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Abstract

Different methods have been studied to predict earthquakes, but the results are
still far from optimal. Due to their seemingly dynamic and unpredictable nature, it
has been very hard to find data correlating with earthquakes happening. But recently,
various research has been done using neural networks, and some has suggested that it
could extract valuable information from preceding seismic data. To get a better sense
of how seismic data can contain this information, we need to look at how long before
an earthquake seismic precursor signals can exist. This paper uses an LSTM model
to perform binary classification of the task: "Given the seismic wave recordings of N
stations during T seconds, will an earthquake happen after H seconds?” By varying
the parameter H and studying its effect on the prediction accuracy of the NN, results
suggest that sensitive information is very present in the seismic data 10 to 15 minutes
before a low-magnitude (less than 2.5 on Richters scale) earthquake strikes. We aim to
open the way for further research about precursor-based earthquake prediction using
neural networks, showing that LSTM can be a good option. We also hope for further
research to dig deeper in understanding what the signals in the seismic data are to
further improve earthquake prediction.

1 Introduction

An earthquake is a sudden shake of the earth’s surface realizing energy and thereby creating
seismic waves [1]. They can be the cause of a lot of damage, including but not limited to
surface faulting, soil liquefactions, ground resonance ete. [2]. This has a lot of consequences,
ranging from ecological and economical ones to costing human lives, which makes predicting
earthquakes very promising. But as of now, it is not possible to precisely predict earthquakes
well in advance [3]. Current research, a.o, tries to investigate the possibility of early warning
systems, which could be of great use for the population [3].

It is not known exactly how seismic movement preceding an earthquake correlates with
it. If research such as [4] can analyze the behavior of seismicity before earthquakes, it does
not show a clear link. Recently though, interest has grown in using deep learning techniques
to try achieving precursor-based earthquake prediction [5]. For example, Ibrahim et al
[6] proposed a comparison of 1D convolutional neural networks (CNN), 2D CNNs as well
as recurrent neural networks (RNN). They found that some seismic precursor signal may
exist and suggested RNNs to be a preferable option. Other research such as [7] insists on
the importance of spatial knowledge and showed that introducing spatial parameters could
increase performance, while Q. Wang et al. [8] proposed using a variant of RNNs called long
short-term memory (LSTM) to "learn the spatio-temporal relationship among earthquakes
in different locations and make predictions by taking advantage of that relationship”. They
found LSTM to effectively exploit that relationship and to make better predictions. Other
literature tells us that LSTMs “are one of the most recent and promising developments in
the time-series analysis” [9] and that it tends to perform better than other NNs on unseen
earthquake data [10].

To get a better insight on why these neural network approaches seem to work, we need to
understand where the correlation comes from. In this regard, this paper will bring answers
to the question "How many seconds before strike can we accurately predict low-magnitude
earthquakes?”. This would allow us to confirm that some seismic precursor signal does exist
[6] and show us how long before an earthquake it is present.



To do so, the paper will use an LSTM network that works with the data of 36 different
stations in New-Zealand. This way the model can exploit the spatial relationship [8] and
build on a neural network technique that seems promising. In the next sections, we will
present a modelling of the problem and explain how this was then implemented and with
which data. We then explain the experiment set-up where we ran the same model multiple
times, comparing how seismic data of different timings before an earthquake strike would
perform. We hypothesize that the performance of the model will go down when data is
taken from longer before, but nothing gives an idea in which measure. The results will then
be presented and a conclusion will be drawn. Suggestions, limitations, future work will also
be discussed at the end.

2 Methodology

2.1 Problem modelling

The problem was modelled as follows. Given the seismic wave recordings of N stations
during T seconds, the task of the neural network is to binary classify between an earthquake
happening and no earthquake happening after H seconds.

2.2 Data

The data set used is provided by the International Federation of Digital Seismograph Net-
works (FDSN) [11] and looks at earthquakes happening between 1999 and 2020 in New-
Zealand. Approximately half of the seismic recordings were from before an earthquake, half
from normal behaviour.
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Figure 1: Example of seismic wave recording with an earthquake happening at timestep 20s.

