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ABSTRACT  
With the advent of augmentation systems such as WAAS 
and EGNOS, satellite navigation gets more and more used 
for so-called Safety of Life (SoL) applications, with civil 
aviation being the most prominent example. For SoL 
applications reliability performance of the system is 
typically expressed in terms of accuracy, availability, 
continuity of service and integrity. Especially the integrity 
of the position solution resulting from the satellite 
navigation signals is crucial. In general integrity 
performance requirements are exceedingly demanding, 
and therefore compliance is difficult to test. For example, 
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the GNSS integrity performance requirement for ICAO 
LPV (Localizer Performance with Vertical Guidance) 
approach procedures is 2 x 10-7 per approach position 
error probability of exceedance of the corresponding 
protection level, where an approach is defined as of 150 
seconds duration. In particular, it is required to assess and 
verify the probability that the position error (PE) of a 
GNSS user exceeds the alert limit, while no alert is raised 
within the time-to-alert associated with the operation. 
Testing a GNSS system's integrity by collecting 
Misleading Information (MI) events not only is 
impractical given the low event rate - on average only one 
event is expected to occur every 20 years - but also the 
low yield is considered inadequate for a precise statistical 
assessment. It should be noted that although no MI events 
are observed the system can be unsafe, because of the fact 
that the probability of MI is higher than its integrity 
function, implemented through protection levels, 
promises: in this case we speak of misleading integrity 
information (MII). Thus MI is misleading actual position 
information, which is almost never present in the data, 
while we are looking for MII: for example SBAS PL’s or 
Galileo’s Integrity Risk given by the system that on 
average are too small.  

Nevertheless, for SoL verification it is important to verify 
GNSS integrity performance within a limited time 
duration. This is especially the case for ‘difficult’ 
locations and/or conditions, e.g. near the border of the 
SBAS' service area or under adverse environmental 
conditions or system modes, e.g. during a violent 
ionospheric storm. In order to overcome this problem 
statistically sound techniques can be applied to GNSS 
integrity verification, based on the Extreme Value Theory 
(EVT), which enable extrapolation of the observed 
distribution's tail into the non-integrity domain [20].  

Early investigations [19] based on EVT algorithms 
developed in Matlab using real SBAS data proved that 
results from this approach were not only correct, accurate 
and reproducible, but also very promising due to the 
limited measurement time duration that was required for 
obtaining statistically relevant results. Based on 
GPS/EGNOS data collection over a period of a few 
months MI probabilities both in the position domain as 
well as in the signal range domain could be obtained 
taking into account 2  confidence levels for MI 
probabilities Due to the fact that confidence intervals are 
both related to the minimally needed data collection time 
period and the capability to prove compliance, optimal 
determination of confidence levels is important and thus 
was given special attention. Two approaches of 
confidence level estimation were studied: using the 
Gauss-Newton algorithm and the bootstrapping re-
sampling approach. Determining confidence levels by 
both approaches using a few sequences of EGNOS data, it 
is shown that confidence intervals based on the Gauss-

Newton approach are overly optimistic, while the 
bootstrapping re-sampling approach provides more 
conservative confidence intervals that is considered 
adequate.

These promising results positively motivated the 
Netherlands Space Office to fund the development of a 
software tool, named GIMAT - GNSS Integrity 
Monitoring and Analysis Tool, based on these EVT 
algorithms. GIMAT is developed by a Dutch consortium 
composed of Delft University of Technology, Integricom, 
National Aerospace Laboratory NLR and Science & 
Technology. 

GIMAT is now close to its completion. Its first 
operational application will support the implementation of 
an EGNOS-based LPV procedure near the Eelde airfield 
in The Netherlands, testing local GNSS integrity 
compliance with ICAO SARPs (Standards and 
Recommended Practices) later this year. Furthermore, 
plans are currently being made to test GNSS position 
solution integrity at a location in the North of 
Scandinavia, near the boundary of the EGNOS service 
Area, using GIMAT. 

The paper presents a short introduction to the 
mathematical theory of the EVT, the consecutive steps 
that are made in the software tool to address MI 
probability estimation and proof of range error 
distribution overbounding. Full details can be found in 
[1]. Finally some early results obtained by GIMAT are 
presented.  

