
Mapping quantumalgorithms
in a crossbar architecture

AlejandroMorais

Mapping quantum
algorithms

in a crossbar architecture

by

Alejandro Morais

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on the 25th of September 2019.

Student number: 4747240
Project duration: November 1, 2018 – July 1, 2019
Thesis committee: Dr. ir. C.G. Almudever, QCA, TU Delft

Dr. ir. Z. Al-Ars, CE, TU Delft
Dr. ir. F. Sebastiano, AQUA, TU Delft
Dr. ir. M. Veldhorst, QuTech, TU Delft

Supervisor: Dr. ir. C.G. Almudever, QCA, TU Delft

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Abstract

In recent years, Quantum Computing has gone from theory to a promising reality, leading
to quantum chips that in a near future might be able to exceed the computational power
of any current supercomputer. For this to happen, there are some problems that must
be overcome. For example, in a quantum processor, qubits are usually arranged in a 2D
architecture with limited connectivity between them and in which only nearest-neighbour
interactions are allowed. This restricts the execution of two-qubit gates and requires qubit
to be moved to adjacent positions. Quantum algorithms, which are described as quantum
circuits, neglect the quantum chip constraints and therefore cannot be directly executed.
This is known as the mapping problem.

This thesis focuses on the problem of mapping quantum algorithms into a quantum chip
based on spin qubits, called the crossbar architecture. In this project we have developed
the required compiler support (mapping) for making quantum circuits executable on the
crossbar architecture based on the tools provided by OpenQL. Using this compiler, we have
analyzed the mapping overhead of the crossbar architecture and studied how it relates to the
characteristics of quantum algorithms. In addition, we have developed a verification program
that checks the output of the compiler and provides a visualisation tool for debugging.

i

Acknowledgements

This work would not have been possible without the support of many people.

Firstly, I would like to thank all of those who have been involved in my education, helping
me find my passion for quantum computing and computer engineering. Especially to my
supervisor, Dr. Carmina G. Almudéver, for her guidance and for giving me the opportunity
to work in the field of quantum computing. I would also like to thank Lingling Lao for her
additional supervision during this thesis and to Hans Van Someren for his help during the
technical aspect of this thesis.

In addition, I would like to mention the rest of people in the Quantum Computer Archi-
tecture group: Prof. Koen Bertels, Abid Moueddene, Amitabh Yadav, Anneriet Krol, Aritra
Sarkar, Diogo Valada, Imran Ashraf, Jeroen van Straten, Matthijs Brobbel, Savvas Varsamopou-
los and Yaoling Yang; and people who have already left: Daniel Moreno Manzano, Leon Riese-
bos, Miguel Serrao and Xiang Fu.

Also, I would like to send a special thanks to all of those who have contributed to open
source projects from which millions of people benefit today.

Finally, I would like to thank my family for their financial and emotional support through-
out these years and, essentially, for putting up with me every day even a thousand kilometers
away.

Alejandro Morais
Delft, September 2019

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem definition . 1

1.3 Structure . 3

2 Background 4

2.1 Quantum Computing . 4

2.1.1 Qubits . 4

2.1.2 Quantum Gates. 5

2.1.3 Quantum Circuits . 6

2.2 Mapping problem in quantum computing . 7

2.2.1 Gate Decomposition . 8

2.2.2 Initial Placement . 8

2.2.3 Routing . 9

2.2.4 Scheduling . 9

2.2.5 State of the art . 10

3 Crossbar Architecture 12

3.1 Layout and constraints . 12

3.1.1 Layout . 12

3.1.2 Layout constraints . 13

3.2 Model . 14

3.3 Operations . 16

3.3.1 Shuttling. 16

3.3.2 One-qubit gate . 19

3.3.3 Two-qubit gate . 22

3.3.4 Measurement . 24

3.4 Conflicts. 28

3.4.1 Side effects . 28

3.4.2 Undecidable configurations . 29

iii

Contents iv

3.5 Gate Set Decomposition . 31

4 Mapping Implementation 33

4.1 Initial Placement . 33

4.2 Routing . 34

4.2.1 Crossbar Topology . 34

4.2.2 Crossbar Configuration. 35

4.2.3 Routing Strategy . 36

4.2.4 Routing Implementation . 37

4.3 Scheduling . 39

4.4 Mapping Decomposition . 39

5 Simulation framework 42

5.1 Framework overview . 42

5.2 Verification Program . 43

5.2.1 Parameters . 44

5.2.2 Conflict Checker . 44

5.2.3 Visualisation Tool . 45

5.3 Additional Crossbar Parameters . 46

5.3.1 Ancillary qubits . 46

5.3.2 Phase shift gates . 46

5.3.3 Crossbar Configuration. 47

6 Experiments and Results 50

6.1 Benchmarks . 50

6.2 Mapping Results . 51

6.2.1 Mapping Results with Trivial Initial Placement . 51

6.2.2 Mapping Results with Initial Placement . 53

6.3 Comparison of Different Mappers . 56

6.4 Comparison with the Surface 17 chip . 57

6.5 Mapping Overhead Analysis . 59

6.5.1 Characteristics . 59

6.5.2 Experiments . 60

6.6 Scalability . 62

7 Conclusions and future work 66

7.1 Conclusions. 66

Contents v

7.2 Future work . 67

A Gate decomposition 69

A.1 CPHASE Decomposition . 69

A.2 CNOT Decomposition . 69

B Benchmarks 71

Bibliography 75

1
Introduction

This chapter explains the motivation behind the mapping of quantum algorithms in quan-
tum processors in Section 1.1 with its definition in Section 1.2. Section 1.3 describes the
organization of this thesis.

1.1. Motivation
Since the birth of the modern computer in the early 1930s, the main goal of a computer
program was to execute a task as fast as possible. This meant, directing the majority of the
efforts towards improving the electronics that handle the logic. The speed of progress was so
high that a few years after, Moore, co-founder of Intel, successfully predicted that the number
of transistors in a processor would double every two years. Unfortunately, there is a physical
limit in the number of transistors that one can fit inside a certain amount of space. Due to
this fact, nowadays many chip manufacturers include more than one core in their processors.
This allows the software to increase its efficiency by doing calculations in parallel. But even
with parallelization, this hardware has a hard limit in terms of computational power.

During this period, a new field of physics emerged, called quantum mechanics, which
brought a new way of thinking and interacting with nature. In fact, it brought a new paradigm
of computation which had the potential to overcome the limits of classic computation and
increase the computational power exponentially. But analogous to what happened in the
1950s, nowadays there is a wide range of quantum computer technologies and all of them
are still in a very early stage. And since every technology has different constraints, one can
not execute a quantum algorithm directly into any quantum processors. There are some
restrictions that must be respected to be able to execute the algorithm.

Therefore, there is clearly a gap between the software and the quantum hardware; we
need to make quantum algorithms executable on given quantum processors. However, as
we will see in the next chapters, there is no straight forward solution to this problem. And it
is at this point in which this thesis will focus on; that is, in the process of mapping quantum
algorithms to a specific chip architecture, the crossbar architecture.

1.2. Problem definition
In classical computing, a task is executed by dividing it into specific and discrete steps.
This means describing the task in a language that the computer can understand: machine
code. Initially, these programs were written in assembly language which was then translated
into machine code. In the early days, this translation to machine code was dependant on

1

1.2. Problem definition 2

the underlying hardware implementation. In other words, a compiled program could not
be executed in different hardware than its target. Fortunately, nowadays, this problem is
solved by using a compatible instruction set between the most used processors of the market
(AMD and Intel), although there are still some architectures (like ARM) that need a different
compiler to run the program.

A similar problem is found in the execution of quantum algorithms in a quantum archi-
tecture. To tackle this and other related problems, the Quantum Computer Architecture Lab
at TU Delft [9] proposed the system stack for a quantum computer as shown in Figure 1.1.
The highest layer of the stack is the quantum algorithm, which is represented by a quantum
circuit. This circuit describes the number of qubits and the gates that should be executed.
Note that this description is hardware agnostic, so there are no limits in the types of gates or
the interactions between qubits. But at the lowest level, the quantum chip might not sup-
port every gate and interaction. This is why it is necessary to have intermediate layers that
translate the circuit input into an equivalent one that can be executed on the quantum chip.

Figure 1.1: The full-stack design of quantum computer architecture [10]

One of the main constraints of a quantum chip is the interaction between qubits. These
can be represented as graph, where each node is a qubit and each edge is a possible inter-
action between two qubits. This means that if two qubits not connected by an edge need
to interact, they must be moved or swapped until they are adjacent. However, this routing
is not trivial, since there are more constraints of the architecture that can obstruct some
paths. And, as one might expect, this causes overhead in the final compiled circuit, since it
will require more gates and time to execute the same algorithm.

In general, minimizing the overhead of a program is usually a good practice, however, in
this particular, scenario it is crucial. This is because the qubits used nowadays are very
fragile and the time a qubit can maintain its state is short [31]. Depending on the underlying
quantum technology the qubits of the quantum chip will have a shorter or longer lifespan.
But even with the longest decoherence time, it is just a matter of seconds [34] until the
qubit is useless for computation. Thus, it is important to do a translation in which the time
necessary to execute the algorithm (latency of the circuit) is as short as possible. In addition,
gates are faulty; and the more faulty gates applied, the more errors the computation will
have. So to minimize these two problems, we need not only to focus on the amount of gates,
but also on the gates themselves; since the duration and fidelity can vary from gate to gate.
So the aim of this intermediate layer is to map any quantum circuit into a quantum chip,
while being compatible with the hardware constraints and minimizing overhead.

In addition, unlike classical computing, the translation from assembly language to native
instructions is not one-to-one and there is not a common set of gates for all chips. It requires
a program that takes into account the constraints of the target architecture, in order to add
or remove the necessary quantum gates to execute the algorithm as fast and accurate as
possible.

1.3. Structure 3

1.3. Structure
This thesis is organized as follows:

• Chapter 2 gives a brief introduction of quantum computing, while also describing the
mapping problem in quantum hardware architectures.

• Chapter 3 introduces the quantum crossbar architecture and describes its operations
and constraints.

• Chapter 4 describes the challenges encountered through the process of mapping quan-
tum algorithms into the crossbar architecture and proposes techniques to deal with
them.

• Chapter 5 illustrates the framework developed to run the experiments and verify their
compatibility with the crossbar constraints.

• Chapter 6 shows all the experiments and explains how the results show new insights
into the crossbar architecture.

• Chapter 7 summarizes the results and ideas drawn from this thesis. And, finally, future
lines of work are introduced.

2
Background

This chapter introduces in a brief manner the fundamental concepts of quantum computing
used throughout the thesis. In addition, it describes the main parts of mapping a quantum
algorithm.

2.1. Quantum Computing
To explain the mapping problem in depth it is important to have a good understanding of
the fundamentals of quantum computing. In this section we will introduce the concepts of
qubits, gates and circuits. As we have done in the previous chapter, it is easier to understand
these kind of concepts by using a analogy with classical computing.

2.1.1. Qubits
In classical computing, the basic unit of information is a bit: 0 or 1, high voltage or low
voltage. However, quantum mechanics have shown that small particles, like an electron,
can have a state of different nature. For example, the electron has a spin which can be
used to represent these new type of states, called quantum state or qubit. This differs from a
classical state in the deterministic feature. A quantum state can hold the value of “0” and “1”
at the same time but with different or equal probabilities. This is called superposition and is
one of the characteristics that make quantum mechanics so interesting [30]. So to define a
qubit with this superposition we can make use of linear combination as shown in Figure 2.1.

|𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1⟩

Figure 2.1: Generalized representation of a qubit in bases |ኺ⟩ and |ኻ⟩

In this formula, 𝛼 and 𝛽 are arbitrary complex numbers that give the probabilistic property
to the qubit state 𝜙, and they are called amplitudes. In this example, the probability of
measuring a “0” is |𝛼|ኼ and the probability of measuring a “1” is |𝛽|ኼ. As one might expect
the sum of all the probabilities is 1. Thus, we can express this as a formula, shown in Figure
2.2.

4

2.1. Quantum Computing 5

|𝛼|ኼ + |𝛽|ኼ = 1

Figure 2.2: Formula that relates the amplitudes of a qubit

Tomeasure a qubit, one must use a specific measurement axis (or measurement operator).
The most common is the Z axis, with eigenvectors |0⟩ and |1⟩. The measurement does not
return the superposition state, it only returns one of the eigenvalues of the basis. Thus,
after measuring, the quantum state collapses into one of the eigenstates of the measurement
operator. In our example of Figure 2.1, the qubit will collapse to either |0⟩ or |1⟩ depending
on the amplitudes [30]. However, when the qubit collapses it stays in that base and the
superposition is destroyed. So the qubit does not reverse back to the superposition state.
Although this might seem as an disadvantage, we will see that we leverage this property in
some cases.

Figure 2.3: The Bloch sphere

In the previous example, we have used only one basis, in particular the computational
basis, but there are infinite other bases from which we can choose to represent a quantum
state, as well as to measure it. Figure 2.3 shows a visual representation of the possible
quantum states that we can have. Each point in the bloch sphere represents a quantum
state. Thus, we can define it by two parameters: 𝜃 and 𝜑, where 𝜃 ∈ [0, 𝜋) and 𝜑 ∈ [0, 2𝜋). We
can see these variables as the polar angle (𝜃) and azimuth (𝜑).

This explanation only takes into account one qubit. However, we can have any number
of qubits. For example, assuming we are using the bases |0⟩ and |1⟩ then, a system of two
qubits means that now these are the possible outcomes of our quantum system: |00⟩, |01⟩,
|10⟩ or |11⟩. Again, we can define a general state, as shown in Figure 2.4.

|𝜙⟩ = 𝛼ኻ |00⟩ + 𝛼ኼ |01⟩ + 𝛼ኽ |10⟩ + 𝛼ኾ |11⟩

Figure 2.4: General quantum state for two qubits in bases |ኺ⟩ and |ኻ⟩

2.1.2. Quantum Gates
In general, having information (bits or qubits) is useful, but being able to do a computation
is the whole purpose of a computer. So in this section we will see how to use a qubit.

As explained, quantum states can be seen as a complex unit normal vector with 2፧ dimen-
sions. To manipulate this information we can make use of a transformation that changes
the qubit state into another one. To maintain a valid outcome after applying this operation,
it needs to preserve the normalization of the quantum state. To do this, the transformation

2.1. Quantum Computing 6

is a unitary matrix 𝑈 where 𝑈 = (𝑈∗)ፓ. In these types of transformations we can distinguish
two types of transformations: one-qubit gates and two-qubit gates.

One-qubit gate: This type of gates can be seen as a rotation over any axis of the Bloch sphere.
So any one-qubit gate can be expressed as: 𝑅፱(𝜃) 𝑅፲(𝜑) 𝑅፳(𝜆), rotations along the X, Y and Z
axes, respectively. The matrices for the gates 𝑋, 𝑌 and 𝑍, shown in Table 2.1, are called Pauli
matrices (note that the identity operation is just the application of the identity matrix). There
are other common gates, such as the 𝐻 gate, which applies the rotation 𝑅፱(𝜋/2)𝑅፲(𝜋/2). This
gate is commonly use for creating a superposition state in a qubit. So is important to be able
to execute this gate in a quantum chip [26].

𝐼 𝑋 𝑌 𝑍 𝐻 𝑆 𝑇
𝐼 𝑋 𝑌 𝑍 𝐻 𝑆 𝑇

(1 0
0 1) (0 1

1 0) (0 −𝑖
𝑖 0) (1 0

0 −1)
ኻ
√ኼ (

1 1
1 −1) (1 0

0 𝑖) (
1 0
0 𝑒 ᑚᒕᎶ)

Table 2.1: Examples of single-qubit gates with their corresponding matrices

Two-qubit gate: This type of gates can create entanglement between qubits (but not all two-
qubit gates). This means that they can connect two qubits in such a way that by measuring
any of them it will affect the measurement of the other. The only way to achieve this is
by applying a two-qubit gate. So in order to take advantage of this property is essential
that the quantum chip we want to use supports a two-qubit gate that is capable of creating
entanglement. In addition, if our set of quantum gates only contains single-qubit gates then
there is no point in using a quantum computer, because the available computations could
be simulated in a classical computer. An example of a two-qubit gate is the 𝐶𝑁𝑂𝑇, where
the target qubit is flipped in the X axis (from |0⟩ to |1⟩ and viceversa), if the control qubit is
in the state |1⟩. Otherwise the target qubit will be unchanged. This type of gates that use a
control-target scheme are called control gates and they can execute a one-qubit gate based
on the control qubit [30]. Finally, we want to introduce another two two-qubit gates which
will be repeatedly used through this thesis, called SWAP and √𝑆𝑊𝐴𝑃 (or √𝑆𝑊𝐴𝑃). The SWAP
gate is used to “exchange” or swap the quantum states of two qubits. And the √𝑆𝑊𝐴𝑃 is just
the square root of the first, so by applying two √𝑆𝑊𝐴𝑃 gates consecutively we will have done
a SWAP gate. Its main difference (compared to the SWAP gate) is that is universal - together
with single-qubit gates, we can use it to run any quantum computation. Table 2.2 shows
some examples of the matrices of two-qubit gates.

𝐶𝑁𝑂𝑇 𝐶𝑃𝐻𝐴𝑆𝐸 𝑆𝑊𝐴𝑃 √𝑆𝑊𝐴𝑃
• •

𝑍

×

×

×

×
/.-,()*+1/2

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

) (
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

) ⎛

⎝

1 0 0 0
0 ኻ

ኼ(1 + 𝑖)
ኻ
ኼ(1 + 𝑖) 0

0 ኻ
ኼ(1 − 𝑖)

ኻ
ኼ(1 + 𝑖) 0

0 0 0 1

⎞

⎠
Table 2.2: Examples of two-qubit gates with their corresponding matrices

2.1.3. Quantum Circuits
A quantum circuit can be seen as a unitary transformation done in 𝑛 number of qubits. For
example, if we want to apply a 𝑍 gate in qubit 0 and a 𝑋 gate in qubit 1, then the transfor-

2.2. Mapping problem in quantum computing 7

mation will be 𝑍 ⊗ 𝑋. Note that there are multiple ways of realizing a circuit. For example,
Figure 2.5 shows four different quantum circuits which executes the same algorithm.

•
=

•
=

𝑍
=

𝐻 𝐻

𝐻 𝐻 𝑍 • •

Figure 2.5: Example of equivalent quantum circuits

The fact that is possible to execute any quantum algorithm using a set of one-qubit gates
and a two-qubit gate was shown in [3]. In particular, it used a technique, known as QR
decomposition, that decomposed any quantum gate into one-qubit gates and CNOT gates. So
a quantum circuit can be defined as a list of gates executed in order, affecting one, two or
three qubits. An example of these circuits is shown in Figure 2.5.

Finally, it is worth defining the concepts of depth and latency of a circuit, since we will
use them in the following chapters. The depth-𝑑 of a quantum circuit consists of 𝑑 time
steps, each time step contains one- and two-qubit gates acting on disjoint qubits [6]. And
the latency of a quantum circuit is the time needed to execute the whole circuit.

2.2. Mapping problem in quantum computing
This section will describe the mapping problem and then it will explain the stages of mapping
a quantum algorithm into a quantum chip.

As we have already introduced in chapter 1, each quantum chip has its own constraints.
The main one is the limitation in the interactions between physical qubits. In many quantum
chips, not all the qubits can interact with every other qubit. This means that, in those types of
architectures, it is not possible to execute a two-qubit gate between any two qubits. Usually,
this limitation in connectivity is based on nearest neighbour - i.e. two qubits must be adjacent
to each other to execute a two-qubit gate. On the other hand, the quantum chip must be able
to execute any quantum algorithm, so there needs to be a way to execute two-qubit gates
between two qubits that are not connected. Depending on the quantum technology, the
solution requires to move the qubits in different ways. In superconducting architectures, the
qubits are moved by applying SWAP gates - this will move the virtual qubit through physical
qubits. In semiconducting architectures, the physical qubit is move until it is adjacent to
the other qubit required to perform the two-qubit gate. In chapter 4, we will explain in detail
this difference.

On top of the connectivity constraints, there are other constraints depending on the tech-
nology. For example, in superconducting chips, the physical qubits can be operated with
electromagnetic microwaves to execute single-qubit gates; and depending on the frequency
used they can apply it to different qubits. Thus, a new constraint based on the frequency
pulses is added to the quantum chip.

Regarding the mapping process, Figure 2.6 introduces the four main steps necessary to
map a quantum algorithm into a quantum architecture. This process transforms a hardware-
agnostic circuit specification into a hardware-dependent circuit. The input circuit is usually
specified using a Quantum Assembly Language (QASM). Nowadays there are many different
QASM languages, such as cQASM [17], OpenQASM [2] and Quil [40]. So, in theory, we could
use any of these QASM languages as the input for our compiler. However, as we will explain
later, for this thesis we will use cQASM due to its off-the-shelf implementation for the compiler
framework we will use, called OpenQL [2]. This circuit specification is then passed through
the four stages: gate decomposition, initial placement, routing and scheduling. Each of

2.2. Mapping problem in quantum computing 8

these stages solves a different problem As a result, the compiling process outputs a list of
instructions that can execute the input circuit into the target architecture. As we will see in
the next sections, these stages can be implemented in a simple way; however, the problem
arises when we want to optimize the number of gates and latency of the circuit.

Figure 2.6: The compilation stages of mapping a quantum algorithm

2.2.1. Gate Decomposition
In practice, quantum computers do not support all types of two-qubit gates e.g. some ion
trap quantum chips only supports 𝐶𝑁𝑂𝑇 gates. However, to be able to execute any quantum
algorithm, a quantum computer must support a two-qubit gate that can produce entangle-
ment. Fortunately, as shown in the previous section, it is possible to execute any quantum
algorithm if the set of gates is universal. In other words, if the quantum computer supports
a universal set of gates, we can execute the rest of gates based on a decomposition of the
supported gates. Thus, this first step that transforms any gate into a supported gate is called
gate decomposition.

For example, if the quantum chip does not support natively the SWAP gate but it supports
the CNOT gate then, it can execute such gate between qubit 𝑎 and qubit 𝑏 by applying:
𝐶𝑁𝑂𝑇ፚ, ×𝐶𝑁𝑂𝑇,ፚ ×𝐶𝑁𝑂𝑇ፚ, = 𝑆𝑊𝐴𝑃ፚ,. This is a common decomposition for moving the qubit
state through SWAP gates in superconducting architectures [4].

2.2.2. Initial Placement
After the gate decomposition, the next step is to map each virtual qubit (from the circuit) to
a physical qubit (in the quantum chip). This process is called initial placement. Although,
the limitation of the qubit connectivity in the quantum chip will be addressed in the routing
algorithm, the initial placement is, essentially, the first step into optimizing the routing. This
is because the purpose of the initial placement is to reduce the number of movement opera-
tions (e.g. SWAPs) needed in the routing stage. This problem, also called qubit assignment,
is 𝑁𝑃-complete; so there is no straight forward solution.

