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Wave forecasting in ocean and coastal waters commonly relies on spectral models
based on the spectral action balance equation. These models assume that different
wave components are statistically independent and as a consequence cannot resolve
wave interference due to statistical correlation between crossing waves, as may
be found in, for instance, a focal zone. This study proposes a statistical model
for the evolution of wave fields over non-uniform currents and bathymetry that
retains the information on the correlation between different wave components. To
this end, the quasi-coherent model (Smit & Janssen, J. Phys. Oceanogr., vol. 43,
2013, pp. 1741–1758) is extended to allow for wave–current interactions. The
outcome is a generalized action balance model that predicts the evolution of the
wave statistics over variable media, while preserving the effect of wave interferences.
Two classical examples of wave–current interaction are considered to demonstrate the
statistical contribution of wave interferences: (1) swell field propagation over a jet-like
current and (2) the interaction of swell waves with a vortex ring. In both examples
cross-correlation terms lead to development of prominent interference structures,
which significantly change the wave statistics. Comparison with results of the SWAN
model demonstrates that retention of cross-correlation terms is essential for accurate
prediction of wave statistics in shear-current-induced focal zones.

Key words: surface gravity waves, wave scattering

1. Introduction

Wind-generated waves play an important role in the dynamics of oceanic and coastal
waters. In the upper ocean, surface waves can force large-scale circulations (e.g. Craik
& Leibovich 1976), whereas near the shore they can drive alongshore currents (e.g.
Bowen 1969; Longuet-Higgins 1970; Reniers and Battjes 1997; Ruessink et al. 2001),
return flow (e.g. Dyhr-Nielsen & Sørensen 1970; Stive and De Vriend 1995) and
associated sediment transport processes (e.g. Deigaard et al. 1992; Van Rijn 1993).

† Email address for correspondence: G.Akrish@tudelft.nl
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Furthermore, waves control shipping operations and associated downtime as well as
coastal safety through beach and dune erosion and potential inundation (e.g. Vellinga
1982; Roelvink et al. 2009).

The common approach to predicting statistical parameters of wind waves is
via operational (phase-averaged) wave models, e.g. WAM model (Group 1988),
WAVEWATCH model (Tolman 1991) and SWAN model (Booij et al. 1999). These
models solve numerically the so-called spectral action balance equation that can be
written in the following form:

∂tN +∇x · (CxN)+∇k · (CkN)= S, (1.1)

where N represents the spectrum of the action density, being equal to the spectrum
of the energy density, E, divided by the intrinsic frequency, σ . The propagation part,
on the left-hand side, describes the kinematic behaviour of the field as it propagates
through slowly varying current, U, and bathymetry, with propagation velocities Ck and
Cx over wavenumber space, k= (k1, k2), and physical space, x= (x1, x2), respectively.
On the right-hand side, the equation is forced by source terms, S, to account for
processes of wave generation (by wind), dissipation (e.g. due to whitecapping) and
wave–wave interactions.

The statistical assumptions underlying the derivation of (1.1) are that the wave
field can be regarded as Gaussian and quasi-homogeneous. The former suggests that
the field is completely defined by its correlation function (assuming a zero-mean
field), while the latter proposes that the correlation between any two distinct wave
components equals zero. Based on these assumptions, variation of the field statistics
is governed completely by variations of the wave variances (which are represented
by N), as indeed described by (1.1).

In most circumstances at sea, the parameters of the wave field (e.g. wave
amplitudes) are evolving slowly over spatial scales of O(10–100 km) due to the
action of wind, slow medium changes and weak nonlinearity. Under these conditions,
the assumption of quasi-homogeneity is easily met, and (1.1) remains valid. However,
there might be situations where the field encounters medium variability over much
smaller scales O(0.1–1 km). Such situations can occur quite frequently in coastal
regions, where currents and bathymetry can vary rapidly (e.g. Chen et al. 1999;
Ardhuin et al. 2003). Furthermore, following recent studies (e.g. Poje et al. 2014;
McWilliams 2016), they may also occur in the open ocean over small-scale currents
(e.g. submesoscale currents). Physically, in these situations, waves are rapidly scattered
into multiple directions, and consequently can form focal zones which give rise to
wave interferences. Well-known examples of such wave–media interactions are given
by the evolution of waves over a submerged shoal (e.g. Vincent & Briggs 1989)
or over a vortex ring (e.g. Yoon & Liu 1989). Statistically, the interference effects
that arise in such cases are described by cross-correlations between different wave
components of the scattered field and may result in significant and rapid variations
of the wave statistics (Janssen et al. 2008; Smit & Janssen 2013; Smit et al. 2015a).
The quasi-homogeneous assumption excludes the contribution of the cross-correlation
terms, and therefore equation (1.1) cannot describe the effect of wave interferences
arising in interactions between waves and rapidly varying media.

The ability to account for the effect of wave interferences in these situations is
important, since they can alter dramatically the spatial distributions of wave parameters
(e.g. the significant wave height), which serve as input for numerous applications in
coastal zones. In addition, through the interaction of waves with small-scale ocean
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currents, generated interference structures may also introduce leading-order statistical
contributions for applications in the open ocean. For example, they may contribute
to changes driven by waves of submesoscale currents (McWilliams 2018), or the
interpretation of noise obtained (due to the presence of waves) in measurements
of the sea surface, revealing the evolution of small-scale circulations (e.g. Ardhuin
et al. 2017), and they may also enhance and alter the spatial distribution of extreme
elevations in energetic focal regions (e.g. Metzger et al. 2014; Fedele et al. 2016).

In order to take into account the statistical effect of wave interference, Smit
& Janssen (2013) and Smit et al. (2015a) have recently developed an evolution
equation that allows for the generation and evolution of correlations between different
wave components when interacting over small-scale bathymetry changes. This newly
developed stochastic model is called the quasi-coherent model (QCM). The main aim
of the present study is to extend the capabilities of the QCM so it can handle the
interaction between waves and ambient currents. The derivation of the extended QCM
is detailed in § 2. The model is verified in § 3 through the problem of interaction
between a swell field and a jet-like current (e.g. Janssen and Herbers 2009). Then,
the model is used to study the statistical mechanism for the generation of wave
interferences in § 4, through the classical problem of interaction between swell waves
and a vortex ring (e.g. Yoon & Liu 1989). Finally, conclusions are drawn in § 5.

2. Stochastic model for linear waves over varying current and bathymetry
Generally speaking, stochastic wave models are derived based on deterministic

equations that physically describe the evolution of wave fields. This approach of
deriving a stochastic formulation is also adopted here. Therefore, the derivation starts
with a physical description of the wave field which is effectively represented by the
so-called action variable. Section 2.1 introduces the definition of the action variable
and its governing equation. As discussed in § 2.2, the second-order statistics of the
wave field, including the statistics of wave interferences, are fully described through
the correlation function or the spectral distribution function of the action variable.
These starting points are used in § 2.3 to formulate a stochastic model that takes into
account the generation and transportation of wave interference contributions. Finally,
the numerical implementation of the model and an overview of the considered
simulations are described in § 2.4 and § 2.5, respectively.

2.1. The action variable and its evolution equation
The formulation starts by considering the evolution of a random linear wave field
through a variable medium that can be represented by its surface potential and surface
elevation, φ(x, t) and η(x, t). It is assumed that the medium changes slowly so that
the ratio, ε = L/Lm, between the characteristic wavelength, L, and the characteristic
length scale of medium variation, Lm, is small (ε � 1). Accordingly, the field can
locally be approximated as a summation of plane waves with slowly varying phase
and amplitude, which to leading order in ε obey to the following general dispersion
relation (e.g. Dingemans 1997):

ω=U · k+ σ . (2.1)

Variations in the medium are introduced by the ambient current, U(x), and by the
water depth, h(x). Using the medium information and the definition of the intrinsic
frequency, σ(x, k) =

√
|k|g tanh(|k|h), the value of the absolute frequency, ω, is
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obtained through (2.1), where |k| is the magnitude of the local wavenumber, defined
as |k| =

√
k2

1 + k2
2, and g is the gravitational acceleration. Finally, from the statistical

point of view, the field is assumed to be zero-mean, Gaussian and quasi-stationary.
Under this statistical and physical framework, it will be convenient to use the so-

called action variable (e.g. Besieris & Tappert 1976; Krasitskii 1994), ψ , which is
defined as

ψ =
1
√

2g
[g a−1η+ iaφ], (2.2)

where a(x,−i∇x) is a pseudo-differential operator that is associated with the symbol
a(x, k)=

√
σ(x, k) (see detailed definition of this operator in appendix A).

The convenience of working with the action variable, ψ , becomes significant
in the formulation of the second-order statistics of the field, since, following its
definition, second-order statistical functions of ψ (e.g. the correlation function) are
inherently related to the definition of the wave action (Bretherton & Garrett 1968).
As a consequence, the action variable, ψ , is intimately related to the mean action
density and the mean energy density through the following expressions:

ρ〈|ψ |2〉 =m0/σ +O(ε), (2.3)
ρ〈|aψ |2〉 =m0 +O(ε), (2.4)

where ρ is the water mass density and the angular brackets, 〈· · ·〉, should be read as
an ensemble average. The variable m0 provides a leading-order estimation (in ε) of
the mean energy density (also known as the zero-order moment of the spectral energy
density) and it is defined as follows:

m0 = ρ

〈
1
2

gη2
0 +

1
2g
(σφ)20

〉
, (2.5)

where now (in (2.3) and (2.5)) σ(x, −i∇x) represents a pseudo-differential operator
that is associated with the intrinsic frequency, σ(x, k), and the subscript 0 indicates
O(1) terms (refer to appendix A for the definition of σ(x,−i∇x) and its leading-order
operation, e.g. (σφ)0). Further details explaining why the expression in (2.5) defines
the leading-order estimation of the mean energy density are given in appendix B.

