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Abstract

The number of electronic control systems applied in vehicles has increased dramatically over
the years. This trend will only continue with the introduction of novel technologies such as
advanced driver assistance systems (ADAS). To save cable weight and costs in-vehicle con-
trol systems often use shared communication networks. With the increasing use of in-vehicle
control systems the scheduling of these networks becomes a serious challenge.

In this master thesis a new event-triggered approach for the scheduling of networked con-
trol systems (NCSs) using timed game automata (TGA) is considered. This new approach
yields some potential benefits over existing communication protocols and has already been
implemented successfully on two-dimensional linear time-invariant (LTI) systems. To obtain
the control system TGA for this scheduling approach the NCSs have to be abstracted. The
control system abstraction method that is used has to be modified in order to be able to
handle higher dimensional systems as well, and that is exactly the focus of this master thesis.
The abstraction method is extended and applied to three-dimensional and four-dimensional
in-vehicle LTI control systems. The outcomes are checked using simulations which show that
the applied abstraction method works.
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Preface

This report is a part of my Master of Science graduation thesis at the Technische Universiteit
Delft. After taking some automotive related elective courses during my Systems and Control
MSc program I became interested in control techniques applied in the automotive industry.

Over the years the number of electronic control modules in the average vehicle has drastically
increased. The increasing interest in autonomous vehicles will only result in more control
systems being developed for use in vehicles. This increasing use of in-vehicle control sys-
tems yields many possibilities, but also comes with serious challenges. Therefore I thought a
project related to control applications in the automotive field would be more than interesting.
After consultation with Manuel Mazo, my supervisor for this project, I came to the subject of
scheduling in-vehicle NCSs. I think this subject is extremely relevant regarding the previously
mentioned increasing use of in-vehicle control systems.

I would like to thank Manuel Mazo for providing me with a relevant and interesting project
topic and guiding me during my work on this project and the writing of this report.
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Chapter 1

Introduction

Over the last decades the number of electronic control systems applied in the average car
has drastically increased. Some common examples are powertrain control, active cruise
control (ACC), anti-lock braking system (ABS) and electronic stability program (ESP).
These in-vehicle control systems generally consist of sensors, actuators and electronic con-
trol units (ECUs). Modern cars can contain anywhere from 50 to 140 ECUs. The cabling
necessary for that many ECUs is one of the most heavy and costly components in a car [4].
For this reason point-to-point linking of all the components of in-vehicle control systems is
not feasible. Instead, bus-based networks are used in cars in order to share sensor information
and send commands from the ECUs to actuators. The use of such communication networks
reduces the car weight and production costs.

Various communication buses are being applied in vehicles. Two examples are controller area
network (CAN) [5],[6] and Flexray [7]. While existing buses have proven to be effective, the
increasing number of control systems used in vehicles poses a problem. This is especially the
case with the introduction of new complex technologies such as advanced driver assistance
systems (ADAS) and x-by-wire technologies, which results in more ECUs being connected
to the communication buses. The increasing bandwidth requirements that come with these
novel in-vehicle control systems make that the existing communication networks will not sat-
isfy the needs for those to be applied in future cars. For autonomous vehicles, which nowadays
receive an increasing interest and require even more complex control systems, this issue will
only become more prevalent.

The communication buses currently applied in vehicles use different scheduling approaches
and channel access schemes. A channel access scheme determines which control system is
granted access to the communication network at what time in order to send and receive infor-
mation. Combined with a scheduler it takes care of the real-time scheduling of the networked
control systems (NCSs). A new approach to scheduling a shared communication network is
described in [1]. This approach could potentially be applied to in-vehicle NCSs and yield
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2 Introduction

benefits over scheduling protocols that are currently used.

In this report the scheduling approach presented in [1] is outlined and implemented on various
in-vehicle control systems. The focus lies on the abstraction method applied to the NCSs to
obtain the control system timed game automata (TGA). From these TGA a network of timed
game automata (NTGA) could be constructed over which a scheduling policy can be syn-
thesized. Some practical issues when implementing the control system abstraction method
(especially for three-dimensional or higher dimensional systems) are discussed, along with
solutions to solve these issues. The abstraction method is then applied to various in-vehicle
linear time-invariant (LTI) control systems. Finally some simulations for these systems are
performed, which show that the applied abstraction method works.
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Chapter 2

Scheduling using Timed Game
Automata

2-1 Introduction

A new approach to scheduling networked control systems (NCSs) is presented in [1]. The
idea is to construct a timed game automaton (TGA) for each control loop and for the shared
communication network itself. A TGA is a timed safety automaton (TSA) [8] where the
action set consists of controllable and uncontrollable actions. From the obtained set of TGA
a parallel composition is taken, resulting in a network of timed game automata (NTGA) [9].
For the constructed NTGA a scheduling strategy is synthesized where the goal is to avoid
that multiple control loops try to access the communication network at the same time, i.e.
to avoid conflicts. In order to reach this goal, after each transmission on the network the
scheduler decides the policy for the next update for each control loop. This policy could
either be to base the next update time for a control loop on its event-triggered mechanism
or to force an earlier update at a predefined time. Since all control loops are supervised by
the scheduler conflicts can be prevented from occurring rather than just being handled when
they occur, as is done in carrier sense multiple access (CSMA) protocols such as CAN [5],[6].

2-2 Preliminaries

Before outlining the approach presented in [1], some definitions from this work are introduced.

Definition 1 (Timed Automaton [1], [10]). A timed automaton TA is a sextuple (L, `0,Act, C,E, Inv)
where:

• L is a set of finitely many locations (or nodes);

Master of Science Thesis Christiaan Hop



4 Scheduling using Timed Game Automata

• `0 ∈ L is an initial location;

• Act is a set of finitely many actions;

• C is a set of finitely many real-valued clocks;

• E ⊆ L× B(C)× Act× 2C × L is a set of edges;

• Inv : L→ B(C) assigns invariants to locations.

Location invariants are restricted to constants that are downwards closed, in the from: c ≤
n or c < n where c is a clock and n ∈ N0.

A timed automaton (TA) is a directed graph consisting of a number of nodes and edges.
The logical clocks are modeled by real-valued variables, which are simply called clocks. The
automation behavior is restricted by clock constraints. If an edge is enabled (i.e. if the guard
condition of that edge is satisfied by the clock) an edge transition can be taken. When this
happens a clock can be reset to zero. From now on TSA [8] which use local invariant condi-
tions will be considered. For simplicity they will be referred to as TA. When (`, g, a, r, `′) ∈ E,
this can be written as ` g,a,r−−−→ `′ whereas ` −→ `′ denotes he existence of an edge from ` to `′
with arbitrary labels.

The set of actions consists of input actions, output actions and internal actions which are
denoted by a?, a! and ∗ respectively. Input and output actions are used for hand-shake
synchronizing communication between TA.

Definition 2 (Operational Semantics [1]). The semantics of a timed automaton is a transi-
tion system (also known as a timed transition system) in which states are pairs of location `
and clock assignment u, and transitions are defined by the rules:

• Delay transition: (`, u) d−−→
TS

(`, u+ d) if u � Inv(`) and (u+ d) � Inv(`)
for a non-negative real number d ∈ R≥0;

• Discrete transition: (`, u) a−−→
TS

(`′, u′) if ` g,a,r−−−→ `′, u � g, u′ = u[r] and u′ � Inv(`′).

A run of a timed automaton is a sequence of alternating delay and discrete transitions in the
transition system.

The set of runs of timed automaton TA starting from initial state (`0, u0) is denoted by
Runs(TA). The last state of a finite run ρ is denoted by last(ρ).

Christiaan Hop Master of Science Thesis



2-2 Preliminaries 5

Definition 3 (Timed Game Automaton [1]). A timed game automaton TGA is a septuple
(L, `0,Actc,Actu, C,E, Inv) where:

• (L, `0,Actc ∪ Actu, C,E, Inv) is a timed automaton;

• Actc is a set of controllable actions;

• Actu is a set of uncontrollable actions;

• Actc ∩ Actu = ∅.

Definition 4 (Parallel Composition [1]). Let TGAi be a timed automaton for i ∈ {1, . . . , n}.
The parallel composition of TGAi, . . . ,TGAn denoted by TGAi | · · · | TGAn is a timed game
automaton TGA = (L, `0,Actc,Actu, C,E, Inv) where:

• L = L1 × · · · × Ln;

• `0 = `10 × · · · × `n0 ;

• Actc = {∗} ∪
⋃n
i=1{a ∈ Actic | a is an internal action} ;

• Actu = {~} ∪
⋃n
i=1{a ∈ Actiu | a is an internal action} ;

• C = C1 ∪ · · · ∪ Cn ;

• E is defined according to the following two rules:

– a TA makes a move on its own via its internal action: the edge is controllable iff
the internal action is controllable;

– two TA move simultaneously via a synchronizing action: the edge is controllable
iff both input and output actions are controllable (i.e. the environment has priority
over the controller);

• Inv((`1, . . . , `n)) = Inv1(`1) ∧ · · · ∧ Invn(`n)

The parallel composition of TGA is called an NTGA . The goal now is to find such a strategy
[9] f that a predefined set of bad states A is avoided at all times. A strategy is a function that
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6 Scheduling using Timed Game Automata

dictates what the controller should do during a run. The strategy can instruct the controller
to take a certain controllable action or to not take any action. The latter is referred to as
a delay (denoted by λ) and is actually considered a controllable action as well. A strategy
is called winning from a state if all maximal runs [11] in the outcome originated from that
state are winning. A winning state is a state from which there exists a winning strategy .
UPPAAL-Tiga [11] is an example of a software tool which uses on-the-fly algorithms to solve
safety control problems.

