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Adaptive Three-Step Kalman Filter for Air Data

Sensor Fault Detection and Diagnosis
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Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands

Air Data Sensor (ADS) Fault Detection and Diagnosis (FDD) is important for the
safety of aircraft. In this paper, first an extension of the Robust Three-Step Kalman
Filter (RTS-KF) to nonlinear systems is made by proposing a Robust Three-Step
Unscented Kalman Filter (RTS-UKF). The RTS-UKEF is found to be sensitive to the
initial condition error when dealing with ADS fault estimation. A theoretical analysis of
this sensitivity is presented and a novel Adaptive Three-Step Unscented Kalman Filter
(ATS-UKEF) is proposed which is able to cope with not only the estimation of the ADS
faults but also the detection and isolation of faults. The ATS-UKF contains three steps:
time update, fault estimation and measurement update. This approach can reduce the
sensitivity to the initial condition error. Finally, the ADS FDD performance of the
ATS-UKF is validated using simulated aircraft data. Additionally, its performance
is further validated using real flight test data to demonstrate its performance under
realistic uncertainties and disturbances. The results using both the simulated data and
real flight test data demonstrate the satisfactory FDD performance of the ATS-UKF

and verify that it can be applied in practice to enhance the safety of aircraft.
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linear accelerations along the body axis, m/s?

Azm, Aym, Asm = measurements of linear accelerations along the body axis, m/ g2

T = thresholds for detecting faults

\% = true airspeed, m/s

Vi, Qm, Bm — air data sensor measurements

f = output faults

f = estimation of output faults

fv, fa, fs = faults in the air data sensors

P, q T = roll, pitch and yaw rate along the body axis, rad/s

DPms Qm, Tm = measurements of roll, pitch and yaw rate along the body axis, rad/s
a, B = angle of attack, sideslip angle, rad

Qym, Bom = angle of attack, sideslip angle measurements from the vane, rad

vy = innovation of the filter

o, 0, = roll, pitch and yaw angles along the body axis, rad

Gms Om, YUm = measurements of roll, pitch and yaw angles along the body axis, rad
L, l,m,p = dimensions of the state, input, output and output faults, respectively
z, P = state estimate and its error covariance matrix of the filter

I. Introduction

RESENTLY, Fault Detection and Isolation (FDI) has an important role in achieving fault-
Ptolerance of aircraft [I]. During the past few decades, many approaches have been proposed
for sensor or actuator FDI |. In aerospace engineering, the FDI of sensors and actuators for
fixed-wing aircraft is widely studied, as can be found in Patton [1], Marzat et. al [5], and Hajiyev
and Caliskan E] Investigation of the FDI for Unmanned Aerial Vehicles can also be found |3, [7].
For recent advances, the reader is referred to Goupil Q] and Zolghadri B, ] The Air Data Sen-
sors (ADSs) measure the dynamic pressure, airspeed, angle of attack and angle of sideslip of the

aircraft, providing essential information on the aircraft states to the pilot ] The ADSs are usually



installed outside the aircraft fuselage and can suffer from icing or water accumulation, which may
result in faults such as blockage faults ] These faults may negatively influence the information
provided to the pilot, which can lead to catastrophic accidents. In the recent past, there have been
commercial aircraft accidents caused by ADS faults. Due to faults in the ADSs, the flight crew
of Austral Lineas Aeroeas Flight 2553 improperly referenced the airspeed indicator and induced a
structure failure by exceeding safe airspeed limits [13]. More recently, the final report of the Air
France Flight 447 accident stated that erroneous airspeed measurements from the pitot probes were
a contributing factor ] Since 2003, commercial aircraft have had more than 35 recorded inci-
dents of multiple ADS faults B] There have also been accidents of military aircraft caused by ADS
faults. The crash of a B-2 bomber is due to a large bias to the ADSs which is caused by moisture
in the port transducer units ] These facts indicates the importance of the fault detection of the
ADSs.

The fault detection of ADSs has been investigated in a number of studies , ] Some
researchers propose to use alternative air data sensing systems such as a flush air-data sensing
system B Q] Nebula et. al propose a virtual air data system against ADS failures D, E] Looye
and Joos ] propose to use the data from a navigation system to determine the air data information.
On the other hand, the faults of the ADSs can be detected. Houck and Atlas [11] are one of the
first to analyze ADS faults. The limitation of their approach is that independent static pressure
measurements are not always available in Unmanned Aerial Vehicle (UAV) applications ] Cervia
et al. B] and Eubank et al. H] detect the faults using a multiple-redundancy air data system. The
air data system studied by Cervia et al. is based on pseudo-quadruplex redundancy which employs
four self-aligning air data probes. Freeman et al. | investigate analytical redundancy instead of
hardware redundancy for the ADS fault detection. They use a longitudinal dynamics model of the
aircraft and two linear H, filters are designed to detect the faults and provide robustness to model
€rrors.

Alternatively, the kinematic model can be used to detect the faults in the ADSs, thereby reducing
the influence of model uncertainties caused by the calculation of the aerodynamic forces and moments

,122]. Van Eykeren and Chu [23] use an adaptive Extended Kalman Filter to detect the faults



in the ADSs. However, the estimation of the faults is not addressed in their work. In Lu et al.
], a Selective-Reinitialization Multiple-Model Adaptive Estimation approach is proposed for the
ADS Fault Detection and Diagnosis (FDD). The approach improved the FDD performance of the
Multiple-Model-based approaches. However, the computational load of the approach is intensive
when dealing with simultaneous faults.

