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Preface 
 
The first part of my master thesis project started at the onset of May 2019, I started exploring my topics 
of interest. I was unsure about the focus of my master thesis project, until I visited Alfred Schouten and 
Winfred Mugge. Here, I gained interest in researching a topic that involved signal analysis. Alfred and 
Winfred introduced me to a few possible subjects for my research. As a result, I chose to do a literature 
study on the topic of Long Latency Reflex modulation. Thirteen weeks later, I was satisfied with my 
literature study results. I handed in my work and received a positive response of Alfred and Winfred. 
This motivated me for the rest of the research period that was about to follow. 

Next, I started my internship at the Leiden University Medical Center (LUMC). Here, I was 
supervised by Jurriaan de Groot and Marjon Stijntjes. Jurriaan introduced me to shoulder kinematics 
research that portrayed entropy as sensitive measure to quantify changes with age (Overbeek et al., 
2020). Subsequently, rehabilitation medicine proposed signal entropy may be a useful ambulatory 
biomarker as predictor for functional decline. When I was introduced to this topic, I explored some of 
the original studies that introduced entropy algorithms to medical data (Lipsitz et al., 1992; Pincus et 
al., 1991a; Pincus et al., 1994; Pincus et al., 1996). I discovered neurology research that portrayed 
entropy algorithms as a possible useful tool for detecting early onset of dementia (Bertrand et al., 2016). 
Consecutively, I wanted to make my own contribution by researching the application of entropy in 
human gait data. Therefore, I conducted an additional literature study on the topic of entropy algorithms 
in medical data.  

After finishing the literature study, I proposed to research entropy in gait data of healthy patients 
versus Parkinson’s patients. These patients would walk at different walking velocities, to expose 
complexity changes with walking velocity and with disease in electromyography (EMG) and 
accelerometry data. Results would indicate if signal entropy was a convenient measure for healthy gait 
function. Consecutively, after a discussion with Alfred and Winfred, we adjusted this proposal. We 
discussed to research the algorithm in EMG and accelerometry data of young versus old healthy 
subjects. Here, the entropy algorithm could quantify complexity changes with age and with walking 
velocity. We proposed to assess the effects of age and of walking velocity, since both independent 
variables were known to alter gait function (Bisi et al., 2016; Hamill et al., 199; Kang et al., 2008) 

 In March 2020, I applied to the Human Research Ethical Committee (HREC) of the TUDelft 
and my research proposal got approved. However, the approval coincided with the onset of COVID-19 
in the Netherlands. As a result, we had to make an alternative plan for my research. Together with 
Jurriaan de Groot and Marjon Stijntjes, we approached a PhD student of the Amsterdam VU University 
Medical Center (VUmc), Marjolein Booij. Marjolein recorded data of young and old subjects that 
performed asymmetrical step tasks on a treadmill. The recorded data included EMGs, ground reaction 
forces (GRFs) and joint angles (GAs). We concluded that this dataset would be suitable for my proposed 
research. Finally, in the second week of June 2020, I received Marjolein’s data and I started my 
research. 
 
 
*Jeroen Vermeulen – January 2020 
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Thesis Introduction                 

 
Traditional methods in biomechanics and motor control often have focused on linear relations in time 
series of human locomotor system components. However, behaviors in these components are generally 
non-linear. Therefore, linear methods often lack the fidelity to fully explore the complexity found in these 
components. The latter has caused research to investigate a non-linear system approach. To evaluate 
non-linearities in human movement, we can analyze complexity. Research proposed that quantification 
of signal complexity can serve as a convenient tool to identify healthy gait function, to evaluate 
outcomes of physical therapies and to monitor the progression of disease. In the present study, our 
objective was to display that Sample Entropy (SaEn) is a sensitive measure to quantify changes in 
human gait function. We analyzed complexity changes with age, since healthy gait function is known to 
deteriorate with age. Subsequently, we analyzed complexity changes with walking velocity, since 
walking velocity is known to alter gait function. Here, we quantified signal complexity changes with SaEn 
in electromyography, ground reaction force and joint angle time series of asymmetrical stepping tasks.  
 
In the first section of this document, the scientific paper of the research is presented. Subsequently, in 
the second section, the appendices are presented. The interested reader is referred to these 
appendices. The appendices entail the definition, the parameter choosing, current applications and 
limitations of the SaEn algorithm. Finally, detailed results of our experiments are presented. 
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Nomenclature                  

 
Abbreviations 
AP     Anterior-Posterior / Flexion-Extension 
ApEn     Approximate Entropy 
AFS     Asymmetrical targets at Fast Speed (130%*PWS)  
ANS     Asymmetrical targets at Normal Speed (PWS) 
CTC     Center-To-Center distance 
CV     Coefficient of Variation 
DOF     Degrees of Freedom 
ECG     Electrocardiography 
EEG      Electroencephalography   
EMG     Elecromyography  
F1     Fixed speed 1: 70%*PWS 
F2     Fixed speed 2: 160%*PWS 
GA     Joint Angle / Gait Angle 
GRF     Ground Reaction Force 
IC     Initial Contact 
LG     Lateral Gastrocnemius 
LH     Lateral Hamstrings 
ls     Long step 
MG     Medial Gastrocnemius 
MH      Medial Hamstrings 
ML     Medial-Lateral / Abduction-Adduction 
MSE     Multiscale (Sample) Entropy 
PDF     Probability Density Function 
PWS     Preferred Walking Speed 
RF     Rectus Femoris 
SaEn     Sample Entropy 
SD     Standard Deviation 
sEMG     Surface Electromyography 
ss     Short Step 
TO     Toe-off 
VE     Vertical 
VL     Vastus Lateralis 
VM     Vastus Medialis 
 
 
Symbols 
m      Embedding dimension  
N     Dataset length 
σ     Standard deviation 
r     Tolerance 
τ     Scale factor 
µ      Mean 
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Abstract                      

 
Purpose – The entropy algorithm is a recently developed statistic for quantifying the complexity of time 
series data. To date, research of biomechanics and motor control discussed whether entropy algorithms 
could be used as a convenient tool to identify healthy gait function, to evaluate outcomes of physical 
therapies and to monitor the progression of disease. Here, we show that Sample Entropy (SaEn) is a 
sensitive measure for exposing complexity changes in human gait function. 
 
Methods – We analyzed signal complexity changes in electromyography (EMG), ground reaction force 
(GRF) and joint angle (GA) time series data of asymmetrical step tasks. We used the coarse-grained 
time series method and the SaEn algorithm, to determine the temporal resolution that contained most 
complex structures per datatype. Subsequently, we analyzed complexity changes with age and with 
walking velocity in the selected resolution. We analyzed complexity changes with age, since healthy 
gait function is known to deteriorate with age. In turn, we analyzed complexity changes with walking 
velocity, since walking velocity is known to alter gait function. Eighteen young (mean age 23.27 +/- 1.79 
years) and nineteen old (mean age 66.37 +/- 5.26 years) subjects were analyzed for an equal number 
of strides, described by an equal number of samples, to account for the SaEn dataset length bias.   
 
Results – Age increased entropy in EMG signals. Consecutively, age decreased GRF entropy in the 
medial-lateral (ML) component for short steps and increased entropy for long steps. Lastly, age 
decreased entropy in GA signals. Furthermore, walking velocity decreased entropy in EMG signals. 
Consecutively, walking velocity increased GRF entropy in anterior-posterior (AP) and vertical (VE) 
components and decreased entropy in the medial-lateral (ML) component. Lastly, walking velocity 
increased entropy in GA signals.  
 
Conclusions – We portrayed that EMG, GRF and GA signals of human gait altered in entropy with 
walking velocity and with age. Therefore, our results demonstrate the feasibility of SaEn to quantify 
changes in healthy gait function. Additional research should confirm possible future clinical applications 
for entropy algorithms. 
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Introduction                
 
The improvement of human gait function is a major goal of many surgical and rehabilitative orthopedic 
treatments. In these treatments, age is typically marked as a factor that progressively impairs healthy 
gait function (Lipsitz et al., 1992). To quantify healthy gait function, previous research used models that 
assessed joint kinematics, joint accelerations and muscle activation patterns (EMG) by means of the 
mean and standard deviation (SD) (Sosnoff et al., 2012), the coefficient of variation (CV) (Hausdorff et 
al., 2015) and the Lyapunov exponent (Terrier et al., 2015). However, it is becoming increasingly clear 
that these models might not be optimal for evaluating information that motor complexity conveys 
(Harbourne et al., 2009).  

To quantify healthy gait function, we can use entropy algorithms that quantify signal complexity.  
Consecutively, decreased complexity in joint kinematics and GRFs is linked to increased risk of falling 
(Kang et al., 2008; Liang et al., 2016; Yu et al., 2009). We typically find this system instability when 
parts of the neuromotor system lose function with aging or disease (Hamill et al., 1999; Masani et al., 
2002). Therefore, the identification of altered physiological complexity, might prove to be a clinically 
useful biomarker to expose gait cycle changes with aging or disease (Kang et al., 2016; Kaplanis et al., 
2010; Lipsitz et al., 1992; Pincus et al., 2006; Pincus et al., 1991b; Pincus et al., 1994; Smith et al., 
2011). Moreover, quantifying altered physiological complexity might prove to be useful in identifying 
disabilities in early stages (Bertrand et al., 2016; McIntosh et al., 2018). In the human gait cycle, the 
physiological complexity can be defined as healthy function, characterized by an interaction of control 
mechanisms that adapt to unpredictable changes in the environment. An altered physiological 
complexity is then regarded as a pathological condition (Lipsitz et al., 1992). 

Biomedical research previously identified altered physiological complexity in system outputs as 
a useful biomarker in endocrinology, cardiology and neurology (Goldberger et al., 2002; Pincus et al., 
2006; Pincus et al., 2000; Pincus et al., 1996). In endocrinology, irregular human hormonal secretion 
processes were exposed with entropy algorithms, that models including means and SDs failed to 
expose (Pincus et al., 1996). Additionally, in cardiology, entropy algorithms exposed subtle shifts in time 
series data of the heart, that corresponded to compromised physiological setting (Pincus et al., 2000). 
In neurology, entropy algorithms were displayed as a possible useful tool for detecting early onset of 
dementia (Bertrand et al., 2016) and for detecting individuals at risk for cognitive decline (McIntosh et 
al., 2018). Other studies included athletes, in which electroencephalograph (EEG) complexity analysis 
determined the athlete’s readiness to resume competitive activity after cerebral concussion (Cavanaugh 
et al., 2005; Stergiou et al., 2006). Conducting more research on these topics could lead to compelling 
future clinical applications for entropy algorithms. 

Most interestingly, studies of human gait analysis covered compelling topics of signal 
complexity analysis. These topics included: increased stride-to-stride complexity with aging and with 
disease (Hausdorff et al., 2005; Yu et al., 2009), increased complexity of ground reaction forces with 
walking instability and with age (Masani et al., 2002; Zhang et al., 2019), increased joint complexity with 
age and with movement disfunction (Coates et al., 2020; Qiao et al., 2018), prosthesis movement 
complexity evaluation of femoral amputees (Bogen et al., 2019; Lammoth et al., 2010) and decreased 
electromyography complexity with walking speed and with age (Kang et al., 2016; Xie et al., 2010). 
However, there remains considerable debate on the application of signal complexity analysis in the 
human gait cycle.  

To date, research proposed that quantification of signal complexity can serve as a convenient 
tool to identify healthy gait function and to evaluate outcomes of physical therapies (Bisi et al., 2016; 
Georgoulis et al., 2006; Kang et al., 2016; Morrison et al., 2012). Therefore, in the present study, we 
showed that Sample Entropy (SaEn) is a sensitive measure for quantifying changes in human gait 
function. We investigated the effects of two independent variables on human gait outputs. We analyzed 
complexity changes with age, since healthy gait function is known to deteriorate with age (Bisi et al., 
2016; Hamill et al., 1999; Masani et al., 2002). Subsequently, we analyzed complexity changes with 
walking velocity, since walking velocity is known to alter gait function (Georgoulis et al., 2006; Kang et 
al., 2016). We quantified the effects of age on the complexity outcomes of EMG, ground reaction force 
(GRF) and joint angle (GA) time series in asymmetrical step tasks. Consecutively, complexity outcomes 
were quantified for ‘comfortable’ and ‘fast’ walking velocities in the asymmetrical tasks. Additionally, for 
these tasks, we assessed whether entropy differed with independent variable ‘left or right leg’ and with 
‘short or long step’.  Lastly, we investigated the effects of ‘slow’ and ‘fast’ walking velocities on EMG 
complexity of symmetrical step tasks of old subjects, with step targets excluded.  
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The primary objective of the present study was to answer the following research question: ‘Which 
complexity changes are found with walking velocity and with age in human motion and 
electromyography signals of asymmetrical step tasks?’ Additionally, as a secondary objective, we 
investigated in which of the measured data types complexity changes with age were most prominently 
expressed. This secondary objective formed basis for motivating future rehabilitation studies and 
reemphasized what we know about the topic today. In the present study, complexity effects were 
quantified using the Sample Entropy algorithm (SaEn). This algorithm is defined in Appendix A1, based 
on previous literature (Delgado et al., 2019; Yentes et al., 2013). The algorithm was applied on EMG 
responses of muscles involved in hip and knee flexion and extension, and of muscles involved in 
plantarflexion. Consecutively, complexity effects were studied in anterior-posterior (AP), vertical (VE) 
and medial-lateral (ML) GRF components. Lastly, we studied these effects in flexion-extension and 
abduction-adduction GA components of the hip, knee and foot. We hypothesized that older adults 
exhibit more signal complexity in EMGs, but less signal complexity in GRFs and GAs, in contrast with 
younger adults. In turn, this may be caused by slower walking speed and increased neuromotor noise 
(Bisi et al., 2016; Kang et al., 2016; Kang et al., 2008; Liant et al., 2016; Masani et al., 2002; Pavei et 
al., 2019; Qiao et al., 2018; Zhang et al., 2019). Consecutively, we hypothesized that walking velocity 
decreases complexity in EMGs, but increases complexity in GRFs and GAs (Kang et al., 2016; Kwon 
et al., 2005; Pietraszewski et al., 2012)  
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Methods                    
 
Subjects and evaluation protocol 
 
We used a dataset that was recorded by the Amsterdam VU University Medical Center (VUmc). 
Eighteen young adults and nineteen old adults participated in the study. Subjects provided written 
informed consent as approved by the VUmc ethical committee. Characteristics of the test subjects are 
shown in Table 1. When subject reported they did not suffer from health issues that affect their 
movement in daily life activities, they were enrolled in the experiments. Subjects were asked to wear 
their own comfortable sports shoes, since providing them with standard shoes would likely introduce 
perturbations in complexity outcomes (Zhang et al., 2017).  

 
 

 
 
 
 
Treadmill and virtual environment 
 
All subject data was collected on a self-paced Motek C-Mill treadmill (Aarts et al., 2018). The treadmill 
was provided with a virtual environment (Figure 1). The virtual environment displayed a straight walking 
trajectory in a forest, that gave subject visual feedback of their walking velocity. In step target trials, 
targets were first briefly displayed on the walking trajectory of the virtual environment. Successively, 
the targets appeared on the treadmill belt. When subjects stepped in a step target, they were facilitated 
with an auditory ‘beep’. Subjects walked with their head straight looking at the virtual environment. This 
way, subjects would walk in a similar fashion as in overground walking.  
 
 
Walking trajectory familiarization  
 
In the familiarization trial, subjects were asked to familiarize on the treadmill by walking trials in a straight 
line at preferred walking speed (PWS) for 360 seconds. The experimental set-up of walking trials is 
presented in Table 2. During familiarization, the treadmill’s ‘self-paced’ setting was switched on, so that 
the treadmill’s velocity could be freely adjusted until the subject reached PWS. This would exclude 
treadmill boundary conditions as much as possible, that could affect complexity outcomes in the 
recordings (Papegaaij et al., 2017; Sloot et al., 2014). The fixed speed setting was switched on during 
the walking trials, so that subjects would yield gait outputs at a constant gait speed.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 Young adults Old adults p-value 
Gender (M/F)  9/10 13/7  0.3406* 

Age (y) 23.27 +/- 1.79 66.37 +/- 5.26    4.73e-30 
Height (m) 1.76 +/- 0.11 1.76 +/- 0.10 0.9638 

Body mass (kg) 70.42 +/- 10.22 79.42 +/- 12.88 0.0198 
PWS (m/s) 1.32 +/- 0.18 1.22 +/- 0.17 0.0645 

Table 1) Subject characteristics – Gender, age, height, body mass and PWS for young and old subject groups 
are given in  µ +/- σ. p-values of a paired t-test are given to display the significance of difference between the two 
groups. Asterisk denotes p-value for fisher’s exact test. Subjects significantly differed in body mass. A repeated 
measures ANOVA with within-subject factor ‘EMG’, ‘GRF’, ‘GA’ and between subject factor ‘body mass’ revealed 
that body mass did not alter entropy outcomes of EMG (F(1,35)=.751, p=.744), GRF (F(1,35)=.515, p=.827) and GA 
(F(1,34)=1.157 , p=.641) outputs.  
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Walking trials and experimental conditions 
 
In trial 0 (Baseline Stepping – BS), subjects were asked to walk at PWS and step in the symmetrically 
displayed block-shaped step targets as accurate as possible. The center-to-center distance (CTC) of 
these step targets matched the known mean step length (µstep) of the subject. The mean step length 
was derived from joint kinematics of the familiarization trial. Consecutively, the configuration of the step 
targets per trial, is shown in Figure 2 and Table 2. The BS trial was solely used to expose whether EMG 
responses in asymmetrical stepping statistically differed with the independent variables: ‘left or right leg’ 
and ‘short or long step’. These outcomes determined whether we separated our final statistics per these 
components.  

In trial 1 (Asymmetric Normal Stepping – ANS), subjects were asked to walk at PWS and step 
in the displayed asymmetrical block-shaped step targets as accurate as possible. Step targets were 
displayed on the treadmill at an increased CTC of 130%*µstep (long step) at one leg and a decreased 
CTC of 70%*µstep (short step) at the other leg. This way, step targets appeared in asymmetrical fashion 
towards the walking direction of the belt. Here, subjects were randomly assigned to either Group 1 or 
Group 2. Subjects assigned to Group 1 were required to make long steps with the left leg and short 
steps with the right leg. Subjects assigned to Group 2 were required to make short steps with the left 
leg and long steps with the right leg (Figure 2).  

In trial 2 (Asymmetric Fast Stepping – AFS), subjects were again presented with asymmetrical 
step targets. For both groups, left and right leg step targets switched respective to trial 1. Here, the 
walking velocity was increased with 130%*PWS, to assess the effect of walking velocity on the 
complexity outcomes in both age groups.  