1. INTRODUCTION  

Of all ICAO GNSS performance requirements the 
integrity performance requirement is the most stringent 
one: for instance navigation service levels APV-1, APV-II 
and LPV-200 require less than 2 x 10-7 integrity failure 
probability per approach [2].  Taking a duration of 150 
seconds per approach it turns out that an integrity failure 
may occur once per 23.8 years (assuming one approach at 
a time, all the time). Testing a GNSS system by collecting 
data over such a long period is far from practical and still 
insufficient from a statistical perspective. So, one needs to 
apply a method for these integrity tests based on a limited 
amount of data to be collected within an acceptable 
observation time. In further discussion we assume the 
Position Error (PE, or XPE, X being horizontal or 
vertical) always positive, in line with the Protection Level 
(PL), while (actual) distributions of XPE/XPL are 
assessed, also called Safety Index. XPE/XPL > 1 is 
Misleading Information by definition. If a Gaussian 
Safety Index (XPE/XPL) distribution could be assumed, 
then integrity failure statistics could be estimated based 
on extrapolation of the best fitting normal distribution 
function. Unfortunately it cannot as the GNSS position 
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error distribution is not a normal distribution: in general 
the measured distribution has a heavy tail, see for instance 
figure 1. As a result a normal distribution would lead to 
too optimistic integrity estimates. For safety of life 
applications such as navigation in civil aviation 
performance of novel navigation aids shall be carefully 
tested prior to their introduction. The test method 
presented in this paper and implemented in the developed 
GIMAT tool is based on EVT. It enables integrity tests 
providing adequate statistical confidence levels for MI 
probabilities based on observables collected over a 
limited period of time.  

Given the fact that integrity issues are getting more and 
more attention due to various reasons, e.g. introduction of 
GNSS application into safety critical flight operations, the 
advent of Galileo and the growing ideas on Advanced 
RAIM introduction [7], while on the other hand currently 
no tools specifically designed for GNSS integrity 
verification are available, it was decided to start GIMAT 
development. The GIMAT tool provides an interesting set 
of integrity related Key Performance Indicators (KPIs) 
dedicated to verify GNSS integrity performance versus 
requirements.  

Figure 1: The probability density of the integrity ratio 
VPE/VPL of a GPS/EGNOS data set, collected during 
a 3 month period in The Netherlands (6,444,045 
epochs). The solid line is a normal distribution, fitting 
with the actual distribution (*) of VPE/VPL on sample 
basis.

2. EXTREME VALUE THEORY  

Extreme-value theory (EVT) is a recently developed but 
already well-established and mature field in statistics that 
provides statistical methods allowing for the estimation of 
the probability of events that lie beyond the observed 
range of the data. 

The application areas in which EVT has been successfully 
used are numerous and include hydrology (flood 
frequency analysis), finance, insurance (insurance and 
reinsurance risk assessment, claim size assessment, asset 
price analysis), environmental analysis (ozone level, 
pollution analysis), meteorology (wind strength and 
rainfall assessment, earthquake risk assessment) and 
many engineering areas, e.g. corrosion and fatigue 
prediction, telecommunication [3].  

EVT is applicable regardless of the underlying error 
distributions of the measurement data, relieving the need 
for strong a priori assumptions (such as assuming 
Gaussian error distributions). The properties of the tails of 
the error distributions can be derived from the 
measurement data and some weak a priori considerations 
(which hold for all standard distributions), allowing to 
meaningfully extrapolate the data into the region of 
misleading information, even when no (or very limited 
amounts of) sample values in this region are available. 
Assuming stationarity of the system, by finding a data-
based description of the tails of the error distributions the 
ICAO conditions can be verified for the tails of the error 
distributions and the actual protection level can be 
estimated from the measurement and/or position 
estimation error data without the need for assuming 
particular error distributions. 

Broadly speaking, there are two principal kinds of models 
for extreme values. The first group of models, called 
Generalized Extreme Value theory (GEV) consists of 
block-maxima models [20]; these are models for the 
largest observations collected from large samples of 
identically distributed observations.  The GEV cumulative 
distribution function definition of error e is: 
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Here K is called the shape parameter,  is the location 
parameter and  is the scale parameter. For K=0 the 
distribution is of type I also called Gumbel, for K>0 it is 
of type II called Fréchet and for K<0 it is of type III also 
called Weibull. The distribution has a finite left boundary 
for K>0, a finite right boundary for K<0 and extends to 
infinity in both directions for K=0. Note that the 
navigation errors XPE are not bounded toward positive 
values. As a consequence K is expected not to be 
negative. 

