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Summary

Revealing the skeleton from imperfect point clouds

Quantifying our surrounding environment in terms of sizes and orders has always been
of interest, because it enables us to visualize, describe and interpret our environment. In
the last decade terrestrial laser scanners became available as a tool to measure objects in
our surrounding environment. Terrestrial laser scanning samples surfaces with millions
of 3D points to be stored as a point cloud. These point clouds contain information of
sizes and orders of the sampled objects.

Recently, trees became an object of high interest, because they contain a rich and com-
plex structure, which is to be exploited in terms of branch length, branch diameter and
branching hierarchy. Such information can be used for forestry, hydrology, ecology
and visualization applications.

This thesis introduces the SkelTre algorithm (Skeletonization of Trees) as a method to
extract a structure description from point clouds. Such a structure description is a so-
called skeleton which is similar to a collection of connected lines. A skeleton enables
us to extract the branching hierarchy and the size parameters of tree branches from
point clouds. Laser scanned point clouds contain only information about the surface
of a scanned object and no information about its inside. One benefit of SkelTre is its
ability to extract a skeleton purely from the surface samples represented in the point
cloud.

The SkelTre algorithm meets four main requirements explicitly:

1. Topological preservance - to enable the branching hierarchy extraction

2. Metric representation - to enable the measurement of sizes

3. Imperfect data handling - to address data characteristics such as noise, underam-
pling and varying point density

4. Computational efficiency - to address the need for fast data processing on the
given huge amount of data

The SkelTre algorithm treats all four requirements based on one single characteristic,
the local elongation direction. This elongation direction describes locally how an object
surface is sizing in a 3D space. A local elongation direction can be extracted from the
given imperfect data by analyzing small cubical cells subdividing the point cloud into
a 3D raster. The cubical cells are derived from a so-called octree subdivision. For
each cell it is analyzed which side of the cell is passed by the point cloud. The passed
sides are representing the local elongations which are further represented by a graph.
In this graph, each cell is corresponding to a vertex. If cells share a passed side, than
the corresponding vertices are linked by an edge.

The input point cloud is imperfect, because it contains noise, undersampling and vary-
ing point densities. Therefore, SkelTre treats these point cloud characteristics explic-
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Summary

itly, to produce a result that is correctly representing the branching hierarchy. There-
fore, before the graph is reduced to the skeleton a robustness criterion is applied. This
criterion removes and adds edges to the graph. Edges are added on locations where
data is missing because of undersampling or removed when noise causes unintended
edges. At this stage the graph ideally represents the surface of an object and is to be
reduced to a skeleton.

This corrected graph is then reduced to a skeleton by a set of newly developed rules.
The reduction uses two suited vertex configurations occurring in the graph, so-called
E-Pairs and V-Pairs. Basically the reduction relies on the property, that whenever an
E-Pair is found and reduced, one or more V-Pairs are generated. Processing of a V-Pair
leads to either new V-Pairs or otherwise a new E-Pair has to be found in the graph. If
neither an E-Pair or a V-Pair is present in the graph it is ensured that the result is a
skeleton. The resulting skeleton is related to a known topological structure, the Reeb-
Graph.

During the reduction of the graph, the graph is embedded into the point cloud such that
every vertex is locally centered within the point cloud. The correct branching order and
centeredness enables the navigation to a chosen location in the point cloud to derive
a branch diameter. A first implementation of the algorithm is given to demonstrate
its efficiency on huge point cloud data. On many examples it is evaluated, that all
four requirements are met. These examples include non-tree objects to emphasize the
generality of the introduced skeletonization framework.

The practical use of the SkelTre algorithm is demonstrated on two applications de-
manding automatic size measurements on trees. In contrast to older methods, both
applications do not rely on pre-knowledge of the tree species. Hence, the assessment
of trees in these applications is purely based on the point cloud data. Both applications
use the newly developed HARPER method to estimate the diameter under support of
the SkelTre skeleton. The HARPER method estimates the diameter of a branch on the
basis of the double distance of the point cloud points to the skeleton. The length of
branches is derived as the sum of the edge lengths in the skeleton of a branch.

The first application is the automatic estimation of the tree parameters branch length
and branch diameter from laser scanned orchard trees. The estimated parameters are
a key to understand a number of physiological processes in the tree canopy. Further-
more, these parameters are useful to determine the vitality of a tree. Orchard trees are
optimized by branch cuttings to maximize the crop load on the tree. These cuttings
destroy the growth pattern of the tree. Therefore, assumptions about the growth pattern
can not be made for the estimation of the branch sizes. For these orchard trees the
branch length and diameter was derived with the HARPER method. High correlations
above 0.9 between field and automatic measurement were found in the frequency dis-
tributions of the branch length and diameter classes. These results show that automatic
measurement of tree parameters from terrestrial laser scans is possible.

The second application demonstrates a possible future use of the SkelTre skeleton.
Here, the skeletonization was applied to airborne obtained laser point clouds to esti-
mate the trunk diameter at breast height (1,30m). The diameter at breast height is one
key parameter for calculating hydrological roughness in flooding areas and to estimate
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the woody volume of a tree. The density of airborne obtained point clouds is only 75
points per square meter. Still, the trunk diameter at breast height could be extracted.
On simulated airborne scanned trees a correlation of 0.97 was achieved between the
diameter at breast height of the known simulated trees and the HARPER method. Fur-
thermore, test cases were extracted from the airborne obtained point cloud of the re-
cently updated Actual Height Model of the Netherlands, AHN2. On these test cases the
estimated diameter with the HARPER method deviated less than a standard cylinder
fitting method from manually measured diameters in the field. Still, the validation of a
whole forest remains difficult, because not all trees of the forest are found back in the
AHN2 point cloud. Such AHN2 point clouds will be available for the whole Nether-
lands in 2013 and other countries collect similar point clouds at this time. The wide
availability of such point clouds in future underlines the relevance of this application.
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Samenvatting

Skeletextractie uit imperfecte puntenwolken

Het kwantificeren van onze omgeving in termen van grootte en ordening is altijd al
van groot belang geweest, want het stelt ons in staat om onze omgeving te visualis-
eren, te beschrijven en te interpreteren. In het afgelopen decennium kwamen ter-
restrische laserscanners beschikbaar als hulpmiddel om objecten in onze omgeving
in te meten. Terrestrische laserscanners leggen oppervlaktes vast met miljoenen 3D
punten die opgeslagen worden als een puntenwolk. Deze puntenwolken bevatten infor-
matie over afmetingen en ordening van de ingewonnen objecten.

Met name bomen zijn recentelijk onderwerp van studie geworden, omdat ze een veelzi-
jdige en complexe structuur hebben. Met behulp van deze structuur kunnen grootheden
zoals de lengte en de diameter van takken bepaald worden, maar ook de vertakking-
shiërarchie. Dergelijke informatie kan gebruikt worden in de bosbouw, de hydrologie,
de ecologie en voor visualisatie.

In dit proefschrift wordt het SkelTre algoritme geı̈ntroduceerd als een methode voor
het extraheren van een structuurbeschrijving uit puntenwolken. Deze structuurbeschri-
jving wordt een skelet genoemd en op een verzameling van lijnen waarmee een object
wordt beschreven. Een skelet stelt ons in staat om automatisch de aftakkingshiërarchie
en de afmetingen van de takken en de stam te bepalen uit met name laserscandata.
SkelTre is de afkorting van Skeletonization of Trees. Omdat de puntenwolken inge-
wonnen worden uit afstandsmetingen tot het oppervlak van een object, en niet tot in
een object, is het skeletonisatie-algoritme zodanig ontwikkeld dat het werkt op basis
van deze bemonsterde oppervlaktes.

Het SkelTre algoritme is zo ontworpen dat aan vier belangrijke randvoorwaarden wordt
voldaan:

1. Behoud van topologie - om het bepalen van aftakkingshiërarchie mogelijk te
maken

2. Metrische representatie - om het bepalen van afmetingen van takken en stam
mogelijk te maken

3. Omgang met fouten in de data - om ondanks imperfecties toch een zo goed mo-
gelijk resultaat te verkrijgen

4. Rekenkundige efficiëntie - om grote hoeveelheden data snel kunnen te verwerken

In het SkelTre-algoritme wordt met alle vier randvoorwaarden rekening gehouden door
een enkele karakteristiek: de lokale lengterichting. Deze lokale lengterichting beschri-
jft lokaal de dimensionering van een object in de 3D-ruimte. Een lokale lengterichting
kan worden bepaald uit een puntenwolk, inclusief gebreken, door te analyseren hoe
de puntenwolk omsloten wordt door kleine kubusvormige cellen. Alle cellen samen
vormen een 3D raster en worden gerepresenteerd door een zogenaamde 3D-octree on-
derverdeling. Van elke cel, wordt bepaald welke zijden worden doorsneden door de
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puntenwolk. De doorsneden zijdes representeren de lokale lengterichtingen, die ver-
volgens worden vastgelegd in een graaf. De knopen van deze graaf corresponderen
met de cellen. Twee knopen worden door een kant verbonden als de puntenwolk de
corresponderende zijdes van de cellen doorsnijdt.

De invoergegevens, dat wil zeggen de puntenwolk, bevatten de nodige gebreken: ze
zijn behept met ruis, zijn niet altijd helemaal dekkend en als ze dekken, varieert vaak
nog de puntdichtheid. In SkelTre wordt speciaal met deze gebreken rekening gehouden,
zodat het eindresultaat de aftakkingshiërarchie op een juiste wijze weergeeft. De ruis in
de data wordt met name aangepakt door een zogenaamd robuustheidscriterium, waarbij
kanten uit de graaf verwijderd dan wel toegevoegd worden op die locaties waar de ruis
in de data onbedoelde delen van het object vormt, of waar juist data mist. Op dit punt in
het proces representeert de graaf de oppervlakte van het object, waarna het gereduceerd
tot een skelet.

De graaf wordt door middel van een aantal regels gereduceerd tot het gewenste skelet.
Deze regels verwijderen de overbodige kanten door systematisch op zoek te gaan naar
twee geschikte knopen-configuraties die in de graaf voorkomen, de zogenoemde E-
Paren en V-Paren. In principe is deze reductie gebaseerd op de eigenschap dat zodra
een E-Paar gevonden en verwerkt is volgens de geldende regels, een of meerdere V-
Paren aangemaakt worden. De verwerking van een V-Paar leidt altijd tot ofwel een
nieuw V-Paar, dan wel een herhaalde zoekactie naar het volgende E-Paar. Dit principe
garandeert dat de gewenste reductie ook daadwerkelijk plaats vindt.

De reductieprocedure verzekert dat het resultaat een skelet is en is gerelateerd aan een
bekende topologische structuur, de Reeb-Graaf. Gedurende de reductie van de graaf,
wordt de link tussen de veranderende graaf en puntenwolk bijgehouden, waardoor op
het eind elk punt van de graaf op de juiste locatie binnen de puntenwolk geplaatst kan
worden. Daardoor kan het skelet gebruikt worden om een geschikt stuk scan data te se-
lecteren voor bijvoorbeeld het bepalen van diameters. Een en ander wordt geillustreerd
aan de hand van een eerste implementatie van het SkelTre-algoritme. Dankzij deze
implementatie kan de efficiëntie van het algoritme gedemonstreerd worden en is het
mogelijk de correctheid in de praktijk te valideren aan de hand van enkele voorbeeld-
puntenwolken. Het SkelTre algoritme wordt ook gedemonstreerd op puntenwolken
waarin objecten anders dan bomen vastgelegd zijn. Hiermee wordt benadrukt dat de
procedures en algoritmes die hier gepresenteerd worden meer algemeen toepasbaar
zijn.

De praktische toegevoegde waarde wordt gedemonstreerd aan de hand van twee
toepassingen om waarbij boomparameters worden bepaald. In tegenstelling tot an-
dere, oudere methoden, is het hierbij niet noodzakelijk dat van te voren bekend is wat
voor soort boom geanalyseerd wordt. Beide toepassingen maken gebruik van de nieuw
ontwikkelde HARPER-methode die de diameter van een boom bepaalt op basis van
het SkelTre skelet. HARPER schat de diameter van een tak uit de dubbele afstand van
een geschikt stuk van de puntenwolk tot het skelet, terwijl de lengte van de takken bij
eerste benadering gegeven wordt door een som van geschikte kanten uit het skelet.

In de eerste toepassing werd het algoritme toegepast op bomen uit een boomgaard.
Bomen in een boomgaard zijn door mensen geoptimaliseerd om de hoeveelheid

xiv



Samenvatting

vruchten in de boom te maximaliseren. Deze optimalisatie heeft echter tot effect dat
het natuurlijk groeipatroon van deze bomen niet meer zichtbaar is, als gevolg van het
steeds verwijderen van ongewenste takken. Vanwege de missende takken is het dus ook
niet goed mogelijk om aannames te doen over de aftakkingshiërarchie. Van deze bomen
werden de lengtes en diameters van takken geschat op grond van hun SkelTre skeletten.
Het bleek dat de frequentiedistributie van traditionele veldmetingen en de nieuwe au-
tomatische SkelTre metingen sterk op elkaar leken. Dit toont aan dat met deze nieuwe
methode lengtes en diameters van takken efficient en nauwkeurig bepaald kunnen wor-
den zonder afhankelijk te zijn van handmetingen. Zulke automatische schattingen zijn
de sleutel tot een beter begrip van enkele fysiologische processen in boomkruinen die
de gezondheid van bomen uitdrukken.

De tweede toepassing demonstreert een mogelijk toekomstig gebruik van het SkelTre
skelet. Hierbij werd de skeletonisatie toegepast op vanuit de lucht ingewonnen laser
data van bomen om de diameter op borsthogte te schatten. De diameter op borsthoogte
(1,30 m hoogte boven het maaiveld) is een zeer belangrijke parameter voor het bereke-
nen van hydrologische ruigheid in overstromingsgebieden en voor het bepalen van het
houtvolume in een boom. De dichtheid van vanuit de lucht ingewonnen laser data is
met 75 punten per vierkantemeter. Alhoewel deze puntdichtheid veel lager is dan die
van terrestrische puntenwoloken, was het toch mogelijk de dikte van de stam van een
boom te bepalen op borsthoogte. In een gesimuleerde dataset werd een correlatie van
0.97 behaald tussen gesimuleerde boomdiktes, en boomdiktes bepaald uit de SkelTre
skeletten. Bij echte data leek de HARPER methode ook goed te werken, maar bleek
het wel moeilijk om de resultaten te valideren, doordat de handgemeten bomen soms
lastig waren terug te vinden in de laser data set. Voor dit praktijkvoorbeeld werden
puntenwolken uit het recent bijgewerkte Actueel Hoogtemodel van Nederland, AHN2,
toegepast. Deze data is na 2013 voor geheel Nederland beschikbaar, terwijl andere lan-
den ook al bezig zijn met het inwinnen van nationale laser data sets. Dit laat zien dat
automatische methodes die boomparameters kunnen schatten uit laser scan data breed
kunnen worden toegepast in de komende jaren.
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Zusammenfassung

Skelettextraktion aus imperfekten Punktwolken

Von jeher ist die Beschreibung von Größen und Strukturen in unserer Umgebung von
großer Bedeutung, da es uns in die Lage versetzt unsere Umgebung darzustellen, zu be-
schreiben und zu interpretieren. Im letzten Jahrzehnt wurden terrestrische Laserscanner
zum Messen unserer Umgebung verfügbar. Das Besondere an ihnen ist, daß sie Mil-
lionen von Punkten auf Oberflächen in ihrer Umgebung messen und speichern. Diese
Punkte bilden eine 3D Punktwolke, die Information über die Größe und Struktur eines
eingemessenen Objektes enthält.

Bäume haben zunehmend das Interesse als automatisch zu vermessendes Studienob-
jekt geweckt, weil sie eine komplexe Kronentruktur besitzen. Unter zur Hilfenahme
der Struktur können Größen wie Länge und Durchmesser von Ästen und Stämmen
bestimmt werden. Gleichermaßen kann auch die Verzweigungshierarchie erfasst wer-
den. Diese Größen finden ihre Anwendung in der Forstwirtschaft, der Hydrologie, der
Ökologie und in der Visualisierung.

In dieser Dissertation wird ein neuartiger Algorithmus (SkelTre-Algorithmus) zur Ex-
traktion einer Strukturbeschreibung aus Punktwolken vorgestellt. Diese Strukturbe-
schreibung wird Skelett genannt und beschreibt ein Objekt linienartig. Die Abkürzung
SkelTre stammt aus dem Englischen und bedeutet soviel wie Skelettierung von Bäumen
(Skeletonization of Trees). Ein mit SkelTre extrahiertes Skelett erlaubt in Kombination
mit der ursprünglichen Punktwolke die Bestimmung der Astgrößen und der Asthier-
archie. Punktwolken die mit terrestrischen Laserscannern erfaßt wurden, bestehen aus
Messungen von Objektoberflächen und repräsentieren somit nicht das Innere eines Ob-
jektes. Eine Besonderheit des SkelTre-Algorithmus ist, daß er das Skelett auf der Basis
von Oberflächenmessungen bestimmen kann.

SkelTre berücksichtigt dabei vier Randbedingungen:

1. Topologieerhaltung - um die Bestimmung der Verastungshierarchie zu
ermöglichen

2. Metrische Repräsentation - um das Bestimmen von Größen zu erlauben

3. Umgang mit fehlerhaften Daten - um trotz verschiedenster Datenfehler ein
bestmögliches Resultat zu erzielen

4. Berechnungsgeschwindigkeit - um den Umgang mit großen Datenmengen zu
erlauben.

Um alle vier Randbedingunegen zu erfüllen benötigt SkelTre nur eine Charakteristik:
die lokale Elongationsrichtung. Die Elongationsrichtung beschreibt lokal die Ausdeh-
nung des Objektes im dreidimensionalen Raum und kann auch in fehlerhaften Daten
bestimmt werden. Die Bestimmung der Elongationsrichtung geschieht auf Grundlage
kleiner kubischer Zellen, die in einem dreidimensionalen Raster angeordnet sind. Je-
de dieser Zellen wird daraufhin untersucht, ob die Punktwolke die Seiten der Zelle
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schneidet. Die geschnittenen Zellseiten repäsentieren die lokale Elongationsrichtung
und werden als ein Graph wiedergegeben. Jede Zelle wird durch einen Vertex in die-
sem Graph repräsentiert und die Kanten des Graphen, welche die Vertices verbinden,
repräsentieren die geschnittenen Zellseiten. Der resultierende Graph besteht somit aus
Vertices, welche verbunden werden, wenn eine Zelle eine geschnittene Seite mit einer
anderen Zelle teilt.

Die von einem Laserscanner erfaßte Punktwolke ist jedoch fehlerhaft: Sie
ist verrauscht, enthält Löcher in gemessenen Oberflächen aufgrund von
Überdeckungseffekten und besitzt eine unterschiedliche Punktdichte an verschie-
den Stellen des gemessenen Objektes. Kanten, die auf Grund von Rauschen erzeugt
worden sind oder Kanten, die auf Grund von Überdeckungen fehlen werden durch
ein Robustheitskriterium korrigiert. Dieses Kriterium fügt Kanten zu oder entfernt sie
bevor die Reduktion zum Skelett stattfindet. An diesem Punkt repräsentiert der Graph
idealerweise die Oberflache eines Objektes.

Der Graph wird anschließend durch neu entwickelte Regeln zu einem Skelett reduziert.
Die Reduktion wird erlangt, indem zwei spezielle Vertex-Konfigurationen im Graphen
gesucht werden. Diese beiden Konfigurationen heißen E-Pair und V-Pair. Im Prinzip
wird erst ein E-Pair gesucht, welches die Eigenschaft besitzt bei Reduktion immer in
einem V-Pair zu resultieren. Von einem V-Pair ist bekannt, daß seine Reduktion ent-
weder in einem weiteren V-Pair resultiert oder anderenfalls ein neues E-Pair gefunden
werden muss. Wenn weder ein E-Pair noch ein V-Pair im Graphen vorhanden ist, so ist
garantiert, daß es sich um ein Skelett handelt. Dieses Skelett beinhaltet eine bekannte
topologische Struktur, den sogenannten Reeb-Graphen.

Während der eigentlichen Reduktion werden die Vertices zentriert in Teile der Punkt-
wolke eingebettet, um Durchmesser bestimmen zu können. Trotz der beschriebenen
Störeinflüsse liegt das berechnete Skelett zentriert in der Punktwolke und gibt die
Verastungshierarchie korrekt wieder. Das extrahierte Skelett ermöglicht es durch die
Punktwolke zu navigieren und an frei wählbaren Stellen den Durchmesser von Ästen
zu bestimmen.

Anhand von zahlreichen Beispielen wird die Qualität des Algorithmus evaluiert. Die
Evaluierung legt ihren Schwerpunkt auf die Einhaltung der geforderten vier Randbe-
dingungen. Das breite Einsatzspektrum des Algorithmus wird zusätzlich anhand von
Beispielobjekten demonstriert, die keine Baumstruktur aufweisen. Eine erste Imple-
metierung des Algorithmus ist als Pseudocode gegeben um seinen effizienten Umgang
mit grossen Punktwolkendaten darzustellen.

Anhand von zwei Anwendungsbeispielen konnte die Praxistauglichkeit des Algorith-
mus zur automatischen Bestimmung von Baumparametern im Kronen- und Stamm-
raum aufgezeigt werden. Im Gegensatz zu älteren Methoden kann hierbei auf Vorkennt-
nisse der Wuchsform einer Baumsorte verzichtet werden. Beide Anwendungsbeispiele
benutzen das SkelTre-Skelett und die neuentwickelte HARPER-Methode zur Bestim-
mung von Durchmessern. Die Durchmesserbestimmung basiert auf dem doppelten Ab-
stand der Punkte zum Graphen. Die Astlänge ist im Skelett durch die Kantenlängen des
Graphen wiedergegeben.

Die erste Anwendung beschreibt die automatische Messung von Obstbäumen, deren
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Äste beschnitten werden, um die Ernteerträge zu maximieren. Auf Grund dieser Ast-
beschneidungen ist das natürliche Verastungsmuster des Baumes in der Punktwolke
nicht mehr vollständig wiedergegeben. Deshalb ist es nicht möglich Annahmen über
die Verastung in die Messung der Äste einzubringen. Für diese Bäume werden Längen
und Durchmesser pro Ast automatisch bestimmt. Als Resultat wurde gezeigt, daß die
automatische Messung auf Basis des Skelletes sehr starke Ähnlichkeit mit den Längen-
und Durchmesserklassen der Feldmessung aufweist. Die Längen- und Durchmesser-
klassen erreichten Korrelationskoeffizienten von über 0.9. Dies bestätigt, daß automati-
sierte Messungen von Astgrössen möglich ist. Diese Messungen können zum besseren
Verständnis der physiologischen Prozesse in Baumkronen verwendet werden und um
die Vitaliät von Einzelbäumen zu erfassen.

Die zweite Anwendung untersucht einen zuküftigen Anwendungsbereich von Skel-
Tre. In diesem Beispiel werden Baumstammdurchmesser in Punktwolken gemessen,
die aus der Luft gewonnen wurden. Diese Punktwolken weisen eine deutlich geringere
Punktdichte auf als terrestrisch erzeugte Punktwolken. Die hier verwendete Punktdich-
te beträgt 75 Punkte pro Quadratmeter. Es ist jedoch zu erwarten, daß diese Punkt-
dichte in den kommenden Jahren weiter ansteigt. Trotz der viel geringeren Punktdichte
ist es möglich den Stammdurchmesser auf 1.30 m Höhe zu bestimmen. Dieser soge-
nannte Brusthöhendurchmesser ist ein häufig verwendeter Parameter zur Berechnung
der hydrologischen Rauhigkeit in Hochwassergebieten. Zuerst wurde der Durchmes-
ser für Bäume aus einer bekannten Luftdatensimulation bestimmt. Hierbei wurde ein
sehr guter Korrelationskoeffizient von 0.97 zwischen den bekannten Durchmessern der
Simulationsdaten und den automatisch extrahierten Stammdurchmessern erreicht. Die
Berechnung des Durchmessers auf echten Punktwolken zeigte auf, daß die HARPER-
Methode in allen Fällen bessere Ergebnisse erzielte als eine halbautomatische Stan-
dardmethode. Die Validierung eines ganzen Waldes bleibt nach wie vor schwierig, da
es nicht immer möglich ist jeden Baum im Wald in der Punktwolke wiederzufinden.
Die benutzten Punktwolken sind Bestandteil des sogenannten Aktuellen Höhenmodells
der Niederlande. Diese Punktwolken werden bis 2013 für die gesamten Niederlande
verfügbar sein. Die weite Verfügbarkeit solcher Punktwolken in den Niederlanden und
in absehbarer Zeit auch in anderen Ländern unterstreicht die praktische Relevanz dieser
Anwendung.
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1
Introduction

1.1 General problem description

At the end of the seventies [Adams, 1979] described two major mistakes of human-
ity. Firstly leaving the trees as a habitant and secondly start wearing digital watches.
Nowadays a third mistake can be observed in the spectator enthusiastic reaction while
watching his first laser scan (Figure 1.2 and Figure 1.3). An example reaction can be:”
Wow ... that’s like a black and white digital photograph and even in 3D”. Laser scans
are still new to most non-experts and therefore not directly put into the right context.
In fact the comparison of a laser scan with a digital photograph is intuitive and easy
to understand. Basically a laser scan is a digital photograph taken from the panoramic
surrounding of the laser scanner that contains intensity values. These intensity values
are often represented in a greyscale. At the first place a laser scanner assigns a dis-
tance to every pixel in the picture, which enables positioning of each pixel in a 3D
coordinate system. This distance is measured from the scanner itself to the first visible
surface and determined by measuring the travel time of the laser from the object to the
surface and back to the scanner. The instrument rotates around its vertical and horizon-

 

125.000 pts/second 

Distance to object 

Figure 1.1: Simplified scanning principle of a terrestrial laser scanner
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CHAPTER 1. INTRODUCTION

Figure 1.2: Intensity image of a panoramic laser scan

tal axis, while sending out the laser as illustrated in Figure 1.1. Such a scanner captures
about 125.000 points per second on surfaces in its panoramic surrounding. The result
of this measuring procedure is points located in a 3D space with associated intensity
values. Such a collection of points, a so-called point cloud, is shown in Figure 1.3. A
single scan still contains knowledge about the neighborhood of each point because of
the scanners vertical and horizontal scanning directions. This order is lost as soon as
several scans are aligned to each other. This alignment is called registration. Figure 1.3
is a point cloud registered from several single scans. The considered point clouds in
this thesis are unorganized and their neighborhood is not known.

