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A B S T R A C T

As automated vehicles require human drivers to resume control in critical situations, predicting driver takeover
behaviour could be beneficial for safe transitions of control. While previous research has explored predicting
takeover behaviour in relation to driver state and traits, little work has examined the predictive value of manual
driving style. We hypothesised that drivers’ behaviour during manual driving is predictive of their takeover
behaviour when resuming control from an automated vehicle. We assessed 38 drivers with varying experience in
a high-fidelity driving simulator. After completing manual driving sessions to assess their driving style, partic-
ipants performed an automated driving task, typically on a subsequent date. Measures of driving style from
manual driving sessions, including headway and lane change speed, were found to be predictive of takeover
behaviour. The level of driving experience was associated with the behavioural measures, but correlations be-
tween measures of manual driving style and takeover behaviour remained after controlling for driver experience.
Our findings demonstrate that how drivers reclaim control from their automated vehicle is not an isolated
phenomenon but is associated with manual driving behaviour and driving experience. Strategies to improve
takeover safety and comfort could be based on driving style measures, for example by the automated vehicle
adapting its behaviour to match a driver’s driving style.

1. Introduction

Recent decades have witnessed substantial advancements in sensor
technology, artificial intelligence, and control systems, leading to a
marked increase in vehicle automation. However, for the near future,
humans will continue to be responsible for assuming control during
critical situations because automated driving systems are limited to
specific operational design domains.

A number of studies have shown that disengagement from the
driving process can result in diminished situational awareness and low
mental workload (De Winter et al., 2014; Young and Stanton, 2007),
whereas high mental workload may occur when human intervention
becomes necessary (Hancock, 2021). The susceptibility of automated
vehicle drivers to these adverse effects has inspired considerable
research on transitions from automated to manual control (Eriksson and
Stanton, 2017; Lu et al., 2016; Naujoks et al., 2019; Ruscio et al., 2017).
Much of this research focuses on examining the impact of warning sys-
tems (Forster et al., 2017; Lu et al., 2019; Petermeijer et al., 2017),

environmental factors like traffic density (Doubek et al., 2020; Gold
et al., 2016), and the engagement in cognitively (Radlmayr et al., 2019;
Wandtner et al., 2018) or physically (Radhakrishnan et al., 2022; Zeeb
et al., 2017) distracting non-driving activities prior to takeover.

The current study aims to predict the manner in which drivers regain
control from an automated driving system. Accurate prediction of the
quality of takeovers could allow for the design of feedback and in-
terventions that intend to improve driver readiness before resuming
control (as also suggested by Ayoub et al., 2022; Zhang et al., 2019b).
Such predictions may be derived from the driver’s state immediately
before takeover while the automated driving system is still engaged, as
well as from more enduring individual traits such as one’s manual
driving style.

Several studies have previously explored predicting takeover
behaviour based on driver state. Braunagel et al. (2017) proposed a
method for predicting takeover behaviour based on eyes-off-road time,
secondary task engagement, and complexity of the traffic situation.
Their study showed that in 63% of low-quality driver takeovers,
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warnings could have been given beforehand (i.e., true positives), while
in 87% of adequate takeovers, the system would not have disturbed the
driver (i.e., true negatives). Du et al. (2020) used physiological and
environmental data to predict driver takeover performance. Inputs to a
random forest algorithm included gaze, galvanic skin response, heart
rate, traffic density, and takeover time budget. For a 3-s window, their
method distinguished between good and poor takeover behaviour with
84% accuracy. Other proposed methods for predicting driver’s readiness
to take over include in-vehicle vision observations obtained from cam-
eras, depth sensors, and an infrared camera pointed at the driver’s feet
(Deo and Trivedi, 2020). Additionally, physiological measures such as
eye tracking and body posture have been used to predict takeover times
(Lotz and Weissenberger, 2019).

The second approach to predicting takeover behaviour examines the
influence of driver traits. Previous research has explored factors like age,
gender, personality, and other attributes to determine their potential for
predicting takeover behaviour. A driving simulator study by Matsumuro
et al. (2020) evaluated drivers’ propensity to override adaptive cruise
control (ACC) for different deceleration rates of the preceding car. They
assessed driving styles, including being ‘methodical’ (i.e., a tendency
towards cautious and rule-adherent driving), through a questionnaire
and manual driving without ACC. The findings revealed that methodical
drivers intervened with ACC more frequently, especially in less haz-
ardous scenarios. Körber et al. (2015) found that takeover time in
automated driving could be predicted by multitasking test performance,
with worse multitaskers taking longer to retake control. Although it
might be intuitively thought that taking over control of an automated
vehicle would be highly influenced by driving skill (such as can be
described by a quick reaction time and skilful evasive manoeuvring),
Körber et al. found that basic reaction time was not a strong predictor of
takeover time, and noted that further research is needed to investigate
the influence of age as a moderating factor. A later meta-analysis found
no strong age effect on takeover times, potentially due to motivational
processes, as older drivers may show greater caution in order to
compensate for their slower response times (Zhang et al., 2019a). Li
et al. (2019) found that older drivers took significantly more time than
younger drivers to react, take over, and initiate an overtaking
manoeuvre, which may reflect age-related declines in cognition, psy-
chomotor ability, and increased caution. However, when given 20 s to
take over, older drivers could take over as successfully as younger
drivers, with no collisions or critical events. In summary, research in-
dicates that certain personal characteristics have predictive value for
driving behaviour in takeover situations.

