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A B S T R A C T

One-way station-based carsharing systems allow users to return a rented car to any designated
station, which could be different from the origin station. Existing research has been mainly fo-
cused on the vehicle relocation problem to deal with the travel demand fluctuation over time and
demand imbalance in space. However, the strategic planning of the stations’ location and their
capacity for one-way carsharing systems has not been well studied yet, especially when con-
sidering vehicle relocations simultaneously. This paper presents a Mixed-integer Non-linear
Programming (MINLP) model to solve the carsharing station location and capacity problem with
vehicle relocations. This entails considering several important components which are for the first
time integrated in the same model. Firstly, relocation operations and corresponding relocation
costs are taken into consideration to address the imbalance between trip requests and vehicle
availability. Secondly, the flexible travel demand at various time steps is taken as the input to the
model avoiding deterministic requests. Thirdly, a logit model is constructed to represent the non-
linear demand rate by using the ratio of carsharing utility and private car utility. To solve the
MINLP model, a customized gradient algorithm is proposed. The application to the SIP network
in Suzhou, China, demonstrates that the algorithm can solve a real world large scale problem in
reasonable time. The results identify the pricing and parking space rental costs as the key factors
influencing the profitability of carsharing operators. Also, the carsharing station location and
fleet size impact the vehicle relocation and carsharing patronage.

1. Introduction

Traffic congestion and its main consequences on productive time loss and air pollution are regarded as the main issues resulting
from the urbanization process due to the quick growth of private cars usage (Beckmann, 2013). Moreover the increasing car own-
ership imposes great pressure on parking in urban areas. Therefore, reducing the use of private cars is essential in order to tackle
traffic congestion, thus reducing air pollution, time lost, and save land resources. Carsharing is a transport demand management
measure that was first adopted informally in the 1940s, when groups of citizens needed to save travel costs due to a rise in gasoline
prices. A representative example was the system called “Sefage” in Zurich, Switzerland, in 1948 (Correia and Antunes, 2012; Shaheen
and Cohen, 2012), a non-governmental club consisting of citizens who were willing to share vehicles in their neighborhoods. This
earliest vehicle sharing was only used by a small number of people but the concept had been created. Nevertheless it was only in the
1980s that carsharing started to become more popular in Europe and in the USA (Shaheen et al., 1999). By October 2014, there were
33 countries operating carsharing systems encompassing around 4,800,000 members and over 104,000 vehicles in more than 1531
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cities (Shaheen and Cohen, 2014). In recent years, carsharing is becoming even more attractive and pervasive around the world due
to its low price and flexible car-return policies. Carsharing is expected to significantly increase its market penetration in the next ten
years (Zhou et al., 2017). Herbawi et al. (2016) pointed out that carsharing, if used for a greater part of the mobility needs of
travelers, can be a bridging mode between private cars and public transportation.

Carsharing systems can be divided into two categories: round-trip and one-way, based on the operation mode (Jorge et al., 2015a,
Shaheen et al., 2015; Boyacı et al., 2017). The older more traditional companies provide round-trip carsharing services, in which the
vehicle should be returned to the original rental station. One-way carsharing allows users to return the vehicle to any designated
station and the price is usually determined based on a combination of trip duration and trip distance (such as GoGet) or simply based
on the trip duration (such as EVCARD). Therefore, one-way carsharing can attract more trip motives other than just the occasional
shopping or leisure trip as is usually the case for round-trip systems (such as ZipCar). Due to the daily fluctuations of urban travelling
demand, one-way carsharing systems cannot serve all potential demand increase (resulting from its added flexibility) because many
vehicles may be needed in one station whilst another may be packed with vehicles that are not needed at that moment. However
given the very significant improvement in service convenience, one-way carsharing is witnessing a soaring popularity in Europe and
the USA with many companies expanding their services (e.g., Car2go, DriveNow, GoGet and Hertz 24/7). At this stage, carsharing
operators seem to be focusing mainly on growing, either expanding geographic coverage in cities where they are operating or by
offering the system in more cities around the world. Yet companies are still facing great challenges in the planning and operation of
their systems.

The asymmetric demand between pairs of stations, leading to an obvious solution of vehicle relocation along a day, is common
practice in carsharing systems (Jorge et al., 2014) but also bike sharing (Li et al., 2016b). The vehicle relocation problem would
actually be easier and cheaper to do if it would be possible to move the cars easily in a truck. Vehicle routing has been extensively
studied to rebalance bicycles among stations in public bicycle sharing systems, therefore the same algorithms could be potentially
used for cars as well (Ho and Szeto, 2017). However, relocating a bundle of vehicles together by heavy trucks may not even be
possible to do in a city center. The main reason is that loading and unloading vehicles needs large operational space and time. Instead,
staff-based relocations are more frequently utilized in carsharing operations. To maximize the benefit of such relocations operators
are faced with the need to weigh the relocation costs and the potential trips that clients may be able to do with those vehicles (Nair
and Miller-Hooks, 2011).

There are three relocation mechanisms based on the available information, namely, a static method to maintain a minimum
threshold of available cars at each station; a predictive method based on historical demand; and an exact based on perfect knowledge
on future demand (Barth and Todd, 1999). Optimization methods were usually adopted for predictive relocation (Bruglieri et al.,
2014). Kek et al. (2009) studied the relocation personal assignment problem by establishing a Mixed Integer Linear Programming
(MILP). Furthermore, with the same Singapore case-study from Kek et al. (2009), Nair and Miller-Hooks (2011) proposed a Divide-
and-conquer algorithm to manage fleet redistribution considering asymmetric and variable demand. Weikl and Bogenberger (2015)
divided a study region into macroscopic zones, and developed a MILP model for inter zone relocation and a rule-based method for
microscopic intra zone relocation. On the other hand, a simulation-based method was also used for testing a rolling-horizon re-
location mechanism with perfect demand information by Barth and Todd (1999). They developed a simulation model for a com-
munity car club in Southern California to analyze the performance of the system. Boyacı et al. (2017) developed an integrated
framework using Mixed-integer Non-linear Programming (MINLP) optimization and simulation to make operational decisions related
to vehicle relocations and staff allocation. In addition to the above mentioned operator-based strategies, user-based strategies, where
various incentives are presented to encourage users to carry out vehicle relocation (Jorge et al., 2015b), have been proposed.
Febbraro et al. (2012) used discrete event simulation to test a user-based carsharing relocation model by offering a fare discount.
From the research mentioned above, it is possible to conclude that vehicle relocation is a complex problem to solve. To combine it
with other operational decisions presents an even greater challenge.

