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Adaptive Three-Step Kalman Filter for Air Data

Sensor Fault Dete
tion and Diagnosis
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Air Data Sensor (ADS) Fault Dete
tion and Diagnosis (FDD) is important for the

safety of air
raft. In this paper, �rst an extension of the Robust Three-Step Kalman

Filter (RTS-KF) to nonlinear systems is made by proposing a Robust Three-Step

Uns
ented Kalman Filter (RTS-UKF). The RTS-UKF is found to be sensitive to the

initial 
ondition error when dealing with ADS fault estimation. A theoreti
al analysis of

this sensitivity is presented and a novel Adaptive Three-Step Uns
ented Kalman Filter

(ATS-UKF) is proposed whi
h is able to 
ope with not only the estimation of the ADS

faults but also the dete
tion and isolation of faults. The ATS-UKF 
ontains three steps:

time update, fault estimation and measurement update. This approa
h 
an redu
e the

sensitivity to the initial 
ondition error. Finally, the ADS FDD performan
e of the

ATS-UKF is validated using simulated air
raft data. Additionally, its performan
e

is further validated using real �ight test data to demonstrate its performan
e under

realisti
 un
ertainties and disturban
es. The results using both the simulated data and

real �ight test data demonstrate the satisfa
tory FDD performan
e of the ATS-UKF

and verify that it 
an be applied in pra
ti
e to enhan
e the safety of air
raft.
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Nomen
lature

Ax, Ay, Az = linear a

elerations along the body axis, m/s2

Axm, Aym, Azm = measurements of linear a

elerations along the body axis, m/s2

T = thresholds for dete
ting faults

V = true airspeed, m/s

Vm, αm, βm = air data sensor measurements

f = output faults

f̂ = estimation of output faults

fV , fα, fβ = faults in the air data sensors

p, q, r = roll, pit
h and yaw rate along the body axis, rad/s

pm, qm, rm = measurements of roll, pit
h and yaw rate along the body axis, rad/s

α, β = angle of atta
k, sideslip angle, rad

αvm, βvm = angle of atta
k, sideslip angle measurements from the vane, rad

γ = innovation of the �lter

φ, θ, ψ = roll, pit
h and yaw angles along the body axis, rad

φm, θm, ψm = measurements of roll, pit
h and yaw angles along the body axis, rad

L, l, m, p = dimensions of the state, input, output and output faults, respe
tively

x̂, P = state estimate and its error 
ovarian
e matrix of the �lter

I. Introdu
tion

P

resently, Fault Dete
tion and Isolation (FDI) has an important role in a
hieving fault-

toleran
e of air
raft [1℄. During the past few de
ades, many approa
hes have been proposed

for sensor or a
tuator FDI [2�4℄. In aerospa
e engineering, the FDI of sensors and a
tuators for

�xed-wing air
raft is widely studied, as 
an be found in Patton [1℄, Marzat et. al [5℄, and Hajiyev

and Caliskan [6℄. Investigation of the FDI for Unmanned Aerial Vehi
les 
an also be found [5, 7℄.

For re
ent advan
es, the reader is referred to Goupil [8℄ and Zolghadri [9, 10℄. The Air Data Sen-

sors (ADSs) measure the dynami
 pressure, airspeed, angle of atta
k and angle of sideslip of the

air
raft, providing essential information on the air
raft states to the pilot [11℄. The ADSs are usually
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installed outside the air
raft fuselage and 
an su�er from i
ing or water a

umulation, whi
h may

result in faults su
h as blo
kage faults [12℄. These faults may negatively in�uen
e the information

provided to the pilot, whi
h 
an lead to 
atastrophi
 a

idents. In the re
ent past, there have been


ommer
ial air
raft a

idents 
aused by ADS faults. Due to faults in the ADSs, the �ight 
rew

of Austral Lineas Aeroeas Flight 2553 improperly referen
ed the airspeed indi
ator and indu
ed a

stru
ture failure by ex
eeding safe airspeed limits [13℄. More re
ently, the �nal report of the Air

Fran
e Flight 447 a

ident stated that erroneous airspeed measurements from the pitot probes were

a 
ontributing fa
tor [14℄. Sin
e 2003, 
ommer
ial air
raft have had more than 35 re
orded in
i-

dents of multiple ADS faults [13℄. There have also been a

idents of military air
raft 
aused by ADS

faults. The 
rash of a B-2 bomber is due to a large bias to the ADSs whi
h is 
aused by moisture

in the port transdu
er units [14℄. These fa
ts indi
ates the importan
e of the fault dete
tion of the

ADSs.

The fault dete
tion of ADSs has been investigated in a number of studies [12, 15℄. Some

resear
hers propose to use alternative air data sensing systems su
h as a �ush air-data sensing

system [15, 16℄. Nebula et. al propose a virtual air data system against ADS failures [17, 18℄. Looye

and Joos [19℄ propose to use the data from a navigation system to determine the air data information.

