

Delft University of Technology

Next Event Estimation++
Visibility Mapping for Efficient Light Transport Simulation
Guo, J.; Eisemann, M.; Eisemann, E.

DOI
10.1111/cgf.14138
Publication date
2020
Document Version
Accepted author manuscript
Published in
Computer Graphics Forum

Citation (APA)
Guo, J., Eisemann, M., & Eisemann, E. (2020). Next Event Estimation++: Visibility Mapping for Efficient
Light Transport Simulation. Computer Graphics Forum, 39(7), 205-217. https://doi.org/10.1111/cgf.14138

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1111/cgf.14138
https://doi.org/10.1111/cgf.14138

Pacific Graphics 2020
E. Eisemann, A. Jacobson, and F.-L Zhang
(Guest Editors)

Volume 39 (2020), Number 7

Next Event Estimation++:
Visibility Mapping for Efficient Light Transport Simulation

Jerry Jinfeng Guo†1 , Martin Eisemann‡2 and Elmar Eisemann§1

1Delft University of Technology, the Netherlands
2TH Köln, University of Applied Sciences, Germany

Abstract
Monte-Carlo rendering requires determining the visibility between scene points as the most common and compute intense op-
eration to establish paths between camera and light source. Unfortunately, many tests reveal occlusions and the corresponding
paths do not contribute to the final image. In this work, we present next event estimation++ (NEE++): a visibility mapping
technique to perform visibility tests in a more informed way by caching voxel to voxel visibility probabilities. We show two
scenarios: Russian roulette style rejection of visibility tests and direct importance sampling of the visibility. We show applica-
tions to next event estimation and light sampling in a uni-directional path tracer, and light-subpath sampling in Bi-Directional
Path Tracing. The technique is simple to implement, easy to add to existing rendering systems, and comes at almost no cost, as
the required information can be directly extracted from the rendering process itself. It discards up to 80% of visibility tests on
average, while reducing variance by ~20% compared to other state-of-the-art light sampling techniques with the same number
of samples. It gracefully handles complex scenes with efficiency similar to Metropolis light transport techniques but with a more
uniform convergence.

CCS Concepts
• Computing methodologies → Ray tracing;
Keywords: Visibility, path tracing, bi-directional path tracing, shadowray, rendering

1. Introduction

Unbiased Monte Carlo (MC) rendering algorithms, such as Path
Tracing (PT), Bi-Directional Path Tracing (BDPT) and Metropolis
Light Transport (MLT) are among the most versatile and robust ren-
dering algorithms today. They use importance sampling techniques
to efficiently solve the rendering equation [Kaj86] by integrating
over light paths between the camera sensor and light emitter. An
integral part, and often the most expensive, is building vertex con-
nections between camera and light subpaths. These are solved by
tracing rays between vertices to determine visibility. While an ac-
celeration structure (usually a bounding volume hierarchy, BVH)
can lower the cost of such queries, these tests are numerous and,
depending on the outcome, there is no contribution to the final im-
age. In fact, any occluded connection is discarded. The problem is
even more aggravated by the fact that the number of camera and
light vertices is generally linear in the number of pixels and light
sources, whereas the number of visibility tests can be quadratic in
the number of path vertices. For example, in a BDPT scenario for

† Email: J.Guo-3@tudelft.nl
‡ Email: Martin.Eisemann@th-koeln.de
§ Email: E.Eisemann@tudelft.nl

subpaths of length 8, internal connections comprise already ~80%
of the acceleration structure visits.

We present a novel and versatile visibility mapping technique
to importance sample the camera/light path connections. We pre-
compute a voxel-to-voxel visibility within the scene, which is the
probability of an unoccluded connection between a random point
in the first voxel and a random point within the second voxel.
For efficiency, we reuse information gathered during the initial
light/camera path generation, leading to a construction overhead in
the range of a few hundred milliseconds to a few seconds – a frac-
tion of the total rendering time. We save the visibility information
in a matrix-like map where the rows and columns represent differ-
ent scene voxels and each entry reflects their approximate mutual
visibility. During rendering, we can use the structure to estimate the
probability of the success of camera-to-light vertex connections be-
fore any explicit tests. Our visibility map can be applied in various
ways, e.g., Russian roulette style rejection sampling or direct im-
portance sampling.

We name our method next event estimation++ (NEE++). Next
event estimation (NEE) refers to direct illumination sampling, for
which explicit light emitter information is given and sampled to
form a potentially connected path segment. With our proposed

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

*This is the accepted version of the following article:
Next Event Estimation++: Visibility Mapping for Efficient Light Transport Simulation, which has
been published in final form at http://onlinelibrary.wiley.com. This article may be used for non-
commercial purposes in accordance with the Wiley Self-Archiving Policy [http://
olabout.wiley.com/WileyCDA/Section/id-820227.html].

https://orcid.org/0000-0002-8065-4084
https://orcid.org/0000-0002-9470-5874
https://orcid.org/0000-0003-4153-065X
RocinantePC
Inserted Text

J. Guo, M. Eisemann & E. Eisemann / NEE++

method, we not only estimate the next event(s), but also provide
an estimate of the likelihood that the connection succeeds. Our ap-
proach can drastically reduce the number of point-to-point visibil-
ity tests by up to 80% and shows an approximate 20% variance
reduction compared to other techniques with the same number of
samples. Specifically, our main contributions are:

• A view-independent visibility mapping, encoding voxel-to-voxel
visibility, generated at a low additional cost;
• Unbiased estimators built atop of our visibility mapping;
• Several example applications of our technique.

2. Related Work

Visibility is a key component of rendering and the topic too broad
to cover in this paper. Consequently, we focus only on publications
reducing the amount of tests and improving sampling in the context
of solving the rendering equation [Kaj86].

In his seminal work Veach [Vea98] already proposed using Rus-
sian roulette to reduce visibility tests between camera and light sub-
paths but without global scene information. This idea was recently
extended to stratified sampling in the connection space to avoid
sampling connections, which are too similar and contribute little
new information to the image [CBH∗18]. The opposite of early ter-
mination has been demonstrated with splitting in [VK16].

PCBPT by Popov et al. [PRDD15] and the close followup work
by Nabata et al. [OHHD18] importance sample connections from
a given eye vertex to a set of presampled light subpaths. They com-
pute probabilities of connecting to the light vertices for a subset of
eye vertices and interpolate these for the rest. Their technique pro-
vides a trade-off between accuracy in the probabilities and com-
putation time but, contrary to ours, requires an expensive search
query in a kd-tree for each camera vertex and is recomputed itera-
tively to avoid visible artifacts during convergence. The necessary
adjustments for this approach also can make it difficult to integrate
into existing pipelines. The information needed for our approach
requires only a few simple look-ups per camera vertex to estimate
the probabilities, is computed only once (though it could be up-
dated as well) and comes basically with negligible additional cost
for creation.