In this paper, a newly-developed Robust Three-Step Kalman Filter (RTS-KF) @] is combined
with the kinematic model to estimate the ADS faults. First, the RTS-KF is extended to cope with
nonlinear systems by proposing a novel Robust Three-Step Unscented Kalman Filter (RTS-UKF).
The RTS-UKF is able to reduce linearization error. However, it is found that the RTS-UKF is
sensitive to the initial condition errors. Second, the sensitivity of this three-step Kalman Filter to
the initial condition error is analyzed theoretically. It is proved that the RT'S-UKF does not use
some of the measurements to update the state estimation which causes the sensitivity to the initial
condition error.

Finally, a novel Adaptive Three-Step Unscented Kalman Filter (ATS-UKF) is proposed which
does not only estimate the ADS faults, but also detect and isolate the faults. The ATS-UKF
contains three steps: time update, fault estimation and measurement update. The fault detection
is performed before the fault estimation. This approach also reduces its sensitivity to the initial
condition. The fault detection is performed by checking the innovation variances. In the presence of
faults, the innovation variance increases. If the innovation variance exceeds a pre-defined threshold,
then the fault alarm is triggered. The FDD performance of the ATS-UKF is tested using simulated
aircraft data with the objective of detecting, isolating and estimating ADS faults. Two different
fault scenarios (multiple faults and simultaneous faults) are implemented to test the performance
and the results demonstrate the satisfactory performance of the ATS-UKF. The fault types contain
not only bias and drift fault, but also oscillatory faults.

Furthermore, the FDD performance of the ATS-UKF is validated using real flight test data of
a Cessna Citation II aircraft. The sensor measurements from the real flight test contain biases and
uncertainties and are suitable for testing the performance of the ATS-UKF. Different fault scenarios

are generated and the faults are injected into the real flight data. The ADS FDD results of the



ATS-UKF demonstrate its performance and verified that it can be applied in practice to enhance
the safety of the aircraft.

The structure of the paper is as follows: In Section [l the ADS FDD problem is formulated.
The kinematic model including ADS faults is introduced. Section [[IIl extends the RTS-KF to cope
with nonlinear systems by proposing the RT'S-UKF. The RTS-UKF is applied to estimate the ADS
faults, which turns out to be sensitive to the initial condition. The sensitivity problem is analyzed
theoretically and a novel ATS-UKF is proposed to deal with not only the estimation of the ADS
faults, but also the detection and isolation of the faults. The performance is tested using a simulated
aircraft model. In Section [V] the performance of the ATS-UKF is further validated using the real
flight data of the Cessna Citation II aircraft. The performance is shown and some remarks are

given. Finally, the conclusions are made in Section [V

II. Air Data Sensor FDD using the kinematic model
The objective of this paper is the FDD of the aircraft ADSs. However, model-based approaches
are sensitive to model uncertainties. In order to make the proposed approach more robust, the
kinematic model of aircraft, which does not involve the computation of aerodynamic forces and

moments, is used instead of the aerodynamic model.

A. Aircraft kinematic model with ADS faults

The kinematic model of the aircraft including ADS faults is described as

(t) = f(x(t), um(t),t) + G(x(t))w(t) (1)
y(t) = h(z(t), um(t),t) +v(t) + F(t)f(t) t=1t;, i=1,2,.. (2)
where x € R” represents the system states, u,, € R! the measured input, y € R™ the measurement.

The functions f and h are nonlinear functions. G and F are the noise distribution matrix and

output fault distribution matrix. The function f € RP represents output faults.



The system equation variables are defined as follows:

r=[Vapeooy)” (3)
Um = [Aem Aym Azm P G m |7 = [Ae Ay Ao pgr T +w (4)
Y= [Vin m B Om Om Ym]" (5)
w = [wy wy w, wy wy wy |7 (6)
v = [vy Vo Vg Vy Vg Uy (7)
F=1[fv fa f6]" (8)

where the input w,, is the Inertial Measurement Unit (IMU) measurement which measures the linear
accelerations (A;, A, and A;) and angular rates (roll rate p, pitch rate ¢, and yaw rate r) of the
aircraft. y is the output measurement which measures the air data information (true airspeed V,
angle of attack «, and angle of sideslip 8) and Euler angles (roll angle ¢, pitch angle 6, and yaw
angle ¥). [fv fa fs]? are the faults of the ADSs, i.e. fv, f, and fg are the faults in the velocity
sensor, angle of attack sensor, and angle of sideslip sensor, respectively. It is assumed that there
are no faults in the Attitude and Heading Reference System which measures the Euler angles and
the influence of changing wind such as turbulence is limited. Therefore, the input noise vector w(t)
can be assumed to be a continuous time white noise process while the output noise vector v(t) can

be assumed to be a discrete time noise sequence.