Some of the above research (e.g., Matsumuro et al., 2020; Zhang
et al., 2019a) suggests that the takeover process is affected by the
driver’s driving style, that is, whether the driver chooses to operate
cautiously or riskily. The distinction between driving skill and driving
style is a fundamental concept in traffic psychology (Blaauw et al., 1977;
De Groot et al., 2012; Elander et al., 1993). Research has differentiated
between driving skill (errors) and driving style (violations) by per-
forming factor analysis or principal component analysis on objective
driving measures (e.g., De Winter et al., 2007) and responses to ques-
tionnaires, such as the Driver Behaviour Questionnaire and Driving Skill
Inventory (e.g., De Winter et al., 2015; Lajunen and Summala, 1995;
Reason et al., 1990). Recordings of driving speed (e.g., exceeding the
speed limit), following distance (e.g., tailgating), and degree of activity
(e.g., frequent lane changes) have been found to correlate with each
other and are statistically distinct from driving skill measures such as
deviations in road position, incorrect lane positioning, or pressing the
wrong pedals.

Literature surveys by McDonald et al. (2019) and De Winter et al.
(2021) have concluded that responses during the takeover of control
from an automated vehicle show similarities with previous findings on
how drivers of manually operated cars respond in emergency scenarios.
This suggests that driving measures obtained during manual driving are
predictive of behaviour during takeover situations. A simulator study by

Chen et al. (2020) provides some evidence for this assertion. Based on
maximal longitudinal acceleration data gathered during a car-following
experiment, the authors classified the participants into two groups: 12
‘regular’ drivers and 8 more ‘aggressive’ drivers. Contrary to their ex-
pectations, the authors found that those categorised as aggressive
drivers during manual driving exhibited less severe braking in the
takeover scenario. A subsequent experiment involving a larger number
of participants showed that more experienced drivers exhibited a lower
maximum deceleration when taking over control from the automated
vehicle, suggesting they braked less abruptly or less unnecessarily than
less experienced drivers (Chen et al., 2021). These findings point to an
interplay between driving experience and driving style, where it appears
that driving experience does not manifest through rapid responses, but
rather through smooth driving when possible. It may also be the case
that individuals who exhibit a brisk or more aggressive driving style
during manual driving are better able to handle emergency situations,
such as in a takeover scenario, and therefore handle such situations more
smoothly (Chen et al., 2020).

The current study builds on the premise that past behaviour is a
strong predictor of future behaviour (Ouellette andWood, 1998). Rather
than relying on distal measures such as psychometric test results or
demographic indicators (e.g., age, gender), we hypothesise that drivers’
behaviour during manual driving can be used to predict their behaviour
while reclaiming control from an automated vehicle. It is not evident
from the literature how strong these predictive relationships are, the
manner in which these relationships are structured, and to what extent
they correlate with drivers’ levels of driving experience. Investigating
these correlations is important, especially since much of the research to
date has focused solely on analysing how quickly drivers take control
after a takeover request (Zhang et al., 2019a), and much less on their
behaviour during subsequent manoeuvring or the relationships with
manual driving behaviour. A strong correlation with driving behaviour
during manual driving would suggest that much of the takeover research
is redundant with research into manual driving, and therefore occupies a
less unique position than one might think.

In this study, we designed a series of driving scenarios to measure
manual driving style. We created three scenarios: (1) a lane-change
scenario to evaluate the timing and quickness of lane changes, (2) a
car-following scenario to assess headway, and (3) a circular drive with
road narrowings to assess the speed of drivers. These scenarios were
expected to capture driving style measures likely to recur in takeover
situations. Specifically, lane changes are relevant during takeovers,
where obstacles, such as roadworks (Doubek et al., 2020), must be
avoided by means of a lane change. Following distance provides insight
into the temporal margins the driver maintains and is potentially pre-
dictive of safety margins in a takeover scenario. The last scenario aimed
to capture the general risk-related driving style of the driver. We then
assessed the associations between these measures and takeover behav-
iour during a subsequent driving simulator session. Our hypothesis was
that manual driving measures are predictive of takeover behaviour.