On the other hand, the faults of the ADSs 
an be dete
ted. Hou
k and Atlas [11℄ are one of the

�rst to analyze ADS faults. The limitation of their approa
h is that independent stati
 pressure

measurements are not always available in Unmanned Aerial Vehi
le (UAV) appli
ations [13℄. Cervia

et al. [20℄ and Eubank et al. [13℄ dete
t the faults using a multiple-redundan
y air data system. The

air data system studied by Cervia et al. is based on pseudo-quadruplex redundan
y whi
h employs

four self-aligning air data probes. Freeman et al. [12℄ investigate analyti
al redundan
y instead of

hardware redundan
y for the ADS fault dete
tion. They use a longitudinal dynami
s model of the

air
raft and two linear H∞ �lters are designed to dete
t the faults and provide robustness to model

errors.

Alternatively, the kinemati
 model 
an be used to dete
t the faults in the ADSs, thereby redu
ing

the in�uen
e of model un
ertainties 
aused by the 
al
ulation of the aerodynami
 for
es and moments

[21, 22℄. Van Eykeren and Chu [23℄ use an adaptive Extended Kalman Filter to dete
t the faults
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in the ADSs. However, the estimation of the faults is not addressed in their work. In Lu et al.

[24℄, a Sele
tive-Reinitialization Multiple-Model Adaptive Estimation approa
h is proposed for the

ADS Fault Dete
tion and Diagnosis (FDD). The approa
h improved the FDD performan
e of the

Multiple-Model-based approa
hes. However, the 
omputational load of the approa
h is intensive

when dealing with simultaneous faults.

In this paper, a newly-developed Robust Three-Step Kalman Filter (RTS-KF) [25℄ is 
ombined

with the kinemati
 model to estimate the ADS faults. First, the RTS-KF is extended to 
ope with

nonlinear systems by proposing a novel Robust Three-Step Uns
ented Kalman Filter (RTS-UKF).

The RTS-UKF is able to redu
e linearization error. However, it is found that the RTS-UKF is

sensitive to the initial 
ondition errors. Se
ond, the sensitivity of this three-step Kalman Filter to

the initial 
ondition error is analyzed theoreti
ally. It is proved that the RTS-UKF does not use

some of the measurements to update the state estimation whi
h 
auses the sensitivity to the initial


ondition error.

Finally, a novel Adaptive Three-Step Uns
ented Kalman Filter (ATS-UKF) is proposed whi
h

does not only estimate the ADS faults, but also dete
t and isolate the faults. The ATS-UKF


ontains three steps: time update, fault estimation and measurement update. The fault dete
tion

is performed before the fault estimation. This approa
h also redu
es its sensitivity to the initial


ondition. The fault dete
tion is performed by 
he
king the innovation varian
es. In the presen
e of

faults, the innovation varian
e in
reases. If the innovation varian
e ex
eeds a pre-de�ned threshold,

then the fault alarm is triggered. The FDD performan
e of the ATS-UKF is tested using simulated

air
raft data with the obje
tive of dete
ting, isolating and estimating ADS faults. Two di�erent

fault s
enarios (multiple faults and simultaneous faults) are implemented to test the performan
e

and the results demonstrate the satisfa
tory performan
e of the ATS-UKF. The fault types 
ontain

not only bias and drift fault, but also os
illatory faults.

Furthermore, the FDD performan
e of the ATS-UKF is validated using real �ight test data of

a Cessna Citation II air
raft. The sensor measurements from the real �ight test 
ontain biases and

un
ertainties and are suitable for testing the performan
e of the ATS-UKF. Di�erent fault s
enarios

are generated and the faults are inje
ted into the real �ight data. The ADS FDD results of the
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ATS-UKF demonstrate its performan
e and veri�ed that it 
an be applied in pra
ti
e to enhan
e

the safety of the air
raft.

The stru
ture of the paper is as follows: In Se
tion II, the ADS FDD problem is formulated.

The kinemati
 model in
luding ADS faults is introdu
ed. Se
tion III extends the RTS-KF to 
ope

with nonlinear systems by proposing the RTS-UKF. The RTS-UKF is applied to estimate the ADS

faults, whi
h turns out to be sensitive to the initial 
ondition. The sensitivity problem is analyzed

theoreti
ally and a novel ATS-UKF is proposed to deal with not only the estimation of the ADS

faults, but also the dete
tion and isolation of the faults. The performan
e is tested using a simulated

air
raft model. In Se
tion IV, the performan
e of the ATS-UKF is further validated using the real

�ight data of the Cessna Citation II air
raft. The performan
e is shown and some remarks are

given. Finally, the 
on
lusions are made in Se
tion V.

II. Air Data Sensor FDD using the kinemati
 model

The obje
tive of this paper is the FDD of the air
raft ADSs. However, model-based approa
hes

are sensitive to model un
ertainties. In order to make the proposed approa
h more robust, the

kinemati
 model of air
raft, whi
h does not involve the 
omputation of aerodynami
 for
es and

moments, is used instead of the aerodynami
 model.

A. Air
raft kinemati
 model with ADS faults

The kinemati
 model of the air
raft in
luding ADS faults is des
ribed as

ẋ(t) = f̄(x(t), um(t), t) +G(x(t))w(t) (1)

y(t) = h(x(t), um(t), t) + v(t) + F (t)f(t) t = ti, i = 1, 2, ... (2)

where x ∈ R
L
represents the system states, um ∈ R

l
the measured input, y ∈ R

m
the measurement.

