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Abstract
Due to the increasing popularity of various types
of sensors in traffic management, it has become
significantly easier to collect data on traffic flow.
However, the integrity of these data sets is often
compromised due to missing values resulting from
sensor failures, communication errors, and other
malfunctions. This study investigates the effect of
missing data on the performance of Long Short-
Term Memory (LSTM) models in traffic flow pre-
diction and assesses strategies to handle these miss-
ing values. By actively removing values from a
complete data set, three strategies to handle these
missing values are evaluated: dropping null values,
replacing them with zero, and linear interpolation.
We show that LSTM models are surprisingly re-
silient to missing data, with little impact on pre-
diction accuracy for up to 40% missing data, irre-
spective of the strategy used. For higher propor-
tions of missing data, dropping null values leads
to significant performance degradation, while zero-
filling and interpolation maintain predictive accu-
racy. This paper provides insights into the choice of
missing data handling strategies in time-series pre-
diction tasks, demonstrating the potential of LSTM
models for traffic forecasting under less-than-ideal
data conditions.

1 Introduction
In the modern economic environment, growth is everything.
As the economy and cities grow, so do the number of vehicles
and the demand for infrastructure to accommodate these cars.
Accurate traffic prediction can improve transportation effi-
ciency, reduce traffic congestion, and create safer roads [3].
Using good predictions the traffic network can be used to its
fullest extent. This can reduce the need for incredibly expen-
sive infrastructure expansions. Moreover, traffic prediction
is a critical component of Intelligent Transportation Systems
(ITS), which are becoming increasingly prevalent in modern
cities. Optimizing predictions can, among other things lead
to more efficient traffic light management. By understanding
the significance of traffic prediction, better transportation sys-
tems that are efficient, sustainable, and safe for everyone can
be developed.

There are multiple ways to collect data on traffic flow,
where traffic flow is defined as the total number of cars pass-
ing a given point in a given time. In this study, data from the
municipality of The Hague, The Netherlands is used. Traffic
flow is detected by using inner-city induction loops. Induc-
tion loops are usually installed at traffic lights and can detect
both the amount of cars that passed the sensor, and for how
long they were on top of the sensor.

Recent research into traffic forecasting has indicated a shift
towards the use of Long Short-Term Memory (LSTM) [4]
models due to their ability to capture complex temporal pat-
terns, an aspect integral to traffic flow data. Studies such as
[11] and [1] showed promising results in using LSTM for

short-term traffic flow prediction, outperforming traditional
time-series models and shallow neural networks [7].

LSTM models are particularly beneficial in this domain
due to their capability to remember long-term dependencies,
which is crucial considering the temporal dependencies (time
of day, day of week, season) and irregularities (accidents,
construction work) inherent in traffic flow data. Moreover,
LSTM’s gate mechanisms help to avoid the problem of van-
ishing and exploding gradients, enabling the model to learn
effectively over many time steps, a significant advantage for
reliable traffic forecasting.

Unfortunately, real-world data often contain inaccuracies.
This is not different in the traffic domain, broken sensors
or problems in signal transmission can result in gaps in
the data. In some cases, broken sensors can also result in
artificial detections. The inaccuracies can possibly heavily
compromise prediction accuracy. Often these inaccurate data
points are removed to train the model, resulting in smaller
training set sizes and possibly inaccurate results using
real-world data. However, there are some approaches that try
to prevent missing data in the first place by imputing missing
values in the traffic domain [2] or in other domains where
LSTMs are used [6][5]. By proper understanding of missing
data and ways to mitigate model performance decreases on
incomplete data sets, better performance on real-world data
can be achieved.

This paper aims to answer the following questions:

1. How much does missing data affect the accuracy of an
LSTM traffic prediction model?

2. What is an effective strategy to improve model perfor-
mance using erroneous data?

A deep learning LSTM model based on [10], [1], and [11]
is used to evaluate the current traffic volumes and the possi-
ble impact of inaccurate data. Inaccurate data can consist of
missing, but also of erroneous data, due to for instance broken
sensors.