Lastly, in trial 3 (Fixed speed 1 – F1) and in trial 4 (Fixed speed 2 – F2), we analyzed the effect 
of walking velocity on symmetrical step tasks of older subjects. Here, we assessed complexity changes 
in EMG with walking velocity, while step targets were excluded. In F1, subjects were required to walk 
at a low fixed walking speed of 70%*PWS. In F2, subjects were required to walk at a high fixed walking 
speed of 160%*PWS (Kang et al., 2016; Kang et al., 2008; Qiao et al., 2018). For these trials the entropy 
analysis of GRFs and GAs was excluded, since these datatypes violated the mimimum required dataset 
length for accurate entropy outcomes (N > 100) (Pincus et al., 1991b; Yentes et al., 2013). 
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 Figure 1) Motek C-Mill treadmill 
with virtual environment – Step 
targets were presented on the Motek 
C-Mill treadmill band for the left and 
right foot. Targets first appeared in the 
virtual environment, sequentially, they 
appeared on the treadmill band. 
Subjects walked with their head 
straight, looking at the virtual 
environment. This way, the walking 
task would resemble overground 
walking. When subjects stepped in a 
target, the target turned green and an 
auditory ‘beep’ was presented. When 
subjects missed a target, the target 
turned red. Ground reaction force 
plates were integrated in the treadmill 
band (fGRF = 100 Hz). The weight 
bearing mechanism and the handrails 
of the C-Mill were not used in our 
study.  
 

Figure 2) Configuration of the step targets per trial – For baseline stepping (BS), the mean step length was determined with 
joint kinematics of the familiarization trial. In the BS trial, subjects were asked to walk at PWS and step in the symmetrically 
displayed block-shaped step targets as accurate as possible. The center-to-center distance matched the mean step length of the 
subject. In trial 1 (Asymmetric Normal Speed – ANS), stepping blocks were displayed on the treadmill at an increased center to 
center distance of 130%*(µ_step) at one leg and a decreased center to center distance of 70%*(µ_step) at the other leg. This way, 
step targets appeared in an asymmetrical fashion in the walking direction of the belt. Per subject, it was randomly selected whether 
long and short steps appeared left or right of the midline of the treadmill band. Therefore, subjects were assigned to either Group 
1 or Group 2. In trial 2 (Asymmetric Fast Speed – AFS), for both groups left and right leg step targets switched respective to trial 
1. In this trial, the walking velocity was increased with 130%*PWS.  
 



 
 

Experimental 
condition 

Walking velocity Step targets Included  
subjects 

Recording 
duration 

Included  
datatype(s) 
 

Purpose 

Familiarization trial 
 
 

PWS (Self-paced) Deactivated Nyoung = 18 
Nold      = 19 

360 seconds Kinematics 
 
 

Mean step length 
 
PWS 
 
Step targets 

Trial 0:  
Baseline stepping (BS) 
 

PWS Left, right leg:  
center to center distance (CTC) 
matched with mean step length 

Nyoung = 18 
Nold      = 19 

30 seconds EMG 
 

SaEn with left, right 
leg 
 
SaEn with short, long 
step 

Break - - - - - - 
Trial 1:  
Asymmetrical stepping 
normal speed (ANS) 

PWS Subjects randomly assigned to: 
 
Group 1 
Left leg   – 130%*CTC (long step) 
Right leg –   70%*CTC (short step) 
 
Group 2  
Left leg    –   70%*CTC (short step) 
Right leg – 130%*CTC (long step) 

EMG: 
Nyoung = 18 
Nold      = 19 
GRF, GA: 
Nyoung = 18 
Nold      = 18 
 

180 seconds EMG, GRF, GA 
 

Coarse-grained time 
series 
 
SaEn with Age 
SaEn with Vwalking 

Break - - - - - - 
Trial 2:  
Asymmetrical stepping fast 
speed            
(AFS)  

130% * PWS Left, right leg step targets switched 
for both groups 

EMG: 
Nyoung = 18 
Nold      = 19 
GRF, GA: 
Nyoung = 18 
Nold      = 18 
 

180 seconds EMG, GRF, GA 
 

Coarse-grained time 
series 
 
SaEn with Age 
SaEn with Vwalking 

Break - - - - - - 
Trial 3:  
Fixed speed 1 
(F1)  

70% * PWS Deactivated Old 
Nold      = 17 

30 seconds EMG 
 
 

Coarse-grained time 
series 
 
SaEn with Vwalking 

Trial 4: 
Fixed speed 2 
(F2)  

160% * PWS Deactivated Old 
Nold      = 17 

30 seconds EMG Coarse-grained time 
series 
 
SaEn with Vwalking 

Table 2) Experimental set-up of trials – Walking velocities, step targets, included subjects, recording durations, included datatypes and purpose of the trials are given. Every subject 
was first familiarized with the treadmill (familiarization trial). Joint kinematics of this trial were in turn used to determine the step targets for trials BS, ANS and AFS. Trial BS was used 
to assess whether EMG responses differed with the ‘left or right leg’ and with the displayed step target, ‘short or long step’. Trials ANS, AFS assessed the effect of walking velocity 
and of age on entropy outcomes. Here, short steps were configured to match a center-to-center distance (CTC) of 70%*(µ_step), while long steps matched a CTC of 130%*(µ_step). 
Trial F1 assessed if a slow fixed walking speed of 70%*PWS, was an important factor for an increased EMG complexity in older subjects. These results were contrasted with results 
of F2. In F2, walking speed was increased to 160% of PWS. Consecutively, for all trials, entropy analysis was conducted on datatypes with sufficient dataset length (N > 100).  
  
  
 



Data acquisition and pre-processing 
 
Three dependent variables were recorded during the trials, surface electromyography (sEMG), ground 
reaction forces (GRFs) and joint angles (GAs). Fourteen ‘Covidien Kendall’ sEMG sensors recorded 
muscle activation patterns of muscles involved in hip and knee flexion and extension, and of muscles 
involved in plantarflexion (fs,EMG= 1000 Hz). Quadriceps, lateral and medial hamstrings and lateral and 
medial calf muscles were measured during walking trials (Table 3). In the recordings, the left and right 
lateral hamstrings were measured as the combination of the left and right semimembranosus and 
semitendinosus, respectively. This choice was made by the dataset recorder. To decrease resistance 
in electrodes, skin sites overlying each muscle belly were cleaned and prepared before connection. The 
sEMG electrodes were connected to the center of each muscle belly to reduce crosstalk (De Luca, 
1997). After data acquisition, max raw EMG power was identified in the 10-300 Hz range (Appendix 
E1). Subsequently, raw sEMG signals were filtered according to the SENIAM guidelines (Stegeman et 
al., 2007). Signals were demeaned, high-pass filtered using a 4th order Butterworth filter (1 Hz), low 
pass filtered using a 2nd order Butterworth filter (450 Hz), full wave rectified and low-pass filtered using 
a 2nd order Butterworth filter (450 Hz), respectively. The corner frequencies of the filters were chosen 
so that frequency content of muscle movement and activation would be represented in the filtered signal. 
Filtering procedures were applied in Matlab 2018a (Mathworks, Natick MA).  

 
 
 
 
Tri-dimensional GRFs were recorded using force sensors integrated in the Motek C-Mill (Aarts et al., 
2018). The force sensors registered GRFs in the following directions: anterior-posterior (Fx), 
mediolateral (Fy) and vertical (Fz). Force plates recorded with a sample frequency of fGRF = 100 Hz. Max 
raw GRF power was identified in the 5-20 Hz range. Subsequently, GRFs were low-pass filtered using 
a 2nd order zero-lag butterworth filter (fc=20 Hz). The corner frequency of the filters was chosen, so that 
higher frequency content of foot forces would be present in the filtered GRF signal (Gruber et al., 2017). 

The treadmill was enclosed by 10 ‘Vicon Vantage’ marker tracking cameras, that measured 
joint kinematics of the subject. Marker tracking cameras were configured in 360 degrees around the 
subject, to account for possible NaN values in marker tracking data (Figure 3). Cameras recorded at a 
sample frequency fs,vicon = 100 Hz and captured 38 reflective markers (Figure 4). Consecutively, with 
joint kinematics, we derived flexion-extension (AP) and abduction-adduction (ML) GA time series of the 
hip, knee and ankle. These joint angles were suitable for complexity analysis. Max GA power was 
identified in the 0-20 Hz range. Consecutively, marker data was low-pass filtered using a 2nd order zero-
lag butterworth filter (fc=20 Hz). 

 
 
 
 
 
 

 

Muscle number Muscle name Abbreviation  
1. Vastus lateralis (right) rVL 
2. Rectus femoris (right) rRF 
3. Vastus medialis (right) rVM 
4. Biceps femoris (right lateral hamstrings) rLH 
5. Semimembranosus, Semitendinosus (right medial 

hamstrings) 
rMH 

6. Lateral gastrocnemius (right) rLG 
7. Medial gastrocnemius (right) rMG 
8. Vastus lateralis (left) lVL 
9. Rectus femoris (left) lRF 

10. Vastus medialis (left) lVM 
11. Biceps femoris (left lateral hamstrings) lLH 
12. Semimembranosus, Semitendinosus (left medial 

hamstrings) 
lMH 

13. Lateral gastrocnemius (left) lLG 
14. Medial gastrocnemius (left) lMG 

Table 3) Recorded muscle responses with sEMG – Recorded muscles are displayed in the order of connection 
for signal acquisition. EMG data was collected with 14 ‘Covidien Kendall’ sEMG electrodes. The left, right lateral 
hamstrings were measured as the combination of the left, right semimembranosus and semitendinosus, 
respectively. Abbreviations of the muscles are displayed for reference to the matlab coding environment 
(Mathworks, Natick MA). 
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Figure 4) Kinematics: 
marker locations – The 
marker locations for the 
lower extremity in anterior, 
medial and posterior view 
are displayed, respectively. 
Marker locations of the 
lower extremity were 
tracked with Vicon Vantage 
motion tracking cameras 
and used for entropy 
analysis. Marker 
movements of the upper 
extremity were not used for 
analysis. Marker positions 
were connected to the 
boney landmarks as 
depicted in Appendix D. 

Figure 3) Kinematics: 
marker tracking camera 
placement – The self-
paced treadmill was 
enclosed by 10 ‘Vicon 
Vantage’ marker tracking 
cameras, that captured 
movement kinematics of 
the subject. Vicon marker 
tracking cameras were set-
up in 360 degrees around 
the subject, to exclude 
NaN values in marker 
tracking data. The cameras 
operated at a sample 
frequency fs,vicon = 100 Hz 
and captured 38 reflective 
markers that were 
connected to the subject. 
The environment depicted 
is part of ‘Vicon Nexus’ 
marker tracking software.   
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Data processing: Normalizing the data 
 
To account for differences in dataset length between subjects, we used toe-off (TO) and initial contact 
(IC) identifiers of GRF data to extract an equal amount of stance and swing phases for every subject. 
For EMG data, we extracted 13 gait phases per subject, whereas for GRFs and GAs, we extracted 110 
gait phases per subject. One should note, that EMGs were recorded at fs,EMG=1000 Hz, whereas GRFs 
and GAs were recorded at fs=100 Hz. Therefore, EMG data satisfied the minimum required dataset 
length for accurate SaEn outcomes with ten times less gait phases than GRF and GA data (Pincus et 
al., 1991b; Pincus et al., 2000; Pincus et al., 1992; Yentes et al., 2013). In EMGs, 13 gait phases amply 
reached the minimum required dataset length (N ≫ 100). In turn, we could not extract 130 gait phases 
of GRFs and GAs, due to subjects with insufficient gait identifiers. Therefore, we extracted 110 gait 
phases per subject in these datatypes, that reached the minimum required dataset length (N > 100). 
However, analysis of GRFs and GAs was excluded from trial 0 (BS), trial 3 (F1) and trial 4 (F2), due to 
insufficient dataset length (Table 2). More information about the entropy bias for short datasets can be 
found in previous literature (Kibushi et al., 2018; McCrum et al., 2019; Yentes et al., 2013). 

Consecutively, we normalized EMG, GRF and GA data to the number of samples. Per datatype, 
data was resampled to the subject that described gait phases with the least number of samples. Here, 
we used a shape preserving spline algorithm for resampling. Literature approved that resampling with 
spline preserved the frequency content of joint kinematics, EMGs and EEGs (Coutinho et al., 2017; Eng 
et al., 2007; Lencioni et al., 2017; Marateb et al., 2016; Unser et al., 1999). We displayed the effect of 
resampling with a spline algorithm on entropy outcomes, by interpreting results of a regular signal and 
of exemplar EMG data. Subsequently, we explored the entropy dataset length bias for a regular signal 
and for the experimental EMG data (Appendix A3). Data resampling was executed in Matlab 2018a 
(Mathworks, Natick MA), using function resample.  
 
 
Data analysis: Signal complexity  
 
The complexity of a time series can be quantified with entropy algorithms. Entropy algorithms divide 
time series into non-overlapping segments and calculate the conditional probability that a segment is 
repeated during the time series. The first non-linear complexity algorithm Approximate Entropy (ApEn) 
and its successor Sample Entropy (SaEn) are defined and compared in Appendix A1 (Pincus et al., 
1991a; Richman & Moorman, 2000). Both ApEn [0-2] and SaEn [0-3] outputs are maximized for random 
sequences (e.g.: white noise function) and minimized for periodic sequences (e.g.: sinusoid function).  
It is generally accepted that both maximally ordered, and maximally disordered systems possess no 
complex structures. Therefore, a meaningful physiologic complexity measure can be defined between 
these two extreme states (Smith et al., 2011).  

ApEn and SaEn are single-scale methods by definition, that quantify complexity in a single 
temporal resolution of the time series. Therefore, to quantify complexity in multiple temporal resolutions, 
an additional procedure is required that derives the resolutions: coarse-graining time series (Bisi et al., 
2016). For accurate entropy outcomes, ApEn requires a dataset length of at least 200 datapoints, while 
SaEn requires just 100 datapoints. Furthermore, ApEn includes self-matches of segments, while SaEn 
excludes self-matches. Excluding self-matches eliminates the bias towards regularity. Therefore, SaEn 
yields more accurate complexity outcomes for short and noisy non-uniform time series than ApEn 
(Yentes et al., 2013). Here, we quantified complexity with SaEn. SaEn calculations were conducted 
with inputs m=2 and r=0.1*SD, as recommended by literature (Appendix A3) (Chen et al., 2018; 
Montesinos et al., 2018; Pincus et al., 1991b; Yentes et al., 2013). 
 
 
Data analysis: Temporal resolutions – Coarse-graining time series 
 
To account for short,- and long-range correlations in biological time series, recent literature proposed 
to take SaEn values of multiple temporal resolutions of the signal into account (Bisi et al., 2016; Costa 
et al., 2005; Tao et al., 2015). Here, we derived these resolutions with the coarse-graining time series 
procedure. In this procedure, from a one dimensional discrete time series {x1, … , xi,…, xN}, a coarse-
grained time series {y τ} is constructed, corresponding to a scale factor τ. Consecutively, the data points 
inside each window are averaged.  
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Each element of the coarse-grained time series is then calculated according to the following equation: 
 
𝑦𝑦𝑗𝑗τ = 1

τ
 ∑ 𝑥𝑥𝑖𝑖 , 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁

τ
𝑗𝑗τ
𝑖𝑖=(𝑗𝑗−1)τ+1 .  

 
For scale one, the time series {y1} is equal to the original time series. In turn, the length of each coarse-
grained time series is equal to the length of the original time series divided by scale factor τ. 
Subsequently, we calculated SaEn values for the coarse-grained time series, that exposed the temporal 
resolution of the signal that contained most complex structures (Ahmed et al., 2011a; Costa et al., 2005; 
Costa et al., 2003; Qumar et al., 2013). Consecutively, we followed previous literature, that suggested 
complexity changes with age and with disease are most prominently expressed in the selected 
resolution (Kang et al., 2006; McIntosh et al., 2018; McIntosh et al., 2010; Kaplanis et al., 2012). 
Therefore, we analyzed entropy changes with walking velocity and with age in the temporal resolution 
that maximized complexity. Here, it was of great importance to analyze SaEn changes in a fixed scale 
per datatype, since SaEn outcomes change with scales (Ahmed et al., 2011a; Costa et al., 2005).  

The procedure of calculating SaEn outcomes over multiple temporal resolutions is called 
Multiscale Entropy (MSE) in literature (Costa et al., 2005). In the supplementary material, we determine 
MSE outcomes for regular and irregular data, to portray the working principle of the procedure 
(Appendix A2).  
 
 
Statistical analysis 
 
In the preliminary test, we determined whether independent variables ‘left or right leg’ and ‘short or 
long step’ changed entropy in dependent variables ‘EMG’, ‘GRF’ and ‘GA’. Results of the preliminary 
test determined whether we separated final statistics in our main test per these independent variables. 
We subtracted EMG baseline entropy outcomes of symmetric stepping (trial BS) from entropy outcomes 
of asymmetrical stepping (trial ANS). Subsequently, we conducted a repeated measures ANOVA to 
test the effects of the independent variables on the dependent variable ‘EMG’. The ANOVA design 
included: within subject factor one ‘EMG’ (7 levels), within subject factor two ‘short or long step’ (2 levels) 
and between subject factor ‘left or right leg’ (2 levels). Consecutively, we conducted two repeated 
measures ANOVAs to confirm the effect of the independent variables on the dependent variables ‘GRF’ 
(3 levels) and ‘GA’ (6 levels). Here, baseline GRF and GA SaEn outcomes were excluded, because the 
minimum required dataset length was violated in the BS trial for these datatypes.  

Finally, in the main test, we answered the research question. We determined whether 
independent variables ‘age’ and ‘walking velocity’ changed entropy in dependent variables ‘EMG’, ‘GRF’ 
and ‘GA’. We conducted one repeated measures ANOVA per datatype. The design for trial ANS and 
AFS included: within-subject factor one ‘EMG’, ‘GRF’ or ‘GA’, within-factor two ‘velocity’ (2 levels) and 
between subject factor ‘age’ (2 levels). An additional repeated measures ANOVA was conducted for 
trials F1 and F2. This test assessed whether independent variable ‘walking velocity’ changed entropy 
in the dependent variable ‘EMG’ of older subjects. This test included: within-subject factor one ‘muscle’ 
(7 levels) and within-subject factor two ‘velocity’ (2 levels).  

For the above-mentioned tests, we corrected confidence intervals for multiple testing using the 
Bonferroni correction. Shapiro-Wilk tests (p>0.05) and visual inspection of histograms and normal Q-Q 
plots confirmed that EMG, GRF and GA data were normally distributed for both young and old subjects. 
The level of statistical significance of repeated measures tests was set to p<0.05. In our graphs, p-
values of <0.05 were denoted as ‘*’, p-values of <0.01 as ‘**’, p-values of <0.001 as ‘***’ and p-values 
of <0.0001 as ‘****’, respectively. When p-values just did not reach significance (0.05 < p < 0.055), we 
denoted them as ‘~’. Statistical analyses were carried out using SPSS software (version 25.0, SPSS 
Inc. Chicago, IL USA). Graphs were plotted in Matlab 2018a (Mathworks, Natick MA). 
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Results                                         

 
Here, we investigate entropy changes with walking velocity and with age in EMG, GRF and GA signals 
of asymmetrical step tasks. Additionally, we assess whether entropy changed with the ‘left or right leg’ 
and with the step target, ‘short or long step’ (preliminary test).  Lastly, we investigate entropy changes 
with ‘slow’ and ‘fast’ walking velocities for symmetrical step tasks of old subjects, with step targets 
excluded. These results will show whether SaEn is a sensitive measure for quantifying changes in 
human gait function.  