The first surprise to the spectator of a laser scan happens when you tell him that the
black and white panoramic picture is significantly different from the one he knows
from black and white photographs. The observed picture is the reflection in a very
small part of the light spectrum and not the reflection as we recognize it in a black
and white photograph derived from the whole visible spectrum of the light. Because
of that, the picture of the reflection intensity of a laser scanner is representing some
scaling of the intensity values measured by the laser scanner which is often represented
in a greyscale picture. For example in Figure 1.4 a tree looks very whitish because of
an applied scaling to the intensity values and is not comparable to a black and white
photograph derived from the full spectrum of the visible light.

A critical spectator, may react slightly shocked if the laser scan is turned around in
the 3D space as shown in Figure 1.5 (c). The novice viewer starts discovering that the
point cloud is noisy and varies a lot in its point density over the scan, depending on the
reflective properties and the surface granularity of the scanned objects. Furthermore,
occlusions due to overlapping object parts can be observed. These occlusions are vis-
ible as gaps in the point cloud Figure 1.5 (b). The example shown in Figure 1.5 (a)
is a scanned apple tree, which illustrates the problems of scanning complex structures.
Complex structures like the tree crown contain many difficulties if one aims at the ex-
traction of the branching structure. These difficulties are highlighted in Figure 1.6,
where some branches are even visually not distinguishable.

Until now, it was assumed that the scan is taken with a photo camera-like instrument
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Figure 1.3: 3D view of a filtered laser scan. The scan is visualized with the standard software
FARO Scene 5.7

(a) (b)

Figure 1.4: (a) Black and white photo of a tree and (b) the laser scan picture of the same tree
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(a) (b) (c)

Figure 1.5: (a) Point cloud of a single terrestrial laser scan of a tree. (b) a magnification of
the indicated tree part shown in (a). The marked regions show extreme cases of undersampling,
visible as gaps in the point cloud. (c) The same point cloud as in (a), but rotated by 90 degree. It
is blurred because of noise.

Figure 1.6: Enlarged point cloud part from a dense crown containing noise. The marked regions
show noise masking the branching structure. Even for the human eye some branches are not
distinguishable.
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from the ground. Similar to a photo camera a laser scanner can also be mounted on
an airplane or helicopter using almost the same scanning principle as shown before.
A significant difference between airborne and terrestrial laser scanning is found in the
point density. Suppose you take a photo from the air, you may not be able to distinguish
between two objects, because the resolution of your camera may map the two objects
on one pixel. This mapping behavior finds its reasoning in the larger area visible in
the photograph, assuming that the resolution and zoom stay unchanged compared to
the photo taken from the ground. Technically this is called undersampling and occurs
in laser scans, too. The point density on the object surface decreases dramatically,
and airborne obtained point clouds are subject to undersampling. These facts require
to distinguish between terrestrial laser scanning from the ground and airborne laser
scanning, as can be recognized in Figure 1.7. The tree in Figure 1.7(a) is the terrestrial
laser scan with 526.745 points, and the tree in Figure 1.7(b) is the same tree scanned
with an airborne system containing 15.460 points. The difference in point density
is visible on the stem. Furthermore, the terrestrial scan was taken from the ground
and shows individual branches, while the airborne laser was penetrating the tree from
above the tree crown. Notably, we cannot recognize many details of the branching
structure of the tree. In this thesis we are considering point clouds of real natural
objects obtained by instruments measuring the dimensions of the object. Although
problems are visualized on trees here, these problems are relevant in a general sense.

(a) (b)

Figure 1.7: Comparison between the same tree scanned with (a) a terrestrial laser scanner,
showing individual branches and high point density on the stem and (b) an airborne laser scanner
showing almost none of the individual branches and less point density. The difference in point
density is especially visible on the main stem of the tree.

One may characterize terrestrial laser scanning as scanning small areas with a locally
high density of measurements (around 103 points per square meter) and airborne laser
scanning as measuring large areas with a low local density (up to 75 points per square
meter). Still both methods produce huge data sets. The huge data sets are the reason
why efficiency is an important factor for point cloud processing methods.

By looking at botanical trees, it is observable that their ramification is complicated.
Their ramification has drawn a lot of attention. It was discovered that a relation
between the ramification of a tree and its physiological processes, e.g. branch transpi-
ration, exists, [Fleck, 2002]. The question we focus on is, whether laser scanning is
a suitable technology to reveal the ramification of a tree, even though it is masked by
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noise and artifacts of imperfect point clouds. Therefore the aim is to develop a method
that automatically extracts the structure of a tree, like its ramification, from a point
cloud. On the basis of this structure description and its relation to the original point
cloud, it is feasible to estimate tree parameters like branch length and diameter. In
Chapter 6 of the thesis we will discuss applications where tree parameters are derived
from an extracted ramification description. One of the easiest application examples is
that the vitality of a tree is correlated to these extracted parameters [Fleck et al., 2004].
It may not demand the cutting of a tree to count the growth ring chronologies of the
stem to determine its growth history [Roloff, 1986]. The missing gap between the
interpretation of tree structure and the measurement of tree structure is its automatic
extraction. Because of that, this thesis aims at the automatic extraction of a structure
description.

Structure will be described in this thesis as follows: If we think again of a tree it is
imaginable that it can be described by a line-like description representing the ramifica-
tion of the tree. Such a description is called a skeleton and shown in Figure 1.8. Such
a skeleton also contains the segmentation of the point cloud, e.g. into its branching hi-
erarchy (Figure 1.8(c)). It should fulfill certain requirements to enable the applications
described before. In informal words we may describe these requirements as follows:

A skeleton preserves the order of defined object parts in a point cloud, it is centered
within the point cloud and it is connected, whenever the object is connected.

(a) Point Cloud (b) Skeleton (c) Branch hierarchy

Figure 1.8: (a) the point cloud, (b) an extracted skeleton from the point cloud, (c) a segmentation
of the point cloud in (a) on the basis of the skeleton in (b). The same color corresponds to the
same branching hierarchy.

.

The relation between physiological processes of trees on one hand, e.g. branch transpi-
ration, and the manually measured structure on the other hand is already known, [Fleck,
2002]. So far, these relations have been validated only on manually extracted tree struc-
tures. As stated before, one long term goal is to relate such processes in a tree to an
automatically extracted tree structure. This long term goal gives an application driven
motivation to take a deeper look into the structure description we are going to extract
from laser scanned trees and the applicability of skeletons to measure the parameters
branch length and diameters based on the branching hierarchy. All these parameters
are directly related to the wooden ramification of the tree, and therefore demand the
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measurement of the wooden ramification without leaves. During the last years I read
many papers, suggesting that a skeleton may be suitable to extract tree parameters, but
none of them stated what the extracted skeleton is actually representing. Some exam-
ples are [Gorte and Pfeifer, 2004], [Gorte, 2006], [Xu et al., 2007] and [Côtè et al.,
2009]. All these references have in common that they use a skeleton to represent a
tree, but none of them evaluates the used skeleton on the validity of its representation.
Questions easily arise from this motivation:

1. Is the order of the branches extracted correctly?

2. How is the skeleton locally centered in the point cloud?

3. How does the method handle noise and other artifacts such as undersampling and
varying point density?

4. Is the skeleton extraction fast enough to operate on huge point clouds obtained
by laser scanners

As a result of this thesis an algorithm was developed that satisfies the needs for efficient
computation on huge data sets and robustness against noise for application on laser
scanning point clouds. The problem identified to develop such an algorithm is to find
a framework which reduces the computational operations on the given huge amount of
input data while preserving the validity of the skeleton in terms of branching order and
centeredness as prerequisite. We assume that the concepts used in this algorithm are
generally valid and because of that we also consider structures different then trees into
the thesis in the evaluation of the algorithm.

1.2 Objectives

The main research question reads:

Is it possible to automatically reveal the hidden structure of botanical trees from laser
scan data?

The extracted structure is represented by a skeleton whose extraction process is driven
by the following sub-objectives:

1. The extracted skeleton is centered within the represented object and represents
the order of object parts correctly, to enable the extraction of tree parameters
from point clouds of botanical trees.

2. The skeleton has to be extracted from an unorganized point cloud, which is the
given input from a registered laser scan.

3. A skeleton extraction process must be robust to noise, varying point density and
undersampling as produced by measuring instruments.

7



CHAPTER 1. INTRODUCTION

4. Laser scanning produces huge amounts of data. Therefore, the skeletonization
algorithm should be fast. The algorithm speed is typically expressed by the com-
putational complexity, which is a machine independent measure of how the al-
gorithm scales in time by increasing the number of input points.

5. The algorithm should contain as few user input parameters as possible.

The possible practical value of this thesis is reflected by three sub-objectives:

1. The applicability of the algorithm should be demonstrated on example trees. If
the objectives above are achieved, the practical result is the extraction of branch
lengths and diameters along with the branching hierarchy of the tree.

2. Identify current limitations in the application of skeletons due to common prac-
tice or dependency on other algorithms.

3. Test the performance on objects other then tree structures, to evaluate the gener-
ality of the introduced concepts.

Restrictions applying to this research:

1. The skeleton algorithm is not supposed to operate on other input than point
clouds.

2. We consider only scans of leafless trees. Removing leaves from scans in a pre-
filtering stage leads to additional occlusion effects, which are considered as data
problems within this thesis. Practical examples of removing leaves based on
intensity values or geometric properties can be found in [Côtè et al., 2009] and
[Dai et al., 2009].

1.3 Methodology in a nutshell

The skeleton extraction is based on the idea to investigate the local behavior of a point
cloud within a small volume. Such a volume is derived from a spatial subdivision. This
behavior is described by an initial graph, which is retracted to the final skeleton by a
finite set of rules exploiting the neighborhood relations. This set of rules is preserving
the branching order and the key to a low computational complexity.

The skeleton algorithm in this thesis consists of three main modules:

1. Computation of a labeled octree-graph: An octree, see Figure 1.9, is built by
the subdivision of the point cloud into octree cells. The subdivision is driven
by rules based on how the point cloud is crossing through the cell sides. From
every octree cell, edges are constructed to neighboring cells, if the point cloud
is crossing through the shared cell side as shown in Figure 1.9. The created
edges get a triplet as label for the direction, e.g. (-1,0,0) for left. These labels
correspond to the principal Cartesian directions. These labels are derived from
the octree, which is extracted in the same space as the point cloud
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2. Computation of the Skeleton: The skeleton is computed (Figure.1.9) by merg-
ing two vertices having edges with the same label incident to a common adjacent
vertex in the octree graph. Because of the rectangular structure of the extracted
octree-graph, this merge of vertices creates a new vertex with 2 incident edges
having the same direction label. An edge with the same incident labels is cre-
ated, if none such edge is present. To achieve this reduction a notion of vertex
connectivity is used, the so-called vertex dimension. The result is the proposed
skeleton (Figure.1.9) and called SkelTre-skeleton.

3. Embedding of the Skeleton: Because of the known correspondence between
a vertex and a certain set of points in the original point cloud, the vertices of
the skeleton are geometrically embedded. Correspondence is initiated during the
construction of the octree-graph and updated during the reduction to the SkelTre-
skeleton

1.4 Organization of the thesis

The four main requirements that should be fulfilled by a new skeleton extraction pro-
cedure are discussed in Chapter 2. These requirements are describing what a skeleton
ideally is and what is required from the extraction process. In Chapter 3 current liter-
ature on skeletonization of point clouds is discussed with a strong focus on the skele-
tonization of trees. For this purpose prior work described in literature is organized into
several principal algorithmic groups and their problems are discussed with respect to
the background given in Chapter 2. In the core of this thesis, Chapter 4, a new efficient
algorithm to reveal the hidden skeleton structure from laser scans, as a skeletonization
process is described in detail. The extracted skeleton is called SkelTre-skeleton (Skele-
tonization of Trees). Chapter 5 analyzes the SkelTre-algorithm to verify whether the
requirements given in Chapter 2 are met. The practical relevance of such an algorithm
is demonstrated on 3D point clouds of dense terrestrial and strongly undersampled air-
borne laser scanned trees in Chapter 6. In Chapter 6 the extraction of tree parameters
by means of the SkelTre algorithm is validated against manual field measurements.
Chapter 7 concludes the thesis and gives an outlook to future applications and research
remaining on and with skeletons.

9



CHAPTER 1. INTRODUCTION

Octree graph

Reduction

SkelTre-Skeleton

Point cloud 
and octree

Figure 1.9: The basic steps to compute the skeleton of an object from a point cloud
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2
Skeleton extraction requirements

Skeletons are “line-like” representations of objects and give a meaningful order of
object parts. Algorithms to compute a skeleton of given objects are under active re-
search. In the last decades hundreds of publications have been published on skele-
tonization [Biasotti et al., 2008]. Mostly considered are skeletonization algorithms
in two- and three-dimensional Euclidean space. Many skeletonization algorithms are
developed to operate on two-dimensional data, [Klette et al., 1998], on 3D- polygon
models, [Dey and Sun, 2006], or on three-dimensional surfaces, [Biasotti et al., 2008].
Modern measurement instruments produce huge numbers of point measurements, so-
called point clouds, and pose algorithmic challenges because of noise, undersampling,
varying point density and huge amount of data, [Bucksch et al., 2010]. An overview of
skeletonization algorithms for point clouds was published in [Cornea and Min, 2007]
and the algorithms were evaluated against 12 properties of a computed skeleton.

Section 2.1 describes the general problem of extracting a skeleton from a point cloud.
Section 2.2 introduces four skeleton requirements that should be fulfilled by 1.) a com-
puted skeleton and 2.) by the extraction algorithm. These four requirements are further
described in the following pages. Section 2.3 describes which order of object parts we
want to preserve and gives a qualitative description of the idea used in the SkelTre algo-
rithm, that will be introduced in Chapter 4. This is followed up by Section 2.4, which
describes how the skeleton sizes in the point cloud, independent of the used coordi-
nate system. Section 2.5 discusses the information obtainable from an imperfect point
cloud. Section 2.6 introduces a notion to evaluate the efficiency of a skeletonization
algorithm.

2.1 General problem description

[Cornea and Min, 2007] formulated twelve desirable properties for a skeleton ex-
tracted from a point cloud. They distinguished between general and application spe-
cific skeleton requirements. Their main conclusion concerning skeletons derived from
point clouds was that no skeleton algorithm fulfills all of the desirable requirements
stated in [Cornea and Min, 2007]. As a consequence they concluded further that an
algorithm has to be designed specifically for each application.
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skeleton
Requirement
classes

descriptive requirements algorithmic requirements

Properties topological
preservation

metric repre-
sentation

handling of
imperfect
data

computational
efficiency

Attributes Branching de-
tection

Transformation
Invariance

Operating on
point sets

Efficient

Connectedness Centeredness Robustness Hierarchic
Thinness Smoothness Error model

Table 2.1: Requirements of a skeleton and its extraction process

Figure 2.1: (left) The black surface describing an object (right) The same surface, but sampled

For real world objects, we can limit the input for a skeleton extraction to a surface in 3D
Euclidean space. Often watertight surfaces are considered, which enclose a volume, as
shown in Figure 2.1 on a simplified tree consisting of two branches and a stem. In
contrast the extraction of information from data is limited to a sampling of the object
surface subject to noise, undersampling and varying point density. We consider here
as a sampling the collection of a huge amount of point measurements on a surface. A
point cloud of an object is therefore a finite sampling of its surface. Each point of the
point cloud is derived from a certain position on the object surface. As it is in fact a
measurement, each sampled point is affected by measurement errors. A collection of
such points is therefore a so-called imperfect point cloud and considered as the given
input data from measurement instruments. We denote it mostly as point cloud. In
Chapter 1 it was already stated, that we consider point clouds obtained by scanning
devices like terrestrial laser scanners. Such a point cloud is shown in principle on the
simplified tree in Figure 2.1(right). In general, cavities inside the object are not taken
into account, because the measurement instruments considered in Chapter 1 can not
capture cavities inside an object, we can only obtain the outer form of an object.

One challenge of skeleton extraction methods is to preserve the coherence between
the order of object elements and the outer form of an object. As an example: Botani-
cal trees are visually recognized by their object elements stem and branches and their
arrangement in space. The branches and the stem are quantified by their size. This
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Figure 2.2: (a) a space (b) a topological space and (c) a metric space. (The figure is adapted
from [Zomorodian, 2005])

Figure 2.3: (a) a simple tree in 2D with its black boundary, (b) a simple tree with its skeleton,
(c) the skeleton of the given tree and (d) the end and branching points of the tree.

size is described by a metric (e.g. Euclidean metric) and expressed using a unit like
centimeters. The configuration of elements, e.g. the branches of a tree, is called a
topology, [Zomorodian, 2005]. In simplified words, a skeleton enables the answer to
the two following questions:

1. How is the outer form defining object parts?

2. How is the size of object parts represented?

We call these two aspects the descriptive requirements: topological preservation and
metric representation. Both requirements describe what information is encoded in the
skeleton.

Figure 2.2(a) allegorises an arbitrary set of elements. These single elements form a
space. The conjunction between the elements in Figure 2.2(b) forms a so-called topo-
logical space, [Zomorodian, 2005], addressing the problem of how the elements are
connected. Figure 2.2(c) adds a metric to the topological space, enabling the measure-
ment of a distance between two elements and expression of its location.

In the case of this thesis the object is represented by its boundary, Figure 2.3, sampled
by a set of point P, obtained as single point measurements by typically a laser scanner.
Consider the boundary of the given simplified tree in Figure 2.3(a) as a surface. The
measurement of branch length and diameter is carried out practically by measuring the
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size along the external side of a branch. It would be easier, if simply a line segment
centered inside the branch would be known as shown in Figure 2.3(b). Then the length
of a branch corresponds to the length of a line segment and the branch diameter to
the double distance of the points on the surface to the line segment. Therefore it is of
interest to obtain such a point-line description, a so-called graph, [Wilson, 1985], or
more precisely a skeleton graph as shown in Figure 2.3(c). The desired connections
between the points are obtained by connecting the points as shown in, Figure 2.3(c).

Furthermore, one is intuitively locating the branching point like in Figure 2.3(b), where
the stem splits into two branches. By connecting the branching points and the end
points, Figure 2.3(c) is obtained. This intuitive locating is only possible, because we
know the surface of the object from Figure 2.3(a). In fact we can recognize in Fig-
ure 2.3(b), that the branching point is in the middle of three locations where the surface
changes its direction. The end points of the skeleton graph relate to local extrema of
the surface.

Furthermore, two questions are related to the algorithmic challenges of extracting a
skeleton. Namely,

1. How is the skeleton extraction addressing imperfections in the data obtained by
measuring instruments?

2. How efficient is the skeleton extraction?

The two challenges above lead to the algorithmic requirements of a skeletonization
algorithm. These two algorithmic aspects are the requirements handling of imperfect
data and computational efficiency. Both are aiming to how the extraction process of
the skeleton is to be designed.

From here we obtain a structured list of two classes of skeleton extraction requirements
(Table 2.1): the descriptive requirements of a skeleton, which represent the information
encoded by the skeleton and the algorithmic requirements, which represent the require-
ments of the extraction process from point cloud data. The descriptive requirements are
the topological preservation and metric representation. Topological preservation fo-
cuses on the links between elements of an object, while the metric representation aims
on information encoded by the embedding of the object into 3D Euclidean space. As
an example for topology preservation we want to preserve the order of branching and
non-branching parts of the object. In this case the branching and non-branching parts
are the elements of our topology. An example of metric representation is to enable the
extraction of diameters and length of object parts.

The algorithmic requirements are handling of imperfect data and computational effi-
ciency. The handling of imperfect data describes the limits of the information we can
extract from given data. The computational efficiency expresses the speed of the al-
gorithm in extracting the skeleton from the given input. The computational efficiency
describes for example the amount of points which can still be handled by a skeletoniza-
tion algorithm. Each requirement is subdivided into attributes. These attributes can be
validated and are ideally observable when the requirement is fulfilled. We are aware
that attributes are correlated.
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In the following section these requirements are summarized in a requirement list. In
the rest of the thesis we focus on finding and validating a construction of a skeleton
satisfying these requirements.

2.2 Descriptive and algorithmic skeleton require-
ments

The overall conclusion of [Cornea et al., 2005], was that skeletonization algorithms
depend on the application requirements, because no algorithm exists, that fulfills all
of their 12 given properties. Therefore, different types of applications need different
skeleton extraction methods. We do not consider the properties in the same sense
as [Cornea et al., 2005], but we define requirements, which we can verify to be met
under certain conditions, in the following chapters.

The newly constructed list below contains the two descriptive requirements, topologi-
cal preservation, metric representation and the two algorithmic requirements handling
of imperfect data and computational efficiency, which are investigated in detail in Sec-
tion 2.3-2.6. The initial list of [Cornea et al., 2005] contained all its properties on
an equal level. In our opinion the four requirements topological preservation, metric
representation, handling of imperfect data and computational efficiency are the main
requirements, further specified by their attributes. Here we explain briefly each re-
quirement and its attributes, before we discuss each of the four requirements in the
following paragraphs.

2.2.1 Descriptive skeleton requirements

In this paragraph a short overview of the descriptive skeleton requirements and their
attributes is given.

1. Topology Preservation: A skeleton should preserve the links between object
elements forming the whole object as represented by the point cloud

• Branching Detection: The branching points of the skeleton should corre-
spond to the parts where the object is branching.

• Connectedness: One skeleton should correspond to one object, such that
the skeleton is connected, exactly where the object is also connected.

• Thinness: The skeleton should be one-dimensional, and should not occupy
space.

2. Metric representation: The skeleton is embedded into R3 and fits to the surface
sampled by the point cloud.

• Transformation Invariance: Every object should have its unique skele-
ton, which does not change under translation and rotation.
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• Centeredness: Every part of the skeleton corresponds to a certain subset
of the point cloud. The skeleton is centered within the point cloud for each
of its corresponding subsets.

• Smoothness: The skeleton should be as smooth as the surface of the rep-
resented object.

2.2.2 Algorithmic skeleton requirements

In this paragraph a short overview of the algorithmic skeleton requirements, consid-
ering handling of imperfect data and computational efficiency, and their attributes is
given.

1. Handling of imperfect data Measurement data may give a non-ideal represen-
tation of the object. An algorithm should be as independent from this as possible
and address the problems arising adequately.

• Operating on Point Sets: Modern object sampling equipment produces
most often point sets as an output. Therefore, the skeletonization algorithm
is required to handle point data.

• Robustness: A skeleton algorithm should be robust to noise, undersam-
pling and varying point density.

• Error model: For every kind of data it is in principle possible to derive an
individual error description, describing how much a measured point devi-
ates from the original point on the surface. An algorithm should allow to
incorporate these error descriptions.

2. Computational Efficiency: The efficiency of the algorithm and its capability to
operate on huge data sets should be optimized.

• Efficient: Operations on huge datasets, as considered in the applications
here, need computation time and occupy computer memory. Both, compu-
tation time and memory allocation, should be as small as possible.

• Hierarchic: Finer spatial resolutions should lead to more complex skele-
tons. As a consequence, roughness of a surface becomes more influential
at finer resolutions. The more complex a surface is, the more changes of
surface directions will be coded in finer resolutions of the skeleton.

2.3 Topology Preservation

A topology contains elements, which are connected by links, as explained in Section
2.1. If a topology is to be preserved in a process, then the elements and links forming
the topology have to be specified.

In our case a watertight surface embedded into 3D Euclidean space is the description,
of which we want to preserve a topology. This surface is to be separated into parts

16



2.3. TOPOLOGY PRESERVATION

Branching point

Non-branching region

No elongation direction

Branching region

Figure 2.4: The object parts: (reddish) non-branching region and (yellowish) branching regions.
The dotted line shows the links between the elements of branching and non-branching regions.
The blue point denotes the branching point belonging to the branching region. The red points
relate to the non-branching regions. The elongation direction is indicated by double arrows.

corresponding to the elements of the topology. The surface automatically contains the
link between separated elements, which fulfills the connectedness attribute.

From the branching detection attribute it directly follows, that it is required to preserve
the link between branching and non-branching regions on the surface. These branching
and non-branching regions are the elements of the topology to be preserved:

We assume that a notion of the surface characteristic, the so-called elongation direc-
tion is given. The elongation direction describes locally in which direction the object
surface is sized most. In Figure 2.4 we give one example for the elongation direction.
If we shrink the surface in every point in the direction perpendicular to the elongation
direction until no shrinking is possible anymore, the result is thin and does not occupy
space. Therefore the thinness attribute is met. The shrinked surface contains end points
corresponding to those regions where elongation stops to exist.

Branching of the object is indicated by a split in the elongation direction. In such a case,
the shrinking stays perpendicular to the elongation direction and branching can occur,
when different shrinking directions meet in one point. Such a point is a branching point
in the given example and is derived from the surface region information.

In the case considered here we distinguished between two kinds of elements to be
linked: branching regions and non-branching regions. In the example in Figure 2.4 we
assume spherical parts of the surface as having no elongation at all. Because of that
they are belonging to the non-branching region identified by the elongation direction.

A branching region is represented as an element of the topology having three or more
links with other elements. Remember, the links are given by the surface itself. From
here we obtain a topology describing the object by means of the elements branching
and non-branching region and the links given by the surface. Hence, the next section
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Figure 2.5: Example of the 3 considered transformations on a centered skeleton: Translation,
rotation and scaling.

will describe how to embed this topology into a metric space.

We can conclude from here, that elongation directions allow us to describe
branching and non-branching regions of an object.

2.4 Metric representation

As a first attribute of the metric representation we discuss the transformation invariance.
This is assured by the relation between the skeleton and the surface. The transforma-
tions are shown in Figure 2.5. The transformations are translation, rotation and scaling.
Because the elongation direction is describing the surface locally, it transforms in the
same way as the surface and is therefore independent from the objects location, orien-
tation and size. Notably, local differences in elongation direction are preserved by the
three transformations considered.

Furthermore, we want the skeleton to be centered. Practically this means that we want
to represent the links of the previously introduced topology as a curve passing through
local centers within the object. If the previously introduced shrinking affects all points
on the surface by the same amount until it is thin, than the skeleton is centered. Cen-
teredness is therefore met in the sense, that points on the surface which are shrinked to
the same position within the object are perpendicular to the skeleton.