An additional motivation for the definition of ψ (see (2.2)) is that, under the
physical assumptions made here, the governing equation of the wave field can be
written as (Besieris & Tappert 1976; Besieris 1985)

∂tψ =−iω(x,−i∇x)ψ, (2.6)

where ω(x, −i∇x) is a pseudo-differential operator that is associated with the
dispersion relation, ω(x, k) (see appendix A). This equation form is convenient since
it can be transformed directly into an evolution equation of the correlation function,
which under the assumption of Gaussian statistics provides a complete statistical
description of the wave field. A verification of this equation for homogeneous and
weakly inhomogeneous media is described in appendix B. For homogeneous media,
equation (2.6) exactly describes the evolution of the considered linear field. For
weakly inhomogeneous media, equation (2.6) reduces for each wave component to
the local dispersion relation, equation (2.1) (or the eikonal equation, which governs
the evolution of the wavenumber) at leading order, and the well-known transport
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equation for the mean action density, 〈|ψ |2〉 at O(ε). This indicates that at O(ε),
equation (2.6) provides the correct representation of the evolution of the field.

To summarize, the formulation presented here considers a random, linear and slowly
varying wave field, which is concisely represented by the action variable, ψ . The
definition of this action variable introduces convenient properties which will eventually
lead to a derivation of a generalized action balance equation that accounts for the
effect of wave interferences. As a first step on this path, the next subsection aims
to demonstrate that the statistical information about wave interferences is naturally
included in the representative second-order statistical functions (i.e. the correlation
function and the Wigner distribution).

2.2. Second-order statistics
Following the statistical assumptions for the surface variables, η and φ, and following
the linearity of the definition (2.2), the action variable ψ(x, t) is said to be a zero-
mean, complex Gaussian and quasi-stationary field (e.g. Soong 1973). The statistics
of such a random field are defined completely by the following correlation function:

Γ (x, x′, t)= 〈ψ(x+ x′/2, t)ψ∗(x− x′/2, t)〉. (2.7)

The statistical information carried by the correlation function is better seen using
its spectral form, written as

Γ (x, x′, t)=
∫

dk exp(ik · x′)
∫
Γ̂ (k, k′, t) exp(ik′ · x) dk′, (2.8)

where k and k′ are defined as the average and difference of two interacting
wavenumbers, namely k = (k1 + k2)/2 and k′ = k1 − k2. In addition Γ̂ (k, k′, t) is
defined as Γ̂ (k, k′, t)= 〈ψ̂(k+ k′/2, t)ψ̂∗(k− k′/2, t)〉. The expression above reveals
the spectral content of the correlation function. It shows that, in general, Γ oscillates
with a wavenumber difference k′ over the space x. Such an oscillation occurs when
wave components with two different wavenumbers are statistically correlated, and
thus creating a spatially dependent pattern of wave interference.

The assumption that the wave field is quasi-homogeneous trims the spectral
information provided by Γ̂ with respect to k′ and accounts only for a narrow window
around k′= 0, which consists of the components that characterize the slow changes of
the medium. Therefore, under this assumption, the spectrum obtained by the Fourier
transform of Γ from x′ to k only allows for slow variations of the variance terms
of the field. This spectrum is the conventional action density spectrum, N(x, k, t). In
this study, however, statistical inhomogeneity of the wave field is taken into account
by considering the full spectrum provided by Γ̂ with respect to k′. In this general
case, the corresponding spectral representation of wave action follows the definition
of the Wigner distribution, W(x, k, t):

W(x, k, t)=
∫
Γ (x, x′, t) exp(−ik · x′) dx′. (2.9)

Therefore, the Wigner distribution of ψ captures the same information as the
correlation function and basically generalizes the concept of the action density
spectrum by including the cross-correlation terms that correspond to wave interferences
(also see, e.g. Hlawatsch & Flandrin (1997)). As such, the Wigner distribution
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provides a complete spectral description of the second-order statistics of the field.
Finally note that, as implied by (2.9), the zero-order moment of W equals the
variance of ψ , and therefore following (2.3) gives a leading-order evaluation of the
mean action density.

Practically speaking, one would eventually be interested in certain field parameters
(e.g. characteristic wave height and period) for engineering applications. These
parameters are commonly estimated based on the spectral moments of the energy
density (Rice 1945). Most importantly is the zero-order moment, m0, which is used
to estimate, for example, the so-called ‘significant wave height’ Hs (defined as the
mean height of the highest one-third of the waves in the field) through the following
formula:

Hs(x, t)= 4
√

m′0, (2.10)

where m′0 =m0/(ρg). Therefore, in order to estimate Hs using (2.10) one is required
to calculate the transformation from the spectral representation of the action density
to m0. Using the conventional spectrum of the action density, N(x, k, t), m0 is easily
obtained as

m0 = ρ

∫
σ(x, k)N(x, k, t) dk. (2.11)

However, if cross-correlation terms are taken into account, equation (2.11) is no
longer adequate since the cross terms at (x, k) should not be multiplied by σ(x, k). In
order to multiply each term stored at (x, k) by the correct factor, one must distinguish
between the variance term and the cross-correlation terms. Therefore, for cases where
cross-correlation terms (e.g. interference terms) are important, a direct substitution of
W(x, k, t) instead of N(x, k, t) in (2.11) would be inaccurate. A modified formula to
calculate m0 based on W(x, k, t) is given as follows:

m0 = ρ

∫ ∫ √
σ(x, k+ k′/2)

√
σ(x, k− k′/2)Γ̂ (k′, k, t) exp(ik′ · x) dk′ dk, (2.12)

where
Γ̂ (k, k′, t)=

∫
W(x, k, t) exp(−ik′ · x) dx. (2.13)

Appendix C details the derivation of (2.12) and also provides a simple example that
explains why the cross-correlation terms should be scaled differently.

To conclude, the Wigner distribution, W, of the action variable, ψ , generalizes the
concept of the action density spectrum (i.e. N), by including the cross-correlation
terms that correspond to wave interferences. Once W is known, local field parameters
(e.g. Hs) can be derived and used for practical applications. The last step of the
formulation should therefore be devoted to the derivation of a stochastic model for
computing the evolution of W.

2.3. Evolution equation for the Wigner distribution
The procedure to derive the evolution equation for W is analogous to the procedure
presented in Smit & Janssen (2013) and Smit et al. (2015a), and is briefly presented
below. Starting with the governing equation of the action variable, equation (2.6), the
evolution equation for the correlation function is derived (see e.g. Papoulis and Pillai
(2002)) by noting first that

∂tΓ (x1, x2, t)= 〈ψ∗(x2, t)∂tψ(x1, t)+ψ(x1, t)∂tψ
∗(x2, t)〉, (2.14)
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Modelling statistical wave interferences over shear currents 891 A2-7

then, by substituting the governing equation of ψ into the above equation, and using
the variable transformation x1 = x+ x′/2 and x2 = x− x′/2, one obtains

∂tΓ (x, x′, t)=−i[ω(x+ x′/2,−i∇x′ − i∇x/2)−ω(x− x′/2,−i∇x′ + i∇x/2)]Γ (x, x′, t).
(2.15)

The corresponding evolution equation for the Wigner distribution is derived through
the Fourier transformation, equation (2.9), and associating the factor x′ with i∇k and
the operator −i∇x with k, as

∂tW(x, k, t)=−iω(x+ i∇k/2, k− i∇x/2)W(x, k, t)+ c.c., (2.16)

where c.c. stands for complex conjugate. For the purpose of interpreting the operation
ω upon W, equation (2.16) is written in the following, more explicit, form (see details
in appendix D):

∂tW(x, k, t)=−iω(x, k) exp[i
←−
∇ x ·
−→
∇ k/2− i

←−
∇ k ·
−→
∇ x/2]W(x, k, t)+ c.c., (2.17)

where the arrows indicate the function on which the differential operator should
operate, i.e. ω or W.

Formally, equation (2.17) defines the evolution of W. Smit & Janssen (2013)
showed that essentially two parameters, β and µ, govern the order of approximation
introduced by a truncated version of the exponential operator in (2.17). The parameter
β arises due to the operation of the first term in the exponential operator (i.e.
∇x · ∇k/2), and it represents the ratio between the correlation length scale Lc and
the medium variation scale Lm, namely β = Lc/Lm. The parameter µ arises due to
the operation of the second term in the exponential operator (i.e. ∇k · ∇x/2) and
it is equal to the ratio between the wavelength L that corresponds to k and the
characteristic length scale of the interference structures stored in k, LW , i.e. µ= L/LW .
Accordingly, Taylor expansion may applied to define the operator in (2.16) by
requiring that both β � 1 and µ� 1. Under these conditions, the general evolution
equation, equation (2.16), can be approximated to O(β, µ) by

∂tW +∇kω · ∇xW −∇xω · ∇kW = 0, (2.18)

which is exactly the transport equation employed in most commonly used third-
generation spectral wave models (e.g. SWAN). Therefore, the conventional transport
equation, equation (2.18), is only valid for certain sea conditions for which β and µ
are small.