An additional question is whether driving style measured during
manual driving is predictive of takeover behaviour, or if this prediction
could be equally well made based on the driver’s self-reported driving
experience and related variables. This was investigated by calculating
the correlations between driving style during manual driving and
behaviour during the takeover scenario, both without and with parti-
alling out a driving experience construct.

2. Methods

2.1. Participants

In this study, conducted in November and December 2020, we
enlisted a total of 38 employees from Porsche AG, of which 15 were
females and 23 were males. Each participant held a valid driver’s licence
and had normal or corrected-to-normal vision. We included drivers with
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varying experience levels based on years of licensure and estimated
lifetime mileage. However, to minimise the potential confounding ef-
fects of age-related factors, we limited the age range to a maximum of 40
years. Among the 38 participants, 19 were 20 years old or younger, 9
were between 21 and 30 years old, and 10 were between 31 and 40 years
old.

In terms of driving frequency over the past 12 months, 19 partici-
pants reported driving daily, 9 drove 4–6 days per week, 5 drove 1–3
days per week, and 5 drove 1–4 days per month. As for annual mileage
over the same period, 3 participants reported driving 1–1000 km, 7
reported 1001–5000 km, 5 reported 5001–10,000 km, 11 reported
10,001–20,000 km, 11 reported 20,001–50,000 km, and 1 reported
more than 50,000 km.

Of the original set of 38 participants, data for some sessions were
available for a smaller number of participants (between 34 and 37
participants, e.g., due to technical problems or dropout).

2.2. Simulator

The study was conducted in a high-fidelity hexapod driving simu-
lator at the Porsche Research and Development Facility in Weissach,
Germany. The 6-DOFmoving base platform (eMove eM6-640-1800) was
equipped with a fully functional vehicle cockpit. The platform featured
an actuator stroke of 640 mm, and the motion cueing adhered to a
classical washout algorithm. A 180-degree testing environment was
achieved through projectors displaying 3840 × 2160 pixels on all three
sides, with a refresh rate of 60 Hz. Only the left mirror was operational
and integrated into the projected image. The vehicle dynamics simula-
tion was based on an electric Porsche Taycan Turbo. Surrounding
speakers generated wind, tyre, and vehicle sounds. Performance data
were recorded at a frequency of 10 Hz.

2.3. Manual driving session 1: overtaking slow-driving trucks

The first scenario took place on a three-lane highway, with each lane
measuring 3.6 m in width. Participants were instructed to follow a lead
vehicle, which maintained an average speed of 130 km/h to reflect the
recommended Autobahn speed, and exhibited minor speed fluctuations
for realism. Participants were told to execute a lane change whenever
the lead vehicle did so. During the drive, participants performed eight
double-lane changes to overtake a slow-moving truck travelling at 80
km/h in the rightmost lane (Fig. 1). The lead vehicle overtook the truck
when the distance between the lead vehicle and the truck was 59 m. The
double lane change manoeuvres were interspersed with short sections
featuring mild curves. Additional traffic was added to create a realistic
environment and encourage environmental scanning. During the double
lane changes, traffic occupied the leftmost lane only to avoid interfering
with the participant’s actions.

In manual driving session 1, each participant made eight lane
changes. We extracted the following variables per lane change:

• The distance headway (in metres) relative to the lead vehicle at the
moment the lead vehicle initiated its lane change. This following

distance is seen as an indicator of driving style (e.g., Boyce and
Geller, 2002; Itkonen et al., 2017; Sagberg et al., 2015).

• The time difference (in seconds) between the initiation of the lane
change by the lead vehicle and the initiation by a lane change of the
ego vehicle. This measure can be seen as indicative of driving style,
where a later response can be afforded when the headway is longer.
The time difference also depends on the driver’s choice about when
to change lanes.

• The duration of a lane change (in seconds) of the ego-vehicle. The
lane change duration was defined as the time difference from the last
moment that the lateral position relative to the centre of the right
lane of the ego-vehicle was less than 0.75 m and the first moment it
was greater than 3.125 m. Quickly changing lanes can be seen as
indicative of a fast, confident driving style. However, it can also
represent poor vehicle control skill, where the driver gives too rapid
steering input in the driving simulator.

The eight values for the repeated lane changes were averaged to
obtain a score per participant.

2.4. Manual driving session 2: car-following

The second drive took place on a single-lane rural road with a width
of 3.6 m. Participants were instructed to follow a lead vehicle (Fig. 2).
The lead vehicle had a mean speed of 100 km/h and featured small
speed fluctuations to mimic naturalistic driving conditions. Further-
more, it was programmed to reduce speed if the following distance
became too large. During the scenario, participants encountered six
merging road sections. In each merging section, high-density traffic
lanes merged into the initial single lane from the left and right simul-
taneously. Different vehicles were programmed to change lanes in front
of the lead vehicle at each merging section. This traffic interaction
should give drivers the impression that traffic might interfere, poten-
tially influencing their following distance. Manual driving session 2 had
a fairly stationary character, since participants only had to follow a lead
vehicle. The following measure was extracted for each participant:

• The mean distance headway (in metres), a measure of driving style.