First, all earthquakes with their information were retrieved. Since this paper specifically
looks at low-magnitude earthquakes, high-magnitudes earthquakes had to be filtered out.
For this, 2.5 was considered as the limit between high and low-magnitude. This limit yields
an almost equal balance in the number of low and high magnitude earthquakes. The data
of seismic wave recordings before those earthquakes were then downloaded using the API



provided by FDSN [11], from 36 available recording stations in New Zealand. This data can
be described as the ground's motion in function of the time (also called a seismogram) [12].

Seismic recording from normal behaviour was then retrieved by selecting times in between
two time-distant earthquakes.

2.3 LSTM model

Ct-1

Figure 2: LSTM cell structure: 1) forget gate, 2) learn gate, 3) remember gate, 4) use gate.

As mentioned previously, the neural networked used is an LSTM. These have the advan-
tage of being able to handle time series, and are designed to retain information from before
(long memory). LSTM's are similar to classic Recurrent Neural Networks (RNN's), but
they have the addition of retaining long-time information. This is achieved with a 4-gate
structure [?] of each cell, with a forget gate, a learn gate, a remember gate and a use gate
as shown in figure 2. The forget gate acts to discard unuseful long-term information from
previous iterations. The learn gate combines a sigmoid and a hyperbolic tangent activation
function to learn information which is then combined by the remember gate with the kept
long-term information to update the long-term memory. Finally, the use gate combines this
memory with the input to make the output prediction.

In our case, the LSTM's input consists of N fea-

tures which are the seismic recording waves of each of

(EQl"Sl EQlj 536 0/‘1 ) the N used stations. This is shown in figure 3. This
: A : : matrix represents the structure of the input. Each
BQn,51 « EQn, 556 071 row is a sample, £Q,, denotes the n'” event and S,,

Figure 3: Representation of the in-
put. 4



the m'" station. The last column are the labels 0 or
1, respectively normal behavior and earthquake. It
runs through one LSTM cell with a hidden layer size
of 2, meaning the model creates a 2-feature output

for the long-term memory (denoted ¢ in figure 2) The model was programmed in python
using PyTorch [13], an open source machine learning framework

3 Experiment

3.1 Data pre-processing

Figure 4: The 36 stations are shown
by the red dots on the New-Zealand
map.

Firstly, the stations to use had to be determined. For
this, we retrieved all stations located in the "bound-
ing box” of New-Zealand. These are all stations with
location's longitude between 166.104 and 178.990,
and latitude between -47.749 and -33.779. This leaves
us with 91 stations. Later on, when processing the
seismic recording data (see below), some stations
were found to not have information for all recordings.
Those were discarded. Also some stations, when ex-
perimenting with them individually, seemed to have
a negative impact on the overall performance. They
were again discarded. 36 stations remained, which
can be seen in figure 4

Next, earthquake events were filtered. We con-
sidered earthquakes with magnitudes from 1 to 2.5,
a range in which most of the low-magnitude earth-
quakes are (figure 5). This left 262 040 earthquakes.
To get a sample of manageable size thereof, and based
on the logical hypothesis that deeper earthquakes
would yield less precise predictions, since the record-

ings are from ground level, events with depth below 5km were retained, yielding a total of

5674 earthquakes.

Then, for each earthquake, seismic recording data

was retrieved. The recordings of the 36 stations were
downloaded for the 60 seconds preceding the strike,
as well as 11 recordings of 30 seconds each, with the
time before strike varying from 60 to 600 seconds
with 60 seconds steps (cfr. Section 3.3: Set-up). All
wave recordings were normalized.