Assuming that the incident wave field is statistically homogeneous, Smit &
Janssen (2013) demonstrated that generated cross-correlations (and, therefore, wave
interferences) may have an important contribution for cases where the variation scale
of the medium is of the same order or smaller than the scale of the correlation length,
namely for cases in which β > O(1). Obviously, for such cases, the interpretation
of the operator in (2.16) using a Taylor expansion is no longer valid. Alternatively,
the operator can be partially defined using a Fourier integral (Smit & Janssen 2013),
leading to an integro-differential form, which remains valid also for cases in which
β >O(1), but retains the assumption of weak spatial variability of the statistics of the
field (µ� 1). This form of the operator is defined as (see appendix D for details)

ω(x+ i∇k/2, k− i∇x/2)W(x, k, t)=
∫
ω̂(q, k, x)(1− i

←−
∇ k ·
−→
∇ x/2)W(x, k− q/2, t) dq,

(2.19)
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where ω̂(q, k, x) is the Fourier transform of the dispersion relation around the point
x. Additionally, the part of the operator that results in the common transport terms of
(2.18) can be extracted out of the integral in (2.19) (see Smit et al. 2015a). However,
for cases in which β >O(1), it will be convenient to extract only the spatial transport
term (∇kω · ∇xW) and to leave the refraction term (∇xω · ∇kW) inside the integral.
This is because such cases involve relatively rapid variations in the medium and also
narrow spectrum, and therefore require not only high resolution in the spatial space,
but also high resolution in the spectral space. Leaving the refraction term inside the
integral eliminates the need to evaluate the derivative of W with respect to k, and thus
prevents excessive resolution in the spectral space. As a consequence, the integral of
(2.19) can be computed much more efficiently. To this end, the local value of the
dispersion relation at the point x is subtracted from the original dispersion relation
and the remainder is defined as 1ω(x + x, k) = ω(x + x, k) − ω(x, k) (where, due
to computational considerations, x is defined as x= x′/2; see details in appendix E).
With this decomposition, the evolution equation can be rewritten as

∂tW +∇kω · ∇xW = SQC, (2.20)

where SQC is a scattering source term that takes into account the statistical effects of
wave refraction and interference induced by medium variations. The expression that
defines this source term is given by

SQC = −i
∫
1ω̂(q, k, x)(1− i

←−
∇ k ·
−→
∇ x/2)W(x, k− q/2, t) dq

+ i
∫
1ω̂(q, k, x)(1+ i

←−
∇ k ·
−→
∇ x/2)W(x, k+ q/2, t) dq. (2.21)

Note that the subscript QC, which indicates this source term, stands for ‘quasi-
coherent’ approximation (Smit & Janssen 2013). The notion ‘quasi-coherent’ refers
to the assumption that µ� 1. Assuming that µ is small, the model can accurately
resolve only the interference patterns with spatial variation, LW , larger than the length
of the considered wave, L.

The transport equation of W, equation (2.20), provides a generalization of the
conventional transport model (2.18), by allowing statistical interferences to be
generated due to the interaction of the wave field with variable bathymetry and
currents. In that sense, equation (2.20) can be seen as a generalized action balance
equation. In the following, the numerical implementation of (2.20) is discussed.

2.4. Numerical implementation
The numerical implementation of (2.20) is confined to steady-state solutions, for
which spatial and spectral discretizations are required. A detailed explanation of the
discretization process and how SQC is implemented numerically is given in appendix E.
The discretization process results in a coupled system of algebraic equations that is
characterized by a matrix of size Nx1Nx2Nk1Nk2 × Nx1Nx2Nk1Nk2, where Nj is the
number of grid points in the direction j. As a consequence of the implicit approach
adopted here, where the spatial derivatives and the terms that construct SQC are
evaluated at the same spatial point, the coupled system of algebraic equations must
be solved iteratively. This is performed using the Gauss–Seidel method, where
the rows of the matrix are arranged in accordance with the sweeping approach as
detailed in Zijlema & van der Westhuysen (2005). Once a steady-state solution of
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FIGURE 1. Wave rays due to k0 over a jet-like current field indicated by the solid lines.
The rays at x1 = 0 are obliquely incident with an angle of 15◦. In addition, the ambient
current is marked by arrows. Finally, the dashed vertical lines are sections along which
the results of the significant wave height will be displayed.

W is reached, the evaluation of m0 which is required for the estimation of certain
statistical field parameters is computed through (C 12) (see appendix C for details).
The next subsection describes the numerical simulations which are considered in this
study.

2.5. Set-up and overview of the considered numerical simulations
Two classical examples of wave–current interactions are considered. The first concerns
the evolution of an incoming wave field over a jet-like current. This example is used
to verify the model in § 3. In the second example, the field interacts with a vortex-ring
current. This example is used in § 4 to study the statistical condition for the effect
of wave interferences to appear. A visual description of the spatial variation of the
considered current fields is presented by the arrows in figure 1 for the jet-like current
and in figure 4 for the vortex ring. Mathematically, these current fields are defined as
follows. The jet is defined as

U(x1, x2)= [Ux1, 0],
Ux1 =C1f [tanh[(x2 + R)/(C2R)] − tanh[(x2 − R)/(C2R)]],

f = 1+ tanh[(x1 − R)/(C2R)],

 (2.22)

where R=200 m, C1=−0.1 m s−1 and C2=0.5. In this case, the maximum opposing
current value is |Ux1|max = 0.38 m s−1. Using cylindrical coordinates, the definition of
the vortex ring is given by (Mapp et al. 1985)

U(r, θ)= [0,Uθ ],

Uθ =

{
C1(r/R1)

2, r 6 R1,

C2 exp[−(R2 − r)2/R2
3], r > R1,

 (2.23)
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Sim. Hs0 (m) T0 (s) θ0 (deg.) S(k)d (m−1) S( f )
d (Hz) S(θ)d (deg.) α Lc (km) β

Jet1 1 20 15 0.001 0.0015 1.78 1 4 β > O(1)
Jet2 1 20 15 0.005 0.0074 8.99 2 0.8 β =O(1)
Ring1 1 20 0 0.001 0.0015 1.78 1 4 β > O(1)
Ring2 1 20 0 0.002 0.003 3.56 1 2 β =O(1)
Ring3 1 20 0 0.005 0.0074 8.99 2 0.8 β =O(1)

TABLE 1. An overview of the considered simulations in terms of their physical,
statistical and numerical parameters.

for which the values of R1, R2, R3, C1 and C2 were chosen identical to those detailed
in Belibassakis et al. (2011). In this case, the maximum current value is |Uθ |max =

1.00 m s−1.
Both of these examples are formulated over a spatial domain of 4000 m× 4000 m

and a constant depth of h = 10 m. Waves enter the domain along the left-hand
boundary, on x1 = 0. This is simulated by prescribing an incoming energy density,
E0 = E(x1 = 0, x2, k1, k2). Note that, as the incoming wave field is assumed to
be statistically homogeneous, the corresponding boundary condition of the Wigner
distribution is readily obtained as follows: W0 = E0/σ . Finally, note that the lateral
boundaries are treated as periodic.

An overview of the simulations considered in this study is given in table 1. These
simulations differ by the current type (indicated by the name of the simulation in the
first column of the table) and by the parameters characterizing the incoming spectrum,
E0. In all the simulations the incoming spectrum, E0, is defined as a two-dimensional
Gaussian centred around k0. The incoming spectrum is therefore defined completely
by the significant wave height Hs0, the carrier wave period and direction T0 and θ0
(which provide the centre point k0 through the linear dispersion relation) and the
standard deviation S(k)d , which are given in the second, third, fourth and fifth column
of table 1, respectively. In order to give a more intuitive physical interpretation of the
width of the spectrum, the table also provides the corresponding standard deviations
of the transformed spectrum written in terms of frequency and direction, S( f )

d and S(θ)d ,
given in the sixth and seventh columns. Numerically, E0 is represented over the grid
Nk with a resolution that is determined by S(k)d and the resolution parameter α (see
appendix E) given in the eighth column. The value of 1x, on the other hand, cannot
be deduced from the table; appendix E guides how to choose a reasonable value for
1x. This value is fixed to 1x = 25 m for all the simulations. In addition, the table
also provides the correlation length, Lc, and the statistical parameter, β, in the ninth
and tenth columns. As outlined in appendix E, Lc is evaluated using S(k)d . This can
also be expected by the scaling property of the Fourier transform (O(Lc)=O(2/S(k)d )).
Throughout the analysis of the results in the following subsections, the value of Lc
(as opposed to the value taken into account in the numerical model; see appendix E)
is defined as Lc = 4/S(k)d . For the considered Gaussian initial distribution, this value
equals the so-called 1/e2 width that provides the diameter connecting the two points
with 1/e2 times the maximum value of the correlation function. Finally, the order of
magnitude of β is obtained following its definition, β = Lc/Lm.

3. Model verification
The main aim of this section is to verify the performance of the QCM. The model

is verified through a comparison with REF/DIF 1 (Kirby and Dalrymple 1986),
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FIGURE 2. Comparison between QCM, REF/DIF 1 and SWAN in terms of the spatial
distribution of the significant wave height. (a–c) The results of the simulation Jet1;
(d–f ) the results due to Jet2.

which solves a parabolic approximation of the well-known mild-slope equation (e.g.
Dingemans 1997). Since REF/DIF 1 allows for monochromatic, unidirectional forcing
at the incident boundary, statistics for multi-directional and irregular incident waves
are constructed by superposition of variances, under the assumption that waves at the
incident boundary are statistically independent (see details in Chawla et al. (1998)).
Additionally, to demonstrate the statistical contribution of the interference terms, the
results of the QCM are also compared to the results of the SWAN model (Booij
et al. 1999). To this end, the first two simulations detailed in table 1, namely Jet1
and Jet2, are considered.

The simulations Jet1 and Jet2 describe the evolution of waves over the jet-like
current field. Ray tracing results (figure 1) show that for this jet-like current the
waves refract and form a focal zone close to x1= 2000 m, beyond which interference
structures may emerge.

The physical pattern described by the rays in figure 1 is also reflected statistically
in the results of figures 2 and 3. While the results of the QCM and of REF/DIF 1
agree well and share a similar evolution pattern before and after the crossing zone in
both of the simulations, the SWAN results increasingly deviate beyond the crossing
zone, where interference effects emerge (see figures 2a–c and 3a,b) (note that the
small differences that arise at the lateral boundaries, as for instance that appear in
the results of figure 3(b) are due to different boundary conditions assumed in each of
the models). The results also show that interference effects are not confined to caustic
regions (where geometric optics break down), but rather spread over much greater
distances in the down-wave direction, beyond the crossing zone (e.g. figure 2a–c). The
differences between the models are less pronounced in the results of simulation Jet2
which is initiated using a broader spectrum (see figures 2d–f and 3c,d). In this case,
all three models qualitatively predict a similar spatial structure of Hs throughout the
domain.