Elw(t)] =0
Elw(t)w” (t-)] = Q5(t — 1) , Q =diag(os,,, 04, Tu.s Tus Tuys Tu,)s (9)
E[u(t)] =0
Blu(t:)0" (t))] = Ro(t: — t;) , R =diag(o2,, 02, 02, 02, 02, 02), (10)
Elwt)oT ()] =0, t=t;, i=1,2, (11)



The kinematic model is given as follows |23, [24]:

V= (Apm — Waz —gsin6‘) cosacos B + (Aym — way + gsin ¢ cosf) sin

+ (Aim —waz + gcosdcosf)sinacos 3 (12)
&= Vci)sﬁ [ — (Agm — wag)sina + (A, — waz) cosa + gcos ¢ cos b cos o
+ gsin@sinal + ¢ — wg — [(Pm — wp) cosa + (rp, — wy) sina tan 3 (13)
B = %[— (Apm — way — gsind) cosasin B + (Aym — way + gsin ¢ cosb) cos 3
— (Azm — waz + geospeosb) sinasin B] + (py, — wp) sina — (ry, — w;,) cosa (14)
¢ = (Pm — wp) + (qm — wy) sinptand + (r,, — w,) cos ¢ tan (15)
0= (Gm — wq) cos ¢ — (T, — wy)sing (16)
D= (gm = 0) % - — ) 8 an)
and G(z(t)) is defined as:
_ —cosacosfl —sinacosff  —sinacosf 0 0 0 _
sina/(V cos B) 0 —cosa/(VcosfB) cosatanf -1 sin atan 8
cosasin8/V —cosB/V sinasin 8/V —sina 0 cos «
G(x(t) =
0 0 0 -1 —singtanf —cos¢tanf
0 0 0 0 —cos¢ sin ¢
0 0 0 0 —sing¢/cos@ —cos¢/cosb
(18)
Therefore, the measurement model including the ADS faults is
Vi =V + fv +ov (19)
Om =+ fo+ Vo (20)
Bm =B+ fs+vp (21)
bm = ¢+ vy (22)
O, =0+ vg (23)
Ym =P + vy (24)




Table 1: Fault scenario of multiple faults

Time interval Sensor Fault type Fault magnitude Fault unit

10s<t<20s V bias 2 [m/s]
30s<t<40s « drift 0.01¢ [rad/s]

50s <t<60s [ oscillatory —27msin(nt)/180  [rad]

The measurement model can be rewritten into
y(t) =z(t) + F(t) f(t) + v(t), t=t;,1=1,2,.. (25)
where
F =I5 03x3])" (26)

The objective of the ADS FDD problem is to detect, isolate and estimate f = [fv fa fs]7. This
paper assumes that there are no faults in the IMU sensors. If there are faults in the IMU sensors,

they can be detected and estimated by other methods using another set of kinematic model [26].

B. Fault scenarios for the ADS FDD

In this paper, two different fault scenarios are used to test the performance of the approaches.
The fault scenario for multiple ADS faults is given in Table [[] while that for simultaneous ADS
faults is given in Table 2l The fault type, magnitude and unit are given in the table. The units of
the drift faults are given by the units of the drift rates. It can be seen that the fault types not only

contains bias faults but also drift faults and oscillatory faults.

C. State observability and fault reconstructibility
This section check the observability of the system described by Egs. () and (2)). The observ-

ability analysis of the system can be performed by checking the rank of the following observability



Table 2: Fault scenario of simultaneous faults

Time interval Sensor Fault type Fault magnitude Fault unit

V' oscillatory 2sin(7t) [m/s]
10s<t<20s « drift 0.01¢ [rad/s]
drift —0.01¢t [rad/s]
% drift —0.2t [m/s?]
30s<t<40s « bias —27/180 [rad]

B oscillatory —2wsin(7t)/180  [rad]

matrix:
ozh
O (L Th)
0= ! 27)
51(L§_1h)
where the Lie derivative is defined as follows:
Lih = Sah- f

L—13 _ L—2 r
LE =6, (LE2h) - |

It can be readily checked that O is of full rank. Therefore, the system state is observable. In

order to reconstruct the faults, additional conditions are required which are given in (29).

III. Extension of the Robust Three-Step Kalman Filter
This section extends the RTS-KF to estimate output faults. First, in Section [[ITAl the RTS-KF
is extended to nonlinear systems by proposing a RTS-UKF. This RTS-UKF is applied to the ADS
fault estimation problem and is found to be sensitive to the initial condition errors. This sensitivity
problem is analyzed theoretically in Section [IIBl Then, in Section [I[C| an ATS-UKF is proposed
which can detect, isolate and estimate the faults. Finally, the ATS-UKF is applied to the ADS FDD

problem in Section [[IT D] to demonstrate its FDD performance.



A. Robust Three-Step Unscented Kalman Filter
The RTS-KF ] can be used for output FDD. Consider the aircraft kinematic model described
by Egs. () and . For this system, since the system state is observable, the existence condition
A

of a RTS-KF is

m > p, rank Fj, = p (29)

In this study, m = 6, p = 3 and rank F}, = 3. Therefore, a RTS-KF can be designed to estimate the
ADS faults.

However, the RTS-KF is designed for linear systems while the kinematic model is nonlinear.
Therefore, the RTS-KF needs to be extended to cope with nonlinear systems. The Unscented
Kalman Filter (UKF) is a nonlinear filter which can achieve a better level of accuracy than the
Extended Kalman Filter (EKF) , ] This section extends the RTS-KF to nonlinear systems by
proposing a RTS-UKF.