One of those challenges in carsharing systems modeling lies in the demand sensitivity to the level of service that is being offered to
the clients which is a function of the number of stations, walking distance, price, car availability, etc. For example, demand loss is
inevitable when there are not enough cars at a station. To circumvent such problem, some studies have assumed a potential abundant
demand for this type of service which would be significantly larger than vehicle supply. It is considered that clients would choose
carsharing for sure if this was available to them. Nourinejad and Roorda (2014) introduced a dynamic model to maximize the total
profit by servicing part of the total carsharing demand rather than all demand. Jorge et al. (2015b) considered elastic demand where
carsharing requests were assumed to be linearly decreasing with regard to price. They developed a MINLP based on elastic pricing to
obtain a higher balance between demand and supply at each station. The optimal dynamic pricing was obtained when no relocations
were needed. However, other factors that affect the utility of carsharing services are ignored the current literature, which presents an
important research gap that we want to tackle in the present study.

The last challenge arises from the strategic decision of where to locate and how many parking places to provide in the network of
carsharing stations (Jian et al., 2016). A few studies have investigated the joint optimization of station capacity and fleet size for a
given network of stations (Cepolina and Farina, 2012; Fassi et al., 2012; Hu and Liu, 2016). Cepolina and Farina (2012) drew upon
the convenience of microscopic simulation to design the fleet dimension of personal intelligent vehicles in pedestrian commercial
streets. Hu and Liu (2016) developed a mixed queuing network model to address the reservation policy and road congestion effect in
one-way carsharing systems. Fassi et al. (2012) presented a discrete event simulation method to evaluate the carsharing network’s
growth strategies to meet the future demand. Some studies looked into the carsharing depot location problem. For example, Correia
and Antunes (2012) proposed three MILP models to optimize the depot location, station capacity as well as the vehicle fleet size
under what they called a controlled, full and conditional service scheme of selecting customers. A classical Lisbon case with 75
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candidate stations and 1776 trips was used to demonstrate the model. Li et al. (2016a) proposed a continuum approximation method
for electric vehicle carsharing station location and fleet size problem with recharging constraints. Deng and Cardin (2018) used
discrete event simulator to jointly optimize the allocation of carsharing parking spots and vehicles. However, those studies typically
assumed fixed demand where vehicle relocation was either ignored or only one-time rebalancing was allowed during the night which
constitutes another research gap.

In this paper, we are adopting the vantage point of a one-way carsharing operator who intends to enter the market by deploying
carsharing stations in a region using regular internal combustion vehicles. The operator aims to maximize the total profit by defining
the long term resource allocation (carsharing stations location, station capacity, and fleet size) and the short term operation strategies
(vehicle relocation) simultaneously. In addition, we consider dynamic and asymmetric travel demand, where the requests to travel
between traffic zones fluctuates along the day and is not symmetrically distributed in space. As such, vehicle relocations are allowed
both during the operation hours, to satisfy customers’ requests, and at the end of the operation period in order to rebalance the
vehicle inventory back to its initial level. Travel and relocation times are affected by traffic congestion during peak hours. The
competition with private cars is accounted for by using a logit model to determine the potential demand for carsharing which is
further subject to vehicle availability. The utility of using carsharing for each zone OD pair depends on the walking costs to access a
station in the origin and destination traffic zones, the in-vehicle travel time and the travel costs (it is assumed that the traveler has a
perfect knowledge of the travel time and travel costs). Therefore the demand for carsharing and the strategic location decisions of the
operator are related to each other, making the problem potentially difficult to solve. In this paper we aim to propose a mathematical
model to jointly optimize the station location, station capacity and fleet size considering vehicle relocations and non-linear demand
for a station-based one-way carsharing system. Due to the difficulty in solving such type of problems a customized gradient algorithm
is also developed to get near-optimal solutions in reasonable time. To the best of our knowledge, this paper is the first attempt to
address the three issues simultaneously through an exact optimization approach and corresponding solving algorithm.

The remainder of this paper is organized as follows. In Section 2, the dynamic one-way carsharing model and its solution al-
gorithm are introduced. Section 3 presents the application to the Suzhou Industrial Park (SIP), Suzhou, China. Conclusions are drawn
in Section 4.

2. Model formulation

2.1. Assumptions

The assumptions for applying our model are the following:

• The demand of carsharing is known in advance through an on-line booking system or by prediction through historical data. The
total travel demand of taking carsharing and driving private cars is known and fixed.

• Only two modes: carsharing and private car are considered. Other modes such as public transport, bicycle, and walking are not
being considered as competitors. In other words, the potential travel demand of carsharing comes from original users of private
cars. The proportion of carsharing demand is calculated based on the utility functions of both modes of transport.

• Not all carsharing demand is satisfied since this is subject to vehicle availability.

• The installed stations in a zone is uniformly distributed. The catchment regions of the carsharing stations are simplified and
considered to be circles.

• At least one parking spot is provided in a station.

• A carsharing station only serves demand in its own traffic zone.

• One staff member from the carsharing organization can relocate only one vehicle at a time.

• Vehicles are relocated at the beginning of the time step.

• The distribution of this travel demand in different zones over time is similar in all days and is representing a typical working day.

2.2. Notation

Primary notation used throughout this paper is listed in alphabetical order as follows:

Parameters
ai Area of traffic zone i
b Value of travel time
co Opening costs of a carsharing station per day (e.g. marking and sign installation)
cf Fixed costs per vehicle per day including depreciation costs and maintenance costs for shared cars or private cars
cg Gasoline consumption costs per time step
cp Rental costs of a parking spot per trip for private cars
cr Vehicle relocation costs per time step
cs Rental costs of a parking spot per day for shared cars
gij

t Travel time in time steps from zone i to zone j where ≠i j departing at time instant t
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J i: { } Set of traffic zones
qij

t Total travel demand from traffic zone ∈i J to traffic zone ∈j J where ≠i j in time step ∈t T

r Rental price of a shared car per time step
s Speed of walking
T t: { } Set of time steps
Uij

pc Utility of private cars for travelers from zone i to zone j where ≠i j

Decision variables
Nij

t Number of repositioned (relocated) cars from traffic zone ∈i J to traffic zone ∈j J where ≠i j at the beginning of time
step ∈t T

Pij
t Proportion of trips serviced by carsharing from traffic zone ∈i J to traffic zone ∈j J where ≠i j in time step ∈t T

Si Number of parking spots in zone i
Vi

t Number of shared cars in zone i at the beginning of time step t
Xi Number of carsharing stations in zone i
Auxiliary variables
cwi Costs of walking to access carsharing stations in zone i
Pij

cs Potential proportion of travelers taking carsharing from zone i to zone j where ≠i j

Qij
t Satisfied carsharing travel demand from traffic zone ∈i J to traffic zone ∈j J where ≠i j in time step ∈t T