2.5. Manual driving session 3: curves and road narrowings

The third driving assessment drew upon the experimental designs of
Van Winsum and Godthelp (1996), pertaining to curve driving, as well
as Melman et al. (2020), pertaining to lane narrowings. Participants
drove 30.7 km (seven laps) on a single-lane course with a width of 3.6 m.
They encountered, per lap, four 90-degree curves with internal radii of
40, 80, 120, and 160 m, interspersed with straight sections. The curves
did not include clothoid segments. Road signs after each curve specified
a maximum speed of 100 km/h, and indicated the curves and narrow-
ings. Participants faced two road narrowings per lap, starting from the
second lap. The narrowings were presented on two of the four straight
segments, with different pairs each lap to avoid repetition and predict-
ability. More specifically, during Lap 2, it was: no road narrowing (N),

Fig. 1. Schematic visualisation of manual driving session 1: overtaking a slow truck on the highway.
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road narrowing (Y), no road narrowing (N), road narrowing (Y), fol-
lowed by Lap 3: YNYN, Lap 4: YYNN, Lap 5: NNYY, Lap 6: YNYN, and
Lap 7: NYNY. During the narrowings, the road width was 2.2 m,
decreasing the available lateral movement from 0.82 m to 0.12 m. Fig. 3
shows a schematic of the course, while Fig. 4 provides a photographic
illustration. Participants started from a standstill, and the first 15 s were
excluded from the analysis.

For manual driving session 3, we extracted:

• The mean speed over road segments (in km/h). This was first
calculated per road segment, and then averaged over the road seg-
ments, per road segment type (Straight, Narrowing, and Curves with
40, 80, 120, and 160 m radius). Since all speeds of road segment
types correlated positively with each other (between r = 0.27 for
straight segments vs. curves with a radius of 80 m, to r = 0.96 for
curves with a radius of 120 m vs. curves with a radius of 160 m, n =
37), it was decided to take the average of the six speeds per partic-
ipant, in order to obtain one speed value per participant. As pointed
out above, driving speed is indicative of driving style.

2.6. Automated driving session

The car drove on a two-lane highway at 130 km/h, each lane being
3.88 m wide. Six takeovers occurred during the drive, accompanied by
361 m long roadworks on the right lane, on a straight road without a

hard shoulder. The automation was engaged via a steering wheel button,
indicating hands-off driving via a green icon. Participants watched a
video of a comedy TV series on a 10.9-inch central display during
automated driving. The video automatically started playing when the
automated driving function was enabled. Prior to their drive, partici-
pants were instructed to watch the video and not be occupied with
checking the automated driving system. During the experiment, one
experimenter monitored the participant via a live camera feed and could
communicate through the intercom to ensure they were paying attention
to the video, so that all participants would experience a similar level of
distraction from the road. Participants received an audio-visual warning
to take manual control during takeover scenarios (for details, see Dou-
bek et al., 2020).

A 3 × 2 within-subject design was used with time budget (5, 7, and
20 s) and traffic density (low and medium) as independent variables.
Each participant underwent all six takeover scenarios, with the order
counterbalanced using a Latin square method. Medium traffic density
scenarios involved a trailing vehicle on the adjacent left lane, making
immediate lane changes unsafe. In the low traffic density scenarios, an
immediate lane change was possible and safe. After each takeover,
participants answered four questions (perceived criticality, discomfort,
complexity, time budget; these data were not used in the present study).
After the takeover, participants returned to the right lane and reac-
tivated the automation, which continued the video.

The following dependent measures were calculated for each of the
six takeover scenarios. With the exception of the minimum speed, the
measures below were adopted from the takeover study by Doubek et al.
(2020), of which the current automated driving session is a replication:

• The hands-on-wheel time (in seconds), measured by detecting the
first steering wheel movement since the presentation of the takeover
request. This measure is indicative of driving skill. That is, the hands-
on-wheel time can be seen as representing a reflexive action or re-
action time; after the driver has their hands on the wheel, they can
decide to take further action, such as braking or changing lanes.

• Minimum time to collision (TTC) (in seconds). TTC was defined as
the distance to the roadworks divided by current vehicle speed. The
minimum TTC represents the lowest TTC while the vehicle was still
driving in the right lane (lateral position smaller 1.94 m). This
measure represents how quickly participants changed lanes, and how
much time margin they left with respect to the stationary roadworks
(Doubek et al., 2020). This measure is thus indicative of driving style,
meaning that it represents the driver’s choice to change lanes early or
late; it does not necessarily represent the skill in how well the vehicle
can be controlled.