The smoothness requirement is implicitly met, if an object part can be subdivided fur-
ther in the elongation direction, such that every point on the skeleton corresponds to a
unique subset of the surface. The more local the subdivision, the smoother the result is
(assuming that the object is smooth on itself).

From the discussion above it follows, that: the attributes of the metric representation
are fulfilled, if we can utilize elongation directions to define the center of an object
locally. It is illustrated in Figure 2.5, that the order of the three points on the black
skeleton and the relation between the path length between two parts of those three
points does not change under the transformations, translation, rotation and scaling.
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Figure 2.6: (a) An ideal sampling the example surface (black) of the solid tree (green). (b) A
possible sampling of the tree containing noise. In the red box it is indicated that even when noise
is present a local elongation direction of the surface is extractable and indicated by an arrow. (c)
undersampling of an object feature and a possible extractable elongation direction. (d) varying
point density and possible extracted elongation directions

2.5 Handling of imperfect data

Laser scanners measuring a continuous surface represent the surface as a set of discrete
points. Each discrete point is the result of the beam return reflected back on the receiver
in the scanner. On the receiver a certain area is covered by the returning beam, from
which a distance value is obtained. As stated in Section 2.1, we need to find a link to
the descriptive requirements in the input data. In measurement practice the surface is
represented by an imperfect point cloud, e.g. [Blais, 2004], [Pfeifer and Briese, 2007].

Three aspects of imperfect data have to be covered by an algorithm operating on it
[Bucksch et al., 2009a]:

1. Noise

2. Undersampling

3. Varying point density

In Figure 2.6(a) it is illustrated that the sampling produces points on the object bound-
ary. Unfortunately, real data contains noise [Shan and Todd, 2008], which is “thicken-
ing” the surface. We can qualitatively recognize that the point data obtained by a mea-
surement instrument thickens the represented surface to a ’volume-like’ representation,
Figure 2.6(b). This problem is for example visible in 1.6 at the end of the branches.
Fortunately, even when a point cloud is strongly undersampled close to a “line”, the
elongation direction of the surface in a local neighborhood can be identified, as shown
in Figure 2.6(c).

Another aspect of real data is undersampling forming holes in the represented surface,
which do not belong to the original object. These holes are caused by occlusion effects
and measurement failures as described e.g. in [Shan and Todd, 2008]. If the surface
area around the undersampled surface part is large enough, a rough elongation direction
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might be found, Figure 2.6(a). Here, occlusion effects are covered as an extreme case
of undersampling.

Furthermore varying point density occurs because of mechanical inaccuracies and the
different orientation of the scanned object with respect to the scanners spherical scan
geometry, [Shan and Todd, 2008]. Varying point density on the surface allows still
a proper extraction of the surfaces elongation direction, under the choice of a large
enough neighborhood, as shown in Figure 2.6(d). The explanation of imperfect data
is rather qualitative, because the exact description of the noise occurring in laser scans
is still under active research. Some results on the description of noise on natural sur-
faces were already obtained by [Hodge, 2010], who mentioned trees explicitly in her
experiment.

We can conclude from this paragraph, that local elongation directions are often
extractable from imperfect point cloud data; because of that local elongation direc-
tions are a suitable link between descriptive and algorithmic requirements. Note here
a natural link: We used a neighborhood of several points, which allows us to average
over a small part of the point cloud to reduce noise, thus enhancing the metric repre-
sentation requirement. Furthermore, we reduced the amount of used data to calculate
the skeleton by grouping points, which leads us to the next paragraph.

2.6 Computational efficiency

Modern instruments to produce point cloud data, as the ones used in this thesis, easily
capture point clouds in the order of several millions of points. Hence, the efficiency of
an algorithm is an important requirement.

A criterion to evaluate the efficiency of an algorithm should be independent from the
machine performing the actual calculation. An often used criteria to judge the effi-
ciency of an algorithm is the computational complexity.

Computational complexity quantifies the running time behavior of an algorithm, which
is some function f (n) of the input size n, by the asymptotic upper bound g(n). g(n) tells
us that f (n) is up to some constant multiple always less or equal than g(n) (Figure 2.7).
Most commonly the Big-O notation is used to express the temporal complexity, which
is denoted as O(g(n)). We consider the order of g(n) as an indicator for the algorithm
performance.

Definition 2.6.1. Let n be the length of the input, then f (n) = O(g(n)) means there are
positive constants c and k, such that 0 ≤ f (n) ≤ cg(n) for all n ≥ k. The values of c
and k must be fixed for the function f and must not depend on n. [Knuth, 1998]

Let’s make a little example to get the importance clear. Suppose you have a point cloud
with 100.000 points, which is a realistic amount of points a laser scanner produces in
one second. And suppose you design an algorithm to sort this point cloud according
to ascending z-values. One way to do this is to simply search first for the smallest
value in the list of points, put it to a new list and remove it from the first list. This
is repeated until all points are in the new list. This would result in a complexity of
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Figure 2.7: The blue graph g(n) is an upper asymptotic bound of the function f (n) up to a
constant multiple k

O(n2). If one comparison of two values in the list just takes 1ms, then this results in
a computation time of 58 days. Luckily, other sorting mechanisms exist, e.g. merge
sort, with a complexity of only O(nlogn). These algorithms make it possible to do the
same in maximum 4.2 minutes under the given conditions. In the preceding sections
we described already the elongation direction. The changes in elongation direction
comprise a fraction of the original input size. Limiting the calculation mainly to such
a subset is one way to optimize an algorithm.

An algorithm that can operate on different spatial resolutions, can produce skeletons
at different levels of detail. Finer spatial resolutions lead to more local elongation
directions that have to be processed. At larger spatial resolution less changes of the
elongation direction are addressed. Because of that, a skeletonization algorithm that is
able to extract skeletons at different resolution is hierarchical.

Continuing with building up a conclusion, we can state here: A skeleton is efficiently
extractable, if we can extract local elongation directions and the computation is
driven only by changes in elongation direction, extractable at different resolutions.

2.7 Summary

In this chapter four general requirements for a skeleton extraction procedure have been
presented:

1. Topology preservation

2. Metric representation

3. Reliability

4. Computational Efficiency

It was stated here, that the order of object parts can be preserved in a skeletonization
process if information about the local elongation direction is contained in the input data.
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The metric representation was described by the properties of the elongation direction,
that enable transformation invariance, centeredness and smoothness.

The algorithmic requirements are the efficiency and the handling of imperfect data by
the skeleton extraction procedure. We discussed the given input data and showed that in
many cases the elongation direction is extractable despite the input data problems noise,
undersampling and varying point density. We also introduced the temporal complexity
as a measure to evaluate the algorithm performance.

It is concluded from this chapter that potentially all four requirements can be met if an
algorithm exists, which utilizes local elongation directions when analyzing the surface.
This is assumed to be often extractable from the data and an embedding into local cen-
ters of gravity allows to preserve the topology and to represent the skeleton metrically.
Dealing efficiently with huge amount of points is done by the use of suitable local cen-
ters covering all changes in the elongation direction. The computational complexity is
to be optimized purely by the algorithm design. First, in the next chapter, the state of
the art literature on skeleton extraction from point clouds is reviewed.
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3
Skeleton algorithm classes

In this chapter an overview of existing algorithms for skeletonizing 3D point clouds is
given. After an introduction sketching the historical context, two groups of algorithms
are described in Section 3.2 and Section 3.3. The first group roughly consists of algo-
rithms developed for 2D skeletonization extended to 3D, while the second group uses
a direct approach. This distinction will be more precise in the following pages.

3.1 Introduction

The extraction of a skeleton from a point cloud is carried out by a skeletonization al-
gorithm. Until now we defined requirements on a skeleton and its extraction process,
building a basis to evaluate current skeletonization algorithms. Only algorithms op-
erating on point cloud data in 3D Euclidean space are of interest in our context, thus
this overview is limited to such algorithms. For a more general overview on skeletal
structures we refer to [Biasotti et al., 2008] and [Cornea and Min, 2007], which also
discussed algorithms for closed surface representations and point clouds in 2D.

From these overviews we can sketch a historical development of skeletonization algo-
rithms. Initially skeletons were computed for objects identified in 2D images. These
images have the property, that the complete 2D image space is filled and for every
pixel in the image the adjacent pixels are known. The computation of a skeleton re-
lies therefore on an extraction from a watertight object boundary with a defined inside
and outside in 2D. Often clustering methods are applied to extract objects from 2D
images (e.g. [Lucchese and Mitra, 2001]). Examples for methods originally developed
for such extracted 2D objects are morphologic thinning (e.g. [Serra, 1982]) and the
distance field (e.g. [Langetepe and Zachmann, 2006]), both extracting the medial axis
of an object. Algorithms operating on boundary samples in 2D exist, too. For exam-
ple the medial axis, which is a skeleton in the 2D case, can be approximated from a
set of boundary samples as a subset of the Voronoi diagram (e.g. [O’Rourke, 2005]
and [de Berg et al., 2008]). One drawback of the medial axis on imperfect data is its
sensitivity to noise, [Cornea et al., 2005].

The extension of these algorithms to 3D laser points clouds representing the boundary
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(IV) (V)

(I)

(II)

(III)

Figure 3.1: Laser scan of the test tree: (I) strongly undersampled region. The branch is already
visually not identifiable as a volume, (II) data gap because of occlusion, (III) random noise
because of combined effects, (IV) combined occlusion and undersampling and (V) varying point
density.

of an object, see also Chapter 2, poses two conceptual problems;

1. The inside and outside of the object has to be defined in a pre-processing step

2. The algorithm results in surfaces, which have to be reduced to a 1D representa-
tion in a post-processing step.

In the following an overview of existing algorithm types for point cloud skeletonization
is given. Their use on point clouds representing botanical trees is highlighted, because
trees are our target application. An overview of algorithm types is given in Table 3.1.
We distinguish algorithms based on the dimension of the output descriptor. Two classes
are shown in Table 3.1, which we discriminated by their descriptor dimension. First,
algorithms extracting a 2D descriptor, which is reduced further to a one-dimensional
skeleton and secondly, algorithms producing a one-dimensional skeleton directly. Fur-
ther distinction is achieved by identifying the underlying data structure and the com-
putational complexity of the algorithms, which is an important factor when using large
data sets.

The algorithms are demonstrated, if available, on a test tree (Figure 3.1). This test
tree contains typical problems of laser scanned point cloud data: These problems are
undersampling, noise and varying point density and exist both in registered and unreg-
istered point clouds. The scan of the test tree contains 7183 points and was done with a
Zoller + Frölich Imager 5003 Scanner on an apple orchard near Kentville, Nova Scotia,
Canada.
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Algorithm class Descriptor Spatial data structure Complexity
dimension

Morphology 2D Raster with defined O(nw),1,2

boundary
Distance transform 2D Raster with defined O(n),1

boundary
Voronoi diagram 2D Defined boundary O(n 2),1,3

Clustering 1D Neighboring structure, O(kn2Δ2),1,4,5

e.g. kd-tree or
minimum spanning tree

Level set extraction 1D Raster with defined O(n),1,6

boundary
Graph reduction 1D Octree graph O(n),1

Table 3.1: Algorithm classes. 1n denotes the number of input cells, point cloud points or
vertices, 2w denotes the size of a structuring element, 3worst case scenario, often almost linear
in practice, [Amenta et al., 2001],4guaranteed scenario for k − means clustering [Arthur and
Vassilvitskii, 2005], 5Δ is the spreading of the input points, 6referring to the height function,
may be higher for other functions.

3.2 2D Skeleton

The best known 2D descriptor of an object is the medial axis, Figure 3.2, which is the
set of points having more than one closest point on the object boundary, [Blum, 2007].
Note, that the medial axis is also a formulation of centeredness and several frameworks
exist to extract a medial axis. The medial axis may be derived as a subset of the Voronoi
diagram of the point cloud, [O’Rourke, 2005] and [de Berg et al., 2008], or from a
morphological thinning process, [Serra, 1982]. One major property of the medial axis
of a 3D object is that it is not necessarily one-dimensional, but in general consists of
a set of surfaces and lines in 3D. For the reduction of the 2D medial axis to a 1D
skeleton, a second processing step is needed. For example, [Dey and Sun, 2006] have
shown that an approximate medial axis is reducible to a meaningful skeleton. Medial
axis approaches commonly need to define inside and outside of the object.

3.2.1 Morphological thinning

Morphological thinning methods organize the point cloud in a 3D raster of equally
sized cubic cells. From this raster the outer layer is removed until the skeleton re-
mains. The outer layers are removed using the morphological operations opening and
erosion, [Serra, 1982], as explained in more detail below. This class of algorithms re-
quires a defined inner volume of the object to produce a centered skeleton. Depending
on the kernel used for the thinning process also the medial axis is derivable. [Palagyi
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Figure 3.2: Example of a medial axis: (red) the medial axis. (blue) a point on the medial
axis and its closest points on the boundary of the largest empty circle, (black) the point cloud
sampling of the surface. The picture is redrawn from [Amenta et al., 2001].

et al., 2001] introduced a time linear algorithm using 6 sub-iterations. Its application
on tree point clouds was proposed by [Gorte and Pfeifer, 2004] and later extended
by [Gorte, 2006]. As stated by the authors, the resulting morphological skeleton does
not preserve the object topology, [Gorte and Pfeifer, 2004]. Varying point density is
treated by taking into account the number of points per cell. Undersampling and occlu-
sions are treated by using an user defined octree cell size. The efficiency of morpholog-
ical thinning is characterized by a complexity of O(nw), n being the number of raster
cells and w being the number of cells used as a structuring element. The following
explanations of morphology can be found in e.g. [Serra, 1982].

The theory of morphology is based on two complementary operations on sets. Let A
be the set of raster cells, e.g. containing point cloud points, which is modified with a
set B, the so-called structuring element.

The two basic operations erosion and dilatation are defined as:

Definition 3.2.1. Erosion: A ⊕ B = {x|Bx ∩ A � ∅};
Dilatation: A � B = {x|Bx ⊆ A}. [Serra, 1982]

Here Bx denotes the translation of B in direction of vector x.

For thinning, a combined operation, called hit-and-miss-transform 1 is used to sepa-
rately treat the solid and the surrounding void. That is, the hit-and-miss-transform is
the combination of two structuring elements: B B for the surrounding void, so-called
background, and BF for the voxelized solid, so-called foreground. The intersection of
the eroded foreground with the eroded background is called hit-and-miss-transform:

Definition 3.2.2. Hit-and-miss-transform: A ⊗ BF,B = (A � BF) ∩ (A � BB)

A morphological thinning is defined as the intersection of A with the result of the hit-
and-miss-transform of A, [Serra, 1982].

1Also the term Hit-or-miss transform is used in literature and refers to the same transformation
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Figure 3.3: Skeleton extracted by morphological thinning with the algorithm of [Gorte and
Pfeifer, 2004]. (Left) non-empty voxels (right) extracted skeleton

Definition 3.2.3. Morphological thinning: Let A be a set of voxels marked as fore-
ground and background voxels, then the thinning of A is given by A thin = A∩ (A⊗BF,B)

In Figure 3.3 a morphological thinning procedure is illustrated. On the left the input
voxels are shown. These are the voxels containing at least an user defined amount of
point cloud points. On the right the extracted skeleton is shown.

If the volume of the original real object can be correctly filled with voxels, the skeleton
can be centered and is thin. But the problems with data gaps and additional noise
specified in Section 2.5 make this a difficult and to my best knowledge an unsolved
task. In Figure 3.4 the result of the morphological thinning method on the example
tree of Figure 3.1 is shown. That the skeleton is not always centered is visible in
Figure 3.4 from the waviness of the branches, resulting from noise and undersampling.
It is remarkable that a relatively high resolution of the raster (1cm) and a structuring
element of 7 times the raster size was needed to produce the skeleton. In comparison
we will see in Chapter 4 that comparable good skeletons were extracted from “raster
resolutions” of 10 cm with the skeleton algorithm developed in this thesis.

3.2.2 Distance Transform

In practice distance transform based methods often start from a point cloud embedded
in a 3D raster of equally sized cubic cells, [Zhou et al., 1998]. All raster cells are
consecutively marked by their distance to the object boundary. The set of neighboring
cells, where distances to the boundary are largest, form the skeleton. These methods
extract the medial axis, and face the same post processing problems as morphological
thinning approaches. Furthermore, connectedness of the skeleton is not guaranteed
[Cornea and Min, 2007]. The computational complexity of the distance transform is
given as O(n), with n being the number of raster cells.

The distance transform has only been applied to trees on a small example in [Cornea
and Min, 2007]. Of all methods investigated in [Cornea and Min, 2007] the distance
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(I)

(II)

(III) (IV) 

(III)

Figure 3.4: Skeleton extracted for the test tree by morphological thinning with the algorithm
of [Gorte and Pfeifer, 2004]. The skeleton was extracted from a 1cm raster using a sphere of
7 cm diameter to dilatate the initial raster. (I) shows a location of insufficient centeredness, (II)
shows a wrong connection in the skeleton and (III) shows a missing branch and (IV) shows a
small part of the skeleton which forms a surface area indicting a violation of the desired thinness
of a skeleton.

Figure 3.5: (a) The complete distance field of a 2D object defined by its bounding surface (red)
(b) the skeleton from the extracted maxima
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transform showed the worst performance with respect to the given requirements in
Chapter 2. The method is given here for completeness, because it was one of the first
popular methods to extract a skeleton.

3.2.3 Voronoi Diagram methods

The idea behind Voronoi Diagram methods is to extract first a medial axis from the
point cloud, and to reduce it further to a one-dimensional skeleton in a second step.
Here we briefly discuss one possible combination of two methods. First we extract the
medial axis as described in [Amenta et al., 2001] and secondly we reduce the medial
axis with the method of [Dey and Sun, 2006]. A similar combination can be found
in [Cornea and Min, 2007].

Considering a set of points P in R3, a Voronoi cell Vp for each point p ∈ P is defined
as the set of all points x ∈ R3 that have no other point in P closer to it than p. The
Voronoi diagram Vor(P) is the complex of all Voronoi cells. Each Voronoi cell in three
dimensions has faces of different dimensions. The Voronoi cells, the Voronoi facets,
the Voronoi edges and the Voronoi vertices. Note here, that these Voronoi cells are
three-dimensional polytopes some of which are unbounded. This paragraph borrowed
heavily from [Dey, 2007].

The medial axis is extracted by using the so-called poles of the Voronoi diagram of a
point cloud. The poles are a subset of the Voronoi vertices. Each point p defines 2
poles. An outer pole q+ of a point p is the Voronoi vertex q of the Voronoi diagram
Vor(P) most far away from p. Note that q+ is at infinite distance if p is part of the
convex hull of P. The inner pole q− is the Voronoi vertex q of Vor(p) farthest from
p such that the angle between the two vectors pq+ and pq− is greater than π

2 , [Dey,
2007]. In the power crust algorithm, [Amenta et al., 2001], all poles are distinguished
as inner and outer poles (Figure 3.6) of a suitable distance weighted Voronoi diagram,
the so-called power diagram. The set of inner poles is taken as a good approximation
of the medial axis, [Amenta et al., 2001]. The output of the power crust algorithm is
a set of polygons describing the medial axis, which is a surface in 3D. The reduction
of the medial axis to the skeleton was carried out with the method described in [Dey
and Sun, 2006], who eroded the extracted medial axis based on a distance field with
the geodesic distance on the medial axis as a metric.

To my best knowledge no specific application of a Voronoi Diagram method to botan-
ical trees is described in literature. This strategy is mentioned in [Cornea and Min,
2007] but not shown explicitly. As stated in [Amenta et al., 2001], this method requires
a sufficiently dense sampled object as input, as the object is assumed to be watertight.
This condition may be difficult to achieve with laser scanned data on trees suffering
from large undersampling. The construction of the Voronoi diagram determines the
efficiency of the algorithm. The complexity is in the worst case O(n 2) with n being the
number of point cloud points. It was stated in [Amenta et al., 2001] that the complexity
is O(n log n) on average, dependent on the input data.

As an example for a Voronoi based method, the skeleton was extracted of the test tree
(Figure 3.1). In Figure 3.7, the result of extracting the medial axis with the approxima-
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Figure 3.6: A point cloud (black) and the corresponding Voronoi Diagram (black lines) and the
medial axis (red lines), the inner poles (blue) and the outer poles (green). The picture is redrawn
from [Amenta et al., 2001].

tion of the power crust algorithm and further reduction with the method of [Dey and
Sun, 2006] is illustrated. Because the result is heavily distorted and not representing
the tree structure, I want to state explicitly, that this does not reduce the value of the
work of [Dey and Sun, 2006] and [Amenta et al., 2001], as they had not the application
given in this thesis in mind. The reason of this extreme result is twofold. First the sen-
sitivity of the medial axis to noise, and second the extraction of the medial axis needs
sufficiently high sampling, as stated in [Amenta et al., 2001].

3.3 1D Skeleton

One-dimensional descriptors have in common, that they use neighborhood information
to extract the skeleton as a graph. This graph is embedded with an embedding strategy
in the point cloud.

3.3.1 Clustering Methods

Clustering methods produce clusters of point cloud points from a spanning graph, like
the minimum spanning tree, [Meyers et al., 1992], to represent a point neighborhood.
Such a spanning graph connects all points of the point cloud. Some distance metric is
used to produce the clusters of neighboring point cloud points. Neighboring clusters
are connected to a skeleton. In [Xu et al., 2007] a neighboring graph is used with a
defined root point being the graph vertex with the lowest z-coordinate. Points with the
same distance from the root point are considered as belonging to one cluster. The ap-
proach showed good results until two-third of the tree height on a test tree with leaves.
The remaining skeleton is generated by using species dependent allometric relation-
ships. Another promising clustering approach was presented by [Yan et al., 2009]. A
comparison of the two mentioned clustering methods is illustrated in Figure 3.8. They
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Figure 3.7: Example of a Voronoi method: the medial axis was extracted with the power crust
algorithm, [Amenta et al., 2001], and the medial axis was further reduced to the skeleton with
the method of [Dey and Sun, 2006].

used a kd−tree and k−means clustering to produce the clusters from which the skeleton
is derived.

It was shown in [Yan et al., 2009] that embedding the skeleton is still an issue for these
methods as shown in Figure 3.9. A further drawback is that they operate on all point
cloud points to perform the skeletonization. The complexity of k-means clustering
algorithms is given by [Arthur and Vassilvitskii, 2005] as O(kn 2Δ2), with Δ being a
value representing the spreading of the data. Nevertheless they also showed that the
complexity can be reduced depending on the data.

3.3.2 Level set extraction

One dimensional descriptors to describe objects with proved topological properties,
like the Reeb-graph [Reeb, 1946], were used first in [Shinagawa et al., 1991] in a shape
retrieval application. Two frameworks exist to extract a skeleton based on topological
properties: Extracting the level sets and graph reduction.

Level set extraction methods use the evolution of a piecewise linear function on the
sampled surface. On the basis of this chosen function a set of contours is extracted.
Given a piecewise linear function f , the level set of a value s ∈ R is defined as the
set of points with a function value equal to s ∈ R. The construction of a skeleton is
based on the analysis of the evolution of the connected components of the level sets
generated by f . We call such a level set to be merged a contour. The principle of
level set extraction is shown in Figure 3.10. The height function h(x) = z is often used
to extract the level sets from a point cloud as shown in Figure 3.10, e.g. [Verroust and

31



CHAPTER 3. SKELETON ALGORITHM CLASSES

Figure 3.8: Comparison between two clustering methods. The background represent the clus-
tered point data overlaid with the skeleton. Left: Skeleton generated using method of [Xu et al.,
2007] with 357 clusters. Right: skeleton using the method of [Yan et al., 2009] with 356 clusters.
The figure is taken from [Yan et al., 2009].

Figure 3.9: Problems with the graph embedding: The skeletal line is not centered everywhere
within the point cloud. The figure is taken from [Yan et al., 2009].
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contracted contourcontour

saddle point

saddle point

maximum

minimum

Figure 3.10: The evolution of the height function h(x) over a double torus. The resulting graph
with its vertices placed in the center of the extracted level sets. The maximum, minimum and the
saddle points extracted by the height function are indicated. Note that under the chosen evolution
steps the saddle points are represented as one branching point in the graph.

Lazarus, 2000] and [Attene et al., 2003]. Placement of vertices at every centroid of each
extracted level set produces a skeleton by connecting the vertices with respect to the
chosen function ( see also Section 2.3). Every branching point of the resulting skeleton
is a saddle point and every one-connected vertex is a minimum or maximum. The
graph containing only the saddle points and the minima and maxima is referred to as a
Reeb-graph [Cole-McLaughlin et al., 2004]. The biggest problems arising with these
approaches are the rotational dependency of the height function and the sensitivity
of the level set extraction to the sampling density, [Cornea and Min, 2007], as already
discussed in Section 2.5. The approach of [Verroust and Lazarus, 2000] was applied by
[Côtè et al., 2009] on trees. A virtual tree growth model was used based on allometric
relationships of known tree species to reconstruct the finer branches. The virtual tree
model is required because of undersampling of the finer branches.

3.3.3 Graph reduction

A graph reduction approach extracts an initial graph from a spatial subdivision using
e.g. an octree, [Bucksch and Lindenbergh, 2008]. This initial graph is reduced by a
set of rules, Figure 3.11, to a skeleton. These rules consider the connectivity between
different parts of the point cloud. Several advantages of such an approach could be
demonstrated: a high robustness to noise on imperfect data, a good centeredness and
a good connectivity. Centeredness is achieved by embedding the graph into the point
cloud. Topological correctness is achieved by choosing a proper decision criterion to
place connections between the different point cloud parts and the careful design of the
reduction rules. [Bucksch and Lindenbergh, 2008] used two different kinds of vertices,
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Basic rule

Reduction cases leading to the basic rule

Figure 3.11: The basic rule is shown on the top, which reduces locally a basic configuration
to a line. The different cases occurring are reduced to the basic configuration, which is reduced
further to a line. The green vertices are the M-vertices and the red vertices represent the T-
Vertices. The M-Vertices with more than two incident edges are marked. The figure is taken
from [Bucksch and Lindenbergh, 2008]

so-called M-Vertices and T-Vertices, where M indicates the center of gravity of the
point clouds points within an octree cell and T the point where an octree cell side is
crossed. This initial graph is reduced by a set of rules, based on the connectivity of the
M-vertices, as shown in Figure 3.11. All possible combinations of M- and T-vertices
are reducible to a minimal configuration given as basic rule in Figure 3.11. From there
the reduction to a skeleton line is guaranteed.