For a somewhat simpler problem of precomputing binary vis-
ibility for direct lighting (e.g., a surrounding environment map),
computing sparse hemispherical caches that are interpolated dur-
ing rendering to steer importance sampling of the map has been
shown to work well [CAM08]. Augmenting these caches with addi-
tional shading information, like depth, normals, material informa-
tion, they can even serve as an approximate scene representation to
accelerate later bounces in unidirectional path tracing [UNRD13].
However, the direct usage, especially in earlier bounces, introduces
bias, which is also present when clustering visibility into discrete
bins and using these directly for visibility testing [PGSD13]. Still,
visibility tests are significantly reduced and accelerated, a motiva-
tion that our work shares. In contrast, our technique is unbiased,
more versatile (as it is applicable to many rendering techniques)
and easier to integrate into existing rendering systems.

Caching pre-computed visibility information between spatial

subdivisions and arranging such data in memory for a second ren-
der pass has been investigated in [War94, TB94, ZS95, SWZ96,
FBG02, LBBS08]. Direct illumination is treated in [War94] by us-
ing a ratio of prior shadow tests as the final contribution discounter
for other light samples. Hard thresholding and the direct use of
the tests is biased and only addresses direct illumination. Tellier et
al. introduces scene voxelization to form a binary visibility graph.
In format this is similar to our visibility map but binary. The di-
rect use of the binary information in the hierarchy for direct il-
lumination calculation inevitably leads to biased results [TB94].
Fernandez et al. introduces similar idea by sparsely caching visi-
bility status (fully visible, partially visible and fully occluded) for
light sources. Shadow rays are only tested for partially visible light
sources according to the cache. This introduces bias in the other
two cases [FBG02]. Lacewell et al. propose to cache such informa-
tion in BVH nodes, providing an early out criteria for going down
the hierarchy. In principle, this re-allocates shadow-ray tests but
the employed hard thresholding introduces system bias [LBBS08].
These related works are biased and have very specific application,
while our way of caching visibility as probability does not suffer
from bias and is more general.

As an alternative to influence the sampling process, some work
also proposes a two-pass strategy [ZS95]: first a radiosity solution
is computed using simplified geometry, which is view independent.
The resulting surfaces are considered light sources. Next, a regular
grid is produced, in which each grid cell contains the list of visible
and strongly-contributing light sources. To test visibility a single
point-point test is performed. During rendering, a gathering is per-
formed at each pixel by only testing the lights connected to the cell
containing the pixel. The method is biased, handles only Lamber-
tian materials, and applies a coarse visibility sampling. Our method
does not store light-sources per cell but more general visibility rela-
tions between regions of space. We avoid bias and handle arbitrary
materials. Further, the cost of our preprocess is negligible.

A trend in production rendering, quickly established as the state
of the art, is to guide the sampling when extending camera or light
subpaths. Here, we mention only a few examples and refer the inter-
ested reader to [VHH∗19]. A successful option is to learn optimal
directions for ray sampling [MGN17, VKŠ∗14, SJHD18, VKK18,
GBBE18]. Kroes et al. [vRKEE16] process environmental light
and visibility jointly to improve direct light estimation at scattering
events in volumetric data. Similarly, Herholz et al. [HZE∗19] sam-
ple scattering directions according to the product of phase function
and incident radiance, which includes visibility and supports mul-
tiple scattering. Keller et al. utilize visibility information that is en-
coded in pre-cached photon maps in section "Guiding and Shadow
Rays" in [VHH∗19]. Visibility is reused for illumination sampling
and the technique is demonstrated to improve convergence. Our
technique could be viewed as a generalization as we target spatial-
spatial visibility, regardless of light source or not. This enables the
multiple usage as demonstrated in this paper. Though related, as
these techniques reduce the number of required samples, path guid-
ing is essentially orthogonal to our technique. It guides the sam-
pling usually during path creation, whereas ours improves the suc-
cess rate of shadow tests and could be integrated to improve next
event estimation.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

3. Visibility Mapping

Our method consists of three steps: visibility-map creation
(Sec.3.1), visibility caching (Sec.3.2) and visibility use (Sec.3.3),
see Fig.1.

The visibility map encodes visibility relations between points in
the scene. This information is gathered during the rendering pro-
cess and a fast preprocess. Once established this visibility infor-
mation steers the sampling process by probabilistically rejecting
visibility tests that have little chance to succeed. This solution can
be used for unbiased estimates.

3.1. Data Structure

The visibility map Ṽ : R3×R3 → R is a function that, given two
events x′,x′′ ∈ R3, returns the estimated probability of a ray from
x′ to x′′ to not intersect the scene. To render the encoding prac-
tical, Ṽ uses an implicit uniform voxel grid, englobing the scene
of resolution D3 (Fig.1 (0.)) with each voxel having a unique in-
dex in {0, ...D3 − 1}. For each pair of voxels (Vi,V j), we have
Ṽ (x′,x′′) = Ṽ (y′,y′′) for all events x′,y′ ∈ Vi and x′′,y′′ ∈ V j. We
encode Ṽ as a 2D matrix, where each entry stores the mutual visi-
bility estimate between the corresponding voxels given by the row
and column indices (Fig.1 (1.)). We obtain these visibility estimates
as described in the following section.

3.2. Obtaining Visibility Information

The ratio of unoccluded visibility between events in two voxels
can be naively determined by randomly choosing respective points
within the voxels and testing their mutual visibility. The averaged
visibility converges to the wanted result. The quadratic complex-
ity of this step and inclusion of empty voxels makes it suboptimal.
Similarly, voxels within opaque watertight objects are of no rele-
vance but would still be tested.

To determine relevant connections and reduce the overhead, we
update Ṽ stochastically. Each entry is initialized to an ε > 0 (in
practice, 10−4), which ensures that no paths are entirely rejected in
the later stages to maintain unbiasedness. We then update Ṽ during
the initial camera and light path creation (including the correspond-
ingly tested shadow rays) of the standard rendering step. We accu-
mulate the successful and unsuccessful visibility tests (Fig.1(1.),
Scenario 1) and save their ratio in Ṽ . This step comes at almost no
additional costs in a standard rendering pipeline.

We can perform additional visibility tests to refine the result
(Fig.1(1.), Scenario 2). This second step is especially useful for
offline rendering as it improves precision and has negligible cost
compared to the overall rendering time. In practice, we use 16 ad-
ditional tests but restrict them to entries that have been increased
from ε after the first step.