• Minimum speed (in km/h). A lower minimum speed is indicative of
caution. In comparison, a high minimum speed indicates that par-
ticipants avoided the roadworks without braking. This measure is

Fig. 2. Car-following on a single-lane road in manual driving session 2. The image was obtained from the eye-tracking camera.

Fig. 3. Schematic of manual driving session 3. Dark grey rectangles indicate
potential regions for road narrowings (2 of 4 were activated in a given lap);
light grey squares indicate curves. Driving direction was counterclockwise.
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indicative of driving style, because it represents the caution or un-
certainty of the driver (Matsumuro et al., 2020).

• Lane change duration (in seconds), defined as in manual driving
session 1. As explained, this is a measure of driving style, but it also
captures elements of driving skill because the car responded quite
sensitively to steering due to the sporty nature of the vehicle model.

Our initial presumption was that short time budgets primarily test
driving skill, and long time budgets reflect driving style. More specif-
ically, a time budget of 5 s requires a relatively quick evasive
manoeuvre, whereas with a time budget of 20 s, there is ample time to
respond, and it depends on the driver’s voluntary choice when to switch
from the right lane to the left lane. However, we decided to average the
scores for the six takeovers into one score per participant, after first
standardising the results for each of the six takeover scenarios, so that
across participants, the mean for that takeover scenario was 0 and the
standard deviations was 1. In this way, the six takeover scenarios
received equal weight in determining the total score, and it is not the
case that, for example, the long time budget scenarios dominate the
overall minimum TTC value. Averaging of the six takeover scenarios was
done for three more reasons. First, averaging increases statistical reli-
ability. Second, even though the six takeover scenarios differed sub-
stantially in terms of time budgets, they shared similarities in the
required lane change manoeuvre and the decision whether or not to
brake. Third, an exploratory analysis showed that, after applying the
aforementioned standardisation, the effect of the time budget on the
predictive correlations was neither strong nor consistent. For example,
the Spearman rank-order correlation coefficient (ρ) between the mean
headway in manual driving session 2 and the minimum speed driven by
participants in the takeover scenarios was − 0.44 for the two takeovers
with a time budget of 5 s, − 0.48 for the two takeovers with a time budget
of 7 s, and − 0.45 for the two takeovers with a time budget of 20 s.

2.7. Procedure

Before driving, participants read and signed a consent form,
completed a demographic questionnaire, and received a sheet with in-
structions for the upcoming manual driving tasks. They were informed

to drive normally, stay on the road, and adjust speed for conditions.
Once in the car, participants were equipped with eye-tracking glasses,
calibrated using D-Lab software (version 3.5). Note that the eye-tracking
data were not used in this study because our focus was on driver
behaviour; however, an additional analysis using eye-tracking data is
included in the Appendix.

Participants were told they would drive a Porsche Taycan Turbo
simulation and that the simulation might differ from actual driving.
They could use the intercom for questions. After each session, drivers
rated motion sickness (where 0 is ‘no problems’, 1 is ‘some discomfort,
but no specific symptoms’, 2 is ‘vague symptoms’, etc.; Bos et al., 2005)
and mental workload (from 1: very low to 20: very high; Hart, 2006),
and had a short break. The room and simulator were then cleaned and
disinfected before the next experiment. All participants wore face masks.
The driving time in manual driving session 1, 2, and 3 was approxi-
mately 9, 7, and 20 min, respectively.

In a later driving simulator session, participants first performed a
manual car-following task, accompanied by the N-Back task, to intro-
duce cognitive load. These data were not used in the present study. Next,
participants completed the automated driving task, which was identical
to the automated driving study by Doubek et al. (2020). In detail, par-
ticipants were welcomed and first trained on the N-Back task, followed
by a short break and eye-tracker calibration, and then a short drive
without and with the N-Back task. Next, participants performed a
familiarisation drive with the automated driving system. Finally, par-
ticipants completed the aforementioned automated driving session,
consisting of six takeovers.

Of the 36 participants who partook in the automated driving session,
8 participated the same day as the aforementioned manual driving
session 1–3, 12 participants on the day after, and 14 participants two or
more days after. The average interval between the start of manual
driving session 1 and the start of the automated driving session was 2.38
days (median: 1 day, standard deviation: 2.65 days).

Fig. 4. Top: Curve with an inner radius of 120 m. Bottom: 100-m-long road narrowing. Both images were obtained from the eye-tracking camera.
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3. Results

3.1. Manual driving sessions

Fig. 5 shows the lateral position of all individual lane changes in
manual driving session 1.

Fig. 6 shows boxplots with the mean speed per participant, split by
type of road segment. An increasing trend of mean speed with increasing
curve radius can be seen. At the road narrowings, most participants
maintained their speed of approximately 100 km/h while some slowed
down to below 90 km/h.