Model differences are principally due to the statistical contribution of wave
interferences. The transport equation employed by third-generation spectral models
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FIGURE 3. Comparison between QCM, REF/DIF 1 and SWAN in terms of the significant
wave height along the sections that are indicated in figure 1. (a,b) The results of the
simulation Jet1; (c,d) the results due to Jet2.

(e.g. SWAN), equation (2.18), disregards the contribution of cross-correlations
(correlations of different wave components), which contain the information about
wave interference. The QCM, on the other hand, does account for this information,
and therefore, as the statistical contribution of wave interference becomes significant,
the discrepancies between the results of the QCM (or REF/DIF 1) and SWAN are
more pronounced. Therefore, it is necessary to understand under which conditions
the effect of wave interferences is important.

Generally speaking, the importance of the interference effects reduces as the
spectrum of the incoming field becomes wider (e.g. Vincent & Briggs 1989).
Effectively, the multiple out-of-phase interference patterns generated by each
wave component of the incoming field cancel each other out. Consequently, the
superposition of the interference patterns becomes smoother as the incoming spectrum
becomes wider. This is the reason why differences between the QCM (and REF/DIF 1)
and SWAN are larger for Jet1 than Jet2. Whether or not interference effects can be
expected may formally be related to the ratio β between the correlation length
scale of the incident wave field, Lc, and a typical length scale of the medium, Lm.
Interference effects may become significant when β >O(1) and are more pronounced
for larger values of β (hence the difference between Jet1 and Jet2). This statistical
condition is discussed in detail next.

4. Discussion
The statistical contribution of wave interferences as a function of the parameter β

can be analysed conceptually as follows. Consider a certain point in space beyond the
crossing zone, where interference effects are expected to play a role and assuming
that the incoming field is monochromatic, for which β → ∞. In this case, the
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FIGURE 4. Wave rays due to k0 over a vortex ring. The rays are indicated by the solid
lines, and the ambient current is marked by arrows. Note that in this case, the rays at
x1 = 0 are normally incident. Additionally, the dashed vertical lines are sections along
which the results of the significant wave height will be displayed. Finally, the dotted lines
distinguish between different regions of the wave field.

correlation function at the considered point will extend over a very large spatial
domain (Lc→∞), and will generally be composed of in-phase variance terms of the
scattered field and out-of-phase cross-correlation terms between each pair of scattered
waves. The cross-correlation terms include contributions that were generated due to
correlation between the incoming field and the interference structures it forms. As
the spectrum of the incoming field becomes wider (namely S(k)d becomes larger), the
correlation function will extend over smaller domains and, accordingly, β will take
smaller values. The corresponding change in the interference effect can be analysed
from the physical point of view, by examining the correlation function, Γ , or from
the spectral point of view, by considering the Wigner distribution, W. From the
physical point of view, when the incoming spectrum becomes wider and β reduces,
the correlation value between the incoming field and the interference pattern it forms
will become smaller, and consequently the contribution of wave interference, at the
considered point, reduces as well. In the limit when β→ 0 (and therefore Lc→ 0),
this correlation value converges to zero and the contribution of wave interference is
eliminated.

The spectral point of view examines the representation of the cross-correlation
terms in the Wigner distribution. Since the phases of the cross-correlation terms
are not necessarily zero, their amplitudes may either be positive or negative, and
therefore tend to cancel each other and lose intensity. As a result, when the Wigner
distribution at the considered point is integrated over the spectral space for the
purpose of computing the total variance, and the corresponding value of, say Hs, the
contribution of the cross-correlation terms will be less pronounced with the increasing
of S(k)d , and therefore less pronounced with the decreasing of β.
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FIGURE 5. The distribution of the significant wave height due to the interaction between
waves and a vortex ring. The panels (a,b) present the results of Ring1 and the panels (c,d)
present the results due to Ring3. Additionally, the solid lines represent the wave rays
due to k0. Finally, the three black points denoted by P1, P2 and P3 indicate the spatial
path along which the evolution of the correlation function and the Wigner distribution is
considered. Point P1 is located at (1000 m, −525 m), P2 at (2000 m, −625 m) and P3
at (3000 m,−725 m).

4.1. The evolution of the cross-correlation terms
This subsection provides a numerical demonstration of the above discussion of the
statistical condition to the appearance of interference effects in the scattered field.
The interaction problem between waves and a vortex ring is a convenient example for
this purpose. This is due to the fact that in this case, the domain essentially consists
of two homogeneous regions separated by a scattering region, which are referred
to as the ‘incoming field’, the ‘scatterer’ and the ‘scattered field’, respectively (see
figure 4). Consequently, the statistical condition to wave interferences, which says that
correlation should emerge between the incoming field and the interference structure it
forms, is readily demonstrated through this interaction problem, as it can be replaced
by the condition that the correlation function should extend over a larger domain
than the effective domain of the vortex ring.

The statistical condition to the appearance of interference effects is examined by
considering the evolution of the correlation function and the Wigner distribution for
simulations Ring1 and Ring3 (which differ in their initial spectrum width; see table 1)
over a specific spatial path. The spatial path was selected such that it would pass over
an area where Hs is significantly affected by wave interferences (see figure 5). Finally,
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FIGURE 6. The evolution of the correlation function (a–c) and the corresponding Wigner
distribution (d–f ) as presented by the spatial points P1, P2 and P3. The values of the
results are normalized by |Γ (Pj, x′)|max and |W(Pj, k)|max. These results were obtained for
the simulation Ring1 using the QCM.

the contribution of the interference terms is emphasized by comparing the results of
the QCM to the corresponding results of SWAN.

In order to identify wave interference effects, the manner in which the cross-
correlation terms (which represent the contribution of wave interferences) are
represented is explained first (refer also to the definitions in (2.8) and (2.9)).
Given two correlated wave components, their contribution in the correlation function
results in two variance terms with wavenumbers k1 and k2, and cross-correlation
term (or interference term) with a wavenumber (k1 + k2)/2. The amplitude of the
cross-correlation term depends on the amplitudes of the two wave components and
their phase difference. If the point around which the correlation function is considered
is located at the trough of the interference pattern generated by the two waves, then
the amplitude of the cross-correlation term will be negative and vice versa. Also
recall that the correlation function presented here follows the definition in (2.7).
Consequently, Γ (x, x′) is the correlation between ψ(x + x′/2) and ψ∗(x − x′/2),
which is different from the function that defines the correlation between ψ(x) and
ψ∗(x+ x′).

The analysis starts by examining the evolution results of the correlation function
and the Wigner distribution for the simulation Ring1. In this case β > 1, and therefore
the effect of the cross-correlation terms on the structure of the correlation function
and the Wigner distribution is likely to be significant. This is indeed evident by
comparing the results of the QCM (figure 6) to the results of SWAN (figure 7).
Notable differences clearly appear in the results around P2 and P3, in the ‘scattered
field’, where interference effects are significant. Both of these points are located along
the trough of the interference pattern (see figure 5). Indeed, the amplitudes of the
cross-correlation terms, which are obtained at these points, are negative, as indicated
by the blue areas in the Wigner distribution due to the QCM. Note that these blue
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FIGURE 7. The evolution of the correlation function (a–c) and the corresponding action
density spectrum (d–f ) as presented by the spatial points P1, P2 and P3. The values of
the results are normalized by |Γ (Pj, x′)|max and |N(Pj, k)|max. These results were obtained
for the simulation Ring1 using SWAN.

areas are located exactly between the red areas which relate to the amplitudes of
the variance terms. As expected, the blue areas do not appear in the action density
spectrum due to SWAN, as it disregards the cross-correlation terms and only accounts
for the variance terms. Moreover, in contrast to SWAN’s results which only accounts
for variance terms that are crossing close to the considered points, the QCM also
includes contribution of variance terms and related cross-correlation terms that are
crossing at some distance away from the considered points. This can be seen by
comparing the Wigner distribution due to the QCM and the action density spectrum
due to SWAN and by referring to the wave rays in figure 4. Finally, note that
the variance areas in the Wigner distribution are somewhat more spread than the
corresponding variance areas appearing in the action density spectrum.

The negative values of the cross-correlation amplitudes in the results due to the
QCM lead to the fact that the correlation function at these points does not provide the
maximum correlation value at its centre (i.e. at x′ = 0). Conversely, since the SWAN
model ignores the cross-correlation terms, the correlation function will always obtain
the maximum value at x′ = 0. Therefore, the correlation function as defined in (2.7)
does not necessarily show the maximum value at x′ = 0 for inhomogeneous fields.

Besides changing the correlation value at the central point, it is difficult to identify
the cross-correlation terms directly through the correlation function. However, it is
clear that these terms significantly change the structure of the correlation function,
as reflected by the differences in the results due to the QCM and SWAN (compare
figures 6a–c and 7a–c).

The significant contribution of wave interferences appearing in the results around
P2 and P3 implies that correlation emerges between the ‘incoming field’ and the
‘scattered field’. This is indeed shown by the results of the correlation function
around P1 in figure 6 (or in figure 7). The results show that the correlation function
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FIGURE 8. The evolution of the correlation function (a–c) and the corresponding Wigner
distribution (d–f ) as presented by the spatial points P1, P2 and P3. The values of the
results are normalized by |Γ (Pj, x′)|max and |W(Pj, k)|max. These results were obtained
for the simulation Ring3 using the QCM. Note that the scale over which the correlation
function is plotted is much smaller than the corresponding scale used to present the results
for Ring1.

extends over a much larger domain than the effective domain of the vortex ring
and that strong correlation values emerge between the incoming and the scattered
field. Accordingly, the generated cross-correlation terms at P1 have a clear signature
on the structure of the correlation function and the Wigner distribution due to the
QCM (compare the results of P1 in figures 6 and 7). These cross-correlation terms
are transported along with the variance terms, altering dramatically the statistics of
the scattered field, as shown by the significant differences between the results of the
QCM and SWAN around P2 and P3.