Uij
cs Utility of carsharing for travelers from zone i to zone j where ≠i j

2.3. Problem setting

The problem that we address in this paper is how to design a one-way station-based carsharing system, including station location,
stations’ capacity, and fleet size in order to maximize the profit of the system. This is not entirely new however we are adding, in
relation to previous literature, a series of components that have not been considered at the same time in any model known to the
authors. As defined before, we consider that carsharing is in competition with private cars and that travelers’mode choice behavior is
captured by a logit model = +P U U Uexp( )/[exp( ) exp( )]ij

cs
ij
cs

ij
cs

ij
pc where Pij

cs denotes the probability of travelers choosing carsharing,
Uij

cs andUij
pc are the utilities of carsharing and private car respectively. Travelers will weigh the utilities of carsharing and private cars

in conducting the mode choice. In this paper, we assume travelers decide if they would like to use carsharing based on the utility
values before travelling. The probability Pij

cs can be interpreted as the maximum potential demand proportion for carsharing if
available, assuming that the demand for private cars can always be attended. However, since some stations could have zero cars to
rent in real-time operation, the actual number of travelers using carsharing is reduced. Let Pij

t denote the proportion of trips serviced
by carsharing from traffic zone i to traffic zone j in time step t where ⩽P Pij

t
ij
cs and the set is defined as ≔ PP { }ij

t . In this way, we allow
for demand losses subject to carsharing vehicle availability.

Carsharing operators aim to maximize the total profit by weighting the income from servicing travelers and the station opening
costs, parking fees and personnel costs. The decision variables are described as follows. The operator decides the number of car-
sharing stations ≔ XX { }i in each traffic zone with varying number of parking spots ≔ SS { }i . Every station in zone i has an equal
number of S X/i i parking spots. This setting is expected to maximize the probability of getting a vehicle for the carsharing users
arriving at any station in the zone i. During operation, variables ≔ VV { }i

t determine the number of available cars in traffic zone ∈i J
at the beginning of time step t . In particular, Vi

1 is the initial number of vehicles allocated to traffic zone i at the beginning of the day
and ∑ ∈ Vi J i

1 is the fleet size. To meet the predicted future demand, the operator relocates Nij
t vehicles from zone i to traffic zone j

starting at the beginning of time step t (time instant t). In particular, variable +Nij
T| | 1 determines the last number of relocations at the

end of an operation day (time instant +T| | 1), which is carried out to reset the vehicle inventory back to the initial number Vi
1 for the

next day. Note that time instant t stands for the beginning of time step t . There are T| | time steps and +T| | 1 time instants. Let the set
of relocation decision variables be ≔ NN { }ij

t .

2.4. Mathematical model

The optimization model for solving the problem defined above is established as the following MINLP:

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑= − − − − −
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

θ r c g q P c X c S c V c g NP1 max ( )g
t T i J j J

ij
t

ij
t

ij
t

o
i J

i s
i J

i f
i J

i r
t T i J j J

ij
t

ij
t

S X P N V, , , ,
1

(1)

Subject to:

∑ ∑ ∑ ∑= − − + + ∀ ∈ = … − = + −⎡⎢ ⎤⎥
+

∈ ∈ ∈ ∈

V V q P N q P N i J t T m max t g, , 1,2, | | 1, {0, 1 }i
t

i
t

j J
ij
t

ij
t

j J
ij
t

j J
ji
m

ji
m

j J
ji
m

jit ij
t1 jit jit jit

(2)
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∑ ∑ ∑ ∑ ∑ ∑− − + + = ∀ ∈ = + −⌈ ⌉+

∈

+ +

∈

+

=

+

∈ =

+

∈

V q P N q P N V i J m max T g, , {0,| | 1 }i
T

j J
ij
T

ij
T

j J
ij
T

t m

T

j J
ji
t

ji
t

t m

T

j J
ji
t

i ji T ij
T| | 1 | | 1 | | 1 | | 1

| | 1 | | 1
1

| |
| |

ji T ji T| | | | (3)

∑ + ⩽ ∀ ∈ ∈
∈

q P N V i J t T( ) , ,
j J

ij
t

ij
t

ij
t

i
t

(4)

⩽ ∀ ∈V λS t T,i
t

i (5)

⩽ ∀ ∈S ξX i J,i i (6)

= ∀ ∈c b
s

a
πX

i J,wi
i

i (7)

=
+

∀ ∈ ∈P
U

U U
i J j J

exp( )
exp( ) exp( )

, ,ij
cs ij

cs

ij
cs

ij
pc

(8)

= − + − − ∀ ∈U g r b c c i J( ) ,ij
cs

ij wi wj (9)

= − + − − ∀ ∈U g c b c
c
α

i J( ) ,ij
pc

ij g p
f

(10)

⩽ ∀ ∈ ∈ ∈P P i J j J t T, , ,ij
t

ij
cs

(11)

⩽ ⩽ ∀ ∈ ∈ ∈P i J j J t T0 1 , , ,ij
t

(12)

⩽ ∀ ∈X x i Ji i,max (13)

= ∀ ∈ ∈ ∈Q P q i J j J t T, , ,ij
t

ij
t

ij
t

(14)

∈ ∀ ∈ ∈ ∈+N Q S V X integer i J j J t T, , , , , , ,ij
t

ij
t

i i
t

i (15)

The objective function (1) is to maximize the daily profit of the carsharing operator. The revenue comes from the carsharing
income collected from the users. The total cost consists of 5 components, namely, gasoline consumption costs, carsharing station
capital investment, parking spot rental costs, vehicle fixed costs, and vehicle relocation costs as represented by the five terms in (1)
respectively.

The model comprises 14 sets of constraints. Eq. (2) define the conservation constrains for the number of available sharing cars in
each zone over time. The number of cars in zone i at time instant +t 1 is equal to the number of existing cars at time instant t minus
the number of cars rented from zone i in time step t and the number of cars relocated from zone i at time instant t , plus the number of
rented cars returning back to zone i in time step t (or between time instants t and +t 1) and the number of relocated cars entering
zone i in time step t (between time instants t and +t 1). Subscript mjit finds the time instant at which vehicles that have departed from
zone j can return to zone i exactly during time instants t and +t 1. Constraints (3) require the vehicle relocations +Nij

T| | 1 at the end of
the day to reset the inventory back to the initial level so as to satisfy the demand in the next morning. Superscript mji T| | identifies the
time instant at which the vehicles departing from zone j could return to zone i exactly during time instants T| | and +T| | 1. Terms
∑ ∑ + ∑ ∑= ∈ = ∈q P Nt m

T
j J ji

t
ji
t

t m
T

j J ji
t| | | |

ji T ji T| | | |
in (3) calculate the number of vehicles that will return to zone i at the end of the operation day