First, we calculated SaEn outcomes for the EMG response of an exemplar old subject. For this 
subject, we plot EMGs and corresponding SaEn values of the right VL muscle. These results are plotted 
for a low fixed walking velocity (Trial F1) and for a high fixed walking velocity (Trial F2) in contrast to 
PWS (Figure 5).  

Second, we determined SaEn outcomes of coarse-grained time series of EMG, GRF and GA 
data. This identified which temporal resolution maximized complexity (Ahmed et al., 2011a; Costa et 
al., 2005; Costa et al., 2003). For GRF and GA data, coarse-grained time series at scale factor τ = 20 
reached the dataset length requirement of N > 100. Coarser scales of the data did not satisfy this 
requirement. Therefore, we analyzed the first 20 temporal scales for all datatypes. We plot exemplar 
coarse-grained time series and its SaEn results of RF EMG data (Figure 6), of VE GRF data (Figure 7) 
and of AP hip GA data (Figure 8), respectively. Outcomes of additional data components are displayed 
in the supplementary material (Appendix E2). EMG SaEn outputs were maximized for all muscles in 
scale 1. GRF SaEn outputs of AP and VE components were maximized in scale 12, while outputs of 
the ML component were maximized in scale 13. Lastly, GA SaEn outputs were maximized in scale 14, 
except short step AP (ssAP) components, that were elevated with +/- 8% in a coarser scale. SaEn 
values of ssAP hip and knee components were elevated in scale 19, while the ssAP ankle component 
was elevated in scale 20.  

 
 
 
 
 
 

Figure 5) EMG responses at fixed speeds for rVL muscle of exemplar old subject – rVL muscle responses are 
shown for a consecutive stance and swing phase at two fixed walking velocities. The x-axis displays the percentage 
of the gait cycle, starting with the stance phase and ending with the swing phase. In turn, SaEn outcomes of the 
responses are given in right upper corners. EMG data was recorded at fixed speed lower than PWS (trial F1: 
0.7*PWS), and at fixed speed higher than PWS (trial F2: 1.6*PWS), plotted in gray and red, respectively. For low 
walking velocity, EMG complexity of rVL significantly increased, in contrast with high walking velocity. 
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Figure 6) Coarse-grained time series 
and SaEn of EMG data – SaEn 
outcomes (µ +/- σ) of asymmetrical 
step tasks are given for the EMG 
response of the RF muscle subjected 
to short steps (ssRF). SaEn values are 
plotted for temporal resolutions of the 
data, scale 1-20. SaEn values are 
plotted for young ANS (red) and AFS 
trials (blue dash-dotted) and for old 
ANS (purple dashed) and AFS trials 
(black dotted), respectively. SaEn 
outputs were maximized in the original 
temporal resolution of the data, scale 1. 
Results of additional EMG data 
components are given in Appendix E2.  
 

Figure 7) Coarse-grained time series 
and SaEn of GRF data – SaEn 
outcomes (µ +/- σ) of asymmetrical 
step tasks are given for the VE GRF 
component subjected to short steps. 
SaEn values are plotted for temporal 
resolutions of the data, scale 1-20. We 
plotted SaEn values for young ANS 
(red) and AFS trials (blue dash-dotted) 
and for old ANS (purple dashed) and 
AFS trials (black dotted), respectively. 
SaEn outputs were maximized in the 
12th temporal resolution of the data, 
scale 12. Results of additional GRF 
data components are given in 
Appendix E2. 
 

Figure 8) Coarse-grained time series 
and SaEn of GA data – SaEn 
outcomes (µ +/- σ) of asymmetrical 
step tasks are given for the AP Hip 
component subjected to long steps. 
SaEn values are plotted for temporal 
resolutions of the data, scale 1-20. We 
plotted SaEn values for young ANS 
(red) and AFS trials (blue dash-dotted) 
and for old ANS (purple dashed) and 
AFS trials (black dotted), respectively. 
SaEn outputs were maximized in the 
14th temporal resolution of the data, 
scale 14. Results of additional GRF 
data components are given in 
Appendix E2. 
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In the preliminary test, the repeated measures ANOVA of EMG data revealed no significant main effect 
of ‘left or right leg’ (F(1,35)=.313 , p=.580) and no significant main effect of ‘short or long step’ (F(1,35)=.540 , 
p=.468). However, contrasts for the main effect of ‘short or long step’ displayed significant effects for 
RF (F(1,35)=5.461 , p=.025), VM (F(1,35)=4.838 , p=.035), LG (F(1,35)=32.612 , p<.0001) and MG 
(F(1,35)=9.861 , p=.003) muscles. Two subsequent repeated measures tests revealed no significant main 
effect of ‘left or right leg’ on entropy of GRFs (F(1,34)=.005 , p=.944) and of GAs (F(1,34)=1.906, p=.176). 
Subsequently, no significant main effect of ‘short or long step’ was found in GRFs (F(1,34)=.295, p=.590), 
while a significant main effect was found in GAs (F(1,34)=24.509 p<.0001). These results suggested to 
separate short and long step data components in our main test below. Left and right leg components 
were combined by averaging. 
 
 
EMG responses: complexity alteration with walking velocity and with age  
(Trials ANS, AFS) 
 
In scale 1 of EMG data, we assessed the main effect of the within-subject factor ‘walking velocity’. 
Maulchy’s test of sphericity was not violated for the main effects of this factor. Therefore, sphericity 
could be assumed. Here, all subject data was included (Nyoung = 18, Nold = 19). The repeated measures 
ANOVA revealed a highly significant main effect of walking velocity on SaEn of EMG responses (Table 
4a). In turn, contrasts revealed that walking velocity decreased SaEn of EMG for short steps in RF, VM 
and LH. Subsequently, walking velocity decreased SaEn for long steps in VL, RF, VM, LH and MH. 
Elevating walking velocity to 130%*PWS resulted in significant decreased entropy in the mentioned 
muscle responses. The mean SaEn outcomes with walking velocity are plotted per muscles involved in 
hip flexion and knee extension (Figure 9a), hip extension and knee flexion (Figure 9b) and plantarflexion 
(Figure 9c), respectively.  

The main effect of the between-subject factor ‘age’ was not significant on SaEn outcomes of 
EMG responses. However, contrasts revealed age increased SaEn in the MH subjected to short and 
long steps. Subsequently, age increased SaEn in the MG subjected to short and long steps (Figure 
10a-c). Old subjects exhibited highly significant increased entropy in medial hamstrings and 
gastrocnemius muscles compared to young subjects. 

Main effects of the two-way interaction ‘age*velocity’ were significant. Contrasts of this effect 
revealed that walking velocity caused larger decreases in entropy of EMG for young subjects than for 
old subjects. These components included short step Vastus Lateralis (ssVL), ssRF, ssVM and ssLH.  
 
 
EMG responses: complexity alteration with walking velocity in old subjects 
(Trials F1, F2) 
 
Finally, the main effect of ‘walking velocity’ was assessed for symmetrical step tasks of older subjects 
(trial F1, F2). Here, two older subjects were excluded (Nold = 17) due to the lack of sufficient stride 
identifiers. Highly significant results were found for the main effect of walking velocity on SaEn outcomes 
of EMG (Table 4b). Contrasts revealed that low walking velocity (70%*PWS) caused increased entropy 
in VL, RF, VM, LH, MH and LG muscles, in contrast with high walking velocity (160%*PWS) (Figure 
11a-c).  
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EMG (SaEn) 
 
 
 
Muscle 

Main effect ‘velocity’ 
 
F(1,35)=38.690, p<.0001 
 
Conditions: 
ANS vs. AFS  

Main effect ‘age’ 
 
F(1,35)=2.665, p=.112 
 
Subjects: 
Young vs. Old 

Interaction ‘vel*age’ 
 
F(1,35)=6.171, p=.018 

ssVL F(1,35)=  2.895,   p=.98 F(1,35)=    .277,   p=.602 F(1,35)=  4.285,   p=.046 
ssRF F(1,35)=24.227,   p<.0001 F(1,35)=    .097,   p=.758 F(1,35)=12.907,   p=.001 
ssVM F(1,35)=16.778,   p<.001 F(1,35)=    .406,   p=.528 F(1,35)=  5.690,   p=.023 
ssLH F(1,35)=  7.060,   p=.012 F(1,35)=    .523,   p=.474 F(1,35)=  7.536,   p=.009 
ssMH F(1,35)=    .267,   p=.609 F(1,35)=16.719,   p<.001 F(1,35)=  3.404,   p=.074 
ssLG F(1,35)=    .999,   p=.324 F(1,35)=  1.736,   p=.196 F(1,35)=    .530,   p=.472 
ssMG F(1,35)=    .245,   p=.624 F(1,35)=  8.072,   p=.007 F(1,35)=    .068,   p=.796 
lsVL F(1,35)=  5.610,   p=.024 F(1,35)=    .554,   p=.461 F(1,35)=  1.905,   p=.176 
lsRF F(1,35)=24.937,   p<.0001 F(1,35)=    .122,   p=.729 F(1,35)=    .062,   p=.804 
lsVM F(1,35)=15.718,   p<.001 F(1,35)=    .208,   p=.651 F(1,35)=    .230,   p=.634 
lsLH F(1,35)=28.923,   p<.0001 F(1,35)=    .233,   p=.632 F(1,35)=    .209,   p=.650 
lsMH F(1,35)=11.026,   p=.002 F(1,35)=18.913,   p<.001 F(1,35)=    .248,   p=.622 
lsLG F(1,35)=  1.237,   p=.274 F(1,35)=    .820,   p=.371 F(1,35)=    .068,   p=.796 
lsMG F(1,35)=    .126,   p=.725 F(1,35)=   8.917,  p=.005 F(1,35)=    .138,   p=.713 

EMG 
(SaEn) 
 
 
 
Muscle 

Main effect ‘velocity’ 
 
F(1,16)=86.063, p<.0001 
 
Conditions: 
F1 vs. F2  

VL F(1,16)=14.643,   p=.001 
RF F(1,16)=21.048,   p<.001 
VM F(1,16)=55.243,   p<.0001 
LH F(1,16)=14.551,   p=.002 
MH F(1,16)=16.107,   p=.001 
LG F(1,16)=18.711,   p=.001 
MG F(1,16)=1.072,     p=.316 

      a) 
 

      b) 
 

Table 4ab) EMG: main and interaction effects of velocity and age on entropy of asymmetrical and 
symmetrical step tasks – a) Main effects and contrasts of velocity, age and velocity*age on SaEn of EMG signals 
are given for trials ANS, AFS (Nyoung = 18, Nold = 19). Data components are separated per short step (ss) and per 
long step (ls), since ss and ls components were statistically different. Left and right muscle SaEn outcomes were 
averaged.  b) Main effect and contrasts of walking velocity on SaEn EMG outputs of older individuals in trials F1, F2 
are given (Nold = 17). Left and right muscle SaEn outcomes were averaged. For a) and b), significant contrast effects 
are displayed in bold. Each table represents one repeated measures ANOVA test. 
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Figure 9a) Main effect velocity on entropy of hip flexor and knee extensor muscles (ANS, AFS) – 
Adjacent bars display SaEn values (µ ± σ) at PWS (ANS) vs. 1.3*PWS (AFS) in asymmetrical step tasks. 
Data of all young and old subjects were included in this analysis (Nyoung = 18, Nold = 19). Results of muscles 
VL, RF and VM with short steps (left) and with long steps (right) are displayed, respectively. RF and VM 
muscles displayed highly significant entropy decrease with walking velocity for both short and long steps. 
 
 

Figure 9b) Main effect velocity on entropy of hip extensor and knee flexor muscles (ANS, AFS) – 
Adjacent bars display SaEn values (µ ± σ) at PWS (ANS) vs. 1.3*PWS (AFS) in asymmetrical step tasks. 
Data of all young and old subjects were included in the statistical analysis (Nyoung = 18, Nold = 19). Results 
of muscles LH and MH with short steps (left) and with long steps (right) are displayed, respectively. The 
MH muscle displayed highly significant entropy decrease with walking velocity for long steps. 
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Figure 9c) Main effect velocity on entropy of plantar flexor muscles (ANS, AFS) – Adjacent bars 
display SaEn values (µ ± σ) at PWS (ANS) vs. 1.3*PWS (AFS) in asymmetrical step tasks. Data of all young 
and old subjects were included in the statistical analysis (Nyoung = 18, Nold = 19). Results of muscles LG and 
MG with short steps (left) and with long steps (right) are displayed, respectively. These muscles displayed 
no significant entropy alteration with walking velocity. 
 
 

Figure 10a) Main effect age on entropy of hip flexor and knee extensor muscles (ANS, AFS) –  Adjacent 
bars display SaEn values (µ ± σ) of young vs. old subjects in asymmetrical step tasks. Data of trials ANS 
and AFS were included in the statistical analysis. Results of muscles VL, RF and VM with short steps (left) 
and with long steps (right) are displayed, respectively. These muscles displayed no significant entropy 
alteration with age. 
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Figure 10b) Main effect age on entropy of hip extensor and knee flexor muscles (ANS, AFS) –  Adjacent 
bars display SaEn values (µ ± σ) of young vs. old subjects in asymmetrical step tasks. Data of trials ANS and 
AFS were included in the statistical analysis. Results of muscles LH and MH with short steps (left) and with 
long steps (right) are displayed, respectively. The MH muscle displayed highly significant entropy increase 
with age for short and long steps. 
 

Figure 10c) Main effect age on entropy of plantar flexor muscles (ANS, AFS) – Adjacent bars display 
SaEn values (µ ± σ) of young vs. old subjects in asymmetrical step tasks. Data of trials ANS and AFS were 
included in the statistical analysis. Results of muscles LH and MH with short steps (left) and with long steps 
(right) are displayed, respectively. The MG muscle displayed significant entropy increase with age for short 
and long steps. 
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Figure 11a) Main effect 
velocity on entropy of hip 
flexor and knee extensor 
muscles (F1, F2) – 
Adjacent bars display SaEn 
values (µ ± σ) at 0.7*PWS 
(F1) vs. 1.6*PWS (F2) in 
symmetrical step tasks. 
Only old subjects were 
measured in trials F1, F2 
(Nold = 17). Results of 
muscles VL, RF and VM are 
displayed, respectively. 
Highly significant entropy 
decreases with walking 
velocity were found in these 
muscles. 
 
 

Figure 11b) Main effect 
velocity on entropy of hip 
extensor and knee flexor 
muscles (F1, F2) –  
Adjacent bars display SaEn 
values (µ ± σ) at 0.7*PWS 
(F1) vs. 1.6*PWS (F2) in 
symmetrical step tasks. 
Only old subjects were 
measured in trials F1, F2 
(Nold = 17). Results of 
muscles LH and MH are 
displayed, respectively. 
Significant entropy 
decreases with walking 
velocity were found in these 
muscles. 
 
 

Figure 11c) Main effect 
velocity on entropy of 
plantar flexor muscles (F1, 
F2) –  Adjacent bars display 
SaEn values (µ ± σ) at 
0.7*PWS (F1) vs. 1.6*PWS 
(F2) in symmetrical step tasks. 
Only old subjects were 
measured in trials F1, F2 (Nold 

= 17). Results of muscles LG 
and MG are displayed, 
respectively. Highly significant 
entropy decrease with walking 
velocity was found in the LG 
muscle. 
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GRF responses: complexity alteration with walking velocity and with age  
(Trials ANS, AFS) 
 
In scale 12 of GRF data, we assessed the main effect of the within-subject factor ‘walking velocity’. 
Maulchy’s test of sphericity was not violated for the main effects of this factor. Therefore, sphericity 
could be assumed. Here, one old subject was excluded from our analysis due to the lack of sufficient 
stride identifiers (Nyoung = 18, Nold = 18). The repeated measures ANOVA revealed a significant main 
effect of walking velocity on SaEn outcomes of GRF responses (Table 5). In turn, contrasts revealed 
that walking velocity increased GRF entropy in AP and VE components, while ML entropy decreased 
(Figure 12). Entropy outcomes of AP, VE and ML GRF components altered with walking velocity with a 
high level of significance.  
 Consecutively, the main effect of the between-subject factor ‘age’ was not significant on SaEn 
outcomes of GRF responses. However, contrasts revealed age decreased ML entropy for short steps, 
while age increased ML entropy for long steps (Figure 13).  

Finally, the main effect for the interaction ‘age*velocity’ was not significant. In turn, contrasts 
revealed significant effects of the interaction per GRF component. Walking velocity caused larger 
decreases in GRF entropy for young subjects than for old subjects. This effect was found in long step 
VE (lsVE) and lsML components. 
 

 
 
 
 
 

GRF 
(SaEn) 
 
 
 
Component 

Main effect ‘velocity’ 
 
F(1,34)=4.841, p=.035 
 
Conditions: 
ANS vs. AFS  

Main effect ‘age’ 
 
F(1,34)=1.195, p=.282 
 
Subjects: 
Young vs. Old 

Interaction ‘vel*age’ 
 
F(1,34)=.993, p=.326 

ssAP F(1,34)=16.376,   p<.001 F(1,34)=  .019,   p=.891 F(1,34)=  .146,   p=.705 
ssVE F(1,34)=13.176,   p=.001 F(1,34)=  .653,   p=.425 F(1,34)=1.616,   p=.212 
ssML F(1,34)=  7.703,   p=.009 F(1,34)=8.626,   p=.006 F(1,34)=8.441,   p=.006 
lsAP F(1,34)=10.848,   p=.002 F(1,34)=  .000,   p=.999 F(1,34)=2.167,   p=.150 
lsVE F(1,34)=10.286,   p=.003 F(1,34)=  .727,   p=.400 F(1,34)=4.856,   p=.034 
lsML F(1,34)=21.996,   p<.0001 F(1,34)=5.525,   p=.025 F(1,34)=4.601,   p=.039 

Table 5) GRF: main and interaction effects of velocity and age on entropy of asymmetrical step tasks – Main 
effects and contrasts of velocity, age and velocity*age on SaEn of GRF signals are given for trials ANS, AFS     
(Nyoung = 18, Nold = 18). Data components were separated per short step (ss) and per long step (ls), since ss and ls 
components were statistically different. Significant contrast effects are displayed in bold. The table represents one 
repeated measures ANOVA test. 
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Figure 12) Main effect velocity on entropy of GRF components (ANS, AFS) – Adjacent bars display SaEn 
values (µ ± σ) at PWS (ANS) vs. 1.3*PWS (AFS) in asymmetrical step tasks. Data of young and old subjects 
were included in this analysis (Nyoung = 18, Nold = 18). Results of GRF components AP, VE and ML with short 
steps (left) and with long steps (right) are displayed, respectively. Short an long step AP and VE components 
displayed significant complexity increase with walking velocity, while the ML component displayed a significant 
decrease with walking velocity. 
 
