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S U M M A R Y
Microseismic methods are crucial for real-time monitoring of the hydraulic fracturing dynamic
status during the development of unconventional reservoirs. However, unlike the active-source
seismic events, the microseismic events usually have low signal-to-noise ratio (SNR), which
makes its data processing challenging. To overcome the noise issue of the weak microseismic
events, we propose a new workflow for high-resolution microseismic event detection. For the
preprocessing, fix-sized segmentation with a length of 2∗wavelength is used to divide the
data into segments. Later on, 191 features have been extracted and used as the input data to
train the support vector machine (SVM) model. These features include 63 1-D time/spectral-
domain features, and 128 2-D texture features, which indicate the continuity, smoothness, and
irregularity of the events/noise. The proposed feature extraction maximally exploits the limited
information of each segment. Afterward, we use a combination of univariate feature selection
and random-forest-based recursive feature elimination for feature selection to avoid overfitting.
This feature selection strategy not only finds the best features, but also decides the optimal
number of features that are needed for the best accuracy. Regarding the training process, SVM
with a Gaussian kernel is used. In addition, a cross-validation (CV) process is implemented
for automatic parameter setting. In the end, a group of synthetic and field microseismic data
with different levels of complexity show that the proposed workflow is much more robust
than the state-of-the-art short-term-average over long-term-average ratio (STA/LTA) method
and also performs better than the convolutional-neural-networks (CNN), for this case where
the amount of training data sets is limited. A demo for the synthetic example is available:
https://github.com/shanqu91/ML event detection microseismic.

Key words: Event detection; High-resolution; Machine learning; Microseismic; SVM; 2-D
texture features.

I N T RO D U C T I O N

It has been well known that microseismic monitoring plays an im-
portant role in characterizing physical processes related to fluid in-
jections and extractions in hydrocarbon and geothermal reservoirs
(Shapiro et al. 2006; Vera Rodriguez et al. 2012; Xia et al. 2013;
Huang et al. 2017c,d; Mousavi & Langston 2017; Chen 2018a,b;
Guan & Niu 2018). In general the microseismic data are recorded
by downhole or buried, shallow surface geophone arrays, which
offer the significant advantages of being sufficiently close to the
fracture and being unaffected by the free surface (Warpinski 2000).
However, the energy stimulated from the hydraulic fracturing is
usually extremely weak. As a result, the weak signal is easily over-
whelmed by the background noise, which may lead to unauthentic
arrival time-picks and localization of microseismic events when

no proper denoising algorithms or event detection techniques are
applied. Therefore, prior to the localization and mechanism analy-
sis of the source, the identification and detection of microseismic
events or applying a reliable and effective denoising process be-
come important challenges (Forghani-Arani et al. 2013; Mousavi
& Langston 2016a,b; Liu et al. 2016b; Guan & Niu 2017).

The state-of-the-art denoising algorithms include transforming
domain thresholding methods (Candes et al. 2006; Gan et al.
2015a,b; Zu et al. 2016; Bai & Wu 2018; Chen & Song 2018; Bai
& Wu 2019; Chen et al. 2019a), singular spectrum analysis (Vau-
tard et al. 1992; Chen et al. 2016c; Zhang et al. 2016a,b,c; Huang
et al. 2017b), low-rank-approximation-based methods (Huang et al.
2016; Zu et al. 2017; Zhang et al. 2017; Wu & Bai 2018b,d; Bai
et al. 2018a,b, 2019), dictionary-learning-based methods (Elad &
Aharon 2006; Chen 2017; Siahsar et al. 2017; Wu & Bai 2018a,c; Zu
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et al. 2019), empirical-mode-decomposition and empirical-mode-
decomposition-like methods (Huang et al. 1998; Han & van der
Baan 2015; Liu et al. 2016a; Chen et al. 2016b,a, 2019b; Gómez
& Velis 2016), etc. Denoising microseismic data will inevitably
cause useful small-amplitude signal damage, which degrades the
fidelity of the processed data (Li et al. 2016; Huang et al. 2017a;
Zhang et al. 2019). Moreover, the damaged waveform amplitude
will greatly affect the subsequent source localization and mecha-
nism analysis (Maxwell et al. 2010). Considering the potential dis-
advantages caused by denoising, a robust event detection method is
a strong demand in the microseismic community.