(which could be out of the operation hours meaning after time instant +T| | 1) either by travelers dropping off vehicles or by means of
staff relocation. Constraints (4) assure that the number of cars Vi

t is larger than the sum of the client trips (q Pi j
t

i j
t

, , ) and the vehicles
being relocated from the station (Nij

t). Constraints (5) capture the relationship between parking spaces and available vehicles. The
number of parking spots Si should be larger than the number of cars Vi

t present at each zone at the time instant t , where λ is an
elasticity coefficient. It guarantees that there will be at least −λ S(1 ) i parking spots available for parking. Constraints (6) impose that
parking spots are rented only when a zone has at least one station present there, where ξ is a sufficiently large number. In a carsharing
station, at least one parking spot is rented. The non-linear constraints (7) calculate the walking costs cwi based on the radius of
walking in each zone, where s is the average walking speed and b is the value of time. Stations partition their zone (which has an area
of ai) into Xi catchment regions. Based on the calculation function of the circle radius, each region will therefore have an average
walking radius of a πX/i i . The non-linear constraints (8) represent the logit model to calculate the demand of carsharing. The utility
function Uij

cs of carsharing in constraints (9) is defined as the weighted sum of the rental costs and walking costs. The utility Uij
pc of

private vehicles in (10) is defined as the weighted sum of vehicle fixed costs, parking and average travel time costs. In Constraints
(10), α is the average number of private vehicle trips per day, and c α/f calculates the fixed cost of using private vehicles per trip.
According to constraints (7)–(10), the walking costs cwi non-linearly decrease with the number of stations Xi, whereas the demand
proportion of carsharing (Pij

cs) is non-linearly related to the walking costs cwi. Constraints (11) ensure that the actual carsharing usage
rate Pij

t is less than the proportion of potential carsharing users Pij
cs. In this way, the maximum potential demand for carsharing P qij

cs
ij
t

also fluctuate during the day. The actual satisfied demand P qij
t

ij
t, where ⩽P q P qij

t
ij
t

ij
cs

ij
t , depends on the availability of vehicles in

operation. Constraints (12)–(15) specify the domain of decision variables and auxiliary variables.
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2.5. Solution algorithm

In this model, constraints (7)–(10) relate station locations and the demand for using the system. Also, the large set of integer
decision variables including the number of carsharing stations, the number of parking spots, fleet size and the number of relocated
cars, further add to the computation complexity of the problem. There are several non-linear solvers in the programming platform
AMPL which could deal with a small scale problem. However, to solve a large-scale MINLP problem such as the one described above,
an efficient customized solution algorithm is needed. As such, we develop a gradient procedure by using the notion of service
attractiveness denoted by set ≔ ∀ ∈ρ i Jρ { , }i following a similar concept proposed by (An and Lo, 2014a, 2014b, 2015, 2016). We
cannot guarantee the global optimum of the solutions obtained by this algorithm. However, the gradient method can ensure the
solution quality improves (the total profit increases) step by step until a local optimum is reached. This algorithm helps search for a
solution to this complex MINLP that cannot be solved by the mature commercial solvers such as Gurobi, CPLEX or Xpress. In the
future study, we will try to improve the solution efficiency by employing some Heuristic methods. The notion of ρ decouples the
relation between the carsharing station location and the resultant carsharing demand. Given a ρi, we first calculate the number of
carsharing stations Xi, which will be explained below. Then the actual walking costs cwi can be obtained by plugging the value of Xi
into Eq. (7). After walking costs cwi in original zone i and cwj in destination zone j are determined, the proportion of potential
carsharing demand Pij

cs can be obtained from Eqs. (8)–(10), which also serves as the upper bounds of constraints (11). As such, the
non-linear constraints (7)–(10) are removed for a given set of ρi. The remaining problem is simplified to a mixed integer linear
programming problem P2 and can be readily solved by commercial solvers such as Gurobi, CPLEX or Xpress. The formulation is:

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑= − − − − −
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

θ r c g q P c X c S c V c g NP2 ρmax ( ) ( )g
t T i J j J

ij
t

ij
t

ij
t

o
i J

i s
i J

i f
i J

i r
t T i J j J

ij
t

ij
t

S P N V, , ,
1

(16)

Subject to: (2)–(6) and (11)–(15).
The objective value with respect to ρ can thus be obtained. The next step is to search for a promising direction for ρ such that the

objective value is increased sequentially until the stopping criteria are satisfied. In the following, we first delineate the procedure to
calculate the number of carsharing stations Xi for a given ρi as in the first step of the solution algorithm.

In Constraints (8)–(10), the proportion Pij
cs is decided by the utility that travelers give to each mode. For potential carsharing users,

as the travel time and charge rate of carsharing are considred to be known before travelling, the walking costs will be the only
variable influencing their mode choice. Let ρi ( ≠ρ 0i ) be the attractiveness of zone i based on the weighted average travel time

= ∑ ∑ ∑ ∑g g q q/i t j ij
t

ij
t

t j ij
t over all trips starting from zone i. c2 wi indicates the average walking costs leaving the origin traffic zone i

and arriving in any of the −J| | 1 destination zones. If ρi equals 0, the walking costs cwi are positive infinite and Xi is 0. No demand
leaving from or arriving at zone i can be met by carsharing.

=

=

− + −

− + − + − + − −

+ + − − −
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g r b c
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Based on Eq. (17), we can obtain the equation of the average walking costs:

⎜ ⎟= ⎛
⎝

− ⎞
⎠

− + + +c
ρ

g r g c c c
α

1
2

ln 1 1
2 2 2 2wi

i

i i g p f

(18)

Given ρi and gi, we can obtain cwi as the average walking costs in zone i. In other words, if the average walking costs for trips
starting from zone i are cwi, the average proportion of carsharing demand for those trips can be achieved at ρi.

In a zone there is a negative relation between the walking costs cwi and the number of carsharing stations Xi. Hence, the maximum
walking costs cwi,max to access a carsharing station in zone i occur when only one carsharing station is installed, i.e. =c b s a π/ /wi i,max
when =X 1i .

=
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,

i
wi 2

(19)

The case >c cwi wi,max indicates that travelers will choose carsharing as long as there is a carsharing station. Hence, we take =X 1i .
The case ⩽c 0wi indicates that the target mode share ρi of carsharing cannot be achieved unless walking can bring additional benefits
(other than costs). Hence, the maximum number of stations xi max, should be installed to get Pij

cs as close to ρi as possible. Otherwise, by
substituting cwi into Eq. (7), we obtain the number of installed stations Xi by applying Eq. (19).

Proposition 1. The feasible region of ρi in (0,1) can map to the feasible region of Xi in +∞[0, ).

Proof. See Appendix A. □

Proposition 2. Using the average travel time gi and average walking distance cwi from zone i can better smooth the mapping from ρi to Xi
through the entire feasible region.

K. Huang et al. Transportation Research Part C 90 (2018) 1–17

6



Proof. See Appendix B. □

The following pseudo-code shows the customized gradient algorithm. Let k be the iteration number and θ be the objective value.

