL”, [ 0, 1, 0 ] )
135 setParameter( GEOMETRYSUPPORT, ”Support_left”, ”ROTATI”, [ 0, 0, 0 ] )
136 attach( GEOMETRYSUPPORT, ”Support_left”, ”Supp_plate”, [[ 0.5*(L_beam-L_span), -hp, 0 ]] )
137

138 createLineSupport( ”Support_right”, ”Supports” )
139 setParameter( ”GEOMETRYSUPPORT”, ”Support_right”, ”AXES”, [ 1, 2 ] )
140 setParameter( ”GEOMETRYSUPPORT”, ”Support_right”, ”TRANSL”, [ 1, 0, 0 ] )
141 setParameter( ”GEOMETRYSUPPORT”, ”Support_right”, ”ROTATI”, [ 0, 0, 0 ] )
142 attach( ”GEOMETRYSUPPORT”, ”Support_right”, ”Concrete”, [[ L_beam/2, h/2, 0 ]] )
143 if typ==1.0:
144 attach( ”GEOMETRYSUPPORT”, ”Support_right”, ”Load_plate”, [[ L_beam/2, h+hp/2, 0 ]] )
145

146 ### LOADS
147 addSet( ”GEOMETRYLOADSET”, ”Loads” )
148 createPointLoad( ”Point_load”, ”Loads” )
149 setParameter( ”GEOMETRYLOAD”, ”Point_load”, ”FORCE/VALUE”, F ) #Newton
150 setParameter( ”GEOMETRYLOAD”, ”Point_load”, ”FORCE/DIRECT”, 2 )
151 if typ==1.0:
152 attach( ”GEOMETRYLOAD”, ”Point_load”, ”Load_plate”, [[ 0.5*L_beam, h+hp, 0 ]] )
153 if typ==2.0:
154 attach(”GEOMETRYLOAD”,”Point_load”,”Load_plate”,[[0.5*(L_beam-mid_span),h+hp,0]])
155

156 ### ASSIGN PLATES
157 addMaterial( ”Plates_material”, ”MCSTEL”, ”ISOTRO”, [] )
158 setParameter( ”MATERIAL”, ”Plates_material”, ”LINEAR/ELASTI/YOUNG”, 210000 )
159 setParameter( ”MATERIAL”, ”Plates_material”, ”LINEAR/ELASTI/POISON”, 0.3 )
160 setParameter( ”MATERIAL”, ”Plates_material”, ”LINEAR/MASS/DENSIT”, 0 )
161 setElementClassType( ”SHAPE”, [ ”Supp_plate”, ”Load_plate” ], ”MEMBRA” )
162 assignMaterial( ”Plates_material”, ”SHAPE”, [ ”Supp_plate”, ”Load_plate” ] )
163 assignGeometry( ”Thickness”, ”SHAPE”, [ ”Supp_plate”, ”Load_plate” ] )
164

165 ### INTERFACES
166 addMaterial( ”Interface_material”, ”INTERF”, ”ELASTI”, [] )
167 setParameter( ”MATERIAL”, ”Interface_material”, ”LINEAR/IFTYP”, ”LIN2D” )
168 setParameter( ”MATERIAL”, ”Interface_material”, ”LINEAR/ELAS2/DSNY”, 30000 )
169 setParameter( ”MATERIAL”, ”Interface_material”, ”LINEAR/ELAS2/DSSX”, 30 )
170 addGeometry( ”Interface_thickness”, ”LINE”, ”STLIIF”, [] )
171 setParameter( ”GEOMET”, ”Interface_thickness”, ”LIFMEM/THICK”, 10 )
172 setParameter( GEOMET, ”Interface_thickness”, ”LOCAXS”, False )
173 createConnection( ”Interface_plates”, ”INTER”, ”SHAPEEDGE” )
174 setParameter( ”GEOMETRYCONNECTION”, ”Interface_plates”, ”MODE”, ”AUTO” )
175 attachTo( ”GEOMETRYCONNECTION”, ”Interface_plates”, ”SOURCE”, ”Supp_plate”,
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176 [[ (L_beam-L_span)/2, 0, 0 ]] )
177