Figure 2.7 shows an example, where the virtual qubits 1, 2 and 3 are mapped to the
physical qubits A, D and G, respectively. This initial placement is optimal, since the circuit
respects the connectivity of the physical qubits in such a way that no additional gates are
needed.

2.2. Mapping problem in quantum computing 9

Figure 2.7: An example of an initial placement. The virtual qubits numbered (at the left) are mapped to physical qubits in a
lattice topology (at the right). The dashed arrows represent the mapping from virtual to physical qubits. Virtual qubits 1, 2 and 3

are mapped to the physical qubits A, D and G, respectively.

2.2.3. Routing
After the initial placement (or initial mapping) is done, the routing algorithm checks if all
the two-qubit gates can be executed based on the connectivity constraints. If not, then this
process moves the qubit states or the physical qubits (depending on the technology used)
through the topology in order to execute all the two-qubit gates.

For example, using the initial placement of Figure 2.7 and a new quantum circuit, Figure
2.8 shows an example where qubits A and G are not directly connected, so the CNOT gate can
not be executed. But, after running the routing algorithm, a SWAP gate is added between the
physical qubits A and D, in such a way that the physical qubits A and G are now connected
and the CNOT gate can be executed.

qubit 1 •
add swaps−−−−−−→

× •
qubit 2 ×

qubit 3

Figure 2.8: An example of a mapped quantum circuit. This example uses the initial mapping from Figure 2.7. The routing
algorithm adds a SWAP gate to execute the CNOT between adjacent physical qubits in the topology of Figure 2.7.

2.2.4. Scheduling
Finally, the scheduler receives a quantum circuit that respects the connectivity constraints of
the architecture. In theory, this quantum circuit can be executed directly into the quantum
chip in a sequential order. However, for relative large circuits this might result in a random
result due to the short lifespan of the physical qubits. This means that it is necessary to
reduce the latency of the circuit as much as possible to be able to successfully execute large
quantum circuits. This can be done by enabling parallel operations in the quantum chip.
To do this, the scheduler is responsible for planning parallel operations while respecting the
dependencies between them and the constraints of the quantum chip. This scheduling of
gates can be done As Soon As Possible (ALAP) or As Last As Possible (ALAP).

For example, Figure 2.9 shows a quantum circuit that can be directly executed into the
quantum architecture. To schedule this circuit, the scheduler must first create a dependency
graph and then try to schedule as many parallel operations as possible. In this example, there
is a dependency between the first two CNOT gates which prevents them from being scheduled
in parallel. However, the third CNOT can be scheduled in parallel with the first one, if the
constraints of the chip allows it.

2.2. Mapping problem in quantum computing 10

qubit 1 •

qubit 2 •

qubit 3 •

qubit 4

(a)

𝐶𝑁𝑂𝑇ኻ,ኼ 𝐶𝑁𝑂𝑇ኼ,ኽ

𝐶𝑁𝑂𝑇ኽ,ኾ

(b)

time

𝐶𝑁𝑂𝑇ኻ,ኼ

𝐶𝑁𝑂𝑇ኽ,ኾ
𝐶𝑁𝑂𝑇ኼ,ኽ

(c)

Figure 2.9: An example of a quantum circuit scheduling. (a) The quantum circuit to be scheduled. (b) The dependency graph
of the gates. (c) A representation in time of the scheduled gates, assuming compatibility of constraints between ፂፍፎፓᎳ,Ꮄ and

ፂፍፎፓᎵ,Ꮆ.

2.2.5. State of the art
Quantum computing is starting to become a new revolution in fields such as physics and
computer engineering. Nowadays, big companies such as Google [11], IBM [16] and Microsoft
[27] are leading the quantum hardware. Some companies have even announced quantum
chips with 128 qubit [32]. However, as with any new technology, the prototypes have tight
constraints. For example, although IBM Q20 Tokyo already has 20 qubits and another with
50 qubits [18], the connectivity between qubits and decoherence time is still highly restrictive.
Fortunately, there are error-correcting protocols that encode a logical qubit into multiple
physical qubits; that way it provides a way to obtain a fault-tolerant quantum chip [33].
However, for now, the amount of physical qubits is not enough to encode these error-correcting
codes (QEC). The period of time in which quantum chips will only be able to handle up to
a few hundred qubits was defined as Noisy Intermediate Scale Quantum (NISQ) era by John
Preskill [31]. In this period, the noise and decoherence will produce a negative effect on the
reliability of quantum algorithms. To tackle these issues it is necessary to create a layer of
abstraction between the quantum algorithms and the quantum chip that allows to overcome
or, at least, minimize these problems. As explained in the previous section, this layer is called
mapping and it is also responsible for making sure the constraints of the quantum chip are
being respected.

In the process of mapping a quantum algorithm into a quantum chip, is necessary to
take into account four things: the connectivity of qubits, the additional constraints of the
architecture, the error rates and the decoherence time of the qubits. At this point, a high
amount of research has only focused on the connectivity constraints of the architecture [15]
[1] [7]. Another part of the research in mapping focuses on the fact that not all physical
qubits have the same error rates [41] [29]. In particular, [41] proposed noise-aware mapping
policies which tries to select paths with the lowest probability of failure and use strong links
for performing two-qubit gates.

As we have mentioned, the qubit mapping problem has been proved to be 𝑁𝑃-complete
[39]. This means that we can distinguish two types of approaches in current research. The
first one uses exact software solvers to find the optimal solution to the routing problem [36]
[37]. These approaches need a long time to run, so they are only feasible for a small number
of qubits. The second method uses a search to find the best mapping based on a heuristic-
cost function [46] [45] [22]. The initial placement of these algorithms and their cost function
are what differentiates these approaches between them. Although the heuristic method is
currently the only reasonable approach for real applications, some algorithms can take even
an hour to be compiled [46].

Most of the work done in mapping focuses in the superconducting devices, and specially in
IBM chips. Regarding spin qubits, there is not much work being done in mapping quantum
algorithms to quantum chips based on spin qubits. Mainly because the current prototypes
of these quantum chips are only based on a one-dimensional array [28]. Although some
research has been done in creating a 2D array of quantum dots [14] [42], including [23] which

2.2. Mapping problem in quantum computing 11

is the architecture to which we will map quantum algorithms in this thesis. Lately, there has
been developments around the creation of a more general compiler to target more quantum
technologies. For example, [29] built a tool to map quantum algorithms to superconducting
and ion-trap architectures. Yet, this tool can not be used to map quantum algorithms into
spin qubits, since these quantum chips use shuttles to move the physical qubits [23], unlike
superconducting architectures which use SWAP gates [4]. Finally, [43] proposed a compiler
based on time-planning to model a general quantum architecture. However, this type of
compiler is more limited than other compilers based in C++, like OpenQL [2], which allows
to define more complex constraints. In summary, there is a gap yet to be filled regarding
mapping quantum algorithms into spin qubits.

3
Crossbar Architecture

Multiple processor architectures have been proposed for building quantum computers. How-
ever, many all of these architecture do not scale up easily in terms of number of qubits e.g.
some approaches such as ion traps controlled by microwaves will require 100𝑥100𝑚ኼ for two
billion qubits [21] and superconducting qubits will require 5𝑥5𝑚ኼ [8]. Although this number
of qubits seems high, it is approximately the amount needed to perform a Shor factorization
in a 2048-bit number [21]. Thus, there a need to search for a better approach to handle
the size and complexity of the control of qubits in a more compact way. This is where the
crossbar architectures might be a good step towards this direction. In particular, this thesis
will study the crossbar network proposed by Li et al. [23].

In this chapter we will explain how the crossbar architecture works, from the perspective
of the mapping problem. Firstly, Section 1.3 will describe the structure and the supported
operations. Then, to be able to implement this new architecture in the compiler, Section
3.2 will propose a model of the crossbar and Section 3.3 will discuss the operational con-
straints based on this model. Finally, Section 3.4 will show the consequences of violating
these constraints and Section 3.5 will define the gate set decomposition to run any quantum
algorithm.

3.1. Layout and constraints
Traditionally, the term crossbar is referred to a type of switch architecture, where the inter-
connection of horizontal and vertical lines creates a circuit controlled by a switch. Although
the crossbar network proposed in this quantum chip might resemble the old idea of a cross-
bar, it is still very different in terms of functionality and operations. In this section, we will
discuss the structure of this architecture and its supported operations.

3.1.1. Layout
Firstly, it is worth describing the physical layer of the crossbar in a brief way. Starting from
the qubit itself, this architecture is based on spin qubits, that is, the quantum state of the
qubit is encoded in the spin of an electron. This spin can be manipulated by applying a
magnetic field to the electron. In the crossbar architecture shown in Figure 3.1a, a grid is
made by using direct current (DC) lines that makes the horizontal and vertical lines, called
row lines (𝑅𝐿) and column lines (𝐶𝐿), respectively. These lines, through their magnetic field,
divide the grid into sites where a spin qubit can be placed. Hence, these lines are called
barriers. Each of these barriers can be open (lowered) or closed (raised). For example, if a
vertical barrier (𝐶𝐿) is open then the electron at its left can move to the right site (if empty)

12

3.1. Layout and constraints 13

and vice versa. This technique to move electrons from one site to another will be explained
in the next section.

Moreover, there is an important difference between the horizontal and vertical lines: the
DC currents of the column lines are placed in an alternating direction. This creates a dif-
ference in Zeeman energy between the odd columns and the even columns. This difference
between columns changes the resonance frequency of the electrons. In the next sections we
show see how this effect will influence the execution of sequential and parallel operations.

Lastly, the diagonal lines, called qubit lines (𝑄𝐿), cross the grid diagonally (from the bottom
left to the top right). They are also DC lines, but unlike the rest of lines, these ones are not
barriers. By setting a certain voltage through the diagonal lines, they are used to make two
qubits interact with each other or to move qubits from site to site.

(a) (b)

Figure 3.1: The crossbar architecture (a) [23] the control lines for performing different operations. The green dots are the
electrons with arrows representing their spin. The red horizontal lines are the row lines and the blue lines are the column lines.

Finally, the gray diagonal lines, that pass over the electrons, are the qubit lines. The blue columns have a higher Zeeman
energy than the red columns. (b) Representation of the topology of the crossbar architecture. Each node (blue circle)

represents a site of the grid and each edge (black line) represents the possibility of interaction between the sites connected to
that edge.

In order to study this architecture, we need to make a level of abstraction where this
physical crossbar architecture can be seen as a grid where each position of the grid can
be occupied by a qubit (an electron). In this particular architecture, in order to execute a
qubit gate between two qubits, they must be horizontally or vertically adjacent to each other.
The interaction between two qubits diagonally adjacent is not possible. In other words, this
crossbar implementation uses near-neighbour interaction between qubits in the same row
or in the same column. Figure 3.1b shows a visual representation of this topology, where
qubits in the borders can interact with 2 or 3 neighbours, whereas the rest of qubits can
interact with 4 neighbours. Note that some sites represented in Figure 3.1b can be empty,
so to make two non-adjacent qubits interact they must be moved until they are adjacent.

3.1.2. Layout constraints
Logically, the definition of each operation in the crossbar is limited by the structures that
define the architecture. Therefore, it is necessary to define the constraints of the architec-
ture before we execute any operation. This section describes the common constraints of the
architecture for all operations. In the next section we will define the different constraints of
each operation.

3.2. Model 14

Qubit sites: Firstly, as explained before, the crossbar is composed of a grid where each site
can be occupied at most by two qubits. Although, in general, we should only allow one qubit
per site, in the first phase of the measurement operation we will show that for some cases
we might have two qubits in the same site.

Qubit positions: Secondly, the number of qubits that can be used in the crossbar is limited
by the number of sites. For example, a crossbar of size 4𝑥4 can only have a maximum of
16 qubits. However, in general, having a qubit per site is not practical due to the following
reasons: 1) it will increase the number of shuttles to make two far away qubits interact; 2)
it will increase the crosstalk between qubits; 3) it will reduce the number of control gates
per qubit. Helsen et al. [13] defines different configurations for the positions of the qubits
based on repetitive operations, such as multiple measurements. Since these configurations
are made for error-correcting protocols, as an initial approach, we will use a configuration
where half of the sites are empty and the qubits are placed in a checkerboard structure. It
is worth mentioning that this amount of qubits includes both the data qubits and ancillary
qubits and there is no constraint in the ratio of data qubits to ancilla qubit.

3.2. Model
A simplified visual representation of the crossbar layout is shown in Figure 3.2a. The colored
lines represent the control lines used to execute the operations while the square sites repre-
sent the quantum dots. The number of wires required for this square crossbar is ≈ 4√2𝑁+1,
where 𝑁 is the number of qubits [23]. But note that the control lines at the edges of the
crossbar are not used, these barriers are considered to always be raised. On the other hand,
Figure 3.2b shows how the different types of columns of the crossbar are laid out. We will
use this visual representation for the rest of the thesis.

Although the crossbar network proposed in [23] does not have a limit in terms of size, we
will consider the crossbar to have a size 𝑁 × 𝑁 (where 𝑁 is both the number of rows and the
number of columns), since it is the optimal shape for the number of control gates per qubit
when using the idle configuration. Based on the layout and control of this architecture, it
seems reasonable to model it as a 𝑁 × 𝑁 matrix. The vertical axis is labeled with 𝑖 and the
horizontal axis is labeled with 𝑗. The indices are numbered from 0 to 𝑁 − 1 from bottom to
top and from left to right, respectively.

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ፍዅኼ

𝐶𝐿ኺ 𝐶𝐿ኻ𝐶𝐿ፍዅኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ፍዄ
ኻ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ፍ
ዅኻ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ፍዅኼ

𝐶𝐿ኺ 𝐶𝐿ኻ𝐶𝐿ፍዅኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ፍዄ
ኻ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ፍ
ዅኻ𝑖

0

1

2

𝑁 − 1

𝑗

0 1 2 𝑁 − 1

(b)

Figure 3.2: (a) The column lines (ፂፋ) are the blue vertical lines. The row lines (ፑፋ) are the red horizontal lines. The qubit lines
(ፐፋ) are the diagonal gray lines. And the qubits are the green dots inside a site. Note that the column and row lines at the

edges of the layout are ignored. In other words, they are considered to be always raised. (b) The vertical axis of the crossbar is
label with ። and the horizontal axis with ፣. The columns in blue have a higher Zeeman frequency than the red columns.

3.2. Model 15

In this section, we will describe the crossbar layout and control lines. Firstly, we define
the parameters of a crossbar:

𝑁 = size of the crossbar

𝑄 = number of qubits

Note this number 𝑄 also contains the ancillary qubits necessary to do the measurement
operation. Secondly, we define the data structures used:

• 𝑆 stores the quantum state of all qubits (as shown in Equation 3.1).

𝑆[𝑞] = |𝜙⟩፪
𝑄 = {0, . ., 𝑄 − 1}

𝑞 ∈ 𝑄
(3.1)

• 𝑃 stores the position (𝑖, 𝑗) (row 𝑖, column 𝑗) of all qubits. While 𝐶 is exactly the opposite,
is a matrix that stores the set of qubit identifiers of the specified site. Note that we
use a set to be able to represent the cases where there are two qubits in the same site
during the first phase of a measurement. And this set must be unique to be compatible
with the Pauli Spin Blockade (PSB) (explained in section 3.3.4) These two structures are
shown in Equation 3.2 and 3.3.

𝑃[𝑞] = (𝑖, 𝑗) (3.2)

𝐶[𝑖, 𝑗] = {{𝑥 ∣ 𝑥 ∈ 𝑞, 𝑆[𝑥] is unique}, when a site is occupied
∅, when a site is empty

𝑖, 𝑗 ∈ [0 . . 𝑁 − 1], 𝑞 ∈ 𝑄
(3.3)

• 𝑅𝐿 and 𝐶𝐿 are vectors which store the status of the row lines and column lines, respec-
tively (as shown in Equation 3.4 and 3.5).

𝑅𝐿[𝑘] = {0, barrier raised
1, barrier lowered

(3.4)

𝑅𝐿[𝑘] = {0, barrier raised
1, barrier lowered

𝐶𝐿[𝑘] = {0, barrier raised
1, barrier lowered

𝑘 ∈ [0 . . 𝑁 − 2]

(3.5)

• Finally 𝑄𝐿 stores the current voltages of all qubit lines (as shown in Equation 3.6). 𝑇 is
the maximum allowed voltage specified by the physical device. We assume the voltage
is an integer, although the definitions are still valid for real numbers.

𝑄𝐿[𝑑] = 𝑡
𝑑 ∈ [−𝑁 + 1 . . 𝑁 − 1], 𝑡 ∈ [0 . . 𝑇] (3.6)

Now that we have the necessary abstraction to deal with the characteristics of the crossbar
architecture, we are ready to start defining each operation and its constraints. In the next
section we will use the above definitions to explain how the operations are implemented while
being compatible with the constraints.

3.3. Operations 16

3.3. Operations
As explained, this architecture uses the available control lines to execute each operation.
Therefore, we can define an operation as a set of instructions (or grid operations, as called in
[13]) that use the control lines to execute a specific action in the crossbar. For example, a
change in the voltage of a qubit line is an instruction which is part of the shuttling operation.

On top of the limits that the architecture imposes (from Section 3.1), there are other
constraints which must be respected in order to correctly run quantum algorithms. If any
of these constraints is not followed, we call this a conflict of constraints. Logically, a conflict
produces an invalid configuration or invalid result in the given quantum algorithm. We will
explain these consequences in detail in section 3.4.

For each of the operations we first explain how the operation is implemented, then we
define the main characteristics of the operation and show how to execute the operation by
using primitive instructions. Finally, we describe the constraints that need to be followed to
correctly execute the operation.

3.3.1. Shuttling
Firstly, it is important to point out that, to execute a two-qubit gate both qubits have to be
adjacent. Therefore, if we want to execute a two-qubit gate between two non-adjacent qubits,
we must have a way to bring them closer. And, as we have mentioned, in other quantum
technologies, such as superconducting qubits [4], the method they use to solve this is through
SWAP gates. This gate will, effectively, swap the states of two qubits. Thus, moving the qubit
state through the topology. This is possible because each qubit is connected to, at least,
another qubit. However, in the crossbar architecture, not all the sites are occupied, there
can be an empty site without a qubit anywhere in the grid. So it is not possible to always
use SWAP gates to move qubits between sites. In order to execute a two-qubit gate between
two non-adjacent quits, it is necessary to actually move the qubit through empty sites. This
movement is called shuttling and can be implemented horizontally or vertically. And, as we
will see, it is faster than the SWAP operation. In the next chapter, we will show how the
shuttle operation directly influences the scheduling of operations and routing of qubits.

3.3.1.1. Horizontal Shuttling

This operation is based on moving an electron to its left or right adjacent site. We need to
lower the adjacent (left or right) vertical barrier and change the voltage of the qubit lines. By
doing so, the voltage of the qubit line that passes through the destination site is higher than
the qubit line that passes through the origin.

Note that in this shuttling, the qubit is changing to a different column. Therefore, due to
a difference in the Zeeman energy between the even and odd columns, the qubit will start to
precess around its Z axis. However, we can be mitigate this phase shift by timing the next
operation correctly. By waiting enough time, a full Z rotation will happen and the original
quantum state will be recovered.

Definition: The horizontal shuttling moves a qubit from site (𝑖, 𝑗) to the site (𝑖, 𝑗 + 𝑘), where
𝑘 ∈ {+1,−1} (shuttle to the right or left, respectively). Based on [13] we expect a latency of
10𝑛𝑠.

Instructions: To execute the horizontal shuttling these instructions must be followed:

1. Lower the vertical barrier between the origin and destination sites: 𝐶𝐿[𝑗−(1/2)+(𝑘/2)] =
1

3.3. Operations 17

2. Set a higher voltage in the qubit line passing through the destination site than the one
passing through the origin: 𝑄𝐿[𝑗 − 𝑖] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑖]

3. Rise the previous vertical barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 0

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ𝑖

0

1

2

3

𝑗

0 1 2 3

(b)

Figure 3.3: In this example a qubit in site (ኼ, ኻ) is shuttled to site (ኼ, ኼ). To do this ፐፋᎲ is set higher than ፐፋᎽᎳ and the barrier
ፂፋᎳ is lowered.

Constraints: To correctly execute this operation, the following conditions must be met:

• Sites: The destination site must be empty (as shown in Equation 3.7). Otherwise, the
qubit will collapse.

𝐶[𝑖, 𝑗 + 𝑘] = ∅ (3.7)

• Qubits: There can not be two qubits horizontally adjacent to each other between the
columns 𝑗 and 𝑗+𝑘 (except in the row that we want to execute the operation, as shown in
Equation 3.8). Otherwise, those horizontally adjacent qubits will interact by performing
a two-qubit gate or even collapse (this will be explained in section 3.4).

𝐶[𝑥, 𝑗] = ∅ ∨ 𝐶[𝑥, 𝑗 + 𝑘] = ∅ where ∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑖} (3.8)

• Barriers: The vertical barrier between the sites (𝑖, 𝑗) and (𝑖, 𝑗 + 𝑘) must be lowered (as
shown in Equation 3.9). Otherwise, the qubit will not be able to shuttle.

𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 1 (3.9)

The barriers around the sites (𝑖, 𝑗) and (𝑖, 𝑗 + 𝑘) sites (left, right, top and bottom) must
be raised. Otherwise, the movement of the qubit can not be predicted (as shown in
Equation 3.10, 3.11, 3.12 and 3.13).

𝐶𝐿[𝑗 − 1 − (1/2) + (𝑘/2)] = 0 (3.10)
𝐶𝐿[𝑗 + (1/2) + (𝑘/2)] = 0 (3.11)

𝑅𝐿[𝑖 − 1] = 0 (3.12)
𝑅𝐿[𝑖 + 1] = 0 (3.13)

• Qubit lines: The voltage from the qubit line that passes through the site (𝑖, 𝑗 + 𝑘) must
be higher than the one passing through the site (𝑖, 𝑗) (as shown in Equation 3.14). Oth-
erwise, the qubit will not shuttle to the destination site.