 

Figure 13) Main effect age on entropy of GRF components (ANS, AFS) – Adjacent bars display SaEn values 
(µ ± σ) of young vs. old subjects in asymmetrical step tasks. Data of trials ANS and AFS were included in the 
statistical analysis. Results of components AP, VE and ML with short steps (left) and with long steps (right) are 
displayed, respectively. ML components displayed significant decrease with age for short steps, and significant 
decrease with age for long steps. 
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GA responses: complexity alteration with walking velocity and with age 
(Trials ANS, AFS)  
 
In scale 14 of GA data, we assessed the main effect of within-subject factor ‘walking velocity’. Maulchy’s 
test of sphericity was not violated for the main effects of this factor. Therefore, sphericity was assumed. 
One old subject was excluded due to the lack of sufficient stride identifiers (Nyoung = 18, Nold = 18). The 
repeated measures ANOVA revealed a significant main effect of walking velocity on SaEn outcomes of 
GAs (Table 6). Contrasts revealed that walking velocity increased SaEn of short step AP components 
of the hip, knee and ankle. Subsequently, walking velocity increased long step AP components of the 
hip and knee (Figure 14). Elevating walking velocity to 130%*PWS resulted in significant increased 
entropy in flexion-extension movements of the hip, knee and ankle. Entropy of abduction-adduction 
movements was unaffected.  

Consecutively, the main effect of the between-subject factor ‘age’ was significant on SaEn 
outcomes of GAs. Contrasts revealed that age decreased SaEn for knee components lsAP, ssML, lsML 
and for ankle component lsAP (Figure 15). Old subjects exhibited decreased entropy in flexion-
extension and medial-lateral movements of the knee and in flexion-extension movements of the ankle.  
 Finally, main effects of the interaction ‘age*velocity’ were not significant. However, contrasts 
revealed significant effects of the interaction in the AP knee component for short steps, while the AP 
hip component for short steps just did not reach significance. Young subjects displayed equal entropy 
values with walking velocity in knee flexion-extension movements, while old subjects displayed 
increased entropy with walking velocity in this component. 
 

 
 
 

GA (SaEn) 
 
 
 
 
Component 

Main effect ‘velocity’ 
 
F(1,34)=10.201, p=.003 
 
Conditions: 
ANS vs. AFS  

Main effect ‘age’ 
 
F(1,34)=6.253, p=.017 
 
Subjects: 
Young vs. Old 

Interaction ‘vel*age’ 
 
F(1,34)=.049, p=.827 

AP ssHip F(1,34)=  4.532,   p=.041 F(1,34)=  .845,   p=.365 F(1,34)=3.994,   p=.054 
AP ssKnee F(1,34)=  5.405,   p=.026 F(1,34)=3.826,   p=.059 F(1,34)=5.707,   p=.023 
AP ssAnkle F(1,34)=15.144,   p<.001 F(1,34)=  .508,   p=.481 F(1,34)=  .938,   p=.340 
AP lsHip F(1,34)=  4.836,   p=.035 F(1,34)=  .361,   p=.552 F(1,34)=  .024,   p=.877 
AP lsKnee F(1,34)=  5.372,   p=.027 F(1,34)=7.157,   p=.011 F(1,34)=  .039,   p=.845 
AP lsAnkle F(1,34)=    .541,   p=.467 F(1,34)=4.836,   p=.035 F(1,34)=  .028,   p=.869 
ML ssHip F(1,34)=    .906,   p=.348 F(1,34)=1.632,   p=.210 F(1,34)=  .342,   p=.563 
ML ssKnee F(1,34)=  3.579,   p=.067 F(1,34)=7.224,   p=.011 F(1,34)=1.237,   p=.274 
ML ssAnkle F(1,34)=    .079,   p=.780 F(1,34)=  .008,   p=.930 F(1,34)=  .348,   p=.559 
ML lsHip F(1,34)=    .235,   p=.631 F(1,34)=1.780,   p=.191 F(1,34)=  .016,   p=.901 
ML lsKnee F(1,34)=    .159,   p=.692 F(1,34)=7.096,   p=.012 F(1,34)=2.282,   p=.140 
ML lsAnkle F(1,34)=    .111,   p=.741 F(1,34)=1.592,   p=.216 F(1,34)=2.222,   p=.145 

Table 6) GA: main and interaction effects of velocity and age on entropy of asymmetrical step tasks – Main 
effects and contrasts of velocity, age and velocity*age on SaEn outcomes of GA signals are given for trials ANS, 
AFS (Nyoung = 18, Nold = 18). Data components were separated per short, long step, since results displayed that short 
and long step components were statistically different. Significant contrast effects are displayed in bold. The table 
represents one repeated measures ANOVA test. 
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Figure 14a) Main effect velocity on entropy of hip GA components (ANS, AFS) – Adjacent bars display 
SaEn values (µ ± σ) at PWS (ANS) vs. 1.3*PWS (AFS) in asymmetrical step tasks. Data of young and old 
subjects was included in this analysis (Nyoung = 18, Nold = 18). Results of hip AP and ML components with short 
steps (left) and with long steps (right) are displayed, respectively. The hip AP component displayed significant 
entropy increase with walking velocity for both short and long steps. 
 
 

Figure 14b) Main effect velocity on entropy of knee GA components (ANS, AFS) – Adjacent bars display 
SaEn values (µ ± σ) at PWS (ANS) vs. 1.3*PWS (AFS) in asymmetrical step tasks. Data of young and old 
subjects was included in this analysis (Nyoung = 18, Nold = 18). Results of knee AP and ML components with short 
steps (left) and with long steps (right) are displayed, respectively. The knee AP component displayed significant 
entropy increase with walking velocity for both short and long steps. 
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Figure 14c) Main effect velocity on entropy of ankle GA components (ANS, AFS) – Adjacent bars display 
SaEn values (µ ± σ) at PWS (ANS) vs. 1.3*PWS (AFS) in asymmetrical step tasks. Data of young and old 
subjects was included in this analysis (Nyoung = 18, Nold = 18). Results of ankle AP and ML components with short 
steps (left) and with long steps (right) are displayed, respectively. The ankle AP component displayed highly 
significant entropy increase with walking velocity for short step targets. 
 
 

Figure 15a) Main effect age on entropy of hip GA components (ANS, AFS) – Adjacent bars display SaEn 
values (µ ± σ) of young vs. old subjects in asymmetrical step tasks. Data of trials ANS and AFS was included in 
the statistical analysis. Results of hip AP and ML components with short steps (left) and with long steps (right) 
are displayed, respectively. These GA components displayed no significant entropy alteration with age. 
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Figure 15c) Main effect age on entropy of ankle GA components (ANS, AFS) – Adjacent bars display SaEn 
values (µ ± σ) of young vs. old subjects in asymmetrical step tasks. Data of trials ANS and AFS was included in 
the statistical analysis. Results of knee AP and ML components with short steps (left) and with long steps (right) 
are displayed, respectively. The ankle AP component displayed significant entropy alteration with age for long 
step targets. 
 
 

Figure 15b) Main effect age on entropy of knee GA components (ANS, AFS) – Adjacent bars display SaEn 
values (µ ± σ) of young vs. old subjects in asymmetrical step tasks. Data of trials ANS and AFS was included in 
the statistical analysis. Results of knee AP and ML components with short steps (left) and with long steps (right) 
are displayed, respectively. Knee ssML, lsAP and lsML components displayed significant entropy decrease with 
age. The knee ssAP component just did not reach significance. 
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Discussion                

 
In the present study, we showed that Sample Entropy (SaEn) is a sensitive measure for quantifying 
changes in human gait function. We investigated entropy changes in electromyography (EMG), ground 
reaction force (GRF) and joint angle (GA) time series of asymmetrical step tasks. We found that age 
increased EMG entropy in the medial hamstrings (MH) and medial gastrocnemius (MG). Consecutively, 
age decreased GRF entropy in the medial-lateral (ML) component for short steps and increased entropy 
for long steps. Lastly, age decreased GA entropy in knee and ankle components. Furthermore, we 
found that walking velocity decreased entropy in EMG signals. Consecutively, walking velocity 
increased GRF entropy in anterior-posterior (AP) and vertical (VE) components and decreased entropy 
in the medial-lateral (ML) component. Lastly, walking velocity increased entropy in GA signals. 
Additionally, we found that walking velocity decreased entropy in EMGs of older subjects, that 
performed symmetrical step tasks with step targets excluded.  
 
 
EMG complexity alteration with walking velocity 
 
EMG complexity of asymmetrical step tasks decreased with walking velocity for quadriceps and 
hamstring muscles subjected to short steps (ssRF, ssVM and ssLH). Similarly, complexity decreased 
for quadriceps and hamstrings muscles subjected to long steps (lsVL, lsRF, lsVM, lsLH and lsMH). 
Here, the gastrocnemius muscle did not display these changes. To substantiate on these findings, we 
identified literature that found complexity decreases in EMGs with walking velocity. These changes 
were exposed in quadriceps, hamstrings (Den Otter et al., 2004) and medial gastrocnemius muscles 
(Kang et al., 2016; Kang et al., 2006). However, these studies used symmetrical step tasks to assess 
these changes. For accurate asymmetrical stepping at different walking velocities, we speculate that 
appropriate flexion and extension movements of the hip and knee were crucial. This could explain the 
complexity changes found in the quadriceps and hamstrings muscles. In turn, the gastrocnemius is 
proposed to be mainly involved in foot lift off (Hamner et al., 2010). Decreased complexity in EMGs 
could be linked to optimization of the neuromotor system. In system theory, high complexity in system 
driver components (i.e.: EMG) is typically linked to system instability (Hamill et al., 1999; Masani et al., 
2002). We speculate that high walking velocity introduced increased risk of system instability. Therefore, 
it can be reasoned that the hamstrings and quadriceps muscles optimally adapt to walking velocity and 
minimize complexity of muscle responses at high walking velocity. This leads to system stability and 
would eliminate the risk of falling while reaching task success (Kang et al., 2008; Liang et al., 2016; Yu 
et al., 2009). 

To substantiate on the latter speculation, results of symmetrical step tasks of older subjects 
displayed that walking velocity lower than PWS led to high muscle complexity. Subsequently, walking 
velocity higher than PWS led to low muscle complexity (Hamill et al., 1999; Masani et al., 2002). Here, 
the medial head of the gastrocnemius did not display these changes. This stood in agreement with 
literature, that too showed these effects in EMGs of symmetrical step tasks (Kang et al., 2016; Kang et 
al., 2006). We suggest that walking at lower velocity than PWS allows for more muscle complexity while 
system stability is maintained. Subsequently, walking at high velocity allows for less muscle complexity. 
Fortunately, we identified a study that related system instability to signal complexity. This study showed 
that decreased GRF complexity is an indicator for fall risk in older subjects (Liang et al., 2016).  

 
 
EMG complexity alteration with age 
 
Medial hamstrings (MH) and medial gastrocnemius (MG) muscle responses increased in complexity 
with age for asymmetrical step tasks. Previous research by Kang and colleagues found a significant 
increase of MG EMG complexity with age, for symmetrical stepping (Kang et al., 2016). In literature, 
complexity changes with age are typically proposed to be caused by lower walking speed and increased 
neuromotor noise (Bisi et al., 2016; Kang et al., 2016; Kang et al., 2008; Liant et al., 2016; Masani et 
al., 2002; Pavei et al., 2019; Qiao et al., 2018; Zhang et al., 2019). Additional literature substantiates 
on this proposal, that displays complexity changes with age were found independent of walking velocity. 
Therefore, age-related factors other than walking velocity seem to contribute to the increased gait 
complexity (Kang et al., 2006). In turn, literature displays aged muscles introduce system instability (Bisi 
et al., 2016). In our case, we propose that greater EMG complexity with aging, may be a sign of muscle 
deterioration. High complexity found in the MH may be indicative of instability in knee flexion and hip 
extension movements. Similarly, high complexity in the MG may reflect instability of the propulsion 
movement of the foot.  
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Unfortunately, literature that assessed EMG complexity changes with age is still scarce. Therefore, we 
identified subsequent literature that assessed these changes with diseased states. We identified an 
exemplar study that contrasted complexity in leg muscle responses of cerebral palsy (CP) patients with 
healthy patients. Their study exposed increased complexity with disease in hamstrings muscles for 
normal walking (Tao et al., 2015). This complexity increase likely reflects substantial over-activation, 
abnormal synchronization and spasticity, as a result of brain injury following CP. In the study by Tao 
and colleagues, an increased complexity reflected system instability.  

Additionally, we identified a study that contrasted lower extremity EMG responses of post-
stroke patients with healthy adults (Chen et al., 2018). In the study by Chen and colleagues, subjects 
performed obstacle step tasks. Their results reported a complexity increase with stroke in the RF muscle. 
This increase was proposed to be linked to a reduced number of motor units, caused by stroke. In turn, 
the stepping task likely introduced these changes specifically in the RF muscle, because the stepping 
task required subjects to strongly flex the knee to pass obstacle tests.  

Lastly, we identified literature that included healthy and Parkinson’s disease (PD) patients, who 
performed isometric contractions. Results showed significant decreased complexity with PD in 
quadriceps and hamstrings muscles (Flood et al., 2019). Considering the above-mentioned results, we 
suggest that complexity changes in EMG responses can be linked to muscle health and to the task 
requirement. Therefore, we propose that evaluating EMG complexity information could be of particular 
interest to evaluate outcomes of medical interventions. 

 
 
GRF complexity alteration with walking velocity 
 
GRF complexity increased with walking velocity in anterior-posterior (AP), vertical (VE) and medial-
lateral (ML) components subjected to short and long steps. Fortunately, these results stand in 
accordance with literature that assessed GRF complexity with walking velocity. In a study by Masani 
and colleagues, complexity of AP, VE and ML components was minimized for PWS (Masani et al., 
2002). In turn, complexity increased when walking velocity was increased or decreased in contrast to 
PWS. These optimization phenomena suggest that we choose the most energetically efficient velocity 
when we walk. Subsequently, at PWS, the gait system seems to be most stable.   

Additionally, we identified a study that measured AP and VE GRF components for skilled versus 
unskilled race-walking athletes. A study by Preatoni and colleagues found increased entropy in VE 
components for skilled race walkers (Preatoni et al., 2010). Typically, GRF outputs may be considered 
as the final outcome of the whole movement. Subsequently, we suspect that the complexity found in 
these outputs likely consists of random fluctuations and functional changes that are associated with 
properties of the neuromotor system. In our study and the study by Masani and colleagues, an increase 
in GRF complexity likely reflected energy expenditure, that seems to be minimized at PWS. In turn, in 
the study by Preatoni and colleagues, an increase in complexity reflected athletic performance. 
Therefore, we suggest that the physiological meaning assigned to complexity outcomes of GRFs, is 
strongly dependent on the experimental set-up.  
 
 
GRF complexity alteration with age 
 
ML GRF complexity decreased with age for short steps and increased with age for long steps. To 
understand the meaning of these results, we propose to connect GRF complexity results to results 
found in EMG responses. We found research that shows the MG muscle output is strongly related to 
inversion-eversion torques of the foot (Vieira et al., 2013). Consecutively, for asymmetrical step tasks, 
we speculate that foot torques were used to stabilize the leg. This stabilization was likely applied while 
the other leg was in swing phase to reach the next step target. We propose that the age effect found in 
complexity outcomes of the MG muscle, could explain the age effect found in the ML GRF component. 
These results indicate possible stepping strategies that were used by the subject. Subsequently, age 
is proposed as a factor that deteriorated this stepping strategy.  
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Additionally, a study by Zhang and colleagues assessed GRF complexity changes with age in running 
tasks. In these tasks, the complexity of AP and VE components was increased with age (Zhang et al., 
2019).  This study proposed that low GRF complexity reflected a controlled and well-coordinated 
running pattern. In turn, increased GRF complexity was linked to a loss of inter-segmental coordination 
and loss of smoothness of force production in running. Considering the above-mentioned GRF results, 
one could suggest that GRFs can be used to quantify healthy gait function. However, evaluating GRF 
information will not gain insights in the source of gait disabilities. Nevertheless, including analysis of 
GRF entropy could possibly be convenient for rehabilitation procedures, for example, to expose the 
movement outcome of disability (Liang et al., 2016; Masani et al., 2002).  
 
 
GA complexity alteration with velocity 
 
GA AP complexity increased with walking velocity in hip, knee and ankle components subjected to short 
steps. Subsequently, GA AP complexity increased with walking velocity in hip and knee components 
subjected to long steps. Here, the ML component did not alter with walking velocity. These complexity 
changes are likely correlated to the task requirement. The asymmetrical stepping tasks typically 
required subjects to make well-coordinated flexion-extension movements with their lower extremity 
joints. In particular, for short steps, it was crucial to stabilize the leg with the ankle. The other leg could 
then make a long swing phase motion that reached the long step target. As a consequence, ankle AP 
complexity increased with walking velocity for short steps. This is supported by our GRF results, that 
showed increased complexity in AP, ML and VE components. Subsequently, hip and knee AP 
complexities are increased with walking velocity for both short and long steps. This result can be 
explained by the larger forward leg propulsion, that was required to reach the step target at increased 
walking velocity. As for GRFs, we propose that GAs may be considered as the final outcome of the 
whole movement. Therefore, we expected some of their results could be linked. 

To elaborate on the latter speculation, we identified additional studies that assessed complexity 
alteration of GAs. Firstly, a study by Georgoulis and colleagues measured healthy versus anterior 
cruciate ligament deficient (ACL) patients for normal walking tasks (Georgoulis et al., 2006). Their study 
displayed decreased complexity in the deficient knee, in contrast with the healthy knee. Here, low 
complexity reflected limited degrees of freedom (DOF) of knee motion. Consecutively, a study by 
Preatoni and colleagues measured skilled versus unskilled running athletes for running tasks (Preatoni 
et al., 2010). In their study, skilled athletes displayed increased entropy values at hip and ankle AP 
angles, in contrast with unskilled athletes. When we consider the results of GAs, we propose the 
physiological meaning of GA complexity strongly depends on the application. When disabilities are 
compared with healthy states, decreased complexity reflects limited DOF (Georgoulis et al., 2006). 
Consecutively, when race-walking is assessed, increased complexity in GAs reflects athletic 
performance (Preatoni et al., 2010).   
 