Initialization

Step 1: Set =k 1, initialize =ρ ρk .
Step 2: Given ρk, calculate the average walking costs cwi through Eq. (18), and then calculate Xi through Eq. (19). Use Xi in
original zone i and Xj in destination zone j to get the actual walking costs cwi and cwj in Eq. (7) and then substitute cwi and cwj into

Eqs. (8)–(10) to obtain the carsharing demand proportion Pij
cs k, . The total profit θ ρ( )k k can be obtained by solving P2.

Step 3: Update the maximum objective value, and save it as ∗θ .

Step 4: If <− −
εθ θ

θ
| |k k

k

1
, stop. Otherwise, proceed to Step 5.

Step 5: Determine the optimal ρ.
Step 5.1: Calculate the partial derivative of θk with respect to ρi as below.

Step 5.1.0: Given ρk as the following J| | dimensional vector and its corresponding objective value θk,

= …ρ ρ ρρ [ ]k k k
J
k

1 2 | |

do the following for each element in ρk:
Step 5.1.1:
a. Set

= … + … −ρ ρ ρ δ ρ ρρ [ , , ]i
k k k

i
k

i
k

J
k

J
k

1 2 | | 1 | | ,

where δi
k is a small positive number.

b. If + >ρ δ 1i
k

i
k , go to Step e. Otherwise, proceed to Step c.

c. Solve P2 given ρi
k. If ≠θ θi

k k, go to Step 5.1.2; otherwise set = +δ δ δi
k

i
k 0, where the small positive number δ0 is the step

size.
d. Go back to Step a.

e. Set = … − … −ρ ρ ρ δ ρ ρρ [ , , ]i
k k k

i
k

i
k

J
k

J
k

1 2 | | 1 | | ;

solve P2 with given ρi
k. If ≠θ θi

k k, go to Step 5.1.2; otherwise set = +δ δ δi
k

i
k 0 .

f. If − >ρ δ 0i
k

i
k , go to Step e. Otherwise, the sensitively of ρi

k is set to zero.

Step 5.1.2: The sensitively of the element ρi
k can be obtained:

=
−

−′
θ
ρ

θ θ

ρ ρ
Δ
Δ

k

i
k

i
k k

i
k

i
k

where = +′ρ ρ δi
k

i
k

i
k or = −′ρ ρ δi

k
i
k

i
k .

Step 5.1.3: If ≠i J| |, set = +i i 1, and go to Step 5.1.1. Otherwise, the whole set of sensitivities of θk with respective to ρk has
been obtained, denoted by the vector ∇θk.
Step 5.2: Take the negative sensitivity vector −∇θk as the descent direction. The step size πk is chosen in the same way as in
Wang and Lo (2008):

= − ∗
π λk k

θ γ θ
θ‖Δ ‖

k

k
1

2

If ∗θ is not improved in the fifth iteration, set =+λ λk k1
2
3 , which will reduce the step size gradually, and the convergence is

guaranteed consequently. ∗γ θ1 is an estimate of the minimum of θk. The value of parameters γ1, λk should be specified for
different problems.
Step 5.3: Calculate the reliability = + ∇πρ ρ θk k

k
k. Project the new value ρk onto the feasible space [0,1]; this result is set to be

the service attractiveness +ρk 1 for the next step. Set = +k k 1, and go to Step 2.

3. Application to the case-study of Suzhou Industrial Park

3.1. Setting up the case study

The case study region used in this paper for a demonstration of the application of the model is the Suzhou Industrial Park (SIP) in
Suzhou, China, comprising 104 zones with a total area of 278 km2 as shown in Fig. 1. The city has a population of 1.03 million and
620 thousands trips per day done in private cars. According to the land use features, the zones are divided into three types: Re-
sidential zones from Zone 1 to Zone 40, industrial zones from Zone 41 to Zone 80, commercial zones from Zone 81 to Zone 100, and
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zones from 101 to 104 are the undeveloped land with zero travel demand. In this case study, we consider a daytime operation of 13 h
from 7:00 to 20:00 partitioned into 26 time steps with a 0.5-h duration.

The travel demand in SIP is randomly generated. The distribution of average departures in a traffic zone is presented in Fig. 2.
The free flow travel time on the shortest path is taken as the base travel time between any two zones, which is calculated in

ArcGIS network analyst software using the actual road network of SIP in 2012. The actual travel time between two zones changes
with the real-time traffic situation (see Table 1).

The values of the parameters needed for the model proposed in this paper are from a one-way carsharing operation report of
EVCARD company (http://www.evcard-sh.com) as shown in Table 2. The Chinese Yuan (¥) to US dollar ($) exchange rate is 0.15 as
of November 4, 2017.

Fig. 1. Zoning of the case-study area.

Fig. 2. Distribution of departures.
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Vehicle fixed costs for a day cf are calculated based on the depreciation costs of a vehicle valued at ¥100,000 for 10-year service
life (in Suzhou vehicles are still being used for higher periods compared to western countries) and the annual maintenance costs of
¥10,000 per year. cp, cs, r , cg and cr come from the average market pricings. co represents the opening costs of a parking station
estimated around ¥360 per year including lane painting and indicator panel costs. The value of time b is calculated based on an
average monthly income of ¥10,000 for car owners in Suzhou. Each zone can open at most 10 stations, i.e. = ∀ ∈x i J10 ,i,max . α
indicates that the average number of private vehicle trips is twice per day. The parameter λ is taken as 1 in the case study indicating
no additional parking spaces are reserved for returned vehicles.

3.2. Optimization results

This model was run in an i7 processor @ 2.4 GHz, 8.00 Gb RAM computer with a Windows 7 64 bit operation system. The MINLP
model was first solved by commercial solver MINOS in AMPL Education Version 12.2. It was then solved by applying the gradient
procedure proposed in this paper. The algorithm was programmed in Python where the Gurobi 7.0.2 solver was installed. We set the
step size =δ 0.10 , the constant term =γ 11 , =λ 1k , the starting point ρ1 as 0.5 and the stopping criteria ε as 1.0%. In the base scenario
of the case study, the computation time for one iteration of the customized gradient algorithm is around 167min by taking advantage
of the parallel computing technology, and it takes 7 iterations until the stopping criteria was met. The daily profit is ¥7,659,543
($1,148,932). However, MINOS could not get a feasible solution after 24 h’ calculation.

To make a further comparison regarding computation efficiency for the two methods, we increase the time step duration to 1 h
(with 13 time steps) and solve the model by MINOS and the proposed algorithm separately. MINOS stopped after 272min’ calculation
and obtained its best solution with the total profit of ¥3,675,390 ($551,309) whereas the proposed algorithm obtained a profit of
¥6,009,654 ($901,448) in 505min. The satisfied carsharing demand given by AMPL is 34.81% whilst our algorithm results in a share
of 72.88%. Although MINOS found a solution much faster than the gradient method, its solution quality is significantly worse. Results
demonstrate that the proposed gradient solution algorithm outperforms the commercial solver MINOS in terms of solution quality.
Besides, we compare the optimization results and computation time when setting the time step size as 1 h, 0.5 h and 0.25 h (see
Table 3). Results show that the total profit (the objective value) is increased by 46.56% while the computation time is increased by
645.07%. A more efficient solution algorithm is thus necessary to investigate a large scale problem considering short time step
durations. In the next sections we use the optimization results with the time step of 0.5 h obtained by the gradient algorithm to draw
insights for the planning and operations of carsharing systems.