𝑄𝐿[𝑗 − 𝑖] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑖] (3.14)

3.3. Operations 18

To keep the rest of qubits in columns 𝑗 and 𝑗 +𝑘 from shuttling, we must apply a higher
voltage in the qubit line that passes through their site than the one that passes through
its adjacent empty site (as shown in Equation 3.15, 3.16 and 3.17).

if 𝐶[𝑗 − 𝑥] ≠ ∅ ⇒ 𝑄𝐿[(𝑗 + 𝑘) − 𝑥] < 𝑄𝐿[𝑗 − 𝑥] (3.15)
if 𝐶[(𝑗 + 𝑘) − 𝑥] ≠ ∅ ⇒ 𝑄𝐿[𝑗 − 𝑥] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑥] (3.16)

∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑖} (3.17)

3.3.1.2. Vertical Shuttling

This operation is based on the same ideas as the horizontal shuttling. In this case, the
electron is move in the same column, up or down. To do this, the horizontal barrier adjacent
to the target site need to be lowered. Then the voltage of the qubit line that passes through the
target site need to be higher than the voltage of the qubit lines that passes through the origin.
Then, the electron shuttles to its destination and the horizontal barrier can be raised again.
The main difference from the horizontal shuttling is that the vertical shuttling preserves the
qubit state without taking into account the time. So, in general, this shuttling is preferred
since it will require less time.

Definition: A vertical shuttling moves a qubit in site (𝑖, 𝑗) to the site (𝑖+𝑘, 𝑗), where 𝑘 ∈ {+1,−1}
(shuttle to the right or left, respectively). Based on [13] we expect a latency of 10𝑛𝑠.

Instructions: To execute this operation these instructions must be followed:

1. Lower the horizontal barrier between the origin site and the destination site: 𝑅𝐿[𝑖 −
(1/2) + (𝑘/2)] = 1.

2. Set voltage of the qubit line that passes through the destination site higher than the
one that passes through the origin site: 𝑄𝐿[𝑗 − 𝑖] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑖].

3. Rise the previous horizontal barrier: 𝑅𝐿[𝑖 − (1/2) + (𝑘/2)] = 0.

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ𝑖

0

1

2

3

𝑗

0 1 2 3

(b)

Figure 3.4: In this example a qubit in site (ኼ, ኻ) is shuttled to site (ኽ, ኻ). To do this ፐፋᎽᎴ is set higher than ፐፋᎽᎳ and the barrier
ፑፋᎴ is lowered.

3.3. Operations 19

Constraints: To correctly execute this operation, the following conditions must be met:

• Sites: The destination site must be empty. Otherwise, the qubit will collapse (as shown
in Equation 3.18).

𝐶[𝑖 + 𝑘, 𝑗] = ∅ (3.18)

• Qubits: There can not be two qubits vertically adjacent to each other between the rows
𝑖 and 𝑖 + 𝑘 (except in the column that we want to execute the operation, as shown in
Equation 3.19). Otherwise, those vertically adjacent qubits will interact and change of
state or even collapse.

𝐶[𝑖, 𝑥] = ∅ ∨ 𝐶[𝑖 + 𝑘, 𝑥] = ∅ where ∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑗} (3.19)

• Barriers: The horizontal barrier between the sites (𝑖, 𝑗) and (𝑖 +𝑘, 𝑗) must be lowered (as
shown in Equation 3.20). Otherwise, the qubit will not be able to shuttle.

𝑅𝐿[𝑖 − (1/2) + (𝑘/2)] = 1 (3.20)

The barriers around the sites (𝑖, 𝑗) and (𝑖 + 𝑘, 𝑗) must be raised (as shown in Equation
3.21, 3.22, 3.23 and 3.24). Otherwise, the movement of the qubit can not be predicted.

𝑅𝐿[𝑖 − 1 − (1/2) + (𝑘/2)] = 0 (3.21)
𝑅𝐿[𝑖 + (1/2) + (𝑘/2)] = 0 (3.22)

𝐶𝐿[𝑗 − 1] = 0 (3.23)
𝐶𝐿[𝑗 + 1] = 0 (3.24)

• Qubit lines: The voltage from the qubit line that passes through the (𝑖 + 𝑘, 𝑗) site must
be higher than the one passing through the (𝑖, 𝑗) site (as shown in Equation 3.25). Oth-
erwise, the qubit will not shuttle to the destination site.

𝑄𝐿[𝑗 − 𝑥] < 𝑄𝐿[𝑗 − (𝑖 + 𝑘)] (3.25)

To keep the rest of qubits in rows 𝑖 and 𝑖 + 𝑘 from shuttling, we must apply a higher
voltage in the qubit line that passes through their site than the one passing through its
adjacent empty site (as shown in Equation 3.26, 3.27 and 3.28).

if 𝐶[𝑖, 𝑥] ≠ ∅ then 𝑄𝐿[𝑥 − (𝑖 + 𝑘)] < 𝑄𝐿[𝑥 − 𝑖] (3.26)
if 𝐶[𝑖 + 𝑘, 𝑥] ≠ ∅ then 𝑄𝐿[𝑥 − 𝑖] < 𝑄𝐿[𝑥 − (𝑖 + 𝑘)] (3.27)

∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑗} (3.28)

As mentioned previously, there is no need to wait in this type of shuttling, since there is
no phase shift in the quantum state.

3.3.2. One-qubit gate
Regarding the one-qubit gates, there are two methods of executing this operation based on
the gate and the amount of qubits that we can apply to.

3.3.2.1. Semi-global rotation

The first method uses the magnetic field from the column lines to change the spin of the
electrons. As mentioned before, the direction of the current of these lines are placed in an
alternating order. This means that if we want to change the spin of an electron, not only it
will affect the entire column, but it will also affect all the electrons in the columns with the

3.3. Operations 20

same parity. This clearly has the advantage of executing parallel one-qubit operations, but
it makes it harder to schedule it with other parallel operations.

The problem arises when we want to apply a one-qubit gate (for example an 𝑋 gate) to
only one qubit. To solve this we need to take advantage of the shuttling operation defined
previously. Since is not possible to directly apply a one-qubit gate to particular qubit, we
first, apply the desired gate to the qubits that are in the columns with the same parity as the
target qubit. Then, after shuttling the target qubit to an adjacent, a new one-qubit gates is
apply to the same columns, but this time it will apply the inverse gate of the first one. By
doing this, we make sure that the target qubit is the only one with the desired one-qubit gate
applied. Finally, we can shuttle the target qubit back to its original column, if necessary.
This procedure is called semi-global rotation. A visual example can be seen at Figure 3.5.

Definition: This operation makes a single qubit rotation in the special unitary group 𝑆𝑈(2).
By default, this operation is applied to all the qubit on the odd or even columns, but with
additional shuttles we can apply it to the qubit in site (𝑖, 𝑗). Based on [13] we expect a latency
of 1000𝑛𝑠.

Instructions: To execute this operation these instructions must be followed:

1. Through the column lines, apply the unitary global rotation to all the target columns
𝑇𝐶, where their parity matches the parity of 𝑗. This can be expressed as: 𝑇𝐶 = {𝑥 ∣ ∀ 𝑥 ∈
[0..𝑁 − 1], 𝑥 mod 2 = 𝑗 mod 2}.

2. Shuttle the target qubit from (𝑖, 𝑗) to a column with a different parity 𝑗 + 𝑘.

(a) Lower the barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 1.
(b) Set voltage of the qubit line that passes through the destination site higher than

the one that passes through the origin site: 𝑄𝐿[𝑗 − 𝑖] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑖].
(c) Rise the barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 0.

3. Through the column lines, apply the inverse of the unitary rotation applied in step 1 to
the same columns in 𝑇𝐶.

4. (Optional) Shuttle the target qubit back to its original column in 𝑗.

(a) Lower the barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 1.
(b) Set voltage of the qubit line that passes through the destination site higher than

the one that passes through the origin site: 𝑄𝐿[(𝑗 + 𝑘) − 𝑖] < 𝑄𝐿[𝑗 − 𝑖].
(c) Rise the barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 0.

Constraints: To correctly execute this operation, the following conditions must be met:

• Sites: The destination site (𝑖, 𝑗 + 𝑘) must be empty (as shown in Equation 3.29). Other-
wise, the qubit will collapse.

𝐶[𝑖, 𝑗 + 𝑘] = ∅ (3.29)

• Qubits: During the shuttle to the ancilla site, there can not be two qubits horizontally
adjacent to each other between the columns 𝑗 and 𝑗+𝑘 (except in the row that we want to
execute the shuttle, as shown in Equation 3.30). Otherwise, those horizontally adjacent
qubits will interact and change of state or even collapse.

𝐶[𝑥, 𝑗] = ∅ ∨ 𝐶[𝑖, 𝑥 + 𝑘] = ∅ where ∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑗 (3.30)

3.3. Operations 21

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(b)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(c)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(d)

Figure 3.5: Example of how the semi-global rotation scheme works. Firstly, (a) it applies an RF pulse through the column lines
and affecting only the electrons in the odd columns (1 and 3). Secondly, (b) the target qubit is shuttled to an adjacent column.

Then (c) the inverse gate is applied to the same columns. Finally, (c) the target qubit is shuttled back to its original site.

• Barriers: During the shuttle of the target qubit from and to the adjacent column, the
barriers around the sites (𝑖, 𝑗) and (𝑖, 𝑗 + 𝑘) must be raised (as shown in Equation 3.31,
3.32, 3.33 and 3.34). Otherwise, the movement of the qubit can not be predicted.

𝑅𝐿[𝑗 − 1] = 0 (3.31)
𝑅𝐿[𝑗 + 1] = 0 (3.32)

𝐶𝐿[𝑗 − 1 − (1/2) + (𝑘/2)] = 0 (3.33)
𝐶𝐿[𝑗 + (1/2) + (𝑘/2)] = 0 (3.34)

• Qubit lines: During the shuttle to the ancilla site, the voltage from the qubit line that
passes through the (𝑖, 𝑗 + 𝑘) site must be higher than the one passing through the (𝑖, 𝑗)
site (as shown in Equation 3.35). Otherwise, the qubit will not be able to shuttle to the
ancilla site.

𝑄𝐿[𝑗 − 𝑖] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑖] (3.35)

To keep the rest of qubits in columns 𝑗 and 𝑗 +𝑘 from shuttling, we must apply a higher
voltage in the qubit line that passes through their site than the one passing through its

3.3. Operations 22

adjacent empty site (as shown in Equation 3.36, 3.37 and 3.38).

if 𝐶[𝑥, 𝑗] ≠ ∅ then 𝑄𝐿[(𝑗 + 𝑘) − 𝑖] < 𝑄𝐿[𝑗 − 𝑥] (3.36)
if 𝐶[𝑥, 𝑗 + 𝑘] ≠ ∅ then 𝑄𝐿[𝑗 − 𝑖] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑖] (3.37)

∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑖} (3.38)

3.3.2.2. Phase shift gates

The second method is based on the difference in Zeeman energy between the columns. As
mentioned before, the even columns have a different magnetic field than the odd columns.
Therefore, when an electron moves from one column to another its quantum state will start
to phase shift. This means that by timing the next operation correctly, we can apply a 𝑍
gate to the qubit. The advantage of this method is the low latency compared to the previous
method. However, there are two disadvantages. The main disadvantage is that any horizontal
shuttling will start to produce a phase shift in the state of the qubit. The second one is that
this method can only apply gates of the form 𝑈(𝜙) = 𝑒።Ꭻፙ (where 𝜙 is the state of the qubit).

Definitions: This operation applies a gate of the form 𝑈(Φ) = 𝑒።ጓፙ, where 𝑍 = Pauli-𝑍 to the
qubit in site (𝑖, 𝑗). The auxiliary site used for this gate is (𝑖, 𝑗 + 𝑘), where 𝑘 ∈ {−1,+1}.Based
on [13] we expect a latency of 100𝑛𝑠.

Instructions: To execute this operation these instructions must be followed:

1. Shuttle the qubit to an adjacent column 𝑗 + 𝑘
(a) Lower the barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 1.
(b) Set voltage of the qubit line that passes through the destination site higher than

the one that passes through the origin site: 𝑄𝐿[𝑗 − 𝑖] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑖].
(c) Rise the barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 0.

2. Wait 50𝑛𝑠 [13] for the qubit state to shift its phase 𝜋.
3. Shuttle the qubit back to one of the adjacent columns.

(a) Lower the barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 1.
(b) Set voltage of the qubit line that passes through the destination site higher than

the one that passes through the origin site: 𝑄𝐿[(𝑗 + 𝑘) − 𝑖] < 𝑄𝐿[𝑗 − 𝑖].
(c) Rise the barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 0.

Constraints: To correctly execute this operation, the following conditions must be met:

• Apply all constraints from the horizontal shuttling.

• Note: we can shuttle the qubit to any of the adjacent columns. So, if the destination
site is empty, we are free to choose the value of the parameter 𝑘 without affecting the
overall quantum algorithm.

3.3.3. Two-qubit gate
Regarding the two-qubit gates, there are two methods of executing this operation based on
the position of the qubits. As mentioned before, to make two qubits interact we need to
make them adjacent to each other. Therefore we have two methods: a vertical method that
executes a √𝑆𝑊𝐴𝑃 and the horizontal method that executes a CPHASE.

3.3. Operations 23

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ𝑖

0

1

2

3

𝑗

0 1 2 3

(b)

Figure 3.6: Similar to figure 3.3, these figures show the shuttling of a qubit to a different column, where it will gain a different
phase based on the time it stays in that column.

3.3.3.1. √𝑆𝑊𝐴𝑃 gate

The first method works by having two qubits vertically adjacent to each other, lowering the
horizontal barrier between them and setting the qubit lines that passes through those two
qubits at the same voltage. However, this interaction can only produce a √𝑆𝑊𝐴𝑃 gate, and
based on how long we leave the qubit in that configuration, we can execute a √𝑆𝑊𝐴𝑃 gate or
SWAP gate.

Definitions: This operation executes a √𝑆𝑊𝐴𝑃 gate to the qubits in sites (𝑖, 𝑗) and (𝑖 + 𝑘, 𝑗),
where 𝑘 ∈ {+1,−1}. Based on [13] we expect a latency of 20𝑛𝑠.

Instructions: To execute this operation these instructions must be followed:

1. Lower the row barrier between the qubits: 𝑅𝐿[𝑖 − (1/2) + (𝑘/2)] = 1.

2. Set voltage of the qubit line that passes through the destination site higher than the
one that passes through the origin site: 𝑄𝐿[𝑗 − 𝑖] = 𝑄𝐿[𝑗 − (𝑖 + 𝑘)].

3. Rise the row barrier between the qubits: 𝑅𝐿[𝑖 − (1/2) + (𝑘/2)] = 0.

Constraints: To correctly execute this operation, the following conditions must be met:

• Qubits: There can not be two qubits vertically adjacent to each other between the rows
𝑖 and 𝑖 + 𝑘 (except in the column that we want to execute the operation, as shown in
Equation 3.39). Otherwise, those vertically adjacent qubits will interact and change of
state or even collapse.

𝐶[𝑖, 𝑥] = ∅ ∨ 𝐶[𝑖 + 𝑘, 𝑥] = ∅ where ∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑗} (3.39)

• Barriers: The horizontal barrier between the sites (𝑖, 𝑗) and (𝑖 +𝑘, 𝑗) must be lowered (as
shown in Equation 3.40). Otherwise, the gate can not be executed.

𝑅𝐿[𝑖 − (1/2) + (𝑘/2)] = 1 (3.40)

3.3. Operations 24

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ𝑖

0

1

2

3

𝑗

0 1 2 3

(b)

Figure 3.7: In this example a qubit in site (ኻ, ኻ) is swapped with the qubit in site (ኼ, ኻ). To do this ፐፋᎽᎳ is set equal to the ፐፋᎲ
and the barrier ፑፋᎳ is lowered.

During the operation the barriers around the sites (𝑖, 𝑗) and (𝑖 + 𝑘, 𝑗) must be raised (as
shown in Equation 3.41, 3.42, 3.43 and 3.44). Otherwise, the movement of the qubit
can not be predicted.

𝑅𝐿[𝑖 − 1 − (1/2) + (𝑘/2)] = 0 (3.41)
𝑅𝐿[𝑖 + (1/2) + (𝑘/2)] = 0 (3.42)

𝐶𝐿[𝑗 − 1] = 0 (3.43)
𝐶𝐿[𝑗 + 1] = 0 (3.44)

• Qubit lines: There should not be a difference in voltage between the qubit lines that
passes through the sites (𝑖, 𝑗) and (𝑖 + 𝑘, 𝑗) (as shown in Equation 3.45). Otherwise, an
unintended shuttle could happen and even a collapse of the state.

𝑄𝐿[𝑗 − 𝑖] = 𝑄𝐿[𝑗 − (𝑖 + 𝑘)] (3.45)

To keep the rest of qubits in rows 𝑖 and 𝑖 +𝑘 from shuttling, we apply a higher voltage in
the qubit line that passes through their site than the one passing through its adjacent
empty site (as shown in Equation 3.46, 3.47 and 3.48).

if 𝐶[𝑖, 𝑥] ≠ −1 then 𝑄𝐿[𝑥 − (𝑖 + 𝑘)] < 𝑄𝐿[𝑥 − 𝑖] (3.46)
if 𝐶[𝑖 + 𝑘, 𝑥] ≠ −1 then 𝑄𝐿[𝑥 − 𝑖] < 𝑄𝐿[𝑥 − (𝑖 + 𝑘)] (3.47)

∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑗} (3.48)

3.3.3.2. CPHASE gate

The second method works similarly by letting two qubits horizontally adjacent to each other
interact. As in the previous method, the vertical barrier between them must be lowered and
the qubit line that pass through both sites must be set to the same voltage. In this case, due
to the difference in the Zeeman energy between columns, this method executes a CPHASE
gate. However, since the fidelity of √𝑆𝑊𝐴𝑃 is higher than CPHASE [23] we will only use
the √𝑆𝑊𝐴𝑃 to execute two-qubit gates. This means that for running any arbitrary quantum
algorithm, a decomposition of the CPHASE gate into the supported gates is necessary.

3.3.4. Measurement
Based on the Pauli exclusion principle, two fermions (in this case electrons) can not be in
the same quantum states in a quantum system. This means that two qubits with the same

3.3. Operations 25

quantum state can not be in the same site of the crossbar. We can take advantage of this
principle to measure the state of a qubit. The technique we are going to use is based on
the comparison of quantum states so, firstly, we need a qubit with a known quantum state.
Traditionally, this qubit is called ancilla or ancillary qubit because is only used as an aux-
iliary qubit; unlike the rest of qubits which are called data qubits because they contain the
information we need to measure.

The measurement has a different structure than the already defined operations. In par-
ticular, this operation is divided in two phases. By using the previous principle, these two
phases use a technique called Pauli Spin Blockade (PSB) spin-to-charge conversion to mea-
sure the state of a qubit. From now on, the qubit to be measured will be referred as target
qubit.

3.3.4.1. Phase One

In the first phase, to measure the quantum state of the data qubit we need to force a shuttle
to the site of the ancillary qubit through the shuttle operation. If both qubits have different
states, the shuttling will be successful. If their quantum states are the same, the data qubit
will not be able to shuttle. In order for this whole procedure to work correctly, depending on
the column in which the ancilla qubit is, it must have a predefined state of |0⟩ or |1⟩ [13].
Figure 3.8 shows an example of this phase.

Definitions: This first phase of the measurement shuttles the target qubit (the qubit we want
to measure) in site (𝑖, 𝑗) to a horizontal adjacent site (𝑖, 𝑗 + 𝑘), where 𝑘 ∈ {+1,−1} (right site or
left site, respectively). Based on [13] we expect a latency of 100𝑛𝑠

Instructions: To execute this operation these instructions must be followed:

1. Lower the column barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 1.

2. Set voltage of the qubit line that passes through the destination site higher than the
one that passes through the origin site: 𝑄𝐿[𝑗 − 𝑖] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑖].

3. Rise the column barrier: 𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 0.

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ𝑖

0

1

2

3

𝑗

0 1 2 3

(b)

Figure 3.8: In this example a qubit in site (ኻ, ኺ) is forced to shuttle into a site with an ancilla qubit in site (ኻ, ኻ). To do this, the
ancilla qubit must be in the spin down state (|ኻ⟩). In addition, the qubit line ፐፋᎽᎳ is set lower than ፐፋᎲ and the barrier ፂፋᎲ is

lowered.

3.3. Operations 26

Constraints: To correctly execute this operation, the following conditions must be met:

• Qubits: The ancilla qubit must be in the state |0⟩ or |1⟩ if it is in a odd or even column,
respectively (as shown in Equation 3.49 and 3.50).

if (𝑗 + 𝑘)mod 2 = 0 then 𝑆[𝑖, 𝑗 + 𝑘] = |1⟩ (3.49)
if (𝑗 + 𝑘)mod 2 = 1 then 𝑆[𝑖, 𝑗 + 𝑘] = |0⟩ (3.50)

• Barriers: The vertical barrier between the sites (𝑖, 𝑗) and (𝑖, 𝑗 + 𝑘) must be lowered (as
shown in Equation 3.51). Otherwise, the qubit will not be able to shuttle.

𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 1 (3.51)

During the operation the barriers around the sites (𝑖, 𝑗) and (𝑖, 𝑗 + 𝑘) must be raised (as
shown in Equation 3.52, 3.53, 3.54 and 3.55). Otherwise, the movement of the qubit
can not be predicted.

𝐶𝐿[𝑗 − 1 − (1/2) + (𝑘/2)] = 0 (3.52)
𝐶𝐿[𝑗 + (1/2) + (𝑘/2)] = 0 (3.53)

𝑅𝐿[𝑖 − 1] = 0 (3.54)
𝑅𝐿[𝑖 + 1] = 0 (3.55)

• Qubit lines: The voltage from the qubit line that passes through the (𝑖, 𝑗 + 𝑘) site must
be higher than the one passing through the (𝑖, 𝑗) site (as shown in Equation 3.56). Oth-
erwise, the qubit will be able to shuttle.

𝑄𝐿[𝑗 − 𝑖] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑖] (3.56)

To keep the rest of qubits in columns 𝑗 and 𝑗 +𝑘 from shuttling, we must apply a higher
voltage in the qubit line that passes through their site than the one passing through its
adjacent empty site (as shown in Equation 3.57, 3.58 and 3.59).

if 𝐶[𝑥, 𝑗] ≠ ∅ then 𝑄𝐿[(𝑗 + 𝑘) − 𝑥] < 𝑄𝐿[𝑗 − 𝑥] (3.57)
if 𝐶[𝑥, 𝑗 + 𝑘] ≠ ∅ then 𝑄𝐿[𝑗 − 𝑥] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑥] (3.58)

∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑖} (3.59)

3.3.4.2. Phase Two

The result of the shuttle can be retrieved by checking if the data qubit is still in its original
site. To do this, in the second phase, an RF carrier signal is sent through a qubit line while
a horizontal barrier is lower. This will make the data qubit to shuttle back and fourth, from
its site to a vertically adjacent site. This movement of the qubit can then be measured by the
qubit line as a change in the signal. This means that if the qubit did not previously shuttled
to the ancilla site, it will be detected through the qubit line and vice versa. A visual example
is shown in Figure 3.9.

Definitions: This second phase of the measurement checks the presence the qubit in site
(𝑖, 𝑗) by sending an RF carrier signal through the qubit line that passes over the empty site
(𝑖, 𝑗 + 𝑘), where𝑘 ∈ {+1,−1} (top site or bottom site, respectively). Based on [13] we expect a
latency of 100𝑛𝑠.