The differences in the results between the QCM and SWAN for the simulation
Ring3 are much less prominent (see figures 8 and 9). The reason for this is that at
P1, the correlation function extends over a domain with about the same diameter as
that of the vortex ring, and only small correlation value arises between the incoming
field and the interference structure it forms in the vicinity of the crossing point at
(x1, x2)= (1365 m,−355 m) (see figure 5). As a consequence, at P1, the amplitudes
of the generated cross-correlation terms are quite low, as shown by the blue area in the
Wigner distribution due to the QCM in figure 8. Over the ‘scattered field’ region, at
P2 and P3, the influence of the cross-correlation terms is hardly detected through the
correlation function, and, indeed, at these points the correlation functions due to the
QCM and SWAN are almost identical. However, the presence of the cross-correlation
terms is visible in the Wigner distribution due to the QCM by the blue area located
between the variance areas. These cross-correlation terms eventually result in a limited
contribution to the statistics of the scattered field, as for instance appears by the spatial
distribution of Hs in figure 5.

To conclude, the examination of the evolution of the correlation function and
the Wigner distribution verifies the statistical condition for the generation of
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FIGURE 9. The evolution of the correlation function (a–c) and the corresponding action
density spectrum (d–f ) as presented by the spatial points P1, P2 and P3. The values of the
results are normalized by |Γ (Pj, x′)|max and |N(Pj, k)|max. These results were obtained for
the simulation Ring3 using SWAN. Note that the scale over which the correlation function
is plotted is much smaller than the corresponding scale used to present the results for
Ring1.

cross-correlation as was introduced conceptually in the beginning of this section.
Moreover, the examination also demonstrates numerically that the correlation value
between the incoming field and the interference structure it forms determines the
dominance of the interference patterns in the scattered field.

4.2. The validity of the QCM
The final issue that is discussed here is the validity of the QCM versus the validity of
SWAN over the parameter β. As was explained in the derivation of the QCM in § 2.3
and following the presentation of the results so far, the QCM, in contrast to SWAN,
seems to remain statistically valid for β > O(1). The reason for this was extensively
discussed in the previous subsection, and in short is simply because the QCM accounts
for statistical inhomogeneity of the wave field, generated due to interference effects.

The validity of the QCM over β is presented by demonstrating the convergence
of its results, obtained with an increasing value of β, to a single result of REF/DIF 1
obtained with a specific high value of β. To this end, the QCM is used to compute Hs
along the sections shown in figure 4 using simulations Ring1, Ring2 and Ring3 which
are defined with a decreasing value of β (i.e. Ring1 is defined with the highest β
value, whereas Ring3 is defined with the lowest β value; see also table 1). In addition,
the result due to REF/DIF 1 is obtained through Ring1. Finally, the convergence of
the QCM results to the result of REF/DIF 1 is shown in figures 10(a,b) and 11(a,b).
The same procedure is performed using SWAN and is presented in figures 10(c,d)
and11(c,d).

Over the ‘scatterer’ region, before the focusing zones, SWAN seems to remain valid
(see figure 10, section A) even for the highest β considered, which corresponds to the
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FIGURE 10. On the validity of the QCM (a,b) and SWAN (c,d) over the parameter β,
shown through the convergence of the significant wave height to the result of REF/DIF 1
with Ring1. The results are given along Sections A and B that are indicated in figure 4.
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FIGURE 11. On the validity of the QCM (a,b) and SWAN (c,d) over the parameter β,
shown through the convergence of the significant wave height to the result of REF/DIF 1
with Ring1. The results are given along Sections C and D that are indicated in figure 4.

simulation Ring1. However, over the ‘scattered field’ region, where interference effects
emerge, SWAN does not converge to REF/DIF 1 when β increases. On the other hand,
the QCM does converge to REF/DIF 1, and seems to remain valid for the scattered
field as well.
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It is important to remember that the capabilities of the QCM over β involve
a constraint. This constraint is that ε � 1, introduced by the deterministic model,
equation (2.6), which underlies the development of the QCM. Finally, recall that the
QCM is also limited to small values of µ, which basically limits its capabilities to
accurately evolve interference terms with a wavelength of LW 6 O(L), where L is the
wavelength of the considered point k (see details in Smit & Janssen (2013)).

5. Conclusions
This study presents the development of a statistical model for problems of wave–

current interaction, taking into account the effect of wave interferences. The theoretical
basis of this model lies in the definition of the Wigner distribution, W, and of the
action variable, ψ . This distribution provides a complete spectral description of the
second-order statistics of the wave field. It includes cross-correlation terms, which
provide the statistical information about wave interferences. As such, W generalizes
the concept of the action density spectrum, N, which only accounts for the information
of wave variances.

Using the procedure described in Smit & Janssen (2013) and Smit et al. (2015a), an
evolution model for W (the QCM) is developed. This model provides a generalization
of the conventional action balance model (presently employed by third-generation
spectral wave models, e.g. SWAN and WAVEWATCH III), by allowing the generation
and transportation of statistical wave interferences.

The effect of wave interferences can contribute significantly for cases where
the variation scale of the medium is of the same order or smaller than the scale
of the correlation length, namely for cases in which β > O(1). This statistical
condition is explicitly examined for scenarios where the incoming field is statistically
homogeneous, but develops inhomogeneity while propagating over ambient currents.
Specifically, in order to obtain a statistical signature of wave interferences, the incident
and scattered fields should be correlated, with the dominance of the interference effect
determined by the correlation value itself.

In cases where this correlation is strong, the interference patterns alter the statistics
of the field significantly. The resulting effect on the significant wave height, Hs, is
demonstrated through two examples of wave–current interaction and by a comparison
to the SWAN model. It is demonstrated that in such cases, interference effects
dramatically change the distribution of Hs, not only in the vicinity of wave-focusing
areas, but also at a significant distance away from the focusing points.

It is therefore concluded that for regions involving rapid variability in medium
(e.g. coastal regions or oceanic regions which tend to contain submesoscale currents),
consideration of the statistical information of wave interference might by crucial for
many applications, such as wave-induced circulation and transport processes in coastal
regions or for prediction of extreme elevations in the open ocean.
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Appendix A. The Weyl operator and its asymptotic form
The purpose of this appendix is to provide the definition of the pseudo-differential

operators employed in this study. To this end, the operator ω(x,−i∇x) will serve as a
representative (the following also applies to the operators σ(x,−i∇x) and a(x,−i∇x)
that were introduced in § 2). Additionally, for convenience, the expressions in this
appendix (and in appendix B) are presented using the slow scale coordinates xm= εx
and tm = εt. However, in order to avoid cumbersome formulations, the subscript m
indicating these slow scale coordinates will be removed, keeping in mind that for the
purposes of this appendix (and appendix B), x and t are now serving as the slow
scale coordinates. An additional notation is Dj, which will be used here and in the
following appendices to represent the operator −i∇j.

The definition of the pseudo-differential ω(x, εDx) is based on its association with
a ‘phase-space’ symbol (a function which is defined in (x, k) space). Here, it is
assumed that such a ‘phase-space’ symbol can be defined locally (in this case, it
is the usual dispersion relation, equation (2.1)), which basically requires that the
characteristic length scale of the medium variation is much larger than the considered
wavelength (e.g. Dingemans 1997), i.e. that ε� 1.

Given a ‘phase-space’ symbol, the corresponding operator in the physical space can
be defined through the association between k and Dx. However, because x and Dx do
not commute, one must follow an association rule for an arbitrary symbol. Here, the
Weyl rule of association is adopted (e.g. Cohen 2012), which is defined through the
following Fourier transform of ω(x, k):

ω(x, k)=
∫
ω̂(q, p) exp(iq · x+ ip · k) dq dp. (A 1)

Then, the Weyl operator is obtained by substituting the operator εDx instead of k,
which provides the following expression:

ω(x, εDx)=

∫
ω̂(q, p) exp (iq · x+ iεp ·Dx) dq dp (A 2)

and which can be simplified using the commutator value, [iq · x, εip ·Dx] = −iεq · p,
to obtain

ω(x, εDx)=

∫
ω̂(q, p) exp

(
i
2
εq · p

)
exp(iq · x) exp(iεp ·Dx) dq dp. (A 3)

An important step is to define the asymptotic form of the Weyl operator, which
will be used quite often to understand and interpret the leading-order results of its
operation on a certain variable. As shown below, this asymptotic form depends on a
Taylor expansion of the dispersion relation, and therefore (at least conceptually) should
be defined around k0 6= 0, since derivatives of the dispersion relation at k = 0 are
singular. In order to obtain the asymptotic form of the Weyl operator, the Fourier
transform of the dispersion relation around k0 is replaced by the Taylor expansion
of the dispersion relation around that point:

ω(x, εDx) =

∫
[exp(ik ·Dk)ω̂(q, k)]k=k0 exp(−ip · k) exp

(
i
2
εq · p

)
× exp(iq · x) exp(ip · (εDx − k0)) dk dq dp, (A 4)
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which, after Fourier transform with respect to k, reduces to

ω(x, εDx)

=

∫
δ(p)

[
exp(iq · x) exp

[
ip ·
(
εDx − k0 + ε

q
2

)]
exp(i
←−
D p ·
−→
D k)ω̂(q, k)

]
k=k0

dq dp,

(A 5)

and eventually leading to the following asymptotic form:

ω(x, εDx)=

[
ω(x, k) exp

(
i
2
ε
←−
D x ·
←−
D k

)
exp [i

←−
D k · (εDx − k0)]

]
k=k0

. (A 6)

In the following, the operation of the Weyl operator, using its asymptotic form,
equation (A 6), is examined for two examples: the case of a plane wave over a
homogeneous medium and the case of a plane wave propagating over a slowly
varying medium. The operation of the Weyl operator in the first case is easily worked
out, as in this case the dispersion relation is not a function of x, and also the spatial
derivatives on the representative variable of the field can be resolved directly. This is
demonstrated as follows. The plane wave is represented by the surface potential as
φ = A exp[i(k0 · x − ω0t)/ε], and consequently the operation ωφ is obtained by the
following:

ω(εDx)φ =ω(k0)φ, (A 7)

which is the desired result as detailed at the beginning of appendix B.
In the second example, the considered wave component is represented by the surface

potential as φ=A(x) exp[(S− iω0t)/ε]. In this case, the operation of the Weyl operator
is not immediately seen. The leading-order (O(1)) term is obtained when the first
exponent in (A 6) is taken to be equal to one, and the spatial derivative of the second
exponent, Dx, operates only on the exponent of φ. This term is the dispersion relation,
equation (2.1). Terms of O(ε) are obtained for three different sets of conditions. Two
of these sets instruct one to take the first exponent in (A 6) to be equal to one, and at
each expansion order of the second exponent the spatial derivative, Dx, should operate
once on A for the one set or once on S, as instructed by the other set. The third
term is obtained using the second term of the expansion of the first exponent of the
operator and when the spatial derivative of the second exponent, Dx, operates only on
the exponent of φ. This description is summarized as follows:

ω(x, εDx)φ = ω(x,DxS)φ + εi
(

DxA ·Dkω+
i
2

AD2
xSD2

kω

+
1
2

ADx ·Dkω

)
k=DxS

exp[(S− iω0t)/ε] +O(ε2). (A 8)

This closes the formal definition of the Weyl operator, equation (A 3), and its
asymptotic form, equation (A 6). The operation of the Weyl operator on representative
variables in the homogeneous and weakly inhomogeneous cases is used next to verify
the evolution equation of the action variable, ψ .
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Appendix B. On the evolution equation of the action variable
This appendix aims to demonstrate that the starting point equation (the evolution

equation of the action variable), equation (2.6), is exact for the case of linear wave
propagation over a homogeneous medium, and reduces to the correct evolution
equations for the weakly inhomogeneous case. In the latter, the correct evolution
equations are the dispersion relation, equation (2.1), and the well-known action
balance equation (e.g. Dingemans 1997). For these purposes, the starting point
equation, equation (2.6), is written once again, using the slow scale coordinates, as
follows:

ε∂tψ =−iω(x, εDx)ψ, (B 1)

where, as in the previous appendix, these slow scale coordinates are indicated using
the same variable notation of the fast scale coordinates, x, t, in order to avoid
cumbersome formulations.

As introduced, the first aim here is to show that the starting point equation,
equation (B 1), describes exactly the correct solution of an incoming plane wave over
a homogeneous medium. To this end, the following example will be worked out.
Considering a specific domain of interest, the example assumes that into one of the
domain’s boundaries enters a monochromatic wave field with an absolute frequency
ω0. In this case, the surface variables of the considered wave obey to the following
form:

φ = A0 exp[(S− iω0t)/ε] + c.c.,
η= B0 exp[(S− iω0t)/ε] + c.c.,

}
(B 2)

where B0 = iA0(ω0 −U · (DxS))/g, as follows from the linear relation between φ and
η (e.g. Dingemans 1997):

η=−
1
g
(∂t +U · ∇x)φ. (B 3)

The wavenumber, DxS, is constant, and the constant amplitude, A0, assumed to be
a ‘proper’ (e.g. Lapidoth 2017) Gaussian random variable, namely 〈A2

0〉 = 0. The
corresponding form of ψ is obtained following its definition, equation (2.2):

ψ =
1
√

2g
[C0 exp[(S− iω0t)/ε] +D0 exp[(−S+ iω0t)/ε]], (B 4)

where the amplitudes C0 and D0 are defined as C0= ga−1B0+ iaA0 and D0= ga−1B∗0+
iaA∗0, and, following (A 7), a=

√
σ(DxS). Using these starting points, it is now aimed

to show that (B 1) produces the correct magnitude of DxS. By substituting (B 4) into
(B 1), one obtains that the first solution (with the amplitude C0) produces, as required,
the equation ω0 = ω(DxS). Substituting this result into the definition of B0, which
becomes B0= iA0σ(DxS)/g, provides the necessary result that D0=0 (this is necessary,
since the second term of ψ is not a solution of (B 1)), whereas the value of C0 is then
given by C0 = 2iA0

√
σ(DxS).

The second aim of this appendix is to show that the starting point equation (B 1)
reduces to the correct evolution equations for the weakly inhomogeneous case. To
do this, the same example as in the homogeneous case is considered. Following
the Wentzel–Kramers–Brillouin method (e.g. Holmes 2012), and assuming that the
bathymetry and the current are not time dependent, the surface velocity potential and
elevation, φ and η, can be defined to leading order in ε by (B 2), where now A0
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and S are functions of x. The corresponding leading-order definition of ψ is given
by (B 4), but now, following (A 8), a =

√
σ(x,DxS). By substituting this definition

into (B 1) and using the result of (A 8), the O(1) eikonal equation is obtained to be
ω0 =ω(x,DxS), which can be written as

ω0 =U ·DxS+ σ(x,DxS). (B 5)

Using this result, B0 is obtained to be B0 = iA0σ(x, DxS)/g, leading to the same
necessary result as before, that D0= 0, whereas C0 is given by C0= 2iA0

√
σ(x,DxS).

The remaining unknown, A0, is found through the following O(ε) transport equation:(
DxC0 ·Dkω+

i
2

C0D2
xSD2

kω+
1
2

C0Dx ·Dkω

)
k=DxS

= 0, (B 6)

which alternatively can be written as

Dx · (〈|C0|
2
〉Dkω)= 0. (B 7)

In order to verify that (B 7) is the well-known action balance equation (e.g.
Dingemans 1997), one should check that ρ〈|ψ |2〉 = ρ〈|C0|

2
〉 indeed defines the mean

action density. To see this, one may calculate 〈|ψ |2〉 directly, using the definition of
ψ , equation (2.2), which results in

ρ〈|ψ |2〉 =
[1

2
ρg〈η2

0〉 +
1
2g
ρ〈(σφ)20〉

]
/σ +O(ε), (B 8)

where the subscript 0 indicates O(1) terms. The expression in the square brackets is
exactly the mean energy density m0 that was introduced in (2.5). Clearly, the first term
of the expression represents the mean potential energy density, though the connection
of the second term to the density of the kinetic energy might not be immediately
obvious and should be clarified. Following (A 8), the first-order operation, (σφ)0, is
defined as (σφ)0 = σ(x, DxS)φ. Substituting this result into (B 8), the second term
becomes equal to the mean kinetic energy density for a homogeneous medium that is
defined by the local values, h(x) and U(x) (e.g. § 6.3 in Van Groesen and Molenaar
(2007)). Therefore, dividing the expression in the square brackets by the local intrinsic
frequency, σ , leads to the definition of the mean action density (Bretherton & Garrett
1968).

Appendix C. From Wigner distribution to local energy
To motivate the necessity for an alternative formula that links the energy density, m0,

and the Wigner distribution, W(x, k, t), the following example is discussed (note that
here the formulation returns to be written in terms of the original spatial coordinates,
x and t). The example assumes an idealized sea state composed of three coherent
and forward-propagating wave components in a one-dimensional and homogeneous
medium. The waves are defined with the following wavenumbers: k1, k2 and k3 =

(k1 + k2)/2. Accordingly, at a certain moment in time t0, the wave field may be
represented as follows:

φ =

3∑
n=1

An exp(iknx)+ c.c.,

η=

3∑
n=1

Bn exp(iknx)+ c.c.,

 (C 1)
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where An and Bn are complex random amplitudes. The amplitude Bn is given by Bn=

iAnσn/g, as follows from the linear relation between φ and η (see equation (B 3)
in appendix B). The mean energy density, m0 in this example, is derived using the
expression in (2.5), and can be written as follows:

m0 =
2
g

3∑
n=1

3∑
m=1

σnσm〈AnA∗m〉 exp[i(kn − km)x]. (C 2)

The approach employed in this study to get to (C 2) is via the Wigner distribution
of the action variable, ψ , which for this example is given by

W(x, k, t0)=
2
g

3∑
n=1

3∑
m=1

√
σn
√
σm〈AnA∗m〉 exp[i(kn − km)x]δ

[
k−

kn + km

2

]
, (C 3)

where δ(k) is now serving as the usual delta function. Now it can be seen explicitly
that a simple substitution of (C 3) into (2.11) will not provide the result described
in (C 2). As an example, consider the components in W that multiply the function
δ[k − (k1 + k2)/2]. Following the definition of k3, there are two such components,
2σ3〈|A3|

2
〉/g and 2

√
σ1
√
σ2{〈A1A∗2〉 exp[i(k1 − k2)x] + c.c}/g, which are related to the

variance of the third wave component and to the correlation between the first and
the second wave components, respectively. If W is substituted into (2.11), both of
these components will be factored by σ3, which by referring to (C 2) will not lead
to the correct interference term between the first and the second wave components. It
is concluded that in order to calculate the mean energy density correctly, one must
distinguish between the variance term and the interference terms for each k, and only
then multiply by the correct factor. The derivation of an alternative formula to obtain
m0 based on W is detailed below.