Definition 5 (Strategy [1],[11]). Let TGA = (L, `0,Actc,Actu, C,E, Inv) be a timed automa-
ton. We define TA = (L, `0,Actc ∪ Actu, C,E, Inv) as the timed automaton derived from
the timed game automaton. A strategy f over TGA is a partial function from Runs(TA) to
Actc ∪{λ} s.t. for every finite run ρ, if f(ρ) ∈ Actc then last(ρ) f(ρ)−−→

TS
(`′, u′) for some (`′, u′).

2-3 Event-Triggered LTI Control Systems

In [1], the scope is limited to linear time-invariant (LTI) control systems with state-feedback
control. The execution of this state-feedback control is event-triggered , as proposed in [12].
The control loops are described as:

ξ̇(t) = Aξ(t) +Bv(t), ξ(t) ∈ Rn, v(t) ∈ Rm (2-1)

where:

v(t) = Kξ(tk), t ∈ [tk, tk+1) (2-2)

A sample-and-hold method is applied to the state-feedback law v(t), meaning that it is kept
constant during a time interval [tk, tk+1). It is assumed that v(t) results in a globally asymp-
totically stable closed-loop system. The update times of the feedback law are based on a
sampling triggering law. To introduce this law the measurement error e(t) is defined as:

e(t) = ξ(tk)− ξ(t), t ∈ [tk, tk+1), k ∈ N0 (2-3)

where k is an integer. The feedback law update time is now based on the sampling triggering
law :

tk+1 = min{t | t > tk and |e(t)|2 ≥ α|ξ(t)|2}, α ∈ R+ (2-4)

where α is called the triggering coefficient. In [12] it is shown that there exists a lower bound
on the time between consecutive control law updates, i.e. that there is no Zeno behavior
[13] occurring. An estimate of this lower bound is computed. Some possible advantages of
event-triggered control sampling for simple systems are discussed in [14]. The time between
consecutive updates for a sampled state x is called the inter-sample time . It is formally
defined as:

τα(x) = min{t | |e(t)|2 ≥ α|ξ(t)|2 and ξ(0) = x} (2-5)

Christiaan Hop Master of Science Thesis



2-4 Communication Network TGA 7

2-4 Communication Network TGA

First a TGA for the communication network that is shared by the control loops in the network
is constructed. This TGA (see Figure 2-1) is called TGAnet and has three locations: Idle,
InUse and Bad. When the location Idle is active, the network is available for access. This is
the initial location. If the network is available and one of the control loops wants to transmit,
the active location changes to InUse. When this happens the clock variable c of TGAnet is re-
set to zero. The occupancy time ∆ is defined as the time taken by a transmission of a control
loop on the network before it becomes available again (and the location of TGAnet changes
back to Idle). This time is assumed to be valid for each control loop. The last location, Bad,
represents the case where a conflict occurs, i.e. a situation where a control loop tries to access
the network while it is already occupied (and the active location is InUse). This location is a
so called absorbing location, meaning that it cannot be left once it has been entered. TGAnet
is formally defined as:

Definition 6 ([1]). Let ∆ represent the maximum channel occupancy time, a timed game
automaton associated with the communication network is given by
TGAnet = (Lnet, `net0 ,Actnet

c,Actnetu , Cnet, Enet, Invnet)

• Lnet = {Idle, InUse,Bad};

• `net0 = Idle;

• Actnetc = {∗};

• Actnetu = {up?};

• Cnet = {c};

• Enet = {(Idle, true, up?, {c}, InUse)
(InUse, c = ∆, ∗, ∅, Idle), (InUse, true, up?, ∅, Bad),
(Bad, true, up?, ∅, Bad)};

• Invnet(InUse) = {c | 0 ≤ c ≤ ∆},
Invnet(Idle) = {c | c ≥ 0},
Invnet(Bad) = {c | c ≥ 0}.

The guard true represents a condition that is always satisfied, for example c ≥ 0.

2-5 Control System TGA

For each control system a TA is constructed. This is done using a three-step procedure
described in [15] and is inspired by [16]. First, the state space of the LTI control system is

Master of Science Thesis Christiaan Hop



8 Scheduling using Timed Game Automata

Idle InUse

0 ≤ c ≤ ∆

Bad

up?
c := 0

c == ∆

up?

up?

Figure 2-1: Graphical representation of a TA modeling the communication network. Controllable
and uncontrollable edges are represented by solid and dashed arrows respectively (adapted from
[1]).

partitioned into a finite number of regions by applying the state space abstraction technique
proposed in [17]. Subsequently, for each region a time interval that contains all the inter-
sample times of the states in that region is calculated using the convex embedding approach
from [18]. Finally a reachability analysis [19] is applied to find all the possible transitions
between state space regions. From this three-step procedure a finite-state quotient system is
obtained. It is shown that this system is semantically equivalent to a TA. The constructed
TA captures the sampling behavior of the event-triggered LTI control system and is described
by the following definitions:

Definition 7 (Flow Pipe [1]). The set of reachable states or the flow pipe at the time interval
[t1, t2] from a set of initial states X0 is denoted by:

X[t1,t2](X0) =
⋃

t∈[t1,t2]
{ξ(t) | ξ(0) ∈ X0}

Definition 8 ([1],[16]). A timed automaton abstracting the triggering timing behavior of sys-
tem (2-1)-(2-2) with triggering coefficient α is given by TAα = (Lα, `α0 ,Actα, Cα, Eα, Invα)
where:

• Lα = {Rα1 , . . . ,Rαq };

• `α0 = Rαs such that ξ(0) ∈ Rαs ;

• Actα = {∗};

• Cα = {c};

• (Rαs , ταs ≤ c ≤ τ̄αs , ∗, {c},Rαt ) ∈ Eα if X[ταs ,τ̄αs ](Rαs ) ∩Rαt 6= ∅;

• Invα(Rαs ) = {c | 0 ≤ c ≤ τ̄αs } for all s ∈ {1, . . . , q}.

Each location corresponds to one of the regions in which the state space is partitioned. These
regions are cones pointed at the origin. The conic shape of the regions is convenient since the

Christiaan Hop Master of Science Thesis



2-5 Control System TGA 9

inter-sample time for states that lie on a line through the origin (the origin itself excluded) is
the same [17]. The clock variable c represents the time that has elapsed since the last update
of the control system. For each region a lower and upper bound (ταs and τ̄αs respectively)
of the inter-sample time for the states in that region are calculated by applying the convex
embedding approach from [18]. For the inter-sample times of the states x in the TA it holds
that [16]:

∀s ∈ {1, . . . , q},∀x ∈ Rαs : τα(x) ∈ [ταs , τ̄αs ]

The outgoing edges for a region Rαs are enabled when the clock variable c lies in the time
interval [ταs , τ̄αs ]. It is guaranteed that a triggering event occurs before τ̄αs and therefore the
TA can only remain in a location for a maximum of that time [1]. An example of a TA
modeling an event-triggered control loop is shown in Figure 2-2. Now for the control loops
timed game automata TGAclim are constructed:

Rα
1

0 ≤ c ≤ τ̄α1

Rα
2

0 ≤ c ≤ τ̄α2

τ
¯
α
1 ≤ c ≤ τ̄α1
c := 0

τ
¯
α
2 ≤ c ≤ τ̄α2
c := 0

τ
¯
α
1 ≤ c ≤ τ̄α1
c := 0

τ
¯
α
2 ≤ c ≤ τ̄α2
c := 0

Figure 2-2: Graphical representation of a TA modeling an event-triggered control loop. The
initial location is Rα1 (adapted from [1]).

Definition 9 ([1]). Consider a set of timed automata TAαj = (Lαj , `αj0 ,Actαj , Cαj , Eαj , Invαj )
generated from an event-triggered control loop with triggering coefficients αj ∈ (0, ᾱ) for
j ∈ {1, . . . , p} and assume that Rα1

s = · · · = Rαps for all s ∈ {1, . . . , q}.
Consider also a set of earlier update time parameters {d1, d̄1, . . . , dqd̄q}, such that

∀s ∈ {1, . . . , q}, ∃j ∈ {1, . . . , p} : d̄s ≤ τ
αj
s .

Then, the timed game automata with options for earlier update, choice of triggering coefficients
and limiting the consecutive earlier updates are given by TGAclim = (Lclim, `clim0 ,Actclimc ,Actclimu , Cclim, Eclim, Invclim)
where:

• Lclim =
⋃p
j=1 L

αj ∪
⋃q
s=1{Rs, Ears};

• `clim0 = Rs such that ξ(0) ∈ Rα1
s

• Actclimc = {up!} ∪ Actα1 ∪
⋃p
j=1{aj};

• Actclimu = ∅;
• Cclim = Cα1 ;
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10 Scheduling using Timed Game Automata

• Ecl =
⋃q
s=1

⋃
t∈Es{Ears, c = 0, up!, ∅,Rt} ∪

⋃q
s=1

⋃p
j=1{(Rs, c = 0, aj , ∅,R

αj
s ),

(Rαjs , (ds ≤ c ≤ d̄s) ∧ (earNum < earMax), ∗, {c},∧(earNum := earNum + 1), Ears)}∪⋃q
s=1

⋃p
j=1

⋃
{t|(Rs−→Rt)∈Eαj }{(R

αj
s , τ

αj
s ≤ c ≤ τ̄αjs , up!, {c},∧(earNum := 0),Rt)};

• Invclim(Rαjs ) = {c | c ≤ τ̄αjs },
Invclim(Rs) = {c | c = 0}.