 
GA complexity alteration with age 
 
We found that complexity decreased with age in knee and ankle AP components for long steps. 
Subsequently, complexity decreased with age in the ML ankle component for short and long steps. 
Literature on this topic typically displays MH and MG muscles are crucial for coordinated knee and 
ankle flexion and extension movements (Beyer et al., 2019; Vieira et al., 2013). Therefore, we propose 
that the knee and ankle AP complexity decrease with age, could be linked to the increase found in MH 
and MG muscles. Similarly, complexity decrease with age in the knee ML component could be linked 
to changes found in the ML GRF component. Here, we speculate that decreased complexity of knee 
and ankle GA components, reflects limited DOF of older subjects. In turn, limited DOF is quantified by 
more regular GA outputs.  

Unfortunately, literature on GA complexity alteration with aging is still scarce. We identified one 
exemplar study that applied perturbations to the hip during normal walking of young and old subjects. 
Results of the study by Qiao and colleagues found increased complexity for old subjects as a response 
to perturbations, in contrast with young subjects (Qiao et al., 2018). This characterized that the 
locomotor system of old subjects was more prone to destabilization by external disturbances. Collecting 
these results, proposes that complexity analysis of GA outputs could be convenient to expose 
physiological changes of joint movements with aging. Moreover, the results of GAs can be linked to the 
results found in EMGs and GRFs. In fact, including complexity analysis of these three datatypes in 
physical therapies, might help in unveiling functional changes in gait with aging or disease. Moreover, 
contrasting complexity outcomes of diseased states to healthy states in these data outputs, might help 
to optimize future physical therapies to improve gait function in an efficient manner. 
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Limitations  
 
Firstly, we only analyzed changes with age and with walking velocity in the temporal resolution of EMGs, 
GRFs and GAs that maximized complexity. Here, we followed literature that suggested complexity 
changes with age and with disease are most prominently expressed in the selected temporal resolution 
(Kang et al., 2006; McIntosh et al., 2018; McIntosh et al., 2010; Kaplanis et al., 2012). Unfortunately, 
human gait studies that assess SaEn changes with age over a broad temporal resolution range are still 
limited. In our study, EMG, GRF and GA frequency power was maximized in the [10-300] Hz, [5-20] Hz 
and [0-20] Hz range, respectively. Evaluating SaEn changes with age in temporal resolutions that 
represent these frequencies, would help to approve a possible optimal data scale range to expose 
changes in healthy gait function with age and with disease. In fact, investigating this scale range could 
be of particular interest for clinicians. For example, knowing which frequencies to target with SaEn, 
could help in monitoring the improvement of gait function after stroke in an efficient manner (Harbourne 
et al., 2009). Alternatively, to investigate changes in human movement, SaEn might be evaluated in 
temporal scales that reflect human motion. For example, in the [0-10] Hz frequency range of GRFs and 
GAs. We therefore suggest that future gait studies should investigate entropy changes with age and 
with disease for additional temporal resolutions, that could help define possible future clinical 
applications for the SaEn algorithm. 
 Secondly, our study is limited in that we only considered SaEn values of the first 20 scales of 
the passband of the analyzed signals. We considered EMG frequencies 25-500 Hz, GRF frequencies 
1-20 Hz and GA frequencies of 0.5-10 Hz. This limitation was introduced by the limited available stride 
identifiers in many subjects. To overcome the entropy dataset length bias, we analyzed an equal 
amount of gait phases and data samples for all subjects. In turn, we excluded data that had insufficient 
identifiers available per condition. In trials ANS and AFS, EMG, GRF and GA data satisfied the minimum 
amount of dataset length (N > 100). However, in trials F1 and F2, GRF and GA data did not satisfy the 
requirement (Yentes et al., 2013). Therefore, we excluded these datatypes from entropy analysis in 
these trials. To counter the entropy dataset length bias, we therefore recommend that future entropy 
studies check the sample frequencies of the equipment beforehand. Subsequently, the minimum 
required dataset length of the entropy algorithm should be checked. Finally, sufficient recording times 
should be selected.  

Thirdly, in our complexity analyses we used input parameter r=0.1 for SaEn. This parameter 
determined the criterion for finding similarity in complexity calculations (Appendix A3). Here, we 
followed literature that suggested that the r that maximized entropy outcomes, defined as rmax, is the 
best r value to choose. The value of entropy obtained by rmax would then quantify the highest information 
difference between segments. More importantly, this rmax would allow to account for more of the signal 
complexity than other values of r (Chen et al., 2018; Castiglioni et al., 2008). Important to note, however, 
is that the correct choosing of r is still discussed in literature. Recent studies propose the r-value should 
lie in the range of 0.01-0.25. These studies include human hormonal processes (Pincus et al., 1991b; 
Pincus et al., 1992), ECG data (Castiglioni et al., 2008), respiratory signals (Chen et al., 2018) and gait 
data (Yentes et al., 2013). Our results are limited in that we only evaluated results for the range of r = 
[0.1-0.2]. Subsequently, we found an increased level of statistical significance with age for rmax (r=0.1), 
in contrast with other values of r in this range. In this document we only included the data generated by 
rmax. 

Lastly, our results might be limited in that we determined SaEn of EMGs, GRFs and GAs that 
were recorded on a treadmill in the ‘fixed speed’ setting (trial 0-4). Here, literature identified that the 
natural complexity found in kinematics might be slightly biased towards regularity in a ‘fixed speed’ 
treadmill setting, when compared to a ‘self-paced’ setting. Fortunately, differences in kinematics 
between the two settings were small and were proposed to be clinically irrelevant (Sloot et al., 2014). 
Additional research should confirm whether EMGs and GRFs are found indifferent in the two treadmill 
settings. Subsequently, treadmills can alter the natural complexity of gait outputs when compared to 
gait outputs of overground walking. Literature proposed that after 6 minutes of treadmill familiarization, 
joint kinematics are found indifferent from overground walking (Papegaaij et al., 2017). Fortunately, this 
requirement was satisfied in the recordings of our dataset. However, we suggest that future studies 
should investigate this phenomenon in EMGs and GRFs. Therefore, our results might be limited, in that 
we analyzed treadmill gait data instead of overground gait data. Last but not least, subjects that 
performed walking tasks with step targets included in trial 1-2, were provided with auditory feedback. 
Here, our results are limited, in that auditory feedback might have distorted gait outputs. In literature, 
we found that gait outputs are altered with visual feedback (Kim et al., 2012). Therefore, we suggest 
future studies should investigate gait outputs without feedback (open-loop) versus with feedback 
(closed-loop), to confirm this limitation.  
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Strength of our data and future directions 
 
To date, research of biomechanics and motor control discussed whether entropy algorithms could be 
used to characterize healthy gait function and to evaluate outcomes of physical therapies (Lipsitz et al., 
1992; Morrison et al., 2012; Stergiou et al., 2006). Therefore, conducting the present study was useful. 
We exhibited entropy changes with age and with walking velocity in EMGs, GRFs and GAs of 
asymmetrical step tasks. As a secondary goal, we showed which datatype most prominently expressed 
entropy changes with age. In EMG data, MH and MG muscles showed increased entropy with age with 
a high level of significance. These complexity changes were likely linked to muscle health and to the 
task requirement (Kang et al., 2016; Lipsitz et al., 1996). In GRFs and GAs, we found decreased entropy 
with age with a lower level of significance. Our results, and results of others (Lipsitz et al., 1992; Pincus 
et al., 2006; Smith et al., 2011), demonstrate the feasibility of entropy algorithms for quantifying healthy 
gait function in medical interventions. We suggest additional research should add on these results, that 
could help define a possible physiological entropy standard for healthy gait function. Subsequently, we 
suggest that future gait rehabilitation therapies could use entropy of EMGs to investigate the source of 
gait disabilities and to monitor the progression of rehabilitation. Additionally, GRFs and GAs could be 
included in the analysis, to help identify the movement outcome of the disability.  

Secondly, the present study made a difference in entropy analysis. We showed that SaEn has 
its limits. In our supplementary material, we assessed SaEn’s dependency on the number of samples 
of the interpreted dataset. We portrayed these effects for regular and erratic data (Appendix A3). As a 
result, we accounted for the entropy dataset length bias by extracting an equal amount of gait phases 
per subject. We normalized all subjects to a fixed number of samples with a shape preserving spline 
algorithm (Coutinho et al., 2017; Eng et al., 2007; Lencioni et al., 2017; Marateb et al., 2016; Unser et 
al., 1999). Subsequently, we discovered literature that did not account for the entropy dataset length 
bias. These studies considered entropy analysis of EMG (Kang et al., 2016; Rathleff et al., 2011; Tao 
et al., 2015), of accelerometry (Bisi et al., 2016; Clermont et al., 2016; Lammoth et al., 2010; Lee et al., 
2010; Tochigi et al., 2012), of GRFs (Preatoni et al., 2010; Zhang et al., 2019) and of EEG data (Chung 
et al., 2013; McIntosh et al., 2018; McIntosh 2010). Therefore, we suggest future entropy studies should 
account for the dataset length bias.  

At the current stage of entropy research in medical interventions, we suspect a promising future 
lies ahead. An elegant example of promising research can be found in current neurology studies. These 
studies exhibited increased entropy of EEGs in patients with dementia in contrast with patients who 
remained dementia-free. Consecutively, these studies suggested that entropy algorithms could help to 
identify individuals at risk for dementia in early stages of the disease (Bertrand et al., 2016; McIntosh 
et al., 2018). Additional research exposed neural disturbances in EEGs with entropy, that were 
associated with the development of Alzheimer’s (Maturana-Candelas et al., 2019). Lasty, entropy 
research exhibited an effective non-invasive discrimination technique, that separated healthy patients 
from neuromuscular disorder patients (Kaplanis et al., 2010, Vallejo et al., 2018). Conducting additional 
research on these subjects could confirm interesting future clinical applications for entropy algorithms. 
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Appendices – Overview  
 
In Appendix A, we give the definition of the Approximate Entropy algorithm (ApEn). ApEn was derived 
by Steven Pincus (Pincus et al., 1991ab). In turn, ApEn is contrasted to its successor, the Sample 
Entropy algorithm (SaEn). SaEn was used to quantify signal complexity in the present research. Finally, 
details are presented on the parameter choosing and the dataset length dependency of the SaEn 
algorithm.  
 
In Appendix B, we collect results of medical research that quantified signal complexity with SaEn in 
human EMGs, GRFs, accelerometry and EEGs. Subsequently, we identify limitations in these studies. 
Finally, we present a solution to these limitations.  
 
In Appendix C, the application to the Human Research Ethical Committee (HREC – TUDelft) is 
presented. However, the proposed research could not be conducted because of the ongoing COVID-
19 pandemic.  
 
In Appendix D, we display the joint maker placement. These markers measured joint kinematics in the 
experiments.  
 
Finally, in Appendix E, we present detailed results of the experiments.  
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Appendix A – Entropy algorithms explained 
 
∗ Introduction 
 
Time series data generated by biological systems often contain deterministic and stochastic 
components (Costa et al., 2005). Subsequently, the stochastic components of these time series are 
often considered as ‘noise’ of the biological system. Chaotic structures are typically challenging to 
quantify with conventional measures as the mean and standard deviation (SD) (Sosnoff et al., 2012), 
the coefficient of variation (CV) (Hausdorff et al., 2015) and the Lyapunov exponent (Terrier et al., 2015). 
However, chaotic structures of biological systems are proposed to strongly relate to motor learning and 
health (Pincus et al., 1991a; McIntosh et al., 2010). Therefore, Steven Pincus proposed to encapsulate 
properties of the changing complexity of a biological system with Approximate Entropy (ApEn). The 
ApEn algorithm quantifies signal complexity non-linearly (Pincus et al., 1991a; Pincus et al., 1991b). 
Consecutively, endocrinology, cardiology and neurology considered the quantification of signal 
complexity in biological system outputs as a useful biomarker (Goldberger et al., 2002; Pincus et al., 
2006; Pincus et al., 2000; Pincus et al., 1996).   

Cardiology has an increasing recognition for entropy algorithms to evaluate electrocardiograms 
(ECGs) and beat-to-beat differences (BBDs) in heart rate data. Here, signal complexity analysis could 
identify high-risk patients for congestive heart failure, atrial fibrillation or cardiac arrhythmia in early 
stages of the disease (Costa et al., 2005; Pincus et al., 1991a). Previously, the physician was trained 
to recognize these abnormalities by hand. Here, entropy algorithms could likely help to optimize the 
training procedure of the physician. 

Consecutively, research of human gait analysis investigated the clinical application of analyzing 
signal complexity. However, there remains debate on the topic (Bisi et al., 2016; Georgoulis et al., 2006; 
Kang et al., 2016). This ongoing debate inspired the present research to investigate whether entropy is 
a sensitive measure for quantifying complexity changes in human gait function. In the present appendix, 
we select the complexity algorithm suitable for our analysis (Appendix A1, Appendix A2). Furthermore, 
we discuss the choosing of its parameters and its dependency on dataset length (Appendix A3).  
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A1) Approximate Entropy and Sample Entropy  
                                                                                                                                      
∗ Approximate Entropy (ApEn) – definition and explanation 

Approximate Entropy (ApEn) was derived by Steven M. Pincus. ApEn quantifies a measure of 
complexity or regularity of a time series x(i) (Pincus et al., 1991b). The algorithm calculates the 
logarithmic probability that segments of the data fall within a distance r of the standard deviation of the 
dataset. This is derived via the correlation function C(r). First, the time series x(i), with i=1, … ,N, is 
divided into segments: 
 

 u(i)=[x(i), x(i+τ), x(i+2τ), … , x(i+(m-1)τ)]  

Here, m is the segment length or embedding dimension, and τ  is the time lag, set to 1. Subsequently, 
we calculate whether segment xi is similar to the rest of the m-segments. The distance d is then 
expressed as the maximal distance between two m-dimensional points:  
 

d[u(i),u(j)] = max(|u(i+k) – u(j+k)|), with 1 ≤ j ≤ N-m+1 and 0 ≤ k ≤ m -1  

Consecutively, the correlation function Cim(r) is the number of vectors u(j) within the distance r from the 
template vector u(i). If the distance is more than the threshold r, the algorithm counts ‘1’. If the distance 
is less than r, the algorithm counts ‘0’, respectively. Here, ‘1’ counts lead to a higher complexity value 
and ‘0’ counts lead to a lower complexity value. This is derived as follows:  
 
Cim(r) = (N – m + 1)-1 = � �𝐻𝐻(𝑟𝑟 ∗ σ − |𝑑𝑑�𝑢𝑢(𝑖𝑖),𝑢𝑢(𝑗𝑗)�|�𝑁𝑁−𝑚𝑚+1

𝑖𝑖=1
 

In the latter formula, H(…) is expressed as the Heaviside step function. Here H is ‘1’ if (𝑟𝑟 ∗ σ−
|𝑑𝑑�𝑢𝑢(𝑖𝑖),𝑢𝑢(𝑗𝑗)� ≥ 0 and ‘0’ otherwise. Then, ∅ m(r) is representing the average of the natural logarithm of 
Cim. Note here, that the logarithm computes the fraction (Nr. of segments similar to block xi / Nr. of 
segments). This way, small fractions won’t skew the distribution. This is formulated as: 
 
∅ m(r) = (N – m + 1)-1� (ln (𝐶𝐶𝑖𝑖𝑚𝑚(𝑟𝑟))𝑁𝑁−𝑚𝑚+1

𝑖𝑖=1
 

Finally, ApEn is expressed as the difference between the logarithmic probability that vectors which are 
close for m points, are also close if lengthened to m + 1 points. This way, higher regularity would mean 
less difference between ‘m’ and ‘m+1’ segment lengths:  
 

ApEn(m,r,N) = ∅ m(r)- ∅ m+1(r) 

 
The ApEn algorithm depends on the embedding dimension m, the criterion for similarity r and the 
number of data points N. In general, m is set to 1 or 2 to ensure statistical validity, r is set to 10% or 
20% of the standard deviation of the time series. N should exceed 200 data points. ApEn gives an 
output of ‘2.0’ if the analyzed signal is completely random and gives an output of ‘0.0’ if the signal is 
periodic (e.g.: sinusoid function) (Pincus, 1991b; Lipsitz et al., 1992; Yentes et al., 2013).  
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∗ Sample Entropy (SaEn) – definition and explanation 

Sample Entropy (SaEn) is a modification on ApEn. SaEn quantifies the complexity of structure or 
complexity of a time series x(i). In contrast with ApEn, SaEn excludes self-matches in the distance 
vector d (Pincus et al., 1991b; Yentes et al., 2013). When self matches are excluded, the bias towards 
regularity is eliminated. This means that when distance d between u(i) and u(j) is computed, i is never 
equal to j (Delgado et al., 2019). In SaEn, the exclusion of self-matches is written in the distance function 
as:  
 
d[u(i),u(j)] = max(|u(i+k) – u(j+k)|), with 1 ≤ j ≤ N-m and i ≠ j  
 
Now, ∅ ‘ m(r) represents the average of the probability of matches C’im(r). Here, C’im(r) is computed as 
Cim(r), only now for the distance vector excludes self-matches. This is formulated as: 
 
∅ ‘ m(r) = (N – m)-1� ( 𝐶𝐶𝑖𝑖′ 𝑚𝑚(𝑟𝑟))𝑁𝑁−𝑚𝑚

𝑖𝑖=1
 

Finally, SaEn represents the negative logarithm of the relationship between the probability that two 
sequences coincide for m+1 and m points. This is formulated as:  
 

SaEn(m,r,N) = -ln(∅ ‘ m+1(r)/ ∅ ‘ m(r)) 

SaEn depends on the embedding dimension m and the criterion for similarity r. In general, m is set to 
1 or 2 to ensure statistical validity. Subsequently, r is set to 10% or 20% times the standard deviation 
of the time series. N should be at least 100 data points (Richman & Moorman, 2000). SaEn yields an 
output of ‘3.0’ if the analyzed signal is completely random and yields an output of ‘0.0’ if the signal is 
periodic (e.g.: sinusoid function) (Pincus, 1991; Lipsitz et al., 1992; Richman & Moorman, 2000; Yentes 
et al., 2013). Consecutively, we explain the parameter choosing and the dataset length dependency of 
the SaEn algorithm in Appendix A3. 
 