According to the technique in Lu et al. ], the RT'S-UKF can be derived as follows:

Step!l Sigma points calculation and time update

Xok—1 = Tr_1jk—1 (30a)
Xik—1=Tp_1)k—1 — (\/(L +70)Pe-1jk-1)is i1=1,2,..., L (30b)

Xt = dkoaper + (/L4700 Pocmr)is i=L+1,L+2,..,2L (30¢)

wd™ =70/(L + ) (31a)

wp” =90/ (L+0) + (L= af + Bo) (31b)

w™ = wl? =1/{2(L+)}, i=1,2,..,2L (31c)

with X ,_1 the sigma points of the states (dimension L) at step k — 1. wgm) and wgc) are

the weights associated with the ith point with respect to Zy_qx—1 and Py_1jx_1, respectively.
70 = a3(L + k) — L is a scaling factor, ap determines the spread of the sigma points around
Zp_1jk—1, K 18 a secondary scaling factor, Sy is used to incorporate the prior knowledge of the

distribution of z. In this paper, x =0, ap = 0.8 and By = 2.

10



After the creation of the sigma points through the nonlinear transformation, the predicted

mean and covariance are computed as follows

k
Xi k-1 = Xig—1 + F( X k—1,u(t), t)dt (32)
k-1
2L
Tgp—1 = ngm)?’fz‘,k,kq (33)
=0
2L
Pyj—1 = Z wEC) [Xikpk1 — Trpp—1) [ X k-1 — Erpp1]” +Q (34)
i=0
Xiee—1 = [Xo2rkp—1 Xogp—1 — WQ  Xowk—1 +vvVQli (35)
Vikp—1 = M X 1) (36)
2L°
Y = Zw:(m)yikwq (37)
=0
2L°
Ppyk = Zw:(c) [Xikib—1 = Erpp—1][Vigip—1 — 9u]" (38)
=0
2L
Pyi=> W Y pr = Il Vw1 — 0T + R (39)
=0

where L® = 2L, v = \/L+ , w:(m) and w:(c) are calculated similar to Eq. (3I) with the

replacement of L by L%, Qg is approximated by G(ﬁck‘k_l)QGT (Tgjp—1)At where At =ty —tg_

Step2 Estimation of the faults

Y = (Yr — Ur) (40)
Ny = (KPP HE P (41)
fr = Niw (42)
Pl =(FlP, P! (43)

where 7y is the innovation, fj is the estimation of f; and P,'cf is its error covariance matrix.

Ny, is the gain matrix which can achieve an unbiased estimation of f.

Step3 Measurement update

Ky = PoyiP,}, (44)
Tk = Trppo1 + Kn(yk — 0k — Fifr) (45)
Puk = Pup1 — Ki(Pyyx — P/ FOKT (46)

11



This measurement update is different from that of the normal UKF B, Q] which is given below

for comparison and quick reference:

Ky = Puy kP, (47)
Trpk = Tp—1 + Ke(yr — J) (48)
Py = Pyjp—1 — KiPyy 1 K (49)

It can be seen that the measurement update of the normal UKF, as given by Eqs. (d1)-{9),
does not take the fault estimation and error covariance into account. Also note that the normal
UKF does not estimate the faults, which means that it does not contain Eqs. (Z0)-3).

The ADS fault estimation using the RTS-UKF is shown in the following.

ADS fault estimation using the RTS-UKF

The performance of the RTS-UKF will be demonstrated under different initial conditions. The
simulation data is taken from the simulation model of a Cessna Citation II aircraft. During 10 s
<t < 17 s. there is a 3-2-1-1 command on the aileron. The fault scenario is given in Table [l The

true initial state xg is as follows:
xo = [90, 0.056, 0, 0, 0.0037, O]T (50)

First, the true initial condition (B0) is used as the initial guess 2 in the filter. Py = 1073 . Is. The

standard deviations of the measurement noises are:

Ow, = Ow, = Oy, = 0.001 In/s2

Ow

, = Ow, = 0w, = 0.000018 rad/s

oy, =0.1m/s, o, = 0,, =0.0018 rad

s = Ovg = Oy, = 0.0018 rad

Therefore,  and R can be inferred from Eqgs. [@) and (I0). The results are shown in Fig. [l
The estimation errors of V, o and S, as shown in Fig. are close to zero-mean. The
estimation errors of ¢, 6 and ¢ using the RTS-UKF are given in Fig. It can be seen that the

estimation errors are zero-mean except during the period when there is a maneuver (10 s < ¢t < 17

12
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Fig. 1: Result of state and ADS fault estimation using the RTS-UKF approach and initial

condition(B0) in the presence of multiple faults

s). However, during this period the estimation errors are small, e.g., the maximum estimation error
of ¢ is less than 2x1073 rad.

The estimation of fy, f, and fg is given in Fig. As can be seen, all the faults are estimated
in an unbiased sense. The estimation errors can be found in Fig.

Next, the performance with two different initial conditions for Z( is tested. The two initial

conditions are as follows:
& = [90, 0, 0, 0, 0, 0]7, (51)
o =1[1, 0, 0, 0, 0, 0]T. (52)
The initial condition (B2) significantly deviates from the true initial condition (B0) whereas

13



condition (BI) slightly deviates from condition ([B0). Py is the same with the previous simulation
and is 1073 - I.

The state estimation errors of the RTS-UKF using the initial condition Eq. (5I) are shown in
Fig. and As can be seen from Fig. the estimation errors of V', a and (3 are larger
than those shown in Fig. The estimation errors of ¢, 6 and 1, shown in Fig. are the
same as those shown in Fig. [1(b)|

The state estimation errors of the RT'S-UKF using the initial condition Eq. (62]) are shown in

Fig. and The estimation errors of V, a and /3, shown in Fig. are significantly worse

than those shown in Fig. and Fig. However, the estimation errors of ¢, # and v, shown
in Fig. are still zero-mean.