A second group of EVT models contains the peaks-over-
threshold (POT) models, which model all large 
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observations that exceed a high threshold. These POT 
models are generally considered to be the most useful for 
practical applications, due to their more efficient use of 
the (often limited) data of extreme values. Within the 
POT class of models several styles of analysis exist. Of 
these the fully parametric models based on the 
Generalized Pareto Distribution (GPD) have the 
advantage of being conceptually and implementationally 
the most simple. The GPD is therefore implemented as 
the main algorithm within GIMAT in order to model the 
tails of the error distributions. It is a three-parameter 
distribution with the following cumulative distribution 
function of error e: 

, ,

1/

1 0 and /

( )
( ) 1 exp 0

( )
1 1 otherwise

e

eGPD e

e

In these equations the location parameter  will be zero 
when fitting peaks over a threshold. As  ( >0) acts as 
scaling parameter, the most important parameter is , the 
so-called shape parameter, which largely determines the 
behaviour of the tail. For positive values of , the 
distribution has a heavy tail, =0 corresponds to the 
exponential distribution, while in the case that  is 
negative, the tail has a finite endpoint, that is, the 
probability density function becomes zero for errors that 
exceed this endpoint and larger errors cannot occur. 

In principle, when the tail of an actual error distribution 
can be fitted with a GPD cumulative distribution function 
(cdf) the behavior of the distributions far tail can be 
estimated and statements on the integrity compliance of 
GNSS signal in space can be made [1]. There are various 
issues that need to be addressed though, the most 
important of which are: 

GNSS system modes 
Data dependencies 
Determination of where the tail starts 
Range domain vs. position domain 
Which KPI to use: overbounding of PE and 
range errors or (H)MI estimation by cdf 
extrapolation 
MI vs. HMI and Time To Alert (TTA) aspects 
Confidence levels associated with the statistical 
KPI determination 

Each of these issues will be briefly addressed in the 
following sections. 

3. EVT USED FOR GNSS INTEGRITY TESTS 

3.1 Assessment of GNSS System Modes  
In general a system mode can be defined as a set of 
conditions under which the errors in the system can be 

considered to have a common probability distribution. 
Different system modes are thus characterised by 
different error distributions. A system that behaves 
according to a sequence of different system modes is 
called non-stationary. Observables from GNSS systems 
are known to be highly non-stationary and we have to 
cope with its non-stationarity as it is. This non-stationarity 
has its largest impact on the data collection. If one 
collects data during a period of system mode transition 
this will be reflected in the statistical parameters showing 
a trend over the measurement period of time, which is 
obviously not acceptable. In that case one can do one of 
two things: either one filters one system mode out of the 
observed data for further processing, e.g. data collected 
during an ionospheric storm, or one takes the data 
collection period long enough (longer than the lowest 
‘system mode frequency wave’) in order to average-out 
all possible system mode effects. This poses certain 
constraints to the GNSS observables collection and on the 
outcome of the statistical analysis as one can never be 
sure that all possible system modes have actually occurred 
in the data collection period. 

Error distributions in the range domain are more sensitive 
to the existence of different system modes than in position 
domain, as the position domain errors are the sum of 
various range domain system mode contributions, which 
to some extent level out. This means that in range domain 
one has to be more aware of the fact that the satellites 
system mode may vary. The different system modes in 
range domain that are known to have effect on the 
system’s performance will have to be taken into account, 
e.g. taking into account the fact that the errors depend on 
the satellite’s elevation angle. In principle these system 
modes need separate analysis for which GIMAT needs 
data filtering capabilities. However unfortunately several 
system modes are ‘hidden’ to the end user, as the 
system’s actual status cannot be known to the user. As a 
result it will therefore be hard to establish a precise set of 
equivalent user conditions for which the performance 
characteristics can be measured in range domain. 

For Galileo an additional complicating factor is that the 
system may show two operational modes at highest 
system level: Galileo’s nominal operation mode and the 
failure mode, in which at maximum one of the satellites 
operates in failure.  

As the above considerations indicate that knowledge of 
the exact modes is per definition incomplete (and if 
known would probably fragment the data too much) the 
practical approach is to allow mixing, but only as long as 
there is no knowledge available on basis of which certain 
user conditions should be regarded as essentially 
different. 
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3.2 Data Dependencies  
In data analysis where statistical assessment of data 
samples is involved data dependency plays an important 
role. For GNSS data dependency would lead to a positive 
correlation between (simultaneous) errors from different 
satellites and/or between consecutive samples taken from 
a single satellite. Concerning correlations between 
satellites, when these are neglected, this typically leads to 
an (overly) conservative performance assessment in the 
position domain [4], due to the fact that common parts of 
the errors are eventually absorbed into the receiver clock 
bias. 