To retrieve normal seismic data, i.e. recordings
that would be classified as 0 (no earthquake happen-
ing), all earthquake events were sorted by the time
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Figure 5: Distribution of the magni-
tudes of all earthquakes in the origi-
nal dataset.



since the last earthquake. Then, the 5674 first ele-
ments were retained and 30 seconds of seismic record-
ings were downloaded from the time exactly in the
middle of them. This defines normal behaviour as
when no earthquake is happening in at least the next
8590 seconds, roughly 71 minutes. This way, our
dataset was balanced and normal behaviour should
have very little to no information indicating an earth-
quake would happen after H seconds. Again, all wave
recordings were normalized.

Downsampling

Considering time and computational resources, one technique to speed up training is
downsampling the wave recordings. The original data provided by FDSN [11] is recorded
at a frequency of 100 Hz. To find a reasonable downsampling rate, capturing the essential
features but still conveying enough information, a small dataset was tested with different
sampling rates of 2, 5, 10, 25, 50 and 100Hz, with H=0, H=15 and H=30. Table 1 shows
the accuracies for the dataset at each rate, based on which we decided to sample down to
25Hz in the final experiment.

’ Freq. H H=0 H=15 H=30

2Hz 0.76  0.76 0.72
5Hz 0.79  0.75 0.75
10Hz | 0.77  0.76 0.75
25Hz || 0.80  0.77 0.76
50Hz || 0.80  0.77 0.76
100Hz || 0.79  0.78 0.76

Table 1

3.2 Overfitting

When a deep learning data becomes too specific to its training data, we say it is overfitting.
Too much overfitting leads to the model being good at predicting the training set, but not on
other, unseen data. To prevent our model from overfitting, we looked at multiple methods,
namely drop-out, batch normalization and early stop. Drop-out and batch normalization
showed to be useful and were implemented in our LSTM model. To show their impact, a
small dataset was run with H=0, T=30; first with nothing added to avoid overfitting, then
once each with drop-out and batch normalization. Without any overfitting strategy, the
model was clearly overfitting, with the training accuracy still increasing up to 0.96 while the
validation accuracy slightly decreased until 0.76

Dropout



This technique randomly ignores certain neurons in a layer, such that the output predic-
tions do not rely on specific neurons. This way, the model can generalize better. In our
implementation, dropout was used in the LSTM layer with a probability of 0.2. As shown
in figure 6, this diminishes overfitting considerably, as we can observe that the validation
accuracy does not significantly decrease anymore and reaches 0.79 (compared to 0.76).

Batch normalization

Batch normalization standardizes the input of the layer for each batch. By normalizing
all features per batch, the LSTM model gets a more stable accuracy of 0.77, but most
importantly the curves show less overfitting and the validation accuracy does not seem to
decrease.

Early-stop

When overfitting, over the number of epochs ran the model will first have an ascending
(learning) curve. Up to a certain point, where the model will continue improving on the
training data but not on the validation data. Therefore, one way to prevent overfitting
is prompting our training loop to stop when reaching that point. However, in our LSTM
model the errors made were highly varying from one epoch to the next, and the model did
not deteriorate that much in generalizing. This is shown for example in figure 7b, section
4. A few early-stop rules were tested out, but they did not seem effective or impactful.
Early-stop was not used in the end.



No overfitting strategy
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Figure 6: Accuracies of a small dataset with (a) no strategy to avoid overfitting, (b) drop-out
and (c) batch normalization. H=0, T=30

3.3 Set up

The final experiments were run on the above described dataset, consisting of about 11
thousand instances of 36 30-seconds long seismic wave-recordings as input, half of which
were earthquakes and half not. The batch size was 50 and the model was run for 100 epochs
with a learning rate of 0.001. The training, testing and validation sets were respectively 60,
20 and 20 percent of the whole dataset. The model had one LSTM layer and a hidden size
of two.