Traditional event detection is based on energy analysis (Hatherly
1982; Allen 1978; Vaezi & Van der Baan 2015), which is a widely
used method due to few assumptions about the data based on some
statistic criterion. For example, a popular criterion is the short-term
average over long-term average (STA/LTA) ratio, in which the ratio
of the continuously calculated average energy of the data in two
consecutive moving-time windows, a short-term window and a sub-
sequent long-term window, is used as a statistical criterion (Allen
1982, 1978; Vaezi & Van der Baan 2015). However, this method
has some disadvantages. It requires a careful setting of parameters
(threshold and window lengths, Trnkoczy 1999). Moreover, these
algorithms are sensitive to sudden amplitude increases, therefore
the noise whose energy is comparable to or greater than microseis-
mic events may be detected as a microseismic event (Withers et al.
1998). In order to mitigate this noise issue, another event detec-
tion method that is based on template matching was proposed by
Gibbons & Ringdal (2006). It takes advantage of pre-determined
events, known as the master event, and cross-correlates them with
continuous recordings to detect events with high similarities (Gib-
bons & Ringdal 2006; Song et al. 2010; Senkaya & Karsli 2014).
The template-matching-based method is sensitive to small ampli-
tude events and therefore a typical way to detect weak events in
earthquake seismology (Song et al. 2010) even in the presence
of high background noise. These detection methods are especially
useful to lower the detection threshold and increase the detection
sensitivity. Michelet & Toksöz (2007) and Arrowsmith & Eisner
(2006) have also shown that these methods can be effective as long
as the separation between the master event and target event is less
than the dominant wavelength. Gelchinsky & Shtivelman (1983)
proposed a hybrid method that combines the benefits of template-
matching-based methods and the energy-analysis-based methods.
However, the template-matching-based method requires a master
(or known) event as an input, which is not always available. In ad-
dition, it is limited to detect events that are similar to the master
event, which means it might have a high false-negative rate, and is
a computationally expensive method.

In recent years, some researchers have already done investi-
gations on supervised machine-learning-based event detection or
event picking (McCormack et al. 1993; Knapmeyer-Endrun &
Hammer 2015; Akram et al. 2017; Provost et al. 2017; Rouet-Leduc
et al. 2017; Zheng et al. 2017; Zhao & Gross 2017; Chen et al. 2017;
Chen 2018c; Mousavi et al. 2018a,b; Perol et al. 2018; Zhu & Beroza
2018; Dokht et al. 2019) Zhao & Gross (2017) trained a support
vector machine (SVM) model with 1-D features of the segments to
distinguish microseismic from noise events. However, these meth-
ods require a longer length of segmentation (∼15∗wavelength) for
providing sufficient information for each segment to provide a stable
prediction. The results, therefore, have a coarse vertical resolution.
Chen (2018a) proposed a microseismic picking algorithm based on
unsupervised machine learning that utilizes fuzzy clustering to iden-
tify signal onsets. As shown in his experiment, this clustering-based

method is sensitive to the noise level. When the noise level becomes
extremely strong, the clustering method may make some mistakes.
Zheng et al. (2017), Mousavi et al. (2018a,b), Zhu & Beroza (2018),
Perol et al. (2018), Chen et al. (2019c) and Dokht et al. (2019) have
showed successful and promising performances of deep learning for
the purpose of event detection. However, the deep-learning-based
seismic event detection methods usually require much larger train-
ing data sets compared to the traditional machine-learning-based
methods like SVM (LeCun et al. 2015; Li et al. 2019).

In this work, we propose a new workflow for high-resolution
microseismic event detection. Details of the workflow are pre-
sented step by step: (1) fix-sized segmentation, with a length of
2∗wavelength, is used to divide the data into segments; (2) 191 fea-
tures have been extracted in total, including 63 1-D time/spectral-
domain features, and 128 2-D texture features indicating the conti-
nuity, smoothness, and irregularity of the events/noise; (3) a com-
bination of univariate feature selection and random-forest-based
recursive feature elimination is implemented for feature selection,
which not only finds the best features but also the number of features
that are needed for the best accuracy; (4) a C-SVM model, where
the ‘C’ represents a coefficient used to control the tolerance of error
item, is considered in the essential training process. In addition,
a cross-validation (CV) process is implemented for the automatic
parameter setting and (5) the trained model is then applied to detect
events of the test data. In the end, results obtained on a group of
synthetic and real microseismic data with different levels of com-
plexity show that the proposed workflow is more robust than the
state-of-the-art STA/LTA method and also performs better than the
CNN, for our case when the amount of training data sets is limited.
Note that this paper is an extended version of work published in Qu
et al. (2018).