Traditionally, data dependency in time series is 
investigated using the autocorrelation function, which for 
all values k and all pairs of samples is defined as the 
expected value of the product of two samples at the same 
time lag (distance) k. Concerning the core of the error 
distribution, dependency reduction based on 
autocorrelation function can be used successfully (and 
will not be further discussed), however for the tail of the 
distribution another for the tail more suitable approach of 
dependency reduction is used that avoids unnecessary loss 
of data.  

Correlation between large errors in the tail of the 
distribution will bring clustering in time of large errors or 
tail-threshold exceedances. This clustering can be 
described theoretically by a parameter called the 
‘extremal index’, which is a measure of average cluster 
size and thus of the dependencies among large errors. Use 
of the extremal index allows applying extreme value 
theory to dependent errors without major modifications. 

Within GIMAT however another, conceptually simpler, 
approach is taken that essentially considers clusters of 
large errors to represent only a single observation while it 
assumes that observations in different clusters are 
independent [1]. This approach introduces a risk of 
eliminating one of two independent events that occur 
(very) nearby in time, resulting into too optimistic 
outcomes. Tail events however are (very) rare, so we 
assume that the chance of nearby independent tail events 
can be considered negligible. 

When focusing on the tail of the error distribution, i.e. 
selecting those samples for which the error exceeds a 
defined threshold LTail, the relatively large error samples 
should be available at random time instants ki only. For 
independent observables the times of their occurrences 
follow a Poisson distribution. This fact can be used to 
select a minimum time interval K one needs between two 
samples to consider them as being independent as 
follows. Consider all data samples with errors exceeding a 
certain threshold. When there are N such samples in total, 
define the fraction of ‘large errors’ that are at most a time 
K apart as: 

number of pairs (i,j) for which 

N
i j

K

k k K
V

In the case of independent samples (Poisson distribution) 
the expected value E{VK} is linear in K. When one draws 
a graph of K versus VK, the graph should therefore 
approach a straight line above values KT  of K for which 
independence is obtained, while for smaller K, the graph 
will be either curving upwards or downwards which 
indicates some kind of dependence. De-clustering to 
obtain a set of independent observations (threshold 
excesses) can thus be performed as follows: use only the 
largest observations in each cluster, where the large errors 
are said to belong to the same cluster when they are at 
most a time KT apart. 

3.3 Determination of Tail Start  
In section 3.2 it was identified that the data domain for 
core and tail needs to be determined, e.g. in order to apply 
a more optimal dependency reduction, but also in order to 
obtain optimal GPD parameters  and , which 
distribution fits collected data best asymptotically, i.e. for 
quantiles approaching infinity.  The choice of the 
threshold LTail is basically a compromise between: 

Choosing a sufficiently high threshold to make 
the asymptotic approximation hold, 
Choosing a sufficiently low threshold to obtain 
sufficient excess data to accurately estimate the 
parameters  and .

Such ‘optimal’ value of the threshold unfortunately 
cannot easily be defined objectively: no automatic 
selection algorithm providing satisfactorily performance 
is currently available when no a priori assumptions on the 
data are made. Typically selection is done by human 
intervention, using a data analysis method as outlined 
now. After obtaining more experience with this method it 
possibly may be automated in future. 

One of the graphical means to do threshold selection is to 
depict the ‘mean excess plot’, (ME) defined as the 
average of the excesses of the sampled error over 
different potential thresholds LTail:

|Min TailME E e L e L .

Here Lmin is introduced in order to avoid L=0, which may 
give problems. The mean excess can be shown to equal 
[6]: 

for all 1
1 1 TailME L

Note that the ME is thus a linear function of the threshold 
LTail as long as the shape parameter remains smaller than 
one (as the mean excess function is not defined for  >1
as the expectation does not exist). 
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A natural estimate of the Mean Excess ME is given by: 

( , )
1

1
( )

k

i N Tail
i

ME e L
k

In this equation k is largest subscript i for which e(i,N) > 
Ltail, e(i,N) is the i-th largest sample (that is, e(1,N) is the 
largest sample of the error, e(2,N) is the second largest 
sample, etcetera; e(N,N) is the smallest sample that is 
observed). For small thresholds, the plot will not be linear 

as the GPD is not a good approximation and ME  will be 
biased; for large thresholds, the plot will be based on too 

small a number of data points and ME  will be extremely 
noisy. Between these extremes, there hopefully is a range 
of thresholds for which the plot is more or less linear and 
the best choice of a threshold would be at the start 
(smallest threshold) of this linear area, in order to take as 
many data points into account as possible. An example is 
shown in figure 2. Here, Ltail would be taken equal to 2. 
Due to the sparseness of the data for large thresholds, the 
plot becomes sensitive to noise towards the end of the 
range, where the theoretically linear curve is compared 
against a number of small sample realizations. This is 
typical behaviour, which makes interpretation of the plot 
often difficult. Yet, the plot is a powerful tool, which is 
implemented in GIMAT. 
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Figure 2: Mean Excess plot for simulated test data set 