Instructions: To execute this operation these instructions must be followed:

1. Lower the row barrier: 𝑅𝐿[𝑖] = 1 or 𝑅𝐿[𝑖 − 1] = 1.

3.3. Operations 27

2. Send RF carrier signal through 𝑄𝐿[𝑗 − (𝑖 + 1)] or 𝑄𝐿[𝑗 − (𝑖 − 1)].

3. Read the RF carrier signal: if the reflected signal is different then the state of the qubit
will be the same as the state of the ancilla qubit. If not, the state of the qubit will be
different. (Note the state can only collapse to |0⟩ 𝑜𝑟 |1⟩)

4. Rise the row barrier: 𝑅𝐿[𝑖] = 1 or 𝑅𝐿[𝑖 − 1] = 1.

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ𝑖

0

1

2

3

𝑗

0 1 2 3

(b)

Figure 3.9: In this example the site in (ኼ, ኺ) is used to check if the qubit shuttled to the site of the ancilla qubit or not. To do this
a RF carrier signal is sent through ፐፋᎽᎴ while ፑፋᎳ is lowered. In this case, the reflected signal will be different from the original;

this means that the qubit did not shuttle to the site (ኻ, ኻ), thus it must be in the same state as the ancilla (|ኻ⟩).

Constraints: To correctly execute this operation, the following conditions must be met:

• Sites: The site (above or below) adjacent to the site of the qubit been measurement
must be empty (as shown in Equation 3.60). Otherwise, we will not be able to check the
presence of the qubits.

𝐶[𝑖 + 1, 𝑗] = ∅ ∨ 𝐶[𝑖 − 1, 𝑗] = ∅ (3.60)

• Qubits: There can not be two qubits vertically adjacent to each other between the rows
𝑖 and 𝑖 + 𝑘 (except in the column that we want to execute the operation, as shown in
Equation 3.61). Otherwise, those vertically adjacent qubits will interact and change of
state or even collapse.

𝐶[𝑖, 𝑥] = ∅ ∨ 𝐶[𝑖 + 𝑘, 𝑥] = ∅ where ∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑗} (3.61)

• Barriers: The horizontal barrier between the sites (𝑖, 𝑗) and (𝑖 +𝑘, 𝑗) must be lowered (as
shown in Equation 3.62). Otherwise, the qubit will not be able to shuttle.

𝐶𝐿[𝑗 − (1/2) + (𝑘/2)] = 1 (3.62)

The barriers around the sites (𝑖, 𝑗) and (𝑖 + 𝑘, 𝑗) must be raised (as shown in Equation
3.63, 3.64, 3.65 and 3.66). Otherwise, the movement of the qubit can not be predicted.

𝑅𝐿[𝑖 − 1 − (1/2) + (𝑘/2)] = 0 (3.63)
𝑅𝐿[𝑖 + (1/2) + (𝑘/2)] = 0 (3.64)

𝐶𝐿[𝑗 − 1] = 0 (3.65)
𝐶𝐿[𝑗 + 1] = 0 (3.66)

3.4. Conflicts 28

• Qubit lines: To keep the rest of qubits in rows 𝑖 and 𝑖 +𝑘 from shuttling, we must apply
a higher voltage in the qubit line that passes through their site than the one passing
through its adjacent empty site (as shown in Equation 3.67, 3.68 and 3.69).

if 𝐶[𝑥, 𝑗] ≠ ∅ then 𝑄𝐿[(𝑗 + 𝑘) − 𝑥] < 𝑄𝐿[𝑗 − 𝑥] (3.67)
if 𝐶[𝑥, 𝑗 + 𝑘] ≠ ∅ then 𝑄𝐿[𝑗 − 𝑥] < 𝑄𝐿[(𝑗 + 𝑘) − 𝑥] (3.68)

∀𝑥 ∈ [0..𝑁 − 1] ⧵ {𝑖} (3.69)

3.4. Conflicts
A conflict happens when two or more constraints are incompatible with each other. As men-
tioned previously, these constraints exist to maintain a valid configuration. This means that
if a constraint is violated then two types of consequences could happen: a side effect and an
undecidable configuration.

Side effects are events related to the qubits that were not intended to happen. Whereas an
undecidable configuration is a specific combination of controls and qubit positions that does
not allow a way to predict the behaviour of the qubits. Both of these concepts are explained
in detail in the following sections.

Based on these types of consequences, we can differentiate two groups of conflicts:

• Soft conflicts: these conflicts happen when their consequence affects a qubit in a way
that can be reversible. Inside this group we have defined the solvable side effects.

• Hard conflicts: these conflicts creates a consequence that leads to an unintended col-
lapse of state or unpredictable qubit movement. Inside this group we have defined the
unsolvable side effects and undecidable configurations.

At the stage of scheduling or mapping a quantum algorithm into an architecture, we need
to distinguish these two types of conflicts. This is because, in some cases, it might be useful
to suffer a conflict of constraints in favor of creating a better execution time. In particular,
it might be beneficial to suffer a soft constraint which would be solved in a future step. The
hard conflicts must be avoided.

3.4.1. Side effects
There are three different types of side effects that could happen if the constraints are not
followed. It is worth mentioning that any of the following side effects can happen concurrently
due to the nature of the crossbar architecture.

3.4.1.1. Solvable: Shuttling

A qubit unrelated to the current operation could be accidentally shuttled to another site.
Figure 3.10a shows an example where a qubit (which is not part of the operation) is affected.
From section 3.3.1 we can see that the violated constraint is: 𝑄𝐿ኻ > 𝑄𝐿ኼ. Note that in the
case where the qubit is accidentally shuttled to another column, depending on the timing it
could also produce a change of state.

3.4.1.2. Solvable: Change of state

As already mentioned in the previous section, one of the ways we can have an accidental
change of state in a qubit is by shuttling it to an adjacent column. However, we can also
have a change of state if a qubit is shuttled in the middle of the semi-global rotation scheme.

3.4. Conflicts 29

Another change of state can be done through a two-qubit gate operation. This situation
can happen when two adjacent qubits have equal QL voltages and the barrier between them
is lowered. This could execute a √𝑆𝑊𝐴𝑃 or a 𝐶𝑃𝐻𝐴𝑆𝐸 gate when the qubits are vertically
adjacent or horizontally adjacent, respectively.

3.4.1.3. Unsolvable: Collapse of state

As explained in section 3.3.4, by using the spin-to-charge conversion scheme [13], the target
qubit needed to be measured is collapsed. However, we can also have a collapse of a qubit
due to unintended shuttles. For example, Figure 3.10b shows a case of shuttling which, as
a side effect, shuttles another qubit into a site that is occupied by a qubit.

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(b)

Figure 3.10: (a) In this example a qubit in site (ኻ, ኺ) is shuttled to site (ኼ, ኺ). But since ፑፋᎳ is lowered and the ፐፋᎳ ጺ ፐፋᎴ, as a
side effect, the qubit in site (ኼ, ኽ) is shuttled to the bottom. The constraint ፐፋᎳ ጻ ፐፋᎴ was violated. (b) In this example a qubit
in site (ኻ, ኺ) is shuttled to site (ኻ, ኻ). But since ፂፋᎲ is lowered and the ፐፋᎽᎵ ጺ ፐፋᎽᎴ, as a side effect, the qubit in site (ኽ, ኺ) is
shuttled to the right. Based on the constraints, this shuttling is not be permitted because there are two qubits in the same row

between the involved columns.

3.4.2. Undecidable configurations
Not every combination of controls can give a valid and decidable configuration in the crossbar.
There are some cases in which one can not predict what might happen on a qubit. These
cases are called undecidable configurations. Note that these configurations take place when
lowering more than one barrier line (vertical or horizontal). Thus, if the instructions for each
operation are followed correctly, these unpredictable situations should only happen when
trying to execute two or more operations in parallel.

However, there are cases in which the lowering of two or more barrier lines do not cause
an undecidable configuration. The following examples explain the most simple undecidable
configurations. To recognise whether a crossbar is in an undecidable configuration one must
identify if any of the following examples are part of the configuration.

3.4.2.1. Undecidable configuration 1: Rectangle

When two vertical or two horizontal barriers adjacent to each other are lowered at the same
time, they produce a space of 3 horizontally adjacent empty sites, we will call this group of
sites a rectangle. None of the operations mentioned previously require lowering more than
one barrier. Hence, a rectangle is never produced when executing operations sequentially.
Having this amount of sites open to each other can produce undecidable configurations,
such as the one shown in Figure 3.11a. In this example, since the voltages of 𝑄𝐿ዅኼ and 𝑄𝐿ኺ is
higher than the one passing through the site (2, 1), then we can not predict the behaviour of

3.4. Conflicts 30

the qubit in that site, since it can shuttle to the left site or to the right site. In addition, this
example shows a situation where two qubits (in sites (3, 0) and (3, 2)) are forced to shuttle to
the same site (3, 1). Since we can predict the movement of the qubits this not an undecid-
able configuration, but is a situation that needs to be avoided. Otherwise, these qubits will
collapse.

3.4.2.2. Undecidable configuration 2: Square

When a vertical and a horizontal barriers are lowered at the same time, the place in which
they intersect creates a space of 4 sites, we will call this group of sites a square. In this
case, we can not predict the movement a qubit if the voltages at its direct neighbours (top,
left, right or left) inside the square are equal. For example, Figure 3.11b has two qubits of
which two adjacent qubit lines have the same voltage. Analogous to the rectangle example,
the movement of the qubits are not predictable. In addition, in the case where both qubits
shuttle to the same site, they would both collapse, losing their states.

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(b)

Figure 3.11: (a) Example of an undecidable configuration with a rectangular shape. In this example there is more than one
case of ambiguity. If ፐፋᎽᎴ ጻ ፐፋᎽᎳ and ፐፋᎽᎳ ጺ ፐፋᎲ, then we can not predict where the qubit in (ኼ, ኻ) is going to shuttle. (b)

Example of an undecidable configuration with a squared shape. In this example the behaviour of two qubits are not predictable.
Since ፐፋᎽᎳ ጺ ፐፋᎲ and ፐፋᎳ ጺ ፐፋᎲ both qubits (at (ኻ, ኼ) and (ኼ, ኻ)) could shuttle to two different sites.

In both of these cases, note that if the sites inside these “shapes” were empty there would
not be any ambiguity, since there is no qubit to predict its movement. Figure 3.12b shows
such example with two horizontal parallel shuttles. In this case, even with two vertically
adjacent lowered barriers, the movement of the qubit and still be predicted. However, for
simplicity, we will also consider these cases as an invalid configuration.

From the two undecidable configurations that we have defined, we can see that any cross-
bar with two lowered adjacent barriers can be categorized on the “rectangle” shape and, any
crossbar with a lowered horizontal and vertical barrier can categorized in the “square” shape.
Therefore, any configuration that has any of these two “shapes” can be labeled as undecid-
able. If the execution of the operations follow all the constraints defined previously, we should
never encounter these undecidable configurations.

3.4.2.3. Decidable configurations

As mentioned before, there are trivial configurations in which the electron’s shuttling can be
predicted even with more than 2 barriers lowered. Thanks to these cases, it is possible to
correctly execute operations in parallel. As an example, Figure 3.12a shows how a parallel
horizontal shuttling can be executed with a decidable configuration.

3.5. Gate Set Decomposition 31

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(b)

Figure 3.12: Two examples of two horizontal parallel shuttles with two qubits. (a) In this case, neither of the barriers lowered
are crossing or adjacent to each other, so the movement of the qubit can be predicted. For clarity, the qubit lines follow this

condition: ፐፋᎽᎵ ጺ ፐፋᎽᎴ ጺ ፐፋᎴ ጺ ፐፋᎵ. (b) In this scenario, lowering two adjacent barriers can still give a decidable
configuration. For clarity, the qubit lines follow this condition: ፐፋᎽᎳ ጺ ፐፋᎲ ጺ ፐፋᎳ ጺ ፐፋᎴ.

3.5. Gate Set Decomposition
The crossbar architecture does not natively support every quantum gate. As explained in
the previous sections, this architecture is capable of executing any single-qubit rotation,
but it can not directly execute any two-qubit gate. This section shows the decomposition
of unsupported two-qubit gates into native gates. From the gate decompositions shown in
Figures 3.15 and 3.17, there is a dependency on the decomposition of the CNOT gate. Thus,
an efficient decomposition of the CNOT is important in order to have a fast and high fidelity
execution of an algorithm.

• CNOT (Controlled-X): For the CNOT decomposition (in Figure 3.13), note that it is not
possible to only use one √𝑆𝑊𝐴𝑃. One of the reasonings behind this is that the √𝑆𝑊𝐴𝑃
can not perform a maximal entangling state on two-qubits without adding an additional
√𝑆𝑊𝐴𝑃 gate, whereas, the CNOT gate can, by applying it only once [35]. And the use of
𝑍, 𝑆 & 𝑇 gates is preferred over other single-qubit gates. This decision has been made
for two reasons: firstly, these gates can be easily parallelized; secondly, the time needed
to execute phase shift gates is shorter than the rest.

•

=

× 𝑆 ×

𝑅፲(ኼ) ×

/.-,()*+1/2

𝑆ጷ ×

/.-,()*+1/2

𝑅፲(ዅኼ)

Figure 3.13: A quantum circuit for executing the ፂፍፎፓ gate based on supported gates in the crossbar architecture.

• CPHASE (Controlled-Z): As mentioned previously, we have given priority to the use of
√𝑆𝑊𝐴𝑃 over the CPHASE gate because it has higher fidelity, so it is relevant to give a
decomposition for the CPHASE. However, if the overall fidelity of this decomposition (in
Figure 3.14) is lower than the fidelity of the CPHASE gate, it would be more efficient to
use the native CPHASE.

3.5. Gate Set Decomposition 32

•

=

× 𝑆ጷ ×

𝑍 𝑍 ×
/.-,()*+1/2

𝑆 ×
/.-,()*+1/2

Figure 3.14: A quantum circuit for executing the ፂፏፇፀፒፄ gate based on supported gates in the crossbar architecture.

• Toffoli (Controlled-CNOT): For the 𝑇𝑜𝑓𝑓𝑜𝑙𝑖 decomposition (in Figure 3.15) we have use
the decomposition from [38] based on the CNOT gates, 𝐻 gates and 𝑇 gates. Note that
the CNOT gates are decomposed into native gates based on the decomposition from
Figure 3.13.

•

=

• • • • 𝑇

• • • 𝑇ጷ 𝑇ጷ 𝑆

𝐻 𝑇ጷ 𝑇 𝑇ጷ 𝑇 𝐻

Figure 3.15: A quantum circuit for executing the Toffoli gate based on supported gates in the crossbar architecture.

• SWAP: The decomposition of the SWAP gate (in Figure 3.16) is straight forward. Since
we have the support for the √𝑆𝑊𝐴𝑃 gate, we can apply two of them to obtain the SWAP
gate.

×
=

× ×

× ×
/.-,()*+1/2

×
/.-,()*+1/2

Figure 3.16: A quantum circuit for executing the SWAP gate based on supported gates in the crossbar architecture.

• Fredkin (Controlled-SWAP): Finally, the decomposition for the Fredkin gate (Figure
3.17) depends on the decomposition of the Toffoli gate. However, there might be a
better decomposition for the Fredkin gate where it uses less gates by using directly the
√𝑆𝑊𝐴𝑃 gate instead of relying on the decomposition of the Toffoli gate.

•

=

•

× •

× • •

Figure 3.17: A quantum circuit for executing the CSWAP gate based on supported gates in the crossbar architecture.

4
Mapping Implementation

In this chapter we will introduce the mapping and routing strategies based on the constraints
mentioned in chapter 3. In section 4.1 we will describe the initial placement strategy. In
section 4.2 we will discuss the routing algorithm implemented in the compiler. Finally, in
section 4.4 we will explain an additional layer of decomposition that is needed to comply with
the crossbar constraints.

4.1. Initial Placement
As mentioned in chapter 2, the initial placement is an 𝑁𝑃-complete problem [39]. Generally,
there are three possible methods to address this problem.

Firstly, the most basic strategy is to do a random initial placement. In other words, this
method will assign a virtual qubit to a random physical qubit. Although this is a naive
method, it is the fastest way to test other components of the compiler, such as the routing
algorithm. On top of this, it can also be used as a baseline to test against other placement
methods.

Secondly, a popular approach is to model the initial placement problem as a mathematical
optimization problem and then use software solvers to find an exact solution. This approach
has two disadvantages: firstly, it takes a long time to obtain the optimal solution; secondly,
it will only find a solution in a relative short amount of time if the quantum architecture and
circuit is small enough. For relative big quantum circuits using more than 50 qubits, this
approach is not feasible.

Thirdly, like with many 𝑁𝑃-complete problems, the most suitable approach is to use an
heuristic algorithm. To implement this approach it is common to start with a random initial
placement and then use a search algorithm with an heuristic-cost function to find a better
placement. This heuristic-cost function is what differentiates an heuristic algorithm from
another [22].

Finding a new and better heuristic approach for the initial placement problem is out of
scope of this thesis. In the experiments of chapter 6, we will use a random initial placement
and an exact algorithm. For the exact algorithm, we will use an Integer Linear Programming
(ILP) algorithm to find the optimal placement of the qubits. This algorithm minimizes the
number of qubit movements required to run the circuit with the topology constraints. As
previously mentioned, this type of approach will take a relative long time for large quantum
circuits. We have tested that, in general, for circuits with more than 10 qubits the algorithm
takes more than 5 minutes to find a solution. For this reason, we will only use this exact

33

4.2. Routing 34

algorithm for quantum circuits with maximum 10 qubits. Thus, the maximum crossbar size
for these circuits is 5x5. And for the rest of experiments with a higher number of qubits, we
will use a random initial placement.

4.2. Routing
Based on the initial placement, in general, it is unlikely that all the two-qubit gates of the
quantum circuit can be directly performed without the need of moving qubits. Routing is
required to find the set of movement operations to perform a two-qubit gate between non-
adjacent qubits.

In this section, we will first describe the routing method for the crossbar architecture.
Then we will introduce some ideas from the routing in superconducting architectures to use
them in the routing implementation. Then we will discuss different approaches to implement
the routing in the crossbar architecture. Finally, we will explain the approach taken to route
qubits in our experiments.

4.2.1. Crossbar Topology
The topology of the crossbar can be represented as a graph where each node is a site of the
grid and each edge is a possible shuttle between sites. A visual representation of this graph
is shown in Figure 3.1b, which is, essentially, a 2-D upright square lattice. However, note
that the two-qubit gates can only be performed between two vertically adjacent qubits (for the
√𝑆𝑊𝐴𝑃 gate) and two horizontally adjacent qubits (for the CPHASE gate). Thus, the coupling
graph that represents the possible two-qubit interactions between sites is different than the
topology graph. Figure 4.3 shows two examples of a coupling graph (based on √𝑆𝑊𝐴𝑃 gates
and CPHASE gates) in a crossbar of size 5x5. Since we are going to use only the √𝑆𝑊𝐴𝑃 gates
for this thesis, because of a higher fidelity, we will only focus on the coupling graph for the
√𝑆𝑊𝐴𝑃 gate (Figure 4.3a). Unlike other architectures, such as IBM QX2 [46] (as shown in
Figure 4.1), the coupling graph and the topology (routing) graph of the crossbar architecture
are different. Furthermore, the coupling graphs shown in Figure 4.3 uses undirected edges,
this means that the direction of the two-qubit gates does not matter. This is evident, since
the √𝑆𝑊𝐴𝑃 and CPHASE gates can be executed in reverse (exchanging the control qubit with
the target qubit) and the result will be the same. However, the situation is different when the
supported two-qubit operation is the CNOT gate and the execution of such gate is restricted
in directions. For example, Figure 4.1 shows the coupling graph of the IBM QX2, where the
direction of the CNOT gates is restricted based on the direction of the edges.

Figure 4.1: The coupling graph of the IBM QX2 [46]. The nodes represent the physical qubits and the edges represent the
possible interactions. The direction of the edge represents the direction in which the two-qubit gates must be applied.

Moreover, in superconducting architectures, such as the IBM QX2, the coupling graph is
the same as the topology graph because the method used to move qubits is based on on the
SWAP gates. Thus, the two qubits must interact in order to move a qubit state through the
topology. However, as previously explained, in spin qubits, the method used to move qubits
around is the shuttle operation. In this case, the qubit is physically moved through each
site without applying any quantum gate. The shuttling method has some advantages and
disadvantages compared to the swap method.

On one hand, the shuttling method can be seen as a more complex scenario, since the

4.2. Routing 35

qubit must be physically moved to be able to execute a two-qubit gate, whereas, in the swap
method, the qubit can execute a two-qubit gate with its neighbours. In addition, with the
swap method, one can always find a path from one qubit to its target. But with the shuttle
method, the qubit must find a path that has no other qubits. If there is a qubit blocking
the path, it is necessary to move at least an additional qubit to unblock it. This additional
qubit must find a new path to unblock the path of the previous qubit. Figure 4.2 shows an
example of a qubit that can not be moved to its target site without moving another qubit. On
top of this, like the rest of quantum operations, the shuttle operation also has errors.

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

Figure 4.2: An example of a blocked path in the crossbar architecture

On the other hand, the shuttling method is faster (e.g. 10𝑛𝑠 [13]) than applying a two-
qubit gate such as a CNOT gate in superconducting architecture (e.g. 80𝑛𝑠 [4]). In addition,
the shuttle method allows to execute parallel operations easier than the swap method. This
is because the shuttle operation does not block the use of another qubit, whereas, the SWAP
gate is applied on two qubits. Thus, without taking other constraints into account, the swap
method could potentially impose more limits on the parallelism of quantum operations.

(a) (b)

Figure 4.3: Two coupling graphs in a crossbar of size 5x5 (a) based on √ፒፖፀፏ gates and (b) based on CPHASE gates. The
nodes represent the sites and the edges represent the possible two-qubit gate interaction.

4.2.2. Crossbar Configuration
Although the crossbar has more configurations proposed in [13], analysing the different con-
figurations and the ratio between data qubits and ancilla qubits is beyond the scope of this
thesis. In this thesis, we will only use the idle configuration, where the crossbar is half full of
qubits and there is one empty site between every qubit and its nearest neighbouring qubit.
As explained before, having the crossbar half full is a good approach since it optimizes the
number of control lines per qubit. In addition, it allows the qubits to be shuttled more easily

4.2. Routing 36

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

Figure 4.4: Example of a deadlock situation

than if they were all packed in one corner.

4.2.3. Routing Strategy
Based on the previous explanation of the shuttling operation, we now elaborate the strategies
to move qubits around on the idle configuration. These strategies must take into account all
the restrictions mentioned in section 4.2.1.