The starting point of the following derivation is the relation between the action
varible, ψ , and the mean energy density, m0, as given in (2.4), recalling that a(x,Dx)
is a Weyl operator associated with the square root of the intrinsic angular frequency,
σ 1/2(x, k). Following the definition of the Weyl operator, the expression in (2.4) can
be written as

〈|a(x,Dx)ψ |
2
〉 =

∫
â(q1, p1)â

∗(q2, p2) exp
(

i
2

q1 · p1 +
i
2

q2 · p2

)
× exp[ix · (q1 − q2)]〈ψ(x+ p1, t)ψ∗(x− p2, t)〉 dq1 dq2 dp1 dp2. (C 4)

By substituting the Fourier transform of the correlation function, Γ = 〈ψ(x +
p1, t)ψ∗(x− p2, t)〉, the following expression is obtained:

〈|a(x,Dx)ψ |
2
〉 =

∫
â(q1, p1)â

∗(q2, p2) exp[iq1 · (x+ p1/2)− iq2 · (x− p2/2)]

× exp(ik1 · p1 + ik2 · p2)Γ̂ (k1, k2, t) exp[ix · (k1 − k2)] dk1 dk2 dq1 dq2 dp1 dp2. (C 5)

Integrating the above expression with respect to q1 and q2 leads to

〈|a(x,Dx)ψ |
2
〉 =

∫
â(x+ p1/2, p1)â

∗(x− p2/2, p2) exp(ik1 · p1 + ik2 · p2)

× Γ̂ (k1, k2, t) exp[ix · (k1 − k2)] dk1 dk2 dp1 dp2. (C 6)
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By assuming that σ is independent of x, equation (C 6) reduces to the following
expression:

〈|a(x,Dx)ψ |
2
〉 =

∫ √
σ(k+ k′/2)

√
σ(k− k′/2) Γ̂ (k′, k, t) exp(ik′ · x) dk′ dk, (C 7)

where the change of variables k1 = k+ k′/2 and k2 = k− k′/2 was applied.
Otherwise, equation (C 6) can be integrated once more. Now the integration is

performed with respect to p1 and p2, leading to the following result:

〈|a(x,Dx)ψ |
2
〉 =

∫ [
exp

(
i
2

Dx ·Dk1

)
a(x, k1)

] [
exp

(
−

i
2

Dx ·Dk2

)
a∗(x,−k2)

]
× Γ̂ (k1, k2, t) exp[ix · (k1 − k2)] dk1 dk2. (C 8)

Ultimately, if terms of O(ε) are omitted, and by applying the same change
of variables over the wavenumber space (as indicated above), the following
approximation for the zero-order moment of the energy density spectrum, m0, is
derived:

m0 ∼ ρ

∫ √
σ(x, k+ k′/2)

√
σ(x, k− k′/2)Γ̂ (k′, k, t) exp(ik′ · x) dk′ dk, (C 9)

which generalizes (C 7) for the case with a slowly varying medium.
The numerical implementation of (C 9) is not straightforward. It requires performing

a Fourier transform of the Wigner distribution for each wavenumber, k, and around
each spatial location, x. In addition, one should distinguish, at each location x,
between the Fourier components that relate to the slow variation of the variances and
the Fourier components of the cross-correlation terms.

A different direction to obtain an evaluation of m0 stems from an alternative
formulation of (C 9). This formulation is detailed as follows. At first, the Fourier
components, Γ̂ (k′, k, t) exp(ik′ · x), are replaced by the Fourier transform of the
Wigner distribution around x:

m0 ∼ ρ

∫
f (x, k′, k)W(x+ x, k, t) exp(−ik′ · x) dx dk′ dk, (C 10)

where f (x, k′, k)=
√
σ(x, k+ k′/2)

√
σ(x, k− k′/2). Then, assuming that the Wigner

distribution around x can be expressed as a Taylor expansion, and after integrating
over x, the following approximation of m0 is obtained:

m0 ∼ ρ

∫
δ(k′)[ f (x, k′, k) exp(i

←−
D k′ ·
−→
D x)W(x, k, t)] dk′ dk, (C 11)

where, due to the symmetry of f around k′= 0, the exponent in the integral of the last
expression can be replaced by a cosine. As opposed to the numerical implementation
of (C 9), the implementation of (C 11) is straightforward. The first term in the
expansion of (C 11) is exactly the formula used in SWAN, as given by (2.11). The
high-order terms provide corrections (of O(µ); see the definition of µ in § 2.3) to
the cross-correlation components that are stored in k. Ultimately, in the numerical
examples, m0 is evaluated up to second order using the following expression:

m0 ∼ ρ

∫
σ(x, k)W(x, k, t) dk+ 1

2

∫
[ f (x, k′, k)(←−D k′ ·

−→
D x)

2W(x, k, t)]k′=0 dk. (C 12)
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Appendix D. The evolution equation for the Wigner distribution
This appendix presents a more detailed derivation of the transport equation for the

Wigner distribution, equation (2.20), based on Weyl’s rule of association. The starting
point of the derivation is the definition of the Weyl operator, equation (A 3). As a first
step, the definition of the Weyl operator is used to define the operator that operates
on the correlation function in (2.15) as

ω(x+ x′/2,Dx′ +Dx/2)=
∫
ω̂(q, p) exp [iq · (x+ x′/2)+ ip · (Dx′ +Dx/2)] dq dp.

(D 1)
Then, the operator can be organized such that the exponential functions being

generated due to the disentanglement of the exponential operators (for details, see
§ 2.4 in Cohen (2012)) will cancel each other, leading to the following expression:

ω(x+ x′/2,Dx′ +Dx/2) =
∫
ω̂(q, p) exp(iq · x) exp(ip ·Dx′)

× exp(iq · x′/2) exp(ip ·Dx/2) dq dp. (D 2)

Following the above expression and the operator correspondences, f (x′)↔ f (Dk) and
f (Dx′)↔ f (k), the corresponding operator that operates on the Wigner distribution in
(2.16) is defined as

ω(x−Dk/2, k+Dx/2) =
∫
ω̂(q, p) exp(iq · x)

× exp(ip · k) exp(−iq ·Dk/2) exp(ip ·Dx/2) dq dp, (D 3)

where the exponential operators that depend on Dk and Dx (the third exponential and
the fourth exponential in the integral on the right-hand side of (D 3)) can be written
as external operators outside of the integral, resulting in the following formulation:

ω(x−Dk/2, k+Dx/2) =
∫
ω̂(q, p) exp(iq · x) exp(ip · k) dq dp

× exp(−i
←−
D x ·
−→
D k/2+ i

←−
D k ·
−→
D x/2), (D 4)

which is exactly the exponential form of the operator as presented in (2.17). For the
next steps, it will be convenient to write (D 4) as

ω(x−Dk/2, k+Dx/2)=
∫
ω̂(q, k) exp(iq · x) exp(i

←−
D k ·
−→
D x/2) exp(−iq ·−→D k/2) dq,

(D 5)
which when operates on the Wigner distribution, leading to the following equation:

ω(x−Dk/2, k+Dx/2)W(x, k, t) =
∫
ω̂(q, k) exp(iq · x)

× exp(i
←−
D k ·
−→
D x/2)W(x, k− q/2, t) dq. (D 6)

Finally, according to the assumption of small µ (see details in § 2.3), the exponential
operator is defined through Taylor series. By approximating the exponential operator
to first order in µ, equation (D 6) becomes

ω(x−Dk/2, k+Dx/2)W(x, k, t)=
∫
ω̂(q, k)

× exp(iq · x)(1+ i
←−
D k ·
−→
D x/2)W(x, k− q/2, t) dq, (D 7)

which is exactly the operator shown in (2.19).
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A last and important step that is discussed here, which is necessary to the numerical
implementation of (2.20), is the representation of the left-hand side of (D 7) in terms
of the correlation function, Γ (x, x′, t). One way to get to this representation involves
a few algebraic steps. The other way is to see it directly through the convolution
theorem. In order to present the second way, the multiplication term ω̂(q, k) exp(iq · x)
is replaced by the Fourier transform of ω around x, represented by ω̂(q, k, x). Then,
using the convolution theorem, the following equation is obtained:∫

ω̂(q, k, x)(1+ i
←−
D k ·
−→
D x/2)W(x, k− q/2, t) dq

=

∫
ω(x+ x′/2, k)(1+ i

←−
D k ·
−→
D x/2)Γ (x, x′, t) exp(−ik · x′) dx′. (D 8)

Appendix E. On the numerical model

The steady-state numerical solution of (2.20) uses the following two-dimensional
and equispaced grids: Nx, Nk, Nx, Nq (where x = x′/2). These grids are constructed
using the following spatial and spectral steps: 1x, 1k, 1x, 1q. The value of 1k
is chosen according to the standard deviation, S(k)d , of the incoming wave spectrum
as 1k = S(k)d /α, where α > 1 serves as a resolution factor. Additionally, to ease the
computation of the source term SQC, the value of 1k is selected such that 1k=1q/2
(this selection prevents the need to perform interpolation in the calculation of the
integral in (2.21)).

Next, the choice of 1q is explained. This choice stems from the fact that for any
realistic sea state, the correlation function around a certain point, x, will effectively
have a compact support in |x′|<Lc/2, where Lc is the correlation length. Consequently,
and as implied by (D 8), instead of an integral operation, the source term in (2.20),
SQC, can be calculated as a discrete convolution between 1ω̂ and W (and their
derivatives) over the grid Nq. This is done without introducing any discretization
error if 1q 6 4π/Lc (for details that also include the additional treatment required to
compute the discrete version of 1ω̂, see Smit et al. (2015a)). If 1q is chosen such
that 1q = 4π/Lc, then the applied value of Lc, which is taken into account in the
numerical model, can be found from the definition of 1k as Lc = 2πα/S(k)d , which is
consistent with the expected order that should characterize the standard deviation of
the envelope of the correlation function (O(1/S(k)d )).

The choice of 1x is argued in a similar way to the selection of 1q, but now
knowledge about the boundaries of W over Nk at a certain point x (beyond which
W equals zero) is required. As for the correlation function, also here, the boundaries
are not easily predicted in advance, because the support of W over Nk can change
significantly over Nx. For accuracy, the necessary 1x is evaluated in accordance with
the boundaries introduced by Nk. A more economical selection of 1x, which also
introduces an acceptable error, is described by Smit et al. (2015b). Note that by
introducing 1x, the summation in SQC becomes limited to the region [−qmax, qmax],
where qmax =π/1x.

Finally, the derivation of 1x is considered. Its value should be selected according to
the characteristic variation length of W over x, and according to the adopted scheme
for treating the spatial derivatives. Here, the second-order upwind scheme (see Hirsch
2007) is used. The local error introduced by this scheme is of O[(1xµ/L)3], where
L is the characteristic wavelength (L/µ represents the characteristic length of wave
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interference at the considered location). Therefore, 1x should be chosen to be small
enough so that the global error due to such a magnitude of local error would be
acceptable.