To bring insight to the research question, and with regards to the problem modelling
described in section 2.1, the LSTM model had to run on datasets with the same earthquakes
with parameter H (time before strike) varying. L (length of recorded sequence) was fixed
to 30 seconds. A first experiment was run with H going from 0 to 60 seconds by steps of 5



seconds. A second experiment let H vary from 0 to 600 seconds by steps of 60 seconds. To
even out the effect of the random test and validation set allocation, for every H the model

was run 5 times and then averaged.

4 Results
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The prediction accuracy for this dataset went over 80 percent for H=0s (averaged 0.801).
This confirms the ability of LSTM to predict earthquakes given the preceding seismic record-
ings. At first, the model was run with H varying from 0 to 60 seconds, with 5 seconds steps.
This already showed that time before strike had an effect on the accuracy, which gradually
dropped to 0.776 with H=60s. Since the accuracy stayed pretty high at 60s, the experiment
was run again with H varying from 0 to 600 seconds, with 60 seconds steps. Accuracies
continued to drop; with H=600s, the average accuracy was 0.639.

Clearly, we can say that seismic movement retains warning features in at least the 10
minutes preceding a low-magnitude earthquake. If we extrapolate the curve shown in figure
9b, we could argue that even 15 minutes before earthquake can be of interest. To test this,
the dataset was run once with H=900s. This yielded an accuracy of 0.573. The dataset was
then again run, this time with H=3600s. The validation accuracy should have been close to
0.5, but it showed to be higher than expected, namely 0.554. This indicates that there still
was some bias in the dataset.

After examination, one answer found
was that the normal and earthquake waves
did not have the same distribution over the
years figure 10. Some changes in any sta-

B normal
[ earthquake

600 tion could thus influence the results, with
the LSTM model learning which data was

500 from before or after a change. This could
be, for example, recording material deterio-
rating.

Knowing this, the accuracy gotten from
H=900s is not that high. We can thus con-
clude that useful information to predict low-
100 magnitude earthquakes lies within 10 to 15
minutes before strike.
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5 Conclusion & Discus-
Figure 10: Distribution of the number of sam- .
ples per year in the dataset. Blue bins are slon
normal behavior, orange bins are earthquake

4 Firstly, the results presented in the previ-
predecessors.

ous section clearly indicate that LSTM can
be used with seismic recordings as features
to predict the happening of low-magnitude
earthquakes.  But most importantly, it
demonstrates the relation between the time
before strike and the accuracy of such a
model. The results suggest that seismic recordings preceding a low-magnitude earthquake
contain sensitive information in the 10 to 15 minutes preceding the earthquake.

However, these numbers must be considered carefully. They are an indication of what
can be used, but not a representation of how accurately we could really predict earthquakes.
One limitation is the problem modelling that was used. In order to clearly study only the
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effect of the time before strike, the model used was very simple and a binary classifier. In
each run of the experiment, earthquakes would either happen exactly H seconds after the
recordings, or not at all. The reality of the world is more complex. One would not want a
program that can only predict if an earthquake does happen after 10 minutes for example,
but rather a program that can forecast probabilities of an earthquake happening with time
estimations.

Having shown the effect of the time of recording before strike, future work should look
deeper into how we can try to predict earthquakes happening after any H seconds. Since
earthquakes are a rare event but with big consequences, it is important to find ways to
minimize fake alerts. We could ask research questions such as "Given a continuous stream
of seismic recordings, how can we accurately warn for imminent earthquakes with very high
probability?”

In a more global way, research around this subject still has a long way to go. This paper
does not guarantee in any way that LSTM is the best approach. Different models should
also be tested. Also, this research does not look at predicting the location of an earthquake,
which opens the way for a whole lot of other questions.

6 Responsible Research

One important aspect of research is the reproducibility of the research methods. As such,
the methodology and experiment sections describe the data used precisely, such that one
could reproduce the experiments. Of course, no two models will produce the exact same
results, but the source code of the model used in this paper can be provided upon request.

Another point of attention that is specific to research using machine learning methods, is
the bias in the model and/or data. This has been adressed when discussing the results, and
it is important to keep in mind that the data might not always be perfect.
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