There are many routing approaches for a 2-D upright square lattice. However, the routing
based on shuttles is a complex problem and can be modeled based on the multi-agent path
finding. Where each qubit needs to be moved to a different site through a path that does not
block the other moving qubits. This problem is 𝑁𝑃-complete and there is no straight forward
solution.

Besides, even with a good strategy, a deadlock might happen in the scheduling process.
To illustrate this problem, Figure 4.4 shows a qubit that needs to be shuttled to the top site.
However, there are two vertically adjacent qubits in the same row. Based on the shuttling
constraints, this qubit is not able to be shuttled. Otherwise, the two vertically adjacent qubits
will interact and their quantum state will change. If this scenario occurs and this shuttle
instruction is the only one available, the scheduler will enter into a deadlock. These scenarios
depend not only on the routing strategies but also on the scheduling process. A solution to
deal with this issue is needed.

In the scheduler, we can check if there is a deadlock by checking if a conflict of constraints
happens when we try to schedule an instruction sequentially. If this happens the only conflict
that could happen is with the crossbar state itself. In other words, the position of the qubits
or the state of the control lines are conflicting with the constraints of the instruction. Based
on this “deadlock check” function, there are some approaches that we can take to solve this
problem:

Avoid the deadlock: This deadlock can be avoided by maintaining always the idle config-
uration after each operation and schedule the problematic instructions that produces that
deadlock in a sequential manner.

Backtrack: If the scheduler finds a deadlock, it can unschedule the previous instructions
until the last routing was made. Then retries to schedule the instructions in a different way.
If it encounters with another deadlock then it will repeat the same process. If after repeating
this process the scheduler has backtracked to the first instruction, then the routing process
must change the routing of the circuit.

4.2. Routing 37

Suffer a side effect: In chapter 3 we have explain the consequences of not following the
constraints. So instead of backtracking we can go forward in time, suffering a side effect. If
the constraints allow us, we can suffer a solvable side effect by executing a √𝑆𝑊𝐴𝑃 between
the qubits. Naturally, this side effect gate can be reverted by applying 3 more times the
√𝑆𝑊𝐴𝑃 gates between those qubits, since 𝑆𝑊𝐴𝑃 × 𝑆𝑊𝐴𝑃 = 𝐼. If the constraints do not allow
us to suffer this solvable side effect, we can suffer a collapse of the qubit states if those qubits
were no longer used in the rest of the circuit. If none of these are allowed, then we could try
the backtrack approach.

Although avoiding the deadlock seems a naive approach, this might be the only alternative
if the constraints do not allow to use the other strategies. Also the backtrack method seems
like the best approach but it is also the most computational intensive and the most complex
to implement.

4.2.4. Routing Implementation
In this thesis, we have only implemented the most straight forward solution: to avoid the
deadlock. To do this, as mentioned previously, we need two make tow changes: firstly, we
need to maintain the idle configuration after each operation and, secondly, we need to exe-
cute the instructions that can produce a deadlock in a sequential manner. The problematic
instructions are: √𝑆𝑊𝐴𝑃 and shuttles, since they are the only ones that can produce a similar
situation to the one shown in Figure 4.4.

Firstly, to maintain the idle configuration, we need to use a new topology (shown in Figure
4.5) on top of the current one.

Figure 4.5: The new topology used for our routing strategy

Note that the new topology has a qubit in each site/node but is still equivalent to the
old topology. In this new topology, we can route the qubits by physically swapping adjacent
qubits. This means that by doing a SWAP we would be performing effectively 4 shuttles in the
crossbar (as shown in Figure 4.6). For example, Figure 4.7a shows the shuttle operations
required to swap two adjacent qubits in the new topology. Although this solution creates
an overhead in terms of depth and gates, the shuttles required to execute this swap can be
done in parallel, as seen in Figures 4.7b and 4.7c. So the additional depth overhead is only
2 shuttles.

Secondly, to sequentially schedule the instructions that produce a deadlock we need to
force the scheduler to not schedule instructions in parallel with the problematic ones. To do
this, we divide the kernel of the quantum algorithm into three kernels every time a problem-
atic instructions is found. In such a way that the problematic instruction is isolated in one
kernel. Thus, no other instruction can be scheduled at the same time. By doing this, the
scheduler essentially schedules three different programs but maintaining the crossbar state
across them. We have called this strategy the “division of kernels”. For example, Figure 4.8

4.2. Routing 38

1 swap q[0], q[1]

(a)

1 {shuttle_down q[0], shuttle_up q[1]}
2 {shuttle_right q[0], shuttle_left q[1]}

(b)

Figure 4.6: An example of the decomposition of the virtual swap into 4 shuttles. (a) The swap instruction. (b) The decomposed
shuttle instructions.

(a)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(b)

𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ኼ

𝐶𝐿ኺ 𝐶𝐿ኻ 𝐶𝐿ኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ኽ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ኽ

(c)

Figure 4.7: An example of the virtual swap (or swap-like shuttle) in the crossbar layout. (a) Representation of the new topology
executing the swap-like shuttle. (b) First step in the swap-like shuttle. (c) Second step in the swap-like shuttle.

shows how this strategy would divide the kernel when it encounters a √𝑆𝑊𝐴𝑃. Note that in
the example, the shuttles at line 4 and 5 from the input are not scheduled while the √𝑆𝑊𝐴𝑃
happens since they are in a different kernel.

1 # The original kernel
2 shuttle_left q[0]
3 shuttle_right q[1]
4 sqswap q[2], q[3]
5 shuttle_left q[0]
6 shuttle_right q[1]

(a)

1 # First kernel
2 {shuttle_left q[0] | shuttle_right q[1]}
3 # Second kernel
4 sqswap q[2], q[3]
5 # Third kernel
6 {shuttle_left q[0] | shuttle_right q[1]}

(b)

Figure 4.8: An example of division of kernels with a √ፒፖፀፏ gate. (a) The input instructions. (b) The output instructions after
diving the kernel.

For our experiments, we will use the routing algorithms implemented in OpenQL to find
the shortest path [2]. There are three routers:

• The base router will find the shortest paths based on the Manhattan distance and then
it will select a random one.

• Theminextend router will also find the shortest paths, but in this case it will select the
one which minimally increases the circuit depth.

• The minextend-rc router will also find the shortest paths, but it will consider the con-
straints of the architecture when selecting the path that minimally increases the circuit
depth.

Note that the crossbar architecture uses two qubits for measurement: a data qubit and an
ancilla qubit. Therefore, the ancilla qubit that will be used needs to be specified. This means

4.3. Scheduling 39

that, for any measurement operation, the compiler must find an ancilla qubit available and
then move the data qubit and the ancilla to be adjacent. To simplify the implementation,
whenever the compiler encounters a measurement instruction, it will use the ancilla qubit
provided by the user. For example, to measure qubit 1, the user of the compiler must include
the ancilla qubit that wants to use like this: measure q[1], q[8] . In this case, qubit 8 is
the specified ancilla qubit.

4.3. Scheduling
The next step in the compiler is the scheduling of instructions. Although the scheduler that
we are going to use in this thesis is already built in OpenQL [2], there are some points worth
mentioning regarding its implementation.

Firstly, is important to highlight how the scheduler works. The constraints of the crossbar
architecture are translated into resources for each operation. This means that an instruction
can be scheduled only if its required resources are available. The scheduler makes sure these
resources are available before scheduling to comply with the constraints. Each quantum chip
has different resources. In the case of the crossbar, we have defined a resource for each type
of constraint, including: qubits, sites of the crossbar, vertical barriers, horizontal barriers,
qubit lines and RF pulses for single-qubit gates.

Note that if we need to schedule multiple single-qubit gates with the same rotation, we
can use the same RF pulse to execute these instructions. For example, the same RF pulse
can be used for performing the instructions X q[0] and X q[1] , allowing one-qubit gates
to be executed in parallel.

Regarding the implementation of the scheduler, there are two main issues that we need
to tackle in order to compile a circuit into the crossbar architecture.

Firstly, the scheduler does not have any context of the operation. This means that if it is
trying to schedule a gate, it will check if the resources are available but only for that gate.
For example if the scheduler is scheduling an 𝑋 gate from the semi-global rotation, it will not
know that the gate is part of the semi-global rotation. It is the reason why we can not divide
the input instructions (cQASM code) into the opcodes defined in [13]. For example, if we
wanted to schedule the opcode 𝑉[0] (to lower the vertical barrier 0), we would lose the context
that the opcode is part of a two-qubit gate (or shuttling). Thus, we will lose the constraints
of these instructions and there will be no way to check if the instruction can be scheduled.
This is an important point because, for this reason, the output of the compiler is cQASM code
with additional gates (such as shuttle_left).

Secondly, OpenQL has not implemented a way to check if there is a deadlock in the
scheduling process. The scheduler assumes that the only conflict that can happen is be-
tween instructions. However, as previously explained, the deadlock is a conflict between an
instruction and the crossbar state. This means that, the scheduler will try to schedule an
instruction indefinitely if it finds a deadlock. In the previous section, we have mentioned
that we can implement a function to detect a deadlock and use one of the three proposed
solutions. However, there is no easy way to implement a backtrack approach based on the
current version of the scheduler.

4.4. Mapping Decomposition
During the mapping process, depending on the target architecture, it might need additional
steps before the output can be sent for execution on the quantum chip. In the case of the
crossbar architecture, there is a step that transforms and decomposes the gates so that
they follow the constraints. In addition, we must do other decompositions, due to the new
topology added in section 4.2. Based on their respective operations, these decompositions

4.4. Mapping Decomposition 40

can be divided into the following:

One-qubit gates: As explained previously, when we execute a one-qubit gate (except the
phase shift gate) we must apply the semi-global rotation scheme. This process requires to
add more gates in the circuit. Figure 4.9 shows an example of applying an 𝑋 gate to qubit 1,
which is then decomposed into 4 gates to complete the semi-global rotation scheme. Thus,
each one-qubit gate (except the phase shift gate) produces an overhead of 3 more gates. Also
note that in line 3 of Figure 4.9b, the inverse gate of the X q[1] gate is applied to a qubit
that belongs to the same column (q[0]).

1 x q [1]

(a)

1 x q[1]
2 shuttle_right q[1]
3 x q[2]
4 shuttle_left q[1]

(b)
𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ፍዅኼ

𝐶𝐿ኺ 𝐶𝐿ኻ𝐶𝐿ፍዅኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ፍዄ
ኻ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ፍ
ዅኻ

1

2

(c)

Figure 4.9: An example of decomposing a one-qubit gate. (a) The input instruction. (b) The output instructions after
decomposition. (c) The crossbar configuration for the execution of the semi-global-rotation.

Phase shift gates: We have seen that the semi-global rotation method can also be used to
execute phase shift gates. It is necessary to identify which phase shift gates that are being
executed using the shuttling method. This can be done just by simply transforming the gate
z q[1] into z_shuttle q[1] .

√𝑆𝑄𝑆𝑊𝐴𝑃 gates: Additional shuttles will be added in order to execute a two-qubit gate,
resulting in mapping overhead. In particular, we need to add two shuttles: the first one
makes the qubits adjacent and the second one moves the qubits back to their sites. Figure
4.10 shows an example of a √𝑆𝑊𝐴𝑃 gate being executed on qubits 1 and 2. Note that these
shuttles are another source of overhead.

4.4. Mapping Decomposition 41

1 sqswap q[1], q[2]

(a)

1 shuttle_right q[1]
2 sqswap q[1], q[2]
3 shuttle_left q[1]

(b) 𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ፍዅኼ

𝐶𝐿ኺ 𝐶𝐿ኻ𝐶𝐿ፍዅኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ፍዄ
ኻ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ፍ
ዅኻ

1

2

(c)

Figure 4.10: An example of decomposing a √ፒፖፀፏ. (a) The input instruction. (b) The output instructions after the
decomposition. (c) The crossbar configuration for the execution of the √ፒፖፀፏ.

Measurement: Similarly to the √𝑆𝑊𝐴𝑃 gate decomposition, the measurement needs shuttles
to align the data qubit with the ancilla qubit. To do this we need to shuttle the qubit or the
ancilla in the same row and then move them back to their original sites. Figure 4.11b shows
an example of a measurement on qubit 1 using qubit 2 as the ancilla. Note that if the state of
the data qubit is different than the state of the ancilla, then the final shuttle_up instruction
in line 4 of Figure 4.11b will not move the data qubit up, since it is now in the site of the
ancilla.

1 measure q[1], q[2]

(a)

1 shuttle_down q[1]
2 measure q[1], q[2]
3 shuttle_up q[1]

(b) 𝑅𝐿ኺ

𝑅𝐿ኻ

𝑅𝐿ፍዅኼ

𝐶𝐿ኺ 𝐶𝐿ኻ𝐶𝐿ፍዅኼ

𝑄𝐿 ኺ𝑄𝐿 ዅ
ኻ

𝑄𝐿 ዅ
ኼ

𝑄𝐿 ዅ
ፍዄ
ኻ

𝑄𝐿 ኻ

𝑄𝐿 ኼ

𝑄𝐿 ፍ
ዅኻ

1

2

(c)

Figure 4.11: An example of decomposing a measurement gate. (a) The input instruction. (b) The output instruction after the
decomposition. (c) The crossbar configuration for the execution of the measurement gate.

5
Simulation framework

In this chapter, we will go through the environment needed to run the experiments in chapter
6. Since there is a large amount of features that can be analyzed in this architecture, this
section will clarify what are the characteristics to be analyzed and explain the decisions made
during the building of this framework.

5.1. Framework overview
In this section, we will give an overview of the framework used in the experiments.

This framework can be divided into two modules: the compiler and the verification pro-
gram. The compiler takes any quantum circuit coded in cQASM and outputs QASM code for
the crossbar architecture. Unlike cQASM, the compiler output contains specific instructions
used for mapping, such as the 𝑠ℎ𝑢𝑡𝑡𝑙𝑒 instruction. On the other hand, the verification pro-
gram takes this compiled QASM and outputs an error if there is a conflict of constraints, an
undecidable configuration or a parsing error. More details will be explained in section 5.2.

Regarding the compiler, Figure 5.1 shows a visual representation of the compilation. This
process requires 3 types of input:

• Circuit input: a quantum algorithm is described by the cQASM language and this
representation is hardware-agnostic.

• Crossbar parameters: these parameters include the number of qubits, the size of the
crossbar, the position of the qubits and the gate decomposition, and they are encoded
in a JSON file.

• Resource constraints: the resource constraints of the operations decoded in C++. In
this way, the scheduler can use them without needing to do any additional parsing of
files.

Note that, in every step of the compilation process, a new QASM file is generated. For
example, the gate decomposition module outputs a QASM file with the gates decomposed
into the supported primitive operations of the crossbar. These files serve two purposes: the
main one is to use it as input for the next stage, and the second one is to analyze it in the
experiments. In other words, having a different QASM file for each step, will allow us to have
a more comprehensive study of the compilation process. The final output is the compiled
cQASM that consists of the primitive operations (e.g. shuttling supported by the crossbar)
and can be passed to the verification program.

42

5.2. Verification Program 43

Figure 5.1: A diagram of the compiler overview

5.2. Verification Program
In this section, we will explain the additional program we have developed to check that the
output of the compiler is compatible with the constraints of the crossbar. At first, one might
think that if the compiler is correctly implemented then one can trust its output. However,
there are two main reasons why we should not blindly trust the output of the compiler.

Firstly, in such a complex program, like a compiler, one could have a bug and not cover all
the edge cases. For example, if we allow more than two physical qubits in the crossbar, none
of the mapping stages will throw an error, since this bug is in the crossbar model, and the
output of the compiler would be not compatible with the crossbar architecture. As previously
explained, the compiler is composed of 4 different stages: the gate decomposition, the initial
placement, the routing and the scheduler; and if in any of these stages there is a bug, it will
propagate to the following stages, making harder to find the bug. On top of this, even in a
relative small architecture with 10 or 20 qubits, the amount of possible qubit placements
and configurations is so high that is not possible to cover them manually. In other words, it
would not be possible to test every configuration manually. So if there is no way to verify all
cases, one will be risking having a bug in an edge case.

Secondly, we should not trust the output of the compiler because the constraints of a
quantum chip usually are complex. Any small error in the definition of the constraints will
lead to compiled quantum circuits incompatible with the quantum chip. Besides, the con-
straints of a quantum chip can change over time if the physical quantum chip is improved
and modified. Thus, it is necessary to automate the verification process and reduce the time
used in this step.

In addition, the verification should be able to handle different parameters based on the
target architecture. Logically, the most reliable way to verify the output of the compiler is
by checking it experimentally in a real quantum chip. Unfortunately, there is not yet an
implementation of the crossbar architecture. So, for this thesis, the verification process that
we can use is based on software. We have built a program to verify that the constraints of
the operations are not violated and the crossbar is always in a decidable configuration.

5.2. Verification Program 44

5.2.1. Parameters
The verification program of this compiler must take into account the flexibility of the crossbar
configuration. For this reason, it is important to be able to modify these settings. Figure
5.2 shows the setup window where one can initialize the crossbar based on the following
parameters:

• The size of the crossbar

• The number of data qubits

• The number of ancilla qubits

• The position of each qubit

There are two ways to initialize these parameters. The first one, is through the inputs in
that window. If the user decides to use this method, the crossbar will use the idle config-
uration for the positions of the qubits. The second way is to encode these parameters in a
JavaScript Object Notation (JSON) file. This method allows to create a custom configuration
of the crossbar. In other words, the positions of any qubit can be defined independently,
providing the flexibility to investigate different configurations.

Note that the compiled cQASM already defines the number of physical qubits in the cross-
bar. Since the user defines the number of data qubits and ancilla qubits before introducing
the compiled cQASM in the verification program, we will use the number of physical qubits
defined by the user instead of the one defined in the compiled cQASM.

Figure 5.2: Setup window of the verification program

5.2.2. Conflict Checker
To build such a program it is necessary to be able to understand the output of the compiler.
As we have explained, this output uses the language specification cQASM with additional
instructions based on the mapping decomposition. To read this new specification, we can
use library libqasm [19] built for parsing cQASM files and modified so that it can accept the
new instructions, such as the shuttle operation.

Moreover, as previously mentioned, the scheduler checks if the resources are available
for each instruction. To verify that the scheduler is working correctly, in this verification
process, we will check the constraints in each cycle. By doing this, we also make sure that
the scheduler is using the correct duration for each gate. Yet, if the compiler is using longer
durations than the correct ones and the constraints are still being respected, this program
will not be able to detect that issue, since is not violating any constraints, it is just wasting
cycles.

Furthermore, it is important to note how the constraints are being checked. The constraint
checker goes through each cycle of the scheduled circuit and verifies that the constraints are
not violated. At each cycle, it checks the instructions the are starting or in the middle of

5.2. Verification Program 45

execution. For example, Figure 5.3 shows two shuttle operations scheduled one after the
other. In this case, we only check the constraints of shuttle_left q[0] in the interval [𝑡−
3, 𝑡) and we only check the constraints of shuttle_right q[1] in the interval [𝑡, 𝑡+3). This
approach is realistic because, at cycle 𝑡, the previous operation has already left the crossbar
in a valid configuration, this means that the shuttle operation has raised the barrier used
before it reaches the new cycle 𝑡. Thus, the crossbar configuration respects the constraints
of the operations.

፭ ዅ ኻ ፭ ፭ ዄ ኻ cycles

shuttle_left q[0] shuttle_right q[1]

check the constraints of shuttle_right q[1]

Figure 5.3: An example of checking the verification program.

Regarding the flow of execution, the verification program can detect three types of errors.
The first type is an error during the parsing of the cQASM file. If it encounters a gate not
supported by the crossbar or the number of qubits used is incorrect, it will throw an error.
The second and third types of errors are raised from the constraint checker. The second
type can be any conflict of constraints and the third type is any error due to undecidable
configurations. If the program encounters any of these errors, it will stop executing and it
will show an alert to the user, the flowchart of this process is shown in Figure 5.4. Note that
we need the “crossbar parameters” to know the number of qubits in the cQASM parser and
the position of the qubits in the constraint checker.

Figure 5.4: Flowchart of the verification program

5.2.3. Visualisation Tool
Finally, besides detecting errors, this program also provides a visualisation of the crossbar
layout. If the cQASM code passes successfully the constraint checks, then one can visualize,
through animations, how each instruction is performed in the crossbar. Figure 5.5 shows
an example. This visualisation is certainly useful when dealing with a relative high number
of qubits (between 10 and 40), it allows the user to see where are the qubits in each cycle.
Moreover, this visualisation tool is also useful to debug new routing techniques. Because of

5.3. Additional Crossbar Parameters 46

the built-in editor it is easier to modify the QASM code based on the visual feedback.

Figure 5.5: Screenshot of the verification program. At the left side, the built-in editor lets the user edit the QASM code. In the
middle, the visualisation tool shows the current state of the crossbar (position of the qubits and control lines). And at the right,

there is a button for each function. The “evolve” button lets manually change the control lines and see how the crossbar
behaves. The “check constraints” button starts the constraint checker program. The “run code” button checks the constraints
and, if the constraints are valid, it will run the animations in the visualisation tool. Finally, the “reset” button resets the crossbar

state to its initial state.

5.3. Additional Crossbar Parameters
Beside the defined user parameters, there are some additional parameters which will affect
in how the compilation of the quantum algorithm. To start with, we will explain the decisions
made regarding the ancilla qubits. Then we will explain some alternative implementations of
a quantum circuit. Finally, we will explain the crossbar configuration.

5.3.1. Ancillary qubits
As explained previously, the measurement uses ancilla qubits to execute the charge-to-state
conversion. So it is necessary to find a way to know how many ancilla qubits are needed
and where to place them. However, since this thesis does not focus on the analysis of this
parameter, we will ignore this problem by not measuring the data qubits. Thus, despite the
implementation of the measurement in the compiler, the experiments that we will run will
not use any ancilla qubits.

5.3.2. Phase shift gates
Regarding the phase shift gate, in chapter 3, we declared the parameter 𝑘 that defines the
direction in which the shuttle-based gate is performed. For example: z_shuttle_left will
use its left empty site to perform a 𝑍 gate by using shuttles. The compiler must decide in
which direction (left or right) this gate must be performed. There are several approaches that
one could use to tackle this problem and we can distinguish two. The first one chooses the
same direction for every single phase shift gate. The second approach checks if the sites are
empty before choosing a direction; if both sites are empty, it randomly chooses one of those.

In our case, the implementation of the scheduler in OpenQL, does not allow an easy way
to implement the second approach. In addition, since our routing strategy maintains the
idle configuration, it means that at some point both of the sites (left and right) will be empty.
Thus, for our implementation, the first approach is more feasible and simple. For this reason,
this parameter 𝑘 is not tested in the experiments and is declared as 𝑘 = +1 for all of them.
In other words, all of the phase shift gates are performed by shuttling to the right site.