M I C RO S E I S M I C E V E N T D E T E C T I O N A S
A C L A S S I F I C AT I O N P RO B L E M

The proposed workflow for microseismic event detection can be
summarized as the following steps: (1) segmentation and labelling;
(2) feature extraction and normalization; (3) feature selection; (4)
support vector classification and (5) test on new data. To clearly
demonstrate the whole workflow for event detection, a group of
synthetic microseismic data sets is used. The synthetic microseismic
data sets are simulated from the three-layer velocity model shown
in Figs 1(a) and (b). The modelled training data with SNR = −13
is shown in Fig. 2(a). The modelled test data sets are displayed in
Figs 5(a) and 6(a), including SNR = −10 and SNR = −13 level
of noise energy, respectively. The definition of noise energy is as
follows:

SN Rd B = 10log10

(
Psignal

Pnoise

)
, (1)

where P is the average power. In all the data sets, the noise level is
much stronger than the signal level. The receivers are located along
the full surface with a spacing of 7.5 m and a time duration is 3.1
s. In addition, five different traces of clean and noisy test data 2
(SNR = −10) are demonstrated in Fig. 7. We can see that the signal
is masked by the strong background noise and hard to detect on a
single trace.

Segmentation and labelling

Segmentation is a very important preprocessing stage, where the
microseismic data are split into segments. Fix-sized segmentation
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(a) (b)

Figure 1. Synthetic example: the geometry and velocity model for the modelling of (a) raw training data with SNR = −13 dB, (b) raw test data.
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Figure 2. Synthetic example: (a) raw training data, (b) labelled training data.

is used in this work and we set the length of each segment as
2∗wavelength, which is 0.058 s in the synthetic example. In this
way, the vertical resolution of event detection results is higher,
however, each segment contains very limited information, which
makes the problem tougher to solve.

After the segmentation, the training data segments are labelled
into two classes: events and noise. For the synthetic example, a total
of 12 960 segments are extracted, including 4853 segments contain-
ing a microseismic event and 8107 segments of noise. The labelled
training synthetic data is shown in Fig. 2(b). As is well-known, su-
pervised classification is largely dependent on the labelled training
data sets, which are usually done based on different criteria from
different users. Please note that we will discuss how using differ-
ent labelling criteria affects the final prediction in the ’Discussion’
section.

Feature extraction and normalization

The purpose of feature extraction is to convert all the segments
into relevant features, which are served as input training vectors for
the classification. The dimension of the data is reduced in the fea-
ture extraction step, which improves the classifier’s performance.
Many researchers have already done investigations on the feature
extraction for seismic event detection (Mousavi et al. 2016; Zhao &
Gross 2017). They extracted 1-D features of the segments in time,

frequency and time–frequency domains. However, as we have men-
tioned, due to the high resolution of segmentation, each segment
contains very limited information. As a result, only extracting 1-D
features is not enough. In order to maximize the information per
segment, we propose to extract both 1-D time/frequency-domain
features and 2-D texture features for each segment. 191 features
have been extracted, including 63 1-D features, and 128 2-D fea-
tures. The 1-D features consist of both time-domain features and
spectral features and are listed in Table 1 with description. By only
considering the 1-D features of the seismic data, the 2-D features
(for example, continuity, smoothness and irregularity of the events)
are ignored, which is obviously a waste of information. Therefore,
128 extra 2-D texture features are considered in our feature ex-
traction. he microseismic data are first converted into a grey-scale
image. After that, local grey-level co-occurrence matrices (GLCM)
in a moving window are calculated. The GLCM characterizes the
texture of an image by calculating how often pairs of pixel with spe-
cific values and in a specified spatial relationship occur in an image
(Haralick et al. 1973). Certain features that characterize texture
properties of the image are then calculated from this matrix, which
are Contrast, Correlation, Energy and Homogeneity. In addition,
orientations 0◦, 45◦, 135◦ and 90◦ and distances of 1−8 neighbour-
ing voxels are considered. Please note that a range of orientations
and distances is considered here to make the feature extraction pro-
cess more general, however, causes feature redundancy, which will
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Table 1. The list of the extracted 1-D time/spectral-domain feature.