 
∗ Contrasting ApEn and SaEn for time series data  

ApEn and SaEn are algorithms that determine the complexity of time series data based on non-linear 
analysis. Despite their similarities, the theory behind these techniques is different. This is sometimes 
ignored in literature (Delgado-Bonal et al., 2019). SaEn is largely independent on the dataset length N 
and shows more consistent behavior for different input parameters in time series data than ApEn 
(Yentes et al., 2013). This makes SaEn more effective for short and noisy time series (Delgado et al., 
2018; Richman & Moorman 2000). The latter property is a useful property of SaEn, since studies of 
human gait often favor to require maximally short recording times of the subject. In fact, experimental 
set-ups are often limited by recording devices with a low sampling frequency (e.g.: fs = 100 Hz). In turn, 
a low sample frequency requires long recording times of the subject to reach the minimum amount of 
dataset length for ApEn. Moreover, SaEn excludes the bias towards regularity by excluding self-
matches (Delgado-Bonal et al., 2019). Therefore, the present research quantified signal complexity in 
EMGs, GRFs and GAs using the SaEn algorithm, that stood in agreement with previous literature 
(Ahmed et al., 2011a; Chung et al., 2013; Costa et al., 2003; Delgado et al., 2019; Yentes et al., 2013).  
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A2) Multiscale Entropy 
 
∗ Multiscale Entropy (MSE) – definition and explanation 

The Multiscale Entropy (MSE) method is used to display the complexity of time series data over multiple 
timescales or temporal resolutions of the data. First, the temporal resolutions are determined with the 
coarse-grained time series procedure. Consecutively, SaEn values are calculated for these temporal 
resolutions. To account for both short, - and long-range correlations in biological systems, literature 
proposed to calculate SaEn values over multiple scales of the time series (Costa et al., 2005; Tao et 
al., 2015; Bisi et al., 2016; Maturana-Candelas et al., 2019; Yang et al., 2013). In heart rate data, it was 
generally difficult to distinguish inter-beat interval time series of different diseased and healthy states 
with only a single-scale SaEn value. Therefore, the original time series {xi} is divided into multiple time 
scales of the dataset. The coarse-grained time series is then {yj}:  
 
 𝑦𝑦𝑗𝑗τ = 1

τ
 ∑ 𝑥𝑥𝑖𝑖 , 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁

τ
𝑗𝑗τ
𝑖𝑖=(𝑗𝑗−1)τ+1 .  

The original time series is divided into non-overlapping windows of length τ and the data points inside 
each window are averaged (Figure A.1). Subsequently, SaEn values are used to quantify the complexity 
of the coarse-grained time series. When we plot entropy outcomes over multiple scales, the MSE curves 
can be contrasted, based on the following guideline: 
 

• If for the majority of scales, the entropy values are higher in one time series than for the 
other time series, the former time series is considered as more complex than the latter. 

• A monotonic decrease of entropy values indicates the original time series only contains 
information at the smallest time scale, scale 1. 

 
We give a visual representation of the coarse-graining time series procedure for a completely regular 
signal and for the experimental EMG data on the next pages.   
 
 
 

 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

Figure A.1) Coarse-grained time series – The MSE method calculates 
sample entropy outcomes of coarse-grained time series, in which the 
original dataset is divided into multiple time-scales, as displayed above. 
Coarse-grained time series are implemented in Matlab 2018a 
(Mathworks, Natick MA). 
 
For more information, see (Costa et al., 2002) 
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∗ Coarse-grained time series – sinusoid  

Here, we give a simple explanation of the definition of a coarse-grained time series. We interpret a 
completely regular signal, a sinusoid. Subsequently, we represent this signal for different resolutions. 
First, we analyze the experimental gait data of young (N=18; µage = 25) and old (N=19; µage = 65) subjects 
at comfortable walking speed. From the subject data, we determined the mean frequency and the mean 
duration of a single stride:  
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌)   ∶ 𝑓𝑓 = 1.00 𝐻𝐻𝐻𝐻  ;  𝑇𝑇 =  1.0𝑠𝑠  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑂𝑂𝑂𝑂𝑂𝑂)         ∶ 𝑓𝑓 = 0.83 𝐻𝐻𝐻𝐻  ;  𝑇𝑇 =  1.2𝑠𝑠 
 
We plot the regular signal for these eigenfrequencies and sample times with fs = 1000 Hz. Subsequently, 
we plot the coarse-grained time series at scale 10 and scale 20 of the signals. When we plot the signal 
for different temporal resolutions, the sample time and frequency vector change. For example, the time 
and frequency vectors at scale 10 would yield:  
 
dtscale10 = dtoriginal * 10  
  fscale10 =   foriginal / 10  
 
The sinusoid signal and its coarse-grained time series are plotted in Figure A.2a. Subsequently, Figure 
A.2b is zoomed in on the first peak of the signal. The latter figure displays the sinusoid function is 
described with less points in the coarse-grained time series than in the original time scale. 
 
 

∗ Coarse-grained time series – EMG of right VL muscle 

Next, we interpret the EMG response of the right VL muscle of an exemplar old subject. We extract a 
single stance and swing phases for this subject. In turn, we determined the coarse-grained time series 
of scale 5, 10, 15 and 20 of the data. The number of datapoints in the coarse-grained time series are 
modified. In scale 10 this would yield: 
 
Nscale10 = Noriginal / 10  
 
Consecutively, we plot the EMG signal and its coarse-grained time series of the right VL muscle in 
Figure A.3.  
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Figure A.2ab) Coarse-grained time series of a sinusoid signal – a) 1.0 Hz and 0.83 Hz sinusoids representing the gait 
frequency of young and old subjects, respectively. Both sinusoids are plotted for fs=1000 Hz. The coarse-grained time series 
are plotted for scale 10 and 20. b) Same as in a). The plots of scale 10 and 20 show the original signal is described with less 
points, and thus displayed at lower temporal resolution. Coarse-grained time series were implemented in Matlab 2018a 
(Mathworks, Natick MA). 
 

      a) 
 

      b) 
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Figure A.3) Coarse-grained time series of EMG response right Vastus Lateralis muscle - The original the EMG response of the 
right VL muscle of an exemplar old subject of trial ANS is displayed (black). The x-axis displays the percentage of the gait cycle, 
starting with the stance phase and ending with the swing phase. Temporal resolutions of the signal are represented by coarse-grained 
time series of Scale 5 (gray), Scale 10 (crimson red), Scale 15 (steel blue) and Scale 20 (forest green), respectively. The dataset 
lengths are normalized, to display the effects of the coarse-graining procedure on the signal. Dataset lengths are modifier according 
to: (Nscale nr. = Noriginal / Scale nr.). Scale 1 of the EMG signal only contains frequencies < 450 Hz. In the consecutive scales of this 
data, the frequency content represented is limited to: (450 Hz / Scale nr.).  
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A3) Parameters m, r and N 
 
Entropy calculations are dependent on input parameters m, r and the dataset length N. We identified 
exemplar studies of human heart rate data (Castiglioni et al., 2008; Pincus et al., 1991b) and human 
gait data (Montesinos et al., 2018; Yentes et al., 2013) that investigated the influence of these 
parameters on entropy outcomes.  
 
 
∗ The embedding dimension parameter: m 
 
The embedding dimension cuts the analyzed time series data into segments with length m. 
Consecutively, all m-length segments of the time series data are compared to the rest of the dataset. 
Parameter m determines the sensitivity of the number of correlations that can be found within the given 
time series (Yentes et al., 2013; Pincus et al., 1991b). In fast varying data like heart rate data and EMG, 
a greater segment distance means less comparisons. In turn, this will decrease the maximum 
complexity that can be found. Research in human foot center-of-pressure data (Ahmed et al., 2011a; 
Montesinos), EMG data (Kang et al., 2013) and ECG data (Costa et al., 2005) suggests that an m-value 
of 2 is most effective to quantify complexity for healthy and diseased states. In turn, choosing a higher 
m decreases the max value of entropy that can be found (Montesinos et al., 2018). We approved this 
effect in the present research for the measured data types. Consecutively, this led us to choose 
parameter m=2, for EMG, GRF and kinematic data as recommended by research (Castiglioni et al., 
2008; Montesinos et al., 2018; Pincus et al., 1991b; Yentes et al., 2013).  
 
 
∗ The criterion for similarity parameter: r  
 
The criterion for similarity parameter specifies a fraction r times the standard deviation that is used in 
the distance vector for computing correlations. When entropy is calculated, the probability is determined 
that m-length segments are similar and will remain similar when the segment length is increased to 
(m+1) (i.e.: closer to each other than a given distance r*σ). In other words, r determines the tolerance 
for the algorithm to find these correlations. Fortunately, research discussed the choosing of r in human 
hormonal processes (Pincus et al., 1991b; Pincus et al., 1992), in ECG data (Castiglioni et al., 2008), 
in respiratory signals (Chen et al., 2018) and in gait data (Yentes et al., 2013). Typically, these authors 
suggest using an r value between 0.1-0.25. Most of these authors recommend a value of r=0.2 for these 
datatypes. It is important to mention that others speculate that the r that maximizes entropy outcomes, 
defined as rmax, is the best r value to choose. The value of entropy obtained by rmax then quantifies the 
highest information difference between segments of length m and (m+1). Therefore, this method allows 
to account for more of the signal complexity than other values of r (Chen et al., 2018; Castiglioni et al., 
2008). In the present research, we chose the r value in the range 0.1-0.25 that maximized entropy 
outcomes, as recommended by recent literature (r=0.1) (Chen et al., 2018). 
 
 
∗ Dataset length parameter: N 
 
The dataset length dependency of entropy algorithms is extensively reported in literature (Pincus et al., 
1991b; Pincus et al., 2000; Pincus et al., 1992; Yentes et al., 2013). However, some studies do not 
account for the dataset length bias. These studies typically conduct entropy analysis in either original 
or coarser scales of time series data, while the number of samples are unequal between compared 
subjects (Bisi et al., 2016; Kang et al., 2016; McCrum et al., 2019; Monaco et al., 2009). Entropy results 
deviate with coarser time scales, when unequal sample lengths are used. This phenomenon is shown 
in the current appendix. 
 We review the effect of the number of samples on SaEn outcomes of a regular signal, a 5Hz 
sinusoid. The signal is generated for two different sample times and is plotted at a convenient 
eigenfrequency to display the effect of dataset length. We determined coarse-grained time series of the 
signal for two sample times and calculated SaEn values of the series.  
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The complexity of an ideal sinusoid function is zero. Subsequently, we generated a 5Hz sinusoid at 
fs=1000 Hz in matlab (Figure A.4). The generated sinusoid is described with 200 datapoints per 
revolution. Due to small rounding errors in matlab, the output of the sinusoid does not reach 0.000 at 
the end of every revolution. In fact, the placement of datapoints varies over the repetitions, leading to a 
slightly increased complexity value from zero in the original temporal resolution. In the 20th temporal 
resolution of the signal, scale 20, the sinusoid is described with 10 datapoints per revolution. Moreover, 
the placement of these 10 samples does not vary over the repetitions. Therefore, all its revolutions are 
identical. Consecutively, the entropy algorithm detects complexity zero in this scale. In matlab, the 
entropy algorithm will yield exactly zero for any other sinusoid signal that is plotted for fs, while its eigen 
frequency and temporal resolution satisfy: 
 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟.

∗
1

𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑠𝑠
=

10 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
𝑟𝑟𝑟𝑟𝑟𝑟

 

 
SaEn outcomes of coarse-grained time series 1-20 are plotted for the 5Hz sinusoid at two different 
sample times (Figure A.5a). Here, the difference in dataset length affects SaEn across the temporal 
resolutions. To elaborate on why SaEn values deviate in coarser scales of the signal, we review its 
Probability Density Function (PDF). The PDF of scale 15 of the signal is plotted for the two sample 
times in Figure A.5bc. Here, the signal with small sample time (T=2s), yields less certainty in the 
amplitude counts (high σsig) and leads to high complexity. In turn, the signal with the increased sample 
time (T=20s), yields more certainty in the amplitude counts (smaller σsig) and leads to a low complexity. 
Here, the SaEn outcomes differ, because the final outcome is derived with tolerance r*σsig. This exposes 
the importance of analyzing data with an equal number of samples in research (Pincus et al., 1991b; 
Pincus et al., 2000; Pincus et al., 1992; Yentes et al., 2013).  
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Figure A.4ab) Coarse-grained time series of a 5Hz sinusoid signal – a) The original temporal resolution and 
the 20th coarse-grained time series of a 5Hz sinusoid (fs=1000 Hz) are displayed. In scale 20, the placement of 
datapoints does not vary over the repetitions. This leads to the entropy algorithm detecting a complexity of zero. 
b) Same as in a). The plot is zoomed in on the first peak of the sinusoids. In scale 1, the complexity slightly 
deviated from zero due to small rounding error in matlab. In scale 20, the complexity is zero. Coarse-grained 
time series were implemented in Matlab 2018a (Mathworks, Natick MA). 
 
 
  

      a) 
 

      b) 
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Figure A.5abc) MSE and PDF of 5Hz sinusoid – a) Displays the SaEn outomes for scale 1-20 of the 5Hz 
sinusoid for two sample times. In coarser scales of the signal, a clear deviation can be detected in entropy 
outcomes. b,c) Displays the PDF of the 5Hz sinusoid in scale 15. Here, the signal with small sample time (T=2s), 
yields less certainty in the amplitude counts (higher σsig), leading to a higher complexity. In turn, the signal with 
the increased sample time (T=20s), yields more certainty in the amplitude counts (smaller σsig), leading to a lower 
complexity. 
  

      a) 
 
 

      b) 
 

      c) 
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Appendix B – Entropy in biological time series 
 
The present appendix highlights studies that investigate complexity changes in human gait, ECG and 
EEG signals with the Sample Entropy (SaEn) algorithm (Appendix B1). Secondly, we identified 
limitations in these studies (Appendix B2). Lastly, we proposed a solution to these limitations (Appendix 
B3).  
 
B1) Examples of entropy in medical research 
 
∗ Signal complexity changes with age in human gait 
 
Recent research assessed entropy changes in human gait as a result of age. An exemplar study 
assessed EMGs of young (23y +/- 2y) and old subjects (72y +/- 6y) during comfortable treadmill walking 
(Kang et al., 2016). Here, older adults exhibited increased SaEn of EMG activations in contrast with 
younger adults in the gastrocnemius. Subsequently, proximal muscles decreased in SaEn with age. 
These muscles included the vastus lateralis, biceps femoris and tibialis anterior muscle. This study 
concluded that the decrease in EMG complexity with aging may be limited to proximal leg muscles, and 
that slower walking attenuates this decrease in the original time scale of the data. These findings were 
likely correlated to the walking task. 
 Additionally, an interesting study by Bisi and colleagues assessed SaEn changes of vertical 
(VE) and anterior-posterior (AP) trunk accelerations from development till decline. In this study, toddlers 
with two weeks of walking experience till 84-year-olds were measured. Results showed that entropy 
decreased in VE and AP until the subject reached 15 years of age. Subsequently, entropy in VE and 
AP increased until the age of 84 years was reached (Bisi et al., 2016).  

Lastly, a study was identified that assessed leg joint complexity during walking in young (25y 
+/- 5y) and old subjects (75y +/- 5y). Leg joint complexity was assessed for unperturbed and perturbed 
walking trials (Qiao et al., 2018). The study calculated SaEn in flexion-extension and abduction-
adduction angels of the hip, knee and ankle. Interestingly, this study found that compared with young 
adults, older adults walked normally with on average 35% larger abduction-adduction hip joint 
complexity in unperturbed trials. No differences were found in the knee or ankle joint complexities. 
Subsequently, older adults were disproportionately susceptible to even the smallest amplitude of 
perturbation. In response to these perturbations, larger complexities were found in old subjects in the 
flexion-extension complexity of the hip, knee and ankle joint.  

 
 
∗ Signal complexity changes with walking velocity and with fall risk in human gait 
 
A study by Masani and colleagues assessed optimization of the neuromuscular locomotor (NML) 
system for different walking velocities. The study evaluated the complexity of GRFs during treadmill 
walking of young subjects (29y +/- 5y) for walking velocities in the 3-8 km/h range (Masani et al., 2002). 
The main finding of the study was that walking velocity altered GRF complexity. Vertical GRF reflected 
a minimum complexity at PWS. Subsequently, when walking speeds were increased or decreased from 
PWS, complexity increased. This suggested that the NML system is most stabilized at PWS. 

Successively, an elegant study was identified that assessed SaEn outcomes of GRF signals in 
101 elderly subjects (67y +/- 9y). Subjects were classified to low, medium and high fall risk groups. The 
main goal of the study was to correlate SaEn outcomes of GRF signals to fall risk. Results of the study 
showed that SaEn of vertical GRFs correlated with the level of fall risk (Liang et al., 2016). This 
suggested that the complexity of GRF was an indicator for system instability of the NML system.  
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∗ Signal complexity changes in ECGs and EEGs 
 
We identified studies that applied the entropy algorithm in ECG and EEG data. In a study by Costa and 
colleagues, the complexity of cardiac interbeat interval time series was assessed of healthy subjects, 
subjects with congestive heart failure and subjects with atrial fibrillation. Here, SaEn values of healthy 
subjects were significantly higher in the coarser time scales of the data, when compared to pathologic 
function (Costa et al., 2005; Costa et al., 2002). The study suggested that SaEn could be used to identify 
subjects with heart failure in early stages of the disease.  

Consecutively, a study by McIntosh and colleagues examined changes in EEG complexity from 
childhood to adulthood (McIntosh et al., 2010). In this work, a complexity increase was found in EEG 
signals with maturation, that correlated with more stable and accurate cognitive performance. Results 
from more recent work displayed that old adults at risk for cognitive decline do not show an increase at 
the original time scale of EEG data.  Moreover, older subjects exhibited either similar or higher entropy 
at coarser time scales of the data, when compared to healthy subjects (McIntosh et al., 2018). Here, 
SaEn could potentially help identifying early onset of dementia. Other work added on these results and 
displayed that interpreting SaEn across temporal resolutions of the data could help identify early onset 
of cognitive decline (Bertrand et al., 2016; Maturana-Candelas et al., 2019; McIntosh et al., 2010; Yang 
et al., 2013). 
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B2) Limitations in current entropy research 
 
 
∗ Introduction 
 
We often have the capability to measure a variety of data types in patients, that can provide insight into 
diagnosis and treatment of health limitations. These limitations can range from aging, to dementia, to 
Parkinson’s disease. Recent research explores topics that focus on how we identify these limitations 
and how they can be quantified in early stages. An interest for quantifying these limitations with entropy 
algorithms is reflected in research (Harbourne et al., 2009; Kang et al., 2009; Pincus et al., 2006; Smith 
et al., 2011; Srinivasan et al., 2012; Stergiou et al., 2006; Madeleine et al., 2009; Morrison et al., 2012). 
Axes of interest include entropy analysis of heart rate time series (Pincus et al., 2006), hormonal 
process dynamics (Pincus et al., 1996), EEGs (Bertrand et al., 2016) and EMGs (Kang et al., 2016). 
However, recent studies were identified that compare SaEn values of subject data that differed in 
number of samples. These studies violate the entropy algorithm requirement of dataset length equality. 
In the present appendix, we briefly go over these limitations. Consecutively, we display a suitable 
solution for these limitations in Appendix B3.  
 
 
∗ Limitations: SaEn in gait analysis – EMG studies 
 
An exemplar study that executed SaEn analysis in EMG signals is a study by Kang and colleagues 
(Kang et al., 2016). In their study, young and old subjects were measured during a normal walking task 
on a treadmill at different walking speeds. In their results subjects are compared that walked for 5 
minutes. However, the amount of gait phases and the number of samples per gait phase were not 
normalized. Therefore, in their study, subjects are compared for an unequal amount of gait phases and 
an unequal number of samples per gait phase, leading to entropy deviations in coarser scales of the 
data.  