The estimates of fy, fo and fg using the initial condition Eqgs. (5I)) and (52) are demonstrated

in Fig. and respectively. As can be seen from Fig. when the initial z¢ deviates from

the true state, the estimates of the faults also deviate from their true magnitudes especially that of
fa- When the initial condition deviates significantly from the true initial condition, the performance
becomes significantly worse, as can be seen in Fig.

Based on the above simulation results, it is seen that the RTS-UKF is sensitive to the initial

condition errors. This sensitivity problem will be analyzed theoretically in the following section.

B. Problem analysis of the robust three-step filter
In the previous sections, it was shown that the performance of the RT'S-UKF is influenced by the
given initial condition. This section analyzes the problem of the sensitivity to the initial condition.

Rewrite Eq. (@A) into
Trik = Trip—1 + Lk (53)
where Ly, is defined as
Ly, := Ki(I — Fy;Nyg) (54)

The covariance matrix Py, r, fault distribution matrix Fj, the innovation 7, and 2 can be

14
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Fig. 2: Result of state and fault estimation using the RT'S-UKF approach and two different initial

conditions in the presence of multiple faults
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partitioned as follows:

P Pro 1,
sz,k = P Fk - 5
Py Py 0
Tp Tp
Tk = y L= (55)
Tm—p TL—p

Since P,k is invertible, its inverse can be partitioned as follows:

. Ri1 Ris
Pyy,k: 5 5 (56)
Ry1 Rao

where Rll S Rpo, R12 S Rpx(mfp), R21 S R(mip)Xp and RQQ S R(mfp)x(mip). Therefore, Eq. (]E)

can be computed by

. Riy Ris
Ni = [Ryy 0]
0 O
= [Ip Rlllng] (57)
Substituting Eq. (57) into Eq. (54), it follows
|0 —Bi' R

Ly = Py P, (58)

0 Iy
b (59)

0 Lo

where L15 and Los are defined as
L1z := Pyo(Rgo — Rméﬁléu)
Loy := Pyg(Rgo — Rméﬁléu)

Therefore, the measurement update of the robust three-step filter, denoted in Eq. (53], can be

further written as follows:

R R LlQFmep
Tk|k = Tklk—1 T (60)

L22’7m—p
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It can be seen that +, is not used in the measurement update. Since -, is not used, the estimation of
xp is not updated by measurements of x,. Therefore, the estimation of z,(V, a and (), is sensitive
to the initial condition. If the initial z( significantly deviates from the true value, it will not be
corrected to the true value. However, the estimation of ¢, 8 and v is not influenced since they
are updated by the measurement. This is consistent with the result shown in Figs. and
where the estimation of ¢, 6 and % is still good even when that of V', @ and B is not.

In case that p = m and rank Fj = m, it can be found that

N =F ! (61)

Lp,=0 (62)
Consequently, the measurement update of the three-step Kalman filter is
Tpik = Tk—1 (63)

This means that all the states are not updated by their measurements. In this situation, all the
state estimation will be sensitive to the initial condition.

Through the analysis in this section and the performance demonstration of the RTS-UKF in
Section [[ILAl the need for a modification of the RTS-UKF is emphasized. In real life, the exact
initial condition is difficult to obtain due to uncertainties in the system (which can also be found in
Section [V]). The RTS-UKF will interpret the initialization error as a fault, which results into wrong

fault estimation. Therefore, the RTS-UKF can not be applied to the FDD of the ADSs.

C. Novel Adaptive Three-Step Unscented Kalman Filter for ADS FDD

Having found the cause for performance degradation of the RTS-UKF, this section proposes a
novel ATS-UKF to solve the ADS FDD. The sensitivity to the initial condition of the RTS-UKF
can be solved by performing the measurement update of normal UKF.

It should be noted that the RTS-UKF only considers the estimation of the faults. It does not
detect and isolate the faults. The proposed ATS-UKF deals with not only the estimation of the

faults, but also the detection and isolation.
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In the following, the initial measurement update and FDI scheme are introduced. Then the

complete FDD system is introduced.

1. Initial measurement update

The solution to reduce the sensitivity of the RTS-UKF to the initial condition is proposed in
this subsection, which is to use the measurement update of normal UKF (Eqs. ([@1)-(@9)) when the
state estimation is influenced by the initialization error. However, when the correction is sufficient,
i.e., when the measurement update of the UKF is sufficient, needs to be determined. This paper
proposes a criteria which can determine whether the measurement update of the UKF is sufficient.
The details are given as follows:

Let Ciix, © = 1,2,3 denote the ith diagonal elements of the innovation covariance matrix Cj,
associated with the measurements which are not used in the update of the RTS-UKF at time step
k. (i.e., the measurement of V', a and J respectively in this paper).

Define the change of the innovation variance ACj; 1, as
ACiyik = Ciik — Cij—1, 1=1,2,3. (64)

When the following inequality holds, the measurement update can be regarded as sufficient.

The inequality is

where 7;, i = 1,2, 3 are pre-defined constants which can be tuned to stop the measurement update.
The principle is that if there are initialization errors, Cj; ; is not constant. When the filter achieves
steady-state, Cj; 1 is approximately constant. Therefore, ACj;  should be small. If AC}; i, is smaller
than 7;, then it indicates that the filter has reached steady-state and the measurement update of
the UKF is sufficient. If n; is chosen to be small, then the number of initial measurement update
will be bigger while the influence of the initial condition error will be less. Cy can be estimated
using the following , |:

k
N 1 T
Co=g 2 W (66)
j=k—N+1

where «; denotes the innovation at time step j.
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2. Fault Detection and Isolation

The fault detection is performed by monitoring the innovation variance of the filter. In the
presence of ith fault, Cj; » increases. The fault detection and isolation logic at time step k is:

if Cyi . > T, Fa, = 1. otherwise Fq, =0,1 = 1,2,3.

where Fy = [Fa, Fa, Fa,]" are the alarm indicators. T; are the thresholds which are designed
to detect the faults in the V', a and /3 sensors respectively. These thresholds are designed based on
the fault-free case. It can be seen that the fault detection and isolation are simultaneously realized.