Fig.2(A) shows a visualization of our visibility map where
brighter intensity values represent a higher ratio of successful visi-
bility tests between the respective voxels. We save only the lower-
triangular part of the map as a linearized vector due to the inherent
symmetry, Fig.2(A, left). The visibility map converges as more vis-
ibility samples are used. Convergence behaviour appears to be sim-
ilar to typical MC integration techniques. In our experiments we

find that, with 64 samples per entry the result is already close to the
reference solution (1k samples). As Ṽ can be reused for any view-
point, it can be applied over several frames of a static scene without
updates. This fact and the low amount of necessary rays, makes the
creation overhead of the visibility map negligible in most rendering
scenarios.

3.3. Using Visibility Information

Sec.1 mentioned two possible ways to use our map: rejection
sampling or direct sampling. Since we are targeting a full light-
transport simulation, using cached visibility to calculate illumi-
nation would result in a biased estimator. Instead, we opt for a
stochastic use to solve the rendering equation (here, slightly refor-
mulated to keep the visibility function V separate):

L(x′,x)= Le(x′,x)+
∫

A
fs(x′′,x′,x)L(x′′,x′)G(·)V (x′′,x′)dA′′(x′′),

(1)
where G(·) = G(x′′,x′) = cosθ

′′
i cosθ

′
o/
∥∥x′′− x′

∥∥2. The equation
describes the recursive transport of light energy from area A via
scattering event x′ to event x, as well as the direct energy from
event x′ to event x. The visibility term V (x′′,x′) is 1 if x′′ and x′ are
mutually visible, or 0 otherwise.

3.3.1. Rejection Sampling

Russian roulette early termination is widely used during path
construction to randomly terminate paths with low throughput
[PJH17]. With respect to our problem, we can apply the same tech-
nique to the visibility term. With simplification of notations from
Eq.1 by leaving out parameters , we can write the estimator as:

L̂rr = Le +

{
fsLGV (x′′,x′)

Ṽ (x′′,x′)p(x′′) ξ < Ṽ (x′′,x′)

0 else
,ξ∼U [0,1] (2)

This estimator is unbiased:

E[L̂rr] = Le + Ṽ (x′′,x′)×E[
fsLGV (x′′,x′)

Ṽ (x′′,x′)p(x′′)
]+ (1− Ṽ (x′′,x′))×0

= Le +E[fsLGV] = L.

Russian roulette does not reduce variance – actually it is known
to increase variance. Nevertheless, by taking early outs, we avoid
expensive visibility tests when they are not likely to contribute to
the final image. By pruning unnecessary tests, we can allocate re-
sources to constructing additional paths. This is a typical scenario
for constant operation time optimization.

3.3.2. Direct Sampling

Our visibility map can also be used to guide importance sampling.
Given a set of M candidates {xi|xi ∈ R3, i = 1, · · · ,M} to connect to
a vertex x0 (e.g., vertex connections in BDPT or light sampling in
PT), we can build a 1D discrete distribution Pv(x′). We can sample
this distribution and get candidate x j and its associated probability
pv(x j) = Ṽ (x j,x′)/∑i Ṽ (xi,x′). The NEE++ estimator for Eq.1 is
then L̂ = Le + L̂v, where:

L̂v =
1
N

N

∑
i=1

fsLGV (xi,x′)
pv(xi)

. (3)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

Figure 1: NEE++ Overview. Visibility information is obtained during regular path construction and explicit spatial-spatial testing. The
highlighted voxel pair in (1.), correspond to an index in the visibility map, where the average visibility is accumulated. As an application
(2.), the quality of a shadow ray can be estimated by querying the estimated visibility of the voxel pair containing the path vertices.

Figure 2: A 4096×4096 visibility map for the Cornell Box, which
uses 32 MB, including closeup images.

Since by design our pv(x) is guaranteed to satisfy pv(x)≥ 0 and
∑ pv(x) = 1, pv(x) is a valid pdf and our estimator unbiased.

4. Applications of Visibility Mapping

In this section we present three example applications of NEE++.
Additional possibilities will be discussed in Sec.7.

4.1. NEE++ Rejection Sampling Shadow Test

Following Sec.3.3.1, we present a direct application of rejection
sampling. When constructing a backwards-traced path from the
sensor to a possible light source in unidirectional path tracing, di-
rect illumination can be explicitly sampled at each scattering event
(NEE). For each newly added path vertex, instead of explicitly test-
ing the connection directly, we reject the test based on the prob-
ability pmap in Ṽ . For unbiasedness the kept samples need to be
weighted with 1/pmap.

The pseudo code of the NEE++ rejection sampling is given in
Alg.1. The difference of our estimator from a standard path tracer
lies in lines 4–6: stochastic visibility test with probability pmap and
light-sample weighting.

4.2. NEE++ Direct Light Sampling Strategy

Using Ṽ we can importance sample the visibility term in the render-
ing equation by adapting light sampling. LIGHTSAMPLING uses a
prebuilt index list of voxels containing light emitters (Alg.2, line 1)

Algorithm 1 Pseudo code of NEE++ Rejection Sampling Shadow
Test in unidirectional path tracing

1: procedure LIGHTSAMPLING(scene, path, visMap)
2: L′← 0
3: [samplelight , plight]←scene.sampleEmitter()
4: pmap←visMap.query(path.last, samplelight)
5: if ξ≤ pmap then
6: L′← fsLGV (path.last, samplelight)

plight pmap

7: return L′

which is computed before rendering the image. To generate a light
sample for a given path vertex x, we first create a 1D distribution
of visibility from x to the light-containing voxels using Ṽ (Alg.2,
line 4–5). Next, we draw a sample from this distribution to choose a
voxel (Alg.2, line 6), from which the light sample is drawn (Alg.2,
line 7). In the degenerate case, the 1D distribution is constant, we
obtain a uniform light sampling.

Algorithm 2 Pseudo code of NEE++ as a Direct Light Sampling
Strategy in unidirectional path tracing

1: lightIDs←BUILDLIGHTINDEX(scene)
2: procedure LIGHTSAMPLING(scene, path, visMap)
3: lightDistro← 0
4: for i in range (lightToVoxels.size()) do
5: lightDistro[i]+=visMap.query(path.last, lightIDs[i])
6: voxID← SAMPLE1D(lightDistro, ξ)
7: [samplelight , plight]← scene.sampleEmitterInVoxel(voxID)

8: return fsLGV (path.last, samplelight)
plight

4.3. NEE++ Bi-Directional Subpath Sampling

Our visibility mapping can also be applied to BDPT by using
NEE++ as a sampling strategy for choosing light subpaths out of
a set of sampled light subpaths for a given camera subpaths (Fig.3).
We reformulate the rendering equation in path space as:

L =
∫
X

∫
Y

CONNECT(X̄ ,Ȳ)dX̄dȲ , (4)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

where the symbols are respectively:

• X: the space of all camera subpaths;
• Y: the space of all light subpaths;
• X̄ : a differential camera subpath in space X;
• Ȳ : a differential light subpath in space Y;
• CONNECT(·): weighted bi-directional subpath connection that

connects two subpaths with multiple importance sampling.