Consecutively, limitations can be identified in a study by Toa and colleagues that investigated 
SaEn for different temporal resolutions of EMG data (Tao et al., 2015). In their study, the complexity of 
EMG patterns was studied in healthy children compared to children with cerebral palsy. Subjects walked 
across a straight walking trajectory. Here, subjects walked at different walking velocities. An equal 
amount of gait phases was analyzed, but no normalization was applied to account for the difference in 
the number of samples per gait phase. Consecutively, this leads to SaEn deviations.   
 
 
∗ Limitations: SaEn in gait analysis – Accelerometry studies 
 
A study by Bisi and colleagues applied SaEn to human trunk and leg acceleration signals. Here, 
subjects were asked to walk in a straight line across a corridor (Bisi et al., 2016). SaEn values were 
used to quantify complexity changes in trunk and ankle acceleration with age, across different temporal 
scales of the data. SaEn values were found significantly different across age categories. The study 
reported that ten consecutive strides were analyzed per subject. However, the number of samples 
varied between 1000 and 1500 between subjects. Of course, this violates the dataset length equality 
requirement of the SaEn algorithm, which will yield entropy deviations across different time scales of 
the data.  
 
 
∗ Limitations: SaEn in human brain data – EEG studies 
 
Lastly, studies of McIntosh and colleagues were identified that assessed EEG complexity changes with 
age (McIntosh et al., 2018; McIntosh et al., 2010). In the methods section, different measurement times 
per subjects were reported. Measurement times often differed in seconds, leading to biased SaEn 
results in coarser scales of the data. Additionally, we identified a study by Chung and colleagues that 
assessed EEG signals during different sleep states in healthy versus Parkinson’s patients. SaEn values 
were compared across subjects per 30 second EEG epoch. Although, the number of included epochs 
per patient differed significantly. The latter caused a difference in the number of samples of datasets 
that were compared, causing SaEn deviations (Chung et al., 2013).  
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B3) Solution to the limitations:  
       Normalizing the number of samples 
 
We identified several SaEn studies that compared subjects with an unequal number of samples (Bisi et 
al., 2016; Ching et al., 2013; Kang et al., 2016; McIntosh et al., 2018; McIntosh et al., 2010; Tao et al., 
2015). Subsequently, we propose a solution to the entropy dataset length bias. In our experiments we 
compared young and old subjects. Subject first walked at PWS in trial 1 (ANS). Subsequently, subjects 
walked at 130%*PWS in trial 2 (AFS). Mean PWS of young subjects was equal to 1.31+/- 0.17 m/s. 
Mean PWS of old subjects was equal to 1.22 +/- 0.18 m/s. As a result, the number of samples differed 
between the subjects for equal measurement times. Therefore, we extracted the same number of gait 
phases per datatype for all subjects. Consecutively, we identified the subject with the least number of 
samples and resampled subjects to this number of samples. Now, every subject included the same 
number of strides, described by the same number of samples. This procedure was repeated for trial 3 
and trial 4. The resampling algorithm was selected with respect to previous literature. We identified 
studies that resampled human movement data, EMG and EEG using shape preserving spline 
algorithms (in matlab: pchip). These studies showed the original frequency content of the data was 
preserved (Coutinho et al., 2017; Eng et al., 2007; Lencioni et al., 2017; Marateb et al., 2016; Unser et 
al., 1999).  

To display the effect of resampling with a shape preserving spline algorithm on SaEn outcomes, 
we interpret a sinusoid. First, we display the change of shape of the signal using different resampling 
rates. The max resampling rate used in the experimental data was equal to: 
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑚𝑚𝑚𝑚𝑚𝑚.𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 ≈  50% 

 
Second, we plot SaEn outcomes with the resampling rates for the original temporal resolution of the 
signal. To assess these changes, we interpret the PDF of the signal. Lastly, we repeat these two steps 
for the experimental EMG data of an exemplar old subject.  
 
 
∗ Effects of resampling with ‘pchip’ in regular data – sinusoid  
 
We interpret a 5Hz sinusoid for one revolution (fs=1000 Hz, T=0.02s). We plot the sinusoid and its 
complexity values for 5 resample rates: [0.5, 0.6, 0.7, 0.8, 0.9]*Noriginal. The shape of the original signal 
is preserved with ‘pchip’ for the resampling rates. For the resampling rate of 0.5*Noriginal, the amplitude 
and curvature of the resampled signal accurately resembles the original signal (Figure A.6). We see 
that SaEn values increase the more datapoints are removed (Figure A.7a). This is explained with the 
PDF for the original sinusoid and the sinusoid with 50% of the original number of samples (Figure A.7bc). 
The resampled signal displays less certainty in the amplitude counts (σ  increase), leading to a higher 
complexity.   
 
 
∗ Effects of resampling with ‘pchip’ in erratic data – EMG response of VM 
 
Consecutively, we interpret the experimental data of the VM muscle of one of the old subjects that was 
measured in trial ANS. The EMG activity is plotted for one stride, that is resampled for the same five 
resample rates as above (Figure A.8a). High frequency content is preserved in the resampled signal. 
Entropy values of erratic data decrease with the resample rate (Figure A.8b). This is explained by PDF 
of the EMG signal (Figure A.9ab). More certainty is displayed in the amplitude counts for the resampled 
signal (σ  increase), leading to lower complexity. 
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Figure A.6ab) Resampled sin(5Hz) using ‘pchip’ – a) The 5Hz sinusoid is plotted at fs=1000 Hz  for one 
resolution. The signal is resampled using function resample with a shape preserving spline algorithm. Resampling 
was conducted for 5 different rates: [0.5, 0.6, 0.7, 0.8, 0.9]*Noriginal. The shape of the original signal is preserved. 
b) Zoom in on the first peak of the sinusoid. Higher resample rates yield a fairly accurate representation of the 
original signal trajectory. Resampling procedures were implemented in Matlab 2018a (Mathworks, Natick MA). 
 
 

      a) 
 

      b) 
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Figure A.7abc) SaEn values and PDF of resampled sin(5Hz) using ‘pchip’ – a) Displays SaEn values for the 
5Hz sinusoid at fs=1000 Hz, T=0.02s. The signal is resampled at resample rates [0.5, 0.6, 0.7, 0.8, 0.9]*Noriginal. 
SaEn values increase with the resample rate, that is explained with the PDF of the signal. b) PDF of the original 
sinusoid and the sinusoid with 50% of the original number of samples. The resampled signal displays less 
certainty in the amplitude counts (σ increase), leading to a higher complexity.  
 
   

      a) 
 

      c) 
 

      b) 
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Figure A.8ab) Resampled EMG response of VM using ‘pchip’ and its SaEn values – a) Displays the EMG signal 
of the VM muscle of an exemplar old subject, measured in trial 1. The x-axis represents one gait phase, starting with 
the stance phase and ending with the swing phase. The erratic content is still preserved when resampling with the 
shape preserving spline algorithm. The signal is resampled at resample rates [0.5, 0.6, 0.7, 0.8, 0.9]*Noriginal. b) For 
erratic data, SaEn values decrease with the resample rate, that is explained with the PDF of the signal in Figure A.9.  
 
    

      a) 
 

      b) 
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Figure A.9ab) PDF of resampled EMG response of VM using ‘pchip’ – Displays the PDF of the original and the 
resampled EMG response of the VM muscle of an exemplar old subject, measured in trial 1. The resampled signal 
with 50% of the original number of samples, displays more certainty in the amplitude counts (σ decrease), leading 
to a lower complexity. 
 
   

      a) 
 

      b) 
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Appendix C – Human Research Ethical Commission 
application 
 

Delft University of Technology  
ETHICS REVIEW CHECKLIST FOR HUMAN RESEARCH 

(Version 22.01.2020) 
 
 

I. Basic Data  
 
 

Project title: Gait complexity changes with age and with 
walking velocity in human motion and 
electromyography signals 

Name(s) of researcher(s): Jeroen Vermeulen 
Research period (planning)  March, April, May 2020 
E-mail contact person j.p.vermeulen@student.tudelft.nl  
Faculty/Dept.  Biomedical Engineering, 3mE  
Position researcher(s):1 MSc student 
Name of supervisor (if applicable): Alfred Schouten, Winfred Mugge 
Role of supervisor (if applicable): Associate professor, Assistant professor 

 
  

II. A) Summary Research 
A major goal of many rehabilitative orthopedic treatments is the 
improvement of human gait. Gait complexity is suggested to increase with 
age and disease (Pincus et al., 1991; Pincus et al., 2006; Smith et al., 2011; 
Kang et al., 2016). 
 
The present study aims to extract gait complexity measures. Healthy 
volunteers will be requested to walk across a lab (6m), on their preferred 
walking speed, a slower walking speed and a faster walking speed, while a 
motion capture system captures gait dynamics, an inertial measurement unit 
(IMU) captures trunk accelerations and surface electromyography (sEMG) 
electrodes capture muscle activity of leg muscles. Signal complexity of the 
recorded time series will be studied with entropy algorithms. Two entropy 
algorithms that assess signal complexity are displayed in ‘Appendix 2’.  
 
The experiment, including instruction, will take approximately 30 to 45 
minutes.  
 
 
 
 
 
 
 
 
 
 

 
1 For example: student, PhD, post-doc 

mailto:j.p.vermeulen@student.tudelft.nl
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B) Risk assessment 
 

Data collection 
 
Measurement equipment 
During the measurements, motion capture markers, sEMG sensors and an IMU will be 
attached to the participant. We do not expect potential risks for the subjects. Previous 
research displays that wearing these units while walking, does not introduce added risk 
for subjects (Hof et al., 2002; Tochi et al., 2012; Kang et al., 2016). The camera system 
(Qualysis) and the sEMG and IMU system (Delsys) both have European CE marks for 
medical devices and are applied for their intended use.  

 
Personal data 
Prior to the experiments, personal data (i.e.: weight, height, gender and age) will be asked 
of the participant on paper and will be stored in a secure location by the researcher, without 
access to others. Weight, height, gender and age information is used to assist in 
processing the experimental data and will only be kept for 12 months after the experiments. 
Only age, reflective marker movements, EMG recordings and trunk accelerations can be 
used for publication purposes. Here, important to note is that complexity differences in 
marker movements, EMG recordings and trunk accelerations will be displayed in an 
aggregated form, that is, per age group. We believe that these steps will maintain the 
confidentiality of the data. 
 
Informed consent  
As explained in the information letter in ‘Appendix 4’, to safeguard and maintain 
confidentiality of the collected personal data, necessary security steps are taken. All data 
will be processed confidentially and stored using a participant number only. The informed 
consent form will be stored on paper in a separate and secure location from the personal 
data, in the room of Dr.ir. Alfred Schouten (F-1-240). This way all personal details remain 
confidential. The participant number can only be coupled to the personal data by the 
researcher and will never be shared on publications about the research. We believe that 
these steps will maintain the confidentiality of the data. This way, we can make valuable 
research data available for validation and re-use purposes.  
 
In the informed consent form, subjects are asked if they consent with the recording and 
use of their data. The informed consent form for data collection is displayed in ‘Appendix 
4’. 
 
Participant recruitment 
Subjects are recruited via e-mail. For the recruitment of subjects, the participant 
information letter is sent out to contacts of Jeroen Vermeulen. Data subjects invited for the 
study are not part of a specific focus group and are selected on their suitability for the 
present research only. In the present study, we enrolled subjects that reported that, to the 
best of their knowledge, they did not suffer from health issues that affect their movement 
in daily life activities. If individuals reported injuries, disabilities or taking medication that 
may influence gait, it was of utmost importance to not include them in the study. Recruited 
subjects are height, weight and age matched for the suitability of this research.  
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III. Checklist 
 
    
Question Yes No 

1. Does the study involve participants who are particularly vulnerable or unable to give 
informed consent? (e.g., children, people with learning difficulties, patients, people 
receiving counselling, people living in care or nursing homes, people recruited through 
self-help groups). 

 √ 

2. Are the participants, outside the context of the research, in a dependent or subordinate 
position to the investigator (such as own children or own students)?2 

 √ 

3. Will it be necessary for participants to take part in the study without their knowledge 
and consent at the time? (e.g., covert observation of people in non-public places). 

 √ 

4. Will the study involve actively deceiving the participants?  (For example,  will 
participants be  deliberately falsely informed, will information be withheld from them or 
will they be misled in such a way that they are likely to object or show unease when 
debriefed about the study). 

 √ 

5. Sensitive personal data 
• Will the study involve discussion or collection of personal sensitive data (e.g., 

financial data, location data, data relating to children or other vulnerable 
groups)? Definitions of sensitive personal data, and special cases thereof are  
provided here. 

 
 
 

√ 

6. Will drugs, placebos, or other substances (e.g., drinks, foods, food or drink constituents, 
dietary supplements) be administered to the study participants?  

 √ 

7. Will blood or tissue samples be obtained from participants? 
 

 √ 

8. Is pain or more than mild discomfort likely to result from the study?   √ 

9. Does the study risk causing psychological stress or anxiety or other harm or negative 
consequences beyond that normally encountered by the participants in their life outside 
research?  

 √ 

10. Will financial inducement (other than reasonable expenses and compensation for time) 
be offered to participants?  
 

 √ 

Important: 
if you answered ‘yes’ to any of the questions mentioned above, please submit a full application to HREC 

(see: website for forms or examples). 
 

11. Will the experiment collect and store videos, pictures, or other identifiable data of 
human subjects? 3  

√  

 
2 Important note concerning questions 1 and 2. Some intended studies involve research subjects who are 
particularly vulnerable or unable to give informed consent .Research involving participants who are in a 
dependent or unequal relationship with the researcher or research supervisor (e.g., the researcher’s or research 
supervisor’s students or staff) may also be regarded as a vulnerable group . If your study involves such 
participants, it is essential that you safeguard against possible adverse consequences of this situation (e.g., 
allowing a student’s failure to complete their participation to your satisfaction to affect your evaluation of their 
coursework). This can be achieved by ensuring that participants remain anonymous to the individuals concerned 
(e.g., you do not seek names of students taking part in your study). If such safeguards are in place, or the 
research does not involve other potentially vulnerable groups or individuals unable to give informed consent, it is 
appropriate to check the NO box for questions 1 and 2. Please describe corresponding safeguards in the 
summary field. 
3 Note: you have to ensure that collected data is safeguarded physically and will not be accessible to anyone 
outside the study. Furthermore, the data has to be de-identified if possible and has to be destroyed after a 

https://www.tudelft.nl/en/privacy/gdprterminology/


 

 

70 

Question Yes No 

 
. 

12. Will the experiment involve the use of devices that are not ‘CE’ certified?   
 
Only, if ‘yes’: continue with the following questions:     
  

 √ 

 Was the device built in-house?   
 

- - 

 Was it inspected by a safety expert at TU Delft?  
(Please provide device report, see: HREC website) 

- - 

 If it was not built in house and not CE-certified, was it inspected by some other, 
qualified authority in safety and approved?  
(Please provide records of the inspection ). 

- - 

13. Has or will this research be submitted to a research ethics committee other than this 
one?  (if so, please provide details and a copy  of the approval or submission). 
 

 √ 

 
 

IV. Enclosures (tick if applicable) 
o Full proposal (if ‘yes’ to any of the questions 1 until 10) 
o Informed consent form (if ‘yes’  to question 11) 
o Device report (if ‘yes’ to question 12) 
o Approval other HREC-committee (if ‘yes’ to question 13) 
o Any other information which might be relevant for decision making by HREC 
o Data management plan approved by a data steward (always) 

 
 
   
 

V. Signature(s 
 
 
Signature(s) of researcher(s) 
Date: 
 
        
 
Signature (or upload consent by mail) research supervisor (if applicable)   
Date: 
 
 
 
 
 
 
 
 
 
 
 
 

 
scientifically appropriate period of time. Also ask explicitly for consent if anonymised data will be published as 
open data.  

https://www.tudelft.nl/en/about-tu-delft/towards-a-new-strategy/integrity-policy/scientific-integrity-committee/research-ethics/
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A-Priori Power Analysis  
 
Methods 
To calculate the total number of participants needed to reach statistical significance, the 
software package ‘G*Power 3.1’ is used. To quantify the experimental effect in this research, 
a within-subject experiment design with independent variables is used: age, walking velocity. 
To study the main effects and interactions of age and walking velocity on gait complexity 
outcomes, a ‘two-way fixed effects ANOVA’ will be used. 
 
Inputs 
In G*Power, we select ‘ANOVA: Fixed effects, special, main effects and interactions’. The 
parameters we use are:  
 
 
Error probability: α = 0,05 
Degrees of freedom: df1=2-1 (2 age groups); df2=3-1 (3 velocity groups); df=df1*df2=2  
Number of groups = 2  
Effect size: f2 =  (RAB

2 – RA
2)/(1-RAB

2)  
 
 
Below, we calculated effect sizes for results found in previous pieces of research, to check the 
validity of our research set up. 
 
Complexity difference in trunk accelerations with walking speed  (Katonis et al., 2009)  
f = 1.23: two groups of 7 subjects needed 
EMG complexity of gastrocnemius in young and old adults    (Kang et al., 2016) 
f = 1.17: two groups of 8 subjects needed  
EMG amplitude changes with walking speed in younger adults  (Hof et al., 2002) 
f = 0.9: two groups of 12 subjects needed 
Complexity difference in gait angle at the knee with walking speed  (Geerse et al., 2015) 
f = 1.1: two groups of 9 subjects needed  
 
Output 
To give an estimation on our required effect size, we calculated effect sizes for previous  
complexity results in gait angle dynamics, trunk accelerations and EMG responses, that either 
displayed differences with age or walking speed. To reach significance in all domains, we 
need a total number of subjects of 26.  
 
Group 1: 13 subjects aged around 60; Group 2: 13 subjects aged around 25. 
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Information letter & Informed Consent Form 
 

Information letter for participants 
 
Research Study 
Gait complexity changes with walking velocity and with age in human motion 
and electromyography signals 
 
 
 
This information letter is for individuals who are invited to participate in the TU Delft research study 
that investigates the effects of age and walking velocity on the complexity of human motion and 
electromyography signals.  
 
Researchers:  Jeroen Vermeulen (contact), Winfred Mugge, Alfred Schouten, 

Jurriaan de Groot, Marjon Stijntjes  
 
Supervisors:    Alfred Schouten, Winfred Mugge 
 
Organization Name:   Delft University of Technology (TU Delft) 
 
Faculty:  Biomedical Engineering – Mechanical, Materials and Maritime 

Engineering (3mE) Faculty, TU Delft  
  
Below is a brief introduction to the study and your role in it. If you agree to participate after 
reading this information, please sign the certificate of consent at the end of this form.  
 