The weighted fault estimation can be calculated as follows:

fix=Fafir, i=1,2,3. (67)

3. Adaptive Three-Step Unscented Kalman Filter
When the initial measurement update is sufficient, there are two options to achieve FDD which

are as follows:

1. After the initial measurement update, the FDI scheme is used to detect and isolate the faults.

The RTS-UKEF is used to estimate the faults.

2. After the initial measurement update, the FDI scheme is used to detect and isolate the faults.
If there are no faults detected, the UKF is used and the fault estimation is considered to be
zero. If there are faults detected, then the RTS-UKF is used for the fault estimation and

measurement update.

The ATS-UKF proposed in this paper, is based on the latter one since it can reduce the compu-
tational load. The measurement update of the ATS-UKF switches adaptively between that of the
normal UKF and that of the RTS-UKF through the FDI scheme. The specific three steps of the

ATS-UKF are given as follows:

1. Time update

This is the same as in the UKF, which also includes the sigma point calculation. The steps

are described by Eqs. (30)- (39).
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2. Fault estimation
Before estimating the faults, the FDI, which has been introduced above, is performed. If
F4 =0, then fk = 0. If F4 # 0, then the faults are estimated using the RTS-UKF, which is

described by Eqs. @0 @3). This step is the FDD.

3. Measurement update
As mentioned, during the initial measurement update, the measurement update of the normal
UKEF is applied. When the initial measurement update is done, the measurement update of

the ATS-UKF is as follows:

(a) If F4 = 0, use the the measurement update of the normal UKF.

In this situation, there are no faults detected in the system. To reduce the computational
load, the measurement update of the UKF is used. This means that the faults are
considered to be zero, so that the faults estimation and measurement update of the

RTS-UKF are not needed. The steps are described by Eqs. ([@1)-(@9).

(b) If F4 # 0, use the measurement update of the RT'S-UKF.

In this situation, faults are detected. Therefore, the measurement update of the
RTS-UKEF is needed to obtain an unbiased state estimation and fault estimation, which

can not be achieved using the normal UKF. The steps are described by Eqs. (@4)- (@6]).

D. ADS FDD using the ATS-UKF

In this section, the FDD as well as the state estimation performance of the proposed ATS-UKF
is demonstrated using two different fault scenarios. The initial condition is the same as in Eq. (52]).
The threshold to stop the initial measurement update is n = [5 x 1073, 2 x 1075, 2 x 107°]7 and

the threshold to detect the fault is T = [0.2, 1 x 1074, 5 x 107°]T.

1. Multiple FDD
In this scenario, consecutive ADS faults are generated, which are shown in Table[Il The results

using the ATS-UKF are shown in Fig. Bl
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Fig. 3: Result of state estimation and ADS FDD using the proposed ATS-UKF approach in the

presence of multiple faults

It is found that using the above thresholds, the initial measurement update is only performed for
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two time steps. The estimation of V', @ and S is shown in Fig. Despite the fact that the initial
xo significantly deviates from the true state, the estimation is still satisfactory. This means that
the sensitivity to the initial condition of the RTS-UKF is tackled by the ATS-UKF. The estimation
of ¢, 6 and v, as shown in Fig. is also satisfactory. This demonstrates the state estimation
performance of the ATS-UKF.

The fault detection and isolation is achieved by checking Fa, , Fa, and Fa,, which is shown
in Fig. From the figure, it can be seen that fy is detected instantaneously. The detection of
fa takes longer than that of fy,. This is because f, is a drift fault which is a slow time-varying
fault. fs is also detected instantaneously. However, F4, switches from 1 to 0 nine times. This is as
expected since the oscillatory fault crosses zero nine times. When the magnitude of the fault is zero,
it can be regarded as no fault. From the figure, it is obvious that fault isolation is also achieved.
For instance, when Fa,, =1, both Fa_, and Fla, are equal to zero, which means only fy occurs.

The estimation of fy, f, and fg is shown in Fig. As can be seen, all the faults are estimated
in an unbiased sense. The weighted fault estimation, calculated using Eq. (67]), is shown in Fig.
The error of the estimation of fi, f, and fg is shown in Fig. It is seen that all the estimation
errors are zero-mean. This demonstrates the fault estimation performance of the ATS-UKF. It is
also noticed that when there are no faults or the faults are not detected, the estimates of the fault
are zero and so are the estimation errors. This is due to the fact that when there are no faults
detected, the measurement update of the UKF is used and the faults are considered to be zero.