The full path space is the bi-directional connection of two subpath-
spaces, where all camera subpaths are connected to all light sub-
paths. As a condition, we assume that camera and light subpaths are
generated independently from each other, as is the case for standard
BDPT.

For integration of Eq.4, we derive the following MC estimator:

L̂BiDir =
1
M

1
N

M

∑
i=1

N

∑
j=1

X̄i~̄Ȳ j. (5)

M and N denote the number of samples for camera and light sub-
paths respectively. As L̂BiDir is an unbiased estimator, we can think
of the solution of L̂BiDir as a progressive solution that can be iter-
ated and accumulated on demand until convergence. Consequently,
the set of light paths Ȳ in each iteration can be generated before-
hand for each camera sample X̂i. Instead of connecting X̄i to all sub-
paths in the set Ȳ, we can rewrite Eq.5 as an importance-sampling
problem, where only one light subpath is selected with a certain
probability for each camera subpath:

L̂BiDir
v =

1
M

M

∑
i=1

X̄i~̄Ȳ j

pBiDir
v (Ȳ j|X̄i))

, (6)

where Ȳ j is the sample drawn from Ȳ with probability
pBiDir

v (Ȳ j|X̄i). Here pBiDir
v (Ȳ j|X̄i) is a valid probability mass func-

tion, a discrete probability distribution (the set of light subpaths Ȳ,
from which to sample Ȳ j), rather than a continuous pdf.

We define the value of pBiDir
v (Ȳ j|X̄i) as the normalized sum of

visibility values in Ṽ to connect all vertices in Ȳ j to X̄i to increase
the likelihood for vertices to connect. L̂BiDir

v is still an unbiased
estimator.

To obtain X̄i, Ȳ j and pBiDir
v , we generate one camera subpath at

a time and N light subpaths that get reused for all camera samples
of one iteration and construct pBiDir

v from this. The step by step
pseudocode for BDPT with NEE++ and building pBiDir

v is given in
Alg.3 and described in the following.

In each iteration, we create a subset Ȳ of light subpaths. For each
camera subpath X̄i, we build pBiDir

v (Alg.3, line 5) to select a cor-
responding light subpath Ȳ j to connect to (Alg.3, line 6). To build
pBiDir

v (Alg.3, line 9–13), we estimate a probability for X̄i to con-
nect successfully to each of the light subpaths Ȳ j ∈ Y. The proba-
bility for selecting a light subpath Ȳ j is the normalized accumulated
visibility to connect all vertices of X̄i to Ȳ j (Alg.3, line 14–18).

5. Results

All implementations and experiments are carried out within the
framework of PBRT [PJH17] on an i7 6800K 3.4GHz six core

Algorithm 3 Pseudo code of NEE++ for Bi-Directional Subpath
Sampling in a BDPT

1: procedure RENDERITERATION(scene, image, visMap)
2: Ȳ←LIGHTTRACING(scene, N)
3: for i in range(M) do
4: X̄i←RANDOMWALKFROMSENSOR(scene)
5: PBiDir

v ←BUILDDISTRIBUTION(visMap, X̄i, Ȳ)
6: [Ȳ j, pBiDir

v (Ȳ j)]←SAMPLE1D(Ȳ,PBiDir
v , ξ)

7: Li←
CONNECT(X̄i,Ȳj)

pBiDir
v (Ȳj)

8: image.add(Li)
9: procedure BUILDDISTRIBUTION(visMap, X̄ , Ȳ)

10: subpathDistro← 0
11: for all Ȳ j in Y do
12: subpathDistro[j] += QUERYPATHS(visMap, X̄ , Ȳ j)

13: return NORMALIZE(subpathDistro)
14: procedure QUERYPATHS(visMap, X̄ , Ȳ)
15: v← 0
16: for all connections (x,y) in [X̄ ,Ȳ] do
17: v += visMap.query(x,y)
18: return v

PC with 32GB RAM. We implemented test cases for all three ap-
plications (Sec.4). PBRT uses tile rendering, so we do not create
light subpaths for the whole image but per tile and iterate instead
with the number of light subpaths equal to the number of camera
samples per tile in each iteration. We used the default PRB set-
ting (16× 16), an optimization of this parameter is left for future
work. Both camera subpaths and light subpaths are generated with
only local importance sampling, i.e., BSDF sampling, without any
guiding information, such as the position of their counterparts. This
way we ensure that both sets are generated independently from each
other and identically distributed within the same set.

We use a voxelization of 16× 16× 16, resulting in a visibility
map of 4096×4096 for all our test cases. For all tests, we initially
run a regular render iteration and, in between two iterations, we
create the visibility map. Timings for the construction are given in
Tab.1, which shows the negligible costs.

5.1. Experiment Objectives

Since we apply our technique in three different scenarios, three dif-
ferent objectives are considered. They are:

• Reducing shadowray tests for Sec.5.2 while achieving similar
results;
• Robustly reducing variance comparing to other light sampling

strategies (Uniform, Power and Spatial) for Sec.5.3, given sam-
ple rate or runtime;
• Robustly reducing variance comparing to other unbiased estima-

tors (Path, (M) MLT and BDPT) for Sec.5.4, given sample rate
or runtime.

5.2. NEE++ Rejection Sampling Shadow Test

We test our first technique (Sec.4.1) in a unidirectional path tracer
with the Veach ajar scene (Fig.4). Most of the light comes from the

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

Figure 3: An illustration of NEE++ in the context of BDPT. By constructing a distribution for all candidate light subpaths, which is a true
subset of all light subpaths, we are able to utilize the precomputed visibility information and select a light subpath that has a higher chance
of establishing successful connections with a higher probability.

Scene Test Corridor Ajar Kitchen

Timing 231.4 ms 331.5 ms 401.2 ms

Scene Staircase N. Classroom Bathroom

Timing 3413.4 ms 2350.1 ms 1579.6 ms

Table 1: Timing for caching visibility maps during our experi-
ments. As a reference, the typical render time for these scenes with
a relatively noise free output ranges from thousands of seconds to
tens of hours.

small gap at the door and the vast majority of the scene receives
no direct light, which leads to many unnecessary shadow rays. The
main objective of this experiment is to verify whether our tech-
nique could reduce shadowray tests (and subsequently respective
runtime) while achieving similar results. Notice that plots in Fig.4
are roughly equal quality, of which the rMSE can be found in Tab.2

This scene was mostly chosen for its particular configuration and
as it is well-known. It has a particularly simple geometry, which re-
sults in the main cost being related to shading computations. In
consequence, one cannot expected a strong impact on the total ren-
dering cost (our solution results in a 1−4% speedup). Nevertheless,
as can be seen in the figures and the table, we manage to cut around
80% of the shadow rays and use a fraction (28− 34%) of the run-
time for visibility tests. The cutting of shadowrays is desirable for
complex scenes.