A benefit of their method is that no preprocessing is necessary to define the inner and
outer side of the given object. Problems arise with the method of [Bucksch and Linden-
bergh, 2008], because noise, undersampling and varying point density are only treated
by adapting the local cell size. In case of large undersampling, erroneous loops may
appear at higher resolutions, because strongly undersampled parts are treated as holes
in the surface. As a consequence the topology of the object is locally not represented
correctly. Another aspect on this particular skeleton is that local surface directions
were not taken into account, which demanded high measurement resolutions to com-
pute a smooth skeleton. The overall complexity is O(n), with n being the number of
point cloud points. The complexity of the reduction with respect to the vertices and
edges of the graph to be reduced was not given. An extraction of the skeleton from the
test tree in Figure 3.12 shows the rough resolution of the so-called CAMPINO skeleton
(Collapsing and merging procedures in octree-graphs). The skeleton shown in Fig-
ure 3.12 will later come back and be compared to the skeleton obtained with a new
strategy for graph reduction.
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Figure 3.12: Example of an extracted CAMPINO Skeleton. The skeleton shows clearly a loop
and some problems in the order of the branches.

3.4 Summary

Six different types of algorithms were introduced in this chapter. They were discrim-
inated by the dimension of their output descriptor. We have shown the problems of
existing algorithms with respect to the requirements given in Chapter 2. To summa-
rize: none of the existing algorithms meets all requirements. All extensions of existing
algorithms require either pre- or post-processing as a separate methodology.

Furthermore, all of the algorithms either operate directly on the whole point cloud or
reduce the point cloud first by voxelizing (reduction of the resolution). We conclude
that the reviewed algorithms are currently hampered by the following restrictions:

1. inability to preserve the topology of branching and non-branching parts, because
the extraction mechanism introduces no difference between branching and non-
branching parts, e.g. level set methods, clustering

2. idealization of the object volume, e.g. morphologic thinning and distance trans-
form causing insufficient metric representation

3. insufficient handling of imperfect data causing hardly interpretable results, e.g.
Voronoi methods

4. computational inefficiency by operating on the whole input point set, e.g.
Voronoi based methods, clustering methods, level set methods

The examples given in this list refer to the methods where restrictions apply most.

As this thesis aims at the extraction of a skeleton-graph, later on called SkelTre-
Skeleton, the graph reduction is the chosen principle to be developed further. In the
following chapter the descriptive requirements of a new skeleton algorithm will be
introduced and the direct extraction of a one-dimensional skeleton-graph will be ex-
plained.
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4
SkelTre Skeletonization

In Chapter 3 several algorithm classes were described to review the principal skele-
tonization algorithms. This chapter describes a new graph-reduction algorithm devel-
oped for the skeletonisation of a laser scanner point cloud. Scanner-produced point
cloud data are not only subject to noise, but also to undersampling and varying point
density, making it challenging to extract a topologically correct skeleton, as explained
in Chapter 2.

In Chapter 2 we have already seen that topological preservation and metric representa-
tion of the skeleton are two separate aspects. Also in the algorithm we will find back
this separation, the object topology is preserved by a suitable local graph reduction, and
the metric representation is achieved by placing the vertices of the resulting skeleton
graph in the source point cloud with a suitable graph embedding.

Five sections build the structure of this chapter. First an overview of the algorithm idea
is given in Section 4.1, secondly the octree graph extraction is described in Section
4.2. The computational framework of the graph reduction is introduced in Section 4.3
to prove, that the SkelTre algorithm preserves the topology of the object sampled by a
point cloud. Section 4.4 is describing the graph embedding to achieve a valid metric
representation and is followed up by Section 4.5, that summarizes the highlights of this
chapter. This chapter is based on the articles [Bucksch et al., 2009a] and [Bucksch
et al., 2010].

4.1 Algorithm in a nutshell

The skeletonization introduced in this chapter is called SkelTre, as it was originally
developed for skeletonization of trees.

The input of the algorithm is an unorganized point cloud. From here, the point cloud
is divided into subsets by an octree subdivision. An octree subdivision is a hierarchical
division of a space into cubical cells, so-called octree cells. The centroids of the point
cloud points within an octree cell, are the vertices of the octree-graph. Two centroids
are connected by an edge if the points of the two adjacent octree cells fulfill a suitable
robustness criterion. These connections between centroids are the edges of the octree-
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graph and get labeled by a direction label to indicate the local elongation of the object
surface.

The derived skeleton-graph is based on a well known topological structure, the so-
called Reeb-graph, [Reeb, 1946]. It is shown that the reduction of the octree-graph to
a skeleton graph by using suitable vertex pairs, so-called E-Pairs and V-Pairs, embeds
the SkelTre skeleton into the Reeb-graph framework. This construction ensures that
the derived skeleton is suitable for shape analysis.

To ensure that the derived skeleton also metrically represents the sampled surface, a
suitable graph embedding is introduced. The reliability of this skeletonization method
against noise, undersampling and varying point density of the point cloud is ensured
by a robustness criterion, which we introduce.

The three principal steps of the SkelTre algorithm are:

1. Extraction of a so-called octree-graph from an octree organization (Section 4.2),

2. Reduction of the octree-graph to a skeleton-graph (Section 4.3) and

3. Embedding of the skeleton graph into the point cloud (Section 4.4).

4.2 Octree-graph extraction

This section describes the octree-graph extraction procedure.The octree-graph extrac-
tion is a two step procedure. First an octree is generated, followed by the robust extrac-
tion of an octree-graph along with a labeling technique. The motivation to use an octree
is to enable local elongation analysis, while still not needing to process all individual
points.

4.2.1 Octree generation

An octree is a hierarchical subdivision of a starting cube into 8 equally sized subcubes,
which are the octree cells. These subcubes are subdivided further until the subdivision
is terminated.

Let the surface of an object be represented by a point cloud Σ. A spatial subdivision of
Σ into subsets Σi is obtained by an octree.

Definition 4.2.1. The octree space is modeled as a cubical region consisting of 2 n ×
2n × 2n unit cubes, where n is the subdivision depth. Each unit cube has value 0 or 1,
depending on whether it contains data points or not. Adapted from [Chen and Huang,
1988].

Note that this definition of the octree space assumes equal octree space depth.

Ideally our intermediate result at this stage is a subdivision which separates all parts
of the object that are also spatially separated. Clearly, the separating power of the
subdivision depends on the minimum resolution of the octree.
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Figure 4.1: Connecting and labeling an octree-graph: Five complete octree cells are shown,
containing black data points. The vertices of the octree-graph corresponding to the octree cells
are shown in orange. They are positioned in the center of gravity of the local point cloud points.

(a) G(1,2,0) (b) G(2,2,0) (c) G(2,2,2)

Figure 4.2: (a) a G(1,2,0) subgraph, (b) a G(2,2,0) subgraph and (c) a G(2,2,2) subgraph

4.2.2 Extraction and labeling of the octree-graph

We are aiming at a graph-reduction method (see Chapter 3), hence an initial graph,
so-called octree-graph, is generated. This octree-graph is later reduced to the SkeTre
skeleton. An octree-graph is the dual of the octree space, whose vertices correspond to
octree cells. The vertices of the octree-graph are simply placed at the center of gravity
of all points belonging to a cell, Figure 4.1, and connected by an edge if two octree
cells have adjacent faces.

Definition 4.2.2. Let OCi, i = 1..n be a collection of octree cells. And let CS jk, for
some j � k, ; j, k ≤ n be the adjacent sides of each pair of octree cells. The octree-
graph OG(V, E) contains the vertices V dual to OCi connected via the edges E dual to
CS jk.

The benefit of using this dual between an octree space and an octree-graph is that it
exhibits local grid graph properties:

Definition 4.2.3. A three-dimensional grid graph is an m × n × r graph that is the
graph Cartesian product of path graphs on m, n and r vertices [Pemmaraju and Skiena,
2003]. The grid graph is denoted as G(m, n, r).

The essentially different locally possible grid graphs in our 3D case are illustrated in
Figure 4.2. Here a G(2,2,2) grid graph indicates the unit edges of a full cube. If, say,
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Figure 4.3: Robustness criterion to connect octree-graph vertices C1 and C2 by an edge

z=0, we obtain G(2,2,0) which indicates the unit edges of a square perpendicular to the
z-axis. If we change y=2 into y=1, we obtain G(2,1,0) which indicates a unit edge in
this square perpendicular to the y-axis.‘

Ideally, the octree-graph represents the local directions of the object surface. As stated
above, terrestrial laser scan data is subject to noise, undersampling and varying point
density. This can lead to edges in the octree-graph, representing a connection between
object parts, which are not connected in the original object. Already in Figure 1.6 and
Figure 3.1 typical problems arising with scanner obtained data were shown. Problems
in the data can result in both overconnecting and underconnecting. Overconnecting
occurs when additional erroneous connections are created due to noise and blunders,
underconnecting occurs because of undersampling due to occlusions.

Robustness criterion

The robustness criterion removes edges from the octree graph, which are wrongly in-
serted because of data characteristics such as noise and is mainly motivated by two
aspects. Firstly, to address the problem of noise, which covers and hides the underly-
ing object topology. And secondly, the robustness criterion can be seen as a module
in the SkelTre algorithm, which allows a future extension of the algorithm with instru-
ment specific error models. These two motivations follow directly from Chapter 2.

This robust criterion whether to connect two octree-graph vertices by an edge corre-
sponding to two adjacent octree cells is based on the distances of the cell points to three
suitable planes. In Figure 4.3 we apply the robustness criterion to the point cloud and
its corresponding octree cells in Figure 4.1. Let C 1 and C2 be the centroids of the point
cloud points in two adjacent octree cells OC1 and OC2. Let C12 be the midpoint of the
line segment C1C2. The three suitable planes P1, P2 and P12, are the parallel planes
through the points C1, C2 and C12, perpendicular to the line through C 1 and C2. Let
d1, d2 and d12 be the median values of the squared distances of the points in OC 1, OC2

and OC1 ∪ OC2 to the planes P1, P2 and P12 respectively. Under ideal conditions the√
d1,2 of two connected cells would be at least 1

4 of the distance between C1 and C2 to
indicate a connection between the two corresponding point cloud parts. In that sense
we use 1

16 d12 ≤ min(d1, d2) as a criterion to place connections in the octree-graph.
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Labeling of local directions

In this paragraph we describe how labels are added to the edges of the octree graph.
These labels describe the directions with respect to a Cartesian coordinate system
where the original point cloud is embedded in. The direction labels will be used to
identify the local object elongation which in turn enables a local reduction of the octree-
graph. The major benefit of this localized approach is that it overcomes the rotational
dependency (Section 2.2) of the level sets sz of a global height function f : �2 → �.
Therefore, we consider level sets locally with respect to one of the three Cartesian di-
rections. That is, dependent on the local object elongation, the height change in either
the x−, the y− or the z−direction is considered. This choice stems from the fact that
parts of the surface parallel to the x− or y−axis will collapse to one remaining vertex
in the skeleton graph, when taking only a global height function into account. Thus,
a local choice of f based on the surface elongation will preserve the representation of
surface parts parallel to one of the axes.

Definition 4.2.4. A label associated with an edge of the octree-graph indicates the
direction of the edge with a direction vector. The labels for all 3D-directions are:
Right/Left: (±1, 0, 0),
Up/Down: (0,±1, 0),
Front/Back: (0, 0,±1).

The resulting octree-graph should be interpreted as a bidirectional graph, as every edge
gets two labels (Figure 4.1). Suppose, that two vertices v1 and v2, with Cartesian
coordinates (xi, yi, zi) are connected. Let x1 < x2 and y1 = y2 and z1 = z2. Then the
edge e12 gets the labels (1, 0, 0) and (−1, 0, 0). Note that the sum of the labels belonging
to one edge is the zero-vector (0,0,0) in 3D.

Depending on the choice of f , the resulting skeleton graph is augmented by vertices be-
tween the saddle points, minima and maxima of the surface. The minima and maxima
of the surface are represented as vertices that have one incident edge in the skeleton
graph and the saddle points generate the branching points having vertices with 3 or
more incident edges. Note here that every vertex in the skeleton graph corresponds
to a contour (compare Figure 4.4(b) and (c)) derived with respect to the local surface
elongation. Figure 4.4(c) is comparable to the description in Section 2.3. Especially
the branching object part in the zoom-in (yellow) has to be noticed, because it is very
similar to the example given in Section 2.3. The non-branching object parts are given
as many single contours along the branches.

4.3 Graph reduction

The extracted skeleton contains a known topological structure. This structure is the
Reeb-graph, which was first introduced by [Reeb, 1946] and is strongly linked to Morse
theory, [Milnor, 1963].

The input to the graph reduction is a labeled octree graph. Based on the introduced
concept of octree-graphs, Section 4.2, and the underlying concept of grid graph (Def-
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(a) (b) (c)

Figure 4.4: (a) Point cloud of a tree (b) Derived skeleton graph with color labeled direction
labels and a magnification of the skeleton. All negatively labeled ends are colored red. The di-
rections Up/Right/Front are colored with green/blue/yellow. (c) Each color segment corresponds
to a subset of the point cloud. Each subset is associated to one contour and is corresponding to
one vertex in the skeleton graph.

(a) G(1,2,0) (b) G(2,2,0) (c) G(2,2,2)

Figure 4.5: (a) a G(1,2,0) subgraph, belonging to the skeleton. (b) a G(2,2,0) subgraph and a
possible pair to be merged derived from it. (c) a G(2,2,2) subgraph with an example of a possible
pair to be merged. ⊕ denotes the merge of two neighboring vertices.

inition 4.2.3), graph reduction rules for the skeletonization algorithm are described.
Graph reduction is done by merging suitable pairs of neighboring vertices, as specified
below. The merging operation of two vertices will be denoted as ⊕.

The operations on the octree-graph are intuitively explained as the merge of two ver-
tices incident to the same edge as shown in Figure 4.5 for the grid graphs present in an
octree-graph. To quantify the reduction we introduce the vertex dimension, denoted as
vdim.

Definition 4.3.1. The number of distinct edge labels associated to a vertex v i is called
the dimension vdim(vi) of a vertex.

In Figure 4.1, the vertex in cell A has dimension 0, while the vertices in cell D and
E have dimension 1. The vertices in cell B and C both have dimension 2. The vertex
in cell C has two associated labels corresponding to two direction labels of opposite
direction.
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In 3D, the dimension of a vertex is at most 6. The convergence towards the skeleton
and the preservation of the shape elongation is established by the notion of a local
direction. This direction is defined per vertex as vertex direction vdir.

Definition 4.3.2. The sum vdir(vi) over the distinct associated edge labels of a vertex
vi is called the vertex direction.

Each label in 3D is a 3D vector, which allows adding up the labels. In Figure 4.1 the
vertex v1 in cell B, with the associated labels (0,−1, 0) and (1, 0, 0) has vertex direction
vdir(v1) = (1,−1, 0), which results from adding up the labels of the two edges. The
vertex v2 in cell C has vdir(v2) = (0, 0, 0).

The vertex direction encodes local surface elongation properties.

Definition 4.3.3. Let x1, x2, x3 be the three components of vdir(v) = (x1, x2, x3). A
direction of xi is trivial if the Cartesian entries are zero for each associated edge label.
A direction xi is dominant at v, iff xi = 0, but not trivial. A direction corresponding to
a non-zero value for xi is called a non-dominant direction.

For example, in Figure 4.6a the dominant direction of vertex v k is marked green.

A set of definitions is now given for valid vertex merging. A special case applies to
vertices of dimension 3. Consider the minimal configuration of G(2,2,0) subgraphs as
given in Figure 4.6a with three vertices vi, v j, vk, all three having vertex dimension 3.
In Figure 4.6 it is visible that a merging operation removes one edge and its labels from
the graph locally, and that all other labels are kept. In the framework given so far, it
might happen that v j is merged with vk, before vi is merged with vk, resulting in the loss
of a dominant direction. Figure 4.6b demonstrates such a leakage, where the dominant
direction in vk is not represented anymore in the resulting merged vertex v i ⊕ vk.

A solution to this problem is to take the norm of a vertex into account.

Definition 4.3.4. Let vdir(vi) = (x1, x2, x3). The norm of vi is

norm(vdir(vi)) = norm(x1, x2, x3) = |x1| + |x2| + |x3|

In case of vertex dimension 3, vertices with smaller norm value are reduced first. Tak-
ing the norm into account results in an unchanged dominant direction as can be seen in
Figure 4.6c. Because norm(vk) = 1 and norm(v j) = 1 and norm(vi) = 3, (Figure 4.6a),
vk and v j are merged before vi.

The local reduction of the graph will be driven by rules exploiting the underlying grid
graph. Two special configurations are considered: so-called E-Pairs and V-Pairs. The
two configurations are shown in Figure 4.7 and Figure 4.8. The definition of E-pairs
and V-Pairs find their origin in the grid graph properties of the octree-graph. Because of
the underlying octree organization the octree-graph is a collection of various connected
grid graphs, as introduced in Definition 4.2.3. The primary goal of the graph reduction
is to remove the overrepresented graph parts from the graph by merging vertices. These
subgraphs are G(2,2,0) and G(2,2,2) grid graphs, forming loops (Figure 4.5).
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Figure 4.6: The dominant direction in vk. (a) the minimal configuration. (b) a possible merge
of vi and vk without taking the norm value into account resulting in a changed dominant direction
(c) the merge of vj and vk preserving the dominant direction
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vi vj

(a) (b)(b)

+vi vj

Figure 4.7: Circles indicate the vertices. The E-Pair and its merging are indicated in green. The
dotted lines denote the cell sides and the labels are shown along the black edges. Note here that
the position of vdim(vi ⊕ vj) is chosen arbitrarily. (a) an E-Pair configuration and (b) a merging
result of the E-Pair in (a).

Definition 4.3.5. Let vi and v j be two adjacent vertices with vdim(vi) ≤ vdim(v j). Then
vi forms an E-Pair with v j if:

1. vdim(vi ⊕ v j) ≤ max(vdim(vi), vdim(v j));

2. vdir(vi) � (0, 0, 0) and vi and v j are connected in a non-dominant direction of
vi;

3. vi and v j are not a part of a G(1, 2, 0) subgraph.

In Figure 4.7(a) vertices vi and v j form an E-pair. The merging operation of v i and v j

removes one edge and its labels locally from the graph. All other labels stay unchanged.
The dimension vdim(vi⊕v j) = 2, while vdim(vi) = 3 and vdim(v j) = 3. In Figure 4.7(b)
vertices vi and v j are merged to vi ⊕ v j.

Definition 4.3.6. Two vertices vi and v j both incident to a vertex vc are called a V-Pair
if,

1. the labels of edges vivc and v jvc are identical;

2. vdim(vi ⊕ v j) ≤ max(vdim(vi), vdim(v j)).

The two vertices vi and v j shown in Figure 4.8(a) form a V-pair, because the edge labels
vivc = (0, 0,−1) and v jvc = (0, 0,−1) are identical and vdim(vi ⊕ v j) = 3 is smaller
than max(vdim(vi) = 3, vdim(v j) = 4) = 4. Figure 4.8(b) shows the resulting labels of
vi ⊕ v j. The operation vi ⊕ v j eliminated the two labels of the edge viv j.

4.3.1 Topological Preservation and Metric Representation

In this paragraph we show that by systematically merging E-Pairs and V-Pairs an initial
skeleton graph is obtained. This skeleton graph meets the requirements posed in Sec-
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+
vi

vi vj

(a) (b)

vj

Figure 4.8: Circles indicate the vertices. The V-Pair and its merging are indicated in green. The
dotted lines denote the cell sides and the labels are shown along the black edges. Note here that
the position of vdim(vi ⊕ vj) is chosen arbitrarily. (a) Example of a V-Pair configuration and (b)
a merging result of the V-Pair in (a).

tion 2.3. In order to simplify the following explanations we assume ideal conditions for
the principal proof. It is assumed that first the point cloud is without noise and second,
that it is sufficiently dense in the sense that it covers every directional change of the
surface (see the concepts introduced in Chapter 2). The octree-graph extracted from
the octree cells encodes both topology and surface information under these idealized
conditions. We conclude, that the octree-graph is an alternative representation of the
directional behavior of the sampled surface, embedded into 3D Euclidean space.

The octree-graph, consisting of its vertices and edges labeled by direction, is ideally
to be retracted to a graph embedded into 3D-Euclidean space containing only loops
representing the topological genus of the sampled object. At this stage we are ready to
connect the resulting skeleton graph to the properties of a known skeleton graph, the
so-called Reeb-graph.

Given a piecewise linear function f , the level set of a value s ∈ � is defined as the set of
points with a function value equal to s ∈ �. Recall that the octree-graph is embedded
into 3D Euclidean space, and because of that every vertex has 3D-coordinates. The
construction of a Reeb-graph is based on the analysis of the evolution of the connected
components of the level sets generated by f . We call such a level set to be merged a
contour. In the following we show, that the given retraction rules are an analysis of the
evolution of the connected components of the level sets generated by f . Practically,
a Reeb-graph connects the contours with respect to f . For a function value s i of f
where the number of contours increases compared to s i−1, the Reeb-graph will split
and indicate a saddle point of f . For values si having no successor si+1 the Reeb-graph
represents a maximum. A minimum is present if si has no predecessor si−1.

In this paragraph we use a local elongation function e(vdir(v)) on the octree-graph as
the piecewise linear function f . Here, e(vdir(v)) gives the local elongation of the object
surface at a vertex vi by its vertex direction vdir(vi).
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Definition 4.3.7. Let v = (x, y, z) be a vertex in �3, with x, y, z ∈ �. Let vdir(v) =
(d1, d2, d3) with di ∈ {−1, 0, 1}, where di = 0 indicates a dominant direction. The
function to extract the contours is then defined as,

e(vdir(v)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x if vdir(v) = (0, ∗, ∗);
y if vdir(v) = (∗, 0, ∗); with ∗ ∈ {−1, 0, 1}
z if vdir(v) = (∗, ∗, 0).

Note that this definition is not unique in case there is more than one dominant direc-
tion. This, however, is not a problem. A different choice of dominant direction only
corresponds to a different order of reduction of the octree-graph. Careful investiga-
tion of the elongation function e(vdir(v i)) reveals that the height function is included as
e(vdir(vi)) = z, if the object is only elongated in the Cartesian z-direction.

Proposition 4.3.8. Let OG be an octree graph derived from a sampled object. The
merging operations on OG defined by E-Pairs and V-Pairs result in a skeleton contain-
ing the Reeb-graph defined by the piece wise linear function of Definition 4.3.7.

We prove Proposition 4.3.8 by proving three Lemmas. First we prove (Lemma 4.3.9)
that the local elongation is correctly represented and the dominant direction stays un-
changed during merging operations of E-Pairs. Then we prove in Lemma 4.3.10, that
E-Pairs always result in V-Pairs, which assures the convergence of the algorithm to-
wards a skeletal line. At last we prove in Lemma 4.3.11 that merging V-Pairs does not
change the dominant direction. Lemma 4.3.11 relies on the correct representation of
the elongation in Lemma 4.3.9 and the derived convergence in Lemma 4.3.10.

Let OG be an octree-graph derived from an octree subdivision, as described in Section
4.2.2, formed of G(1,2,0), G(2,2,0) and G(2,2,2) subgraphs. These three underlying
subgraphs are the minimal cases considered to describe locally a merge of two con-
nected vertices. A G(1,2,0) is the trivial case belonging to the skeleton demanding
no further processing (see Figure 4.5(a)). Every G(2,2,2) subgraph (Figure 4.5(c)) is
the union of vertices and edges of six G(2,2,0) subgraphs (Figure 4.5(b)) inducing four
valid E-Pair configuration. This coherence between E-Pairs and the G(2,2,0) grid graph
allows us to prove Lemma 4.3.9 and Lemma 4.3.10 on a valid E-Pair configurations in
a G(2,2,0) setting.

Recall, that every edge of OG is labeled with two labels, containing a positive and a
negative component. In the following lemma we make use of the fact that two directed
graphs can be derived from the octree-graph. The first directed graph is obtained by
removing all edge labels from the octree-graph (Figure 4.9(a)) containing a positive
entry (Figure 4.9(b)). The second directed graph is derived by removing all edge labels
from the intermediate graph containing a negative entry (Figure 4.9(c)). The arrows
in Figure 4.9(b) and Figure 4.9(c) show the direction of the edges. Note here that the
directions are opposite to each other for the corresponding edges in Figure 4.9(b) and
Figure 4.9(c).
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(a)

(b) (c)

Figure 4.9: (a) a labeled octree graph is shown. In figures (b) and (c) the two derived graphs are
shown. These derived graphs are directed. (b) contains only label elements ≤ 0 and (c) contains
only label elements ≥ 0.

subgraph A subgraph B

Figure 4.10: The two configurations considered in Lemma 4.3.9, with possible E-Pairs marked
by an ellipse.
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Figure 4.11: The configuration considered in Lemma 4.3.10, with possible E-Pairs marked by
an ellipse.

Lemma 4.3.9. Let E be an E-Pair consisting of two vertices vi and v j. The merging
operation vi ⊕ v j preserves the dominant directions of vi.

Proof. Let A and B be two connected G(2,2,0) subgraphs. Two cases have to be con-
sidered. First the case where A and B share exactly one vertex resulting in up to 2 valid
E-Pair configuration, corresponding to exactly one dominant direction (Figure 4.10
subgraph A). The second case consists of two subgraphs sharing exactly one edge and
2 vertices. The second case results in exactly one possible E-Pair configuration (Fig-
ure 4.10 subgraph B). The E-Pair configuration of the subgraph contains only one non-
dominant direction. According to Definition 4.3.5, merges only occur in non-dominant
directions, preserving the dominant one. �

In the example given in Figure 4.10 subgraph A, two E-Pairs are visible, because the
configuration is symmetric. The proof however is valid, since only one E-Pair is treated
at a time, whose merge will let the other E-Pairs vanish. Note that an example of the
elongation description by an E-Pair was already given in Figure 4.6(a).

The octree-graph is retracted by merging vertices forming a V-Pair. If no V-Pair is
present in the graph to be retracted, a V-pair is created by an E-Pair representing local
elongation of the sampled surface. Now that it is shown that the merge of an E-Pair
preserves the elongation, it has to be shown that every E-Pair results in a V-Pair, for
continuation of the retraction process.

Lemma 4.3.10. The merging of an E-pair results in at least one V-Pair.