5.3. Additional Crossbar Parameters 47

Note a similar issue happens for performing the measurement operation. For example:
measure_left_up means to use the ancilla qubit of the left site for the first phase of the
measurement and then use the above empty site for the second phase. Similarly to the phase
shift gate, we always use the measure_left_up operation.

5.3.3. Crossbar Configuration
In chapter 3 we have explained how the crossbar architecture works and mentioned that
this architecture can be scaled up to a higher number of qubits by increasing the number
of rows and columns. So it is reasonable to simulate benchmarks different crossbar sizes
before implementing a crossbar architecture.

The crossbar architecture is nearly homogeneous in terms of control lines. This means
that for every site there are four barriers (that define the borders) and one qubit line (that
passes over it), except for the four corners and sites at the border. This homogeneity allows
one to simulate a small crossbar inside a bigger one, regardless of the position in the bigger
one. For example, we can use the corner of a 5x5 crossbar to simulate a crossbar of 3x3.
However, in chapter 4 we have defined a routing strategy that does not require or use ex-
ternal sites outside its crossbar size to move qubits. On top of this, running the compiler
in a crossbar size bigger than the minimal size required would need more CPU and memory
resources. Due to these two reasons, we will use the crossbar size just enough to allocate
the qubits with the idle configuration. We can use the formula shown in Equation 5.1 to
obtain the minimal crossbar size; where 𝑠𝑖𝑧𝑒 is the number of rows or columns of a squared
crossbar and 𝑞𝑢𝑏𝑖𝑡𝑠 is the number of physical qubits in the crossbar.

𝑠𝑖𝑧𝑒 = ⌈√(2 ∗ 𝑞𝑢𝑏𝑖𝑡𝑠) − 1⌉ (5.1)

Note that there are cases when the physical qubits do not fill the whole crossbar with
the idle configuration. For example, for a crossbar of size 5x5 the possible number of qubits
are: 9, 10, 11, 12 and 13. But 13 is the maximum amount of qubits can be allocated in
the crossbar of size 5x5 (following the idle configuration). So there are 4 cases in which the
idle configuration can have alternative qubit positions. For example, Figure 5.7b shows a
crossbar of size 5x5 with 9 physical qubits. In this case, the optimal crossbar size is 5x5 and
there are still some sites with no qubits. This allows more flexibility, in terms of the positions
of physical qubits. A possible alternative for positioning 9 qubits is shown in Figure 5.7c.
The number of the possible qubit positions is based on the number of empty sites that allow
such positions. For example, in the crossbar of size 5x5 there are 5 qubit sites that allow
the 5 possible qubit positions we have mentioned (9, 10, 11, 12 and 13 qubits), so these
alternatives can produce a 38% change in the number of nodes of the topology (5 empty
sites over 13 possible qubits). Figure 5.6 shows how the percentage of empty sites that allow
the alternative qubit position scale with the crossbar size.

Although at first it seemed that it might be interesting to analyze how the different al-
ternative qubit positions behave, the impact that these alternatives produce decreases with
the crossbar size. This means that for a crossbar of size 100x100 there can be maximum
100 empty sites, which is 1% of the total size. So there would not be a notable difference
in the resulting routing overhead. Thus, we do not see this parameter relevant enough to
analyze. For all the experiments in chapter 6 the physical qubits are placed following the idle
configuration from bottom to top and left to right.

5.3. Additional Crossbar Parameters 48

3 10 20 30 40 50 60 70 80 90 1000

5

10

15

20

25

30

35

40

Crossbar size

Pe
rc
en
ta
ge

of
po
ss
ib
le
em

pt
y
si
te
s

Figure 5.6: Graph that shows how the percentage of empty sites that allow alternative qubit positions scale with the crossbar
size (using an idle configuration).

(a) (b)

(c)

Figure 5.7: (a) An example of how the qubits are positioned. (b) and (c) Two alternative positions of the physical qubits in a
crossbar of size 5x5.

On top of this, is important to highlight that a crossbar (in the idle configuration) with
the maximum possible of qubits can have two possible qubit positions. For configurations
with even size this is not a problem, since both of them are symmetrical, thus the swaps
between qubits are the same. Examples are shown in Figure 5.9a and Figure 5.9b. Despite
the difference in connections, the same routing can be applied by using an equivalent initial
placement.

However, for configurations with odd size, the routing of qubits changes in a significant
way. Examples are shown in Figure 5.9c and 5.9d. In this example we are using a crossbar
of size 5x5, but the number of qubits that can fit inside is different (a difference of 1 qubit).
And since we are looking for the minimal crossbar size, if we need 13 qubits we will use
the crossbar with size 5x5. In addition, the topology graph of the crossbar in Figure 5.9d is
denser than its opposite in Figure 5.9c. This is due to the difference of topology at the corners
of the crossbar, and this difference in density decreases exponentially with the crossbar size,

5.3. Additional Crossbar Parameters 49

as shown in Figure 5.8.

3 6 10 15 20 25 30 35 40 45 500
1
2
3
4
5
6
7
8
9
10

Crossbar size

Pe
rc
en
ta
ge

of
di
ffe
re
nt
qu
bi
ts

Figure 5.8: Graph that shows how the percentage of different qubits between the two possible qubit positions of odd size
crossbars scale with the crossbar size

(a) (b)

(c) (d)

Figure 5.9: (a) and (b) Two possible layouts for a configuration with even size (4x4). (c) and (d) Two possible configurations
with odd size (5x5).

Logically, depending on the algorithm to be compiled, one of the two possible qubit posi-
tions (for odd sizes) can give a better result; since the number of shuttles needed to route the
qubits might be different. However, as mentioned previously, this difference is reduced as the
crossbar size increases. In other words, there is only a significant difference in the routing
of quantum algorithms with a low number of qubits. Thus, in the experiments of chapter 6
we will not analyze this difference since it is not relevant for a high number of qubits. The
compiler will only use an idle configuration similar to the one shown in Figure 5.9c.

6
Experiments and Results

This chapter will show how the proposed techniques in the previous chapters behave with
state of the art benchmarks. Firstly, in Section 6.1 we will present the benchmarks selected
for the following experiments. In Section 6.2, we will analyze the overhead caused by the
mapping for the crossbar architecture. In Section 6.3, we will compare the results of the
different mappers from the OpenQL compiler. In Section 6.4, we will compare the results
with a quantum chip that has similar topology. Finally, in Section 6.6, we will discuss the
scalability of these benchmarks in the crossbar architecture.

6.1. Benchmarks
Before running the experiments, we need to collect a relative high amount of quantum algo-
rithms to compile. These quantum algorithms should be described in cQASM, or any other
hardware-agnostic quantum language, and should be a representative set of real-world algo-
rithms. This means that there should not be any bias towards a particular benchmark. Since
this set of quantum algorithms is what we are going to use to compare with other research,
from now on we may call them benchmarks.

The benchmarks have been gathered from other research papers such as [44] for the re-
versible circuits, [24] for automated generated circuits and [45] for known quantum circuits.
As an example, in the set of benchmarks that we are going to use we can find: Quantum
Fourier Transform (QFT) and ripple adders.

Since these algorithms have been selected to test the performance of compilers in a wide
range of quantum architectures, one might expect to have benchmarks with a high number
of qubits. However, it is important to highlight that some of the compilers proposed, such as
[12], uses optimal SAT solvers, which makes the compilation of quantum algorithms with a
high number of qubits and gates not feasible. Due to this reason and since current research
focuses on NISQ-era quantum computers, the majority of the benchmarks used have less
than 100 qubits. We think that 100 qubits are enough to analyze how the quantum algorithm
behaves when the number of qubits is increased.

Table B of Appendix 6.1 shows the list of the benchmarks used with their main charac-
teristics: number of qubits, number of gates and circuit depth. For readability purposes, a
number is assigned to each benchmark. This will help identify which benchmark is referred
to in the figures of the next sections.

50

6.2. Mapping Results 51

6.2. Mapping Results
In this section we will analyse the gate and depth overhead of the mapping process.

Regarding the setup, we are going to use the version base of the mapper. Note that the
base mapper chooses randomly the shortest path between two physical qubits of the routing
topology. Thus, as expected, the results are going to have a non-deterministic factor, since
it will produce more or less SWAPs in the future, depending on the chosen path. So for this
reason, in this thesis we decided to run the experiments 5 times to calculate the average gate
and depth overhead of each benchmark.

In addition, we are going to run the compiler through all the benchmarks with the default
parameters. As explained previously, we are going to use the same configuration (the idle
configuration) and the same procedure of placing the physical qubits (from the bottom left
to the top right), in order to focus on the parameters that can be analyzed without changing
the compiler implementation.

Moreover, we are going to use the minimal size of the crossbar that can allocate the nec-
essary amount of qubits (depending on the algorithm). It is also worth mentioning that none
of the selected benchmarks have a measurement instructions. Thus, there is no need to
arrange any ancilla qubit in this architecture.

6.2.1. Mapping Results with Trivial Initial Placement
In this section, we have used the trivial initial placement, called one-to-one, where each virtual
qubit is mapped to a physical qubit. They are placed in the crossbar layout from left to right
and bottom to top (just like the numbering of physical qubits). This way the virtual qubit 1
is mapped to the physical qubit 1, the virtual qubit 2 to the physical qubit 2, and so on.

6.2.1.1. Gate Overhead

Figure 6.1: This column graph shows the percentage overhead of gates added by the mapper for each benchmark

Figure 6.1 shows the resulting gate overhead after running the experiment. The average
gate overhead of the mapping process is around 170%. Note that this gate overhead is calcu-

6.2. Mapping Results 52

lated based on the difference between the total number of gates before and after the mapping
process. This means that the gate overhead is composed of the following gates:

• Swap-like shuttles, added for each swap between two physical qubits.

• Single-qubit gates used in the semi-global rotation scheme.

• Shuttles used for the semi-global rotation scheme.

• Shuttles used to execute the √𝑆𝑊𝐴𝑃 gate.

As one can see, in this list, both single-qubit gates and two-qubit gates produce an over-
head in terms of gates. However, it is clear that the single-qubit gates produce more overhead.
For example, an 𝑋 gate will produce an extra 𝑋 gate and two shuttles, but an √𝑆𝑊𝐴𝑃 gate will
only require to add two shuttles (as explained in previous chapters). Note that the additional
swap-like shuttles to route the physical qubits might not be present (because routing is not
always required). So, for now, it seems that it is not trivial to predict what kind of algorithm
will have bigger or smaller overhead. However, Figure 6.1 shows that some benchmarks
clearly stand out from the rest, either due to a high or a low gate overhead.

On one hand, the benchmarks marked with a orange circle correspond to the ising_model
algorithm. This family of algorithms have a high percentage of single-qubit gates - around
81% of the total number of gates. As mentioned previously, for each single-qubit gate (which
is not Z, S or T) two shuttles and one extra single-qubit gate are added. Hence, the number
of gates increases slightly more than the rest, since the overhead of two-qubit gate is lower
(only two shuttles).

In addition, the algorithms marked with a green circle are ex1_226 and graycode6_47,
both of them have a low amount of gates: 7 and 5 gates, respectively. And only ex1_226
has 2 single-qubit gates, the rest of them are two-qubit gates. Therefore, it is clear that,
without an initial placement, the additional swap-like shuttles used for routing, in these
cases, increases rapidly the overhead of the whole algorithm.

On the other hand, the benchmarks marked with a red circle, qft_16 and rd84_142, have
a relative low overhead. These cases are essentially the opposite of what happens in the
ising_model algorithm. In this case, half of the gates are single-qubit. This means that if we
assume 70% of the two-qubit gates need one SWAP, then the 30% which does not need a
SWAP is the difference in overhead (compared to the average gate overhead) that we see in
the chart.

6.2.1.2. Depth Overhead

As defined in chapter 2, the depth of a quantum circuit consists of 𝑑 time steps, each time
step contains one- and two-qubit gates acting on disjoint qubits [6]. To analyze the depth
overhead caused by the mapping, we are going to use the same experiments from section
6.2.1.1. Figure 6.1 shows that the average depth overhead is around 368%. Again, we can
not compare it with compilers of totally different architectures, but the compiler from [45]
achieves a depth overhead of around 202%.

It is worth mentioning the possible causes of depth overhead that we will find in the
results:

• √𝑆𝑊𝐴𝑃 gates: due to the division of kernels.

• SWAPs: because they are decomposed in swap-like shuttles and added to route qubits.

• Waiting instructions: it is necessary to add these instructions to wait while the gates
are being executed.

6.2. Mapping Results 53

Figure 6.2: This column graph shows the percentage overhead of depth added by the mapper in all the benchmarks

As explained in chapter 4, in our implementation of the compiler, whenever there is a
√𝑆𝑊𝐴𝑃 gate (or a SWAP) a division of kernels is made. This means that the code is more
sequential and the depth is increased. And the waiting instruction is only a consequence of
the crossbar constraints. In section 6.3, we will see how we can try to solve this waiting.

Similarly to the previous experiment, there are some benchmarks which stand out from
the rest. For example, the benchmarks marked with an orange circle corresponds to the
ising_model algorithms, which, as mentioned before, they have a high percentage of single
qubit gates. However, it is important to highlight that these gates are different. Due to
this fact, it will produce a high number of extra single-qubit gates that can not be easily
parallelized using the semi-global rotation. For that reason, the overhead of the ising_model
algorithms is higher than the average.

In addition, the algorithms qft_10 and qft_16, marked with a green circle, have a fully
connected graph based on the CNOT gates (where each node is a virtual qubit and each edge
is a CNOT gate). Each physical qubit has at most 4 connections with other physical qubits in
the crossbar topology. Due to this fact, a high number of SWAPs must be added to execute
this algorithm. And, since each SWAP divides the kernel, it adds more depth to the overall
algorithm.

6.2.2. Mapping Results with Initial Placement
As we have explained in chapter 4, the trivial initial placement is far from optimal, since
the interactions between virtual qubits can be arbitrary. So it seems logical to study how to
initially map the virtual qubits onto the physical qubits based on the interactions of two-qubit
gates.

For these experiments, we have used the initial placement algorithm implemented in
OpenQL [2]. As already mentioned, the problem of finding the optimal initial placement
is NP-complete. So to find the optimal solution this implementation uses mixed-integer lin-
ear programming. Naturally, this implementation can take a large amount of time to find
the solution, so it will only be practical with a small number of qubits. In fact, for the next

6.2. Mapping Results 54

experiments, we will only be able to run the initial placement implementation with 10 qubits
or less. This means using at most a crossbar of size 5x5.

6.2.2.1. Gate Overhead

The following experiment measures the gates overhead of the mapping process using the
optimal initial placement. The algorithms with more than 10 qubits are discarded.

Figure 6.3: This column graph shows the improvement of the depth overhead compared to not using the initial placement

In Figure 6.3 shows the improvement (in terms of gates overhead) of enabling the initial
placement in the crossbar compiler. The average improvement is around 9.11%. Although it
might seem as a good improvement, the benchmarks that have been used have a low amount
of qubits. Therefore, we can not rely on these results to draw conclusions. However, as in
previous experiments, some benchmarks stand out from the rest which are worth explaining.

The benchmark marked with an orange circle is the benstein_vazirani_1b_1 algorithm. It
uses only 2 qubits, 5 single-qubit gates, and 1 two-qubit gate, so just by placing correctly
both of the qubits, the need to route the qubits is gone. Therefore, the number of gates used
in the algorithm drops significantly.

The benchmarks marked with a green circle are the cucarroMultiplier_1b and xor5_254
algorithms. Both of these algorithms show a high improvement (15% and 22%, respectively)
for the same reason. The common aspect of these algorithms is that their CNOT graph follows
a similar distribution to a power law. In other words, the majority of the CNOTs used have a
few physical qubits in common. Figure 6.4b shows an example of a graph following a power
law distribution, where a few nodes (2, 5 and 7) are adjacent to the majority of the edges.
On the other hand, there are algorithms, such as qft_16, that have a fully connected graph.
Figure 6.4a shows an example of this, where each node is connected to every other node.

It is important to highlight this because we are comparing the trivial initial placement
(one-to-one) with an optimal solution. In the case of the cucarroMultiplier_1b and xor5_254,
it is easier to have a high improvement because the number of physical qubits needed to
improve it is lower. In other words, just correctly placing the physical qubits with the most
connections will highly reduce the number of SWAPs needed. On the other hand, in the case
of the qft_16, it is easier for a trivial initial placement to return a mapping which requires a

6.2. Mapping Results 55

(a) (b)

Figure 6.4: (a) An example of a fully connected graph. (b) An example of a graph that follows a power law distribution

similar amount of SWAPs to the optimal, since all the physical qubits will need to interact
with each other at some point. Although this explanation clarifies the improvement seen in
the results, it does not take into account multiple interactions between two pair of physical
qubits. Additional experiments would have to be done to analyze these cases.

Moreover, there are some benchmarks which return a negative improvement after using
the optimal initial placement. This is due to the randomness factor inside the mapper im-
plementation. In this experiment, we used the mapper called base, which takes randomly a
chain of SWAPs among all of the possible shortest paths between two physical qubits. For
example, if we want to make qubit A and qubit B interact, we can move qubit A near qubit B,
or move qubit B near qubit A, or move both so that they can meet in the middle. The place
where these two qubits meet is random and it will affect the path of the next routing. Thus, it
is not guaranteed to find the optimal path or even the same one that we used in the previous
experiment with the trivial initial placement.

6.2.2.2. Depth Overhead

This subsection describes the analysis of the depth improvement of the previous experiment
6.2.2.1.

Figure 6.5: This column graph shows the percentage overhead of depth added by the mapper using the initial placement

Figure 6.5 shows the improvement made compared to the trivial initial placement. The
average improvement is around 2.9%. This result validates the improvement of the gate
overhead from the previous result. Since most of the resulting cQASM code is sequential

6.3. Comparison of Different Mappers 56

(due to the constraints) and each SWAP is composed of 4 gates with depth 2, then, it seems
logically to see at least a reduction of 2 compared with the result in section 6.2.2.1. Despite
that fact, there is not much insights that we can obtain from this experiment. The negative
improvement is due to the same reason as the previous experiment (the randomness in the
mapping process) and, the same benchmarks stand out from the rest because a better initial
placement means less gates (swap-based shuttles) and less depth.

6.3. Comparison of Different Mappers
After analyzing the mapping overhead and the initial placement, we will now compare the
different mapper implementations. We have already discussed in Chapter 4 about the possi-
ble strategies of routing the qubits through the crossbar. The mapper called base is the one
we have been using in the previous experiments. The following experiments will compare the
rest of strategies called: minextend and minextendrc.

Firstly, we are going to test the mapper called minextend. Essentially, this mapper mini-
mizes the depth by choosing the meeting point between the two physical qubits that are going
to interact. Whereas the base mapper randomly chooses a meeting point.

Figure 6.6: This column graph shows the percentage improvement in depth of the minextend mapper compared to the base
mapper

Figure 6.6 shows the comparison between the base mapper and the minextend mapper.
The average improvement of the minextend mapper is 2.3% over the base mapper. Since
the improvement is based on the reduction of SWAPs, it also reduces the depth. In addition,
even though we are choosing the less extensive set of SWAPs, there is still a random selecting
process when two or more paths have the same extension. This means that the mapper does
not always select the optimal path, in terms of depth. For this reason, Figure 6.6 shows some
negative improvement in some cases where the trivial mapper did a better routing.

Finally, the minextend mapper does make a significant improvement over the trivial base
mapper for most of the benchmarks. The implementation of these mappers route the physical
qubits based on SWAPs and, in Chapter 4, we transformed the crossbar topology into one

6.4. Comparison with the Surface 17 chip 57

based on SWAPs to easily use these mappers, among other reasons. In other words, a routing
based on shuttling would have need a different mapper implementation and the current one
could have not been able to make such improvements, since the shuttles requires a different
strategy, as explain in Chapter 4.

In this experiment, we will compare the minextendrc mapper to the already improved
minextend mapper. The minextendrc mapper is based on minextend, so not only tries to min-
imize the extension, but it also takes into account the crossbar constraints to insert SWAPs.
Since this is just another layer of optimization, it does not interfere with the optimization
based on the extension. So, in theory, we only expect the minextend mapper to produce an
equal or better overhead.

Figure 6.7: This column graph shows the percentage improvement in depth of the minextendrc mapper compared to the
minextend mapper

Figure 6.7 shows the comparison between the minextendrc mapper and the minextend
mapper. Based on these results, there is no consistent improvement through all the bench-
marks. In fact, although this mapper makes an improvement in the Surface-17 architecture
[20], it is not useful in the crossbar compiler due to: the division of kernels and swap-like
shuttles. The minextendrc mapper only adds SWAPs, it does not decompose them into shut-
tles. And since the SWAP gate is not supported in the crossbar architecture, the additional
SWAP gate will not produce the conflict of constraints necessary to make the improvement.
On top of this, all the SWAPs added will be forced to a sequential execution due to the de-
cisions made in Chapter 4. This means that it is not useful to consider the constraints in
this version of the compiler. Hence, the improvement of the minextendrc mapper is just ran-
dom. This can be seen in the results, where the majority of the previous results could not be
improved and the rest of them produce a small positive or negative improvement.

6.4. Comparison with the Surface 17 chip
Until now we have been analyzing the overhead of the implemented crossbar compiler. We
already have other prototypes of quantum computers working and their respective compil-

6.4. Comparison with the Surface 17 chip 58

ers. For example, [45] compares their compiler with the Qiskit compiler [25] from IBM for
the IBM QX2 and IBM QX3 architectures. Although it is not appropriate to compare the
performance of two compilers for different platforms, because each architecture might have
different constraints and support different gates, it seems reasonable to compare the paral-
lelism of two architectures based on a common compiler. For example, there is a previous
work that maps quantum algorithms to the Surface-17 chip [20] using the OpenQL compiler.
Since its routing is implemented based on SWAPS and our routing uses swap-like shuttles, it
seems reasonable to compare the difference between the two architectures. In addition, the
topology of the Surface-17 is similar to the routing topology in the crossbar architecture; in
fact, its routing topology graph is a subgraph of the crossbar routing topology. An example
of this relation is shown in Figure 6.8. Note that although the configuration of the crossbar
can be customized, the topology shown in Figure 6.8b is the routing topology chosen for our
compiler to implement the swap-like shuttles while using the idle configuration.

(a) (b)

Figure 6.8: Routing topology of (a) the Surface-17 chip and (b) the crossbar architecture of size 7x7. The nodes represent the
physical qubits and the edges represent the possible SWAP interactions between them

As mentioned in Chapter 2, the majority of the compilers built for quantum architectures
only take into account the connectivity problem. However, the other main source of overhead
is the physical constraints of the architecture. Since we are still in a early stage, regarding
quantum compilers, it seems reasonable to tackle only the connectivity problem. Nonethe-
less, this experiment will show that the physical constraints (beside the connectivity) has
a high impact in the mapping overhead. On top of this, this analysis also provides some
insights into the parallelism of the crossbar architecture.