Firstly, the created LSTM model is described in Section
2.1. Subsequently, detecting and marking this inaccurate data
is discussed in Section 2.2, based on raw and aggregated data.
Section 2.3 describes the methodology of research. Further-
more, Section 3.1 discusses the experimental setup in detail.
Afterwards, in Section 3.2 the effects of missing data in the
prediction accuracy of the model are evaluated. In Section 4
some ethical concerns are reviewed. Finally, Section 5 con-
cludes and Section 6 describes further work.

2 Methodology and Techniques
This section discusses the LSTM in Subsection 2.1. Subse-
quently, the source data is analyzed in detail in Subsection
2.2. Finally, the problem is formalized and the basic experi-
mental setup is explained in Subsection 2.3.

2.1 Long Short-Term Memory
To evaluate the effects of incorrect data on traffic predictions,
a Long Short-Term Memory (LSTM) model was created to
execute the required experiments.
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Figure 1: Architecture of a single LSTM module. Adapted from [8].

LSTMs have shown to be effective at sequence predic-
tion. The problems other Recurrent Neural Networks (RNN)
encounter in sequence prediction such as difficulty to learn
long-term dependencies result from the exploding/vanishing
gradient problem. This problem occurs when the gradient is
propagated over many layers. LSTMs use both a short- and
long-term memory to overcome this problem.

A standard LSTM unit is composed of a cell, an input gate,
an output gate, and a forget gate. The cell remembers values
over arbitrary time intervals, and the three gates regulate the
flow of information into and out of the cell. An illustration of
an LSTM module adapted from [8] can be found in Figure 1.

Formally, an LSTM cell at a time step t in its simplest form
is defined as follows:

First, we compute the forget gate ft:

ft = σ(Wf · [ht−1, xt] + bf ) (1)
where Wf are the weights for the forget gate, ht−1 is the

hidden state from the previous time step, xt is the input at the
current time step, bf is the bias for the forget gate, and σ is
the sigmoid function.

The input gate it and the candidate cell state C̃t are com-
puted as follows:

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)
Here, Wi and bi are the weights and bias for the input gate,

and WC and bC are the weights and bias for creating the new
candidate cell state. tanh is the hyperbolic tangent function,
which outputs values between -1 and 1.

The new cell state Ct is computed as:

Ct = ft ◦ Ct−1 + it ◦ C̃t (4)

Here, ◦ denotes element-wise multiplication. The old cell
state Ct−1 is forgotten according to ft and incremented by
the candidate cell state C̃t scaled by the input gate it.

Figure 2: Patterns of missing data. From [10].

The output gate ot is computed as:

ot = σ(Wo · [ht−1, xt] + bo) (5)

Where Wo and bo are the weights and bias for the output
gate.

Finally, the new hidden state ht is computed as:

ht = ot ◦ tanh(Ct) (6)

The tanh of the cell state Ct is output, but only scaled by
the output gate.

In summary, an LSTM is able to selectively forget its cell
state, selectively update its cell state, and selectively output its
cell state, due to the gating mechanisms provided by the for-
get gate, input gate, and output gate, respectively. This makes
LSTMs useful for tasks where longer time dependencies are
required, like in some sequence prediction tasks.

2.2 Preliminary Data Analysis
The data set used in this paper contains data from the munici-
pality of The Hague. Induction loops, often in front of traffic
lights, were used to detect cars, bicycles, and trams. The raw
data set contains a total of 172 sensors, divided over 11 in-
tersections. Data was collected in the month of November
2019 and stored in the V-LOG [9] data format. In this format,
the start and end time of a sensor detecting a car is stored to
create a timeline of all detections per sensor.