Proof. A G(2,2,0) contains 4 valid E-Pair configurations, as illustrated in Figure 4.11.
Consider one arbitrary E-Pair configuration of a G(2,2,0). Merging the two vertices in-
volved in the E-Pair, reduces the squared structure to a triangle satisfying the definition
of a V-Pair according to Definition 4.3.6. �

As every E-Pair results in a V-Pair, as shown in Figure 4.6(c) on an example, it is finally
necessary to show that the merge of a V-Pair does not change the dominant direction in
the graph.
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vi
vji vj

w = 2j
v

w = 1i
w wj+i

+
=3

Figure 4.12: Example of weighted merging of vertices v with (x, y, z) coordinates: (a) shows a
graph before merging is applied to v1 and v2 and (b) the graph with the new vertex vnew

Lemma 4.3.11. Merging of V-Pairs does not change the local dominant direction.

Proof. Consider the triangle structure of a V-Pair, e.g. the V-Pair formed by v c, vi

and v j and is identified by the two edges incident to vc, both labeled with (0,0,1) in
Figure 4.8(a). The triangle structure of a V-Pair contains at least one direction label
exactly two times in a directed intermediate graph, and the label to be removed by
the merging operation exactly one time. The merge removes exactly one dominant
direction label, which preserves the difference between the amount of dominant and
non-dominant labels. �

4.4 Graph embedding

The metric representation of a skeleton requires centeredness, which is achieved via
a graph embedding strategy. Within this strategy, the octree-graph is embedded into
the point cloud by averaging the points Σ i belonging to an octree-cell. The embed-
ding introduced in [Pascucci et al., 2007] was adapted to point clouds, because their
embedding can be updated during the computation of the SkelTre Skeleton. Every ver-
tex in the octree-graph has an initial weight wi which is equal to the number of points
belonging to the corresponding octree cell. During the merging process the weighted
average of the 3D coordinates of two merged vertices v i and v j is taken to obtain the
coordinates of the merged vertex vi ⊕ v j. The weight wi ⊕ wj of vi ⊕ v j is then the sum
of the previous weights (see Figure 4.12) that is wi ⊕ wj = wi + wj. These weights are
used to compute the coordinates of vi ⊕ v j into the point cloud.

The position of vi ⊕ v j is calculated as:

(vi ⊕ v j) =
wi · vi + wj · v j

wi + wj

�

�

�

�4.1

In case of different local octree depth, the local octree depth is multiplied by the weight
to obtain a centered skeleton as a result.
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Embedding can be problematic if the boundary of Σ i is concave, because in that case
the position of the centroid is not necessarily equal to the weighted average described
above. In case of trees this occurs on vertices, where the skeleton branches. For such
cases a post-processing step is required. The post-processing step treats the 3 or more
connected vertices of the skeleton, by investigating the distance of a point subset to
its bounding box. Consider the bounding box of some subset of points Σ i. Let the
vectors pointing from the center of the bounding box to the centers of each of the 6
sides of the bounding box be the 6 Cartesian directions. Each side corresponds to a
Cartesian direction and because of that we select the value of the {x, y, z}-coordinate
component corresponding to the side a point p i is closest to. The corrected vertex
coordinate is computed by averaging the selected {x, y, z} values for every coordinate
component. Referring to Section 2.4, the embedding of the graph is a collection of
ordered vertices placed at the centroids of point cloud subsets to obtain a useful metric
representation. The case of a concave surface part crossing the octree cell is taken into
account, because a misplaced initial centroid in the octree-graph would not result in a
properly placed centroid during merging, as explained above, which would make later
analysis difficult. The motivation for a properly placed centroid was already given in
Section 2.4.

4.5 Summary

In this chapter the rules driving the SkelTre skeletonization method have been pre-
sented. The rules are motivated by the descriptions in Chapter 2, which concluded
that a skeleton with all four postulated requirements is derivable if we can extract lo-
cal elongation directions and use their changes to derive a graph whose vertices are
located at the center of gravity of suitable subsets of the point cloud. Here we related
the extracted graph to the surface based on a locally chosen function, representing
Cartesian elongation directions. The presented method reduces an initial graph by a
set of rules acting on the Cartesian elongation directions to the SkelTre skeleton. The
topological preservation was shown by relating the extraction process to a well known
topological structure, the Reeb-graph. The output of the algorithm is a graph, which
is by definition thin, whose branching corresponds to the branching of the object with
respect to the introduced elongation direction function and is connected based on the
adjacent octree cells. Because of that the resulting graph satisfies the attributes of topo-
logical preservation introduced in Section 2.3. Furthermore the usage of a robustness
criterion was introduced to improve the handling of imperfect data. This robustness
criterion improves connectedness also under the presence of data gaps caused by mea-
surement errors and occlusion effects and removes edges from the octree graph which
are present because of outliers. The robustness criterion also allows the algorithm to
use error models as desired by the skeleton requirements in Section 2.1.

The use of an octree makes SkelTre capable to operate hierarchically as described in
the skeleton requirements for computational efficiency in Chapter 2. The potential
of the method to skeletonize point clouds representing a much larger class of objects
exists, because no restrictions to tree-like structures are made in the skeletonization
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rules. Furthermore, an adoption of an existing graph embedding into point clouds
was introduced to achieve correct metric representation by embedding the skeleton-
graph vertices as local centroids into the point cloud. The metric representation is
derived from a known embedding strategy adapted to point clouds. The next chapter
will empirically analyze the algorithm performance and discuss the implementation of
the SkelTre-algorithm.
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5
Analysis of the SkelTre Algorithm

In Chapter 2 we introduced two descriptive requirements (topological preservation and
metric representation) of a skeleton and two requirements of a skeletonization algo-
rithm (computational efficiency and reliability) operating on a point cloud. Until here
we have shown that the topological preservation requirement is met in the design of
the SkelTre algorithm (Chapter 4). This chapter demonstrates the implementation of
the SkelTre algorithm as pseudo code. Beside that, the computational complexity of
the SkelTre-algorithm is discussed to verify the efficiency requirement introduced in
Chapter 2 along with the algorithms behavior per vertex dimension as function of the
number of vertices in practice. The embedding of the extracted skeleton graph, as
introduced in Chapter 4, depends mainly on the data and is validated empirically by
investigating the attributes of skeleton requirements introduced in Chapter 2. This em-
pirical validation of the embedding gives a detailed view on the desired centeredness
and the behavior under rotations of the resulting skeleton, as defined in Chapter 2.
Additionally, the algorithm is evaluated on a test tree containing the typical problems
of real data (compare Chapter 2) against the CAMPINO method [Bucksch and Lin-
denbergh, 2008] introduced in Chapter 3. The results of this chapter are an extended
collection of the results in [Bucksch et al., 2009a] and [Bucksch et al., 2010].

In Section 5.1 the computational efficiency of the SkelTre algorithm, the SkelTre imple-
mentation and the SkelTre behavior is discussed. Section 5.2 validates the centeredness
on real data examples from different scanner sources with different error characteris-
tics. Section 5.3 summarizes the highlights of the chapter.

5.1 Algorithm Efficency

This section discusses an implementation of the given graph reduction (compare Pro-
cedure 1 and Procedure 2). The computational efficiency of the SkelTre skeletonization
is evaluated in Paragraph 5.1.1. Insight into the algorithm behavior is given by investi-
gating the graph reduction per dimension in Paragraph 5.1.2, for the vertex dimensions
(Definition 4.3.1) ranging from n = 5 to n = 2. The following three steps have to be
implemented in a sequence, and are illustrated on a simple example in Figure 5.1.
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E-Pair V-Pairs

(a) (b)

(d) (e)

V-Pair

(c)

V-PairsE-Pair

(g)

(f )

V-Pair

Skeleton

vj

vjvi

vj

vj

vk

vj

vjvj

vj

Figure 5.1: (a) An input grid graph with one possible E-Pair marked. The vertices vj denote
the adjacent neighbors of vk (b) The merged E-Pair results in two V-Pairs. The vertices vj denote
the adjacent neighbors of vi (c) The two merged V-Pairs of (b) result in one more V-Pair to be
merged. (d) Another E-Pair selected for merging. (e) The merge of the E-Pair selected in (d)
results in two V-Pairs. (f) The merging operation on the two V-Pairs in (e) results in one more
V-Pair. (g) After merging the V-Pair formed in (f) the final skeleton graph is obtained.
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1. Initialize a vertex list dimList containing all vertices of dimension n. For each
vertex vi in dimList test if new V-Pairs can be formed with its adjacent neighbors
v j, until either a V-Pair is found, or no direct neighbors to test are left. Such a
initial check is necessary if a starting configuration, as shown in Figure 5.1 (b),
is the input graph. All V-Pairs found are stored in PairList.

2. If during the loop through the vertex list dimList no V-Pair was found, go through
the vertex list dimList again. Whenever an E-Pair is found (Figure 5.1 (a)) for
vertex vk, say, the E-Pair is merged to a new vertex vi (Figure 5.1 (b)). This results
according to Lemma 4.3.10 in one or more V-Pairs with the direct neighbors of v i

(Figure 5.1 (b)). Repeat this procedure until all entries of dimList are processed
(Figure 5.1 (c)-(g)).

3. All vertex pairs in the PairList are merged. Directly after merging it is tested
whether the merging resulted in the creation of new V-Pairs (Figure 5.1 (b),(c),(e)
and (f)). If so, these V-Pairs are added at the end of PairList.

Remember that the merging of two vertices vi and v j along a common edge is denoted
by vi ⊕ v j. The resulting merged vertex vnew = vi ⊕ v j inherits all incident edges from
its ancestors vi and v j. If vi and v j were both incident to a common vertex vc, then
the two edges vivc and v jvc are collapsed to a common edge (vi ⊕ v j)vc. Under ideal
conditions these edges represent the connection between two connected subsets of the
sampled surface Σ. For this reason, the operation v i ⊕ v j is only performed on vertices
representing two neighboring subsets of Σ with the same direction characteristic, as
indicated by the identical edge labels of vivc and v jvc.

5.1.1 Computational Complexity

In practice, the computation of the skeleton operates on a far smaller number of vertices
than the number of points in the point cloud. We explain here , that the graph-reduction
of the SkelTre algorithm is linear in time. A pseudo code to implement the algorithm
is shown in Procedure 1 and Procedure 2.

Let vi be a vertex of the set of vertices V of the processed graph. The dimension
of vi is denoted as vdim(vi). Let v j denote an adjacent vertex of vi and c1 ≤ 6 a
constant corresponding to the maximal number of vertex dimensions. The procedure
computeSkeleton contains an outer for-loop, which is bounded by c 1 and therefore O(1).
As can be noticed in Procedure 1, dimList is always initialized with O(V). Note that V
is decreasing after every dimension. The inner while-loop is operating on a subset of
V with at most V

2 operations, which results in O( V
2 ) as an upper bound.

The procedure createVPair() selects the first unprocessed entry v i in dimList, that ful-
fills Definition 4.3.5, and loops through all elements of dimList. We show the influence
of this condition on the inner while-loop for two extreme cases:
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Input: An Octree graph
Output: SkelTre Skeleton

dimList[]; contains the vertices of the processed dimension

PairList[]; contains found EPairs and VPairs to be merged
for dim=5 to 2 do

dimList := {vi|vdim(vi) ≥ dim, i = 0...n};
forall vi ∈ dimList do

if IsVPair(vk, vi) for some incident vertex vk of vi then
add (vi, v j) to the end of PairList;

end
end
while PairList � ∅ or createVPair() return true do
{vi, v j} = f irst unprocessed entry in PairList;
vnew = vi ⊕ v j;
if (IsVPair(vnew, vk) for some incident vertex vk of vnew then

add (vnew, vk) to the end of PairList;
end
if vdim(vnew) ≥ max(vdim(vi, v j)) then

add vnew to the end of dimList;
end
remove {vi, v j} from PairList;

end
end

Procedure 1 computeSkeleton

Input: a unprocessed vertex vi from dimList
Output: true or false

if vdir(vi) � (0, 0, 0) then
foreach v j ad jacent to vi do

if IsEPair(vi, v j) for {vi, v j} then
add (vi, v j) to the end of PairList;
return true;

end
end

end
return false

Procedure 2 createVPair
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• Case 1: The input graph is already a skeleton, e.g. a combination of G(2,1,0)
subgraphs, all connected on only 2 vertices. This combination will lead to no
merge at all; because of that the whole inner while-loop of computeSkeleton()
stays O(V) by checking one time if there is any valid E-Pair configuration (Defi-
nition 4.3.5).

• Case 2: All vdim(vi) within V are equal, e.g. a graph formed by G(2,1,0) sub-
graphs, which all are connected on three vertices. This will lead to exactly one
check of an E-Pair (Definition 4.3.5) in the given example, and c 2 calls in gen-
eral. c2 is bounded by the minimal number of aligned G(2,2,0) subgraphs in one
of the principal Cartesian directions.

Now that it is shown that the influence of createVPair() on the inner while-loop is
O(c2) or O(V), the algorithms overall complexity can be calculated as follows from the
upper bound; O(1) · (O(V) + O( V

2 ) + O(V)) = O(V). Note here, that the special case of
dimension 3 vertices is simply handled with a dimList for every possible norm value.
Because of that vertices of dimension 3 have no influence on the complexity analysis
given here.

5.1.2 Algorithm behavior

Condition 3 in Definition 4.3.5 ensures convergence towards the skeleton. Vertex di-
mension 6 results in vertex direction (0,0,0) in all cases. This characteristic of di-
mension 6 vertices allows the successive reduction of the octree-graph from vertices
of dimension 5 to 2. This guarantees that first the G(2, 2, 2) graph parts are reduced,
before G(2, 2, 0) subgraph regions are processed. Another example to depict the algo-
rithm is to evaluate the number of vertices per processed dimesion. Boundary vertices
of a G(2, 2, 2), which have dimension 4, are processed before the ’corner’-vertices of a
G(2, 2, 2) area, and the boundary of a G(2, 2, 0) region is processed before its ’corners’
of vdim(v) = 2.
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Figure 5.2: (Left) amount of vertices per dimension after every processed vertex dimension.
(Right) The red graph shows the vertices belonging to the intermediate skeleton and the black
graph the number of merged vertices after every processed vertex dimension.
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In Figure 5.2 the convergence of the SkelTre algorithm is illustrated. The values cor-
respond to the skeleton in Figure 4.4(b). Figure 5.2 (left) depicts the algorithmic be-
havior of SkelTre per vertex dimension. It is observable, that the amount of vdim(1)
and vdim(2) vertices is increasing, as they mainly form the targeted skeleton. Mean-
while, vdim(5) and vdim(6) vertices are vanishing as expected, also a rapid decrease of
vdim(3) and vdim(4) vertices is recognized. This behavior of the algorithm is coherent
with the behavior described in theory.

The red curve in Figure 5.2(right) shows that the number of graph vertices is decreasing
after every processed vertex dimension. The black curve shows the overall number of
merging operations after every processed vertex dimension, when the smallest change
occurs between dimension 3 and 2 in this case. This approximate constant behavior is
in this particular example explainable by the influence of the procedure createVPair()
(compare Paragraph 5.1.1 Case 1), because this intermediate case is already close to
the desired skeleton.

5.2 Results and Practical Validation

This section on the evaluation of the extracted skeletons considers several examples
and validation indicators. The section is divided into three parts, trees, non-tree ob-
jects and the comparison with an algorithm from the same algorithm class, [Bucksch
and Lindenbergh, 2008]. The point clouds evaluated in this section are scanned with
a variety of scanners and have different density, sampling and noise characteristics.
Limitations are pointed out to explain the algorithm behavior. In all cases the skeleton
edges are colored by their resulting direction labels. Yellow denotes a (1,0,0) label,
blue a (0,1,0) label and green a (0,0,1) label. In all labeling cases the corresponding
negative label is indicated in red.

No post processing is applied to the skeletons computed with the SkelTre algorithm.
Centeredness is analyzed by considering the (average) Euclidean distance of every
point of the point cloud to the skeleton. First, results on botanical trees are presented
and secondly results on non-tree-like objects are shown.

5.2.1 Trees

This paragraph shows the problems and benefits related to terrestrial laser scan data.
Figure 5.3 shows the results of the SkelTre algorithm on point clouds representing three
different trees scanned with three different terrestrial laser scanners: a Simple Tree, an
Apple tree and a Tulip tree. For the Simple tree and the Apple tree, the maximum
of the color scale indicates distances to the skeleton of 10cm. For the Tulip tree, the
maximum of the color scale indicates distances to the skeleton of 100cm.

The Simple Tree was scanned with a Leica Scan Station and was previously used
in [Gorte and Pfeifer, 2004]. This tree of 4.07m height is sampled by 49669 points.
The skeleton graph resulting from the SkelTre algorithm is fully connected and all 18
branches were detected, even under bad sampling conditions (upper red box in Fig-
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Apple Tree / 385.772 points Tulip Tree / 816.670 pointsSimple Tree / 49.669 points 

max

Figure 5.3: First row shows the raw point cloud. The second row shows the skeleton colored
by direction label. All negative ends are labeled red. The directions Up/Left/Front are colored
by green/blue/yellow. The third row shows the distances to the skeleton according to the color
scheme given on the bottom of the figure.
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Raptor / 1.000.079 points / Genus 0 Fertility / 241.607 points / Genus 4 Torus / 4.509 points / Genus 1

max

Figure 5.4: Three test objects. First row shows the raw point cloud. The second row shows
the skeleton colored by direction label. All negative ends are labeled red. The directions
Up/Left/Front are colored by green/blue/yellow The third row shows the distances to the skeleton
according to the color scheme given on the bottom of the figure.
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Figure 5.5: The extracted skeleton (Left) and the filtered skeleton (Right) of an apple tree

ure 5.3). The distances to the skeleton show a symmetric pattern in the red zoom box.
The Simple Tree is represented by a single scan from one viewpoint. On this single
scan of the Simple Tree in Figure 5.3 the skeleton is attracted to one side (light blue
color), because the back of the tree was not scanned.

The Apple Tree was scanned with the Zoller and Fröhlich scanner Imager 5006 in high
resolution (385.772 points, Stefan Fleck, University of Göttingen). The Apple tree is
1.99m high and its largest extension in the crown is 1.62m. The derived skeleton of
the Apple tree contains only one erroneous loop due to unresolvable noise problems in
the dense crown containing 136 detected branches. The distances to the skeleton get
larger in the inner crown, because the crown contains a huge amount of noise. Spurious
branches on the boundary indicate the noise on the object boundary. Simple removal of
vertices with one incident edge adjacent to a vertex with three or more incident edges
solves this problem in our experience, as shown in the example in Figure 5.5.

The Tulip Tree was scanned with a Calidus scanner. It is 11.75m high and 14.47m
wide at the largest extension of the crown. This massive tree was scanned by Forstliche
Versuchs- und Forschungsanstalt Freiburg near Karlsruhe, Germany. It is sampled by
816.670 points. The tree was scanned during summer time and contains leaves. Even
under the presence of leaves the main skeleton was derived. The marked region indi-
cates the difficulty on this particular tree. Noise, e.g. because of moving leaves during
the scan procedure, makes a meaningful extraction of the skeleton impossible. The lo-
cally non-optimal extracted skeleton is visible as distances to the skeleton in the order
of 5-8cm on fine branches. Such fine branches should be at a distance around 0.5-1cm
to the skeleton to meet the centeredness attribute of the metric representation require-
ment in Chapter 2. This indicates that the chosen resolution of the octree is insufficient
to resolve the structure. Still, the major branches and the trunk are extracted correctly
and only locally the skeleton is affected by insufficient extraction.

5.2.2 Non-tree objects

In this paragraph the performance of the SkelTre algorithm on point clouds of non-tree
objects is illustrated with three examples (Figure 5.4). Note here that distances are not
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given with a unit, because the unit of the data sets is not known.

The Raptor model with lots of ripples on its skin is taken from the aim@shape repos-
itory, [Aim@Shape, 2008]. It consists of 1 000 079 points. No information about the
measurements to obtain the point cloud are provided by this web-source. The resulting
skeleton graph is fully connected. The skeleton of the left foot shows an irregularity in
the distances to the skeleton. This irregularity is explained by insufficient coverage of
directional changes of the surface by the initial graph. Because of insufficient coverage
the embedding is not completely centered.

The Fertility model is a genus 4 stone sculpture and taken from the aim@shape repos-
itory as well. It consists of 241 607 points. It was obtained with a Roland LPX-w50
laser range scanner. The marked region shows a huge hole in the point cloud of the
statue, which prevented the use of fine resolutions. This results in insufficient skeleton
resolution on the left and in the head region of the statue, because not all directional
changes of the statue could be modeled by the octree graph. The genus is still rep-
resented correctly in the skeleton, and the extrema are modeled correctly as far the
octree-graph covered them (e.g. on the baby’s stomach).

The Torus model is sampled by 4 509 points from a polygonal approximation of a torus
created with the 3D modeling package Lightwave 7.0. The sampling is rough to show
the influence of strong undersampling.

5.2.3 Comparison with CAMPINO

The comparison with another algorithm of the same algorithm class, as introduced
in Chapter 3, is given in this paragraph. Here the comparison is done between the
SkelTre Skeleton, [Bucksch et al., 2010] and the CAMPINO skeleton, [Bucksch and
Lindenbergh, 2008] on an imperfect point cloud of the example tree already used in
Chapter 3. The example tree is subject to noise, undersampling, occlusion effects and
varying point density in the indicated areas in Figure 5.6(a) and contains 7183 points.
To give a fair comparison between the two graph reductions the same octree was used
as input with an minimum cell size of 0.07m.

Figure 5.6(b) shows the extracted SkelTre skeleton and Figure 5.6(c) shows the ex-
tracted CAMPINO skeleton. It is already visible here, that the small height differ-
ence of the two lowest branches on the trunk is reconstructed by the SkelTre method,
whereas the CAMPINO method was not able to successfully model this height differ-
ence. A geometric extraction using the height function would result in a non-centered
skeleton, because some branches are almost horizontal. The distances of the points to
the SkelTre skeleton never exceeded 4cm on the stem, while the CAMPINO methods
shows distances above 4cm. In Figure 5.6(a) an important characteristic on scanned
botanical trees is visible. The points in the strongly undersampled region I are in line-
like order, which makes it hard to define a suitable inside and outside on the object, as
required by some of the algorithms discussed in Chapter 3.

The improvement on the centeredness is quantified in Figure 5.6(d) by calculating the
histogram of point distances to the skeleton binned in 1mm bins. Red represents the
CAMPINO method and green the SkelTre method. The histograms are superimposed
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Figure 5.6: (a) The example tree marked with (I) strongly undersampled region. (II) data
gap because of occlusion. (III) random noise because of combined effects. (IV) combined
occlusion and undersampling (V) varying point density (b) the extracted SkelTre Skeleton with
edges colored by their label. (c) a comparable result with [Bucksch and Lindenbergh, 2008]. (d)
Comparison of the point distances to the skeleton between CAMPINO (red) and SkelTre(green).
The vertical lines show the mean of the distances. (e) Centeredness as distances to the skeleton
with CAMPINO (f) Improved centeredness with the SkelTre Algorithm.
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for easier comparison. The improved centeredness is visible in both: The shift of
the mean distance is shown as vertical lines. Using the CAMPINO method a mean
distance to the skeleton of 0.01cm was achieved. The SkelTre skeleton improved the
mean distance by 20% to 0.008cm. The lower achieved distances to the skeleton are
an improvement on the centeredness attribute of the metric representation requirement
in Chapter 2. Therefore, the improvement of 0.002mm is significant. The histogram
shows more points at larger distance for the CAMPINO method and more points at
smaller distances for the SkelTre method. The improvement on the centeredness is
significant, because the diameter of the outer branches is below 5mm. Beside that it
has to be noticed that also the calculation time has been significantly improved. While
the CAMPINO method took approximately 10 minutes to extract the skeleton, SkelTre
only took 34 seconds.

5.2.4 Behavior under rotations

In the previous chapter it was claimed, that approximate rotational invariance is
achieved by investigating how the point cloud is passing through the octree cell sides.
In the past, methods associated with a Reeb-graph extraction have been criticized for
their rotational dependence in some publications, e.g. [Cornea and Min, 2007]. Here it
is investigated how the SkelTre-skeleton extraction behaves under rotations. Figure 5.7
shows the extracted skeletons of the example tree (Figure 5.6) under rotations of 10,
25 and 40 degree around each Cartesian axis. The minimum cell size was fixed at 7cm.
The skeleton is colored by the different direction labels as in the figures before. The
skeleton extracted from the rotated point cloud, is rotated back to the original point
cloud for comparison with the skeleton extracted from the unrotated point cloud. The
black points on the skeletons in Figure 5.7 are the vertices of the skeleton extracted
from the original unrotated point cloud. From Figure 5.7, it is qualitatively visible
that there is high correspondence between the skeletons derived after rotating the point
cloud first, because the black points representing the skeleton vertices extracted from
the unrotated point cloud are on or close to the skeleton extracted from the rotated point
cloud.

In Table 5.2.4 I list the results of the median Hausdorff distance as a quantitative vali-
dation, as specified below. Let X, Y be two sets of vertices. The two sets are at median
Hausdorff distance dH iff dH is the smallest number such that the vertices in X are in
median distance dH to all vertices in Y. dH is therefore given as

dH(X, Y) = median{sup
x∈X

inf
y∈Y d(x, y), sup

y∈Y
inf
x∈X d(x, y)},

�

�

�

�5.1

where d(x, y) is the Euclidean distance between two vertices x and y from the two
sets. This measure evaluates the vertex to vertex distances between the two extracted
graphs. The above comparisons have been chosen, because an intuitive comparison of
the Euclidean median distance of the vertices of the rotated skeletons to the edges of
the unrotated skeleton results in 0.0 cm in all cases given in Figure 5.7. Both distance
evaluations indicate high robustness to rotations. The vertex to vertex correspondence
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Rotation
around axis

Median
Hausdorff
distance in
cm

10◦x 0.02
25◦x 0.01
40◦x 0.01
10◦y 0.04
25◦y 0.01
40◦y 0.02
10◦z 0.01
25◦z 0.01
40◦z 0.04

Table 5.1: SkelTre under rotation: The Table shows the median Hausdorff distance.

shows variations up to 4cm which is approximately half of the minimum octree cell
size.