For these TA the scheduler can choose the trigger coefficients for the event-triggered control
loop, but also force an early update before the control loop is actually triggered by an event.
Each location Rαjs corresponds to a certain triggering coefficient αj . When the scheduler has
not picked a triggering coefficient yet the active location is Rs. The controllable action aj
represents the scheduler choosing a triggering coefficient and changes the active location from
Rs to Rα

j

s . Now the event-triggering mechanism with the chosen triggering coefficient can be
used for the next controller update, but the scheduler can also force an early update.
If the event-triggering mechanism is used, the controller update will occur at a time in the
interval [ταs , τ̄αs ]. When this happens the uncontrollable action up! changes the location to
Rt, i.e. the edge from Rα

j

s to Rs is taken. If an earlier update is forced by the controller, the
edge from Rαjs to the location Ears is taken by the controllable action ∗. Then, from this
location the edge to a new location Rt is taken immediately by the uncontrollable action up!.
The integer earMax defines the maximum number of consecutive earlier updates allowed to
be forced by the scheduler. The number of consecutive earlier updates is counted using the
integer earNum. These integers are used to limit the number of consecutive early updates. If
the counter earNum reaches the maximal value earMax the next controller update is forced to
be based on the event-triggering mechanism. If an event-triggered controller update occurs
the counter earNum is reset to zero. In [1] it is shown that the switching between different
triggering coefficients or triggering earlier controller updates does not hinder stability.

2-6 Constructing the NTGA

By taking the parallel composition of the TGA representing the communication network and
the control loops, the following NTGA is obtained:

TGANCSs = TGAnet | TGAclim1 | · · · | TGAclimN (2-6)

where N is the number of networked event-triggered control loops. The state of this set of
NCSs is described by:

(`net, `1, . . . , `N , u1, . . . , uN , earNum) (2-7)

where the bad states A are:

{(`net, `1, . . . , `N , u1, . . . , uN , earNum) | `net = Bad} (2-8)

The goal is to apply a strategy f that avoids these bad states. After a transmission on the
communication network, the strategy (see Definition 5) first chooses a triggering coefficient
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2-7 Comparing the New Approach to Existing Protocols 11

and then decides which control loop in is updated next. It also chooses whether the next
update is based on the event-triggering mechanism or forced at an earlier time. When a
controller update occurs the new sampled state (and the conic region it lies in) is determined
by the environment. An illustration of a strategy is given in [1]. This work also contains
a case study where the outlined approach is applied to two event-triggered NCSs sharing
a communication network. UPPAAL-Tiga [11] is used to create the model and generate a
strategy.

2-7 Comparing the New Approach to Existing Protocols

Compared to existing CSMA based protocols such as controller area network (CAN) [5],[6],
which is widely applied in the automotive industry, the scheduling approach presented in [1]
yields a crucial difference. The way in which conflicts (i.e. situations where a control loops
tries to access the communication network while it is already occupied by another) are handled
is different. In CSMA protocols network access is granted based on priorities of the control
loops. If a control loop tries to transmit while the communication network is occupied, the
message priority of the control loops competing for network access determines whether the
ongoing transmission is completed first or access is granted to the second competing control
loop.

In the new approach it is tried to find a strategy in such a way that conflicts are prevented from
occurring. The supervisory scheduler has an overview of all the NCSs and the communication
network itself, which is not the case in existing protocols where scheduling and network access
allocation are handled in separate layers. Situations where multiple control loops have to
compete for network access are avoided by allowing the scheduler to pick different triggering
coefficients and force earlier updates. As mentioned before an illustration of this approach is
given in a case study presented in [1]. Simply put, the new approach prevents conflicts from
occurring rather than let them occur and then handle them.
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Chapter 3

State Space Partitioning

As mentioned in section 2-5, the first step in constructing a control system abstraction is to
partition the state space into a finite number of regions. To obtain this partitioning the state
space abstraction technique proposed in [17] is applied. This isotropic covering technique
results in the state space being partitioned into conic regions pointing at the origin. The
choice for conic regions is convenient since states that lie on a line through the origin have
the same inter-sample time τ(x) [17]:

τ(x) = τ(λx), ∀λ 6= 0 (3-1)

A cone pointing at the origin is a union of infinitely many of such rays.

3-1 Two-dimensional systems

Consider a two-dimensional state space as shown in Figure 3-1. The goal is to partition the
state space into a finite number of conic regions Rs defined by:

Rs = {x ∈ R2|xTQsx ≥ 0} (3-2)

If the condition in Equation 3-2 holds for a certain state x then it will hold for the state −x
as well. Because of this symmetry it suffices to calculate the matrices Qs for only half of the
state space (where θ ∈ [0, π]). The same matrices then apply to the second half of the state
space.

In Figure 3-1 the number of subdivisions for half of the state space m is chosen as four. The
total number of regions for the entire state space is then eight. To distinguish between re-
gions that have the same matrix Qs defining it (e.g. R1 and R5 in Figure 3-1) the sign of the
state values has to be considered. The region matrices Qs can be calculated using geometric
arguments, as explained in section 3-3.
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14 State Space Partitioning

R1

R2R3

R4

R5

R6 R7

R8

θ

x1

x2

0

π
4

π
2

3π
4

π

5π
4

3π
2

7π
4

Figure 3-1: Partitioning of a two-dimensional state space with m = 4. Note that the blue arcs
are only highlighting the regions R1 and R5 which have the same matrix Qs defining them, but
are not bounding these regions.

3-2 n-Dimensional systems

For n-dimensional systems (with n ≥ 3) conic regions pointing at the origin can be defined
as:

Rs = {x ∈ Rn|Esx ≥ 0} (3-3)

Again the region matrices Es ∈ Rp×n (with p ≤ 2n − 2) can be calculated using geometric
arguments. For higher dimensional systems these calculations become very complicated and
moreover can lead to numerical issues when implemented into MATLAB [20]. MATLAB code
that calculates the matrices Es is available [21], but only works for three-dimensional systems.

Instead of defining a region Rs by one matrix Es (Equation 3-3) it can be defined by looking
at its projections onto the (n−1) two-dimensional (xi, x(i+1))-planes and their corresponding
2×2 matrix Qi,(i+1)

s (with s ∈ {1, 2, . . . ,m}). In this way each region is defined by a particular
combination of (n− 1) matrices:

Rs = {x ∈n |xT1,2Q1,2
s x1,2 ≥ 0 ∧ xT2,3Q2,3

s x2,3 ≥ 0 ∧ . . . ∧ xT(n−1),nQ
(n−1),n
s x(n−1),n ≥ 0} (3-4)

where xi,(i+1) refers to [xi xi+1]T , i.e. the i-th and (i+ 1)-th index of the n-dimensional state.
Now each region Rs corresponds to a combination of (n − 1) 2 × 2 matrices Qi,(i+1)

s . An
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3-3 Region Matrix Calculations 15

illustration of this region representation is shown in Figure 3-2, where a three-dimensional
conic region is projected onto the (x1, x2)-plane and the (x2, x3)-plane. The projection onto
the (x1, x2)-plane will correspond to a certain matrix Q1,2

i whereas the projection onto the
(x2, x3)-plane will correspond to a certain matrix Q2,3

j (with i, j ∈ {1, 2, . . . ,m}). This par-
ticular combination of 2×2 matrices Q1,2

i and Q2,3
j defines the three-dimensional conic region.

x2

x1

x3

Figure 3-2: Example of a three-dimensional conic region (blue) and its projections onto the
(x1, x2)-plane and the (x2, x3)-plane (red).

The calculation of the 2×2 matrices Qi,(i+1)
s is simple compared to the calculation of the p×n

matrices Es and far less prone to numerical issues when implemented in MATLAB. Therefore
defining the regions as in Equation 3-4 is a useful alternative to the definition in Equation 3-3.

3-3 Region Matrix Calculations

Consider the region R1 in Figure 3-1. This region is characterized by the angles θmin = 0
rad and θmin = π

4 . At both these angles a line through the origin can be drawn, as shown
in Figure 3-3 and Figure 3-4. Both these lines divide the state space into two half-spaces.
They can be defined by their normal vector as aTi x = 0 where x = [x1 x2]T . From both these
lines the normal vector ai pointing to the inside of the region R1 is drawn. The half-spaces
to which these normal vectors point (coloured blue in Figure 3-3 and Figure 3-4) are defined
by aTi x ≥ 0. The normal vectors are calculated as:

aT1 = [− sin(θmin) cos(θmin)]
aT2 = [sin(θmax) − cos(θmax)]

(3-5)
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16 State Space Partitioning

The intersection of the two half-spaces is exactly the region R1. Since for states that lie
within the half-spaces it holds that:

aT1 x ≥ 0 (3-6)

and:

aT2 x ≥ 0 (3-7)

for the states that lie within the intersection of the half-spaces (which is R1) it holds that:

xT (a1a
T
2 )x ≥ 0 (3-8)

Instead of defining the matrices Qs (corresponding to the regions Rs) as Qs = (a1a
T
2 ) they

are defined as:

Qs = (a1a
T
2 + a2a

T
1 ) (3-9)

In this way the matrices Qs are made symmetric, which is numerically advantageous since the
linear matrix inequality (LMI) solvers that are used to calculate the sample time bounds for
the regions Rs can handle symmetric matrices more efficiently compared to general matrices.