To use this data as input for the LSTM, multiple prepro-
cessing steps have been adopted. Data from bicycles and
trams was removed as the focus of this research is on car traf-
fic. Data from the timeline was aggregated into a simple count
of cars per 15 minutes, the traffic flow. This flow is then nor-
malized per sensor using the standard score z = (x − u)/s,
where x is a sample, u is the mean of samples and s is the
standard deviation.

The data set contains 2880 time steps of 15 minutes for
130 sensors. In total, there are 1351 missing values in this
whole data set. The missing values appear as null values in
the source data. This makes 0.36% off all values null values.
Some sensors contain more erroneous data than others. The
low amount of missing data in this data set allows for insights
into how much missing data will have an impact on prediction
accuracy.

After simple statistical analysis, it can be determined null
values in the source data appear in two patterns:

1. In the first pattern, single values are missing at often reg-
ular intervals in the data. Conversion errors seem to be
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the main cause for this, based on some manual compar-
isons with the raw data format (V-LOG). In other cases,
the missing values are spread out randomly throughout
the data. These errors could be caused by hardware fail-
ure or problems in signal transmission.

2. Whole uninterrupted sequences missing from the data
is the second possible pattern. Only if there are more
than three consecutive values missing, it is considered a
missing sequence. An example of a missing sequence is
outlined in Figure 2. Based on the source data, missing
sequences have a length of 9.8 time steps on average,
with a standard deviation of 3.3. These kinds of errors
are more likely due to hardware failure.

In this research, the focus will be on the second pattern, as
this pattern appears most often, and imputing a single missing
value can be trivial.

2.3 Methodology
To answer the research questions specified in Section 1, the
LSTM described in Section 2.1 is used to complete the task
of traffic flow prediction. In short, an artificial data set is cre-
ated by removing values from the original temporal sequence.
This partially destroyed data set is then used to compare dif-
ferent strategies for handling missing data.

Formally, Given a set of historical traffic flow observa-
tions S = (x1, x2, ..., xn) where xi denotes the traffic flow at
time step i, we create a subsequence X = (xs, xs+1, ..., xt),
where X ⊂ S. The aim is to predict the traffic flow yt+1 at a
future time step t+ 1.

The model is trained by minimizing the loss function for
the Root Mean Squared Error (RMSE), which measures the
discrepancy between the predicted traffic flow and the true
traffic flow. The true traffic flow at time t + 1 is denoted by
yt+1. When data has not been manipulated from the training
set yt+1 = xt+1. The total amount of sequences is denoted
by n. With this, the loss function can be written as:

RMSE =

√√√√ n∑
t=1

(ŷt+1 − yt+1)2

n
(7)

To determine the impact of missing data and possible ways
to mitigate the impact, multiple strategies for handling miss-
ing data are investigated.

1. The first strategy is dropping all null values. This would
create a smaller data set S′

p = (x1, x2, ..., xt−p), where
p is the amount of null values. The values might be
removed at multiple different time steps in S′

p. This re-
sults in a set where the assumption that time steps have
regular intervals is voided.

2. Another strategy is to replace all null values with 0.
From this we get S′

p = (x1, x2, ..., xt) where p values
of x have been replaced with 0.

3. The final strategy to be explored is using linear interpo-
lation S′

p = (x1, x2, ..., xt) is created where p values
of xi have been interpolated using Formula 8, where xl

is the closest non-null value preceding xi and xr is the
closest non-null value following xi.

x̃i = xl +
xr − xl

r − l
· (i− l) (8)

Regardless of the strategy, the model is trained on subse-
quences (X1, ..., Xn) based on the artificial data set S′. Fi-
nally, the model is evaluated against a complete baseline data
set S. Multiple different values for p are used to determine
how the amount of missing data affects each strategy. This
experiment is then repeated for multiple sensors to provide
more reliable results. Average measures over the different
sensors are considered to assess the effectiveness of the dif-
ferent strategies.

3 Experimental Setup and Results
This Section firstly discusses the exact experiment details in
3.1. Subsequently, the results and findings are discussed in
Subsection 3.2.