178 if typ==1.0:
179 attachTo( ”GEOMETRYCONNECTION”, ”Interface_plates”, ”SOURCE”, ”Load_plate”,
180 [[ 0.5*(L_beam-0.5*l_load), h, 0 ]] )
181 if typ==2.0:
182 attachTo( ”GEOMETRYCONNECTION”, ”Interface_plates”, ”SOURCE”, ”Load_plate”,
183 [[ 0.5*(L_beam-mid_span), h, 0 ]] )
184 setElementClassType( ”GEOMETRYCONNECTION”, ”Interface_plates”, ”STLIIF” )
185 assignMaterial( ”Interface_material”, ”GEOMETRYCONNECTION”, ”Interface_plates” )
186 assignGeometry( ”Interface_thickness”, ”GEOMETRYCONNECTION”, ”Interface_plates” )
187 setParameter( ”GEOMETRYCONNECTION”, ”Interface_plates”, ”FLIP”, False )
188 resetElementData( ”GEOMETRYCONNECTION”, ”Interface_plates” )
189

190 #### STIRRUPS
191 if s >=0.5:
192 createLine(”stirrups”,[0.5*(L_beam-L_span)+45,h-d,0],[0.5*(L_beam-L_span)+45,h-c_top,0])
193 duplicateShape( ”stirrups”, ”stirrups 1” )
194 translate( [ ”stirrups 1” ], [ s, 0, 0 ] )
195 duplicateShape( ”stirrups 1”, ”stirrups 2” )
196 translate( [ ”stirrups 2” ], [ s, 0, 0 ] )
197 duplicateShape( ”stirrups 2”, ”stirrups 3” )
198 translate( [ ”stirrups 3” ], [ s, 0, 0 ] )
199 duplicateShape( ”stirrups 3”, ”stirrups 4” )
200 translate( [ ”stirrups 4” ], [ s, 0, 0 ] )
201 duplicateShape( ”stirrups 4”, ”stirrups 5” )
202 translate( [ ”stirrups 5” ], [ s, 0, 0 ] )
203 duplicateShape( ”stirrups 5”, ”stirrups 6” )
204 translate( [ ”stirrups 6” ], [ s, 0, 0 ] )
205 duplicateShape( ”stirrups 6”, ”stirrups 7” )
206 translate( [ ”stirrups 7” ], [ s, 0, 0 ] )
207 duplicateShape( ”stirrups 7”, ”stirrups 8” )
208 translate( [ ”stirrups 8” ], [ s, 0, 0 ] )
209

210 addMaterial( ”Stir_mat”, ”REINFO”, ”VMISES”, [] )
211 setParameter( ”MATERIAL”, ”Stir_mat”, ”LINEAR/ELASTI/YOUNG”, s_E )
212 setParameter( ”MATERIAL”, ”Stir_mat”, ”PLASTI/YLDTYP”, ”JSCE12” )
213 setParameter( ”MATERIAL”, ”Stir_mat”, ”PLASTI/HARDI5/REJSCE”, [ s_fy, s_fu,25/1000 ] )
214 addGeometry( ”stirrup_area”, ”RELINE”, ”REBAR”, [] )
215 setParameter( ”GEOMET”, ”stirrup_area”, ”REIEMB/CROSSE”, 0.25*3.14*s_d**2 )
216 setShapeType( REINFORCEMENTSHAPE, [ ”stirrups”, ”stirrups 1”, ”stirrups 2”,”stirrups 3”,
217 ”stirrups 4”, ”stirrups 5”,”stirrups 6”, ”stirrups 7”, ”stirrups 8” ] )
218 assignMaterial(”Stir_mat”,”SHAPE”,[”stirrups”,”stirrups 1”,”stirrups 2”,”stirrups 3”,
219 ”stirrups 4”, ”stirrups 5”,”stirrups 6”, ”stirrups 7”, ”stirrups 8” ] )
220 assignGeometry(”stirrup_area”,”SHAPE”,[”stirrups”,”stirrups 1”,”stirrups 2”,”stirrups 3”,
221 ”stirrups 4”, ”stirrups 5”,”stirrups 6”, ”stirrups 7”, ”stirrups 8” ] )
222 resetElementData(”SHAPE”,[”stirrups”,”stirrups 1”,”stirrups 2”,”stirrups 3”,”stirrups 4”,
223 ”stirrups 5”,”stirrups 6”, ”stirrups 7”, ”stirrups 8” ] )
224 setReinforcementDiscretization( [ ”stirrups”, ”stirrups 1”, ”stirrups 2”,”stirrups 3”,
225 ”stirrups 4”, ”stirrups 5”,”stirrups 6”, ”stirrups 7”, ”stirrups 8” ], ”ELEMENT” )
226