5.3. NEE++ Direct Light Sampling Strategy

We test NEE++ as a light sampling strategy (Sec.4.2) with the
Kitchen scene (Fig.5) and the Staircase scene Fig.7. Both scenes
feature multiple light sources with varying intensity and size. Some
sources are very small and located in a relatively complex region
(e.g., above the microwave, under the staircase), which can lead to
undesirable samples.

We compare our strategy against three existing light sampling

Figure 4: NEE++ Rejection Sampling Shadow Test. We achieve
similar visual results with less shadow-ray queries and lower ren-
der time. Ratios of tests compared to regular path tracing are in the
bottom-right corner of each image. Tab.2 contains detailed statis-
tics.

strategies: uniform distribution, power distribution and spatial dis-
tribution. Uniform distribution treats each light source equally:
P(Lighti) = P(Light j) =

1
number of lights . Power distribution favours

light sources with larger area and/or stronger emitting intensity:
P(·)∝A(·)E(·). These distributions are globally static distributions
(invariant to the used query points). Spatial distribution takes dis-
tances as well as emitter surface and energy into account. Details
about all distributions can be found in [PJH17]. Results are given in
Fig.5, Fig.6 and Fig.7. The timing and rMSE are reported in Tab.3
and Tab.4 respectively . We notice:

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

rMSE Shadowrays Runtime Visibility Tests

4 SPP 64 SPP 1024 SPP 4 SPP 64 SPP 1024 SPP 4 SPP 64 SPP 1024 SPP

NEE 5.82e−2 3.24e−2 2.12e−2 5.45e+6 8.72e+7 1.40e+9 1.26s 5.47s 82.4s
NEE++ 5.91e−2 3.33e−2 2.18e−2 1.19e+6 1.92e+7 3.07e+8 0.43s 1.54s 24.9s

Ratio 1.01 1.03 1.03 0.22 0.21 0.22 0.34 0.28 0.30

Table 2: Statistics for rMSE, shadow-ray queries and runtime for Fig.4. We achieve similar results (rMSE) with significantly reduced shadow
rays (around 80% less) and much shorter runtime.

Figure 5: NEE++ Direct Light Sampling Strategy. Our strategy is more robust with ∼ 20% variance reduction overall. Details are given in
Tab.3 and Tab.4. Fig.6 shows an equal variance comparison.

Figure 6: Equal rMSE comparison corresponding to Fig.5. Sample
rate is given in green, while the runtime performance is red. For
similar variance, our method takes 35%, 30% and 38% the sample
rate of uniform, power and spatial respectively with runtime ratios
of 40.1%, 48.5%, and 50.5%.

• NEE++ outperforms other strategies with the same sample rate
in terms of error (Fig.5 and Fig.7);
• NEE++ better handles visibility-crucial regions and is less likely

to sample strong light sources that are less visible (Fig.5, mid-
dle);

Sampl. Strategy 16 SPP 64 SPP 256 SPP 1024 SPP

Uniform 23.0s 105.6s 442.6s 1710.4s
Power 28.0s 118.9s 474.6s 1846.4s
Spatial 28.9s 128.6s 502.8s 1827.1s
NEE++ 29.3s 132.8s 508.2s 1977.1s

Uniform 10.6s 50.2s 204.2s 768.7s
Power 10.2s 46.9s 184.8s 712.5s
Spatial 35.8s 77.3s 237.8s 855.3s
NEE++ 11.5s 56.9s 231.3s 968.8s

Table 3: NEE++ as light sampling strategy (Fig.5 and Fig.7).
Statistics for runtime. Top: the Kitchen scene; bottom: the staircase
scene. NEE++ has a slight 1%∼ 8% runtime overhead compared
to the other three strategies with the same number of samples.

• NEE++ achieves 20% variance reduction with 1% ∼ 8% com-
putational overhead (Tab.3);
• NEE++ requires only about a fraction of the number of samples

compared to other light sampling techniques to match the error
(Fig.6 and Fig.7).

The power distribution fails to handle the regions above the mi-
crowave, and causes severe fireflies due to the low probability of
reaching this light source. The spatial distribution creates fireflies
on the table for the same reason. The runtime overhead could be
even further reduced by caching and reusing light distributions,
which we do not do in our current implementation. We notice an
unexpectedly long runtime for strategy Uniform, our repeated ex-
periments confirm this behaviour. We use the original code from

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

Figure 7: Top left: Staircase reference. Top centre: equal sample rate comparison. Top right: plot of rMSE against sample rate and runtime.
Bottom: equal quality comparison. NEE++ outperforms other methods in terms of convergence and is more robust.

Strategy 16 SPP 64 SPP 256 SPP 1024 SPP

Uniform 2.60e−2 2.09e−2 1.62e−2 1.22e−2
Power 2.46e−2 2.03e−2 1.60e−2 1.26e−2
Spatial 2.40e−2 2.04e−2 1.59e−2 1.18e−2
NEE++ 2.23e−2 1.74e−2 1.29e−2 9.74e−3

Uniform 3.43e−1 2.12e−1 1.17e−1 6.47e−2
Power 5.17e−1 3.38e−1 1.83e−1 9.52e−2
Spatial 2.60e−1 1.72e−1 9.52e−2 5.16e−2
NEE++ 1.92e−1 1.02e−1 6.37e−2 3.70e−2

Table 4: NEE++ as light sampling strategy (Fig.5 and Fig.7).
Statistics for rMSE. Top: the Kitchen scene; bottom: the Staircase
scene. Overall, NEE++ has a ∼ 20% improvement with the same
number of samples.

PBRT [PJH17] and the exact mechanism behind this phenomenon
is not known to us.

5.4. NEE++ Bi-Directional Subpath Sampling

We compare NEE++ using BDPT Subpath Sampling (Sec.4.3) with
three unbiased MC estimators: unidirectional path tracing (Path),
bi-directional path tracer (BDPT) and Metropolis light transport
(MLT). We test all methods on three scenes: Test Corridor, Nasty
Classroom and Bathroom. All scenes feature complex visibility:
Test Corridor exhibits a minimum connected path depth of 4

(Fig.8), Nasty Classroom has many light sources with blocking ge-
ometry (Fig.10). Statistics for rMSE are provided in Tab.5.