3.2. Automated driving session

For the automated driving session, data were available for 34 of 38
participants, and for 3 more participants, takeover data were available
for 5 of 6 scenarios. Fig. 7 depicts the trajectories of participants
throughout the six takeover scenarios. The hands-on-wheel time was
relatively similar across all six types of takeover scenarios, as presented
in Fig. 8. Nevertheless, it is observable that participants showed a faster
hands-on-wheel time when the time budget was shorter.

For long time budgets, participants exhibited a broad range of re-
sponses. Some participants opted for a quick lane change following the
takeover request, while others used the available time budget, waiting
before executing a lane change. This pattern is illustrated in Fig. 9,
which displays the minimum time to collision. Note that a lowminimum
TTC, indicating a hazardous situation, is caused by initiating the lane
change late; participants can also choose to increase the minimum TTC
themselves by decelerating their vehicle.

An inspection of the darkness of the lines in Fig. 7 allows for the
inference that participants occasionally resorted to a stop. This was
especially common in scenarios characterised by medium traffic density
and short time budgets, wherein there was a car present in the partici-
pant’s blind spot. The degree of deceleration was quantified by deter-
mining the minimum speed; the boxplots of this measure are presented
in Fig. 10.

Finally, we calculated the lane change duration as a measure of
driving style, similar to the process used inmanual driving session 1. The
corresponding boxplots are shown in Fig. 11. The results shown in
Figs. 7–11 replicate the findings of an earlier experiment by Doubek
et al. (2020) with a new cohort of participants.

3.3. Predicting takeover behaviour from manual driving style

The question we aimed to answer concerned whether individual
behaviour in manual driving is predictive of takeover behaviour. For this
purpose, the Spearman rank-order correlation coefficient was used. This
measure is robust to outliers, and was used because some measures may
be skewed (e.g., minimum speed, see Fig. 10).

The correlation coefficients between the measures described above
are shown in Table 1. The main results are as follows: Many of the
manual driving style measures correlated strongly with each other. For
example, the distance headways in the two consecutive sessions (manual
driving sessions 1 and 2) were strongly associated (Spearman’s ρ =

0.83). We also found, for manual driving session 1, that the lane change
was initiated later when participants had a longer headway (ρ = 0.61),
presumably because the time budget to the truck was longer and
therefore participants felt less urgency to make a lane change after the
lead vehicle did so. Furthermore, we found that participants with a
longer headway in manual driving sessions 1 and 2 drove at a lower
speed in manual driving session 3 (ρ = − 0.41 and − 0.44, respectively).

Takeover behaviour was reasonably predictable from the manual
measures. In particular, there were indications that a more cautious
driving style, as characterised by a longer headway during manual
driving in sessions 1 and 2, predicted more braking, i.e., a lower mini-
mum speed after takeover (ρ = − 0.31 and − 0.45, respectively), and a
higher minimum TTC (ρ = 0.35 and 0.43, respectively). Furthermore,
we found that the lane change duration in manual driving (indicative of
the speed with which participants executed their lane changes) strongly
predicted the lane change duration after a takeover request (ρ = 0.66).
This can be explained by the fact that the lane change was essentially the
same, namely manually controlled. The difference was that in the
automated driving session, the lane change was preceded by a period of
not actively driving the vehicle.

3.4. Role of driving experience

Finally, we examined the Spearman correlation coefficients between
the above behavioural measures and the experience score of the par-
ticipants. This experience score was calculated based on responses in a
pre-experiment questionnaire, the calculation of which is provided in
the Appendix of this paper. The results in Table 1 show that more
experienced drivers drove faster (manual driving session 3) and initiated
a lane change earlier (manual driving session 1). Additionally, more
experienced drivers made a slower, i.e., a more gradual lane change
(manual driving session 1 and automated driving session). A likely

Fig. 5. Lateral position with respect to the centre of the right lane versus time relative to the lead vehicle overtake for all trials in manual driving session 1.
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explanation is that experienced drivers are better able to control a
responsive vehicle such as a Porsche Taycan, without abrupt actions or
overshooting. On a scale of 1 (very low) to 20 (very high), the average
mental workload was 5.27, 6.77, and 8.00 for manual driving sessions 1,
2, and 3, respectively. These values correlated slightly negatively with
the experience score (ρ = − 0.26, − 0.39, and − 0.10).

Having established that the driver experience score exhibits sub-
stantial correlations with the driving measures, as depicted in Table 1, a
subsequent question arises: is it necessary to measure manual driving
behaviour for valid predictions, or is assessing experience alone through
a brief questionnaire sufficient? To this end, we calculated a Spearman
correlation matrix in which the experience variable was partialled out.