The fun
tions f̄ and h are nonlinear fun
tions. G and F are the noise distribution matrix and

output fault distribution matrix. The fun
tion f ∈ R
p
represents output faults.
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The system equation variables are de�ned as follows:

x = [V α β φ θ ψ]T (3)

um = [Axm Aym Azm pm qm rm ]T = [Ax Ay Az p q r ]T + w (4)

y = [Vm αm βm φm θm ψm]T (5)

w = [wx wy wz wp wq wr ]T (6)

v = [vV vα vβ vφ vθ vψ]
T

(7)

f = [fV fα fβ]
T

(8)

where the input um is the Inertial Measurement Unit (IMU) measurement whi
h measures the linear

a

elerations (Ax, Ay and Az) and angular rates (roll rate p, pit
h rate q, and yaw rate r) of the

air
raft. y is the output measurement whi
h measures the air data information (true airspeed V ,

angle of atta
k α, and angle of sideslip β) and Euler angles (roll angle φ, pit
h angle θ, and yaw

angle ψ). [fV fα fβ ]
T
are the faults of the ADSs, i.e. fV , fα and fβ are the faults in the velo
ity

sensor, angle of atta
k sensor, and angle of sideslip sensor, respe
tively. It is assumed that there

are no faults in the Attitude and Heading Referen
e System whi
h measures the Euler angles and

the in�uen
e of 
hanging wind su
h as turbulen
e is limited. Therefore, the input noise ve
tor w(t)


an be assumed to be a 
ontinuous time white noise pro
ess while the output noise ve
tor v(t) 
an

be assumed to be a dis
rete time noise sequen
e.

E[w(t)] = 0

E[w(t)wT (tτ )] = Qδ(t− τ) , Q = diag(σ2
wx
, σ2

wy
, σ2

wz
, σ2

wp
, σ2

wq
, σ2

wr
), (9)

E[v(t)] = 0

E[v(ti)v
T (tj)] = Rδ(ti − tj) , R = diag(σ2

vV
, σ2

vα
, σ2

vβ
, σ2

vφ
, σ2

vθ
, σ2

vψ
), (10)

E[w(t)vT (ti)] = 0 , t = ti , i = 1, 2, ... (11)
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The kinemati
 model is given as follows [23, 24℄:

V̇ = (Axm − wAx − g sin θ
)

cosα cosβ + (Aym − wAy + g sinφ cos θ) sinβ

+ (Azm − wAz + g cosφ cos θ) sinα cosβ (12)

α̇ =
1

V cosβ

[

− (Axm − wAx) sinα+ (Azm − wAz) cosα+ g cosφ cos θ cosα

+ g sin θ sinα
]

+ qm − wq − [(pm − wp) cosα+ (rm − wr) sinα] tanβ (13)

β̇ =
1

V

[

− (Axm − wAx − g sin θ) cosα sinβ + (Aym − wAy + g sinφ cos θ) cosβ

− (Azm − wAz + g cosφ cos θ) sinα sinβ
]

+ (pm − wp) sinα− (rm − wr) cosα (14)

φ̇ = (pm − wp) + (qm − wq) sinφ tan θ + (rm − wr) cosφ tan θ (15)

θ̇ = (qm − wq) cosφ− (rm − wr) sinφ (16)

ψ̇ = (qm − wq)
sin φ

cos θ
+ (rm − wr)

cosφ

cos θ
(17)

and G(x(t)) is de�ned as:

G(x(t)) =









































− cosα cosβ − sinα cosβ − sinα cosβ 0 0 0

sinα/(V cosβ) 0 − cosα/(V cosβ) cosα tanβ −1 sinα tanβ

cosα sinβ/V − cosβ/V sinα sinβ/V − sinα 0 cosα

0 0 0 −1 − sinφ tan θ − cosφ tan θ

0 0 0 0 − cosφ sinφ

0 0 0 0 − sinφ/ cos θ − cosφ/ cos θ









































(18)

Therefore, the measurement model in
luding the ADS faults is

Vm = V + fV + vV (19)

αm = α+ fα + vα (20)

βm = β + fβ + vβ (21)

φm = φ+ vφ (22)

θm = θ + vθ (23)

ψm = ψ + vψ (24)
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Table 1: Fault s
enario of multiple faults

Time interval Sensor Fault type Fault magnitude Fault unit

10 s < t < 20 s V bias 2 [m/s℄

30 s < t < 40 s α drift 0.01t [rad/s℄

50 s < t < 60 s β os
illatory −2π sin(πt)/180 [rad℄

The measurement model 
an be rewritten into

y(t) = x(t) + F (t)f(t) + v(t), t = ti, i = 1, 2, ... (25)

where

F = [I3 03×3]
T

(26)

The obje
tive of the ADS FDD problem is to dete
t, isolate and estimate f = [fV fα fβ]
T
. This

paper assumes that there are no faults in the IMU sensors. If there are faults in the IMU sensors,

they 
an be dete
ted and estimated by other methods using another set of kinemati
 model [26℄.