5.2.5 Running time

The calculation time for the six examples given in Figure 5.3 and Figure 5.4 is given
in Table 5.2. The table shows the size of the point cloud as number of points and its
data range and the time needed to construct the octree under a fixed octree cell size.
Furthermore, the number of octree graph vertices and the time needed to reduce the
graph with the SkelTre algorithm are given. The calculation times given refer to a Intel
Dual-Core processor 6700 running at 2.66GHz having 3.5GB memory. The operating
system used was Windows XP with Service Pack 3 installed.

Table 5.2 shows the time required to perform the octree construction and the graph re-
duction. The running times are given for the algorithm as described in Section 5.1. The
implementation uses the vector container of the Standard Template Library, [Musser
and Saini, 1997] to store the adjacency list of the graph and all other intermediate
lists, causing performance loss above 1000 graph vertices. The major reason why the
skeletonization process slows down in our current implementation is that the used data
structures make use of the page file on the hard disk at a certain amount of vertices.
To prevent calculation losses because of the automatic shutdowns forced by the update
procedures of the TU Delft ICT department, the algorithm writes an intermediate result
every 500 merges of vertices to the hard disk. This hard disk access is an additional
slow down, but the intermediate state of the skeletonization can be recovered at any
time. The algorithm was tested on point clouds up to 4 Million points. However, its
calculation depends more on the complexity of the object than on the amount of points
itself. Once the octree-graph is extracted, the actual point cloud is not needed anymore.
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25 degree 40 degree10 degree 

x

y

z

Figure 5.7: The shown skeletons are extracted with a minimum cell size of 7cm. The input data
of the example tree was rotated by 10, 25 and 40 degree for each axis. The black points indicate
the vertices of the skeleton extracted from the unrotated point cloud of the example tree. The
skeleton colored by the different direction labels. All negative labeled ends of an edge are red.
The directions Up/Left/Front are colored by green/blue/yellow.
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Model Nr. of points TOG in s TGR OCV OCS Data range
in min x

y
z

Simple Tree 49 669 0.45 1.1 667
0.05

[225.0-229.1]
[393.2-397.3]
[102.2-106.3]

Apple Tree 385 772 2.7 192.0 5064
0.05

[225.0-229.1]
[393.2-397.3]
[102.2-106.3]

Tulip Tree 816 670 1.8 275.6 5084
0.5

[225.0-229.1]
[393.2-397.3]
[102.2-106.3]

Raptor 1 000 079 2.3 10.5 2404
0.04

[225.0-229.1]
[393.2-397.3]
[102.2-106.3]

Fertility 241 607 0.5 9.9 2132
10.0

[-75.7-123.9]
[-76.9-122.8]
[-36.9-162.8]

Torus 4 509 0.1 0.01 92
0.5

[-1.2-1.2]
[-0.2-2.2]
[-1.2-1.2]

Table 5.2: Running time for the example objects in Figure 5.3 and Figure 5.4. TOG denotes the
time needed to construct the octree and TGR the time needed to reduce the octree-graph. OGV
denotes the number of octree-graph vertices and OCS abbreviates octree cell size.
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5.3 Summary

The chapter gave an evaluation of the algorithm in terms of computational efficiency
as a complexity analysis and convergence graphs. It was shown that the graph reduc-
tion is linear in time, which underlines the efficiency of the method that is designed
to skeletonize real, large point clouds of botanical trees and a wider range of object
classes (compare algorithmic requirements given in Section 2.1). It was already shown
in Chapter 4, that the algorithm is operating locally, which overcomes the spatial com-
plexity problem stated in Section 2.6. The correct metric representation was analyzed
by considering the influence of the embedding on the centeredness. Topological cor-
rectness, as proven before in Chapter 4 with respect elongation function, was described
as the number of loops in the resulting graph of a tree and the resulting branches.
The resulting number of loops are a consequence of the imperfect data. For non-tree
object the genus was the classifying argument. Robustness has been shown on exam-
ple point clouds containing the typical difficulties noise, undersampling and varying
point density. Robustness as a prerequisite of the algorithmic requirements was shown
on several selected examples and on the example tree containing the challenges of
laser data previously used in Chapter 3. The transformation invariance was discussed
by investigating the configuration of skeleton graph vertices on a rotated tree and the
distance between an initial tree and the rotated tree, which demonstrates the desired
transformation invariance of the metric representation (compare Section 2.2).
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6
Extraction of branch length and diameter

of trees

In this chapter two applications of the SkelTre-skeleton algorithm are demonstrated.
In Section 6.1 the extraction of the branch parameters length and diameter is done
analyzing terrestrial laser scans of orchard trees. These orchard trees are optimized
by branch pruning, which makes it impossible to use species dependent allometric
relationships to estimate the tree structure. Hence, a measurement method is needed
relying on surface information rather than prior knowledge to analyze orchard tree
canopies. Here the frequency distributions of extracted branch lengths and diameters
are analyzed.

The second application introduced is the extraction of stem diameters at breast height
(1.30m) from strongly undersampled airborne laser data in Section 6.2. Until now,
stem diameter estimation on airborne data was carried out by using allometric relations
between the canopy size and the stem diameter of a known species. This application
is potentially promising, as densities of airborne data are expected to increase even
further in the coming years, which would allow the future use of skeletons on airborne
data. In fact this case study reveals the need for improved tree-delineation methods, as
the major problem is found in the lack of reliable tree-delineation methods.

Both sections start by describing the application fields where tree parameter extraction
is expected to play a vital role. The first application is quantitative ecology and the
second one is water flow management. Both described applications are unpredecented
in their methodology and have to be reflected as a step towards automatic allometry free
measurement on trees. Allometry free measurements on trees are predicted in literature
e.g. [Strahler et al., 2008]. In order to go towards this ambitious goal both sections use
the newly developed method HARPER - Histogram Analysis & Retraction of Points
Estimated Radii - as a method to extract the diameter on the basis of a SkelTre skeleton.

69
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TREES

6.1 Extracting branch length and diameter from ter-
restrial laser scanning point clouds of orchard
trees

6.1.1 Introduction

Tree branches are the result of ramification and branch elongation processes that occur,
outside the tropics, in an annual cycle. The pattern of branch elongation and radial di-
ameter growth can reveal the dendritic growth history of trees with the same accuracy
as growthring chronologies of the trunk [Roloff, 1986]. The annual growth cycle is re-
flected in the branching pattern of trees and will finally be represented in the skeleton.
Furthermore, the dendrochronological patterns are closely correlated to other structural
characteristics of tree canopies like leaf or woody biomass [Niklas, 1994]. Allometric
equations were established on this basis for many tree species in order to derive the
amount of woody biomass [Bartelink, 1997], leaf biomass, [Burger, 1945] or distribu-
tion of leaf biomass in space, [Fleck, 2002], from more easily measured features such
as trunk or branch diameters. Crown diameter and tree height are the easiest structural
characteristics to measure. 3D-canopy light modeling depends on such spatial infor-
mation as the distribution of leaves and branches and is the key to understand a number
of physiological processes in the canopy that express the vitality of trees [Fleck et al.,
2004].

From a remote sensing viewpoint, the automated assessment of branch dimensions in
the canopy is unprecedented. Terrestrial laser scanners measure thousands of distances
per second between the instrument and its surroundings at uniform horizontal and ver-
tical angles [Shan and Todd, 2008] in order to yield a high-resolution 3D point cloud.
Thus, terrestrial LIDAR enables the measurement of the complete three-dimensional
structure of the branching system. This branching information can be made available
to modelers in biology and forestry. An automated evaluation procedure would make
it possible to overcome tedious or inaccurate measurement procedures.

The study of unorganized point clouds as an object representation and the possible in-
formation to be extracted from point clouds is an area of active research. Although
the majority of research has focused on the extraction of surface properties from the
point cloud, e.g. [Pfeifer et al., 2004] and [Henning and Radtke, 2008], this thesis de-
scribes a new method to reveal the branching information using the example of leafless
apple trees. The fully automatic approach presented here does not depend on species
information, such as allometric relationships. Obtaining the branching system from
unorganized point clouds (Figure 6.1) can help in various point cloud applications.
The application described here is the extraction of the branch length and diameter from
laser-scanned orchard trees. The SkelTre-skeleton used in this research represents the
trees branching system as an oriented graph. Such a graph consists of vertices which
are connected by edges. Every vertex corresponds to a distinct part of the point cloud
and is embedded into the center of the corresponding point cloud part. The edges are
straight connections between the embedded vertices. The skeleton extraction from a
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Apple 1                                            Apple 2                                                 Apple3

Apple 4                                      Apple 5                                                   Apple 6

Figure 6.1: Registered 3D-point clouds of the 6 investigated apple trees with manually mea-
sured trunk diameters of 7.3cm, 6.7cm, 3.9cm, 5.9cm, 8.1cm, and 7.4cm.

point cloud has to meet several algorithmic requirements and their attributes, such as
centeredness, topological correctness, and robustness to noise. These challenges are
described in more detail in Chapter 2. This section is heavily based on [Bucksch and
Fleck, 2009] and [Bucksch and Fleck, 2010].

6.1.2 Data collection and preprocessing

Study area

The study was mainly conducted in apple orchards of the Annapolis Valley, Nova Sco-
tia, Canada close to the city of Kentville (45◦439” North, 64◦2945” West). The six
investigated apple trees (Malus x domestica Borkh. ’Honeycrisp’) were located in two
orchards that belong to the test sites of the Atlantic Food and Horticulture Research
Centre, [Fleck et al., 2010]. Three apple trees grew on a trellis system consisting of
wires to support the tree in its growth. The other three trees stood as single trees in
rows. The orientation of the rows is from North to South with a tree spacing of 3m
within each row and a spacing of 5m between rows. Trees of comparable height were
located next to the investigated trees. The manually measured trunk diameters ranged
from 3.9cm to 8.1cm. The tree height of the six apple trees varied from 1.27m to
3.03m.
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Field measurements

Each tree was scanned in March 2006 with the Imager 5003 of Zoller+Fröhlich from
four sides (approximately North-East, South-East, South-West, North-West) at a dis-
tance of about 4m to the trunk. The laser scanner was placed at different heights above
the ground (between 1m and 2.3m) in order to maximize coverage of the measured tree
surface. The scanner resolution was set to High, which is equal to a horizontal and ver-
tical angular step width of 0.036 degrees and results in 10.000 pixels resolution for 360
degrees. Tree branches were identified as elongated woody element with a minimum
diameter of 3mm, inserting at a ramification point (node) on another, usually thicker
branch or trunk element. The branches of each tree were numbered for reconstructing
the branch hierarchy and their length was measured following the elongation direction
of the branch. The diameter of each branch was measured at its base and tip, about
1cm before the node or end bud. The diameters of branches were measured with a
caliper in two directions and averaged. If both diameter measurements were more than
1mm apart, a third diameter measurement was taken and the average of three measure-
ments was taken. Branch diameters thicker than 5cm were derived from circumference
measurements with a meter tape assuming the trunk or main branch to have a circular
cross-section.

Data processing

Registration of the scans was done with the NEPTAN-based registration algorithm in
Z+F Laser Control, [Zoller und Fröhlich, 2009], based on 14-18 artificial targets that
were placed on the ground and fixed to ladders at a height of about 2m in order to
achieve a homogeneous distribution of tie points common to multiple scans. The 3D-
point cloud was transferred to the software CYCLONE, [Leica Geosystems, 2009], and
subsamples representing a single tree were isolated, [Fleck et al., 2007]. Skeletoniza-
tion of each 3D-point cloud was performed with the SkelTre algorithm described in
Chapter 4. Here we use the SkelTre attribute of centeredness to derive the diameter
and the preserved topology to obtain a segmentation into branches and their hierarchi-
cal order.

One of the major problems with laser scanned trees is, that the youngest branches
are strongly undersampled, [Bucksch et al., 2009a]. Furthermore, at higher crown
densities, the amount of occlusion effects increases, leading to gaps in the point cloud
because of insufficient coverage of the tree surface. The increased noise leads to the
fact that some especially smaller branches may not be skeletonized. For details on this
particular skeletonization algorithm, the reader is referred to Chapter 4 and Chapter 5.

6.1.3 Methods for tree parameter extraction

Branch length estimation

The output of the skeletonization process is a graph, consisting of vertices connected by
edges centered within the tree. Estimation of branch length requires a graph-splitting
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procedure (Figure 6.2) to segment the skeleton graph into subgraphs representing a
single branch.

The skeleton graph allows navigation through the tree point cloud. At every vertex with
more than two incident edges (marked red in Figure 6.2) the graph has to be split into
the currently followed branch and newly starting branches. By tracing the graph from
the trunk base, we can identify the edge a (Figure 6.2) reaching a branching point.
The incident edge b forming the angle closest to 180 ◦between a and b is selected to
continue tracing (red subgraph in Figure 6.2). All other incident edges are marked as
branch bases from which a new trace can be started. This procedure also provides the
branch hierarchy as an output. The skeleton graph is geometrically embedded into the
tree point cloud and the Euclidean length of all edges in one trace is used as the branch
length.

From Chapter 4 we know that the vertices of the graph are embedded into the center
of gravity of a point cloud part. This means that the angles between the edges inci-
dent to a branching point are not necessarily the angles shown in the ideal sketch of
Figure 6.2. Fortunately we can create an angle close to the ideal sketch by placing the
vertex representing the branching point temporarily at another location. This location
is the last traced vertex before the branching point. The temporary placement is also
shown in Figure 6.3. The example shows clearly that the placing is just temporary for
segmentation purposes. For the length and diameter estimation the original branching
point is needed, because the temporary placed vertex will affect the centeredness and
will affect the length estimation for one branch. The unwanted effect in the branch
length estimation would be, that e.g. the thickness of the trunk is added to the branch
length.

The segmentation does not incorporate diameter information as decision criterion. The
diameter is to be estimated in a second step. Either the diameter is used as a decision
criterion to follow a branch along the skeleton or the angle at branching points of the
skeleton. If one of the two would be known perfectly, then it would be preferable to
segment incorporating both. But both are just estimations, which do contain errors.
Every wrongly made decision in the tracing results in a distorted order of branches.
Here, we take the angle to follow a branch and estimate the diameter at a separate step.

The output of the described procedure is a segmentation of the tree in its branches. Ev-
ery branch is represented as a collection of connected line segments having no branch-
ing points.

HARPER - Branch diameter estimation

One property of the SkelTre-skeletonization procedure is that it maintains the relation-
ship between every vertex in the skeleton graph to a set of points p i in the point cloud.
As the skeleton graph is assumed to be centered in the point cloud (Figure 6.2), the
point distances of all points pi to the skeleton represent the radius of the branch. Be-
cause a pi has a relation to a vertex and not to an edge, we calculate the distances of all
points pi to all incident edges of the corresponding vertex. Recall, that the maximum
number of incident edges in the segmented tree is two for every graph representing
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Figure 6.2: Ideal principle of the branch splitting procedure. The red subgraph is the extracted
branch from the trunk base. Ordinary skeleton graph vertices are marked in black, the trunk base
vertex in green and branching vertices are shown in yellow. The edge a is an incoming edge
and edge b is an outgoing edge of a branching vertex in the direction from the trunk base to the
branching vertex. The skeleton graph is centered within the dotted point cloud.
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(a) (b) (c)

Figure 6.3: (a) a magnification of the centered skeleton part indicated in the skeleton shown in
(b). The skeleton shown in (b) is the previously used skeleton of the test tree in Figure 4.4. (c)
shows the temporary placement of the branching vertex.

a branch. The smallest distance of the point to one of the edges is used for further
processing. After calculating the distances of all pi, the histogram of distances to the
skeleton is calculated, (Figure 6.4). The bin containing the median of all distances, so-
called median bin, (red line in Figure 6.4) was chosen to avoid the influences of noise
on small branches as shown in Figure 1.5 and Figure 1.6, resulting in huge distances
to the skeleton. Starting from the median bin, the peak in the histogram closest to the
median-bin is selected as a so-called reference bin for the branch radius. The average
value of the reference bin is taken as the radius of the branch.

Data preparation: The diameter measurements from the manual and automated meth-
ods were sorted in ascending order. This sorting enabled a one-to-one comparison
of the measured values, because the manually measured tree hierarchy differed from
the one measured automatically. Furthermore, the manual measurement contained
more measured branches than the automatically estimated branches, because branches
smaller than 3mm in diameter are not captured by the laser scanner. Finer branches
are strongly undersampled and result in individual points representing the entire width
of a twig, as discussed on the test tree in Chapter 5 and introduced as a problem in
Chapter 2. This makes it impossible to extract a diameter from it. Due to this limita-
tion, the smaller branches from the manual measurement were removed to assure two
equally sized datasets. It should be stated that the length remained extractable because
the length is represented independently from the diameter as explained above and in
Chapter 2. To compare the manual measurements to the automatic estimations, a linear
regression of the manual measurement and the automatic estimation was calculated for
all six trees in addition to compare the histogram.
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Figure 6.4: The distances of points pi of the 3D-point cloud to the skeleton were evaluated as
bin-counts in a step width of 0.005m. The median of the point distances (red line) determined
the reference bin for diameter estimation. The chosen reference bin in this case is the peak on
the left of the red line

Tree Overall length
of the skeleton

Overall length
of the branches
from the field
data

Overall length of
branches with ex-
tractable diameter and
ratio

Apple 1 95.9 m 68.1 m 57.3 m (60%)
Apple 2 47.4 m 41.7 m 35.3 m (74%)
Apple 3 40.9 m 37.9 m 26.8 m (66%)
Apple 4 52.3 m 53.9 m 44.3 m (85%)
Apple 5 128.4 m 122.8 m 104.6 m (81%)
Apple 6 111.8 m 103.4 m 75.1 m (67%)

Table 6.1: Comparison of the overall extracted length between skeleton and field measurement
and the overall extracted length of branches where a diameter could be obtained. The ratio in the
last column is the ratio between column 4 and column 2.
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Figure 6.5: The test tree segmented into its branching hierarchy. Every color corresponds one
hierarchy level. Green indicates a unconnected skeleton part.

6.1.4 Results and Discussion

In this section the results of the six automatically analyzed leafless apple trees, as de-
scribed in Paragraph 6.1.2, are discussed.

Skeletons and branching hierarchy

SkelTre showed good stability to gaps and robustness to noise in the point cloud. Where
gaps in the measured data occur, the algorithm still detected the two parts of a branch
on both sides of the gap, as shown in more detail later on in the segmentation. This
resulted in the retrieval of a higher number of branch segments than we measured
by hand. Small artifacts were sometimes observed at the trunk base due to parts of
surrounding ground elements (grass, moss or soil) represented in the 3D-point cloud.
Figure 6.5 shows the resulting segmentation of the branches using the previously de-
scribed branch tracing on the test tree used in the previous chapters. Figure 6.5 shows
that the resulting derived segmentation from the SkelTre-Skeleton includes the branch-
ing hierarchy of the test tree. Note here that the green parts indicate branches which
could not be connected, because of undersampling and occlusion, resulting in smaller
branch segments.

Branch length

The automatically extracted branch lengths were compared to the hand measurements
based on frequency distributions of the total amount of branches of a tree. The branch
length was categorized in length classes of 5cm from 0 to the maximum occurring
branch length of each tree. The results for the six apple trees are shown in Figures 6.6:
While the algorithm detected a much higher number of small segments (classes up to
5cm and up to 10cm) and did recognize a few longer branches that were measured as
separate entities in the hand measurements, the hand and SkelTre measurements were
well correlated in the range between 20cm and 65cm.
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Figure 6.6: Frequency distributions of automatically detected (green) and hand measured (red)
branch lengths. The histograms are binned in 0.05m bins per branch class.
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Tree r2 Length r2 Diameter
Apple 1 0.78 0.92
Apple 2 0.41 0.95
Apple 3 0.64 0.98
Apple 4 0.77 0.99
Apple 5 0.72 0.98
Apple 6 0.62 0.99

Table 6.2: Results of the canopy analysis of six validation trees. The similarity of the frequency
distributions is given as the correlation coefficient r2 between the histograms of the field data and
the automatic data.

The number of branches in the hand-measured branch-length classes was on average
49,3% of the branch number in the associated branch-length class of the automatically
detected branches. Since this percentage did not substantially vary over branch-length
classes longer than 10cm, all branch-length classes appeared to be similarly affected by
gaps in the 3D-laserscanner data. The overall length of the skeleton and the manually
measured length in the field differed not substantially except for Apple 1. The point
cloud of Apple 1 contains some parts of the trellis system, which could not be filtered
out and contribute therefore to the overall skeleton length. On average the the field
measured length deviated 7.2% from the automatically extracted length for all trees
except Apple 1. Remember here, that the chosen trees are orchard trees containing a
high proportion of branches with diameters smaller than 1 cm, unlike bigger trees in a
forest, where longer and wider branches occur.

Branch diameter

For the six candidate trees the frequency distributions of field and automatic branch
diameter measurements were calculated, as shown in Figure 6.7. We used a bin-size
0.005m to estimate the diameter with the HARPER-method. A high similarity of the
histogram shape could be observed and assessed by linear regression (Table 6.2). A
Chi-squared test to evaluate the good results of the histograms showed that there is
no significant difference between the frequency distributions of field measurements
and the automatic estimations. For all trees correlation coefficients above 0.9 for the
diameter could be achieved (Table 6.2).

We noticed differences from the manual field measurements of up to 2 cm due to bulges
not considered in the manual measurement. The field measurements were partly made
with a measuring tape, which measures the convex hull of a branch, while the au-
tomatic procedure measures the smallest distance to the skeleton of the data points
obtained from the hull and selects a suitable bin close to the diameter. These results
are comparable to the results found in [Henning and Radtke, 2006], who evaluated the
measurement error of trunk cross sections in a forest using a terrestrial laser scanner.
They observed errors in the order of 1cm to 2 cm in the diameter measurements. The
better correlations found for the tree diameter compared to the length measurements is
explained by the differences induced by different approaches for branch decomposition
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between field measurement and automatic estimation. The results here show that the
frequency distribution of diameters is robust to branch hierarchy errors resulting from
the branch segmentation process.

6.1.5 Conclusion

This section presents a new approach for extracting the branching architecture from
leafless apple trees. This approach is based on a skeleton extraction procedure based
on terrestrial laser scan data. The similarity between the frequency distributions of the
field measurement and the automatic estimations was assessed by a linear regression.
On selected examples we showed that high correlation between frequency distributions
of manual validation measurements and automatically extracted branch length detec-
tion is achievable, although problems with gaps in the point cloud data were obvious:
The frequency distributions of the length estimations for lengths above 5cm correlated
with coefficients of 0.41 to 0.78, while the diameters, where the effect of gaps does not
directly influence the correlation, showed much better correlation. The frequency dis-
tributions of the diameter estimations show a similar shape for diameters bigger than
0.5 cm. The correlation coefficients of all 6 trees are above 0.9, and show that the
branch segmentation has limited influence on the diameter distributions. The denser
the canopy structure of trees, the more gaps are to be expected in the scanned data, a
problem which remains to be solved in the algorithmic calculation.

Skeletonization algorithms such as the proposed SkelTre method provide a basis for
an adequate gap-filling strategy in 3D-point clouds with a high degree of occlusion.
Furthermore, a strategy is needed to encode uniquely the branching of the tree in the
field. This is concluded from the result that the diameters show much better correlation
than the length estimations. An algorithm derives the segmentation into branches based
on defined rules. A human measuring in the field decides subjectively where a branch
begins. For example small differences in the branch origin ,e.g. the first two branches
from the bottom on the test tree trunk, may be ordered differently. Furthermore, the
amount of branches represented in the data and measured in the field varies, because
thin branches are not captured by the laser scanner. With the given validation data,
containing only manually measured length and order of branches, it was not possible
to derive parameter values for individual branches. However, in the next section we
will validate the diameter on airborne data on a predefined location.

The overall length of the automatically extracted skeleton and the sum of the branch
lengths as obtained by the field measurements differed on average by only 7.5%. Di-
ameters could be extracted for 72% of the overall skeleton length on average. The loss
of extractable diameters compared to the extracted skeleton length is explained by the
strong undersampling of the finer branches. The entire extraction process of branch
length and diameters was carried out without allometric relationships.
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Figure 6.7: Frequency distributions of automatically detected (green) and hand measured (red)
branch diameters. The histograms are binned in 0.005m bins per branch class.

81



CHAPTER 6. EXTRACTION OF BRANCH LENGTH AND DIAMETER OF
TREES

6.2 Delineation and stem diameter estimation from
Airborne Laser Altimetry

6.2.1 Introduction

Skeletons determined from airborne data can be used in several application domains.
In forestry the diameter at breast height (stem diameter at 1.3m height) of individual
trees is an important parameter to estimate other parameters like the leaf area index
[Jonckheere et al., 2004] or to obtain insight in the carbon water relations in forests
[Köstner et al., 2004]. Furthermore, the diameter at breast height is often used for
hydrological applications, because standing trees influence the water flow in flooded
areas, [Straatsma and Baptist, 2008]. Recent high density LiDAR data give a new
possibility to measure the diameter at breast height of single standing trees directly.
In [Fugro Aerial Mapping, 2008], it is shown that the FLI-MAP 400 system obtains
high density LiDAR data with approximately 50 points per square meter. Successful
estimation methods to calculate the stem diameter directly with the FLI-MAP data,
rather then making a species dependent estimation, as described in [Tomokaki, 2005],
are not known until now. After describing the FLI-MAP 400 system as an example of a
state-of-the-art airborne platform, an overview of current species dependent estimation
methods of diameters at breast height is given. After that the species independent
retrieval is shown in three steps:

1. Delineation of individual trees;

2. Skeletonisation of single trees, and

3. Histogram analysis of the point distances to the skeleton.

An extensive result section shows first the possibilities on two test scenarios and sec-
ondly on a delineated forest. The first test scenario is the extraction of the diameter at
breast height from an artificial data set which simulates an ideal noise-free FLI-MAP
400 system on a group of 18 trees. The second scenario includes four test cases which
are delineated manually. Both scenarios avoid the influence of a delineation algorithm.
Secondly, a whole forest patch is delineated automatically with the method described
in [Rahman and Gorte, 2009], and diameters are extracted. This section is strongly
based on the paper [Bucksch et al., 2009b]

6.2.2 FLI-MAP 400

The FLI-MAP 400 System, which is the follow up of the original FLI-MAP Sys-
tem, [Fugro Aerial Mapping, 2008], is an airborne LiDAR system that is able to obtain
approximately 50 height points per m2 when flying at 100m above the ground at 20
m/s speed (see Table 6.3). The FLI-MAP 400 System is designed for acquisition from
a helicopter, that enables lower flying height compared to an airplane. The lower flight
height is resulting in data sets that are 10 times denser than traditional laser altimetry.
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According to [Fugro Aerial Mapping, 2008], the main characteristics of the FLI-MAP
400 System are:

1. Operating at very low altitudes (50-150 meters);

2. Four integrated photo and video cameras;

3. Double laser system to eliminate shadowing.

The two lasers in the system are reflectorless range finders, firing 150.000 laser pulses
per second at a 60◦ angle off onto a plane perpendicular to the flight path. The reflected
laser intensity also gives information on the observed target, but is provided as an uncal-
ibrated product. In the Netherlands, airborne laser altimetry has been used for the pro-
duction of a detailed elevation model of the whole country. The project, known as AHN
(Actual Height model of The Netherlands), [Rijkswaterstaat, 2008], is developed to pro-
vide detailed information about elevation, highly demanded by water boards, provinces
and the national government. A comparison between the new FLI-MAP 400 system,
its predecessor FLI-MAP and systems used for obtaining the AHN, [Rijkswaterstaat,
2008], results in the values listed in Table 6.3. The FLI-MAP 400 system is one system
used to obtain the data for the upcoming AHN2, [Rijkswaterstaat, 2008]. AHN2 is the
successor of the AHN project and provides more dense data than the original AHN.
Therefore new data processing methods exploiting the strength of the FLI-MAP 400
system will have applications at large scale.