Study information (25-02-2020)      
 
Purpose of the research  
A major goal of many rehabilitative orthopedic treatments is the improvement of human gait. 
In recent research, gait complexity is suggested to decrease with age and disease. The 
present study aims to extract gait complexity measures of young and old adults. For this 
purpose, you will be asked to walk across a 6m hallway on a ‘preferred walking speed’ a 
‘slower’ and a ‘faster’ walking speed. Results of this study will help to understand if changes 
in gait complexity might serve as a useful biomarker for future orthopedic treatments. 
 
Qualification 
You are an adult of around 25 or 60 years old, who weighs between 50 and 100 kg. To the 
best of your knowledge, you do not suffer from health issues that affect your movement in 
daily life activities. To participate, you must be in Delft on the experiment day.  
 
Your role and time commitment  
Before starting the experiment, your weight, height, age  and gender will be asked. Next, we 
will connect reflective markers, that will measure your leg dynamics, and surface 
electromyography (sEMG) electrodes, that will measure your leg muscle activity. Reflective 
markers and sEMG electrodes are only recording data, which is completely harmless to your 
body. A calibration procedure for the measurement set-up is performed next, in which you will 
be asked to walk back and forth in a 6m long hallway. After calibration, you will be asked to 
walk the same trajectory on 3 different walking speeds. You are advised to wear tight-fitting 
clothes in order to maintain accuracy for the motion tracking system. Important note: We can 
provide the appropriate clothing at the lab. The experiment is expected to take approximately 
30 to 45 minutes.  
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Discomforts 
When wearing the sEMG electrodes and motion tracking markers, you might experience slight 
discomfort, however, this will subside once you are accustomed to it.  
 
Data acquisition 
Reflective markers for 3D motion acquisition will be attached to your feet, knee, hip and back. 
EMG electrodes will be placed directly on the skin to measure muscle activity of your leg 
muscles. An acceleration sensor will be attached to your trunk. All sensors and electrodes 
can easily be removed after the data has been recorded.  
 
Data Policy  
Personal information, your weight, height, gender and age, will be asked prior to the 
experiments on paper and only the researcher has access to it. This information is used to 
assist in processing the experimental data and will only be kept for 12 months after the 
experiments. The experimental data, your motion data and EMG recordings, will be recorded 
during the experiments. Your informed consent form will be stored on paper at a separate 
location from the personal information and the recorded data. Important to note is that the 
consent form contains your signature and subject number and can only be linked to other data 
by the researchers. Only the reflective marker movements, EMG recordings, trunk 
accelerations and your age can be used for publication purposes. Here, important to note is 
that these data outputs will only be displayed in an aggregated form, that is, complexity 
outcomes of marker movements, EMG recordings and trunk accelerations displayed per age 
group. This way, all personal details remain confidential at all times. 
 
Participants rights  
Participation in this research study is voluntary. Even after you agree to participate and begin 
the study, you are free to withdraw at any time and for any reason. You have the right to ask 
that any data you have supplied can be withdrawn. You have the right to omit or refuse to 
answer or respond to any question that is asked. When there is no data being recorded, you 
may ask any questions to the researcher, unless answering these questions would interfere 
with the study outcome. If any questions arise as a result of reading this information sheet, 
you need to ask the investigators before start of the experiment. 
 
Reimbursement and compensation: 
Reimbursement or compensation is not applicable for this study, although, the researcher will 
have snacks available for the participant.  
 
Location 
The measurements for the present study are performed in the Biomechamotion lab, located 
in room 34 E-0-300 at the Mechanical Engineering department of the TUDelft. 
 
For further information:  
The investigators and supervisors listed above will gladly answer your questions about this 
study at any time. If you are interested in the final results of this study, you can contact the 
investigator:  
Jeroen Vermeulen at j.p.vermeulen@student.tudelft.nl, +31612239363 
 
Subject no.: ___ 
 
My gender: m / w       
 
My age: ___ [y]    
 
My weight: ___ [kg] 
 
My height: ___ [m]  

mailto:j.p.vermeulen@student.tudelft.nl
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Consent Form for study: 
‘Gait complexity changes with walking velocity and with 
age in human motion and electromyography signals’  
 

(Please tick the appropriate boxes) Yes No 

Taking part in the study   

I have read and understood the study information dated 25/02/2020, or it has been read to me. I have 
been able to ask questions about the study and my questions have been answered to my satisfaction. 
 

□ □ 

I consent voluntarily to be a participant in this study and understand that I can refuse to answer 
questions and I can withdraw from the study at any time, without having to give a reason.  
 
I understand that taking part in this study involved the recording of passive markers for motion 
acquisition, the recording of EMG electrodes for measuring muscle activity and the recording of an 
acceleration sensor to measure trunk accelerations. 
 
I understand that any personal data will only be accessible for the researchers, at all times. 
 

□ 
 
 
□ 
 
 

   □ 

□ 
 
 
□ 

 
 
  □ 

Use of information in the study  
 
I understand that information I provide will be used for the master thesis research of Jeroen 
Vermeulen. Complexity outcomes of reflective marker movements, EMG recordings and trunk 
accelerations can be displayed in publications in an aggregated form, that is per age group.  
 
  

 
 
□ 
 

 
 
□ 
 

I understand that personal information collected about me that can identify me, such as my signature, 
age and weight, is only accessible to the researchers. Additionally, this consent form can be linked to 
personal data by the researchers only. This way, I understand that all personal information remains 
confidential at all times 
 
Future use and re-use of the information by others 
 
I give permission that the information I provide (i.e. reflective marker movements, EMG recordings, 
trunk accelerations and my age) can be archived in the TU Delft Biomechamotion lab project drive. All 
data will be processed confidentially and will only be accessible by the researcher.  
 

□ 
 
 

 
 
 
□ 
 

□ 
 
 
 

 
 
□ 
 

Certificate of consent 
I have read and understand the information above, and have had the opportunity to ask questions 
and my questions have been answered satisfactorily. By signing this form, I consent to participate as 
a research participant in this study.  
 
 
 
 
_____________________  ______________  __________________ 
(Signature of Participant)  Subject no.   Date  
 
 
 
_________________________ 
(Name of Researcher - BLOCK) 
 
_____________________      _____________ 
(Signature of Researcher)      Date 
 
If you would like a copy of the consent form, please ask the researcher. 
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Data management plan 

Gait complexity changes with age and with walking velocity in human 
motion and electromyography signals  

General TU Delft data management questions 1. Is TU Delft the lead institution for this project?  

Yes, leading the collaboration 
Dr. Ir. Jurriaan de Groot (j.h.de_groot@lumc.nl) (TUDelft/LUMc), is involved.  

2. If you leave TU Delft (or are unavailable), who is going to be responsible for the data resulting from this project?  

Associate TU Professor (dept. 3mE): Alfred Schouten (a.c.schouten@tudelft.nl)  

3. Where will the data (and code, if applicable) be stored and backed-up during the project lifetime?  

Project Storage at TU Delft 
Password protected: BME Gait lab, 3mE, TUDelft  

4. How much data storage will you require during the project lifetime?  

< 250 GB -  

5. What data will be shared in a research data repository?  

Not all data can be publicly shared - please explain below which data and why cannot be publicly shared 
Only age, reflective marker movements, EMG recordings and trunk accelerations will be used for publication purposes, and can be shared to 
a research repository.  

6. How much of your data will be shared in a research data repository?  

< 100 GB -  

7. How will you share your research data (and code)?  

My data can’t be shared in a repository, so the metadata will be registered in Pure instead and all research publications resulting from the 
project have a statement explaining what additional datasets/materials exists; why access is restricted; who can use the data and under what 
circumstances. 
-  

8. Does your research involve human subjects?  

Yes -  

9. Will you process any personal data? Tick all that apply   

Gender, date of birth and/or age 
Prior to the experiments, participants are asked for personal information on paper: age, weight, height and gender. This data will only be 
kept 12 months after the experiments. 
Experimental data, that can be linked to the participant, motion data and EMG recordings, will be recorded during the experiments. 
The informed consent form will be stored on paper at a separate location from the personal information and the recorded data. Important to 
note is that the consent form contains the participant's signature and subject number and can only be linked to other data by the researchers. 
This way all personal details remain confidential at all times. Age, weight, height and gender information is used for the correct processing 
of EMG and motion data only and only the researchers have access to it.  

 

 

 



 

 

76 

TU Delft questions about management of personal research data 
1. Please detail what type of personal data you will collect, for what purpose, how you will store and protect that data, and who has 
access to the data.  

Please provide your answer in the table below. Add an extra row for every new type of data processed:  

 
Type of data  How will the data be 

collected?  Purpose of processing  Storage location  Who will have access to the 
data  

Age  The participant will be asked 
in the information letter  

Extract gait complexity 
measures with age and 
walking velocity  

TU Delft Project 
Storage  Only Researcher  

Height, Weight, Gender  The participant will be asked 
in the information letter  

Extract gait complexity 
measures with age and 
walking velocity  

TU Delft Project 
Storage  Only Researcher  

EMG, Accelerations, 
Marker movements  Sensors collect the data  

Extract gait complexity 
measures with age and 
walking velocity  

TU Delft Project 
Storage  

Only Researchers involved in 
the project (Guarded with 
password)  

Signature  
The participant will be asked 
on the Informed Consent 
form  

Informed Consent  
Dr.ir. Alfred 
Schouten's room - 
3mE: F-1-240  

Only Researcher  

2. Will you be sharing personal data with individuals/organisations outside of the EEA (European Economic Area)?  

No -  

3. What is the legal ground for personal data processing?  

Informed consent - please describe the informed consent procedures you will follow 
As explained in the information letter in ‘Appendix 4’, to safeguard and maintain confidentiality of the collected personal data, necessary 
security steps are taken. The informed consent form will be stored on paper in a separate and secure location from the personal data, in the 
room of Dr.ir. Alfred Schouten (F- 1-240). This way all personal details remain confidential. The participant number can only be coupled to 
the personal data by the researcher and will never be shared on publications about the research. We believe that these steps will maintain the 
confidentiality of the data. This way, we can make valuable research data available for validation and re-use purposes. 
In the informed consent form, participants are asked if they consent with the recording and use of their data. The informed consent form for 
data collection is displayed in ‘Appendix 4’.  

4. Will the personal data be shared with others after the end of the research project, and if so, how and for what purpose?  

No.  

5. Does the processing of the personal data results in a high risk to the data subjects?  

None of the above apply -  

 

- End of Appendix C  
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Appendix D – Joint marker placement 
 

Marker name  Marker location Marker placement 
C7 7th cervical vertebra Bend head forward, most pronounced vertebra is Spinous Process of 7th cervical 

vertebra. Check: bring head back upright and then rotate head, C7 will move, 1st 
thoracic vertebra won’t.  

T10 10th thoracic 
vertebra 

On the Spinous Process, at level of the bottom of the shoulder blades (with arms 
handing down). Make sure it is in the middle.  

XIPH Xiphoid process Lower edge of sternum. Make sure it is in the middle  
JN Jugular notch Upper edge of sternum. Make sure it is in the middle.  
LASIS 
RASIS 

Left/Right ASIS 
 

Palpate from below the anterior superior iliac spine. Place marker on most 
pronounced part. 

LPSIS 
RPSIS 

Left/Right PSIS 
 

Placed on the skin on most pronounced part on dimple (if visible).  

LGTRO 
RGTRO 

Left/Right greater 
trochanter 

Technical marker only. Palpate from distal while pushing hip outward (‘model pose’) 
or rotate the leg. 

LLTHI Left lateral thigh  On the lateral side of thigh; ±1/3 in line LGTRO – LLEK just below the swing of the 
hand. The anterior/ posterior position critical for definition upper leg.  

RLTHI Right lateral thigh  On the lateral side of thigh; ±2/3 in line LGTRO – LLEK just below the swing of the 
hand. The anterior/ posterior position critical for definition upper leg. 

LATHI Left anterior thigh  Technical marker only. On the anterior side of thigh at same height as LLTHI. Exact 
location not relevant, but not in line with other markers. 

RATHI Right anterior thigh  Technical marker only. On the anterior side of thigh at same height as RLTHI. Exact 
location not relevant, but not in line with other markers. 

LLEK 
RLEK 

Left/Right lateral 
epicondyle knee 

Placed on the lateral epicondyle of the left knee.  

LMEK 
RMEK 

Left/Right medial 
epicondyle knee 

Placed on the medial epicondyle of the knee along an imaginary line that passes 
through the transfemoral axis.   

LFH 
RFH 

Left/Right fibula 
head 

Most pronounced part, just underneath LEK. Palpate from distal direction  

LTT 
RTT 

Left/Right tibial 
tuberositas 

In the medial/lateral most pronounced middle, underneath patellar tendon insertion. 
Palpate from distal direction.  

LLSHA 
RLSHA 

Left/Right lateral 
shank 

On the lateral side of the shank. Halfway LEK and LM. 

LLM 
RLM 

Left/Right lateral 
malleolus ankle 

Most pronouncing part along an imaginary line that passes through the 
transmalleolar axis 

LMM 
RMM 

Left/Right medial 
malleolus ankle 

Most pronouncing part along an imaginary line that passes through the 
transmalleolar axis. 

LHEE 
RHEE 

Heel / dorsal 
calcaneus  

Placed in the middle of the posterior aspect of the calcaneus at the same height 
above the plantar surface of the foot as MT2. MT2 and LHEE used to calculate line 
of the foot for progression. 

LMT5 
RMT5 

Left/Right 5th 
metatarsal  

On top of 5th metatarsal head.  

LMT2 
RMT2 

Left/Right 2nd 
metatarsal 

Placed on top of the distal ends of the caput of the 2nd metatarsal bone, on joint line 
midfoot/toes.  

LMT1 
RMT1 

Left/Right 1st  
metatarsal 

On top of 1st metatarsal head.  

LTOE 
RTOE 

Left/Right tip of toe On top of tip of 1st toe. 

 

 

 
 

Table 4) Kinematics: marker name, location and placement – The marker name, location and placement is displayed for 
capturing movement kinematics of the lower extremity. Markers of the upper extremity were not used for entropy analysis. For data 
extraction, all marker positions were linked to boney landmarks.  
  



 

 

78 

Appendix E – Detailed results  
 
∗ Overview  
  
Here, we display power spectra plots for EMG, GRF an GA data of exemplar young subject data. 
Subsequently, we display SaEn outcomes of temporal resolutions 1-20 of the data for trial 1-2: 
Asymmetric Normal Speed (ANS) – Asymmetric Fast Speed (AFS) and for trail 3-4: Slow fixed speed 
(F1) – Fast fixed speed (F2). Lastly, we display SaEn results of the temporal resolution that maximized 
complexity for trial 1-4.  
 
 
Appendix E1: Power spectra  
 
 E1.1) Raw EMG power spectrum at PWS – trial (ANS) 
 E1.2) Raw GRF power spectrum at PWS – trial (ANS) 
 E1.3) Raw   GA power spectrum at PWS – trial (ANS) 
 
Appendix E2: Multiscale Entropy outcomes 
 

E2.1)    MSE EMG, trial (ANS, AFS) 
E2.2)    MSE EMG, trial (F1, F2) 
E2.3)    MSE GRF, trial (ANS, AFS) 
E2.4)    MSE GA, trial (ANS, AFS) 
 

Appendix E3: Sample Entropy outcomes 
 

E3.1) SaEn EMG, trial (ANS, AFS), scale 1 
E3.2) SaEn EMG, trial (F1, F2),  scale 1 
E3.3) SaEn GRF, trial (ANS, AFS), scale 12 
E3.4) SaEn GA, trial (ANS, AFS), scale 14 
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E1) Power spectra 
 
∗  E1.1) Raw EMG power spectrum at PWS (exemplar young subject – trial ANS)  
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∗  E1.2) Raw GRF power spectrum at PWS (exemplar young subject – trial ANS)  
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∗  E1.3) Raw GA power spectrum at PWS (exemplar young subject – trial ANS)  
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E2) Multiscale Entropy curves 
 
∗  E2.1) EMG complexity for short steps and for long steps (trial ANS, AFS) 
   (Nyoung = 18, Nold = 19)  

 
E2.1.1) Vastus Lateralis 
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E2.1.2) Rectus Femoris 
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E2.1.3) Vastus Medialis 
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E2.1.4) Lateral Hamstrings (Biceps Femoris) 
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E2.1.5) Medial Hamstrings (Semimembranosus, Semitendinosus) 
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E2.1.6) Lateral Gastrocnemius  
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E2.1.7) Medial Gastrocnemius  
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∗  E2.2) EMG complexity for 0.7*PWS and for 1.6*PWS (trial F1, F2) 
    (Nold = 17)  
 
E2.2.1) Vastus Lateralis 

 
E2.2.2) Rectus Femoris 
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E2.2.3) Vastus Medialis 

 
E2.2.4) Lateral Hamstrings (Biceps Femoris) 
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E2.2.5) Medial Hamstrings (Semimembranosus, Semitendinosus) 

 
E2.2.6) Lateral Gastrocnemius 
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E2.2.7) Medial Gastrocnemius 
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∗  E2.3) GRF complexity for short steps and for long steps (trial ANS, AFS) 
    (Nyoung = 18, Nold = 18) 
 
E2.3.1) Anterior-Posterior component 
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E2.3.2) Vertical component  
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E2.3.3) Medial-Lateral component 
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∗  E2.4) GA complexity for short steps and for long steps (trial ANS, AFS) 
    (Nyoung = 18, Nold = 18)  
 
E2.4.1) Anterior-Posterior Hip component  
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E2.4.2) Medial-Lateral Hip component  
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E2.4.3) Anterior-Posterior Knee component 
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E2.4.4) Medial-Lateral Knee component 
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E2.4.5) Anterior-Posterior Ankle component 
  

 
 
 



 

 

101 

E2.4.6) Medial-Lateral Ankle component 
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E3) Sample Entropy outcomes 
 
∗  E3.1) EMG complexity for short steps and for long steps (trial ANS, AFS) 
    Scale 1 (Nyoung = 18, Nold = 19) 
  
E3.1.1) Main effect ‘velocity’ 

 
E3.1.2) Main effect ‘age’ 
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E3.1.3) Interaction effect ‘velocity*age’  
 

 
∗  E3.2) EMG complexity for 0.7*PWS and for 1.6*PWS (trial F1, F2) 
    Scale 1 (Nold = 17)  
 
Main effect ‘velocity’ 
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∗  E3.3) GRF complexity for short steps and for long steps (trial ANS, AFS) 
    Scale 12 (Nyoung = 18, Nold = 18) 
 
E3.3.1) Main effect ‘velocity’ 

 
E3.3.2) Main effect ‘age’ 
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E3.3.2) Interaction effect ‘velocity*age’ 
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∗  E3.4) GA complexity for short steps and for long steps (trial ANS, AFS) 
    Scale 14 (Nyoung = 18, Nold = 18) 
 
E3.4.1) Main effect ‘velocity’ 

 
E3.4.2) Main effect ‘age’ 
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E3.4.3) Interaction effect ‘velocity*age’ 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- End 
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