ID Feature name Description

1 Mean
2 Median
3 STD Standard deviation
4 MAD Median absolute deviation
5 25th percentile The value below which 25 PER CENT of observations fall
6 75th percentile The value below which 75 PER CENT of observations fall
7 Inter quantile range The difference between 25th percentile and 75th percentile
8 Skewness A measure of symmetry relative to a normal distribution
9 Kurtosis A measure of whether the data is heavy- or light-tailed relative to normal distribution
10 Zero-crossing rate
11 Energy The sum of squares of the signal values
12 Entropy of energy The entropy of normalized energies, a measure of abrupt changes
13–25 MFCC Mel Freq. Cepstral Coef., form a cepstral representation where the freq. bands are not linear

but distributed according to the mel-scale
26 Dominant freq. magnitude The energy of a spectrum is centred upon
27 Spectral Centroid Indice of the dominant freq.
28 Spectral Spread The second central moment of the spectrum
29 Spectral Entropy Entropy of the normalized spectral energies
30 Spectral Roll-off The freq. below which 85 PER CENT of the total spectral energy lies
31 RMS energy Root-mean-square energy
32 Spectral bandwidth The 2rd order spectral bandwidth
33–36 Polynomial features Coef. of fitting an 3rd-order polynomial to the spectrum
37–48 Chroma vector A 12-element feature vector indicating how much energy of each pitch class is present in the

data
49 Chroma Deviation The STD of the 12 chroma coef.
50-56 Spectral contrast It considers the spectral peak, the spectral valley, and their difference in each freq. sub-band
57 Spectral flatness A measure to quantify how much noise-like a sound is (High value indicates the spectrum is

similar to white noise)
58–63 Tonnetz The tonal centroid features

be discussed in more detail in Section 3. Feature selection. The
calculated 2-D texture parameters within the moving window are
severed as the features of the segment in the centre of the window.
Details of the texture features are described in Table 2. Part of the 2-
D texture features extracted from the training data are demonstrated
in Fig. 3, being the Contrast, Correlation, Energy and Homogeneity
of GLCM, for orientations 0◦, 45◦, 135◦ and 90◦ , with a distance
of three neighbouring voxels. In this figure, we can see that the 2-D
features can properly indicate most of the events, even when the
noise level is high.

After feature extraction, feature normalization, which is used to
standardize the range of independent features of the data, is a com-
mon requirement for most machine learning estimators. Without
standardization, the estimators might behave badly. We normalize
the features by removing the mean and scaling to unit variance in
this work.

Feature selection

In machine learning, feature selection is the process of selecting
a subset of most relevant features for the use in model training.
It can reduce overfitting, as well as the training time. Since we
extract the 2-D features with a range of orientation and distance for
the sake of generalization, there exist highly correlated 2-D feature
clusters, as shown in Fig. 4(a). In this simple synthetic scenario,
many 2-D features share similar values with each other. Therefore,
those clustering features provide redundant information and feature
selection is needed to compensate this side-effect.

Univariate feature selection is a simple technique where a sta-
tistical test is applied to each feature individually to determine the
strength of the relationship of the feature with the outcome variable.

One simple criterion is the F-value of ANOVA (Analysis of vari-
ance) (Scheffe 1967). We choose the 30 per cent most significant
features in this case. The corresponding F-value as a function of
feature ID is shown in Fig. 4(b), in which we can see that the 2-D
texture features are informative features and show large relevance
with respect to different classes.