Because of the difficulties in finding an optimal threshold, 
it often makes sense to estimate the most important 
parameter of the GPD,  for different thresholds LTail. As 
soon as the threshold is large enough to make the GPD a 
good model for the data, the estimated value  should 
become more or less stable (although it is of course 
subject to noise in the data). When the threshold becomes 
too large, the noise will prevent accurate estimation and 
the estimated values can show large fluctuations (see 
figure 3).  
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Figure 3: Plot of GPD parameter  vs LTail for 
simulated test data set 

One can go one step further and (instead of  ) rather plot 
the distributional properties of interest, such as the 
estimated quantiles or exceedance probabilities, against 
different values of the threshold. This immediately gives a 
good idea of the sensitivity of the final parameter of 
interest as a function of the choice of the threshold. Such 
useful capability is therefore implemented in GIMAT. 

3.4 Verification Domain Considerations  
In the past it has been debated on which domain to use for 
integrity verification [8]: the position domain or the range 
domain? Obviously there is a choice to be made on which 
verification domain to use for a verification campaign. 
This choice may depend on the specific purpose but also 
on the application field of the user one considers. 
Whatever the selection, both position and range domain 
integrity verification KPIs are supported by GIMAT. 
Here, some tradeoffs and suggestions for such a selection 
are given.  

The position domain is the domain in which the user 
requirements have to be met and thus seems to be a 
natural choice for system verification. Although the 
position domain is certainly the most intuitive domain, for 
which the requirements are defined and best understood 
intuitively and also checked most straightforwardly, there 
are some important disadvantages of verification in the 
position domain. 

First, one can verify the system in the position domain 
either by calculating protection level exceedance 
probabilities in correspondence with the requirements or, 
more general for all operations regardless of their 
requirement, by assessing whether the GNSS error-model 
distribution overbounds the actual error distribution. In 
both cases, the outcomes of the procedure will in general 
depend on the particular mix of geometries for which the 
verification is performed, as it is possible that system 
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integrity is within the requirement for certain geometries, 
while for others it is not.

Secondly, using the position domain instead of the range 
domain involves loss of information on the mechanism of 
the providence of integrity, which is in fact working on 
the range level. As a result of this, it will be harder to 
distinguish between different system modes that each 
individual satellite is in. While the position error is a 
constantly changing linear combination of range errors 
(RE) (due to geometry changes) it is practically not 
feasible to consider each geometry as a separate system 
mode. When the position domain is used for verification 
purposes, one should limit the distinguished system 
modes to only those that affect all satellites 
simultaneously, such as for example ionospheric storms. 
Resuming, system mode specific integrity checks can 
only be done well in range domain. 

Summarizing, the advantage of verifying the system in 
the position domain is that: 

the position domain allows for a relatively 
straightforward check (no precise range 
determination required) on whether the 
requirements are met and is less conservative 
than the range domain. 

Disadvantages include: 
the verification outcome will depend on the 
particular mix of geometries that have been used 
in obtaining the position errors; 
system modes that are significantly different in 
their range-domain performance will be much 
harder to distinguish in the position domain; 
for Galileo, the position domain involves a 
multi-dimensional error vector rather than a 
scalar error to be analyzed. 

While it is realized that the requirements are essentially 
stated in the position domain, range domain analysis is 
included in order to reveal optimally what is going on in 
the system. It can also be stated that range domain 
overbounding automatically implies the presence of 
position domain overbounding for all possible satellite 
geometries as long as the actual (but unknown) range 
error distributions are symmetric, unimodal and only 
slightly biased [9]. 

The advantages of verification in the range domain can be 
summarized as follows: 

range domain integrity determination 
(overbounding and integrity risk) does not 
depend on satellite geometry; the results are 
therefore valid for all possible geometries and 
not just for the particular mix of geometries that 
have been observed during the verification 
campaign; 

There are disadvantages for the range domain as well: 
range domain overbounding requires implicit 
assumptions on the range error distribution 
(symmetry, unimodality, nearly unbiasedness) 
that are quite difficult to check; 
range domain integrity verification is (overly) 
conservative with respect to the position domain 
counterpart; 
in the position domain the reference position is 
generally known with higher accuracy than the 
reference range in range domain. 