Figure 3-3: The line through the origin corresponding to θmin and its normal vector a1 (red).
The half-space to which the normal vector points is coloured in blue.
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3-4 Calculating Region Vertices 17

Figure 3-4: The line through the origin corresponding to θmax and its normal vector a2 (red).
The half-space to which the normal vector points is coloured in blue.

3-4 Calculating Region Vertices

The region polyhedra in which the state space is partitioned can be defined by their vertices.
Calculating these vertices is useful for the reachability analysis. For a two-dimensional system
(Figure 3-1), where each region is defined by one angular coordinate, the vertices can be
calculated as:

x1 = cos(θ)
x2 = sin(θ)

(3-10)

for both the minimum and maximum angle (θmin and θmax) for that region, resulting in two
different vertices.

For an n-dimensional systems (with n ≥ 3), each region is defined by (n− 1) angular coordi-
nates. With a minimum and maximum value for each angular coordinate, an n-dimensional
region is defined by 2(n−1) vertices. The coordinates for each vertex V can be calculated as:
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18 State Space Partitioning



x1 = cos(θ1) if |θ2| 6=
π

2
x2 = sin(θ1) if |θ2| 6=

π

2
x2 = x1 = 0 if |θ2| =

π

2
x3 = |x2| tan(θ2) if |θ2| 6=

π

2
x3 = 1 if θ2 = π

2
x3 = −1 if θ2 = −π2

...

x(i+1) = |xi| tan(θi) if |θi| 6=
π

2
x(i+1) = 1, xi = x(i−1) = · · · = x1 = 0 if θi = π

2
x(i+1) = −1, xi = x(i−1) = · · · = x1 = 0 if θi = −π2

...

xn = |x(n−1)| tan(θ(n−1)) if |θ(n−1)| 6=
π

2
xn = 1, x(n−1) = x(n−2) = · · · = x1 = 0 if θ(n−1) = π

2
xn = −1, x(n−1) = x(n−2) = · · · = x1 = 0 if θ(n−1) = −π2

(3-11)

where θ1 ∈ [0, π] and θi ∈ [−π
2 ,

π
2 ] for i ∈ {2, . . . , (n − 1)}. Note that by considering all

angular coordinates over an interval of length π only half of the state space is considered.
With each of the (n − 1) angular coordinates (lying within an interval of length π) divided
into m subintervals, this half of the state space will contain m(n−1) conic regions. Due to
the aforementioned symmetry the regions in the first half of the state space can be mapped
to the second half of the state space by taking V = −V for each vertex V . The entire state
space then is divided into 2 ×m(n−1) conic regions. Calculating the vertices in this way is
consistent with the region representation as given in Equation 3-4.
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x2

x1

x3

V

θ1

θ2

Figure 3-5: Vertex V in a three-dimensional state space and its projections onto the (x1, x2)-
plane and the (x2, x3)-plane, and their corresponding angular coordinates.
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Chapter 4

Inter-Sample Time Bound Calculations

After partitioning the state space into conic regions, for each regionRs an upper bound τ̄s and
lower bound τ s on the sampling time for the states within that region have to be calculated.
The calculation of this time interval is done using the convex embedding approach described
in [18], making use of the S-procedure [22, Appendix B.2, p. 655].

4-1 Time Bound Calculations using Convex Embedding

Recall from section 2-3 that the linear time-invariant (LTI) control systems with event-
triggered state feedback that are considered could be described as:

ξ̇(t) = Aξ(t) +Bv(t), ξ(t) ∈ Rn, v(t) ∈ Rm (4-1)

with state-feedback law:

v(t) = Kξ(tk), t ∈ [tk, tk+1) (4-2)

The sampling triggering law is:

tk+1 = min{t | t > tk and |e(t)|2 ≥ α|ξ(t)|2}, α ∈ (0, σ̄) ⊂ R+ (4-3)

where the measurement error e(t) is:

e(t) = ξ(tk)− ξ(t), t ∈ [tk, tk+1), k ∈ N0 (4-4)

where k is an integer. Denote a sampled state at sampling instant tk by ξ(tk) = x. This
sampled state x has an inter-sample time τ(x) = tk+1 − tk. Within the interval [tk, tk+1] the
evolution of the state and the measurement error are described by:
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22 Inter-Sample Time Bound Calculations

ξx(tk + σ) = Λ(σ)x (4-5)

ex(tk + σ) = [I − Λ(σ)]x (4-6)

with σ ∈ [0, tk+1 − tk] and:

Λ(σ) = [I +
∫ σ

0
eArdr(A+BK)] (4-7)

Now by combining Equation 4-3, 4-5 and 4-6 the inter-sample time τ(x) can be expressed as:

τ(x) = min{σ > 0 | xTΦ(σ)x = 0} (4-8)

where:

Φ(x) = [I − ΛT (σ)][I − Λ(σ)]− αΛT (σ)Λ(σ) (4-9)

To find a lower bound τ s on the inter-sample time, a finite set of matrices Φκ,s is constructed
such that:

(xTΦκ,sx ≤ 0, ∀κ ∈ Ks) =⇒ (xTΦ(σ)x ≤ 0,∀σ ∈ [0, τ s]). (4-10)

Similarly, to find an upper bound τ̄s on the inter-sample time, a finite set of matrices Φ̄κ,s is
constructed such that:

(xT Φ̄κ,sx ≥ 0,∀κ ∈ Ks) =⇒ (xTΦ(σ)x ≥ 0, ∀σ ∈ [τ̄s, σ̄]) (4-11)

where σ̄ > 0 is a time instant that is larger than the inter-sample time (Equation 4-8) for any
state in the entire state space, which yields:

xTΦ(σ̄)x ≥ 0, ∀x ∈ Rn. (4-12)

Finding σ̄ is done by simply increasing it until the resulting inter-sample time bounds τ s and
τ̄s satisfy τ s, τ̄s < σ̄.

How exactly the matrices Φκ,s are constructed and how they can be used to find a lower
bound τ s on the inter-sample time is described in Lemma 1.

Lemma 1 ([16]). Consider a time limit τ s ∈ (0, σ̄]. If

xTΦ(i,j),sx ≤ 0,

∀(i, j) ∈ Ks = ({0, . . . , Nconv} × {0, . . . , b
τ sl

σ̄
c}),
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then
xTΦ(σ)x ≤ 0 ,∀σ ∈ [0, τ s],

with Φ as in (4-8) and
Φ(i,j),s := Φ′(i,j),s + νI, (4-13)

Φ′(i,j),s :=
{ ∑i

k=0 Lk,j( σ̄l )
k if j < bτ slσ̄ c,∑i

k=0 Lk,j(τ s − jσ̄
l )k j = bτ slσ̄ c,

(4-14)



L0,j := I −Π1,j −ΠT
1,j + (1− α)ΠT

1,jΠ1,j ,

L1,j := [(1− α)ΠT
1,j − I]Π2,j

+ΠT
2,j [(1− α)Π1,j − I],

Lk≥2,j := [(1− α)ΠT
1,j − I]Ak−1

k! Π2,j

+ΠT
2,j

(Ak−1)T
k! [(1− α)Π1,j − I]

+(1− α)ΠT
2,j(
∑k−1
i=1

(Ai−1)T
i!

Ak−i−1

(k−i)! )Π2,j ,

(4-15)

{
Π1,j := I +Mj(A+BK),
Π2,j := Nj(A+BK), (4-16)

Mj :=
∫ j σ̄

l
0 eAsds, Nj := AMj + I, (4-17)

and
ν ≥ max

σ′∈[0, σ̄
l
], r∈{0,...,l−1}

λmax(Φ(σ′ + r σ̄l )− Φ̃Nconv ,r(σ′)), (4-18)

where
Φ̃Nconv ,r(σ′) :=

∑Nconv
k=0 Lk,rσ

′k. (4-19)

Proof. See Appendix A-1.

To obtain a less conservative result the following theorem is used:

Theorem 1 (Regional Lower Bound Approximation [16]). Consider the inter-sampling time
set {τ1, . . . , τ q} and matrices Φκ,s satisfying ∀s ∈ {1, . . . , q}, ∀κ = (i, j) ∈ Ks, 0 < τ s ≤ σ̄,
Φκ,s � 0. If there exist scalars εκ,s ≥ 0 (for n = 2) or symmetric matrices Uκ,s with
nonnegative entries (for n ≥ 3) such that the linear matrix inequalities (LMIs)

Φκ,s + εκ,sQs � 0 if n = 2 (4-20)

Φκ,s + ETs Uκ,sEs � 0 if n ≥ 3 (4-21)

hold, then ∀x ∈ Rs determined by (3-2) or (3-3) the inter-sample time (4-3) of the control
system (5-1-5-2) is regionally bounded from below by τ s.

Proof. The result is a direct consequence of applying a lossless (if n = 2) or a lossy (if n ≥ 3)
version of the S-procedure: if the stated conditions hold then, for every x ∈ Rn, xTQsx ≥ 0 (or
xTETs Uκ,sEsx ≥ 0) implies that xTΦκ,sx ≤ 0. From (3-2) (or (3-3)) we have that xTQsx ≥ 0
(or Esx ≥ 0) iff x ∈ Rs. Thus one can conclude that for every x ∈ Rs, xTΦκ,sx ≤ 0 and by
Lemma 1 the result follows.
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Following the same principles the upper bound τ̄s on the inter-sample time for each region can
be calculated. The procedure for these calculations is described in Lemma 2 and Theorem 2.