227

228 for i in range(N):
229 ### ASSIGN CONCRETE MATERIAL
230 concrete= concr[i]
231 reinforcement= reinfo[i]
232 f_cd,f_ctm,E_c,G_f = [concrete[0],concrete[1],concrete[2],concrete[3]]
233 f_y,f_u,E_s,nu_s,eps_s = [reinforcement[0],reinforcement[1],reinforcement[2],
234 reinforcement[3],reinforcement[4]]
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235 G_c = 250*G_f
236

237 addMaterial( ”Concrete_material”, ”CONCR”, ”TSCR”, [] )
238 setParameter( ”MATERIAL”, ”Concrete_material”, ”LINEAR/ELASTI/YOUNG”, 1000*E_c )
239 setParameter( ”MATERIAL”, ”Concrete_material”, ”LINEAR/ELASTI/POISON”, 0.2 )
240 setParameter( ”MATERIAL”, ”Concrete_material”, ”LINEAR/MASS/DENSIT”, 2.756*10**9 )
241 setParameter( ”MATERIAL”, ”Concrete_material”, ”MODTYP/TOTCRK”, ”ROTATE” )
242 setParameter( ”MATERIAL”, ”Concrete_material”, ”TENSIL/TENCRV”, ”HORDYK” )
243 setParameter( ”MATERIAL”, ”Concrete_material”, ”TENSIL/TENSTR”, f_ctm )
244 setParameter( ”MATERIAL”, ”Concrete_material”, ”TENSIL/CBSPEC”, ”GOVIND” )
245 setParameter( ”MATERIAL”, ”Concrete_material”, ”TENSIL/RESTST”, 0 )
246 setParameter( ”MATERIAL”, ”Concrete_material”, ”TENSIL/POISRE/POIRED”, ”DAMAGE” )
247 setParameter( ”MATERIAL”, ”Concrete_material”, ”TENSIL/GF1”, G_f/1000 )
248 setParameter( ”MATERIAL”, ”Concrete_material”, ”TENSIL/RESTST”, 0 )
249 setParameter( ”MATERIAL”, ”Concrete_material”, ”COMPRS/COMCRV”, ”PARABO” )
250 setParameter( ”MATERIAL”, ”Concrete_material”, ”COMPRS/COMSTR”, f_cd )
251 setParameter( ”MATERIAL”, ”Concrete_material”, ”COMPRS/GC”, G_c/1000 )
252 setParameter( ”MATERIAL”, ”Concrete_material”, ”COMPRS/RESCST”, 0 )
253 setParameter( ”MATERIAL”, ”Concrete_material”, ”COMPRS/REDUCT/REDCRV”, ”VC1993” )
254 setParameter( ”MATERIAL”, ”Concrete_material”, ”COMPRS/REDUCT/REDMIN”, 0.4 )
255 setParameter( ”MATERIAL”, ”Concrete_material”, ”COMPRS/CONFIN/CNFCRV”, ”VECCHI” )
256 setElementClassType( ”SHAPE”, [ ”Concrete” ], ”MEMBRA” )
257 assignMaterial( ”Concrete_material”, ”SHAPE”, [ ”Concrete” ] )
258 assignGeometry( ”Thickness”, ”SHAPE”, [ ”Concrete” ] )
259

260 ### ASSIGN REINFO
261 addMaterial( ”Reinfo”, ”REINFO”, ”VMISES”, [] )
262 setParameter( ”MATERIAL”, ”Reinfo”, ”LINEAR/ELASTI/YOUNG”, 1000*E_s )
263 setParameter( ”MATERIAL”, ”Reinfo”, ”PLASTI/YLDTYP”, ”JSCE12” )
264 setParameter( ”MATERIAL”, ”Reinfo”, ”PLASTI/HARDI5/REJSCE”, [ f_y, f_u,eps_s/1000 ] )
265 addGeometry( ”Element geometry 3”, ”RELINE”, ”REBAR”, [] )
266 rename( ”GEOMET”, ”Element geometry 3”, ”Bar_Area” )
267 setParameter( ”GEOMET”, ”Bar_Area”, ”REIEMB/CROSSE”, A_long )
268 setShapeType( REINFORCEMENTSHAPE, [ ”Reinfo_low” ] )
269 assignMaterial( ”Reinfo”, ”SHAPE”, [ ”Reinfo_low” ] )
270 assignGeometry( ”Bar_Area”, ”SHAPE”, [ ”Reinfo_low” ] )
271 resetElementData( ”SHAPE”, [ ”Reinfo_low” ] )
272 setReinforcementDiscretization( [ ”Reinfo_low” ], ”ELEMENT” )
273