Regarding the experiment, it does not seem reasonable to measure the gate overhead since
the decomposition of gates and routing gates are not the same. For example, to execute a
swap between two qubits, the Surface-17 would perform 3 CNOT gates, while the crossbar
architecture would perform 4 shuttles. That will meant a big difference in the number of
gates, even though both of them had only done a swap. Moreover, since both architectures
use the same initial placement, have a similar topology and use the same way of routing
qubits, then the only difference that we can see in the depth overhead is due to the con-
straints. A quantum chip which has more flexible constraints will be able to schedule the
routing gates easily with the rest of gates; hence, producing less depth overhead. Otherwise,
if the constraints are less flexible, then the mapping gates will be more difficult to parallelize
with the rest of gates; hence, it will produce a higher depth overhead. So it seems reasonable
to compare the percentage of depth overhead between these two architectures and see which
one has more flexible constraints.

Regarding the setup, both of the compilers used for these architectures are based on
OpenQL [2], so both of them use the same initial placement and the same routing strat-
egy, called minextend. Also, similar to the previous experiments, we have used the minimal
crossbar size to allocate the qubits.

6.5. Mapping Overhead Analysis 59

Table 6.1 shows the depth overhead of the resulting circuit after mapping each bench-
mark to the Surface-17 chip and the crossbar architecture. There is clearly a difference in
depth overhead between the two architecture. In 5 of the 6 benchmarks, the Surface-17 chip
has a lower overhead than the crossbar architecture. The benchmark xor5_254 is the only
one where the crossbar has a lower overhead, but the difference is not bigger than in the rest
of benchmarks. Evidently, this overhead is due to the swap of qubits. The reason why it is
higher in the crossbar is due to the “division of kernels” implemented in the compiler. As
previously explained, this division of kernels is a way to handle the constraints of the cross-
bar. For this reason the swaps can not be executed in parallel, which increases rapidly the
depth. So we can see that the constraints of the crossbar architecture are less flexible than
the constraints of the Surface-17. Also note that the results of this experiment are limited
by the benchmarks obtained from the results in [20]. Although the number of benchmarks
is low, we can still see the difference in the overhead due to the constraints.

Depth overhead (%)
Benchmark Surface-17 Crossbar
xor5_254 260 210
ham3_102 46.3 172.58

cuccaroAdder_1b 38.8 480
alu_v0_27 38.9 147
rd32_v0_66 59.1 176
miller_11 48.6 183

Table 6.1: Comparison of the depth overhead between the Surface-17 chip [20] and the crossbar architecture

6.5. Mapping Overhead Analysis
In the previous sections, we have discussed the mapping overhead for each benchmark and
we have seen that some quantum algorithms return a higher or lower overhead than the rest.
Knowing what kind of quantum algorithm will produce a higher or lower depth overhead is
useful for future applications. This can give some insights into what quantum algorithm can
be easily executed into the crossbar architecture with less overhead. In this section, we will
analyze some characteristics of the quantum algorithms that have shown low depth overhead
in section 6.2.

6.5.1. Characteristics
Firstly, it is important to highlight that, during the process of building our crossbar compiler,
we have made some decisions to simplify the process of mapping (e.g. avoiding deadlocks
or only shuttling to one direction to execute the phase shift gates). This means that the
compiler built for this thesis is thought to be far from optimal and complete. For example,
in Chapter 4 we have explained a simplification that divides the kernels of a QASM program.
This might be a good countermeasure to deal with the deadlock problem, but it has clearly
the disadvantage of making the resulting code less parallel. Some possible improvements to
this problem will be discussed in Chapter 7.

From the way our compiler is built, we have already mentioned that the routing of physical
qubits will increase the overhead and reduce the parallelism, thus we need to avoid the swap-
like shuttles. Based on the findings of Section 6.2, other possible characteristics that might
influence the parallelism are:

• Percentage of single-qubit gates: we have seen that the crossbar is able to execute the
same gate in multiple qubits at the same time, using the semi-global qubit rotation. So

6.5. Mapping Overhead Analysis 60

if a higher percentage of single-qubit gates can be parallelized, the depth overhead will
be reduced.

• Percentage of Z, S and T Gates: these gates are executed using the shuttle operation,
therefore they have the same potential to leverage the parallelism of the architecture as
the coherent shuttles in [13].

• Percentage of two-qubit gates: although additional shuttles may be added to route the
physical qubits, we have seen (in the cuccaroAdder benchmark) that it is possible to
parallelize a fraction of CNOT gates through the semi-global scheme.

Although these characteristics might be enough to show if a quantum algorithm produces
low overhead in the crossbar architecture, there are other characteristics, mentioned in Sec-
tion 6.2, that might also influence on the depth overhead, such as the pattern of gates or
the interactions between the virtual qubits. In order to assess these last characteristics is
necessary to come up with a way to quantify and compare them, which is beyond the scope of
this thesis. However, in Section 6.6, we will show how some examples of these cases behave.

Note we have ignored other characteristics, such as the percentage of SWAPs. In this case,
there is no reason to analyze its behaviour since, due to the “division of kernels”, adding a
SWAP will always increase the depth of the resulting algorithm.

6.5.2. Experiments
The next step in this section is to map into the crossbar architecture all set of benchmarks
and see if any of the listed characteristics are relevant. The following dispersion charts in
Figure 6.9 show how the percentage of depth overhead behaves when the value of these
selected characteristics is increased.

(a)

6.5. Mapping Overhead Analysis 61

(b)

(c)

Figure 6.9: Dispersion graphs that show how the overhead depth behaves with the increase of (a) single-qubit gates, (b) Z, S &
T gates and (c) two-qubit gates (SQSWAP gates)

First of all, it is important to highlight that different algorithms will show a different be-
haviour. As we have seen in the previous sections, this might be, for example, due to a high
number of SWAPs or a high number of different single-qubit gates. This leads to different
patterns in the charts shown in Figure 6.9. However, to see the behaviour of each kind of
quantum algorithm we need a set of them with different number of qubits. In other words, we
need to analyze the overhead of each family of algorithms. Unfortunately, the set of bench-
marks that we have used in these experiments does not have enough quantum algorithms
per family so, in most cases, it is not possible to see the behaviour of a particular quantum
algorithm. Therefore, we will only focus on the families of algorithms that have enough of
them to detect a pattern and get some insights. In summary, the purpose of the charts in Fig-
ure 6.9 is to see if any of the proposed characteristics have a positive impact in the overhead
of all or some algorithms.

6.6. Scalability 62

To begin with, from the charts in Figure 6.9b and Figure 6.9c, we can see, at the bottom left
of each one, a common group of benchmarks belonging to the Bernstein Vazirani algorithm,
which forms a negative correlation (and a positive correlation in Figure 6.9a). This algorithm,
built upon Deutsch and Jozsa [5], is used to determine the mathematical function of the
quantum oracle function. To do this, it uses a high number of 𝐻 gates in parallel and only a
few CNOT gates, which corresponds to the oracle function. In terms of overhead, this means
that the number of 𝐻 gates increases with the number of qubits while the number of CNOT
gates stays constant. In general, since the 𝐻 gates can be easily executed in parallel using
the semi-global rotation scheme, the resulting depth of this algorithm is relatively small. The
problem is that as the number of qubits increases, the crossbar size does too. Thus, the
number of SWAPs necessary to execute the CNOT gates is higher. In summary, although, in
Figure 6.9a, it appears that having more single-qubit gates produces a higher depth increase,
it is, in fact, the SWAPs that produce that overhead increase.

Furthermore, since the decomposition of the CNOT gates produce 𝑆 gates and the num-
ber of 𝑍, 𝑆 and 𝑇 gates in our set of algorithms is low, the graph from Figure 6.9b is very
similar to the chart in Figure 6.9c. Unfortunately, this means that we can not see the ex-
pected improvement of parallel 𝑍, 𝑆 and 𝑇 gates. For this reason we will make some artificial
benchmarks in the next section to show how the depth behaves in these types of algorithms.

Moreover, the rest of algorithm families, that have at least 10 different algorithms, show a
similar trend as the Bernstein Vazirani algorithm due to the same reasons explained above;
except where none of the proposed characteristics change when the algorithms increases the
number of qubits. An example of this exception is the ising_model algorithm. Although it
grows in the number of single-qubit gates, the percentage of such gates does not change.
This neutral correlation can be seen in the bottom left of Figure 6.9a and, bottom right of
Figure 6.9b and Figure 6.9c. In summary, although the experimental results from Figure
6.9 does not show any new insights into the crossbar architecture, we can confirm that the
two-qubit gates is the main bottleneck in this version of the compiler.

6.6. Scalability
From the start of this thesis, we have been making decisions to try to exploit the possible
parallelism inside the crossbar architecture. Our goal is not only to take into account the
physical constraints but also to optimize the resulting circuit depth. Therefore, it is important
to analyze the parallelism provided by the architecture. To do so we will study how the
parallelism behaves as we increase the circuit size. We will use as a metric the percentage of
depth overhead.

After going through all the experiments and gaining some insights into what kind of algo-
rithms can be executed in the crossbar architecture, it seems reasonable to create artificial
benchmarks that prove the observations taken in the previous sections. We have already
mentioned that, in order to provide relevant results, it is important to focus on the char-
acteristics of the crossbar and not on the limitations of the compiler. However, since this
is the first version of the crossbar compiler, some improvements can still be made and the
limitations of the implementation of the compiler might standout in the next experiments.
For example, the “division of kernels” used to avoid the deadlock will influence in the results.
So we must take this into consideration when making observations.

6.6. Scalability 63

(a) (b)

Figure 6.10: Dispersion graphs that show how the overhead depth behaves with the increase of qubits in different kind of
algorithms. (a) Based on consecutive single-qubit gates, (b) Based on consecutive ፙ gates. For comparison, the green straight

line represents a linear scalability based on the initial depth overhead (with 5 qubits).

(a) (b)

Figure 6.11: (a) Different behaviour in scalability between an algorithm with interlaced CNOT gates and other algorithm with no
interlaced CNOT gates. (b) Dispersion graph that shows how different CNOT graphs affect the scalability of the algorithm.

To begin with, we have seen in Chapter 3 and Section 6.5.2 that the semi-global rotation
scheme is a characteristic of the crossbar architecture that allows to parallelize a high amount
of single-qubit gates. Figure 6.10a shows the behaviour of the depth overhead of an algorithm
based on the same consecutive single-qubit gate. This example shows that, even by taking
the crossbar constraints into account, the semi-global rotation successfully takes advantage
of the crossbar parallelism. In addition, the example in Figure 6.10b uses a similar algorithm
except it uses 𝑍 gates. This algorithm can be easily parallelized by using the shuttle scheme
explained in Chapter 3 for the 𝑍, 𝑆 and 𝑇 gates. Note that, in both examples, the depth of the
algorithm is 1 but the compiler returns a bigger overhead due to the constraints.

Moreover, in the previous experiments we have seen that although the ising_model algo-
rithm has a high percentage of single-qubit gates, it has two-qubit gates interlaced every 2 or
3 single-qubit gates. Since the current version of the compiler produces a division of kernels
in each two-qubit gate, the single-qubit gates can not be scheduled in parallel, producing
more overhead. An example of this pattern is shown in Figure 6.12b. To test this behaviour
in the crossbar architecture, we have made two quantum algorithms. The first quantum algo-
rithm has consecutive single-qubit gates and then consecutive two-qubit gates. The second
quantum algorithm has the same gates but interlacing two-qubit gates with the single-qubit
gates. A short example of these algorithms is shown in Figure 6.12.

Both of the algorithms shown in 6.12 scale linearly with the number of qubits. This means
that for every new qubit, a single-qubit gate and a two-qubit gate are added. The experiment

6.6. Scalability 64

1 y q[0]
2 y q[1]
3 y q[2]
4 y q[3]
5 cnot q[0], q[1]
6 cnot q[1], q[2]
7 cnot q[2], q[3]
8 cnot q[3], q[4]

(a)

1 y q[0]
2 cnot q[0], q[1]
3 y q[1]
4 cnot q[1], q[2]
5 y q[2]
6 cnot q[2], q[3]
7 y q[3]
8 cnot q[3], q[4]

(b)

Figure 6.12: (a) Shows the cQASM code of a non-interlaced pattern. (b) Shows the cQASM code of a interlaced pattern.

results of running these algorithms in the compiler is shown in 6.11a. As expected, the non-
interlaced version (green line) has a better curve. In fact, it is lower than half of the depth
overhead of the interlaced version. Logically, these quantum algorithms are not equivalent.
However, in this experiment we have shown that the pattern of gates in the dependency graph
will make an impact in the scalability behaviour.

On top of this, there is another reason why a consecutive chain of CNOT gates can be paral-
lelized with smaller overhead. There are some benchmarks, like qft_16 and rd84_142, which
have a relative high percentage of CNOT gates (�46% for qft_16 and �44% for rd84_142)
and do not show a high depth overhead. One of the reasons for this is the decomposition of
the CNOTs. As shown in Figure 3.13, the first phase of the CNOT, composed of single qubit
gates, can be parallelized by using the semi-global rotation scheme.

For example, Figure 6.13a shows two CNOT gates decomposed into the gates supported
by the crossbar architecture. After compiling the cQASM code, taking into account the con-
straints, the Y90 gates can be executed in parallel with other Y90 gates, as seen in Figure
6.13b. Depending on the constraints, it is even possible to execute some of the 𝑆 gates in
parallel. Logically, if the CNOTs from the example needed any additional SWAPs, then this
optimization might not be possible. But in a consecutive chain of CNOTs with no SWAPs,
the compiler can take advantage of this small optimization.

Finally, it is worth pointing out the effect of the two-qubit gates in the compilation process.
Logically, more two-qubit gates will produce more depth overhead. However, we have not
seen the propotion of this increase. To check this we have made three different algorithms
that are only composed of two-qubit gates and have the same number of gates. The first
algorithm forms a line dependency graph with the two-qubit gates, the second forms a tree
dependency graph and, the third forms a random dependency graph. Note that we have
not compiled quantum algorithms with more than 300 qubits, otherwise the compiler will
run out of memory. The results from Figure 6.11b shows three things. Firstly, the compiler
implementation has a high impact in the resulting cQASM program, since the division of
kernels produce a high amount of depth overhead. Secondly, in terms of scalability, the
percentage of two-qubit gates (in this case 100%) can be as impactful as the connectivity
they form. Thirdly, it seems that a linear dependency of two-qubit gates is preferred over a
tree dependency graph (which shows a worse scalability than random).

6.6. Scalability 65

1 # cnot q[0], q[1]
2 y90 q[1]
3 sqswap q[0], q[1]
4 s q[0]
5 sdag q[1]
6 sqswap q[0], q[1]
7 my90 q[1]
8
9 # cnot q[2], q[3]
10 y90 q[3]
11 sqswap q[2], q[3]
12 s q[2]
13 sdag q[3]
14 sqswap q[2], q[3]
15 my90 q[3]

(a)

1 {y90 q[1] | y90 q[3]}
2 {shuttle_right q[1] | shuttle_right q[3]}
3 {my90 q[4] | my90 q[4]}
4 {shuttle_left q[1] | shuttle_left q[3]}
5
6 shuttle_left q[1]
7 sqswap q[0], q[1]
8 shuttle_right q[1]
9
10 shuttle_left q[3]
11 sqswap q[2], q[3]
12 shuttle_right q[3]
13
14 {s_shuttle_right q[0] | sdag_shuttle_left q[1]
15 | s_shuttle_right q[2]
16 | sdag_shuttle_left q[3]}
17
18 shuttle_left q[1]
19 sqswap q[0], q[1]
20 shuttle_right q[1]
21
22 shuttle_left q[3]
23 sqswap q[2], q[3]
24 shuttle_right q[3]
25
26 {my90 q[1] | my90 q[3]}
27 {shuttle_right q[1] | shuttle_right q[3]}
28 {y90 q[5] | y90 q[5]}
29 {shuttle_left q[1] | shuttle_left q[3]}

(b)

Figure 6.13: (a) cQASM code of two decomposed CNOTs. (b) The compiled cQASM code of (a). Note that wait instructions
have been removed to increase the readability of the example.

7
Conclusions and future work

7.1. Conclusions
In this thesis we have designed and implemented a mapper pass in OpenQL for the Si spin
crossbar architecture. To do this, we have modelled the crossbar layout and the constraints
of each operation. We have also defined the crossbar configurations that must be avoided,
called the undecidable configurations. For the initial placement, we have used the trivial
placement and an ILP algorithm implemented in OpenQL to find the optimal solution. For
the routing, we have designed a new routing topology to easily maintain the idle configuration
after each operation. To keep the operations compatible with the new topology, a new layer
was added to the compiler, called “mapping decomposition”. A deadlock can happen when
routing qubits in the crossbar architecture, so we have proposed three approaches for dealing
with this problem in the scheduling process: avoid the deadlock, a backtrack method and
suffering a side effect. For this first version of the compiler, we have decided to avoid the
deadlock at the expense of producing more overhead.

Regarding the simulation framework, we have developed a verification program to check
the output of the compiler. This program checks not only parsing errors of the compiled
cQASM, but also the conflicts between the constraints of the crossbar architecture and the
undecidable configurations. In addition, this program will be useful to debug future ver-
sions of the compiler, for example, to test the routing strategies by using the visualisation
tool. Finally, since the crossbar architecture provides some flexibility in the execution of its
operations, as explained in Chapter 3, we have made some simplifications by adding some
restrictions to the parameters of the operations.

Regarding the results, we have been able to analyze the mapping overhead in terms of
gates and depth of the crossbar architecture. These experiments had lead to some insights
into what kind of algorithms will produce a higher or lower mapping overhead. For example,
we have seen that depending on the type of graph produced by the CNOT gates, the algorithm
for the initial placement will return a better improvement. In addition, we have seen that the
pattern of interlaced CNOT gates stops the scheduler from grouping single-qubit gates with
the semi-global rotation scheme, producing a higher depth overhead in the final circuit. Also,
we have shown that depending on the dependency graph of the quantum algorithm, the depth
overhead will scale differently. And the worst case occurs when the dependency graph forms
a tree. Moreover, we have shown that the depth overhead of consecutive single-qubit gates
and phase shift gates scales sublinearly with the number of qubits. As a final note, since we
have shown that the characteristics of quantum algorithms influence in the behaviour of the
depth overhead, we can conclude that, for real applications, these characteristics must be
taken into account.

66

7.2. Future work 67

7.2. Future work
During the design and implementation of the crossbar compiler, we have mentioned some
additional lines of work that are worth looking into, such as the following:

Initial placement: The implementation of the initial placement is done in a different process
than the routing algorithm. Another approach is to merge these two stages into one algorithm
to improve the performance and reduce the number of SWAPs introduced.

Division of kernels: Evidently, the most restrictive aspect of the mapping design is the divi-
sion of kernels. We can improve this by using the rest of approaches mentioned in Chapter
4: backtracking and suffering a side effect.

Line by line operation: In [23], R. Li et al. explained that some imperfections in the manufac-
turing of the crossbar quantum chip might be difficult to avoid. These imperfections means
that for some operations, such as shuttling, the barriers might need to be raised at different
times depending on the sites of the crossbar that are using it. To solve this problem, they
propose a line-by-line shuttling. This approach needs to be implemented and analyzed in
the compiler.

Arbitrary operations: The semi-global rotation allows to execute any single-qubit gate rota-
tion and depending on the rotation it will take shorter or longer. However, it is convenient to
use cycles in the compiler in order to measure the circuit depth. We need to investigate how
we could measure the time.

Ancilla qubits: In the experiments we have left out the analysis of the ancilla qubits. Future
work will analyse the position of the ancilla qubits in the crossbar and how they are selected
to performed the measurement.

More characteristics of the algorithms: In this thesis we have shown that some character-
istics like the pattern of gates in an algorithm can influence the mapping overhead. We
proposed looking into more characteristics that make a quantum algorithm produce a low
mapping overhead in the crossbar architecture.

CNOT interactions: In the thesis, we have also highlighted the influence of the graphs formed
by CNOT gates on the improvement of the initial placement. We think it is worth studying
the depth overhead based on the topology of these graphs. For example, comparing graph
characteristics, such as the size of the cliques.

Quantify the characteristics: Finally, some of the characteristics shown in the experiments
were not quantified. For example, we measured the overhead of the pattern of gates based
on two examples. We think that is a necessary to come up with a metric to quantify it, for
example the percentage of interlaced CNOT gates. Without these metrics is difficult to predict
the mapping overhead of a particular algorithm.

The compiler built in this thesis targets only a particular quantum chip. However, there
is already research in creating a more general compiler by creating a model based on time
planning [43]. Although these compilers allow to model the constraints of more architectures,
there are problems when encoding these constraints due to the limitations of the language
used, such as Planning Domain Definition Language (PDDL). We think that encoding the

7.2. Future work 68

model and constraints of the architecture into languages, like C++, could be more flexible
and easier when targeting different quantum processor architectures.

A
Gate decomposition

To be able to run any benchmark in the crossbar architecture, the gates must be decomposed
into the support set of gates. In this case our set of gates was: one-qubit gates and the √𝑆𝑊𝐴𝑃
gate; although we give preference to the single-qubit phase rotations because they require
less time to execute. In this appendix we show how we have derived to the decompositions
shown in section 3.5. We will start with the decomposition of the CPHASE since it is the
basic block from which the rest of gates are decomposed.

A.1. CPHASE Decomposition
We can check that the CPHASE gate can be expressed based on √𝑆𝑊𝐴𝑃 gates and phase shift
gates, as shown in Equation A.1.

𝐶𝑃𝐻𝐴𝑆𝐸 = √𝑆𝑊𝐴𝑃 × (𝑆ጷ⊗𝑆) × √𝑆𝑊𝐴𝑃⊗ (𝐼 ⊗ 𝑍)

= ⎛

⎝

1 0 0 0
0 ኻ

ኼ(1 + 𝑖)
ኻ
ኼ(1 + 𝑖) 0

0 ኻ
ኼ(1 − 𝑖)

ኻ
ኼ(1 + 𝑖) 0

0 0 0 1

⎞

⎠

× (
1 0 0 0
0 𝑖 0 0
0 0 −𝑖 0
0 0 0 1

) × ⎛

⎝

1 0 0 0
0 ኻ

ኼ(1 + 𝑖)
ኻ
ኼ(1 + 𝑖) 0

0 ኻ
ኼ(1 − 𝑖)

ኻ
ኼ(1 + 𝑖) 0

0 0 0 1

⎞

⎠

× (
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

) = (
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)

(A.1)

A.2. CNOT Decomposition
In this section, we will show how we have derive the decomposition of the CNOT based on
the previous CPHASE decomposition.

We can verify that 𝑋 = 𝑅፲(ኼ) × 𝑍 × 𝑅፲(
ዅ
ኼ) (as shown in Equation A.2).