Lemma 2. Consider a time limit τ̄s ∈ (τ s, σ̄]. If

xT Φ̄(i,j),sx ≥ 0,

∀(i, j) ∈ Ks = ({0, . . . , Nconv} × {b
τ̄sl

σ̄
c, . . . , l − 1}),

then
xTΦ(σ)x ≥ 0, ∀σ ∈ [τ̄s, σ̄],

with Φ as in (4-8) and
Φ̄(i,j),s := Φ̄′(i,j),s + ν̄I,

Φ̄′(i,j),s :=
{ ∑i

k=0 Lk,j((j + 1) σ̄l − τ̄s)
k if j = b τ̄slσ̄ c,∑i

k=0 Lk,j( σ̄l )
k if j > b τ̄slσ̄ c,

(4-22)

ν̄ ≤ max
σ′∈[0, σ̄

l
], r∈{0,...,l−1}

λmin(Φ(σ′ + r σ̄l )− Φ̃Nconv ,r(σ′)), (4-23)

and Lk,j given by (4-15).

Proof. See Appendix A-2.

Theorem 2 (Regional Upper Bound Approximation [16]). Consider the inter-sampling time
set {τ̄1, . . . , τ̄q} and matrices Φ̄κ,s satisfying ∀s ∈ {1, . . . , q}, ∀κ = (i, j) ∈ Ks = ({0, . . . , Nconv}×
{b τ̄slσ̄ c, . . . , l − 1}), τ s < τ̄s ≤ σ̄, Φ̄κ,s � 0. If there exist scalars ε̄κ,s ≥ 0 (for n = 2) or sym-
metric matrices Ūκ,s with nonnegative entries (for n ≥ 3) such that the LMIs

Φ̄κ,s − ε̄κ,sQs � 0 if n = 2 (4-24)

Φ̄κ,s − ETs Ūκ,sEs � 0 if n ≥ 3 (4-25)

hold, then ∀x ∈ Rs determined by (3-2) or (3-3) the inter-sample time (4-3) of the control
system (5-1-5-2) is regionally bounded from above by τ̄s.

Proof. Analogous to the proof of Theorem 1.

4-2 Time Bound Calculations for Alternative Region Representa-
tion

When the alternative region representation introduced in section 3-2 for an n-dimensional
system (with n ≤ 3) some adjustments to Theorem 1 and Theorem 2 are necessary. Recall
with this representation the regions are defined as:

Rs = {x ∈n |xT1,2Q1,2
s x1,2 ≥ 0 ∧ xT2,3Q2,3

s x2,3 ≥ 0 ∧ . . . ∧ xT(n−1),nQ
(n−1),n
s x(n−1),n ≥ 0} (4-26)
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where xi,(i+1) refers to [xi xi+1]T , i.e. the i-th and (i+ 1)-th index of the n-dimensional state.
instead of:

Rs = {x ∈ Rn|Esx ≥ 0} (4-27)

Looking at Theorem 1, instead of Equation 4-21 the LMIs that have to be considered are:

Φκ,s + ε1,2
κ,sQ̃

1,2
s + ε2,3

κ,sQ̃
2,3
s + · · ·+ ε(n−1),n

κ,s Q̃(n−1),n
s � 0 (4-28)

where εi,(i+1)
κ,s are nonnegative scalars. Similarly, instead of Equation 4-25, the LMIs that have

to be considered to find the upper bounds on the inter-sample times are:

Φ̄κ,s − ε̄1,2
κ,sQ̃

1,2
s − ε̄2,3

κ,sQ̃
2,3
s − · · · − ε̄(n−1),n

κ,s Q̃(n−1),n
s � 0 (4-29)

where ε̄i,(i+1)
κ,s are nonnegative scalars. By applying the S-procedure to these LMIs and using

Lemma 1 and Lemma 2 (analogous to the proof of Theorem 1) it can be proven that this
approach indeed gives the lower and upper inter-sample time bounds.

Note that the matrices Qi,(i+1)
s in Equation 4-26 are 2 × 2 matrices whereas the matrices

Q̃
i,(i+1)
s in Equation 4-28 and Equation 4-29 are n×n matrices (since Φκ,s and Φ̄κ,s are n×n

too). The matrices Q̃i,(i+1)
s are n × n matrices with all zero entries except for the (i, i)-th,

(i, i + 1)-th, (i + 1, i)-th and (i + 1, i + 1)-th entries. These entries are equal to the entries
(1, 1), (1, 2), (2, 1) and (2, 2) of the corresponding matrices Qi,(i+1)

s . For example, a region Rs
in a three-dimensional state space with:

Q1,2
s =

[
q1,2

11 q1,2
12

q1,2
21 q2,2

12

]

and:

Q2,3
s =

[
q2,3

11 q2,3
12

q2,3
21 q2,3

12

]

would yield:

Q̃1,2
s =

q
1,2
11 q1,2

12 0
q1,2

21 q1,2
22 0

0 0 0


and:

Q̃2,3
s =

0 0 0
0 q2,3

11 q2,3
12

0 q2,3
21 q2,3

22


Solving the LMIs to obtain the inter-sample time bounds is done using the YALMIP toolbox
[23] in MATLAB [20].
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Chapter 5

Reachability Analysis

5-1 The Multi-Parametric Toolbox

The final step in constructing a control system timed automaton (TA) is a reachability analysis
that gives all the possible transitions between state space regions. To perform this reachabil-
ity analysis the Multi-Parametric Toolbox (MPT) [24] in MATLAB [20] is used. This toolbox
contains a function that computes reachable sets for discrete linear time-invariant (LTI) sys-
tems. The domain of the states for which the reachable set is computed can be defined by a
polyhedron. The same can be done for the domain of the inputs. Furthermore the number
of steps N , that combined with the sampling time ts defines the time N · ts for which the
reachable set is computed, can be specified.

5-2 Implementing the Reachability Analysis in the Multi-Parametric
Toolbox

The goal is to obtain all possible transitions between regions as defined in chapter 3. Therefore
a reachability analysis for each of these regions is done, where the domain of the states is the
conic region Rs. To construct these polyhedra in MATLAB their vertices are calculated as in
Equation 3-11. Since the upper and lower bound (τ̄s and τ s respectively) on the inter-sample
time for each region are known the reachability analysis is done for a time interval [τ s, τ̄s].
This is done as explained below.

Recall from chapter 4 that the considered continuous-time control systems are of the form:

ξ̇(t) = Aξ(t) +Bv(t), ξ(t) ∈ Rn, v(t) ∈ Rm (5-1)

with state-feedback law:
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v(t) = Kξ(tk), t ∈ [tk, tk+1) (5-2)

For the reachability analysis, that will be performed on the discretized system, first a general
sampling time ts is defined as:

ts = τ s/h, h ∈ N (5-3)

The reachability analysis is then done for the steps:

N = {Nmin, Nmin+1, . . . , Nmax} (5-4)

where:

Nmin =
⌊
τ s
ts

⌋
= h

Nmax =
⌈
τ̄s
ts

⌉ (5-5)

Now at each the step N the system is discretized with sampling time tNs = N · ts. In this
way at each step N new discrete-time system matrices Ad and Bd are obtained from the
continuous-time system with system matrices A and B. In the MPT reachability analysis
function the closed-loop system is then defined as:

Acl = Ad +BdK

Bcl = 0
(5-6)

From these matrices the next discrete-state can be calculated:

x+ = Aclx0 (5-7)

As this is done for all the steps N (or actually: times tNs = N · ts) where the domain for
x0 is restricted to the conic region Rs this will give the reachable set for the interval [τ s, τ̄s]
(denoted by Rs[τ s,τ̄s]) starting from the initial state x0. The conic regions Ri that intersect
with this set then belong to the possible transition regions of the region Rs. Since Bcl = 0
the input does not have to be restricted in the reachability analysis steps.

The implementation of the reachability analysis as described in this chapter is successful for
three-dimensional systems. For higher dimensional systems the MPT has trouble to compute
the reachable sets for the conic regions Rs. The exact reason for this is unclear.
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Chapter 6

Case Studies

In this chapter some case studies on in-vehicle control systems are presented. Three linear
time-invariant (LTI) systems are considered of which two are third order and one is fourth
order. For each system the abstraction is performed for different values of m, the num-
ber of subdivisions for the angular coordinates in the state space partition (see chapter 3).
Inter-sample time bound calculations are done using both region representations presented in
chapter 3, so that the outcomes of both methods can be compared. Finally for each system
a simulation is done.

6-1 Intelligent Headway Controller

6-1-1 System Description

The first control system is an intelligent vehicle headway controller [25]. The aim of this
controller is to maintain a constant headway time with respect to a vehicle driving in front
of the host vehicle, i.e. the vehicle that is controlled. In [25] the following state space model
is derived:

ĖrĖv
ȧ

 =

0 1 0
0 0 1
0 −1.43 −2.149


ErEv
a

+

 0
0

0.01077

u (6-1)

where:

Er = Rh −R (6-2)

and:

Ev = V − Vp (6-3)
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Note that time indications (t) for the states are left out for simplicity, as is done for all control
systems presented in this chapter. A description of all the variables in this model is given in
Table 6-1. Furthermore the following optimal state feedback regulator is obtained:

u = −Kx = −
[
40.0125 55.7833 24.4587

]
x (6-4)

Table 6-1: Intelligent headway controller variables

Variable Description
Er Distance error [m]
Ev Velocity error [ms ]
Rh Desired headway [m]
R Headway [m]
V Host vehicle velocity [ms ]
Vp Preceding vehicle velocity [ms ]
a Host vehicle acceleration [m

s2 ]

6-1-2 Abstraction Results

The abstraction for the intelligent headway control system is done using both the Es matrix
method (Equation 3-3) and the Qs matrix method (Equation 3-4). The outcome of both
methods can be compared by looking at the maximum and average differences between the
upper and lower inter-sample time bound for the regions:

εmaxτ = max{τ̄s − τ s | s ∈ {1, 2, . . . , q}} (6-5)

εavgτ = 1
q

q∑
s=1

(τ̄s − τ s) (6-6)

where q = 2 × m(n−1) is the number of conic regions in the state space partitioning. The
tighter the inter-sample time bounds are (and thus the smaller εmaxτ and εavgτ are) the more
precise the abstraction is. In Table 6-2 the values for the abstraction parameters (except m,
which is varied) are given. For a detailed explanation of the abstraction procedure and these
parameters see Appendix B.