Test Corridor This is a typical scenario where traditional MC
methods, such as ours, have a strong disadvantage compared to
Markov chain MC (i.e., MLT). All traditional MC methods strug-
gle to connect the camera to the light source, given the nature of
the scene configuration. In fact, this scene should not exhibit a sin-
gle black pixel upon convergence but all connected light rays have
to undergo several bounces. The render results and the runtime are
given in Fig.8, with stats plotted in Fig.9. For the same sample rate,
we observe:

• NEE++ outperforms all other methods in terms of zero-radiance
pixel ratio (Fig.9 (right));
• MLT has better rMSE, at the expense of uneven convergence

(Fig.9 (left));
• At the same sample rate NEE++ has a ∼ 15% runtime overhead

compared to BDPT (Fig.9) while achieving 20% error reduction;
• Path tracing performs worst in terms of rMSE and zero-radiance

pixel ratio per sample (Fig.9).

The fact that NEE++ has less zero-radiance pixels illustrates the
benefit of our solution and the effectiveness of finding even com-
plex paths. Further, the runtime overhead with respect to BDPT
is low, while achieving a stronger error reduction in this scene, de-
spite it being a very disadvantageous scene for our approach. While
MLT does outperform all competitors in terms of error, MLT is less
often employed in practice due to its irregular convergence, which
becomes more visible in the following scenes.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

Figure 8: Left top: Test Corridor scene. The whole corridor geometry is only open at the right end and closed elsewhere. Left bottom:
reference, rendered using unidirectional path tracing with 102,400 samples per pixel. Notice that none of the pixels is black. Right: Results
for various methods. Notice the difficult visibility configuration, which poses a challenge for all methods. Path tracing struggles to reach the
light source, causing many occluded shadow-ray queries. BDPT manages to connect the light source to the sensor but a large portion of
the pixels remain black. MLT successfully exploits the vicinity in path space, once a connected path is constructed, resulting in much less
zero-radiance pixels. The uneven convergence is an inherent problem. Our NEE++ manages to establish more connected paths than BDPT,
while achieving more even convergence than MLT with the same number of samples. Render times are indicated in the bottom-right corner.

Figure 9: Statistics of the Test Corridor scene (Fig.8): rMSE and
zero-radiance pixel ratio. MLT performs slightly better in terms
of rMSE than NEE++ but it suffers from uneven convergence and
more black pixels. To get more out of Fig.8 and the plots here, we
see that at a roughly equal error rate (10−1): Path tracing takes
2048 samples and 123 seconds; BDPT 256 samples and 90 sec-
onds; NEE++ 84 samples and 36 seconds: a 67% sample-rate
reduction and 60% in render time.

Nasty Classroom and Bathroom We use a modified version of
the Classroom scene, using a night scenario with light emitting ge-
ometry on the ceiling instead of the original virtual sun and sky
light. Challenging parts of the scene include classroom furniture
with glossy materials, the cabinet of desks that are hidden away

from direct light sources, and the area below the desks, where visi-
bility towards light sources is complex. Render results, rMSE plot,
and runtime analysis are given in Fig.10, Fig.12 and Tab.5 . Equal
quality comparisons are given in Fig.11. When comparing at the
same sample rate, we observe:

• NEE++ outperforms all other methods given the same render
time;
• NEE++ improves over BDPT by 15%∼ 20% variance reduction

with ∼ 7% runtime overhead
• MLT shows very irregular convergence behaviour, largely due to

the complex visibility and glossy materials

When comparing equal quality, we observe that NEE++ typically
takes a fraction of the sample rate (50−1.5%) and runtime (49.9−
14%).

6. Discussions

Throughout all our experiments, we see the effectiveness of
NEE++. We tested multiple application scenarios and showed im-
provements over existing methods: in Sec.5.2, we see the reduction
in visibility tests; in Sec.5.3, we see how applying our solution to
the visibility term in the rendering equation, we are able to perform
better direct illumination sampling; in Sec.5.4, we see a similar but
extended version of direct sampling, for which we are able to con-
nect camera subpaths to better candidate light subpaths given the
visibility information.

The improvements are achieved at the cost of a small computa-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

Figure 10: Top left: Nasty Classroom reference. Top centre: rMSE plot. Top right: experiment timings.

Figure 11: Equal quality comparison (A) for scene Nasty Class-
room in Fig.10 and (B) for scene Bathroom in Fig.12.

tional overhead. Per sample costs occur when accessing the visi-
bility map queries and its building process, which could be further
optimized, adds an additional cost. Nevertheless, with respect to
the overall gain or total computation times, these costs are negligi-
ble. Further, we could envision reducing these costs by caching or
reusing information, which we do not do in our current implemen-
tation - all examples generated the visibility map from scratch.

In most cases, we manage to achieve better convergence per sam-
ple, mostly by constant improvement over existing MC methods,
i.e., roughly at the same convergence rate but better by a constant
offset. Even with the computational overhead and without further
optimization, we can conclude that our technique outperforms the
other techniques when it comes to fix-runtime performance given
the nature of the MC convergence rate being 1/

√
N.

Method 4 SPP 16 SPP 64 SPP 256 SPP

Path 3.36e−01 3.25e−01 2.83e−01 2.15e−01
MLT 2.45e−01 1.69e−01 1.02e−01 5.63e−02
BDPT 3.19e−01 2.62e−01 1.78e−01 1.01e−01
NEE++ 2.68e−01 1.90e−01 1.14e−01 6.42e−02

Path 4.35e−01 3.03e−01 2.23e−01 1.86e−01
MLT 8.75e−01 7.84e−01 5.55e−01 3.50e−01
BDPT 4.12e−01 2.39e−01 1.28e−01 6.67e−02
NEE++ 2.81e−01 1.66e−01 9.91e−02 5.82e−02

Path 2.03e−01 1.22e−01 8.78e−02 6.52e−02
MLT 7.26e−01 6.39e−01 4.34e−01 3.04e−01
BDPT 1.87e−01 9.91e−02 5.55e−02 3.71e−02
NEE++ 1.25e−01 7.62e−02 4.68e−02 3.35e−02

Table 5: NEE++ for Bi-Directional subpath sampling (Fig.8,
Fig.10 and Fig.12). Statistics for rMSE. Top: Test Corridor; Mid-
dle: Nasty Classroom; Bottom: Bathroom. Overall, our method
manages to improve ∼ 20% upon BDPT at the same sample rate.
The poor robustness of MLT could also be clearly derived by com-
paring the different performance in three test scenes.

6.1. Grid resolution

While we are working on a relatively low grid resolution, one might
argue that a visibility map with higher resolution gives higher pre-
cision and therefore better results. However, in our experiments, we
find that increasing the resolution increases memory requirements
and preprocessing time but quickly shows little benefit (Fig.13
shows an example in the Kitchen scene).

Higher resolution poses other challenges such as high memory

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

Figure 12: Results for the Bathroom scene. rMSE is plotted against sample rate and runtime.