3.1 Experimental Setup and Data Preparation
Firstly, the effect of missing data has to be detected. The
baseline for the experiments should be a complete data set
without any missing values. The original data set contains
only a small set (0.36%) of missing values.

By manual data selection, 84 of the 130 sensors that do
not have any missing sequences are used. These sensors still
contain some sparse missing values, but never in sequences
of more than three. To be able to train the model the data set
cannot contain any missing values. Therefore, imputation is
used to fill these values and create a baseline data set.

While imputation on the baseline data set should generally
be avoided, since there are only a small number of values
missing and a maximum of three values in a row are missing,
it is assumed linear interpolation would not cause impactful
inaccuracies.

From the baseline data set, the data is divided into sub-
sequences using a sliding window. The traffic flow values
are put into sequences of 80 steps (20 hours), using the last
value as a label. These sequences are then split into a training
set (60%), a validation set (15%), and a test set (25%). The
validation and test set are not affected by data removal and
missing data strategies.

The data is then removed as described in Section 2.3 us-
ing processes and choices that are consistent with the missing
data occurrences observed in our original data set as reported
in Section 2.2.

Different methods to remove data from the baseline data
set have been considered. A fixed sequence length of 10
was chosen, based on the observations described in Section
2.2. To remove sequences of data, random indices are cho-
sen from where a sequence is removed under the constraint
that sequences never overlap. The performance of the learn-
ing model is tested for different amounts of manipulated se-
quences.

Using this new broken training set, multiple strategies to
handle the null values are utilized as described in Section
2.3. Using the first strategy, null values are simply dropped.
In the second strategy, values are replaced by 0. This is done
after normalizing, as a result, the values are in reality being
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Figure 3: LSTM performance on recomputed data sets

replaced by the mean traffic flow. Linear interpolation is done
according to Formula 8. To recompute values at the edges,
not in between two non-null values, the outer-most value is
simply repeated.

Using the different data sets the model is trained and eval-
uated against the baseline data set.

The model consists of a total of four layers: an input layer,
two LSTM layers, and a dense output layer. The LSTM layers
both contain 60 units. The model is trained for a maximum of
100 epochs, with an early stopping condition if performance
on the validation set does not increase for 10 epochs. As men-
tioned before RMSE, is used as the loss function. The Adam
optimizer is used with a learning rate of 10E-5.

Experiments are run for regular intervals of 5% of missing
data between 0% and 95% (inclusive) for a total of 20 runs per
strategy. The experiments are repeated for multiple sensors
and results are averaged per strategy to ensure reliability and
validity. A total of 5 random sensors from the baseline data
set were used.

3.2 Results and Findings
This Section describes the results and findings of the experi-
ments described in Section 2.3 and Section 3.1.

Figure 3 clearly illustrates that the RMSE increases as
larger proportions of data are removed, indicating a decline in
model performance. Remarkably, the model seems resilient
to missing data up to 40%, regardless of the strategy used
to handle missing data. Despite this, the model still yields
reasonably accurate predictions even with substantial data re-
moval.

The strategy of dropping missing values underperforms
when more than 40% of data is removed, and the performance
further decreases when the missing data exceeds 75%. Inter-
estingly, there are instances where the RMSE decreases even
though more data is removed. This counterintuitive result
may suggest the existence of noise or non-informative data
in the removed sections, although further research is needed
to understand this.

Figure 4: Model performance on the training set with 95% percent
of data removed

The strategies of setting missing values to zero and interpo-
lation maintain effective performance, even with a significant
percentage of data missing. The set-to-zero strategy only re-
sults in a 26% increase in RMSE even when 95% of the orig-
inal data is missing.

Figure 4 provides an example of a prediction of the traf-
fic flow at a randomly picked sensor for approximately five
days. The actual traffic flow is shown as baseline data. 95%
of this data is destroyed and replaced with 0. Note that this
process is done while the data is normalized, resulting in the 0
values being replaced by the mean traffic flow when the data
is unnormalized. The data recomputed using the set-to-zero
strategy is denoted as training data. For this example, you can
see only three sequences have not been destroyed and over-
lap with the baseline data. Finally, the model’s predictions
are shown, trying to mimic the training data.