FLI-MAP FLI-MAP 400 AHN Systems
Aircraft height 50-150m 50-400m 1000m
Aircraft speed 50-80 km/h 50-80 km/h 250 km/h

Pts/m2 100m height 10-25 ca. 50 1

Table 6.3: Comparison of three LiDAR systems.

6.2.3 Species dependent measurement of the diameter at breast
height

Before estimating the diameter at breast height, the extraction of single trees from
the data set is necessary, e.g. [Meia and Durrieu, 2004], [Naesset and Okland, 2002]
and [Popescu et al., 2003]. This extraction process is commonly called delineation.
Delineation of trees is for example possible by looking at the density distribution of
height points. After computing the neighborhood of every datum point, the local den-
sity maxima are extracted to locate the tree tops. The assumption of a species depen-
dent shape model of a tree supports the allocation of points belonging to one individual
tree, [Rahman and Gorte, 2008]. Use of the crown size and tree height as input for a
species dependent diameter estimation is described in [Andersen et al., 2006], [Bud-
denbaum and Seeling, 2007] and [Clark et al., 2004]. This assumes an allometric rela-
tion between crown size, tree height and stem diameter. The state of the art approach,
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described in [Korpela et al., 2007] to estimate the stem diameter at breast height is to
estimate the crown radius first as a function of the tree height incorporating species de-
pendent parameters. The tree height is derived from the LiDAR data. The diameter at
breast height is then estimated as a function of tree height and maximum crown width
also incorporating species dependent diameters. The major disadvantage of allometric
relationships is, that the species has to be known, and does not allow the direct mea-
surement of individual trees. Examples of such allometric approaches can be found
in [Hyyppä et al., 2005], [Kalliovirta and Tokola, 2005], [Laasasenaho, 1982].

The approach introduced in this thesis does not require species dependent information
to estimate the stem diameter. The estimation is done with the support of the SkelTre
skeleton, describing the structure of the tree, as described in Chapter 4.

6.2.4 Methodology

Tree delineation and pre-filtering of the data

Delineation describes the process of extracting single trees from a given data set. Here
we used the delineation method described in [Rahman et al., 2009] and [Rahman and
Gorte, 2009]. In this delineation process a squared tile of the forest represented as a
three-dimensional point cloud is used to determine the crown base height. The crown
base height is found by extracting the level sets with the height function from the data.
Every level set is then characterized by the number of points belonging to it. The last
occurrence of a significant local minimum of points is taken as the crown base height.
All points above the crown base height are projected onto the xy-plane. Again the
local density of the projected points is calculated within the xy-plane. Every significant
density maximum is taken as an initial seed point, which is assumed to be a tree top.
From every seed point region growing is applied to find the minimum density in all
directions of the xy-plane. The area enclosed by the minima in all directions is assumed
to be the area of one delineated tree in the original data set.

A histogram is used to remove understorey vegetation from the delineated tree. The
variable considered here is the distance between the data points of a single tree and a
line perpendicular to the ground starting at the detected tree top. The bins of this single
tree histogram are assumed to represent consecutively the components tree crown, tree
stem, understorey vegetation and ground surface. The envelop of the frequency distri-
bution marks each part of the tree histogram automatically as one of the components.
The delineation process uses eight input parameters. The delineation seems to be most
sensitive to the estimated minimum radius and maximum crown radius. As shown later,
this delineation approach results in trees that are identified by the algorithm but could
not be retrieved in the field (overdelineation) and trees which are present in the field,
but not delineated properly (underdelineation).
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(a) (b) (c) (d)

Figure 6.8: Principle of the skeletonization: (a) point cloud of a delineated tree (b) the octree
organization (c) the extracted octree-graph (d) the resulting skeleton

Skeletonisation of the trees

The delineated trees are skeletonized with the SkelTre algorithm, see Chapter 4, orig-
inally developed for terrestrial laser scan data. A single delineated tree (Figure 6.8a)
is divided by an octree subdivision into small point cloud parts (Figure 6.8b). From
this octree organization a graph is extracted (Figure 6.8c), which is retracted to a one-
dimensional skeleton (Figure 6.8d). The SkelTre algorithm requires only the input of
one user defined parameter for the purpose of airborne data. The required input param-
eter is the minimum cell size.

Diameter measurement

The diameter measurement is a 3-step approach: first the stem is extracted from the
skeleton, secondly a representative bin is chosen by evaluating the histogram of dis-
tances of the point cloud points to the skeleton. Thirdly, the points belonging to the
selected bin are projected onto a plane with respect to the direction given by the skele-
ton. The smallest diameter of an imprecise point set, [Löffler and van Kreveld, 2007],
of the projected points is used as a criterion to decide if a diameter estimation is valid.

Stem extraction The skeleton graph consists of vertices and edges (see Figure 6.8d).
The extraction of the stem from the skeleton graph follows a simple rule. The stem
is extracted by evaluating the incoming and outgoing edges of the skeleton graph’s
vertices, starting at the root. The root is defined as the vertex assigned to the smallest
z-coordinate of the whole skeleton graph. In case of more than one outgoing edge, the
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edge forming an angle closest to 180 degree with the incoming edge is selected. The
stem is saved as an one dimensional list of vertices, ordered by their adjacency. This
strategy was already introduced in Section 6.1.

Every vertex in the skeleton subgraph belongs to a subset or segment of the original
point cloud, initially derived from the octree subdivision. In order to select point cloud
points relevant for obtaining the stem diameter, the skeleton is followed from the root to
the stem segment that covers the diameter at breast height (1,30m above the ground).
A minimum number of points along the stem is needed to evaluate the stem diame-
ter. Here we choose a minimum of 40 points as a threshold for a sufficiently sampled
stem to obtain a meaningful histogram. If the two vertices connected by the skeleton
edge, which is covering 1,30m height correspond to less than 40 points in the point
cloud, than the next higher segment is added to the evaluation. We keep adding higher
segments, until 40 points are collected.

Histogram evaluation The calculation of the distances between point cloud points
belonging to the stem and the skeleton graph, is done by determining for each point the
distance to the skeleton edge at the height of the point.

d(p) =
|(x2 − x1) × (x1 − p)|

|x2 − x1|
�

�

�

�6.1

where d denotes the distance to a line defined by two points x 1 and x2, which are the
coordinates of the two vertices of an edge. And p denotes a point cloud point, such that
z(x1) ≤ z(p) ≤ z(x2), where z(.) denotes the z-coordinate.

From the calculated distances to the skeleton, a histogram is plotted. Here it is assumed
that the majority of distances is correct and results in a peak value in the histogram.
The bin corresponding to the peak value is the so-called peak bin. For diameter evalu-
ation the peak bin closest to the median is chosen because local blunders and starting
branches can form additional unwanted peaks. The mean of the distances in the peak
bin is assumed to be the estimate of the radius of the tree. In the data set evaluated here
a bin size of 5cm distance was considered suited.

Validity criterion

The estimated diameter is evaluated to enhance the robustness of the method. As-
suming that the stem is not significantly changing in its diameter along the first 4m
from the root, the stem is followed upwards until a minimum of 40 points is obtained
for evaluation. A simple threshold is used to determine a valid stem extraction. The
motivation for such a validity criterion is given by two problems leading to potential
underestimation of the diameter:

1. Shadowing may not allow the tree to be scanned from all sides, which will in-
fluence the centeredness of the skeleton, because the point cloud contains not
sufficient geometric information.

2. Blunders can have a strong influence on the skeleton generated from the sparse
airborne data, because they force the embedding of the skeleton outside the stem
center.
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Figure 6.9: The inner diameter, dinside and the outer diameter, doutside

Shadowing or blunders can lead to bad embedding of the skeleton graph. Bad embed-
ding can lead to an unreliable centering of the skeleton and therefore leads to signif-
icantly smaller distances to the skeleton. These small distances to the skeleton result
in an underestimation of the diameter. Because of this potential underestimation, we
evaluate the estimated diameter dH in four steps:

1. The points used for estimating dH are projected on a plane perpendicular to the
local skeleton direction.

2. An approximation dq of the outer diameter doutside of the projected points is de-
termined (Figure 6.9).

3. The threshold value is computed as dt =
1
2 dq

√
3, to obtain an approximation of

the inside diameter of the projected points (Figure 6.9).

4. If dH ≤ dt, then dt is taken, instead of dH as an estimation of the stem diameter
at breast height.

First, each vertex v of the skeleton part used to estimate dH corresponds to a set of
points Pv in the point cloud. Starting from the vertex v i of the skeleton with the largest
height value, its corresponding points Pi are projected onto a plane perpendicular to
the projection direction given by the edge connecting v i and vi−1. Corresponding points
Pi−1 etc. for vertices below vi are projected further similarly until the vertex v i−n with
the smallest height value is reached. The resulting points are collected in one common
plane. In practice only two projections are needed in most cases, because the minimum
octree cell size needed for airborne data is often 1.5-2m.

After projecting the points, we approximate doutside for the outer diameter of the set Q
of projected points (Figure 6.9). Let Q = {q1, ..., q|Q|‖ be the set of all projected points.
Then,
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dQ =
1
|Q|

|Q|∑

i=1

maxp∈Q‖p − qi‖,
�

�

�

�6.2

is the average of the largest distances for every point q i to the points in Q. dQ is an
approximation of the outer diameter doutside. Note here, that locally extreme outliers
would result in a branching of the skeleton. These extreme outliers are removed by the
stem extraction. Because of this the computation in Equation 6.2 may only be affected
by smaller single outliers. Their influence is moreover limited by taking the average
overall largest distances.

The threshold dt used here in step 3 is given in [Löffler and van Kreveld, 2007] for
modeling the smallest diameter of an imprecise point set as an constant factor approx-
imation, based on the smallest enclosing circle of a point set. Roughly, an imprecise
point is modeled by a circular region to describe the possible difference between the
location of a point on a surface and the measured value representing the point. This
difference was already stated in Section 2.1.

6.2.5 Results and Validation

The validation of the method is done in 3 steps. First on a noise-free simulated test data
set, which simulates the point density of the FLI-MAP 400 system. From this simula-
tion insight in the occlusion effect in a forest, when scanned with an airborne LiDAR
system, is obtained. Secondly, four representative test cases are analyzed in detail and
compared to a standard cylinder fitting result. As a third step we use an automatic ap-
proach to delineate a forest sampled with the FLI-MAP 400 system, Figure 6.12, in the
“Duursche Waarde” in the Netherlands, Figure 6.14. From these delineated trees the
diameter is derived. All delineated trees from the test area are illustrated in Figure 6.12.

6.2.6 Simulated data

The data used in this thesis, [Rahman, 2011], simulates 75 points per square meter
measured from the top of an artificial forest patch. This forest patch contains 18 trees
with diameters ranging equally in 0.1m steps from 0.3m to 2.0m. Examples of these
trees are shown in Figure 6.10. The simulation data is free of noise and incorporates
only the effect of shadowing. Figure 6.11 shows the results of the 18 test trees. Insuffi-
cient point density prevented the analysis of three trees using the HARPER method on
the simulation data. For the 15 remaining trees an excellent correlation coefficient of
0.97 could be obtained. The scatter of the observations with respect to the regression
line is expressed by the root-mean-square error of the residuals 1 to the regression line
and resulting in 0.05m. In the experiment here we used a minimum cell size of 2m to
achieve the good correlation results with the SkelTre method as shown in Figure 6.11.

1more often the term standard error is associated to the root-mean-square error of the residuals in a
regression analysis
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Tree Height: 45m
Breast height Diameter: 2.0m

Tree Height: 27m
Breast height Diameter: 1.2m

Tree Height: 7.0m
Breast height Diameter: 0.3m

Figure 6.10: Fli-Map 400 simulation with 75 points per square meter. 3 example trees from the
simulation data set with the breast height indicated by a red line

Figure 6.11: The regression analysis of the 18 test trees from the simulation data set. Three
trees could not be measured and were excluded from the regression analysis.
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Figure 6.12: The delineated trees from the forest patch in the Dutch RD coordinate system.
Note that this is the delineation result and not the actual map of the trees.
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σ = 0.20     μ = 0.45

σ = 1.62     μ = 1.37

σ = 0.40     μ = 0.50

σ = 0.05     μ = 0.11

Manual measurement: 0.79 m

Histogram analysis: 0.84 m

Cylinder fitting: 0.70 m

Manual measurement: 0.49 m

Histogram analysis: 0.45 m

Cylinder fitting: 0.58 m

Manual measurement: 0.55 m

Histogram analysis: 0.68 m

Cylinder fitting: 0.89 m

Manual measurement: 0.34 m

Histogram analysis: 0.43 m

Cylinder fitting: 1.13 m

 1

 2

 3

4

Breast height diameter of the four selected test cases

breast height

breast height

breast height

breast height

Figure 6.13: Four test cases marked at breast height. For every tree the manual measurement,
the HARPER estimation and a cylinder fitting result is given as a diameter estimation: 1.) A
single standing tree, 2.) a single standing tree with noise around the stem, 3.) a tree from the
border of a forest with huge shadowing parts and 4.) a tree delineated from inside a forest.
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6.2.7 Four test cases

Four test cases of individual FLI-MAP 400 sampled trees were chosen to evaluate the
HARPER method (Figure 6.13). A simple single standing tree (Nr.1), a single stand-
ing tree containing noise on the stem (Nr.2), a tree on the border of a forest with huge
shadowing (Nr.3) and a tree delineated within a forest (Nr.4). For every tree the point
cloud with its corresponding skeleton, the extracted stem, the histogram to be ana-
lyzed and the measurement results are given. We give in total three measurements for
each test case. The manual measurement as a ground truth, the result obtained by the
HARPER method and the result of a fitted cylinder. The cylinder was fitted with the
point cloud package Cyclone 5.7 of Leica Geosystems, [Leica Geosystems, 2009] by
selecting a subset of the point cloud by visual analysis. The four test cases were delin-
eated by hand in order to eliminate the influence of the delineation method. The first
tree can be seen as a standard case giving good results. The second tree is an example
where insufficient points to estimate the diameter are present. A tree suffering from
huge shadowing effects (Tree 3) still gives an acceptable result, even if the skeleton
extraction was far from optimal. A 13cm difference to the validation measurement was
obtained. The tree from the interior of the forest (tree 4) shows a clear peak in the
histogram. A huge difference is observed in the comparison between the fitted cylinder
and the automatically estimated diameter. In this case the stem was not represented
properly in the point cloud. By applying the introduced validity criterion an estimation
of the diameter at breast height could be obtained that only deviates 10cm from the
manual measurements. In all four test cases the histogram analysis performed better
than the cylinder fitting with standard software.

XX

Figure 6.14: The test area in the Netherlands marked with a red box and the investigated forest
patch indicated by a yellow cross.
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Figure 6.15: The trees delineated from the data set. Note the missing stems of some trees.

6.2.8 Delineated forest trees

49 trees were delineated from a FLI-MAP 400 data set in Figure 6.15. The data set
was collected over a mixed forest stand containing leaf and pine trees in the “Duursche
Waarde” in the Netherlands. The problems arising in this particular area are mostly
connected to finding back the trees in the forest. The dense canopy does not allow
precise GPS measurements to localize tree positions reliably. Furthermore, depending
on the chosen input parameters of the delineation algorithm [Rahman and Gorte, 2009],
[Rahman et al., 2009] trees may be wrongly classified as understorey vegetation. In the
patch in Figure 6.12 a manual inspection revealed five trees that were not detected by
the delineation method. One tree that was delineated from the data set was lying on the
ground at the time of the validation measurement. Some trees could not be retrieved
in the forest. In total it was concluded that 49 trees were usable for validation. From
these 49 trees 14 had not sufficient stem points available for analysis after filtering
understorey vegetation.

The diameter of the 49 trees within the selected forest patch was extracted with the
HARPER method. The overall standard deviation associated with our estimation
method is 0.19m. The diameters show an average deviation of 28cm from the man-
ually obtained values. Especially the delineated trees in the interior of the forest lead to
strong under estimations. Table 6.4 and 6.5 show the manual and HARPER estimations
of the diameter at breast height of trees retrieved in the forest. The tree numbers are
corresponding to the numbers given in Figure 6.12
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Tree ID HARPER Manual
1 43cm 39cm
2 n.a. 52cm
3 45cm 37cm
4 24cm 36cm
5 35cm 43cm
7 35cm 47cm
8 64cm 47cm
9 66cm 48cm
10 66cm 56cm
11 28cm 38cm
14 24cm 40cm
15 20cm 43cm
16 44cm 37cm
17 32cm 45cm
18 n.a. 37cm
19 n.a. 172cm
20 14cm 40cm
21 39cm 37cm
22 56cm 33cm
23 n.a. 69cm
24 16cm 30cm
25 36cm 52cm
28 28cm 46cm
30 17cm 51cm

Table 6.4: Comparison between the HARPER diameter estimation and the manually measured
diameter in the field for the trees 1-30. The tree numbers are correspond to the numbers in the
tree map of Figure 6.12. n.a.= not available and denotes a tree that was not retrieved in the
delineation.
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Tree ID HARPER in cm Manual in cm
36 19cm 49cm
37 16cm 44cm
38 n.a. 34cm
39 36cm 2 Stems: 60cm and 55cm
40 n.a. 39cm
41 83cm 32cm
42 n.a. 50cm
45 20cm 45cm
46 47cm 19cm
50 n.a. 37cm
53 25cm 46cm
55 65cm 39cm
57 n.a. 54cm
59 n.a. 46cm
60 25cm 39cm
61 n.a. 34cm
62 n.a. 54cm
63 n.a. 47cm
65 20cm 45cm
68 32cm 38cm
69 67cm 34cm
70 30cm 28cm
71 15cm 28cm
74 120cm 41cm
75 n.a. 25cm

Table 6.5: Comparison between the HARPER diameter estimation and the manually measured
diameter in the field for the trees 31-75. The tree numbers correspond to the numbers in the
tree map of Figure 6.12. n.a.= not available and denotes a tree that was not retrieved in the
delineation.
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6.2.9 Conclusion

In this section we presented a proof of concept for a method to automatically extract
the diameter at breast height from trees sampled by the high density airborne laser
data system FLI-MAP 400. On a simulated data set of 18 trees and on four individual
scanned test trees the HARPER method was demonstrated. Furthermore, this HARPER
method was validated against manual measurements of 49 trees in a forest patch in the
“Duursche Waarde” in the Netherlands. The results indicate strongly, that there is
need for new delineation methods, in order to make the HARPER method feasible for
complex forests. Several trees were found, which contain no stem data.

Because of the difficulty to find back individual trees in a complex forest, it was not
possible to get a large and reliable validation data set based on a delineation. Results
on the simulated trees and on the four individual trees are however promising. For fur-
ther validation, more data of isolated trees should be collected. Two aspects have to be
investigated in more detail, the influence of the delineation process and the influence
of the FLI-MAP 400 system. Nevertheless, this case study gives enough evidence to
conclude that skeletonization of trees is feasible for high resolution airborne data. It
is predictable that denser data will be available in future, which positively influences
the performance of already known delineation algorithms and the quality of the skele-
tonization. At the time of finishing this thesis I already saw data sets of up to 120 points
per square meter. Here we used just 75 points per square meter.

6.3 Summary

In this chapter two applications of the SkelTre method were presented using the newly
developed HARPER method to extract a diameter from a point cloud supported by a
SkelTre-skeleton.

In Section 6.1 an application to automatically measured orchard trees was presented.
This application showed the possibility to extract the tree parameters branch length and
diameter from terrestrial laser data. The trees used in this research contained branch
diameters smaller than 1cm. Because of that, this application is an excellent example
of the data handling problems described in Chapter 2. The main problems found in
this application are the difference between manually measured branch hierarchy in the
field and the automatically extracted branching hierarchy. On strongly undersampled
fine branches the skeleton becomes disconnected. This disconnection results in a large
amount of branches shorter than 2cm. An assessment of the individual values for length
and diameter of branches was not possible with the given validation data. To derive 1-1
correspondences a new experiment is necessary, where markers are placed in a less
complex tree crown. A good experiment would be an experiment in a greenhouse,
without human intervention changing the form of the tree (e.g. branch pruning) and
free of weather influences. Nevertheless, a validation of the diameter estimation on a
predefined location on the tree trunk was possible on the simulated airborne data set.

The second application example in Section 6.2 is the estimation of the diameter at
breast height from high density airborne data. This application is aiming strictly on
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future possibilities of skeletonization methods. It was shown on simulated and real
world test cases that it is possible to extract the diameter at breast height from a sparse
airborne laser point cloud, although new methods will be needed to delineate the trees
from each other to obtain reliable results on a large scale.

Both applications do not require species-dependent allometric relationships.
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7
Conclusions

In this concluding chapter we first review the results of this thesis on the basis of the
objectives in Chapter 1. After that we give an outlook towards possible applications
and extensions of the methodology developed in this thesis.

7.1 Summary of the results

The core result of this thesis is the development of the SkelTre-skeleton algorithm, that
extracts a skeletal structure from point cloud data. The developed skeleton algorithm is
especially designed to extract a skeleton from the imperfect data obtained by scanning
devices such as terrestrial laser scanners. The idea for developing such an algorithm
finds its origin in the wish to analyze laser scans of trees. Therefore, the main objective
reads as: Is it possible to automatically reveal the hidden structure of botanical trees
from laser scan data?. Answer to this main objective was given by investigating the
sub-objectives, as given in Section 1.2. The objectives are grouped into objectives
regarding the methodology and objectives aiming on applications. First we discuss the
methodology related expected results.

1.) The extracted skeleton is centered within the represented object and represents the
order of object parts correctly, to enable the extraction of tree parameters from point
clouds of botanical trees.

In Chapter 4 a strategy to embed the extracted skeleton into a point cloud was given.
It was shown in Chapter 5 on a point cloud of a tree that this strategy performs better
than a previous algorithm of the same class. From the elongation direction of the object
the branching points of the object are derived and encoded in the SkelTre-Skeleton, as
stated in the attributes for topological preservation in Chapter 2. The resulting skeleton
is a graph embedded into the point cloud, where every vertex of the graph is related
to a part of the point cloud. The success of this embedding strategy is also shown in
practice on several examples of scanner obtained point clouds in Chapter 5. These
point clouds represent trees and objects that significantly differ from the form of a tree.
We investigated the attributes centeredness and transformation mentioned in Chapter
2.
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2.) The skeleton has to be extracted from an unorganized point cloud, which is the
given input from a registered laser scan.

Through the whole thesis no assumption was made on a predefined order of the points.
Because of that the algorithm is capable to process unorganized point cloud data. The
new skeletonization method was demonstrated and analyzed on 6 practical examples of
object sampled as imperfect point cloud in Chapter 5. These examples were discussed
in detail in relation with the difficulties arising with the imperfectness of the data and
the object form. These difficulties were described in Chapter 2 as the handling of
imperfect data requirement.

3.) A skeleton extraction process must be robust to noise, varying point density and
undersampling as produced by measuring instruments.

An octree was used to subdivide the point cloud spatially into cubic cells. Investigating
the point cloud per cell results in local elongation descriptions of the object. These
elongations are often derivable even under the presence of noise, undersampling and
varying point density. A robustness criterion was modeled into the algorithm to further
enhance stability and to deal with different noise characterizations of other point cloud
generating instruments in future. The data used in thesis were obtained with different
scanning devices to produce the point clouds. Scanning devices such as close range
scanners where used to e.g. produce the point cloud of the fertility statue in Chapter
5. Mid-range scanners like terrestrial laser scanners sampled the trees discussed in
Chapter 5 and Chapter 6.1. In Chapter 6.2 airborne scanners were used to obtain data
from individual trees and forests.

4.) Laser scanning produces huge amounts of data. Therefore, the skeletonization algo-
rithm should be fast. The algorithm speed is typically expressed by the computational
complexity, which is a machine independent measure of how the algorithm scales in
time by increasing the number of input points,

In Chapter 5 it was shown that SkelTre scales as O(n) with the number of octree cells,
i.e. it can deal efficiently with huge data sets. The localized concepts of SkelTre enable
this particular algorithm to be parallelized, such that an adaption can be developed for
super computing facilities. In practice we have shown the skeletonization on point
clouds of up to 1 million points, (Chapter 5). It should be noted, that the algorithm
performance depends more on how complicated the structure of the object is, rather
then on the amount of input points. This measure was stated in Chapter 2 as an attribute
of computational efficiency.

5.) The algorithm should contain as few user input parameters as possible

SkelTre contains only one input parameter, the minimum cell size, which makes the
SkelTre algorithm user friendly. This input parameter allows to adapt the algorithm to
different kinds of data and defines how many changes in the local elongation direction
are considered on the object. Therefore the algorithm has the hierarchy attribute stated
in Chapter 2 for computational efficiency.

The possible practical value of this thesis was reflected by three sub-objectives:

1.) The applicability of the algorithm should be demonstrated on example trees. If the
objectives above are achieved, the practical result is the extraction of branch lengths
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and diameters along with the branching hierarchy of a tree.