When working in the range domain, prior to using 
observables for KPI determination, the (e.g. SBAS-)-
corrected range corr and its reference, the true geometric 
range true per GNSS satellite, shall be determined. The 
calculation of corr is done in GIMAT in line with [10] 
using the SBAS message set as input, while true is 
determined using  IGS final orbits including precise 
ephemeris (position X,Y,Z) of GPS satellites for 
corresponding timeline using IGS (sp3) data files. An 
interpolation method (see e.g. [11]) is necessary to 
convert the 15 minute ephemeris stamps in sp3 file format 
into 1 Hz samples for the used GPS satellites. 

3.5 Distribution Overbounding vs.  Misleading 
Information Risk Extrapolation 
In line with the statements on position domain vs. range 
domain, GIMAT supports both integrity verification 
based on the overbounding concept [1] as well as on MI 
probability estimation, i.e. based on cumulative 
distribution function (cdf) extrapolation into the non-
integrity domains. Overbounding is a concept that 
describes the relation between the actual error distribution 
and a selected model distribution, generally a Gaussian 
distribution. The Protection Level relies on this 
overbounding distribution and should be computed such 
that it overbounds the actual error distribution [8]. 
Preference for either one of those two KPIs may be based 
on the specific purpose of study but also on the 
background of the user: while a system engineer 
responsible for the correct operation of the GNSS system 
may be more interested in overbounding (because of its 
capability to verify protection levels integrity irrespective 
of the actual integrity requirements specifications), the 
end user will be more interested in GNSS compliance 
with requirements for his specific application including 
associated confidence levels. For this reason both KPIs, 
overbounding of PE and RE and MI probability 
estimation, are implemented in GIMAT. 

The approach of overbounding-based integrity 
verification is the following. First some preparatory steps 
shall be made: 

In case of range domain the corr and true shall be 
determined and normalized 
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The core- and tail-part of the data distribution 
shall be identified 
Both core- and tail-data shall be down sampled 
in order to remove data dependencies 

The resulting datasets will subsequently be tested on 
overbounding capability (which approach may be 
different for core and tail). For this testing of ‘first order 
stochastic dominance’ (overbounding) it shall either be 
proved that for both the core and the tail of the 
distribution the model distribution does dominate the 
actual distribution or that the model distribution does not 
dominate the actual distribution. In literature several of 
those stochastic dominance tests are worked out, e.g. [12, 
13, 14, 15].  

For testing overbounding of the distribution’s core within 
GIMAT the Kaur, Rao and Singh (KRS) test is adopted 
[1, 12]: 

ˆ(2 ( ) ( ))
( )

ˆ ˆ( )(1 ( ))

actual
N

actual actual

N L F LT L
F L F L

min ( )
Min Tail

KRS NL L L
T T L

KRS

KRS

T z no overbounding
T z overbounding

In which: 
N is the number of down sampled core samples 
L is the downsampled normalized error value data 
(sorted) 

( )L  (or 1 ( )L ) is the complement of the 

cumulative standard normal (or Gaussian) distribution 
function. 
ˆ ( )actualF L  is the complement of the empirical cumulative 

distribution function of  L:

ˆ ( )actual
N LF L

N
L smaller than MINL should be ignored (as L =0 may 

give problems). In the test, the threshold is given by z ,

which is the (1 )  quantile of the standard normal 

distribution. 

When testing the tail on overbounding using KRS 
statistics the bootstrapping resampling approach [16, 17] 
is best used in addition. Bootstrapping is based on re-
sampling the data set in order to generate multiple 
datasets that can be used to reveal information on the 
statistical properties of quantities derived from the 
original dataset. A great advantage of bootstrapping is its 
simplicity, combined with the lack of strong assumptions 

needed on the distributions involved. However simplicity 
is achieved at the expense of a (much) larger 
computational effort. In order to determine _Over tailP  the 

following equation is applicable: 

_

1
_

ˆmin(2 ( ) ( )) 0
1

_

n boot

check actual check

Over tail

bool if L F L true
P

n boot

In which: 

TailcheckL
L

checkactual LLGPD
N

N
LF Tail

)(ˆ,ˆ)(ˆ

ˆ
actualF  is the probability that the error exceeds the chosen 

tail threshold TailL .

L  is tail data set 

TailLN  is the number of L .

N  the total number of samples (core + tail).  

GPD  is the complement of the cumulative GPD 
distribution function for each new tail data set 

checkL  is a vector of extrapolated tail data used to check 

whether tail data is overbounded in regions for  of e.g. 

1-1e-8 (or 1e-8 for ). 

ˆmin(2 ( ) ( )) 0check actual checkbool if L F L true

 is a non-overbounding criteria resulting in “1” if true and 
“0” for false. 