Univariate feature selection is simple to run and relatively good
at gaining a better understanding of data. However, it does not reveal
mutual information among features (Chen & Lin 2006). Random
forest (RF) is a classification method and it also provides the branch
weights that can represent feature importance (Breiman 2001). A
forest consists of a number of decision trees, each of which is con-
structed with randomly sampled features. Every node in the trees is
designed to split the training sets into two parts, therefore similar
response values end up in the same set. For one feature, we ran-
domly permute its values in the second data set and obtain another
accuracy. The difference between the two numbers can indicate
the feature importance. RF is robust easy to use and has relatively
good accuracy, which makes it an appealing tool for feature selec-
tion. However, RF cannot handle too many features (Chen & Lin
2006). Therefore, a combination of univariate feature selection and
Random forest is a good choice. In practice, we first use univari-
ate feature selection to reduce the number of features, then apply
random-forest-based recursive feature elimination to further find
the optimal number of features in a cross-validation loop. In the
end, 51 features are selected in the synthetic example.

Support vector classification

Recently, SVM has been an effective classification method by con-
structing hyperplanes with a maximal margin in a multidimensional
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Table 2. The list of the extracted 2-D texture features.

ID Feature name Description

64–95 Contrast Measures the local variations in the GLCM, for 0◦, 45◦, 135◦ and 90◦ orientation, with distance of 1−8 of
neighbouring voxels

96–127 Correlation Measures the joint probability occurrence of the specified pixel pairs in the GLCM, for 0◦, 45◦, 135◦ and 90◦
orientation, with distance of 1−8 of neighbouring voxels

128–159 Energy Provides the sum of squared elements in the GLCM. Also known as uniformity or the angular second
moment, for 0◦, 45◦, 135◦ and 90◦ orientation, with distance of 1−8 of neighbouring voxels

160–191 Homogeneity Measures the closeness of the distribution of elements in the GLCM to the GLCM diagonal, for 0◦, 45◦, 135◦
and 90◦ orientation, with distance of 1−8 of neighbouring voxels
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Figure 3. Synthetic example: 2-D texture features of the training data: Contrast, Correlation, Energy and Homogeneity, for orientations 0◦, 45◦, 90◦ and 135◦,
with a distance of three neighbouring voxels.

space, which separates different cases of different class labels (Boser
et al. 1992; Cortes & Vapnik 1995). Therefore, we choose SVM as
the machine learning algorithm in our proposed workflow.

To construct an optimal hyperplane, SVM employs an iterative
training algorithm, which is used to minimize an error function.
In this work, given training vectors xi ∈ Rn, i = 1, ..., N in two
classes, and a vector of labels yi ∈ {1, −1}, we use the C-SVM
model (Hsu et al. 2003), where a coefficient C is used to control the
tolerance of the systematic outliers that allows fewer outliers to exist
in the opponent class. This model solves a quadratic optimization

problem:

min
ω,b,ξ

= 1

2
ωT ω + C

N∑
i=1

ξi

subject to the constraints:,

yi

(
ωT φ (xi ) + b

) ≥ 1 − ξi and ξi ≥ 0, i = 1, ..., N ,

(2)

where ω represents the normal vector to the hyperplane, b is a
constant and C is a penalty parameter on the training error, which is
chosen to avoid overfitting. Note that ξ i is the smallest non-negative
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Figure 4. Synthetic example: (a) correlation matrix of the 191 1-D and 2-D features. Note that 2-D features (I-D range 64–191) are correlated due to the nature
of the GLCM characteristics, (b) the univariate score (F-value) as a function of feature ID. The feature IDs are expained in Tables 1 and 2.
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Figure 5. Synthetic example: (a) raw test data 1 (SNR = −10 dB); predicted event detection for test data 1 (SNR = −10 dB) using (b) both 1-D and 2-D
features, (c) only 1-D features, (d) a conventional LTA/STA method and (e) a CNN approach. The arrows point at locations where the CNN fails.
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Figure 6. Synthetic example: (a) raw test data 2 (SNR = −13 dB); predicted event detection for test data 2 (SNR = −13 dB) using (b) both 1-D and 2-D
features, (c) only 1-D features, (d) a conventional LTA/STA method and (e) a CNN approach. The arrows point at locations where the CNN fails.

number satisfying yi

(
ωT φ (xi ) + b

) ≥ 1 − ξi . The kernel φ is used
to transform the input data into the feature space.