𝑋 = (
ኻ
ኼ(1 + 𝑖)

ኻ
ኼ(−1 − 𝑖)ኻ

ኼ(1 + 𝑖)
ኻ
ኼ(1 + 𝑖)

) × (1 0
0 −1) × (

ኻ
ኼ(1 − 𝑖)

ኻ
ኼ(1 − 𝑖)ኻ

ኼ(−1 + 𝑖)
ኻ
ኼ(1 − 𝑖)

) = (0 1
1 0) (A.2)

Thus, we can express a CNOT gate as (𝐼 ⊗ 𝑅፲(ዅኼ) × 𝐶𝑃𝐻𝐴𝑆𝐸 × (𝐼 ⊗𝑅፲(ኼ)) (a visual repre-
sentation is shown in Figure A.1).

69

A.2. CNOT Decomposition 70

Then we can decompose the CPHASE gate based on the decomposition of Section A.1.The
result of such decomposition is shown in Figure A.1.

•

=

•

𝑅፲(ዅኼ) 𝑍 𝑅፲(ኼ)

=

𝑍 × 𝑆 ×

𝑅፲(ዅኼ) ×

/.-,()*+1/2

𝑆ጷ ×

/.-,()*+1/2

𝑅፲(ኼ)

=

× 𝑆 ×

𝑅፲(ኼ) ×

/.-,()*+1/2

𝑆ጷ ×

/.-,()*+1/2

𝑅፲(ዅኼ)

Figure A.1: A quantum circuit for executing the CNOT gate based on supported gates in the crossbar architecture.

B
Benchmarks

In this appendix, we show all the benchmarks used in chapter 6. For readability purpose,
we have assigned a number (identifier) to each benchmark. The following table shows what
identifier corresponds to what benchmark. It also shows the main characteristics of each
benchmark used in previous chapters.

Table B.1: The benchmarks used in the experiments of chapter 6

Id Name Qubits Gates Depth
1 0410184_169 14 211 104
2 3_17_13 3 36 22
3 4_49_16 5 217 125
4 4gt10-v1_81 5 148 84
5 4gt11_82 5 27 20
6 4gt11_83 5 23 16
7 4gt11_84 5 18 11
8 4gt12-v0_86 6 251 135
9 4gt12-v0_87 6 247 131
10 4gt12-v0_88 6 194 108
11 4gt12-v1_89 6 228 130
12 4gt13_90 5 107 65
13 4gt13_91 5 103 61
14 4gt13_92 5 66 38
15 4gt13-v1_93 5 68 39
16 4gt4-v0_72 6 258 137
17 4gt4-v0_73 6 395 227
18 4gt4-v0_78 6 235 137
19 4gt4-v0_79 6 231 132
20 4gt4-v0_80 6 179 101
21 4gt4-v1_74 6 273 154
22 4gt5_75 5 83 47
23 4gt5_76 5 91 56
24 4gt5_77 5 131 74
25 4mod5-bdd_287 7 70 41
26 4mod5-v0_18 5 69 40
27 4mod5-v0_19 5 35 21
28 4mod5-v0_20 5 20 12
29 4mod5-v1_22 5 21 12

71

72

30 4mod5-v1_23 5 69 41
31 4mod5-v1_24 5 36 21
32 4mod7-v0_94 5 162 92
33 4mod7-v1_96 5 164 94
34 9symml_195 11 34881 19235
35 adr4_197 13 3439 1839
36 aj-e11_165 5 151 86
37 alu-bdd_288 7 84 48
38 alu-v0_26 5 84 49
39 alu-v0_27 5 36 21
40 alu-v1_28 5 37 22
41 alu-v1_29 5 37 22
42 alu-v2_30 6 504 285
43 alu-v2_31 5 451 255
44 alu-v2_32 5 163 92
45 alu-v2_33 5 37 22
46 alu-v3_34 5 52 30
47 alu-v3_35 5 37 22
48 alu-v4_36 5 115 66
49 alu-v4_37 5 37 22
50 C17_204 7 467 253
51 clip_206 14 33827 17879
52 cm152a_212 12 1221 684
53 cm42a_207 14 1776 940
54 cm82a_208 8 650 337
55 cm85a_209 14 11414 6374
56 cnt3-5_179 16 175 61
57 cnt3-5_180 16 485 209
58 co14_215 15 17936 8570
59 con1_216 9 954 508
60 cycle10_2_110 12 6050 3386
61 dc1_220 11 1914 1038
62 dc2_222 15 9462 5242
63 decod24-bdd_294 6 73 40
64 decod24-enable_126 6 338 190
65 decod24-v0_38 4 51 30
66 decod24-v1_41 5 85 50
67 decod24-v2_43 4 52 30
68 decod24-v3_45 5 150 84
69 dist_223 13 38046 19694
70 ex-1_166 3 19 12
71 ex1_226 6 7 5
72 ex2_227 7 631 355
73 ex3_229 6 403 226
74 f2_232 8 1206 668
75 graycode6_47 6 5 5
76 ham15_107 15 8763 4819
77 ham3_102 3 20 13
78 ham7_104 7 320 185
79 hwb4_49 5 233 134
80 hwb5_53 6 1336 758
81 hwb6_56 7 6723 3736
82 hwb7_59 8 24379 13437

73

83 hwb8_113 9 69380 38717
84 hwb9_119 10 207775 116199
85 inc_237 16 10619 5863
86 ising_model_10 10 200 70
87 ising_model_13 13 263 71
88 ising_model_16 16 326 71
89 life_238 11 22445 12511
90 majority_239 7 612 344
91 max46_240 10 27126 14257
92 miller_11 3 50 29
93 mini_alu_305 10 173 69
94 mini-alu_167 5 288 162
95 misex1_241 15 4813 2676
96 mlp4_245 16 18852 10328
97 mod10_171 5 244 139
98 mod10_176 5 178 101
99 mod5adder_127 6 555 302
100 mod5d1_63 5 22 13
101 mod5d2_64 5 53 32
102 mod5mils_65 5 35 21
103 mod8-10_177 6 440 251
104 mod8-10_178 6 342 193
105 one-two-three-v0_97 5 290 163
106 one-two-three-v0_98 5 146 82
107 one-two-three-v1_99 5 132 76
108 one-two-three-v2_100 5 69 40
109 one-two-three-v3_101 5 70 40
110 plus63mod4096_163 13 128744 72246
111 plus63mod8192_164 14 187112 105142
112 pm1_249 14 1776 940
113 qft_10 10 110 63
114 qft_16 16 272 105
115 radd_250 13 3213 1781
116 rd32_270 5 84 47
117 rd32-v0_66 4 34 20
118 rd32-v1_68 4 36 21
119 rd53_130 7 1043 569
120 rd53_131 7 469 261
121 rd53_133 7 580 327
122 rd53_135 7 296 159
123 rd53_138 8 132 56
124 rd53_251 8 1291 712
125 rd53_311 13 275 124
126 rd73_140 10 230 92
127 rd73_252 10 5321 2867
128 rd84_142 15 343 110
129 rd84_253 12 13658 7261
130 root_255 13 17159 8835
131 sao2_257 14 38577 19563
132 sf_274 6 781 436
133 sf_276 6 778 435
134 sqn_258 10 10223 5458
135 sqrt8_260 12 3009 1659

74

136 squar5_261 13 1993 1049
137 square_root_7 15 7630 3847
138 sym10_262 12 64283 35572
139 sym6_145 7 3888 2187
140 sym6_316 14 270 135
141 sym9_146 12 328 127
142 sym9_148 10 21504 12087
143 sym9_193 11 34881 19235
144 sys6-v0_111 10 215 75
145 urf1_149 9 184864 99585
146 urf1_278 9 54766 30955
147 urf2_152 8 80480 44100
148 urf2_277 8 20112 11390
149 urf3_155 10 423488 229365
150 urf3_279 10 125362 70702
151 urf4_187 11 512064 264330
152 urf5_158 9 164416 89145
153 urf5_280 9 49829 27822
154 urf6_160 15 171840 93645
155 wim_266 11 986 514
156 xor5_254 6 7 5
157 z4_268 11 3073 1644

Bibliography

[1] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 32, 06 2012. doi:
10.1109/TCAD.2013.2244643.

[2] QCA Lab at TU Delft. OpenQL: Quantum Compiler. https://github.com/QE-Lab/
OpenQL, 2019. [Online; accessed 2-August-2019].

[3] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, NormanMar-
golus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary
gates for quantum computation. Phys. Rev. A, 52:3457–3467, Nov 1995. doi: 10.1103/
PhysRevA.52.3457. URL https://link.aps.org/doi/10.1103/PhysRevA.52.3457.

[4] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mu-
tus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill,
P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and
John M. Martinis. Superconducting quantum circuits at the surface code threshold for
fault tolerance. Nature, 508(7497):500–503, apr 2014. doi: 10.1038/nature13171. URL
https://doi.org/10.1038/nature13171.

[5] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of the
Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pages 11–20,
New York, NY, USA, 1993. ACM. ISBN 0-89791-591-7. doi: 10.1145/167088.167097.
URL http://doi.acm.org/10.1145/167088.167097.

[6] Sergey Bravyi, David Gosset, and Robert König. Quantum advantage with shallow cir-
cuits. Science, 362(6412):308–311, 2018. ISSN 0036-8075. doi: 10.1126/science.
aar3106. URL https://science.sciencemag.org/content/362/6412/308.

[7] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons,
and Seyon Sivarajah. On the Qubit Routing Problem. In Wim van Dam and Laura
Mancinska, editors, 14th Conference on the Theory of Quantum Computation, Commu-
nication and Cryptography (TQC 2019), volume 135 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 5:1–5:32, Dagstuhl, Germany, 2019. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-112-2. doi: 10.4230/LIPIcs.TQC.
2019.5. URL http://drops.dagstuhl.de/opus/volltexte/2019/10397.

[8] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface
codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86:032324,
Sep 2012. doi: 10.1103/PhysRevA.86.032324. URL https://link.aps.org/doi/10.
1103/PhysRevA.86.032324.

[9] X. Fu, L. Riesebos, L. Lao, C. G. Almudever, F. Sebastiano, R. Versluis, E. Charbon, and
K. Bertels. A heterogeneous quantum computer architecture. In Proceedings of the ACM
International Conference on Computing Frontiers, CF ’16, pages 323–330, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4128-8. doi: 10.1145/2903150.2906827. URL
http://doi.acm.org/10.1145/2903150.2906827.

[10] X. Fu, L. Riesebos, L. Lao, C. G. Almudever, F. Sebastiano, R. Versluis, E. Charbon, and
K. Bertels. A heterogeneous quantum computer architecture. In Proceedings of the ACM
International Conference on Computing Frontiers, CF ’16, pages 323–330, New York, NY,

75

https://github.com/QE-Lab/OpenQL
https://github.com/QE-Lab/OpenQL
https://link.aps.org/doi/10.1103/PhysRevA.52.3457
https://doi.org/10.1038/nature13171
http://doi.acm.org/10.1145/167088.167097
https://science.sciencemag.org/content/362/6412/308
http://drops.dagstuhl.de/opus/volltexte/2019/10397
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
https://link.aps.org/doi/10.1103/PhysRevA.86.032324
http://doi.acm.org/10.1145/2903150.2906827

Bibliography 76

USA, 2016. ACM. ISBN 978-1-4503-4128-8. doi: 10.1145/2903150.2906827. URL
http://doi.acm.org/10.1145/2903150.2906827.

[11] Google. Quantum - google ai, 2019. URL https://ai.google/research/teams/
applied-science/quantum/.

[12] Wakaki Hattori and Shigeru Yamashita. Quantum circuit optimization by changing the
gate order for 2d nearest neighbor architectures. In Jarkko Kari and Irek Ulidowski,
editors, Reversible Computation, pages 228–243, Cham, 2018. Springer International
Publishing. ISBN 978-3-319-99498-7.

[13] Jonas Helsen, Mark Steudtner, Menno Veldhorst, and Stephanie Wehner. Quantum er-
ror correction in crossbar architectures. Quantum Science and Technology, 3(3):035005,
2018. URL http://stacks.iop.org/2058-9565/3/i=3/a=035005.

[14] Charles D. Hill, Eldad Peretz, Samuel J. Hile, Matthew G. House, Martin Fuechsle,
Sven Rogge, Michelle Y. Simmons, and Lloyd C. L. Hollenberg. A surface code quantum
computer in silicon. Science Advances, 1(9), 2015. doi: 10.1126/sciadv.1500707. URL
https://advances.sciencemag.org/content/1/9/e1500707.

[15] Adam Holmes, Sonika Johri, Gian Giacomo Guerreschi, James S. Clarke, and A. Y.
Matsuura. Impact of qubit connectivity on quantum algorithm performance, 2018.

[16] IBM. Ibm, ibm q experience backend information, 2018. URL https://github.com/
QISKit/ibmqx-backend-information.

[17] N. Khammassi, G. G. Guerreschi, I. Ashraf, J. W. Hogaboam, C. G. Almudever, and
K. Bertels. cqasm v1.0: Towards a common quantum assembly language, 2018.

[18] Will Knight. Ibm raises the bar with a 50-qubit quantum com-
puter, 2017. URL https://www.technologyreview.com/s/609451/
ibm-raises-the-bar-with-a-50-qubit-quantum-computer/.

[19] QCA Lab. libqasm: Library to parse cqasm v1.0 files. https://github.com/QE-Lab/
libqasm, 2019.

[20] Lingling Lao, Daniel M. Manzano, Hans van Someren, Imran Ashraf, and Carmen G.
Almudever. Mapping of quantum circuits onto nisq superconducting processors, 2019.

[21] Bjoern Lekitsch, Sebastian Weidt, Austin G Fowler, Klaus Mølmer, Simon J Devitt,
Christof Wunderlich, and Winfried K Hensinger. Blueprint for a microwave trapped
ion quantum computer. Science advances, 3(2):e1601540, February 2017. ISSN
2375-2548. doi: 10.1126/sciadv.1601540. URL http://europepmc.org/articles/
PMC5287699.

[22] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for nisq-era
quantum devices. ArXiv, abs/1809.02573, 2018.

[23] Ruoyu Li, Luca Petit, David P. Franke, Juan Pablo Dehollain, Jonas Helsen, Mark
Steudtner, Nicole K. Thomas, Zachary R. Yoscovits, Kanwal J. Singh, Stephanie Wehner,
Lieven M. K. Vandersypen, James S. Clarke, and Menno Veldhorst. A crossbar network
for silicon quantum dot qubits. Science Advances, 4(7), 2018. doi: 10.1126/sciadv.
aar3960. URL http://advances.sciencemag.org/content/4/7/eaar3960.

[24] Chia-Chun Lin, Amlan Chakrabarti, and Niraj K. Jha. Qlib: Quantum module library.
J. Emerg. Technol. Comput. Syst., 11(1):7:1–7:20, October 2014. ISSN 1550-4832. doi:
10.1145/2629430. URL http://doi.acm.org/10.1145/2629430.

[25] David C. McKay, Thomas Alexander, Luciano Bello, Michael J. Biercuk, Lev Bishop,
Jiayin Chen, Jerry M. Chow, Antonio D. Córcoles, Daniel Egger, Stefan Filipp, Juan
Gomez, Michael Hush, Ali Javadi-Abhari, Diego Moreda, Paul Nation, Brent Paulovicks,
Erick Winston, Christopher J. Wood, James Wootton, and Jay M. Gambetta. Qiskit
backend specifications for openqasm and openpulse experiments, 2018.

http://doi.acm.org/10.1145/2903150.2906827
https://ai.google/research/teams/applied-science/quantum/
https://ai.google/research/teams/applied-science/quantum/
http://stacks.iop.org/2058-9565/3/i=3/a=035005
https://advances.sciencemag.org/content/1/9/e1500707
https://github.com/QISKit/ibmqx-backend-information
https://github.com/QISKit/ibmqx-backend-information
https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://www.technologyreview.com/s/609451/ibm-raises-the-bar-with-a-50-qubit-quantum-computer/
https://github.com/QE-Lab/libqasm
https://github.com/QE-Lab/libqasm
http://europepmc.org/articles/PMC5287699
http://europepmc.org/articles/PMC5287699
http://advances.sciencemag.org/content/4/7/eaar3960
http://doi.acm.org/10.1145/2629430

Bibliography 77

[26] N. David Mermin. Quantum Computer Science: An Introduction. Cambridge University
Press, 2007. doi: 10.1017/CBO9780511813870.

[27] Microsoft. Quantum computing | micrsoft, 2019. URL https://www.microsoft.com/
en-us/quantum/.

[28] A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, and Jason
R. Petta. Shuttling a single charge across a one-dimensional array of silicon quan-
tum dots. Nature Communications, 10(1), 12 2019. ISSN 2041-1723. doi: https:
//doi.org/10.1038/s41467-019-08970-z.

[29] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari,
Nhung Hong Nguyen, and Cinthia Huerta Alderete. Full-stack, real-system quantum
computer studies: Architectural comparisons and design insights. In Proceedings of the
46th International Symposium on Computer Architecture, ISCA ’19, pages 527–540, New
York, NY, USA, 2019. ACM. ISBN 978-1-4503-6669-4. doi: 10.1145/3307650.3322273.
URL http://doi.acm.org/10.1145/3307650.3322273.

[30] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th
edition, 2011. ISBN 1107002176, 9781107002173.

[31] John Preskill. QuantumComputing in the NISQ era and beyond. Quantum, 2:79, August
2018. ISSN 2521-327X. doi: 10.22331/q-2018-08-06-79. URL https://doi.org/10.
22331/q-2018-08-06-79.

[32] Chad Rigetti. The rigetti 128-qubit chip and what it means
for quantum, 2019. URL https://medium.com/rigetti/
the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea.

[33] Joschka Roffe. Quantum error correction: An introductory guide, 2019.

[34] Kamyar Saeedi, Stephanie Simmons, Jeff Z. Salvail, Phillip Dluhy, Helge Riemann,
Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, John J. L. Morton, and Mike
L. W. Thewalt. Room-temperature quantum bit storage exceeding 39 minutes using
ionized donors in silicon-28. Science, 342(6160):830–833, 2013. ISSN 0036-8075. doi:
10.1126/science.1239584. URL https://science.sciencemag.org/content/342/
6160/830.

[35] Norbert Schuch and Jens Siewert. Natural two-qubit gate for quantum computation
using the XY interaction. Phys. Rev. A, 67:032301, Mar 2003. doi: 10.1103/PhysRevA.
67.032301. URL https://link.aps.org/doi/10.1103/PhysRevA.67.032301.

[36] A. Shafaei, M. Saeedi, and M. Pedram. Qubit placement to minimize communication
overhead in 2d quantum architectures. In 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 495–500, Jan 2014. doi: 10.1109/ASPDAC.
2014.6742940.

[37] A. Shafaei, M. Saeedi, and M. Pedram. Qubit placement to minimize communication
overhead in 2d quantum architectures. In 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 495–500, Jan 2014. doi: 10.1109/ASPDAC.
2014.6742940.

[38] Vivek V. Shende and Igor L. Markov. On the cnot-cost of toffoli gates. Quantum Infor-
mation and Computation, 9, 03 2008.

[39] Marcos Yukio Siraichi, Vinicius Fernandes dos Santos, Sylvain Collange, and Fer-
nando Magno Quintão Pereira. Qubit Allocation. In CGO 2018 - International Symposium
on Code Generation and Optimization, pages 1–12, Vienna, Austria, February 2018. doi:
10.1145/3168822. URL https://hal.archives-ouvertes.fr/hal-01655951.

https://www.microsoft.com/en-us/quantum/
https://www.microsoft.com/en-us/quantum/
http://doi.acm.org/10.1145/3307650.3322273
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
https://science.sciencemag.org/content/342/6160/830
https://science.sciencemag.org/content/342/6160/830
https://link.aps.org/doi/10.1103/PhysRevA.67.032301
https://hal.archives-ouvertes.fr/hal-01655951

Bibliography 78

[40] Robert S. Smith, Michael J. Curtis, andWilliam J. Zeng. A practical quantum instruction
set architecture, 2016.

[41] Swamit S. Tannu and Moinuddin K. Qureshi. Not all qubits are created equal: A case for
variability-aware policies for nisq-era quantum computers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, pages 987–999, New York, NY, USA, 2019. ACM. ISBN
978-1-4503-6240-5. doi: 10.1145/3297858.3304007. URL http://doi.acm.org/10.
1145/3297858.3304007.

[42] Menno Veldhorst, H. G. J. Eenink, Chao He Yang, and Andrew Dzurak. Silicon cmos
architecture for a spin-based quantum computer. In Nature Communications, 2017.

[43] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Compiling quantum
circuits to realistic hardware architectures using temporal planners. Quantum Science
and Technology, 3(2):025004, feb 2018. doi: 10.1088/2058-9565/aaa331.

[44] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. Revlib: An online resource
for reversible functions and reversible circuits. In 38th International Symposium onMulti-
ple Valued Logic (ismvl 2008), pages 220–225, May 2008. doi: 10.1109/ISMVL.2008.43.

[45] A. Zulehner, A. Paler, and R. Wille. Efficient mapping of quantum circuits to the ibm qx
architectures. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 1135–1138, March 2018. doi: 10.23919/DATE.2018.8342181.

[46] Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology for mapping
quantum circuits to the ibm qx architectures, 2017.

http://doi.acm.org/10.1145/3297858.3304007
http://doi.acm.org/10.1145/3297858.3304007

	Introduction
	Motivation
	Problem definition
	Structure

	Background
	Quantum Computing
	Qubits
	Quantum Gates
	Quantum Circuits

	Mapping problem in quantum computing
	Gate Decomposition
	Initial Placement
	Routing
	Scheduling
	State of the art

	Crossbar Architecture
	Layout and constraints
	Layout
	Layout constraints

	Model
	Operations
	Shuttling
	One-qubit gate
	Two-qubit gate
	Measurement

	Conflicts
	Side effects
	Undecidable configurations

	Gate Set Decomposition

	Mapping Implementation
	Initial Placement
	Routing
	Crossbar Topology
	Crossbar Configuration
	Routing Strategy
	Routing Implementation

	Scheduling
	Mapping Decomposition

	Simulation framework
	Framework overview
	Verification Program
	Parameters
	Conflict Checker
	Visualisation Tool

	Additional Crossbar Parameters
	Ancillary qubits
	Phase shift gates
	Crossbar Configuration

	Experiments and Results
	Benchmarks
	Mapping Results
	Mapping Results with Trivial Initial Placement
	Mapping Results with Initial Placement

	Comparison of Different Mappers
	Comparison with the Surface 17 chip
	Mapping Overhead Analysis
	Characteristics
	Experiments

	Scalability

	Conclusions and future work
	Conclusions
	Future work

	Gate decomposition
	CPHASE Decomposition
	CNOT Decomposition

	Benchmarks
	Bibliography