The fault detection of the oscillatory faults, shown in Fig. shows a chattering behavior.
To detect the presence of oscillatory failures, the detection logic of oscillatory faults in Goupil M]
is used. The basic idea is to count the crossings of the fault estimate (shown in Fig. through
a positive and negative threshold within a sliding time window. In this paper, the oscillatory faults
are detected if one full oscillation is detected. The result of detecting the oscillatory fault is shown in
Fig. In the figure, OFC denotes oscillatory failure case (OFC). As can be seen, an oscillatory
fault is only detected in the § sensor. If we take the bigger value of F4; and OFC; (i is associated
with the sensor of V', o and f), the fault detection including the detection of the oscillatory fault

can be obtained, which is demonstrated in Fig. In the figure, the red dashed line indicates
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Fig. 4: Result of fault detection and isolation using the proposed ATS-UKF approach in the

presence of multiple faults

that the detected fault is an oscillatory fault.

2. Simultaneous FDD

In this scenario, simultaneous faults are generated which are shown in Table 2l The ATS-UKF
is used to detect, isolate and estimate these faults. The results are given in Fig.

The estimation of V, «, 8 and ¢, 8 and ¢ using the ATS-UKF is shown in Fig. and
Fig. respectively. As can be seen, even in the presence of simultaneous faults, the state
estimation performance of the ATS-UKF is still satisfactory.

The fault detection and isolation performance is shown in Fig. As can be seen, there are
no false alarms, which demonstrates its good performance. For the detection of f, and fz during
10 s< t < 20 s, and fy during 30 s< t < 40 s, there are detection delays since there are drift faults.
The red dashed lines in the figure indicate that the detected faults are oscillatory faults.

Fig. and show the estimation and weighted estimation of fy, f, and fg, respectively.
It can be seen that the fault estimation performance is satisfactory. All faults are estimated in an
unbiased sense including the oscillatory faults. The estimation error of fy, f, and fs is shown in

Fig. It can be seen that the error is zero-mean, which confirms the good estimation performance
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of the ATS-UKF.
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IV. Performance validation using real flight data

In the previous section, the FDD performance of the ATS-UKF is tested using simulated aircraft
data. In this section, the FDD performance of the ATS-UKF is validated using real flight test data
of the Cessna Citation II aircraft. Air data information such as a and § are measured for post flight
analysis. The real flight data contains uncertainties such as biases and spikes. Additionally, in real
flight, external disturbances, such as changing wind, can also influence the air data measurements.
Therefore, the real flight data poses challenges to the ADS FDD problem and provides a realistic
validation of the performance of FDD approaches such as the ATS-UKF.

The primary objective of the flight test is aerodynamic model identification where a number of
maneuvers were performed by the aircraft in order to obtain sufficient excitation. Since there were
no faults during the flight, sensor faults are injected into the real flight data to validate the FDD
performance of the ATS-UKF. Besides the fault scenarios presented in Tables[Iland [ a fault-free
case is also studied.

The real flight data used in this paper is the same as that in Lu et. al [26]. In Lu et. al,
the estimated wind turns out to be time varying. This can test the ADS FDD performance of the
ATS-UKF under the condition of winds.

The update rates of the on-board sensors are given in Table [3

Table 3: Update frequencies of different measurements

Measurements Unit Update frequency

1% [m/s ] 100 Hz
Un, Un, Wy [ m/s ] 1 Hz
@, B [ rad | 100 Hz
o, 0 [ rad | 100 Hz
P [ rad | 10 Hz

A. Real-life measurement model
For simulated aircraft data, the measurement model is given in Egs. (I9) - 24). If f = 0,

the measurements are only corrupted by white Gaussian noises, as can be seen from the equations.
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However, this is never the case in real life. In this flight test, the air data information, such as «
and 3, is measured by multiple vanes on a boom (shown in Fig. [6) which is mounted on the nose
of the aircraft. The angle of attack and angle of sideslip measured by the vanes are denoted by
Oy and By, respectively. The measurements ., and .., is different from Egs. (IZQIE,nd D),

|:

respectively. The measurement model for the real-life measurements is given as follows

Vi =V 4oy (68)
Toq

am = Coo + (1 + Cyp)a + T va (69)

B =Cpo+ (14 C)f — 22 1 22 g (70)
1% 1%

Om = ¢+ Vg (71)

Om =0+ vp (72)

Ym = + vy (73)

where z,, £g and zg are the position of the vanes in the body frame, Cy0, Cgo, Cyp and Cs; are the
boom correction parameters. In this paper, zg is assumed to be zero. The parameter estimation
can be found in Lu et al. |. For the ADS FDD using real flight data, this measurement model
is used. However, it should be noted that in this real-life measurement model, boom bending is

considered to be negligible for the maneuvers flown.

Fig. 6: The vanes on the boom for measuring the angle of attack and angle of sideslip. Photo

credits by Daan Pool.
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B. ADS FDD using real flight data in the absence of faults

Using the real-life measurements, uncertainties and disturbances such as varying winds can also
have a negative influence on the FDD performance, which can result in false alarms. Under this
condition, the FDD approaches should not give false alarms. In this section, the ATS-UKEF is tested
in a fault-free case to verify whether it gives false alarms.

In order to show the effectiveness of the ATS-UKF, the RTS-UKF is also applied to estimate

the ADS faults. The initial condition xg given for the RTS-UKF is the first measurement which is:
[104.8733, 0.0796, 0.0073, —0.0019, 0.0733, 4.6692]" (74)

The initial condition xo given for the ATS-UKF is:
[1, 0, 0, 0, 0, 0]" (75)

In this manner, the initial condition given for the RTS-UKF is close to the true state whereas
that of the ATS-UKF significantly deviates from the true state. The threshold to stop the initial
measurement update is 7 = [5 x 1073, 2 x 107°, 2 x 107°]7" and the threshold to detect the fault
is T =1[0.2, 1 x 1074, 5 x 1075]7, which are the same as those used in the previous section.