In Table 6-3 an overview of εmaxτ and εavgτ obtained from both abstraction methods and for
different values of m (the number of subdivisions for the angular coordinates) is given. The
computation time 1 of the abstraction (excluding the reachability analysis, which requires the
Qs matrix method to be used) is given as well. In Figure 6-1 and Figure 6-2 the regional
inter-sample time bounds for these abstractions are shown in descending order. Note that in
these plots only the inter-sample time bounds for regions in the first half of the state space are
shown since the inter-sample time bounds for regions Rs in the second half of the state space

1Computation time for abstractions performed on an Intel® Core™ i7-4710MQ processor.
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Table 6-2: Abstraction and simulation parameters for the intelligent headway controller

Parameter Value
Nconv 5
σ̄ 1 s
l 100
α 0.05
τmin 0 s
∆τ1 0.001 s
∆τ2 0.001 s
∆σ 0.001 s
∆τ3 0.001 s
σmax 2 s
l∗ 1000
∆τ4 0.001 s
x0 [3 − 2 5]T
tend 20 s
ts 0.001 s

are identical due to the symmetry mentioned in chapter 3. Looking at Table 6-3 it stands out
that the Qs matrix method gives smaller values for εavgτ and thus yields tighter inter-sample
time bounds than the Es matrix method. Also the Qs matrix method takes less computation
time. The fact that the Qs matrix method yields tighter inter-sample time bounds can also
be seen in Figure 6-1 and Figure 6-2, where the upper (lower) bounds lie below (above) those
obtained from the Es matrix method for most indices.

Table 6-3: Comparison of Es and Qs abstraction method results for the intelligent headway
controller

Abstraction method εmaxτ εavgτ Computation time
Es, m = 4 1.7710 s 1.1133 s 30 min
Qs, m = 4 1.3490 s 0.7209 s 19 min
Es, m = 10 1.2470 s 0.4029 s 6 hrs
Qs, m = 10 1.2990 s 0.2975 s 3 hrs

Table 6-4 shows an overview of εmaxτ and εavgτ obtained from abstractions using the Qs matrix
method for more values of m. Again the computation time of the abstraction is given.
For larger m the computation time logically increases (since the inter-sample time bound
calculations have to be performed for more conic regions) but the obtained inter-sample time
bounds become tighter, i.e. the abstraction is more precise.

Figure 6-3 shows the result of a simulation done for the intelligent headway controller. During
this simulation the inter-sample times and sampled states are captured. For each sampled
state it can be determined in which conic region Rs this state lies (using Equation 3-4) and
thus what the corresponding upper and lower bounds τ̄s and τs on the inter-sample time
(i.e. the time until the next triggering) are. The inter-sample times for triggerings that
occurred during the simulation are plotted in Figure 6-4 along with the inter-sample time
bounds for the region Rs of the corresponding sampled state. All the inter-sample times (the
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Figure 6-1: Regional inter-sample time lower bounds τs (left) and upper bounds τ̄s (right)
obtained from both the Es and Qs abstraction method for the intelligent headway controller with
m = 4 in descending order.

Figure 6-2: Regional inter-sample time lower bounds τs (left) and upper bounds τ̄s (right)
obtained from both the Es and Qs abstraction method for the intelligent headway controller with
m = 10 in descending order.
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Table 6-4: Comparison of Qs abstraction method results for different values of m for the intel-
ligent headway controller

Abstraction method εmaxτ εavgτ Computation time
Qs, m = 4 1.3490 s 0.7209 s 19 min
Qs, m = 6 1.3240 s 0.4841 s 1 hr
Qs, m = 8 1.3070 s 0.3675 s 1 hr 50 min
Qs, m = 10 1.2990 s 0.2975 s 3 hrs

times between triggerings) fall within the calculated bounds. Figure 6-5 shows the possible
transitions obtained from the reachability analysis. None of the transitions observed during
the simulation violates this transition relation. The abstraction applied in this simulation
was done using the Qs matrix method with m = 10.

Figure 6-3: State evolution during the intelligent headway controller simulation.
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Figure 6-4: Intelligent headway controller simulation triggering sequence.

Figure 6-5: Possible region transitions for the intelligent headway controller abstraction obtained
using the Qs matrix method with m = 10.

Christiaan Hop Master of Science Thesis



6-2 Active Steering 35

6-2 Active Steering

6-2-1 System Description

The second in-vehicle control system that is considered is an active steering system. An
example of such a system is found in [2]. In this study the left and right wheels are lumped
together, resulting in a half car model shown in Figure 6-6. Descriptions of the parameters
and variables in this model are given in Table 6-5 and Table 6-6

Figure 6-6: Active steering half car model (adapted from [2]).

No rear wheel steering will be used, so the rear steering angle δr has a constant value of 0.
In [2] the following state space model is derived:

 β̇ṙ
δ̇f

 =

a11 a12 b1
a21 a22 b2
0 0 0


βr
δf

+

0
0
1

u (6-7)

where:

a11 = −Cf + Cr
mv

a12 = −1− Cf lf − Crlr
mv2

a21 = −Cf lf − Crlr
Igz

a22 = −
Cf l

2
f + Crl

2
r

Igzv

b1 = Cf
mv

b2 = Cf lf
Igz

(6-8)

The moment of inertia with respect to a vertical axis Igz is calculated as Igz = m
lf lr

. In this
model a dry road surface condition is assumed. A wet road surface condition changes the
cornering stiffness and vehicle mass influences. The vehicle mass is assumed to be 1840 kg.
Assuming that the cars weight distribution is such that the center of gravity is in the middle
of the front and rear axle, `f and `f are both assumed to be 2 m. A typical value for Cf and
Cr is 1000 N

deg [26] or 57300 N
rad .
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Table 6-5: Active steering model parameters

Parameter Description Value
`f Distance of front axle from center of gravity (CG) 2 [m]
`r Distance of rear axle from CG 2 [m]
Cf Front wheel cornering stiffness 57300 [ Nrad ]
Cr Rear wheel cornering stiffness 57300 [ Nrad ]
m Vehicle mass 1840 [kg]

Table 6-6: Active steering variables

Variable Description
v Velocity [ms ]
β Sideslip angle at CG [rad]
ψ̇(≈ r) Yaw rate with respect to an inertial coordinate system [ rads ]
F Lateral force at CG [N ]
δf Front steering angle [rad]

To achieve tracking of a (piecewise) constant reference yaw rate rref the system output is
defined as:

y = Cx =
[
0 1 0

]
x = r (6-9)

The error with respect to the reference yaw rate is then:

∆y = y − yd = r − rref (6-10)

For asymptotic tracking it must hold that the steady-state values for x and u satisfy:

lim
t→∞

x = x∗

lim
t→∞

u = u∗[
A B
C 0

] [
x∗

u∗

]
=
[
0
1

]
yd

(6-11)

Assuming the composed matrix in Equation 6-11 is nonsingular (which is the case for the
chosen parameters) the steady-state values for x and u can be calculated as:

[
x∗

u∗

]
=
[
A B
C 0

]−1 [
0
1

]
yd (6-12)

Now define the shifted states, input and output as:

∆x = x− x∗

∆u = u− u∗

∆y = y − yd
(6-13)
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The system can then be defined as:

∆ẋ = A∆x+B∆u
∆y = C∆x

(6-14)

A linear-quadratic regulator (LQR) is applied to the system:

∆u = −K∆x (6-15)

The matrix K is obtained using the LQR function in MATLAB [20], where the second state
r − r∗ = r − rref is given a high weight [27].

6-2-2 Abstraction Results

Again the control system abstraction is done using both the Es and the Qs matrix method,
with different values for m. The parameters for the abstraction are given in Table 6-7. A
comparison of the obtained εmaxτ and εavgτ is given in Table 6-8. Figure 6-7 and Figure 6-8
show the inter-sample time bounds for these abstractions. Again it can be concluded that
the Qs matrix method results in tighter bounds and takes less computation time compared
to the Es matrix method.

Table 6-7: Abstraction and simulation parameters for the active steering control system

Parameter Value
Nconv 5
σ̄ 0.001 s
l 100
α 0.05
τmin 0 s
∆τ1 1 · 10−5 s
∆τ2 1 · 10−5 s
∆σ 1 · 10−5 s
∆τ3 5 · 10−5 s
σmax 0.1 s
l∗ 1000
∆τ4 5 · 10−5 s
x0 [0.25 0.17 0.5]T
tend 2 s
ts 1 · 10−4 s

Table 6-9 shows the abstraction outcomes obtained by applying the Qs matrix method with
different values for m. Again with increasing m the calculated inter-sample time bounds
become tighter as could be expected. Also the computation time increases with m.