Fig. 6. Boxplots of the mean speed for curves with different radii (R = 40, 80, 120, 160 m), straights, and road narrowings, for manual driving session 3. The boxes
capture the 25th and 75th percentiles, and the red lines mark the medians. The numbers next to each box represent the means of participants. The average number of
road segments per participant for the six different road segment types was 7.03, 7.84, 6.92, 6.89, 14.97, and 12.76, respectively.

Fig. 7. Lateral position with respect to the centre of the right lane versus longitudinal position in the world (i.e., along the road) for all participants and the six
takeover scenarios (S1–S6) of the automated driving session. The greyscale lines represent the ego-vehicle and are colour-coded from 90 km/h (black) to 151 km/h
(white). The vertical magenta line represents the moment of the takeover request, and the light red rectangle represents the obstacle. TB: time budget (5 s, 7 s, or 20
s); TD: traffic density (medium or low).
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More specifically, we were interested in understanding the relationship
between behavioural measures, but wanted to control for experience
level. The partial correlation allows for this by statistically removing the
effect that participants’ experience levels have on both behaviours.
Thus, the resulting partial correlation coefficient represents the rela-
tionship between the behavioural measures, after the influence of
experience has been removed.

The partial correlation coefficients presented in Table 2 indicate that
most correlations remained largely similar. Specifically, headway dur-
ing manual driving continued to predict minimum speed (indicative of
the degree of braking) in the takeover scenario (manual driving session
1: ρ = − 0.31 vs. ρpartial= − 0.43; manual driving session 2: ρ = − 0.45 vs.
ρpartial = − 0.54). Additionally, the predictive value of headway in

manual driving for minimum TTC was robust (manual driving session 1:
ρ = 0.35 vs. ρpartial = 0.38; manual driving session 2: ρ = 0.43 vs. ρpartial
= 0.44). The association between lane change speed in manual driving
and automated driving was moderately attenuated (from ρ = 0.66 to
ρpartial = 0.48) after controlling for the influence of experience. This
finding lends further support to the above statement that more experi-
enced drivers exhibited greater aptitude in operating the simulator
vehicle. The results of Tables 1 and 2 suggest that self-reported driving
experience predicts driving behaviour, but that driving behaviour itself
confers unique predictive validity. The latter inference is consistent with
our hypothesis mentioned in the Introduction that future behaviour is
predictable based on past behaviour.

Fig. 8. Boxplots of the hands-on-wheel time for the six takeover scenarios (S1–S6) of the automated driving session. The boxes capture the 25th and 75th percentiles,
and the red lines mark the medians. The numbers next to each box represent the means of participants. TB: time budget (5 s, 7 s, or 20 s); TD: traffic density (medium
or low).

Fig. 9. Boxplots of the minimum time to collision (TTC) for the six takeover scenarios (S1–S6) of the automated driving session. The boxes capture the 25th to 75th
percentiles, and the red lines mark the medians. The numbers next to each box represent the means of participants. TB: time budget (5 s, 7 s, or 20 s); TD: traffic
density (medium or low).
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4. Discussion

This study has provided various insights into the predictability of
behaviour in situations where drivers need to take control of an auto-
mated vehicle. Our work demonstrates the possibility to predict take-
over behaviour based on manual driving style, a term which, in this
context, refers to driving behaviours shaped by a driver’s motivational
process. One of the key findings was that drivers who adopted longer
headways in manual driving showed more cautious behaviours (higher
minimum TTC and lower minimum speed) during takeover scenarios.

Our findings are consistent with prior research demonstrating the
predictive validity of driving style measures; for example, studies in

driver training have shown driving style measures to be stable over time
and predictive of subsequent driving behaviour (De Winter 2013; De
Winter et al., 2009; Groeger, 2001), and naturalistic driving studies have
shown that such measures are predictive of accident involvement and
traffic fines (Chen and Chen, 2022; Engström et al., 2019; Stankevich
et al., 2022; Summala et al., 2014). Our work also resonates with prior
research suggesting that better driving skills often correspond with a
faster driving style (De Winter et al., 2009; Fuller, 2005; Hatakka et al.,
2002). That is, as drivers become more experienced, they tend to
experience lower workload, allowing them to drive faster (or brake less)
without sacrificing safety (e.g., Fuller, 2005; for similar findings in
takeover scenarios, see Chen et al., 2020, 2021).

Fig. 10. Boxplots of the minimum speed for the six takeover scenarios (S1–S6) of the automated driving session. The boxes capture the 25th and 75th percentiles,
and the red lines mark the medians. The numbers next to each box represent the means of participants. TB: time budget (5 s, 7 s, or 20 s); TD: traffic density (medium
or low).