3.2.1. Carsharing patronage
The carsharing market share, namely the satisfied carsharing demand or carsharing patronage is on average 82% of the total

travelers, which is calculated by Eq. (20). The market share of carsharing in this paper refers to the percentage of travel demand that
would be serviced by carsharing instead of private vehicles according to the mode choice model. We note that as referred in the
assumptions only private cars is considered as competitors. The high patronage rate demonstrates the outstanding attractiveness of
the one-way carsharing services comparing to private cars when only instrumental attributes such as costs and time are being
considered.

Table 1
Growth factors of travel time in relation to the shortest travel time.

Time 7:00–7:59 8:00–9:59 10:00–10:59 11:00–11:59 12:00–13:59
Growth factor 1.0 1.5 1.3 1.1 1.2
Time 14:00–15:59 16:00–17:59 18:00–18:59 19:00–19:59 20:00
Growth factor 1.1 1.5 1.3 1.0 1.0

Table 2
Parameters for the case-study application.

Parameter cf cp cs co r cg cr b s α λ xi max,

Value 56 10 12 1 60 20 85 56 6000 2 1 10
Unit ¥/veh*day ¥/veh*trip ¥/veh*day ¥/day ¥/h ¥/h ¥/h ¥/h meter/h – – –

Table 3
Optimization results with different time step duration.

Time step duration (min) Market share of carsharing Profit (1000¥) Revenue (1000¥) Computational time per iteration (min) No. of iterations

60 72.88% 6010 11,759 72 7
30 83.58% 7660 15,275 167 7
15 90.24% 8808 16,053 529 7
Changes (%) +23.82 +46.56 +36.52 +645.07 0
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Eq. (21) is used to calculate the average market share in each zone i and time step t . The market shares in all traffic zones are
larger than 0.90 except at 8:00–9:00 in residential zones, at 16:30–18:30 in industrial zones and at 11:00–15:00, 16:30–19:00 in
commercial zones. As shown in Fig. 2, the travel demand is larger than the average value in the aforementioned three periods when
the low market shares occur. At the morning peak hours, the market share in residential zones ranges from 0.60 to 0.61. In the noon
peak hours, the market share in commercial zones is about 0.67–0.89. Similarly, at the afternoon peak hours, the market shares are
significantly lower than the other time slots in industrial zones and commercial zones, which are about 0.70–0.72 and 0.85–0.88
respectively. The substantial unsatisfied travel demand happening at the morning peak hours is more than at the afternoon peak
hours although the total travel demand is similar. This phenomenon is probably due to the highly concentrated demand in a relative
short duration in the morning peak. The carsharing fleet has 31,207 vehicles which service 509,125 trips. The average number of
trips per vehicle per day is 16.31. By the end of 2016, there were over 400,000 private cars in SIP Suzhou (SIP, 2017). This
demonstrate the high usage of carsharing comparing to private vehicles.

3.2.2. Vehicle relocation
Fig. 3 shows the number of relocated vehicles in the 100 traffic zones located in the constructed area indexed from 1 to 100. There

are 58,510 relocations happening in the study area for the whole day, with an average of 22.5 relocations per zone per time step. We
select 10 representative time steps in which the number of relocations is larger than 3000 to illustrate the relocation distribution. The
cell number increases from left to right first and then increases from top to bottom. The top-left and bottom-right cells represent zone
1 and zone 100, respectively. The cells in the top four rows are residential zones while the fifth to the eighth row from the top are

Fig. 3. Relocation operations along the day.
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industry zones, and the bottom two rows are commercial zones. We use different colors to show the number of relocated vehicles. The
blue/green scales represent the number of vehicles relocated from/to the zone. A darker color indicates more vehicle relocations. The
gray scales indicate that no relocation operation occurs from/to the zone.

The relocation operations mainly happen in 3 periods of time (see Fig. 3), at 7:30–8:30, 11:30–12:30 and 16:30–18:00, which is
highly consistent with the three demand peaks (morning, noon and afternoon). At the morning peak, a great amount of vehicles are
relocated from industrial zones and commercial zones to residential zones to handle the increasing departures from the residential
zones. From 10:00 to 13:30, the number of departures declines in residential zones whereas it rises gradually in commercial ones. In
anticipation of such demand growth, many vehicles are relocated into commercial zones at 11:30–12:30. Though the demand in
industrial zones starts to rise at 10:00 simultaneously, the existing vehicles are enough due to the accumulation resulting from the
morning commute trips. In the afternoon, the number of relocation operations begins to increase at 16:30 to prepare for the large
travel demand generating from industry and commercial zones in the afternoon peak.

3.2.3. Optimal number of stations, capacity and walking costs
On average, the company installs 3.4 carsharing stations in a zone and rents 312.1 parking spots in each zone. The average costs of

walking are ¥5.16 for a carsharing user. The number of stations and the number of parking spots per station deviates considerably in
each zone, and they are not linearly dependent on the zone size. We find that the average number of parking spots per zone in the
residential zones (360) is significantly larger than that of the industrial zones (284) and the commercial zones (273). Besides, the
average station capacity in the residential zones (147) is also larger than that in the industrial zones (118) and the commercial zones
(141). The average number of stations in the residential, industrial and commercial zones are 3.60, 3.45 and 2.95, respectively. For
the whole SIP, the number of car sharing stations in a zone ranges from 1 to 10, with an average of 3.26.

Fig. 4 shows the distribution of carsharing stations across zones. The number of stations created in the zones located at the edge of
SIP (except for the zones with no stations) is significantly larger than the one in the central zones of SIP. The main reason is that the
walking costs should be small enough to attract carsharing users in remote zones where users’ average travel distance is relatively
large. The results are consistent with Eq. (21), in which the carsharing demand proportion decreases with the increase of walking
costs and travel distance. In other words, carsharing is more attractive for shorter distance travelers whose origin and destination
zone have large station densities. In the central zones, the short travel distance makes the carsharing attractive enough for potential
users. Hence the operator tends to build fewer stations with more parking spots in each station for management convenience. A

Fig. 4. Distribution of carsharing stations.
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regression analysis establishes an exponential function with a goodness of fit =R 0.692 to quantify the relationship between the travel
distance and the station density.