Figure 6-9 shows the state evolution during the simulation done for the active steering control
system. Figure 6-10 shows the triggering sequence during this simulation. All the inter-sample
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Table 6-8: Comparison of Es and Qs abstraction method results for the active steering control
system

Abstraction method εmaxτ εavgτ Computation time
Es, m = 4 0.0695 s 0.0363 s 18 min
Qs, m = 4 0.0468 s 0.0233 s 14 min
Es, m = 10 0.0497 s 0.0117 s 45 min
Qs, m = 10 0.0447 s 0.0099 s 35 min

Figure 6-7: Regional inter-sample time lower bounds τs (left) and upper bounds τ̄s (right)
obtained from both the Es and Qs abstraction method for the active steering control system with
m = 4 in descending order.

Figure 6-8: Regional inter-sample time lower bounds τs (left) and upper bounds τ̄s (right)
obtained from both the Es and Qs abstraction method for the active steering control system with
m = 10 in descending order.
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Table 6-9: Comparison of Qs abstraction method results for different values of m for the active
steering control system

Abstraction method εmaxτ εavgτ Computation time
Qs, m = 4 0.0468 s 0.0233 s 14 min
Qs, m = 6 0.0454 s 0.0158 s 24 min
Qs, m = 8 0.0449 s 0.0121 s 34 min
Qs, m = 10 0.0447 s 0.0099 s 35 min

times fall within the corresponding calculated bounds. The transition relation of the system
is shown in Figure 6-11. No transitions other than the ones in this transition relation occurred
during the simulation.

Figure 6-9: State evolution during the active steering control system simulation.

Figure 6-10: Active steering control system simulation triggering sequence.
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Figure 6-11: Possible region transitions for the active steering control system abstraction ob-
tained using the Qs matrix method with m = 10.

6-3 Active Suspension

6-3-1 System Description

The last control system that is considered is an active suspension. Active suspension im-
proves road handling and passenger comfort [3]. A quarter car model in the form of a double
mass-spring-damper system (Figure 6-12) is considered.

Figure 6-12: Active suspension on a quarter car model (adapted from [3]).

The parameters in this model are defined in Table 6-10. Their values are taken from [28].
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Table 6-10: Active suspension model parameters

Parameter Description Value
Ms Vehicle body mas (or sprung mass) 460 [kg]
Mus Tire mass (or unsprung mass) 50 [kg]
ks Suspension spring constant 29500 [N/m]
bs Suspension damping coefficient 290 [Ns/m]
kus Tire spring constant 215000 [N/m]
bus Tire damping coefficient 1500 [Ns/m]

The equations of motions for the quarter car model are given by2:

Msẍ1 = Fc − bs
(
ẋ1 − ẋ2

)
− ks

(
x1 − x2

)
(6-16)

Musẍ2 = −Fc + bs
(
ẋ1 − ẋ2

)
+ ks

(
x1 − x2

)
−bus

(
ẋ2 − żr

)
− kus

(
x2 − zr

) (6-17)

By choosing a state vector x, control input u and disturbance w as:

x =
[
x1 − x2 ẋ1 x2 − zr ẋ2

]T
u = Fc

w = żr

(6-18)

The state space description of the system is given by:

ẋ = Ax+Bu+Gw (6-19)

where:

A =


0 1 0 −1
− ks
Ms

− bs
Ms

0 bs
Ms

0 0 0 1
ks
Ms

bs
Ms

−kus
Ms

− bs
Ms


B =

[
0 1

Ms
0 − 1

Mus

]T
G =

[
0 0 −1 bus

Mus

]T
(6-20)

An LQR is applied to the system:

u = Fc = −Kx (6-21)
2The derivations of the equations of motion in [3] and [28] contain some errors, which are corrected here.

The controller design is redone as well.
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where the matrix K is again obtained using the LQR function in MATLAB [27]. For this
system the state x1−x2 is given a high weight. This state is related to road handling quality
[3]. Note that the presence of a disturbance term (in this case Gw) is not considered in [1].
A disturbance however could be represented by picking an initial condition other than the
equilibrium of the system, as is done in this case study.

6-3-2 Abstraction Results

Since the MATLAB script [21] that generates the matrices Es does not work for systems with
n > 3 the Es matrix abstraction method cannot be applied to this system. The abstraction
is only done using the Qs matrix method with different values for m. The abstraction pa-
rameters are given in Table 6-11. An overview of the obtained εmaxτ and εavgτ for the different
abstractions is given in Table 6-12.

Table 6-11: Abstraction and simulation parameters for the active suspension control system

Parameter Value
Nconv 5
σ̄ 0.001 s
l 100
α 0.05
τmin 0 s
∆τ1 1 · 10−5 s
∆τ2 1 · 10−5 s
∆σ 1 · 10−5 s
∆τ3 5 · 10−5 s
σmax 0.25 s
l∗ 1000
∆τ4 1 · 10−4 s
x0 [0.1 2 − 0.05 − 5]T
tend 5 s
ts 5 · 10−4 s

Table 6-12: Comparison of Qs abstraction method results for different values of m for the active
suspension control system

Abstraction method εmaxτ εavgτ Computation time
Qs, m = 4 0.2190 s 0.0376 s 49 min
Qs, m = 6 0.2140 s 0.0175 s 1 hr 31 min
Qs, m = 8 0.2104 s 0.0100 s 3 hrs 28 min
Qs, m = 10 0.2071 s 0.0067 s 6 hrs 39 min

In Figure 6-13 the state evolution during the simulation done for the active suspension con-
trol system is plotted. The triggering sequence during this simulation is shown Figure 6-14.
Again all the inter-sample times fall within the corresponding calculated bounds. Since the
reachability analysis is not working for four-dimensional (and higher dimensional) systems
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the region transitions are not shown here.

Figure 6-13: State evolution during the active suspension control system simulation.

Figure 6-14: Active suspension control system simulation triggering sequence.
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Chapter 7

Conclusion

The abstraction method as laid out in chapter 2 is implemented in MATLAB [20], [27] and
applied to event-triggered linear time-invariant (LTI) control systems. The abstraction par-
titions the state space into conic regions Rs pointing at the origin. For each of these conic
regions an upper bound τ̄s and lower bound τ s on the inter-sample time are derived. Finally
a reachability analysis is implemented to determine the possible transitions between regions.
Altogether this defines the control system timed game automaton (TGA). By taking the
parallel composition of multiple control system TGA and a communication network TGA a
network of timed game automata (NTGA) could be obtained over which a scheduling policy
can be synthesized.

From the case studies in chapter 6 it can be concluded that the inter-sample time bound
computations done using the Qs matrix method (based on the region representation as given
in Equation 3-4) give good results. When implemented in MATLAB this method yields less
conservative inter-sample time bounds and takes less computation time than the Es matrix
method (based on the region representation as given in Equation 3-3). Moreover the Qs ma-
trix method is able to handle four-dimensional and higher-dimensional systems.

The reachability analysis [27] (performed using the Multi-Parametric Toolbox (MPT) in MAT-
LAB) is only working for two-dimensional and three-dimensional systems. When applied to
higher-dimensional systems the MPT cannot perform the computation of the reachable sets
for the conic regions Rs (in which the state space is partitioned) and gives an error. The
reason for this issue is unclear.
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Chapter 8

Further Work

In order to be able to obtain complete abstractions for n-dimensional systems (with n > 3)
the issue that occurs in the reachability analysis has to be solved. Since the exact issue is
unclear it is hard to propose an approach to do so. Perhaps an alternative way to define
the region polyhedra in the MATLAB code [27] could solve the problem. Another option
is to program the reachability analysis manually. This latter approach has been tried based
on the method presented in [19] but was unsuccessful. The difficulty here lies in making an
appropriate over-approximation of the reachable set.

To complete the scheduling approach proposed in [1] the control system timed game au-
tomata (TGA) have to be defined based on the abstraction results. Taking the parallel
composition of these TGA and the communication network gives the network of timed game
automata (NTGA) over which a scheduling could be synthesized. This can be done by using
dedicated software such as UPPAAL-Tiga [11]. After this the performance of the networked
control systems (NCSs) could be evaluated by performing simulations in a vehicle simulation
environment such as Dynacar [29].

To decrease the computation time (which increases significantly with the system order n) of
the abstraction a bisection method could be applied in the inter-sample time bound calcu-
lations. Since the abstraction is performed offline its computation time does not influence
the real-time performance of the NCSs but still the reduction in computation time could be
worthwhile, especially for higher dimensional systems.
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Appendix A

A-1 Proof to Lemma 1

Proof of Lemma 1: We provide a constructive proof in four steps.

First: divide the time interval [0, σ̄] into l subintervals. The aim of this step is to make the
preparations to compute a precise estimation of Φ(·) by building l small convex embeddings
around it instead of building an overly conservative single embedding. For every time instant
σ ∈ [0, τ s], there exists j ∈ {0, . . . , bτ slσ̄ c} such that j σ̄l ≤ σ ≤ (j + 1) σ̄l . Define σ′ = σ − j σ̄l
(σ′ ∈ [0, χ], with χ = σ̄

l for j < bτ slσ̄ c and χ = τ s − j σ̄l otherwise).