B. Fault s
enarios for the ADS FDD

In this paper, two di�erent fault s
enarios are used to test the performan
e of the approa
hes.

The fault s
enario for multiple ADS faults is given in Table 1 while that for simultaneous ADS

faults is given in Table 2. The fault type, magnitude and unit are given in the table. The units of

the drift faults are given by the units of the drift rates. It 
an be seen that the fault types not only


ontains bias faults but also drift faults and os
illatory faults.

C. State observability and fault re
onstru
tibility

This se
tion 
he
k the observability of the system des
ribed by Eqs. (1) and (2). The observ-

ability analysis of the system 
an be performed by 
he
king the rank of the following observability

8



Table 2: Fault s
enario of simultaneous faults

Time interval Sensor Fault type Fault magnitude Fault unit

10 s < t < 20 s

V os
illatory 2 sin(πt) [m/s℄

α drift 0.01t [rad/s℄

β drift −0.01t [rad/s℄

30 s < t < 40 s

V drift −0.2t [m/s

2
℄

α bias −2π/180 [rad℄

β os
illatory −2π sin(πt)/180 [rad℄

matrix:

O =

























δxh

δx(Lf̄h)

.

.

.

δx(L
L−1
f̄

h)

























(27)

where the Lie derivative is de�ned as follows:

Lf̄h = δxh · f̄

.

.

. (28)

LL−1
f̄

h = δx(L
L−2
f̄

h) · f̄

It 
an be readily 
he
ked that O is of full rank. Therefore, the system state is observable. In

order to re
onstru
t the faults, additional 
onditions are required whi
h are given in (29).

III. Extension of the Robust Three-Step Kalman Filter

This se
tion extends the RTS-KF to estimate output faults. First, in Se
tion IIIA, the RTS-KF

is extended to nonlinear systems by proposing a RTS-UKF. This RTS-UKF is applied to the ADS

fault estimation problem and is found to be sensitive to the initial 
ondition errors. This sensitivity

problem is analyzed theoreti
ally in Se
tion III B. Then, in Se
tion III C, an ATS-UKF is proposed

whi
h 
an dete
t, isolate and estimate the faults. Finally, the ATS-UKF is applied to the ADS FDD

problem in Se
tion IIID to demonstrate its FDD performan
e.
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A. Robust Three-Step Uns
ented Kalman Filter

The RTS-KF [25℄ 
an be used for output FDD. Consider the air
raft kinemati
 model des
ribed

by Eqs. (1) and (2). For this system, sin
e the system state is observable, the existen
e 
ondition

of a RTS-KF is [25℄:

m ≥ p, rank Fk = p (29)

In this study, m = 6, p = 3 and rank Fk = 3. Therefore, a RTS-KF 
an be designed to estimate the

ADS faults.

However, the RTS-KF is designed for linear systems while the kinemati
 model is nonlinear.

Therefore, the RTS-KF needs to be extended to 
ope with nonlinear systems. The Uns
ented

Kalman Filter (UKF) is a nonlinear �lter whi
h 
an a
hieve a better level of a

ura
y than the

Extended Kalman Filter (EKF) [27, 28℄. This se
tion extends the RTS-KF to nonlinear systems by

proposing a RTS-UKF.

A

ording to the te
hnique in Lu et al. [22℄, the RTS-UKF 
an be derived as follows:

Step1 Sigma points 
al
ulation and time update

X0,k−1 = x̂k−1|k−1 (30a)

Xi,k−1 = x̂k−1|k−1 − (
√

(L+ γ0)Pk−1|k−1)i, i = 1, 2, ..., L (30b)

Xi,k−1 = x̂k−1|k−1 + (
√

(L+ γ0)Pk−1|k−1)i, i = L+ 1, L+ 2, ..., 2L (30
)

w
(m)
0 = γ0/(L+ γ0) (31a)

w
(c)
0 = γ0/(L+ γ0) + (1 − α2

0 + β0) (31b)

w
(m)
i = w

(c)
i = 1/{2(L+ γ0)}, i = 1, 2, ..., 2L (31
)

with Xi,k−1 the sigma points of the states (dimension L) at step k − 1. w
(m)
i and w

(c)
i are

the weights asso
iated with the ith point with respe
t to x̂k−1|k−1 and Pk−1|k−1, respe
tively.

γ0 = α2
0(L + κ)− L is a s
aling fa
tor, α0 determines the spread of the sigma points around

x̂k−1|k−1, κ is a se
ondary s
aling fa
tor, β0 is used to in
orporate the prior knowledge of the

distribution of x. In this paper, κ = 0, α0 = 0.8 and β0 = 2.
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After the 
reation of the sigma points through the nonlinear transformation, the predi
ted

mean and 
ovarian
e are 
omputed as follows

Xi,k|k−1 = Xi,k−1 +

∫ k

k−1

f̄(Xi,k−1, u(t), t)dt (32)

x̂k|k−1 =

2L
∑

i=0

w
(m)
i Xi,k,k−1 (33)

Pk|k−1 =
2L
∑

i=0

w
(c)
i [Xi,k|k−1 − x̂k|k−1][Xi,k|k−1 − x̂k|k−1]