=X g0.07exp(6.3 )i i (22)

3.3. Sensitivity analysis on cost component

To conduct a sensitivity analysis with respect to the cost component, we increase ρ from 0.1 to 0.7 with a step size of 0.1 first, and
from 0.8 to 1 with a step size of 0.05, and then obtain the optimization results by solving P2. Please note that the descent direction
finding process in Steps 3–5 is not needed here. The resulting market share is calculated by Eq. (20). We further built a return on
investment (ROI) model (Eq. (23)), which equals the daily carsharing profit divided by the total operation costs per day (the fuel
consumption costs, the carsharing station capital investment or depreciation costs, the parking spot rental costs, the vehicle fixed
costs, and the vehicle relocation costs). We plot the optimization results in Fig. 5, setting the market share as the horizontal co-
ordinate and the cost component as the vertical coordinate.
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As shown in Fig. 5a, when the market share increases from 0 to 0.8, the total profit quickly rises at a steep rate. After reaching the
peak, the total profit drops significantly when pushing the market share to 100%. This indicates that satisfying all the travel demand
is not a good strategy for operators to get the maximum profit. The ROI profile fluctuates around 1, but it decrease rapidly when the
market share increases from 0.8 to 1.0. The operator needs to install more carsharing stations, rent more parking spots and keep a
larger fleet size to maintain a large market share (see Fig. 5d and e). Fig. 5f shows that the total relocation costs increase con-
tinuously, which indicates that relocation operation can help to balance the demand and the supply.

Fig. 5. Sensitivity analysis of the market shares.

K. Huang et al. Transportation Research Part C 90 (2018) 1–17

12



3.4. Sensitivity analysis on market share

In this section, we conduct the sensitivity analysis on the market share when changing the costs of renting a parking spot cs,
vehicle relocation costs cr , carsharing pricing r and vehicle fixed costs cf .

The parking station rental cost and average carsharing market share are negatively related (see Fig. 6a). When the station rental
cost increases from ¥10 to ¥90 per hour, the satisfied carsharing demand patronage drops from 84% to 72%. To promote the
carsharing usage, offering subsidies on its parking can encourage operators to provide more services. With the increase of the
relocation cost, the market share decreases but at a slow speed (see Fig. 6b). In Fig. 6c, when the carsharing pricing is as low as 20
which equals the gasoline consumption cost, the operator would not provide carsharing services for there is 0 profit. When the
carsharing pricing is ¥60 per hour, the market share reaches the peak indicating the most significant benefits to the society as most
travel demand can be satisfied. When the price reaches 100, the utility of carsharing declines and hence the carsharing demand is
around 0 according to the logit model. In Fig. 6d, the market share increases by 11% from 72% to 83% when the vehicle fixed cost
increases from ¥40 to ¥60. This is due to the fact that carsharing operators and private car owners use the same type of cars. When a
more expensive car mode is adopted, the utility of private cars to travelers decreases whereas the utility of carsharing is maintained
the same (assuming the car rental price unchanged). This leads to potential carsharing demand increase. However, the profit declines
marginally by 8% from 83% to 75% when the vehicle fixed cost increases from ¥60 to¥120. Though the potential carsharing demand
increases, the higher vehicle fixed cost forces operators to buy less vehicles to ensure its profitability. As a result, the average number
of serviced demand drops when the vehicle fixed cost is larger than ¥60 despite the fact that more people are willing to take
carsharing.

3.5. Sensitivity analysis on total profit

In this section, we conduct the sensitively analysis on the total profit when changing the costs of renting a parking spot cs, vehicle
relocation costs cr , carsharing pricing r and vehicle fixed costs cf .

When the parking spot rental cost increases from ¥10 to ¥50, the total profit reduces from ¥7,700,000 to ¥5,798,894 by 24.69%
and the total parking spot rental cost increase from ¥312,070 to ¥1,908,900 by 511.69%. The total profit declines ¥23,764 on average
if the unit rental cost increases by ¥10. Fig. 7b shows that increasing the relocation cost mildly cuts down the operator’ profits. More
analysis on vehicle relocation will be provided in the following section. In Fig. 7c, the total profit first increases with the rise of
carsharing pricing, and then drops when the pricing is larger than ¥70. However, in Fig. 7c, the market share reaches the peak when
setting the carsharing pricing as ¥60. We can see that the total profit increases continuously when the pricing increases from ¥60
to¥70. The main reason is that the high unit revenue is larger than the loss of unserved travel demand. Once the pricing exceeds ¥70,
the travel demand decreases quickly, and the total profit starts to decline. In this case, when setting the carsharing pricing at ¥70 can
bring the maximum profit for the operator. In Fig. 7d, the total profit increases first and then drop with the vehicle fixed cost, which is
consistent with the results in Fig. 6d.

Fig. 6. Sensitivity analysis on market share.
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3.6. Sensitivity analysis on relocation operations

To further analyze the impacts of vehicle relocations, we first increase the unit relocation cost in the aforementioned case with
104 zones, and then optimize it using the benchmark parameter settings. The infinite unit relocation cost (see Table 4) indicates that
vehicle relocations are not implemented. The number of relocation trips drops from 58,510 to 0 when the unit relocation cost
increases from 45 to infinity. The total profit decreases by 10.30%, and the market share drops by 14.39%. Vehicle relocation is of
some help to the operator in increasing profit and to the society for satisfying travel demand. When setting the unit relocation cost as
¥45, ¥85 and ¥125, we find that the average travel time of a relocation is 5.61min, 5.00min and 4.49min, and the relocation cost per
trip is ¥4.20, ¥7.08 and ¥7.86, respectively. It indicates that the operators give up the long-distance relocations with the increase of
unit relocation cost. It also explains why the profit does not decrease a lot when the unit relocation cost is tripled from ¥45 to ¥125.

3.7. Remarks

In this case study, the profit of carsharing operators may have been overestimated. When predicting the potential carsharing
travel demand, as explained before, we have built a logit model that assumed users’ intention to choose carsharing depends on the
predictable travel time and walking costs. It ignores the psychological characteristics of users and all other aspects that influence
mode choice (Kim et al., 2017). For example, a luxury private vehicle is usually preferred by high-end users, which reduces people’s
enthusiasm to switching to carsharing. Besides, using one-way independent trips can also generate excessive carsharing demand: for
example, if a person travels in the morning by private car he/she won’t be able to use the carsharing in the afternoon because he/she
has to bring the car home (a tour based model would be needed to do this evaluation). In addition, underestimating the operation
costs may cause a larger profit. In SIP, Suzhou, China, to promote carsharing, the local government provides a large discount when
the operators rent parking spots. Moreover we did not take existing private vehicle ownership into consideration. A family owning a
private car will not consider the fixed costs (purchase, maintenance) but probably only the usage costs (oil, parking) in their mode
choice for a particular trip, since the fixed costs are regarded as sunk costs, which have to be paid no matter how intensively the

Fig. 7. Sensitivity analysis of the total profit.

Table 4
Results of carsharing relocation sensitively analysis.