The final result _Over tailP  should be larger than (1 )

confidence level for tail-overbounding to be proved. 

Integrity risk determination by extrapolation of the 
obtained GPD function can be calculated quite 
straightforward. First LTail must be determined, where  
L=HPE/HPL for the horizontal situation and L=VPE/VPL
for the vertical case. Following, when the corresponding 

GPD parameters ˆ  and ˆ  are determined. Finally the 

probability of Misleading Information can be calculated 
for L=1 using  

ˆ1/

, ,( ) 1 ( ) 1
ˆMIP GPD L GPD L L

Applicable confidence levels of the exceedance 
probability can be obtained again by the bootstrapping 
approach. In this way a distribution of exceedance 
probabilities is obtained from which e.g. the PMI95

(exceedance probability including 95% confidence level) 
can be derived.  
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3.6 MI vs HMI and Time To Alert (TTA) aspects 
In the previously described approach for determining non-
integrity probability, clearly MI probability is determined 
here, where e.g. ICAO requirements should be interpreted 
as applicable for hazardously misleading information 
(HMI) probability, because MI events with XPL > XAL 
are already flagged as non-available and MI events where 
(XPE > XPL)  (XPE < XAL) are not leading to a 
safety incident. In addition, an HMI event is only 
recognized as such when no alert was generated within 
TTA seconds. So, hazardously misleading information 
events occur when during an operation the following 
conditions are true (for either the horizontal or vertical 
case) simultaneously: 
HMI: ((HPE > HAL) (HPL < HAL)) no timely alert   
and similar for the vertical case, where MI occurs when  
MI: HPE > HPL and vertical case similar. 
Question is therefore how to interpret PMI results where 
PHMI is requested? The following remarks can be made 
here.  

First, since 

(HPE > HAL) (HPL<HAL)  HPE > HPL 

it follows that the HMI events are a subset of MI events. 
This is also shown clearly by the Stanford diagram (see 
figure 4): only the lower right square area is considered as 
HMI.  

Figure 4: Stanford diagram for the aeronautical 
service level APV2 (Vertical Alarm Limit = 20m), 
populated with 3-months EGNOS observables 
collected in The Netherlands

As a result PMI is an (overly) conservative probability 
estimate with respect to the requested PHMI. Therefore, in 
case MI compliance to requirements can be proved, then 
the dataset will satisfy the HMI requirement as well.  

As a second resort, in the event compliance cannot be 
proved for MI, the test can be made less conservative by 

filtering the input dataset such that samples that could 
lead to MI but not to HMI will be removed as much as 
possible. In practice this means all collected epochs that 
cannot contribute to HMI, i.e. all samples for which XPL 
> XAL (for leading to unavailability) are removed from 
the dataset prior to integrity analysis.  

Third, in addition filtering input data based on Alerts and 
the associated Time To Alerts can be taken into account. 
The SBAS and Galileo ground-segments need some time 
to detect large ranging errors and transmit this 
information to the user. It is decided to deal with this by 
disregarding the samples over the TTA time period 
(generally 6 seconds) before the integrity flag is raised by 
the ground segment to ensure that these samples don’t 
penalize the integrity analysis. 

These measures enable the tool not to be overly 
conservative and produce results that are more in line 
with HMI probability estimation as requested. 

3.7 Confidence levels associated with statistical KPI 
determination 
When doing very precise KPI determination, such as is 
done in this case, determining confidence intervals and 
confidence levels associated with the determination are 
inevitable. Usually, the confidence interval of interest is 
symmetrically placed around the mean, so a 50% 
confidence interval for a symmetric probability function 
would be the interval [ a,a] such that: 

a

a

dxxP
2

1

The confidence interval is not a system parameter, 
however generally relates with quality and quantity of the 
measurement data set. Various methods for estimating 
confidence intervals exist, the applicability of which 
depends on the kind of application for which it is used. 
Most straightforward would be to repeat the experiment 
many times and determine the confidence interval based 
on the distribution of outcomes. In general though, this 
approach is not very practical or even impossible. Prior to 
adoption a method for confidence interval determination 
its performance for the specific application should be 
tested. For confidence levels associated with integrity KPI 
determination we have investigated two possible methods: 
the Gauss-Newton algorithm and the re-sampling 
bootstrapping approach. The Gauss-Newton iteration is a 
natural choice: for curve fitting of the GPD and GEV 
functions, determining its shape parameters ( , ,  and K, 