The estimation of V, o and g using the RTS-UKF is given in Fig. The fault estimation
using the RTS-UKF is given in Fig. As can be seen, the estimated faults deviate from their
true magnitudes. This result shows that the RT'S-UKF is not able to be applied for real applications
unless modifications are made.

The results of the ATS-UKF are shown in Figs. — The estimation of V', a and 3, and ¢,
0 and v are shown in Fig. and respectively. The estimates of « and S using the ATS-UKF
are different from those using the RTS-UKF. The fault detection result, shown in Fig. indicates
that there are no faults. This demonstrates that the ATS-UKF does not give false alarms in the
presence of no faults even when the real flight data is used. The weighted estimates of fy, fa
and f3, shown in Fig. are zero-mean. This confirms the fault estimation performance of the

ATS-UKF.
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Fig. 7: State estimation and ADS FDD of the real-life measurement model of the aircraft using

the RTS-UKF and the ATS-UKF approach in the absence of faults
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C. ADS FDD using real flight data in the presence of multiple faults

In this subsection, the ADS FDD performance of the ATS-UKF will be verified using the real-
life measurement model in the presence of multiple faults (given in Table[d). The initial condition
for RTS-UKF is the same as in ([4) and that of the ATS-UKF is the same as in (73]).

The results using these two approaches are shown in Fig. 8l

The estimation of V, a and S using the RTS-UKF is shown in Fig. The fault estimation is
shown in Fig. Although the initial condition of the RTS-UKEF is chosen to be the measurements,
the estimation of the faults are still biased. This shows the drawback of the RTS-UKF when it is
used in practice because the initial condition error will be estimated as a bias fault.

The estimation of V, «, 8 and ¢, 6, ¢ using the ATS-UKF is presented in Fig. and
respectively. It can be seen that the estimates of «, 5 are again different from those of the RTS-UKF
shown in Fig.

The fault detection and isolation using the ATS-UKF is given in Fig. No false alarms are
generated and the isolation is also correct. It can be seen that the performance is as good as that in
Fig. where the simulation data is used. The oscillatory fault is also detected, which is shown
by the red dashed line.

The weighted estimation of fyv, f, and fg using the ATS-UKF is presented in Fig. Even
though the initial condition of the ATS-UKF deviates from the true state significantly, its perfor-
mance is not sensitive to the initial condition. Since the faults are estimated in an unbiased sense,

the estimates of «, 5 using the ATS-UKF are more reliable than those using the RTS-UKF.

D. ADS FDD using real flight data in the presence of simultaneous faults

In this subsection, simultaneous faults (given in Table 2] are injected into the real flight data
to validate the performance of the ATS-UKF. The result of the RTS-UKF is also presented, which
is given in Fig.[@ From this figure, it is seen the fault estimation of the RTS-UKF is again biased
although the initial zy is chosen to be the measurements. This highlights the limitation of the
RTS-UKF when used in reality.

The results using the ATS-UKF is shown in Fig. The state estimation is presented in
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Fig. 9: ADS FDD of the real-life measurement model of the aircraft using the RTS-UKF approach

in the presence of simultaneous faults

Fig.[10(a)land [10(b)| respectively.

The fault detection and isolation using the ATS-UKF is shown in Fig. No false alarms
are observed from the figure and the oscillatory faults are also detected. The performance is as good
as that in Fig. where the simulation data is used. This confirms the FDI performance of the
ATS-UKF.

Estimation and weighted estimation of fy, f, and fg using the ATS-UKF are shown in Fig.
and respectively. All fault estimates achieve an unbiased estimation. The fault estimation
errors are demonstrated in Fig. Although the errors are not zero-mean, they are small

compared to the states.

V. Conclusions
This paper deals with the Air Data Sensor (ADS) Fault Detection and Diagnosis (FDD) of
aircraft. First, the Robust Three-Step Kalman Filter (RTS-KF) is extended to the Robust Three-
Step Unscented Kalman Filter (RTS-UKF) to cope with nonlinear systems. Second, the RTS-UKF is
found to be sensitive to the initial condition. The problem is analyzed theoretically and subsequently,
a novel Adaptive Three-Step Unscented Kalman Filter (ATS-UKF) is proposed to detect, isolate

and estimate the ADS faults. The ATS-UKF contains three steps: time update, fault estimation
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Fig. 10: State estimation and ADS FDD of the real-life measurement model of the aircraft using

the ATS-UKEF in the presence of simultaneous faults

and measurement update. The ATS-UKF is validated using simulated aircraft data, which shows
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good FDD performance.

The performance of the ATS-UKF is further validated using real flight data of the Cessna
Citation II aircraft to test its performance under real-life uncertainties. It was found that although
the measurement data contains biases which can not be removed completely and the initial condition
is far from the true state, the ATS-UKEF is still able to maintain its satisfactory FDD performance.
This demonstrates that it can be applied in practice.

This ATS-UKF, which deals with ADS FDD, can be incorporated into Fault Tolerant Control
(FTC) systems to further enhance the safety of the aircraft. It can detect faults without giving false
alarms. In addition, it can provide both unbiased state estimation and fault estimation, which are
important for the recovery from sensor faults.

In the future, the ATS-UKF should be integrated into a FTC system. Finally, it is highly
recommended that a real-world flight experiment is designed and executed to detect and estimate

ADS faults in aircraft during flight.
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