By solving for the Lagrangian dual of the primal problem in
eq. (2), a simplified problem is obtained:

max
a

=
N∑

i=1

ai − 1

2

N∑
i=1

N∑
j=1

ai a j yi y j K
(
xi , x j

)
,

N∑
i=1

ai yi = 0, C ≥ ai ≥ 0, i = 1, ..., N , j = 1, ..., N ,

(3)

where, a is introduced by Lagrangian multiplier. This dual formu-
lation only depends on dot-products of the features, which is the
kernel function K(xi, xj) = φ(xi) · φ(xj), to map into the higher
dimensional feature space by transformation φ. The radial basis
function (RBF) in eq. (3) is used as the kernel function for SVM:

K
(
xi , x j

) = exp
(−γ ||xi − x j ||2

)
, i = 1, ..., N , j = 1, ..., N ,(4)

where, γ is an adjustable parameter of certain kernel functions. In
this case, we set it as 1/N. With the C-SVM model, there is only one
parameter to be determined: C, which tells the SVM optimization
how much you want to avoid mis-classifying the data. We conduct a
cross-validation (CV) process to decide it. Considering a grid space
of {C} with log2C ∈ { −3, −2.5, ..., 2.5, 3}, we apply fivefold CV
on the training data to each C, and then choose the specific C that
leads to the lowest CV balanced error. In the synthetic example, C
= 2.1544 is selected with a score of 0.96. In addition, the size of

the noise class is normally different from the size of the event class.
This data imbalance could lead to bias. In order to compensate this,
we adjust the weights inversely proportional to the class frequencies
in the input data.

Test on new data

After obtaining the trained SVM model, we apply it to the test data
1 and 2 in Figs 5(a) and 6(a). The predicted event detection results
considering both 1-D and 2-D features are shown in Figs 5(b) and
6(b) and the results considering only 1-D features are shown in
Figs 5(c) and 6(c). We can see that, when the noise level is SNR
= −10 dB, both of them result in a reasonable prediction with
95 per cent (Fig. 5b) and 90 per cent (Fig. 5c) accuracy, respectively.
There is an obvious improvement in the prediction accuracy by con-
sidering 2-D texture features. When the noise level reaches SNR =
−13 dB, the predicted result in Fig. 6(c) using only 1-D features
is quite noisy with a prediction accuracy of 82 per cent. However,
by maximizing the information per segment with extracting extra
2-D texture features, the proposed workflow still ends up with a
reasonably good result with 93 per cent accuracy (Fig. 6b). Further-
more, five different traces (at 150, 525, 900, 1275 and 1650 m) of
clean, noisy, and predicted detection of test data (SNR = −10 dB)
are shown in Fig. 7. It can be seen that the events hidden in strong
ambient noise can also be detected using our proposed workflow.
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Figure 7. Synthetic example: Five traces (at 150, 525, 900, 1275 and 1650 m) of clean (red) and noisy (blue) test data 2 with SNR = −13 dB and the predicted
event detection (yellow; 0-noise, 1-event).

Table 3. Classification metrics for test data 2 (Fig. 6a).

Parameters SVM+1-D/2-D features SVM+1-D features CNN

Precision 0.93 0.82 0.91
Recall 0.92 0.82 0.90
F1-score 0.92 0.82 0.90

Moreover, we also compare the proposed workflow to a state-of-
the-art STA/LTA method and a convolutional-neural-network ap-
proach (CNN). The STA/LTA parameter is measured in the time
domain and defined as follows:

ST A (i) = 1

N ST A

i∑
j=i−N ST A

d ( j) ,

LT A (i) = 1

N LT A

i∑
j=i−N LT A

d ( j) ,

RST A/LT A (i) = ST A (i)

LT A (i)
,

(5)

where d(i) denotes the input microseismic data and NSTA and NLTA
denote short-term and long-term periods, respectively. We use NSTA
= 2∗wavelength and NLTA = 8∗wavelength in this example. The
results using the STA/LTA method are shown in Figs 5(d) and 6(d).
It is obvious that the STA/LTA method cannot perform well when
strong noise exists. It is worth mentioning that the STA/LTA method

is usually implemented after an initial denoising process applied to
the raw data.