,  respectively) based on the set of measured tail 
samples the Gauss-Newton ‘maximum likelihood 
method’ is used. This iteration produces confidence 
intervals and levels for the shape parameters as a by-
product [18]. The alternative method was bootstrapping, 
its advantage being its great simplicity together with lack 
of need for strong assumptions: it is straightforward to 
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derive estimates of standard errors and confidence 
intervals for complex estimators of properties of the 
distribution. Moreover, it is an appropriate way to control 
and check the stability of the results.  As test input a 3-
month period of collected GPS/EGNOS observables was 
cut into 5 consecutive time periods. For each of the data 
sets the shape parameters were determined together with 
their 95% confidence intervals. These confidence 
intervals were calculated both using Gauss-Newton and 
bootstrapping (using 1000 re-sampled data sets). The 
results are shown in figure 5. It is expected that for each 
of the three GEV parameters there exist a value that 
satisfies the 95% confidence intervals for all five data 
subsets subsequently. From figure 5 it is apparent that this 
is not the case for the Gauss-Newton iteration results. 
Therefore the Gauss-Newton confidence interval 
determination seems to be too optimistic and as a result 
the bootstrapping approach was decided to be 
implemented into GIMAT.  

Figure 5: Comparison of bootstrapping versus Gauss-
Newton algorithm for confidence intervals of GEV 
shape parameters as function of five data subsets

4. EARLY RESULTS 

All developed algorithms are currently consolidated and 
integrated into the GIMAT tool, providing a graphical 
user interface and enabling management of data sets and 
inspection of intermediate and end results by means of 
various figures. Some interesting preliminary results 
(although it concerns GEV results instead of not yet 
available results from the more promising GPD method) 
obtained during algorithm development can be presented 
already [19].  

Using the GEV/block-maxima approach the position 
domain integrity performance of the GPS/EGNOS 
combination was tested in the Netherlands, which is about 
at the heart of the EGNOS coverage area. For 
determination of 95% confidence intervals for the Safety 

Index PE/PL the bootstrapping approach was used. Figure 
6 shows the vertical probability density function in the 
position domain based on 3 months collected observables. 
When integrating the area below the pdf and starting 
beyond x=1 (VPE/VPL=1), the PMI,V is obtained in the 
vertical direction. When including the upper part of the 
confidence interval in figure 6 as well the P95,MI,V is 
obtained. This P95,MI,V was found to be 8·10-8 satisfying 
ICAO CAT 1 requirements. Thus indications were found 
that based on this 3-month data set the GPS/EGNOS 
integrity performance, including the upper part of the 
confidence interval satisfies ICAO requirements for the 
measured location in the Netherlands, assuming that all 
applicable system modes are balanced represented in the 
data set (see Table 1 below). As can be seen, of the two 
components horizontal and vertical, the vertical one is the 
most critical. 

ICAO 
Aeronautical 
Service level 

PMI,H

(95% 
conf
level)

PMI,V

(95% 
conf
level)

PHMI,H

(95% 
conf
level)

PHMI,V

(95% 
conf
level)

Req
(H+V
comb) 

APV-I 
(HAL=40 m, 
VAL= 50m) 

6·10-10 8·10-8 2·10-9 2·10-7

APV-II 
(HAL= 40m, 
VAL= 20m) 

6·10-10 8·10-8 8·10-11 1·10-8 2·10-7

CAT-I
(HAL= 40m, 
VAL= 15m) 

6·10-10 8·10-8 8·10-11 6·10-8 2·10-7

Table 1: GPS/EGNOS Integrity performances per 
approach, the Netherlands, based on 3-month 
collected data set (GEV/bootstrapping)

Figure 6: Histogram of VPE/VPL daily block maxima 
together with the fitting GEV probability density 
function including confidence intervals (dashed lines) 
based on 3-month GPS/EGNOS observables. 

5. CONCLUSIONS 

With GIMAT a tool is now available for statistically 
sound integrity performance verification using receiver 
output data to be gathered during a test campaign of 
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limited duration. The method is based on the Extreme 
Value Theory allowing a reliable statement of 
overbounding of the position error and range error actual 
distribution by a probability density function and 
extrapolation of the fitted GPD cumulative probability 
function toward MI and HMI regions. The tool is 
interesting both from the end-user perspective and the 
GNSS system builder and operator point of view. In 
addition for SoL certification decision making now it can 
be determined whether the most important positioning 
Key Performance Indicator (KPI), namely integrity, for a 
given GNSS system solution, whether it will be 
GPS+SBAS, GPS+RAIM, GBAS, Galileo or Advanced 
RAIM, satisfies given requirements for a specific 
navigation service level. 
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