T +Q (34)

X ∗
i,k|k−1 = [X0:2L,k|k−1 X0,k|k−1 − ν

√

Q X0,k|k−1 + ν
√

Q]i (35)

Y∗
i,k|k−1 = h(X ∗

i,k|k−1) (36)

ŷk =

2La
∑

i=0

w
∗(m)
i Y∗

i,k|k−1 (37)

Pxy,k =

2La
∑

i=0

w
∗(c)
i [Xi,k|k−1 − x̂k|k−1][Yi,k|k−1 − ŷk]

T
(38)

Pyy,k =

2La
∑

i=0

w
∗(c)
i [Yi,k|k−1 − ŷk][Yi,k|k−1 − ŷk]

T +R (39)

where La = 2L, ν =
√
L+ γ0 , w

∗(m)
i and w

∗(c)
i are 
al
ulated similar to Eq. (31) with the

repla
ement of L by La, Qd is approximated byG(x̂k|k−1)QG
T (x̂k|k−1)∆t where∆t = tk−tk−1

Step2 Estimation of the faults

γk = (yk − ŷk) (40)

Nk = (FTk P
−1
yy,kFk)

−1FTk P
−1
yy,k (41)

f̂k = Nkγk (42)

P fk = (FTk P
−1
yy,kFk)

−1
(43)

where γk is the innovation, f̂k is the estimation of fk and P fk is its error 
ovarian
e matrix.

Nk is the gain matrix whi
h 
an a
hieve an unbiased estimation of fk.

Step3 Measurement update

Kk = Pxy,kP
−1
yy,k (44)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk − Fkf̂k) (45)

Pk|k = Pk|k−1 −Kk(Pyy,k − FkP
f
k F

T
k )KT

k (46)
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This measurement update is di�erent from that of the normal UKF [22, 27℄ whi
h is given below

for 
omparison and qui
k referen
e:

Kk = Pxy,kP
−1
yy,k (47)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk) (48)

Pk|k = Pk|k−1 −KkPyy,kK
T
k (49)

It 
an be seen that the measurement update of the normal UKF, as given by Eqs. (47)-(49),

does not take the fault estimation and error 
ovarian
e into a

ount. Also note that the normal

UKF does not estimate the faults, whi
h means that it does not 
ontain Eqs. (40)-(43).

The ADS fault estimation using the RTS-UKF is shown in the following.

ADS fault estimation using the RTS-UKF

The performan
e of the RTS-UKF will be demonstrated under di�erent initial 
onditions. The

simulation data is taken from the simulation model of a Cessna Citation II air
raft. During 10 s

< t < 17 s. there is a 3-2-1-1 
ommand on the aileron. The fault s
enario is given in Table 1. The

true initial state x0 is as follows:

x0 = [90, 0.056, 0, 0, 0.0037, 0]T (50)

First, the true initial 
ondition (50) is used as the initial guess x̂0 in the �lter. P0 = 10−3 · I6. The

standard deviations of the measurement noises are:

σwx = σwy = σwz = 0.001 m/s2

σwp = σwq = σwr = 0.000018 rad/s

σvV = 0.1 m/s, σvα = σvβ = 0.0018 rad

σvφ = σvθ = σvψ = 0.0018 rad

Therefore, Q and R 
an be inferred from Eqs. (9) and (10). The results are shown in Fig. 1.

The estimation errors of V , α and β, as shown in Fig. 1(a), are 
lose to zero-mean. The

estimation errors of φ, θ and ψ using the RTS-UKF are given in Fig. 1(b). It 
an be seen that the

estimation errors are zero-mean ex
ept during the period when there is a maneuver (10 s < t < 17

12
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Fig. 1: Result of state and ADS fault estimation using the RTS-UKF approa
h and initial


ondition(50) in the presen
e of multiple faults

s). However, during this period the estimation errors are small, e.g., the maximum estimation error

of φ is less than 2×10−3
rad.

The estimation of fV , fα and fβ is given in Fig. 1(
). As 
an be seen, all the faults are estimated

in an unbiased sense. The estimation errors 
an be found in Fig. 1(d).

Next, the performan
e with two di�erent initial 
onditions for x̂0 is tested. The two initial


onditions are as follows:

x̂0 = [90, 0, 0, 0, 0, 0]T , (51)

x̂0 = [1, 0, 0, 0, 0, 0]T . (52)

The initial 
ondition (52) signi�
antly deviates from the true initial 
ondition (50) whereas

13




ondition (51) slightly deviates from 
ondition (50). P0 is the same with the previous simulation

and is 10−3 · I6.

The state estimation errors of the RTS-UKF using the initial 
ondition Eq. (51) are shown in

Fig. 2(a) and 2(b). As 
an be seen from Fig. 2(a), the estimation errors of V , α and β are larger

than those shown in Fig. 1(a). The estimation errors of φ, θ and ψ, shown in Fig. 2(b), are the

same as those shown in Fig. 1(b).