Figure 13: Comparison of different voxelgrid resolutions for the
Kitchen scene (Fig.5). The overall error is reduced with increasing
visibility-map resolution but a sweetpoint exists, depending on the
scene complexity (compare 163 and 323). Legend: grid resolution.

footage and overfitting. Our primary experiments for different grid
resolution at high sample rate show no conclusive evidence about
the improvement. Our way of stochastically using the values might
contribute to this phenomenon.

Given the cost-benefit at current low computational overhead,
we leave further investigation for future work.

6.2. Compatibility with Path Guiding

As mentioned in Sec.2, our visibility mapping could be used along
with various path guiding techniques. Most path guiding methods
rely on crafting distributions for importance sampling during path
construction. Such distributions usually target one or more terms in
the rendering equation. In the same spirit as in Sec.4.2, we could
further incorporate our visibility mapping in assisting processes
where rays are guided by, e.g., photons, since visibility is usually
not taken care of. Additionally, our visibility Russian roulette is
always an option for pruning shadow ray tests.

6.3. Comparison with PCBPT

Our technique resembles PCBPT [PRDD15] in some aspects. As
both methods target better connections during BDPT. Yet, our
method works on subpath level while PCBPT works on path vertex
level. This induces three main differences.

• First of all, most of the cached information for our technique
comes for free in a previous and independent pass, while for
PCBPT a dedicated procedure to test visibility between a subset
of camera vertices and all light vertices in current pass is needed
repeatedly. This difference not only affects runtime, but the
domain. Our visibility cache is a spatial-spatial relation while
PCBPT caches only spatial-index relations. This difference
makes it possible for our technique to be used in various
scenarios while PCBPT is only applicable to BDPT;

• Secondly, we select a whole light subpath based on the visibility
map while for PCBPT at each camera vertex a completely
different light subpath could be chosen. This further complicates
the calculation for multiple importance sampling. In this sense
PCBPT is a derivation of Combinatorial BDPT [PBPP11] while
our technique is an extension for standard BDPT;

• Thirdly, PCBPT runs iteratively and as a result the computa-
tional overhead is much higher than ours (∼ 20% as reported
in [PRDD15]).

6.4. Limitations

During our experiments, we noticed that while our method mostly
improves the result given a fixed sample budget or runtime, our
method will be less efficient in scenes where visibility is not the
major source of complexity (e.g., scenes with large open spaces).
Furthermore, we currently englobe the entire scene in a voxel grid,
which does not cover directional light or environment maps.

6.5. Future work

Using a uniform voxelization wastes some memory with empty
voxels and the coarse resolution does not always well represent
the underlying geometry. This could be addressed with adaptive
voxelization but it comes at the expense of further pre-processing

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

J. Guo, M. Eisemann & E. Eisemann / NEE++

and query time. Additionally, a geometry-based adaptation alone
will not be successful, as geometry density is not necessarily the
cause of complex visibility. Therefore it is not clear if this would
improve the technique. Currently, our solution does already avoid
calculations on empty voxels and we have seen that a higher res-
olution does not yield much additional benefit in our test scenes.
Also, a ray traversal in the acceleration tree structure would have to
be replaced with a query in a tree structure, although one might be
able to make use of hashing schemes.

One potential solution for adaptive structure could be to make
use of hierarchical division where submaps are associated to spa-
tial divisions of the scene. I.e., creating several level of visibility
map and only querrying at the correct level in the hierarchy. One
other potential solution is to make use of an existing acceleration
structure: e.g., bounding volume hierarchy (BVH). This volume in-
formation comes for free but requires further indexing before it can
be compatible with our pipeline.

In this paper, we investigate the possibilities of unbiased usage
of NEE++, but unbiasedness might not always be of highest pri-
ority. For example, in the context of many light rendering, sharing
one visibility map across virtual point light (VPL) sources instead
of rendering one shadow map for each VPL could be useful. In re-
altime applications, visibility tests could become the bottleneck as
such shading operations are typically cheap. Our technique could
serve as an approximation in situations where inaccurate visibility
won’t pose fatal error. It could also be an option for secondary
and onward bounces in path tracing to use visibility-map values
directly, since for interactive purposes primary bounces make the
most visual impact.

7. Conclusions

We presented NEE++, a visibility mapping technique with applica-
tions to several rendering problems. It efficiently caches and reuses
visibility information to improve light transport simulations. By
collecting visibility in a matrix-like form during a low-cost pre-
process, we can reduce visibility tests by up to 80% and prefer tests
that are likely to succeed instead. Variance at the same time is also
reduced by ~20%. Our solution is unbiased and general. It is easy
to implement and integrate into existing pipelines. The exemplary
cases show that it can be widely applied in several scenarios but
many more potential applications exist.

8. Acknowledgments

This work was partially supported by the NWO Vernieuwingsim-
puls VIDI grant Next View. The authors would like to thank the re-
viewers for the valuable comments and suggestions. Special thanks
for Dr. Billeter for fruitful discussions. The majority of the test
scenes used in this work are based on rendering resources released
by Bitterli [Bit16].

References

[Bit16] BITTERLI B.: Rendering resources, 2016. https://benedikt-
bitterli.me/resources/. 12

[CAM08] CLARBERG P., AKENINE-MÖLLER T.: Exploiting visi-
bility correlation in direct illumination. Computer Graphics Forum
27, 4 (2008), 1125–1136. doi:10.1111/j.1467-8659.2008.
01250.x. 2

[CBH∗18] CHAITANYA C. R. A., BELCOUR L., HACHISUKA T., PRE-
MOZE S., PANTALEONI J., NOWROUZEZAHRAI D.: Matrix bidirec-
tional path tracing. In Proceedings of the EGSR: EI&I (Goslar, DEU,
2018), Eurographics Association, p. 23–32. doi:10.2312/sre.
20181169. 2

[FBG02] FERNANDEZ S., BALA K., GREENBERG D. P.: Local illumi-
nation environments for direct lighting acceleration. Rendering Tech-
niques 2002 (2002), 13th. doi:10.5555/581896.581898. 2

[GBBE18] GUO J. J., BAUSZAT P., BIKKER J., EISEMANN E.: Primary
sample space path guiding. In Proceedings of the Eurographics Sym-
posium on Rendering: EI&I (2018), SR ’18, Eurographics Association,
p. 73–82. doi:10.2312/sre.20181174. 2

[HZE∗19] HERHOLZ S., ZHAO Y., ELEK O., NOWROUZEZAHRAI D.,
LENSCH H. P. A., KŘIVÁNEK J.: Volume path guiding based on zero-
variance random walk theory. ACM Trans. Graph. 38, 3 (2019), 25:1–
25:19. doi:10.1145/3230635. 2

[Kaj86] KAJIYA J. T.: The rendering equation. In Proceedings of the
13th Annual Conference on Computer Graphics and Interactive Tech-
niques (1986), SIGGRAPH ’86, ACM, pp. 143–150. doi:10.1145/
15922.15902. 1, 2