Unit relocation cost
(¥/h)

No. of relocation
(1000)

Relocation cost
(1000¥)

Market share of
carsharing

Profit
(1000¥)

Revenue
(1000¥)

Vehicle fixed
cost (1000¥)

Parking Spot rental
cost (1000¥)

45 76 306 87.04% 7897 15,664 1845 395
85 59 401 83.58% 7660 15,275 1748 374
125 45 410 80.84% 7497 14,910 1674 359
+ ∝ 0 0 71.87% 7084 13,410 1539 330
Changes (%) −100 −100 −17.49 −10.30 −14.39 −16.59 −16.46
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private cars are being used. We also ignored the personnel allocation problem in the vehicle relocation operations by only specifying
the relocation costs per hour. Given the significant amount of relocations, hiring and organizing enough people to carry out the
relocation could be challenging and may lead to side effects such as congestion which are not being considered.

In this study, we have looked at an ideal environment for carsharing operators assuming people have not purchased private cars
and have full flexibility to switch to carsharing. Such assumption may not reflect the reality of car ownership at this moment, but
could provide a benchmark to measure the maximum potential of carsharing systems. Carsharing systems induce an enormous mode
shift from private cars. The daily profit (as high as ¥7,659,543 or $1,148,932) of the carsharing operators estimated in this paper are
reasonable given the significant market share of 80%. How to redistribute this profit by introducing competition among multiple
carsharing operators could be an interesting topic to do further research. In addition, the proposed model and solution algorithm can
be easily adapted to improve the realism of the results by adding other components to the utility functions. However, the composition
of such utility functions should be carefully estimated.

4. Conclusion

This paper addressed the one-way station-based carsharing network design problem. Considering relocation operations and non-
linear travel demand, a MINLP model was established to maximize the total profit for carsharing operators. A customized gradient
algorithm was developed to solve the model. A large-scale case study was conducted to address the carsharing system design in the
SIP, China, with 104 traffic zones and 13 h’ operation duration. Although it needed a longer computation time, the customized
gradient algorithm obtained a significantly higher profit than the commercial solver MINOS. According to the optimization results,
the profit is maximized when the carsharing market share reaches 83%. The satisfied carsharing travel demand is significantly
reduced in the peak hours due to insufficient vehicles. According to the sensitively analysis, the total profit and ROI decrease when
market share is larger than 80%. It implies that chasing a large market share could harm the earned profit and investment return.
Secondly, the total profit and carsharing market share start by gradually increasing and then drastically decreasing with the rise of
carsharing prices. It indicates that pricing is the key issue that affects the carsharing system performance. Thirdly, relocation costs
have a negative, yet marginal, impact on the total profit. When carsharing penetrates into the market, relocation operations can bring
benefits to operators and users.

To make the problem trackable, we made several simplifications in this study, including the fact that the carsharing company and
the private car users adopt the same type of vehicles; travelers are homogeneous in value of time; staff allocation for vehicle re-
location is not considered; a set of parameters based on the city of Suzhou in China are used. These assumptions can be relaxed for
further studies. In addition, with the rapid development of electric vehicle (EV), the one-way carsharing system using EVs has great
potential to serve as an environmental friendly substitute mode for travelers. The battery capacity, recharging time, recharging
station location problem should be taken into consideration when establishing the optimization model. In addition, adopting flexible
pricing strategies, which will affect the carsharing utility function and the travel demand, is another interesting extension for future
studies.
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Appendix A. Proof of Proposition 1

Proposition 1. The feasible region of ρi in (0,1) can map to the feasible region of Xi in +∞[0, ).

Proof. According to Eq. (18), cwi approaches −∞ when ρi approaches 1 while cwi approaches + ∞ when ρi approaches 0 given all the
other parameters cf , cp, gij, r , cg, α, λ fixed. Hence the feasible region for cwi is −∞ +∞( , ). According to Eq. (19), we can always find a
corresponding cwi for any feasible value of integer variable Xi. In this way, no feasible solution in Xi will be missed out by varying the
continuous variable ρi from 0 to 1. □

Appendix B. Proof of Proposition 2

Proposition 2. Using the average travel time gi and average walking distance cwi from zone i can better smooth the mapping from ρi to Xi
through the entire feasible region.

Proof. Let us consider trips starting from zone i. According to Eqs. (8)–(10), the demand proportion of carsharing Pij
cs decreases with

the increase of travel time gij to zone j and walking distance cwj in zone j. In terms of the fixed vehicle fixed costs as well as the
parking station rental costs, this part will occupy more proportion in the total travel costs when the travel distance is short. Hence,
users will choose the private car more than carsharing when they have a long trip. Hence, the potential proportion of carsharing for
users whose travel distance is short is larger than those users who have long travel distance. □

As such, the minimum demand proportion Pij
cs among destinations ∈j J is achieved at the maximum travel time ∀ ∈ gmax { }j J ij and
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with the maximum walking costs cwj,max when only one station is installed. On the other hand, the maximum demand proportion Pij
cs is

achieved at the minimum travel time ∀ ∈ gmin { }j J ij and zero walking costs =c 0wj . If we set =ρ Pi ij
cs by its lower bound, the resultant

Pij
cs shall be larger than ρi. When ρi increases from 0 to 1, Pij

cs would increase from κj to 1, where >κ ρj i and κj increases significantly
with the decrease of gij. As such, the effective searching region in ρi would cluster on the left around 0. Similarly, the searching region
over ρi would cluster around 1 on the right if =ρ Pi ij

cs. To verity this finding, we excreted one scenario in the benchmark case study
and plot out the relationship between ρi and Xi in Fig. B.1. The horizontal coordinate represents the given proportion ρi while the
vertical coordinate represents the number of stations Xi calculated by Eq. (19). The red line uses =ρ Pi ij

cs with the maximum walking
costs and travel time while the blue line takes =ρ Pi ij

cs . The green line to shows the result based on the average value.
We can observe the number of stations Xi always increases with the rise of ρi as proved by Eqs. (18) and (19). However, the

obtained number of stations increases at a high speed when the maximum walking costs and ∀ ∈ gmax { }j J ij are used. On the contrary,
when using the minimum walking costs and ∀ ∈ gmin { }j J ij , the marked increase occurs when ρi is close to 1. The green line shows that
using the average value can smooth out the changing rate in the number of stations.

To further capture the impact of ρi selection, we calculate average demand proportion as ∑ ∑∈ ∈P q q/j J ij
cs

ij j J ij and plot out its
relationship in Fig. B.2. As shown by the red line in Fig. B.2, when using ∀ ∈ gmax { }j J ij , the rise in carsharing demand for short trips is
larger than the rate of rise of average demand proportion for long trips. The average demand proportion increases to 1 at a high
speed. Therefore, using the average travel time and average walking costs with the green line can find the system optimum with a
reasonable step size.
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