The state estimation errors of the RTS-UKF using the initial 
ondition Eq. (52) are shown in

Fig. 2(
) and 2(d). The estimation errors of V , α and β, shown in Fig. 2(
), are signi�
antly worse

than those shown in Fig. 1(a) and Fig. 2(a). However, the estimation errors of φ, θ and ψ, shown

in Fig. 2(d), are still zero-mean.

The estimates of fV , fα and fβ using the initial 
ondition Eqs. (51) and (52) are demonstrated

in Fig. 2(e) and 2(f) respe
tively. As 
an be seen from Fig. 2(e), when the initial x0 deviates from

the true state, the estimates of the faults also deviate from their true magnitudes espe
ially that of

fα. When the initial 
ondition deviates signi�
antly from the true initial 
ondition, the performan
e

be
omes signi�
antly worse, as 
an be seen in Fig. 2(f).

Based on the above simulation results, it is seen that the RTS-UKF is sensitive to the initial


ondition errors. This sensitivity problem will be analyzed theoreti
ally in the following se
tion.

B. Problem analysis of the robust three-step �lter

In the previous se
tions, it was shown that the performan
e of the RTS-UKF is in�uen
ed by the

given initial 
ondition. This se
tion analyzes the problem of the sensitivity to the initial 
ondition.

Rewrite Eq. (45) into

x̂k|k = x̂k|k−1 + Lkγk (53)

where Lk is de�ned as

Lk := Kk(I − FkNk) (54)

The 
ovarian
e matrix Pxy,k, fault distribution matrix Fk, the innovation γk and x 
an be
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Fig. 2: Result of state and fault estimation using the RTS-UKF approa
h and two di�erent initial


onditions in the presen
e of multiple faults
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partitioned as follows:

Pxy,k =









P11 P12

P21 P22









, Fk =









Ip

0









,

γk =









γp

γm−p









, x =









xp

xL−p









(55)

Sin
e Pyy,k is invertible, its inverse 
an be partitioned as follows:

P−1
yy,k =









R̃11 R̃12

R̃21 R̃22









(56)

where R̃11 ∈ R
p×p

, R̃12 ∈ R
p×(m−p)

, R̃21 ∈ R
(m−p)×p

and R̃22 ∈ R
(m−p)×(m−p)

. Therefore, Eq. (41)


an be 
omputed by

Nk = [R̃−1
11 0]









R̃11 R̃12

0 0









=

[

Ip R̃−1
11 R̃12

]

(57)

Substituting Eq. (57) into Eq. (54), it follows

Lk = Pxy,kP
−1
yy,k









0 −R̃−1
11 R̃12

0 Im−p









(58)

=









0 L12

0 L22









(59)

where L12 and L22 are de�ned as

L12 := P12(R̃22 − R̃21R̃
−1
11 R̃12)

L22 := P22(R̃22 − R̃21R̃
−1
11 R̃12)

Therefore, the measurement update of the robust three-step �lter, denoted in Eq. (53), 
an be

further written as follows:

x̂k|k = x̂k|k−1 +









L12γm−p

L22γm−p









(60)
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It 
an be seen that γp is not used in the measurement update. Sin
e γp is not used, the estimation of

xp is not updated by measurements of xp. Therefore, the estimation of xp(V , α and β), is sensitive

to the initial 
ondition. If the initial x0 signi�
antly deviates from the true value, it will not be


orre
ted to the true value. However, the estimation of φ, θ and ψ is not in�uen
ed sin
e they

are updated by the measurement. This is 
onsistent with the result shown in Figs. 2(b) and 2(d),

where the estimation of φ, θ and ψ is still good even when that of V , α and β is not.

In 
ase that p = m and rank Fk = m, it 
an be found that

Nk = F−1
k (61)

Lk = 0 (62)

Consequently, the measurement update of the three-step Kalman �lter is

x̂k|k = x̂k|k−1 (63)

This means that all the states are not updated by their measurements. In this situation, all the

state estimation will be sensitive to the initial 
ondition.

Through the analysis in this se
tion and the performan
e demonstration of the RTS-UKF in

Se
tion IIIA, the need for a modi�
ation of the RTS-UKF is emphasized. In real life, the exa
t

initial 
ondition is di�
ult to obtain due to un
ertainties in the system (whi
h 
an also be found in

Se
tion V). The RTS-UKF will interpret the initialization error as a fault, whi
h results into wrong

fault estimation. Therefore, the RTS-UKF 
an not be applied to the FDD of the ADSs.

C. Novel Adaptive Three-Step Uns
ented Kalman Filter for ADS FDD

Having found the 
ause for performan
e degradation of the RTS-UKF, this se
tion proposes a

novel ATS-UKF to solve the ADS FDD. The sensitivity to the initial 
ondition of the RTS-UKF


an be solved by performing the measurement update of normal UKF.

It should be noted that the RTS-UKF only 
onsiders the estimation of the faults. It does not

dete
t and isolate the faults. The proposed ATS-UKF deals with not only the estimation of the

faults, but also the dete
tion and isolation.
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In the following, the initial measurement update and FDI s
heme are introdu
ed. Then the


omplete FDD system is introdu
ed.