Regarding the CNN, we design a six-layer architecture, which is
adopted from LeNet (LeCun et al. 1990): two convolutional layers
with 32 kernels (3 × 3) to learn the local features; followed by
one max pooling layer with (10 × 10) to reduce the number of
parameters; after a flattening process, two fully connected layers
with 128 kernels are included and a softmaxing layer is added in the
end to generate the final classification. The results using this CNN
are shown in Figs 5(e) and 6(e). We can see that it works well in
detecting events, even though not as good as the proposed workflow
in Figs 5(b) and 6(b). Some useful events, which are pointed with
red arrows, are damaged. It is well-known that CNN is not able to
show its privilege over the traditional machine learning algorithms
when very limited training data are available.XXXX

The classification metrics of different strategies for the test data
2 (SNR = −13 dB) are written in Table 3

F I E L D DATA E X A M P L E

We consider a group of surface-recorded microseismic data in a field
data example. The receiver spacing is 7.5 m and the time duration
is 2 s. Since the STA/LTA method cannot perform well without a
denoising preprocess applied to the raw data, we only compare SVM
with only 1-D features, SVM with 1-D and 2-D features, and CNN
in this example. For the training, only one raw training data, which
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Figure 8. Field data example: (a) raw training data, (b) labelled training data.
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Figure 9. Field data example: 2-D texture features of the training data: Contrast, Correlation, Energy, Homogeneity, for orientations 0◦, 45◦ and 90◦ and 135◦,
with a distance of three neighbouring voxels.

is shown in Fig. 8(a), is considered. The corresponding labelled
training data is shown in Fig. 8(b). We labelled the data sets based on
a relatively strict criterion. With ‘strict’ we mean that only the very
clear events are selected. Afterward, the training data is split into
segments with a length of 0.062 s, which is approximately twice the
wavelength. There are 2970 segments in total. Part of the extracted

2-D texture features is demonstrated in Fig. 9. We can see that the
2-D features show large relevance with the events. The correlation
matrix of the features is shown in Fig. 10(a). Compared to Fig. 4(a),
the correlation between 2-D feature clusters is reduced, because
in this more complex scenario, different 2-D features (Contrast,
Correlation, Energy and Homogeneity with orientations 0◦, 45◦,
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Figure 10. Field data example: (a) correlation matrix of the 191 1-D and 2-D features. Note that 2-D features (ID range 64–191) are correlated due to the
nature of the GLCM characteristics, (b) The univariate score (F-value) as a function of feature ID.
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Figure 11. Field data example: (a) raw test data 1, (a) predicted event detection using (b) both 1-D and 2-D features, (c) only 1-D features and (d) a CNN
approach.
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Figure 12. Field data example: (a) raw test data 2, (a) predicted event detection using (b) both 1-D and 2-D features, (c) only 1-D features and (d) a CNN
approach.

135◦ and 90◦ and distances of 1−8) start to make a difference,
instead of just creating redundancy. Furthermore, the univariate
score (F-value) is shown in Fig. 10(b). It is obvious that the 2-D
texture features play a more important role in the real case, compared
to the synthetic example. After feature extraction, 49 features are
selected using a combination of univariate feature selection and
Random forest. In the SVM classification step, C = 12.74 turns out
to be the optimal value based on the CV experiment. Finally, the raw
test data sets are shown in Figs 11(a), 12(a) and 13(a). The event
detection results considering both 1-D and 2-D features are shown in
Figs 11(b), 12(b) and 13(b). The event detection results considering
only 1-D features are shown in Figs 11(c), 12(c) and 13(c). We can
clearly see the improvement of accuracy by using both 1-D and
2-D features, because the continuity, smoothness and regularity of
the events are largely emphasized when we label the training data
sets, however, being ignored with only 1-D feature extraction. In
addition, the predicted results using the CNN approach are shown
in Figs 11(d), 12(d) and 13(d). We can see that using the CNN
results in a reasonable prediction, albeit not as good as the proposed
workflow, because the CNN is not able to show its privilege over
the traditional machine learning algorithms when only one training
data set is fed in.

D I S C U S S I O N

Feature importance and sensitivity analysis

With the high classification accuracy achieved by the C-SVM
model, we are also interested in the prediction power of the indi-
vidual features and their corresponding importance. Here, we adopt
the best random forest model trained during the recursive feature
elimination process in the feature selection section using the syn-
thetic data set. The random forest estimator automatically computes
the normalized feature importance metric, and the top 10 most im-
portant features are listed in Table 4. We notice that the top nine
features are 2-D features, which is in accordance with expectation,
since 2-D features carry more information than 1-D features. Fur-
thermore, for the most important feature, being the 135◦ orientation
correlation with distance of two neighbouring voxels (ID 121), we
plot its partial dependence in Fig. 14. The partial plot here essen-
tially fixes other features and repeatedly alters the value of feature
#121 to make a series of predictions for all of the instances in the
test data set. Here the y-axis is interpreted as the change in the
prediction from what it would be predicted at the baseline value.
We see that with a positive feature #121 value it would substantially
increase the possibility of detecting a microseismic event and this
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Figure 13. Field data example: (a) raw test data 3, (a) predicted event detection using (b) both 1-D and 2-D features, (c) only 1-D features and (d) a CNN
approach.