Fig. 11. Boxplots of the lane change duration for the six takeover scenarios (S1–S6) of the automated driving session. The boxes capture the 25th and 75th per-
centiles, and the red lines mark the medians. The numbers next to each box represent the means of participants. TB: time budget (5 s, 7 s, or 20 s); TD: traffic density
(medium or low).
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In our study, more experienced drivers adopted higher speeds in
manual driving. Furthermore, the duration of lane changes, both after
the takeover request and during manual driving, was longer among
more experienced drivers, suggesting superior driving skills. The sensi-
tivity of the car to steering inputs might have led more experienced
drivers to opt for a slower lane change to ensure vehicle stability when
transitioning into the second lane. Additionally, more experienced
drivers might possess greater spare mental capacity, allowing them to
recognise that they have enough time to change lanes cautiously.

Existing studies in takeover situations have predominantly focused
on driving skill measures. In particular, much research has been dedi-
cated to determining how rapidly people react to a takeover request (for
a meta-analysis, see Zhang et al., 2019a). It is worth mentioning here
that predicting the hands-on-wheel time (takeover time) in driving
behaviour presents a challenge: reaction times of individual trials have
low test-retest reliability, making it necessary to take the average from
multiple trials to arrive at a reasonable prediction at an individual level

(Jensen, 2006). Although takeover times have been widely studied,
considerably less focus has been placed on the choices made by the
drivers in these situations. The current study illustrated that, to a certain
degree, driver actions after the takeover request can be predicted from
their manual driving style recorded in earlier sessions.

Several limitations of this study have to be acknowledged. First,
although a realistic driving simulator was used, the data were not
collected in a real vehicle. Therefore, there remains a question regarding
the extent to which the takeover scenarios studied herein are a realistic
representation of how automated driving might be implemented in the
future. In reality, takeover scenarios may be more varied, and the
automated vehicle may not be capable of issuing a takeover request at all
times. Current developments in automated driving demonstrate major
potential for the further advancement of Level 2 automation, where the
driver must remain attentive. This contrasts with the Level 3 automation
that has been examined in the current study, a concept not available for
driving at high speeds on public roads as of today. Another limitation

Table 1
Mean (M), standard deviation (SD), and pairwise Spearman rank-order correlation coefficients among dependent measures.

Table 2
Pairwise Spearman rank-order correlation coefficients among dependent measures, with the driver experience score partialled
out.
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lies in our use of measures describing the state of the vehicle relative to
the road (e.g., speed, lateral movement) for predicting takeover
behaviour. As indicated in the Introduction, there is also potential value
in monitoring the state of the driver; for example, examining whether
visual distraction or attention allocation is predictive of takeover
behaviour. Figure A1 in the Appendix provides insights into how quickly
participants were able to focus their attention on the road during our
study. However, we found that the hands-on-wheel time did not strongly
correlate with the other measures (see Tables 1 and 2), and the same was
true for the eyes-on-road time. The underlying explanation for this is
that these response times are largely reflexive, may not be statistically
reliable (as pointed out above), and do not evidently relate to the more
voluntary driving style that we aimed to investigate in this paper.

There are multiple strategies by which the present results could be
used to improve safety and comfort. The driving-style measures could
potentially aid the driver during takeover scenarios. For example,
introducing pre-emptive deceleration (e.g., Ibrahim et al., 2019) could
accommodate those drivers who are likely to slow down after assuming
control, in order to reduce driver stress and improve comfort. Likewise,
the automated vehicle could be programmed to mimic the driver’s
preferred speed or time-to-collision values, to match their driving style.
Another strategy could involve identifying drivers with atypical or risky
driving styles. Training may be a viable approach to address deviant
driving behaviours. For example, scenario-based training can equip
drivers with an understanding of the risks associated with abrupt
deceleration post-takeover and promote safer driving practices. In
addition to training, ensuring system familiarisation and providing
detailed instructions on takeover procedures are vital for safe driving
(Hergeth et al., 2017; Sahaï et al., 2021).

Besides practical implications, the current study also offers scientific
insights. Previously, De Winter et al. (2021) estimated that there are
already more than 200 studies published on the topic of how drivers
reclaim control from an automated vehicle. They also critically noted
that much of the research on takeovers might be redundant with existing
knowledge, because the same findings have also been obtained, or are
directly derivable, from studies on brake reaction times in manual
driving, as well as studies on reaction times in more elementary research
settings. The current study adds a dimension to this by showing that the
takeover behaviour itself, such as changing lanes, is essentially manual
behaviour and strongly correlates with the same manoeuvre in a fully
manual driving session. Additionally, other driving measures, such as
the minimum speed and the minimum TTC, are partly predictable from
cautious driving behaviour in manual driving. Based on these findings,
we recommend considering takeover behaviour not as a separate phe-
nomenon, but rather to view it within the broader context of manual
driving skill and driving style, as well as driver experience.

In conclusion, our study used specially designed manual driving
scenarios to gauge driving style. These scenarios effectively enabled the
prediction of driver behaviour in takeover situations. Using these in-
sights may benefit safety and comfort during automated vehicle
takeovers.
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