1. Initial measurement update

The solution to redu
e the sensitivity of the RTS-UKF to the initial 
ondition is proposed in

this subse
tion, whi
h is to use the measurement update of normal UKF (Eqs. (47)-(49)) when the

state estimation is in�uen
ed by the initialization error. However, when the 
orre
tion is su�
ient,

i.e., when the measurement update of the UKF is su�
ient, needs to be determined. This paper

proposes a 
riteria whi
h 
an determine whether the measurement update of the UKF is su�
ient.

The details are given as follows:

Let Cii,k, i = 1, 2, 3 denote the ith diagonal elements of the innovation 
ovarian
e matrix Ck

asso
iated with the measurements whi
h are not used in the update of the RTS-UKF at time step

k. (i.e., the measurement of V , α and β respe
tively in this paper).

De�ne the 
hange of the innovation varian
e ∆Cii,k as

∆Cii,k := Cii,k − Cii,k−1, i = 1, 2, 3. (64)

When the following inequality holds, the measurement update 
an be regarded as su�
ient.

The inequality is

∆Cii,k < ηi, i = 1, 2, 3. (65)

where ηi, i = 1, 2, 3 are pre-de�ned 
onstants whi
h 
an be tuned to stop the measurement update.

The prin
iple is that if there are initialization errors, Cii,k is not 
onstant. When the �lter a
hieves

steady-state, Cii,k is approximately 
onstant. Therefore, ∆Cii,k should be small. If ∆Cii,k is smaller

than ηi, then it indi
ates that the �lter has rea
hed steady-state and the measurement update of

the UKF is su�
ient. If ηi is 
hosen to be small, then the number of initial measurement update

will be bigger while the in�uen
e of the initial 
ondition error will be less. Ck 
an be estimated

using the following [29, 30℄:

Ĉk =
1

N

k
∑

j=k−N+1

γjγ
T
j (66)

where γj denotes the innovation at time step j.
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2. Fault Dete
tion and Isolation

The fault dete
tion is performed by monitoring the innovation varian
e of the �lter. In the

presen
e of ith fault, Cii,k in
reases. The fault dete
tion and isolation logi
 at time step k is:

if Cii,k > Ti, FAi = 1. otherwise FAi = 0, i = 1,2,3.

where FA = [FAV FAα FAβ ]
T
are the alarm indi
ators. Ti are the thresholds whi
h are designed

to dete
t the faults in the V , α and β sensors respe
tively. These thresholds are designed based on

the fault-free 
ase. It 
an be seen that the fault dete
tion and isolation are simultaneously realized.

The weighted fault estimation 
an be 
al
ulated as follows:

f̄i,k = FAi f̂i,k, i = 1, 2, 3. (67)

3. Adaptive Three-Step Uns
ented Kalman Filter

When the initial measurement update is su�
ient, there are two options to a
hieve FDD whi
h

are as follows:

1. After the initial measurement update, the FDI s
heme is used to dete
t and isolate the faults.

The RTS-UKF is used to estimate the faults.

2. After the initial measurement update, the FDI s
heme is used to dete
t and isolate the faults.

If there are no faults dete
ted, the UKF is used and the fault estimation is 
onsidered to be

zero. If there are faults dete
ted, then the RTS-UKF is used for the fault estimation and

measurement update.

The ATS-UKF proposed in this paper, is based on the latter one sin
e it 
an redu
e the 
ompu-

tational load. The measurement update of the ATS-UKF swit
hes adaptively between that of the

normal UKF and that of the RTS-UKF through the FDI s
heme. The spe
i�
 three steps of the

ATS-UKF are given as follows:

1. Time update

This is the same as in the UKF, whi
h also in
ludes the sigma point 
al
ulation. The steps

are des
ribed by Eqs. (30)- (39).
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2. Fault estimation

Before estimating the faults, the FDI, whi
h has been introdu
ed above, is performed. If

FA = 0, then f̂k = 0. If FA 6= 0, then the faults are estimated using the RTS-UKF, whi
h is

des
ribed by Eqs. 40-(43). This step is the FDD.

3. Measurement update

As mentioned, during the initial measurement update, the measurement update of the normal

UKF is applied. When the initial measurement update is done, the measurement update of

the ATS-UKF is as follows:

(a) If FA = 0, use the the measurement update of the normal UKF.

In this situation, there are no faults dete
ted in the system. To redu
e the 
omputational

load, the measurement update of the UKF is used. This means that the faults are


onsidered to be zero, so that the faults estimation and measurement update of the

RTS-UKF are not needed. The steps are des
ribed by Eqs. (47)-(49).

(b) If FA 6= 0, use the measurement update of the RTS-UKF.

In this situation, faults are dete
ted. Therefore, the measurement update of the

RTS-UKF is needed to obtain an unbiased state estimation and fault estimation, whi
h


an not be a
hieved using the normal UKF. The steps are des
ribed by Eqs. (44)-(46).

D. ADS FDD using the ATS-UKF

In this se
tion, the FDD as well as the state estimation performan
e of the proposed ATS-UKF

is demonstrated using two di�erent fault s
enarios. The initial 
ondition is the same as in Eq. (52).