274 ### MESH
275 setElementSize( [ ”Concrete”, ”Supp_plate”, ”Load_plate” ], Mesh_size, -1, True )
276 setMesherType( [ ”Concrete”, ”Supp_plate”, ”Load_plate” ], ”HEXQUAD” )
277 setMidSideNodeLocation( [ ”Concrete”, ”Supp_plate”, ”Load_plate” ], ”LINEAR” )
278 generateMesh( [] )
279 if typ==1.0:
280 p1 = findNodesInBox( 0.5*(L_beam)-1, 0.5*(L_beam)+1, h+hp-1, h+hp+1, 0, 0 )
281 if typ==2.0:
282 p1 =findNodesInBox(0.5*(L_beam-mid_span)-1,0.5*(L_beam-mid_span)+1,h+hp-1,h+hp+1,0,0)
283

284 ### ADD ANALYSIS
285 Analysis_name= ”Analysis%s_%s” %(index_num,i)
286 addAnalysis( Analysis_name )
287 addAnalysisCommand( Analysis_name, ”NONLIN”, ”Structural nonlinear” )
288 setAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”EXECUT(1)/ITERAT/MAXITE”,iters)
289 setAnalysisCommandDetail(Analysis_name, ”Structural nonlinear”,
290 ”EXECUT(1)/ITERAT/CONVER/DISPLA”, False )
291 addAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”EXECUT(1)/ITERAT/CONVER/ENERGY”)
292 setAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
293 ”EXECUT(1)/ITERAT/CONVER/ENERGY”, True )
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294 setAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
295 ”EXECUT(1)/ITERAT/CONVER/ENERGY/NOCONV”, ”CONTIN” )
296 setAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
297 ”EXECUT(1)/ITERAT/CONVER/FORCE/NOCONV”, ”CONTIN” )
298 setAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
299 ”EXECUT(1)/LOAD/STEPS/EXPLIC/SIZES”, Load_step )
300 addAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”EXECUT(1)/LOAD/LOADNR”)
301 setAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”EXECUT(1)/LOAD/LOADNR”,1)
302 addAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
303 ”EXECUT(1)/LOAD/STEPS/EXPLIC/ARCLEN” )
304 setAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
305 ”EXECUT(1)/LOAD/STEPS/EXPLIC/ARCLEN”, True )
306 addAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
307 ”EXECUT(1)/LOAD/STEPS/EXPLIC/ARCLEN/REGULA/SET” )
308 setAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
309 ”EXECUT(1)/LOAD/STEPS/EXPLIC/ARCLEN/REGULA/SET(1)/NODES(1)/RNGNRS”,”\”Geom node group 1\””)
310 setAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
311 ”EXECUT(1)/LOAD/STEPS/EXPLIC/ARCLEN/REGULA/SET(1)/DIRECT”, 2 )
312 setAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”EXECUT(1)/ITERAT/LINESE”,True)
313 addAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”EXECUT(1)/LOGGIN/ENERGY”)
314 setAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”OUTPUT(1)/SELTYP”, ”USER”)
315 addAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”, ”OUTPUT(1)/USER” )
316 addAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
317 ”OUTPUT(1)/USER/DISPLA(1)/TOTAL/TRANSL/GLOBAL” )
318 addAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”,
319 ”OUTPUT(1)/USER/DISPLA(2)/TOTAL/TRANSL/LOCAL” )
320 addAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”OUTPUT(1)/USER/STRAIN(1)/CRACK”)
321 addAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”OUTPUT(1)/USER/STRAIN(2)/CRKWDT”)
322 addAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”OUTPUT(1)/USER/STRAIN(3)/TOTAL”)
323 addAnalysisCommandDetail( Analysis_name, ”Structural nonlinear”, ”OUTPUT(1)/USER/STRESS” )
324 addAnalysisCommandDetail(Analysis_name,”Structural nonlinear”,”OUTPUT(1)/USER/FORCE(1)/EXTERN”)
325

326 runSolver( Analysis_name )
327 showView( ”RESULT” )
328 selectResult( {”component”: ”TDtY”, ”result”: ”Displacements”, ”type”: ”Node”} )
329

330 output1 = outputBlocks( Analysis_name )[0]
331 p1 = p1[0]
332 Result_name= ”load_facs%s_%s.csv” %(index_num,i)
333 resCases = resultCases(Analysis_name, output1)
334 exportResults( Result_name,
335 { ”analysis” : Analysis_name,
336 ”block” : output1,
337 ”result” : 'External Forces',
338 ”components” : [ 'FEY' ],
339 ”cases” : resCases,
340 ”nodes” : [p1] } )
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C.1. Load-Steps
Table C.1: Overview of the used load-steps per benchmark.