Table 4. Top 10 most important features, with their normalized importance scores summing up to 0.7440. See Tables 1 and 2 for the explanation of the ID
numbers.

ID 121 184 168 122 104 176 127 186 72 36 Sum

Importance 0.3545 0.1255 0.1194 0.0463 0.0345 0.0188 0.0144 0.0124 0.0092 0.0090 0.7440
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Figure 14. Partial dependence plot for feature #121. A positive feature #121
value would substantially increase the possibility of detecting a microseismic
event, and the shaded area denotes the level of confidence.

feature is indeed a robust predictor as the shaded area indicating the
confidence level is quite a bit above 0.

Parameter setting and data quality

The implementation of the proposed workflow is quite straightfor-
ward. Except for the labelling step, this algorithm is fully automatic
and hands-off. Once the feature vectors are fixed, only two pa-
rameters are needed: the length of segmentation and regularization
parameter C. In this work, 2∗wavelength is used as the segment
length in order to obtain high vertical resolution. The regulariza-
tion parameter C is selected automatically using a cross-validation
process to avoid overfitting.

Regarding the labelling step, the predicted results largely depend
on the labelling criterion. The labelled training data based on a re-
laxed labelling criterion is shown in Fig. 15(a) and the corresponding
predicted results are shown in Figs 15(b)–(d). We can see that the
results are consistent with the labelling criterion. Therefore, a con-
sistency of the labelling step, which makes sure that the training data
sets have a clear classification boundary, is required. In addition, the
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Figure 15. Field data example: (a) labelled training data based on a relaxed criterion; (b–d) predicted event detection of raw test data 1–3 based on this relaxed
labelling criterion using both 1-D and 2-D features.

proposed workflow works well on small data sets, because once a
boundary is established during the training, inputting more training
data sets are redundant and might even result in over-fitting issue.
In this work, only one training data set for both the synthetic and
real case is labelled and used to train the model. Using smaller data
sets also makes the prediction and labelling process very efficient.
The bottom line is that the quality of labelling process is much more
important than the quantity.

Assuming that a larger number of high-quality labelled train-
ing data sets are available, the proposed workflow might not be
the optimal choice, since the training time would be too large
and an over-fitting issue might pop up. In this case, the use of
neural-network-based methods, e.g. convolutional-neural-networks
(Krizhevsky et al. 2012), is recommended.

Machine learning algorithm

In this work, we choose SVM as the machine learning algorithm
in the workflow, due to its high accuracy and nice theoretical guar-
antees regarding overfitting. Compared to the other popular clas-
sification algorithm, like random forests, SVM is more memory-
intensive and time-consuming. It is possible to replace SVM with

random forests in this workflow for the sake of efficiency. However,
in that case the propositions in this paper still stand.

C O N C LU S I O N S

In order to overcome the noise issue of microseismic data, we pro-
posed a new workflow for high-resolution event detection based on
SVM classification with a Gaussian kernel. The proposed work-
flow is demonstrated in details. For the segmentation step, a length
of 2∗wavelength is used, which then provides the vertical reso-
lution of the event detection. For the feature extraction step, 191
features including both 1-D time/spectral-domain features and 2-D
texture features are considered. A combination of univariate feature
selection and random-forest-based recursive feature elimination is
chosen for feature selection, which finds both the best features and
the best number of features needed for the best accuracy. In the
training process, the C-SVM model is used and a cross-validation
process is conducted for an automatic parameter setting. Finally, a
group of synthetic and real microseismic data sets with different
levels of complexity showthat the proposed workflow is much more
robust than the state-of-the-art STA/LTA method and also performs
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better than a CNN approach, when the amount of training data sets
is limited.
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