[LBBS08] LACEWELL D., BURLEY B., BOULOS S., SHIRLEY P.: Ray-
tracing prefiltered occlusion for aggregate geometry. In 2008 IEEE Sym-
posium on Interactive Ray Tracing (2008), IEEE, pp. 19–26. doi:
10.1109/RT.2008.4634616. 2

[MGN17] MÜLLER T., GROSS M., NOVÁK J.: Practical path guiding
for efficient light-transport simulation. Computer Graphics Forum 36, 4
(2017), 91–100. doi:10.1111/cgf.13227. 2

[OHHD18] OTSU H., HANIKA J., HACHISUKA T., DACHSBACHER C.:
Geometry-aware metropolis light transport. ACM Trans. Graph. 37, 6
(Dec. 2018). doi:10.1145/3272127.3275106. 2

[PBPP11] PAJOT A., BARTHE L., PAULIN M., POULIN P.: Combina-
torial bidirectional path-tracing for efficient hybrid cpu/gpu rendering.
Computer Graphics Forum 30, 2 (2011), 315–324. doi:10.1111/j.
1467-8659.2011.01863.x. 11

[PGSD13] POPOV S., GEORGIEV I., SLUSALLEK P., DACHSBACHER
C.: Adaptive quantization visibility caching. Computer Graphics Forum
32 (2013), 399–408. doi:10.1111/cgf.12060. 2

[PJH17] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering, Third Edition: From Theory To Implementation, 3rd ed. Mor-
gan Kaufmann Publishers Inc., 2017. 3, 5, 6, 8

[PRDD15] POPOV S., RAMAMOORTHI R., DURAND F., DRETTAKIS
G.: Probabilistic connections for bidirectional path tracing. Computer
Graphics Forum (Proceedings of the Eurographics Symposium on Ren-
dering) 34, 4 (2015). doi:10.1111/cgf.12680. 2, 11

[SJHD18] SIMON F., JUNG A., HANIKA J., DACHSBACHER C.: Se-
lective guided sampling with complete light transport paths. Trans-
actions on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (2018).
doi:10.1145/3272127.3275030. 2

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte carlo tech-
niques for direct lighting calculations. ACM Trans. Graph. 15, 1 (Jan.
1996), 1–36. doi:10.1145/226150.226151. 2

[TB94] TELLIER P., BOUATOUCH K.: Physics-based lighting mod-
els: Implementation issues. In Photorealistic Rendering in Com-
puter Graphics. Springer, 1994, pp. 112–121. doi:10.1007/
978-3-642-57963-9_12. 2

[UNRD13] ULBRICH J., NOVÁK J., REHFELD H., DACHSBACHER C.:
Progressive visibility caching for fast indirect illumination. In Pro-
ceedings of the Vision, Modeling, and Visualization Workshop (2013),
Bronstein M. M., Favre J., Hormann K., (Eds.), Eurographics Associa-
tion, pp. 203–210. URL: https://cg.ivd.kit.edu/english/
PVCFID.php. 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1111/j.1467-8659.2008.01250.x
https://doi.org/10.1111/j.1467-8659.2008.01250.x
https://doi.org/10.2312/sre.20181169
https://doi.org/10.2312/sre.20181169
https://doi.org/10.5555/581896.581898
https://doi.org/10.2312/sre.20181174
https://doi.org/10.1145/3230635
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/15922.15902
https://doi.org/10.1109/RT.2008.4634616
https://doi.org/10.1109/RT.2008.4634616
https://doi.org/10.1111/cgf.13227
https://doi.org/10.1145/3272127.3275106
https://doi.org/10.1111/j.1467-8659.2011.01863.x
https://doi.org/10.1111/j.1467-8659.2011.01863.x
https://doi.org/10.1111/cgf.12060
https://doi.org/10.1111/cgf.12680
https://doi.org/10.1145/3272127.3275030
https://doi.org/10.1145/226150.226151
https://doi.org/10.1007/978-3-642-57963-9_12
https://doi.org/10.1007/978-3-642-57963-9_12
https://cg.ivd.kit.edu/english/PVCFID.php
https://cg.ivd.kit.edu/english/PVCFID.php

J. Guo, M. Eisemann & E. Eisemann / NEE++

[Vea98] VEACH E.: Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University, 1998. URL: http://
graphics.stanford.edu/papers/veach_thesis/. 2

[VHH∗19] VORBA J., HANIKA J., HERHOLZ S., MÜLLER T.,
KŘIVÁNEK J., KELLER A.: Path guiding in production. In ACM SIG-
GRAPH 2019 Courses (New York, NY, USA, 2019), SIGGRAPH ’19,
ACM, pp. 18:1–18:77. doi:10.1145/3305366.3328091. 2

[VK16] VORBA J., KŘIVÁNEK J.: Adjoint-driven russian roulette and
splitting in light transport simulation. ACM Trans. Graph. 35, 4 (July
2016). doi:10.1145/2897824.2925912. 2

[VKK18] VÉVODA P., KONDAPANENI I., KŘIVÁNEK J.: Bayesian on-
line regression for adaptive direct illumination sampling. doi:10.
1145/3197517.3201340. 2

[VKŠ∗14] VORBA J., KARLÍK O., ŠIK M., RITSCHEL T., KŘIVÁNEK
J.: On-line learning of parametric mixture models for light transport
simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2014) 33, 4 (2014). doi:10.1145/2601097.2601203. 2

[vRKEE16] VON RADZIEWSKY P., KROES T., EISEMANN M., EISE-
MANN E.: Efficient stochastic rendering of static and animated volumes
using visibility sweeps. Transactions on Visualization and Computer
Graphics 23, 9 (2016), 2069 – 2081. doi:10.1109/TVCG.2016.
2606498. 2

[War94] WARD G. J.: Adaptive shadow testing for ray tracing. In Pho-
torealistic Rendering in Computer Graphics. Springer, 1994, pp. 11–20.
doi:10.1007/978-3-642-57963-9_2. 2

[ZS95] ZIMMERMAN K., SHIRLEY P.: A two-pass solution to the ren-
dering equation with a source visibility preprocess. In Eurograph-
ics Workshop on Rendering Techniques (1995), Springer, pp. 284–295.
doi:10.1007/978-3-7091-9430-0_27. 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.1145/2897824.2925912
https://doi.org/10.1145/3197517.3201340
https://doi.org/10.1145/3197517.3201340
https://doi.org/10.1145/2601097.2601203
https://doi.org/10.1109/TVCG.2016.2606498
https://doi.org/10.1109/TVCG.2016.2606498
https://doi.org/10.1007/978-3-642-57963-9_2
https://doi.org/10.1007/978-3-7091-9430-0_27