REFERENCES

ARDHUIN, F., GILLE, S. T., MENEMENLIS, D., ROCHA, C. B., RASCLE, N., CHAPRON, B., GULA,
J. & MOLEMAKER, J. 2017 Small-scale open ocean currents have large effects on wind wave
heights. J. Geophys. Res. 122 (6), 4500–4517.

ARDHUIN, F., O’REILLY, W., HERBERS, T. & JESSEN, P. 2003 Swell transformation across the
continental shelf. Part I. Attenuation and directional broadening. J. Phys. Oceanogr. 33 (9),
1921–1939.

BELIBASSAKIS, K., GEROSTATHIS, T. P. & ATHANASSOULIS, G. 2011 A coupled-mode model for
water wave scattering by horizontal, non-homogeneous current in general bottom topography.
Appl. Ocean Res. 33 (4), 384–397.

BESIERIS, I. M. 1985 Wave-kinetic method, phase-space path integrals, and stochastic wave
propagation. J. Opt. Soc. Am. A 2 (12), 2092–2099.

BESIERIS, I. M. & TAPPERT, F. D. 1976 Stochastic wave-kinetic theory in the Liouville approximation.
J. Math. Phys. 17 (5), 734–743.

BOOIJ, N., RIS, R. C. & HOLTHUIJSEN, L. H. 1999 A third-generation wave model for coastal
regions: 1. Model description and validation. J. Geophys. Res. 104 (C4), 7649–7666.

BOWEN, A. J. 1969 Rip currents: 1. Theoretical investigations. J. Geophys. Res. 74 (23), 5467–5478.
BRETHERTON, F. P. & GARRETT, C. J. R. 1968 Wavetrains in inhomogeneous moving media. Proc.

R. Soc. Lond. A 302 (1471), 529–554.
CHAWLA, A., ÖZKAN-HALLER, H. T. & KIRBY, J. T. 1998 Spectral model for wave transformation

and breaking over irregular bathymetry. ASCE J. Waterway Port Coastal Ocean Engng 124
(4), 189–198.

CHEN, Q., DALRYMPLE, R. A., KIRBY, J. T., KENNEDY, A. B. & HALLER, M. C. 1999 Boussinesq
modeling of a rip current system. J. Geophys. Res. 104 (C9), 20617–20637.

COHEN, L. 2012 The Weyl Operator and Its Generalization. Springer Science & Business Media.
CRAIK, A. D. & LEIBOVICH, S. 1976 A rational model for langmuir circulations. J. Fluid Mech.

73 (3), 401–426.
DEIGAARD, R. et al. 1992 Mechanics of Coastal Sediment Transport, vol. 3. World Scientific

Publishing Company.
DINGEMANS, M. W. 1997 Water Wave Propagation Over Uneven Bottoms, vol. 13. World Scientific.
DYHR-NIELSEN, M. & SØRENSEN, T. 1970 Some sand transport phenomena on coasts with bars.

Coast. Engng Proc. 12, 855–865.
FEDELE, F., BRENNAN, J., DE LEÓN, S. P., DUDLEY, J. & DIAS, F. 2016 Real world ocean rogue

waves explained without the modulational instability. Sci. Rep. 6, 27715.
GROUP, T. W. 1988 The WAM model: a third generation ocean wave prediction model. J. Phys.

Oceanogr. 18 (12), 1775–1810.
HIRSCH, C. 2007 Numerical Computation of Internal and External Flows: The Fundamentals of

Computational Fluid Dynamics. Elsevier.
HLAWATSCH, F. & FLANDRIN, P. 1997 The interference structure of the wigner distribution and related

time-frequency signal representations. In The Wigner Distribution Theory and Applications in
Signal Processing, pp. 59–133. Elsevier.

HOLMES, M. H. 2012 Introduction to Perturbation Methods, vol. 20. Springer Science & Business
Media.

JANSSEN, T., HERBERS, T. & BATTJES, J. 2008 Evolution of ocean wave statistics in shallow water:
refraction and diffraction over seafloor topography. J. Geophys. Res. 113 (C3).

JANSSEN, T. T. & HERBERS, T. 2009 Nonlinear wave statistics in a focal zone. J. Phys. Oceanogr.
39 (8), 1948–1964.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

14
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

, o
n 

31
 M

ar
 2

02
0 

at
 0

6:
03

:0
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.143
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


891 A2-30 G. Akrish, P. Smit, M. Zijlema and A. Reniers

KIRBY, J. T. & DALRYMPLE, R. A. 1986 An approximate model for nonlinear dispersion in
monochromatic wave propagation models. Coast. Engng 9 (6), 545–561.

KRASITSKII, V. P. 1994 On reduced equations in the hamiltonian theory of weakly nonlinear surface
waves. J. Fluid Mech. 272, 1–20.

LAPIDOTH, A. 2017 A Foundation in Digital Communication. Cambridge University Press.
LONGUET-HIGGINS, M. S. 1970 Longshore currents generated by obliquely incident sea waves.

Part 1. J. Geophys. Res. 75 (33), 6778–6789.
MAPP, G. R., WELCH, C. S. & MUNDAY, J. C. 1985 Wave refraction by warm core rings. J. Geophys.

Res. 90 (C4), 7153–7162.
MCWILLIAMS, J. C. 2016 Submesoscale currents in the ocean. Proc. R. Soc. Lond. A 472 (2189),

20160117.
MCWILLIAMS, J. C. 2018 Surface wave effects on submesoscale fronts and filaments. J. Fluid Mech.

843, 479–517.
METZGER, J. J., FLEISCHMANN, R. & GEISEL, T. 2014 Statistics of extreme waves in random

media. Phys. Rev. Lett. 112 (20), 203903.
PAPOULIS, A. & PILLAI, S. U. 2002 Probability, Random Variables, and Stochastic Processes. Tata

McGraw-Hill Education.
POJE, A. C., ÖZGÖKMEN, T. M., LIPPHARDT, B. L., HAUS, B. K., RYAN, E. H., HAZA, A. C.,

JACOBS, G. A., RENIERS, A., OLASCOAGA, M. J., NOVELLI, G. et al. 2014 Submesoscale
dispersion in the vicinity of the deepwater horizon spill. Proc. Natl Acad. Sci. USA 111 (35),
12693–12698.

RENIERS, A. & BATTJES, J. 1997 A laboratory study of longshore currents over barred and non-barred
beaches. Coast. Engng 30 (1–2), 1–21.

RICE, S. O. 1945 Mathematical analysis of random noise. Bell Syst. Tech. J. 24 (1), 46–156.
ROELVINK, D., RENIERS, A., VAN DONGEREN, A., DE VRIES, J. V. T., MCCALL, R. & LESCINSKI,

J. 2009 Modelling storm impacts on beaches, dunes and barrier islands. Coast. Engng 56
(11–12), 1133–1152.

RUESSINK, B., MILES, J., FEDDERSEN, F., GUZA, R. & ELGAR, S. 2001 Modeling the alongshore
current on barred beaches. J. Geophys. Res. 106 (C10), 22451–22463.

SMIT, P. & JANSSEN, T. 2013 The evolution of inhomogeneous wave statistics through a variable
medium. J. Phys. Oceanogr. 43 (8), 1741–1758.

SMIT, P., JANSSEN, T. & HERBERS, T. 2015a Stochastic modeling of coherent wave fields over
variable depth. J. Phys. Oceanogr. 45 (4), 1139–1154.

SMIT, P., JANSSEN, T. & HERBERS, T. 2015b Stochastic modeling of inhomogeneous ocean waves.
Ocean Model. 96, 26–35.

SOONG, T. T. 1973 Random Differential Equations in Science and Engineering. Elsevier.
STIVE, M. J. & DE VRIEND, H. J. 1994 Shear stresses and mean flow in shoaling and breaking

waves. Coast. Engng Proc. 24, 594–608.
TOLMAN, H. L. 1991 A third-generation model for wind waves on slowly varying, unsteady, and

inhomogeneous depths and currents. J. Phys. Oceanogr. 21 (6), 782–797.
VAN GROESEN, E. & MOLENAAR, J. 2007 Continuum Modeling in the Physical Sciences, vol. 13.

Siam.
VAN RIJN, L. C. 1993 Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas,

vol. 1006. Aqua Publications.
VELLINGA, P. 1982 Beach and dune erosion during storm surges. Coast. Engng 6 (4), 361–387.
VINCENT, C. L. & BRIGGS, M. J. 1989 Refraction–diffraction of irregular waves over a mound.

J. Waterway Port Coastal Ocean Engng 115 (2), 269–284.
YOON, S. B. & LIU, P. L.-F. 1989 Interactions of currents and weakly nonlinear water waves in

shallow water. J. Fluid Mech. 205, 397–419.
ZIJLEMA, M. & VAN DER WESTHUYSEN, A. J. 2005 On convergence behaviour and numerical

accuracy in stationary swan simulations of nearshore wind wave spectra. Coastal Engng 52
(3), 237–256.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

14
3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

, o
n 

31
 M

ar
 2

02
0 

at
 0

6:
03

:0
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.143
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

	Modelling statistical wave interferences over shear currents
	Introduction
	Stochastic model for linear waves over varying current and bathymetry
	The action variable and its evolution equation
	Second-order statistics
	Evolution equation for the Wigner distribution
	Numerical implementation
	Set-up and overview of the considered numerical simulations

	Model verification
	Discussion
	The evolution of the cross-correlation terms
	The validity of the QCM

	Conclusions
	Acknowledgements
	Appendix A. The Weyl operator and its asymptotic form
	Appendix B. On the evolution equation of the action variable
	Appendix C. From Wigner distribution to local energy
	Appendix D. The evolution equation for the Wigner distribution
	Appendix E. On the numerical model
	References