Second: compute a polynomial approximation of Φ(·) over each subinterval. Employ the
relation

∫ a+b
0 eArdr =

∫ a
0 e

Ardr +
∫ b

0 e
Ardr(A

∫ a
0 e

Ardr + I) to simplify Λ(σ) given in (4-7) as:

Λ(σ) = I +Mj(A+BK) +
∫ σ′

0 eArdrNj(A+BK) (A-1)

with Mj and Nj as in (4-17). Then, by defining two new matrices Π1,j and Π2,j as in (4-16),
equation (A-1) can be rewritten as:

Λ(σ) = Π1,j +
∫ σ′

0 eArdrΠ2,j . (A-2)

Replace
∫ σ′

0 eArdr by its Nconv − th order Taylor series expansion to approximate Φ given by
(4-9), i.e.:

∫ σ′
0 eArdr '

∑Nconv
i=1

Ai−1

i! σ
′i. (A-3)

Remember that Nconv + 1 is the number of vertices we consider for polytopic embedding
according to time. The Taylor series expansion of Φ is given by

∑∞
k=0 Lk,jσ

′k with Lk,j
defined in (4-15).
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Third: bound the error introduced by the Nconv-th order approximation of Φ with a constant
term. One can derive the Nconv-th order approximation of Φ on the time interval [j σ̄l , (j+1) σ̄l ]
using Φ̃Nconv ,j(σ′) given in (4-19). Denote by RNconv ,j(σ′) = Φ(σ) − Φ̃Nconv ,j(σ′). We seek
to compute a constant scalar ν independent of σ′ such that RNconv ,j(σ′) � νI, to establish
xTΦ(σ)x ≤ 0 from xT (Φ̃Nconv ,j(σ′) + νI)x ≤ 0. Since RNconv ,j is symmetric RNconv ,j(σ′) �
λmax(σ′)I, where λmax(σ′) is the maximal eigenvalue of RNconv ,j(σ′), and thus ν is provided
by (4-18).

Fourth: build a convex polytope that contains the matrix exponential function Φ̃Nconv ,j +νI :
[0, χ]→Mn(R), using the method proposed in [18]. From [18] we know that if xTΦ(i,j),sx ≤
0, ∀(i, j) ∈ Ks = ({0, . . . , Nconv} × {0, . . . , bτ slσ̄ c}), with Φ(i,j),s =

∑i
k=0 Lk,jχ

k + νI, the
following holds xT (Φ̃Nconv ,j(σ′) + νI)x ≤ 0 and as a result xTΦ(σ)x ≤ 0, ∀σ ∈ [0, τ s]. �

A-2 Proof to Lemma 2

Proof of Lemma 2: The proof of Lemma 2 is analogous to the proof of Lemma 1 with the
following changes. In the first step now: for every σ ∈ [τ̄s, σ̄], ∃j ∈ {b τ̄slσ̄ c, . . . , l − 1} such
that j σ̄l ≤ σ ≤ (j + 1) σ̄l , we define σ′ = σ − j σ̄l (σ′ ∈ [0, χ], with χ = (j + 1) σ̄l − τ̄s for
j = b τ̄slσ̄ c and χ = σ̄

l for j > b τ̄slσ̄ c). In the third step, now we seek to compute instead a
constant scalar ν̄ independent of σ′ such that RNconv ,j � ν̄I, to establish xTΦ(σ)x ≥ 0 from
xT (Φ̃Nconv ,j(σ′) + ν̄I)x ≥ 0. Since RNconv ,j is symmetric, it follows RNconv ,j(σ′) � λmin(σ′)I,
where λmin(σ′) is the minimal eigenvalue of RNconv ,j(σ′). This constant can be computed now
from (4-23). In the fourth step, applying again the results from [18], one has that xT Φ̄(i,j),sx ≥
0, ∀(i, j) ∈ Ks = ({0, . . . , Nconv}×{b τ̄slσ̄ c, . . . , l−1}), with Φ̄(i,j),s =

∑i
k=0 Lk,jχ

k+ ν̄I, implies
xT (Φ̃Nconv ,j(σ′) + ν̄I)x ≥ 0 and consequently xTΦ(σ)x ≥ 0, ∀σ ∈ [τ̄s, σ̄]. �
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B-1 Abstraction Procedure in MATLAB

The entire control system abstraction is implemented in MATLAB [20]. MATLAB scripts
that performed the abstraction for two-dimensional systems was already available [21]. For
this project this existing code was modified and extended to make it work for higher dimen-
sional systems as well.

The abstraction procedure consists of several steps which are laid out below. The most con-
venient is to run these steps in sequence from a main running script, were the control system
matrices and abstraction parameters (see Table B-1) are defined.

Step 1: Line search on τ
′

In this step, which is performed by running the script ’step1_etc.m’ a line search on a lower
bound on the inter-sample time bound for the entire state space is done. This is done by
finding a finite set of matrices Φκ,s (see section 4-1) such that:

Φκ,s � 0 (B-1)

In this step ν (Equation 4-18) is not taken into account yet.

Step 2: Deriving ν and new line search on τ
′

In step 2 ν (Equation 4-18) is derived, after which the line search on τ ′ is redone, now with
taking ν into account. The script ’step2_Nu_etc.m’ performs the calculations for this step.

Master of Science Thesis Christiaan Hop



52 Appendix B

Step 3: Calculating a lower bound on the inter-sample time for each region

In step 3 the calculations to find a lower bound on the inter-sample time per region are
performed. This is done using the script ’step3_nD_Q_etc_lowerbounds.m’ (if the region
representation from Equation 3-4 is used) or ’step3_nD_E_etc_lowerbounds.m’ (if the re-
gion representation from Equation 3-3 is used).

Step 4: Calculating an upper bound on the inter-sample time for each region

In this step the calculations to find an upper bound on the inter-sample time per region are
performed. The calculations for this step are performed by the script ’step4_nD_Q_etc_upperbounds.m’
(if the region representation from Equation 3-4 is used) or ’step4_nD_E_etc_upperbounds.m’
(if the region representation from Equation 3-3 is used).

Step 5: Reachability analysis

In this final step (performed by the script ’step5_nD_Reachability’) of the system abstraction
the reachability analysis as described in chapter 5 using the Multi-Parametric Toolbox (MPT)
is done. Since the calculations of the region vertices in this step are consistent with the region
representation from Equation 3-4, this reachablility analysis only works if the region repre-
sentation from this equation is used.

B-2 Simulation

A simulation for an example system can be done by running the script ’fig_Sim_Q_etc’
(if the region representation from Equation 3-4 is used) or ’fig_Sim_E_etc’ (if the region
representation from Equation 3-3 is used). The initial condition, time step size and end time
for the simulation can be defined in the main running script. During the simulation the state
evolution, measurement error and inter-sample times are saved. At the end it can be evalu-
ated if the inter-sample times lie within the calculated bounds. Also it can be checked if all
the region transitions that occur during the simulation were predicted to be possible by the
reachability analysis.

B-3 Abstraction and Simulation Parameters

For the abstraction and simulation some parameters have to be defined. As mentioned above
the most convenient is to define these in a main script in MATLAB, along with the control
system matrices. An overview of all the abstraction and simulation parameters is given in
Table B-1.
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Table B-1: Abstraction and simulation parameters

Parameter Description
Nconv Order of Taylor series approximation of Φ (see section 4-1)
σ̄ Upper limit for the line search in step 1,2 and 3
l Number of subdivisions in the interval [0, σ̄]
m Number of subdivisions for the angular coordinates (within an interval of length π)
α Triggering coefficient (see Equation 2-4)
τmin Starting time for line search in step 1
∆τ1 Time step size for the line search in step 1
∆τ2 Time step size for the line search in step 2
∆σ Increment on σ′ in step 2 (see Equation 4-18)
∆τ3 Time step size for the line search in step 3
σmax Upper limit for the line search in step 4
l∗ Number of subdivisions in the interval [0, σmax]
∆τ4 Time step size for the line search in step 4
x0 Initial condition for the simulation
tend Simulation end time
ts Simulation time step size
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Glossary

List of Acronyms

ADAS advanced driver assistance systems

ECU electronic control unit

NCS networked control system

CAN controller area network

CSMA carrier sense multiple access

LTI linear time-invariant

TA timed automaton

TSA timed safety automaton

TGA timed game automaton

NTGA network of timed game automata

LQR linear-quadratic regulator

CG center of gravity

LMI linear matrix inequality

MPT Multi-Parametric Toolbox

List of Symbols

α Triggering coefficient
τ̄s Inter-sample time upper bound
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τ(x) Inter-sample time
τ s Inter-sample time lower bound
εavgτ Abstraction average upper and lower inter-sample time bound difference
εmaxτ Abstraction maximum upper and lower inter-sample time bound difference
θi Angular coordinate
ξ(t) LTI system state

Rs[τ s,τ̄s] Reachable set
Rs Conic region
e(t) Measurement error
Es N-dimensional conic region matrix
m Number of angular coordinate subdivisions
Qs Two-dimensional conic region matrix
x LTI system sampled state
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CAN, 1, 3, 11
channel access scheme, 1
convex embedding, 7, 21
CSMA, 3, 11

event-triggered control system, 6, 21

finite-state quotient system, 7
Flexray, 1
flow pipe, 8

inter-sample time, 6, 21
isotropic covering, 13

measurement error, 6, 21

NTGA, 3, 5

operational semantics, 4

parallel composition, 5, 10

reachability analysis, 7, 27
run, 4

S-procedure, 21
scheduling, 1
state space abstraction, 7, 13
strategy, 5

TA, 4
TGA, 3, 5
triggering law, 6, 21

winning state, 6
winning strategy, 6
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