To further investigate the surprisingly good performance of
a learning model trained with a major proportion of broken
sequences, Figures 4 and 5 depict the predictions over 5 days
over the manipulated training set.

Figure 5 shows the prediction over a test set of the same
model trained using only 5% of original data, but instead on a
test set of complete data. Surprisingly, the model is still able
to capture the variations when original sequences of data are
presented to the forecasting model. However, it is visible that
on traffic flow peaks the model predicts too low values, while
on dips it predicts too high values.

Figure 6 shows a model trained on the complete baseline
data set. In this data set, no data has been removed. The
model predicts on the same test set as in Figure 5. Com-
pared to Figure 5 it is visible that Figure 6 has a more smooth
prediction curve and predicts the actual values a little better.
This is especially clear at dips when the actual traffic flow hits
zero, during quiet times at night. At peaks, during rush hour,
the model manages to predict the average traffic flow better
too.

The model trained on only 5% of data has only a mini-
mal decrease in performance compared to the baseline model.

5



Figure 5: Model performance on the test set when trained with 95%
of data removed

Figure 6: Model performance on the test set when trained on the
baseline data set

Figure 4 and 5 give an intuition of why the performance mea-
sures remain good even with little data. While the model
has more preference to stay near the traffic flow mean, it ex-
hibits a remarkable ability to learn patterns from the limited
data and predict trends accurately. Its conservative approach
serves as a stabilizing force, minimizing the chance of drastic
over-estimations or under-estimations.

4 Responsible Research
In conducting this study, ethical standards in data usage and
experimental replication are followed. The traffic flow data
used in the study is collected from induction loop sensors,
ensuring anonymity and privacy. This type of traffic data
only captures traffic flow information without any identifiers,
maintaining the privacy of individual road users. Therefore,
it is a non-intrusive and ethically compliant source of data for
our traffic prediction task.

Furthermore, to ensure the reliability and validity of our
findings, we have undertaken multiple runs of our experi-
ments. This approach reduces the likelihood of random vari-
ations or outliers influencing our results. This approach en-
sures the trustworthiness and reproducibility of our research
findings, contributing to responsible and robust research prac-
tices.

5 Conclusions and Discussion
Based on the results it can be concluded that surprisingly,
even for high amounts of missing data the model is still able
to make fairly good predictions.

For less than 40% of the data missing, the choice of strat-
egy to handle missing data does not have much impact. In
the case where there is more data missing, dropping values
should be avoided, since it proved to be less reliable than the
other strategies. Both interpolation and setting values to zero
lead to a small predictable increase in RMSE.

Although the performance of the model understandably de-
clines with higher rates of missing data, certain strategies
such as zero-filling and interpolation are remarkably effective
in maintaining model performance. This study thus provides
valuable insights into the choice of strategies for handling
missing data in time-series prediction tasks, demonstrating
the potential of LSTM models for traffic forecasting even in
less-than-ideal data conditions.

6 Further work
An important topic to be explored further is model perfor-
mance on missing data when the model has been trained with
a perfect data set. A similar process as described in this pa-
per could be used, with the exception that data is removed
(and recomputed) from the test set instead of the training
set. Based on this informed choices in strategies for handling
missing data in real-world scenarios can be made.

Besides missing data, broken sensors can also generate ex-
cess data that might not represent real-world scenarios. Fur-
ther work could look into how these kinds of errors can be
detected, how they affect a model, and how detrimental ef-
fects could be mitigated.
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This research focused on strategies to handle sequences of
missing values. However, based on the source data analysis
in Section 2.2, this is not the only pattern in which data is
missing. Single missing values at regular intervals or random
locations are also present. The effect of missing values fol-
lowing this pattern on a model should be explored as well.
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