Beam index Load-step Beam index Load-step Beam index Load-step
B-H2 0.30(70) BS-C2 0.03(100) VS-OA3 0.04(80)
B-H3 0.30(70) BS-C3 0.03(100) A111 0.20(100)
B-H4 0.30(70) BS-OA1 0.05(125) A211 0.15(80)
B-M2 0.30(60) BS-OA2 0.05(90) B211a 0.20(100)
B-M3 0.30(40) BS-OA3 0.03(110) B311 0.05(80)
B-M4 0.15(60) VS-A1 0.05(110) B312 0.15(80)
B-N2 0.30(60) VS-A2 0.05(90) B313 0.15(80)
B-N3 0.15(35) VS-A3 0.04(95) B321 0.05(80)
B-N4 0.075(60) VS-B1 0.05(90) B331 0.05(80)
BS-A1 0.03(160) VS-B2 0.05(105) B411 0.05(80)
BS-A2 0.03(120) VS-B3 0.03(100) C211 0.20(100)
BS-A3 0.03(100) VS-C1 0.05(90) C311 0.20(100)
BS-B1 0.05(90) VS-C2 0.05(75) C411 0.15(80)
BS-B2 0.04(95) VS-C3 0.04(95) C511 0.075(80)
BS-B3 0.04(95) VS-OA1 0.10(80) D211 0.20(100)
BS-C1 0.05(100) VS-OA2 0.06(100) E211 0.13(150)
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C.2. Ductility Index per Load-step
It can be argued whether the ductility index should be defined at a point where the beam has truly failed,
or at its maximum capacity. For this case, the effect of defining the ductility index at the maximum load
and one load-step afterwards was investigated. The effect was investigated by a visual inspection of
the deformed finite element models and the magnitude of the ductility index.

In Figure C.1, the logged ductility index is showed as function of the load-step for the 48 benchmarks
based on mean input parameters. From visual inspection it was observed that defining the ductility
index at one load-step after the maximum load resulted in a wrong prediction of the failure mode. This
can be explained due to the relative change of the ductility index. If a brittle failure mode occurred, the
concrete would fail and in the next load-step a significant part of the load would be absorbed by the
reinforcement, resulting in an increased ductility index. In the upper graph, it can be seen that many of
the brittle failure mechanisms (red) could result in a ductile failure mechanism if the ductility index were
to be affirmed one load-step behind the maximum load. For the ductile failure mechanism (blue), the
opposite would occur although for this data-set most would not drop below the boundary of 𝜒 = 0.6.

In the lower graph, the derivative of the ductility index is displayed to indicate the relative change. After
failure, the brittle failure mode exhibits a positive change while the ductile failure mode would exhibit
a negative change. Both affect the magnitude of the ductility index significantly, and resulted in wrong
predictions of the failure mode. Therefore, the ductility index was found to be best defined at the load-
step belonging to the maximum resistance. However, the relative change of the ductility index could
be used as indicator of the numerical failure mode as a function of the load-step.

Figure C.1: Ductility index (top) and derivative of the ductility index (bottom) as function of the load-step for mean input variables
of 48 benchmarks.
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C.3. Load-Displacement Curves
In Figure C.2, the numerical load-displacement curve (left) is compared to the experimental load-
displacement curve (right) from Ashour [29]. All beams are expected to fail in a ductile manner and
both graphs show clear agreement. Only one exception can be observed for beam index 8 (BN4),
which was earlier discussed to fail prematurely due to a failure of shear reinforcement.

In figure Figure C.3, the numerical load-displacement curves are compared to the experimental load-
displacement curve from Vecchio and Shim [35]. These beams are expected to experience a brittle
failure mode, and therefore are more difficult to predict. The top three graphs are beams without shear
reinforcement and these show the least consistency. This again indicates that a different crack model
(fixed instead of rotating) may be better suited to these benchmarks. The other numerical output shows
better agreement to the experimental observed load-displacement curves. Contrary to the ductile fail-
ure mode, a systematic underestimation of the maximum load is observed.

Figure C.2: Comparison of the numerical (left) and experimental (right) load-displacement curves from Ashour [29].
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D | Model Application

Figure D.1: Example of the change in distributions for conditional strength and geometry parameters, visible by shaded his-
tograms.
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