The major benefit of using skeletons combined with terrestrial laser data is that no
species information is involved in the tree parameter calculation. This possibility in-
dicates strongly that terrestrial laser scanning has the potential to provide species in-
dependent measurements of trees. This was shown on two example applications. The
first application considers estimates of branch length and diameter of fine structured or-
chard trees which were scanned with a terrestrial laser scanner. The second application
is the breast height diameter estimation of trees using high density airborne data.

Chapter 6.1 introduced the analysis of terrestrial laser scanned orchard trees to deter-
mine branch length and diameter. In order to assess the branch length and diameter
extraction, the frequency distributions for a given tree of both, manual and automati-
cally extracted branch lengths and branch diameters were given. For both parameters,
a high correlation between field and manual measurement was found. Especially the
correlation for the diameter is high: above 0.9 for all investigated trees. In order to ex-
tract the branching hierarchy from a laser scanned tree, the SkelTre skeleton was used
to segment the point cloud into ordered branches. The SkelTre skeleton is suitable for
this segmentation task, because every vertex in the skeleton relates to a unique part of
the point cloud. The very thin branches of the orchard tree considered in Section 6.1
are not sufficiently captured by a scanner. Because of that the manually derived hierar-
chy differs to a large extent from the automatically derived hierarchy, especially at the
branch ends.

The second introduced application is obtaining the breast height diameter from high
density airborne data. Obtaining the breast height diameter relies on the new HARPER
method (Section 6.2) to derive the diameter from a point cloud by using the skeleton.
HARPER extracts a subset of points at a defined location in the point cloud. This sub-
set is used to estimate the diameter at 1.3m height of the trunk, the so-called breast
height diameter. A point cloud obtained by simulating a high density airborne laser
scan over a forest model was used in an experiment to validate the trunk diameter ex-
traction. Between the diameters used as an input to generate the tree models and the
diameter estimates of the HARPER method an excellent correlation coefficient of 0.97
was achieved. Manually delineated examples of single standing trees showed good
results as well. On the manually delineated trees of real airborne laser data the es-
timated diameter using HARPER was better than the diameter obtained by cylinder
fitting in comparison to the values obtained by manual field measurements. The added
value of this experiment is that it demonstrates the future potential use of the developed
methodology: the simulated and real point clouds fulfill the requirements of the cur-
rently constructed Actual Height Model of the Netherlands (AHN2). AHN2 will cover
the whole of Netherlands with such airborne laser data in 2013.

2.) Identify current limitations in the application of skeletons due to common practice
or dependency on other algorithms.

It was difficult to compare individual branch lengths as obtained from field measure-
ments and automatic SkelTre-based estimates. Furthermore, an analysis of the individ-
ual branches was not possible, because the configuration of branches measured in the
field on one hand and the extracted configuration captured by the laser scanner on the
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other hand show high differences. I would recommend a limited experiment on trees
with thicker branches and less complex crown to validate parameter values, extracted
by means of the SkelTre algorithm, such that 1-1 correspondences can be found by e.g.
the use of markers.

The extraction of the breast height diameter from high density airborne data is mainly
constrained by the performance of the used tree delineation algorithm. Current delin-
eation methods have no guaranteed performance on a whole forest, because not all trees
found by the delineation method were present in the forest. Also it is still not decidable
how the removal of understorey vegetation influences the estimation of breast height
diameter.

3.) Test the performance on objects other then tree structures, to evaluate the generality
of the introduced concepts. A tree contains no loops and contains obvious elongation
in its branches. The introduced framework in Chapter 4 does not restrict to the number
of loops formed by an object. In practice we found no restrictions for the SkelTre
algorithm on non-tree-structures forming up to 4 loops and an outer form with less
elongation in Section 5.2.2.

By answering the objectives above I conclude that the main objective:

Is it possible to automatically reveal the hidden structure of botanical trees from laser
scan data?

is answered with: YES.

As a result of this thesis the new SkelTre algorithm for point cloud skeletonization
as described in Chapter 4 was developed. This algorithm was evaluated in Chapter 4
and Chapter 5, with respect to the desired requirements topological preservation, met-
ric representation, handling of imperfect data and computational efficiency given in
Chapter 2. This evaluation also revealed, that the shortcomings of current algorithms
as introduced in Chapter 3 are improved. Furthermore, the modularity of the algo-
rithm allows easy further development on embedding and robustness of the skeleton
algorithm.

7.2 Outlook and future work

7.2.1 New methodology

In my opinion an intermediate product of the SkelTre method, the so-called octree
graph, is useful for extracting a surface from a point cloud. The octree-graph (Section
4.2.2) contains ideally all information on how the object surface is placed in Euclidean
space. Furthermore, SkelTre can be used to topologically constrain surface reconstruc-
tion methods acting on the point cloud as a whole to improve the surface reconstruction
result.

Another basic problem in laser obtained data is the registration. I suggest strongly
that SkelTre will be used to register point clouds based on the given relations between
the original point cloud data and the skeleton itself. Within a typical registration pro-
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cess the branching points can be used as features on which the initial transformation
between two point clouds can be calculated and the connections between branching
points can be exploited to perform the fine registration on the initial data set. Such
approaches could be useful, if small changes affect the different scans in a registra-
tion procedure. Such small changes could be caused by rain between two scans, for
example, resulting in heavier and therefore sagging branches. Another aspect is that
the targets placed in the surrounding tree crowns to assure good target distribution are
always slightly moving because of wind. I expect that placing targets in the tree crowns
is not necessary, if a skeleton is used to perform the registration.

As a recommendation for further development of this particular skeleton I would sug-
gest to replace the octree structure by a data structure utilizing spheres instead of cubes.
For example a Poisson disk sampling, [Cline et al., 2009], can be used to sample the
initial point cloud. Such an subdivision of the point cloud may enable to use more than
6 principal elongation directions. Nevertheless, I expect several years of research on
that before this will be solved.

7.2.2 Tree and forest applications

This paragraph gives an outlook of applications where SkelTre might be used in fu-
ture. Straightforward is the calculation of the individual wooden tree volume based on
SkelTre and the HARPER method to estimate the diameter.

Secondly I expect skeletonizations in general to be a solid basis to estimate forest
parameters such as crown base height, crown density and average distance between
trunks. All the named parameters characterize the analysis of the free space within a
forest, which may be linked to quantities like the amount of insects in the crown, the
turbulent exchanges of momentum heat, vapor and CO 2 or how much light is penetrat-
ing at certain locations through the crown on the ground.

SkelTre may also be used for solving the problems of the delineation of single trees
from high density airborne data of trees, as introduced in Chapter 6. A methodological
drawback of the delineation method used in Chapter 6.2 is that it is necessary to map
the 3D data to lower dimensions like 2D density maps and 1D histograms. The use of
a skeleton will give the chance to overcome this limitation and allow the direct analysis
on localized structural descriptions.

Species-independent measurements of tree stands with laser scanning based on skele-
tons are promising. A main benefit is that the manual collection of species information
in cities and forests could be largely avoided. This statement is closely related to the
next statement.

The, in my opinion, scientifically most relevant, but wide open question is how much
species information is coded in the tree structure. Many parameters such as CO 2 ex-
change, resilience to climate variability or dust filtering capabilities depend largely on
the tree species. Furthermore, the identification of tree species can also enable the
search for unknown tree species.
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7.2.3 Other applications

A specific closely related application, where I see SkelTre already as a useful tool is
the investigations of river and valley networks , [Baker et al., 1992], recorded as a point
cloud. A point cloud of such a network can be derived e.g. from satellite stereo images.
These networks have a very similar structure to the tree crowns used in this thesis. Such
an application could greatly make use of the modularity of SkelTre. For example the
robustness criterion can be used to model error behavior on different data.

Furthermore, I expect skeletons to be useful as a data structure to encode point clouds
or their derived products such as 3D models in databases. Especially an application
of encoding whole cities on different level of details I consider as valuable for town
administrations. This is motivated by the fact that skeletons contain hierarchical infor-
mation about the objects and if applied to a whole scene they contain also the relation
between objects, such as houses, roads, lamp poles etc., of a city. It is already known
that skeletons are excellent object classifiers, but their use as hierarchical data structure
is to my best knowledge not widely spread.

New measurement instruments, such as range cameras, produce point cloud videos.
These point cloud videos are a new application field for skeletons. Here especially
the recognition of objects is relevant. I predict that we will have similar encodings
of these 3D videos like now in MPEG4, [Richardson, 2003], which will separate the
static background from the moving objects. Detected objects can be encoded, and
the skeleton can be used to describe the movements of the object parts of an detected
object. An example for that could be a running human or a tree in the wind.

7.2.4 A far away dream

If we look further up to the level of a dream within the application scope of this thesis,
we can even think of a model defining a tree as a measurement instrument. I believe
a lot of information is encoded in the outer form of a tree. Simply suppose that every
branch is representing a certain time span. Factors like nutrition conditions, how light
and weather influence its growth and therefore its form and structure. I believe that
there is much information encoded in the actual structure of a tree which is relevant for
our daily life and it is a matter of time until we will discover all information coded in
it. And I believe we will find such ’Ecometrics’ to express what information is coded
in the tree structure and that there is no need to cut a tree to derive this information.

7.2.5 And what about the leaves?

On a tree with leaves the first results are already promising. It seems like that SkelTre
could evolve to derive a skeleton from trees with leaves (Figure 7.1).
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Figure 7.1: (left) point cloud of a tree with leaves and (right) the SkelTre skeleton corresponding
to the point cloud on the left
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A
Glossary and Symbols

⊕ denotes the merging operation of E-Pair or V-Pair (Section 4.3) in a graph or the
morphological operation erosion (Section 3.2.1).

� denotes the morphological operation Dilatation (Section 3.2.1).

× denotes the Cartesian graph product (Section 4.2.2).

big-O notation denotes the scaling of a process in time or space. Let n be the length
of the input, then f (n) = O(g(n)) means there are positive constants c and k, such
that 0 ≤ f (n) ≤ cg(n) for all n ≥ k. The values of c and k must be fixed for the
function f and must not depend on n (Section 2.6).

CAMPINO abbreviates Collapsing and merging procedures in octree-graphs and is
a skeletonization method for point clouds based on graph-reduction.(Section
3.3.3).

computational complexity is a notion for the the scaling of an algorithm in time or
space (Section 2.6). See big-O notation.

dilatation Let A be the set of raster cells, e.g. containing point cloud points, which is
modified with a set B. Bx denotes the translation of B in direction of vector x.
A � B = {x|Bx ⊆ A}. See Section 3.2.1.

direction label belong to edges in the octree-graph and denote a principal Cartesian
direction. A label associated with an edge of the octree-graph indicates the di-
rection of the edge with a direction vector. The labels for all 3D-directions are:
Right/Left: (±1, 0, 0), Up/Down: (0,±1, 0), Front/Back: (0, 0,±1) (Section 4.3).

dominant direction indicate a vertex direction where a valid merge is possible. Let
x1, x2, x3 be the three components of vdir(v) = (x1, x2, x3). A direction of xi is
trivial if the Cartesian entries are zero for each associated edge label. A direction
xi is dominant at v, iff xi = 0, but not trivial. A direction corresponding to a
non-zero value for xi is called a non-dominant direction (Section 4.3).

E-Pair is a Pair of vertices to be merged by the SkelTre algorithm. An E-Pair
merged E-Pair generates V-Pairs. Let vi and v j be two adjacent vertices with

107



APPENDIX A. GLOSSARY AND SYMBOLS

vdim(vi) ≤ vdim(v j). Then vi forms an E-Pair with v j if: 1. vdim(vi ⊕ v j) ≤
max(vdim(vi), vdim(v j)); 2. vdir(vi) � (0, 0, 0) and vi and v j are connected in a
non-dominant direction of vi; 3. vi and v j are not a part of a G(1, 2, 0) subgraph
(Section 4.3).

edge is a link between vertices

erosion Let A be the set of raster cells, e.g. containing point cloud points, which is
modified with a set B. Bx denotes the translation of B in direction of vector x.
Then, A ⊕ B = {x|Bx ∩ A � ∅}. See Section 3.2.1.

grid graph a three-dimensional grid graph is an m × n × r graph that is the graph
Cartesian product of path graphs on m, n and r vertices. The grid graph is denoted
as G(m, n, r) (Section 4.2.2).

G(m,n,r) denotes the type of a grid graph (Section 4.2.2).

genus of a watertight surface is a number representing the maximum number of cut-
tings along non-intersecting closed simple curves without that the resultant man-
ifold gets disconnected. Not strictly correct, but intuitive, one can think of the
number of loops formed by an object.

graph is a structure consisting of vertices and edges. It is denoted as G(V, E), where
V are the vertices and E are the edges.

HARPER abrivates Histogram Analysis & Retraction of Points Estimated Radii. It
is a new method to estimate diameters in point clouds.

infinum is the greatest lower bound of a set S , defined as a quantity m such that no
member of the set is less than m.

level set is the set of values x for which a real-valued function f (x) is equal to a given
constant (Section 3.3.2).

medial axis of an object is the set of points having more than one closest point on the
object boundary (Section 3.2).

merging The union of two vertices. (Section 4.3).

octree an octree is a hierarchical subdivision of a starting cube into 8 equally sized
subcubes, which are the octree cells. The octree space is modeled as a cubical
region consisting of 2n × 2n × 2n unit cubes, where n is the subdivision depth.
Each unit cube has value 0 or 1, depending on whether it contains data points or
not (Section 4.2.2).

octree cell see octree

octree-graph is a graph extracted from and octree subdivision, representing the adja-
cency of the octree cells. Let OCi, i = 1..n be a collection of octree cells. And
let CS jk, for some j � k, ; j, k ≤ n be the adjacent sides of the octree cells.
The octree-graph OG(V, E) contains the vertices V dual to OC i connected via the
edges E dual to CS jk (Section 4.2.2).
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octree space see octree

SkelTre is the abbrevation for Skeletonization of Trees (Chapter 4).

tree delineation Tree delineation is the process to automatically derive individual
trees from a point cloud (Section 6.2.4).

supremum is the least upper bound of a set S , defined as a quantity M such that no
member of the set exceeds M.

V-Pair is generated by E-Pairs and is a valid pair of vertices to be merged by
the SkelTre algorithm. Two vertices vi and v j both incident to a vertex vc

are called a V-Pair if: 1 the labels of edges vivc and v jvc are identical; 2.
vdim(vi ⊕ v j) ≤ max(vdim(vi), vdim(v j)) (Section 4.3).

vertex element of a graph that links via edges to other vertices.

vertex dimension vdim(vi) is the number of distinct edge labels associated to a vertex
vi (Section 4.3).

vertex direction is the direction of a vertex vi is denoted as vdir(vi). The sum vdir(vi)
over the distinct associated edge labels of a vertex vi is called the vertex direction
(Section 4.3).

vertex norm is the sum over the absolute values of the vertex direction. Let vdir(v i) =
(x1, x2, x3). The norm of vi is norm(vdir(vi)) = norm(x1, x2, x3) = |x1|+|x2|+|x3|
(Section 4.3).

voronoi diagram is a decomposition of a metric space determined by distances. The
Definition can be found in Section 3.2.3
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Veränderungen. Ph.D. Thesis at the University of Göttingen.

[Serra, 1982] Serra, J. (1982). Image analysis and mathematical morphology. Aca-
demic Press, London.

[Shan and Todd, 2008] Shan, J. and Todd, C. (2008). Topographic Laser Ranging and
Scanning (Eds.). CRC Press.

[Shinagawa et al., 1991] Shinagawa, Y., Kunii, T. L., and Kergosien, Y. (1991). Sur-
face coding based on morse theory. IEEE Computer Graphics and Applications,
11:66–78.

[Straatsma and Baptist, 2008] Straatsma, M. W. and Baptist, M. J. (2008). Floodplain
roughness parameterization using airborne laser scanning and spectral remote sens-
ing. Remote Sensing of Environment, 112(3):1062–1080.

[Strahler et al., 2008] Strahler, A., Jupp, D., Woodcock, C., Schaaf, C., Yao, T., Zhao,
F., Yang, X., Lovell, J., Culvenor, D., Newham, G., Ni-Miester, W., and Boykin-
Morris, W. (2008). Retrieval of forest structural parameters using a ground-based
LiDAR instrument(echidna). Canadian Journal of Remote Sensing, 34(2):426–440.

116



BIBLIOGRAPHY

[Tomokaki, 2005] Tomokaki, T. (2005). Predicting individual stem volumes of
sugi (cryptomeria japonica d. don) plantations in mountainous areas using small-
footprint airborne LiDAR. Journal of Forest Research, 10(4):305–312.

[Verroust and Lazarus, 2000] Verroust, A. and Lazarus, F. (2000). Extracting skeletal
curves from 3D scattered data. The Visual Computer, 16:15–25.

[Wilson, 1985] Wilson, R. J. (1985). Introduction to Graph theory third edition.
Longman Scientific & Technical, Essex.

[Xu et al., 2007] Xu, H., Gossett, N., and Chen, B. (2007). Knowledge and heuristic-
based modeling of laser-scanned trees. ACM Transactions on Graphics, 26(4):19.

[Yan et al., 2009] Yan, D.-M., Wintz, J., Mourrain, B., Wang, W., Boudon, F., and
Godin, C. (2009). Efficient and robust reconstruction of botanical branching struc-
ture from laser scanned points. In Proceedings: 11th IEEE International conference
on Computer-Aided Design and Computer Graphics.

[Zhou et al., 1998] Zhou, Y., Kaufman, A., and W.Toga, A. (1998). Three-dimensional
skeleton and centerline generation based on an approximate minimum distance field.
The Visual Computer, 14(7):303–314.

[Zoller und Fröhlich, 2009] Zoller und Fröhlich (2009). Software: Z+f laser control.
3D Point Cloud Processing Software.

[Zomorodian, 2005] Zomorodian, A. J. (2005). Topology for computing. Cambridge
University Press.

117





Publications

Publications contributing to this thesis

Journal Publications

2010: SkelTre - Robust skeleton extraction from imperfect point clouds Alexander
Bucksch, Roderik Lindenbergh and Massimo Menenti The Visual Computer, Vol.26,
No. 10, pp. 1283-1300, DOI: 10.1007/s00371-010-0520-4

2010: Automated detection of branch dimensions in woody skeletons of fruit tree
canopies Alexander Bucksch, Stefan Fleck Photogrammetric Engineering and Remote
Sensing (in print)

2008: CAMPINO - A skeletonization method for point cloud processing Alexander
Bucksch and Roderik Lindenbergh ISPRS Journal of Photogrammetry and Remote
Sensing, Vol.63, No.1, pp. 115-127

Peer Reviewed Conference Publications

2009: Skeltre - Fast skeletonization of imperfect point clouds of botanic trees Alexander
Bucksch, Roderik Lindenbergh and Massimo Menenti 3D Object Retrieval Workshop/
Eurographics 2009, Munchen 28.March-3.April 2009

2009: Automated detection of branch dimensions in woody skeletons of leafless fruit
tree canopies Alexander Bucksch and Stefan Fleck In Proceedings SilviLaser 2009 ,
14.-16. October 2009 Austin,Texas

2009: A new method for individual tree delineation and undergrowth removal from
high resolution airborne LiDAR M.Z.A. Rahman, B.G.H. Gorte, A.K. Bucksch ISPRS
Workshop on Laser Scanning 2009, 1.-2. September 2009 Paris, France

Abstract Reviewed Conference Publications

2009: Skeleton-based botanic tree diameter estimation from dense LiDAR data Alexan-
der Bucksch, Roderik Lindenbergh, Massimo Menenti, Muhammad Z. Raman at Op-
ticts and Photonics 2009, San Diego(CA). In Lidar Remote Sensing for Environmental
Monitoring X, edited by Upendra N. Singh, Proceedings of SPIE Vol. 7460 (SPIE,
Bellingham, WA 2009) 746007.

2006: Skeletonization and segmentation of point clouds using octrees and graph the-
ory Alexander Bucksch and Heinz Appel van Wageningen ISPRS Symposium: Image
Engineering and Vision Metrology Vol. XXXVI. ISPRS Commission V Symposium
(pp. 1-6). Dresden: Dresden University of Technology.

119



Publications

Publications not related to the thesis

Journal Publications

2008: 3D Laser imaging as a valuable tool to specify changes in breast shape after
augmentation mammaplasty Danielle L. Esme, Alexander Bucksch, Werner H. Beek-
man Aesthetic Plastic Surgery Volume 33, Number 2, page 191-195

Peer Reviewed Conference Proceedings

2009: A new method for individual tree measurement from airborne LiDAR Muhamad
Z.Abd Rahman, Ben Gorte, Alexander Bucksch In Proceedings: SilviLaser 2009 , 14.-
16. October 2009 Austin,Texas

Invited Talks

2007: Error budget of terrestrial laserscanning: Influence of the intensity remission
of the scan quality Alexander Bucksch, Roderik Lindenbergh and Jane van Ree Pro-
ceedings of the III International Scientific Congress Geo-Siberia 2007, 23-27 April,
Novosibirsk, Vol. I, 2nd part,, Geodesy, Geoinformatics, Cartography, Markscheider,
pp. 113-122, ISBN 978-5-87693-229-7 and ISBN 978-5-87693-231-0

Abstract Reviewed Conference Publications

2010: Massimo Menenti, Muhamad Z. Abd Rahman, Alexander Bucksch, Roderik
Lindenbergh and Hieu van Duong. Retrieval of vegetation and surface properties with
terrestrial, airborne and space-borne laser scanners. In Proceedings: 3rd International
Symposium in Recent advances in quantitative remote sensing, Torrent, Spain. (in
preperation)

and also presented at: In Proceedings: Symposium Climate, Management and topog-
raphy impacts on vegetation: A tribute to Dr. Jerry Ritchie, Long Beach, California,
USA.

2010: Woody biovolume extraction from laser scanned trees Alexander Bucksch, Ste-
fan Fleck, Sabiene Rumpf,Peter Rademacher In Proceedings: Silvilaser 2010, 14-17
September 2010, Freiburg Germany

2009: Structural monitoring of Tunnels using terrestrial laser scanning Roderik Lin-
denbergh, Lukasz Uchanski, Alexander Bucksch, Rinske van Gosliga Reports of
Geodesy, Special Issue of the IX Konferencji naukowo-technicznej ”Aktualne Prob-
lemy w Geodezji Inz.ynieryjnej, 27./28. March 2009 in Warsawa

2009: Applications for point cloud skeletonization in forestry and agriculture Alexan-
der Bucksch, Roderik Lindenbergh Reports of Geodesy, Special Issue of the IX Kon-
ferencji naukowo-technicznej ”Aktualne Problemy w Geodezji Inz.ynieryjnej, 27./28.
March 2009 in Warsawa

120



Publications

2007: Error budget of terrestrial laser scanning: Influence of the incidence angle on
the scan quality Sylvie Soudarissanane, Jane van Ree, Alexander Bucksch and Roderik
Lindenbergh Proceedings 3D-NordOst, 10. Anwendungsbezogener Workshop zur Er-
fassung, Modellierung, Verarbeitung und Auswertung von 3D-Daten, Berlin, 06.-07.
December 2007

2007: 3D Buildings modeling Based on a combination of techniques and methodolo-
gies GeorgetaPop, Alexander Bucksch, Ben Gorte XXI CIPA International Sympo-
sium, 1-6 October 2007,Athens, Greece p. 1-5

2007: Combining modern techniques for urban 3D modeling Georgeta Pop, Alexander
Bucksch IEEE International Geoscience and Remote Sensing Symposium pp. 1-4, 23-
27 July 2007, Barcelona, Spain.

2004: A system for recording 3D information with applications in the measurement of
plant structure Thomas Mangoldt , Winfried Kurth , Alexander Bucksch , Peter Wer-
necke , Wulf Diepenbrock Poster on the ”4th International Workshop on Functional-
Structural Plant Models” (FSPM04), Montpellier (France), 7.-11. 6. 2004.

Other Publications

2008: Technical Report - FLI-MAP data possibilities for forest inventory Alexander
Bucksch, Ben Gorte, Muhammad Z. Abd Rahman ICT Dienst Rijkswaterstaat

2006: 3D model generation with laser scanners - Approaches towards the improvement
of CFD input data Alexander Bucksch, Adamantios Kagkaras Leonardo Times, June
2006

2005: Development of an integrated algorithm for surface reconstruction and point re-
duction in point clouds (in german) Alexander Bucksch Master Thesis at BTU Cottbus
under supervision of Prof. Winfried Kurth, February 2005

121



Index

Actual Height model of The Netherlands,
83

algorithm classes, 37
algorithmic requirements, 14
allometric relationships, 69
attributes, 15

Big-O notation, 20
boundary, 13
branch parameters, 69
branching, 17
branching regions, 17

CAMPINO, 34
Centeredness, 58
classes, 14
computational complexity, 20, 53
computational efficiency, 14, 53
computational framework, 37
contour, 31
convergence, 58

descriptive requirements, 13
diameter at breast height, 82
dilatation, 26
directed graphs, 47
distance transform, 27

E-Pair, 38, 43
elongation direction, 17
erosion, 26
error characteristics, 53

FLI-MAP 400, 82

genus, 46
graph, 14
graph embedding, 38
graph reduction, 33
grid graph, 41

handling of imperfect data, 14
HARPER, 69
histogram of point distances to the skele-

ton, 62
hit-and-miss-transform, 26

imperfect point cloud, 12

implementation, 53

labeling, 38
line segment, 14

median bin, 75
metric representation, 13, 53
morphological thinning, 26

non-branching, 17
non-branching regions, 17
norm of a vertex, 43

occlusion effects, 19
octree, 38
octree cell, 37
octree space, 38
octree-graph, 38, 39
orchard trees, 69
outer form, 12

peak bin, 86
point cloud, 2
poles, 29
post processing, 58
power crust, 29
power diagram, 29

reduction, 9
Reeb-graph, 31
reference bin, 75
reliability, 38, 53
requirements, 15
robustness criterion, 38
running times, 65

skeleton, 6
skeleton extraction requirements, 14
skeleton graph, 14
skeleton-graph, 38
SkelTre, 37, 53
SkelTre-skeleton, 9
smallest diameter of an imprecise point

set, 85
space, 13
structuring element, 26

terrestrial laser scan data, 58



INDEX

topological preservation, 13, 53
topological space, 13
tree-delineation, 69
trellis system, 71

V-Pair, 38, 43
vertex dimension, 9, 42
vertex direction, 43
Voronoi Diagram, 29

123





Curriculum Vitae

Alexander Bucksch was born in 1976 in Böblingen, Germany. He visited the Carlo-
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canopy analyzer project led to the PhD thesis you just read.

125