The threshold to stop the initial measurement update is η = [5 × 10−3, 2 × 10−5, 2 × 10−5]T and

the threshold to dete
t the fault is T = [0.2, 1× 10−4, 5× 10−5]T .

1. Multiple FDD

In this s
enario, 
onse
utive ADS faults are generated, whi
h are shown in Table 1. The results

using the ATS-UKF are shown in Fig. 3.
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Fig. 3: Result of state estimation and ADS FDD using the proposed ATS-UKF approa
h in the

presen
e of multiple faults

It is found that using the above thresholds, the initial measurement update is only performed for
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two time steps. The estimation of V , α and β is shown in Fig. 3(a). Despite the fa
t that the initial

x0 signi�
antly deviates from the true state, the estimation is still satisfa
tory. This means that

the sensitivity to the initial 
ondition of the RTS-UKF is ta
kled by the ATS-UKF. The estimation

of φ, θ and ψ, as shown in Fig. 3(b), is also satisfa
tory. This demonstrates the state estimation

performan
e of the ATS-UKF.

The fault dete
tion and isolation is a
hieved by 
he
king FAV , FAα and FAβ , whi
h is shown

in Fig. 3(
). From the �gure, it 
an be seen that fV is dete
ted instantaneously. The dete
tion of

fα takes longer than that of fV . This is be
ause fα is a drift fault whi
h is a slow time-varying

fault. fβ is also dete
ted instantaneously. However, FAβ swit
hes from 1 to 0 nine times. This is as

expe
ted sin
e the os
illatory fault 
rosses zero nine times. When the magnitude of the fault is zero,

it 
an be regarded as no fault. From the �gure, it is obvious that fault isolation is also a
hieved.

For instan
e, when FAV = 1, both FAα and FAβ are equal to zero, whi
h means only fV o

urs.

The estimation of fV , fα and fβ is shown in Fig. 3(d). As 
an be seen, all the faults are estimated

in an unbiased sense. The weighted fault estimation, 
al
ulated using Eq. (67), is shown in Fig. 3(e).

The error of the estimation of fV , fα and fβ is shown in Fig. 3(f). It is seen that all the estimation

errors are zero-mean. This demonstrates the fault estimation performan
e of the ATS-UKF. It is

also noti
ed that when there are no faults or the faults are not dete
ted, the estimates of the fault

are zero and so are the estimation errors. This is due to the fa
t that when there are no faults

dete
ted, the measurement update of the UKF is used and the faults are 
onsidered to be zero.

The fault dete
tion of the os
illatory faults, shown in Fig. 3(
), shows a 
hattering behavior.

To dete
t the presen
e of os
illatory failures, the dete
tion logi
 of os
illatory faults in Goupil [31℄

is used. The basi
 idea is to 
ount the 
rossings of the fault estimate (shown in Fig. 3(e)) through

a positive and negative threshold within a sliding time window. In this paper, the os
illatory faults

are dete
ted if one full os
illation is dete
ted. The result of dete
ting the os
illatory fault is shown in

Fig. 4(a). In the �gure, OFC denotes os
illatory failure 
ase (OFC). As 
an be seen, an os
illatory

fault is only dete
ted in the β sensor. If we take the bigger value of FAi and OFCi (i is asso
iated

with the sensor of V , α and β), the fault dete
tion in
luding the dete
tion of the os
illatory fault


an be obtained, whi
h is demonstrated in Fig. 4(b). In the �gure, the red dashed line indi
ates
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Fig. 4: Result of fault dete
tion and isolation using the proposed ATS-UKF approa
h in the

presen
e of multiple faults

that the dete
ted fault is an os
illatory fault.

2. Simultaneous FDD

In this s
enario, simultaneous faults are generated whi
h are shown in Table 2. The ATS-UKF

is used to dete
t, isolate and estimate these faults. The results are given in Fig. 5.

The estimation of V , α, β and φ, θ and ψ using the ATS-UKF is shown in Fig. 5(a) and

Fig. 5(b), respe
tively. As 
an be seen, even in the presen
e of simultaneous faults, the state

estimation performan
e of the ATS-UKF is still satisfa
tory.

The fault dete
tion and isolation performan
e is shown in Fig. 5(
). As 
an be seen, there are

no false alarms, whi
h demonstrates its good performan
e. For the dete
tion of fα and fβ during

10 s< t < 20 s, and fV during 30 s< t < 40 s, there are dete
tion delays sin
e there are drift faults.

The red dashed lines in the �gure indi
ate that the dete
ted faults are os
illatory faults.

Fig. 5(d) and 5(e) show the estimation and weighted estimation of fV , fα and fβ , respe
tively.

It 
an be seen that the fault estimation performan
e is satisfa
tory. All faults are estimated in an

unbiased sense in
luding the os
illatory faults. The estimation error of fV , fα and fβ is shown in

Fig. 5(f). It 
an be seen that the error is zero-mean, whi
h 
on�rms the good estimation performan
e
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Fig. 5: Result of state and ADS FDD using the proposed ATS-UKF approa
h in the presen
e of

simultaneous faults

of the ATS-UKF.
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IV. Performan
e validation using real �ight data

In the previous se
tion, the FDD performan
e of the ATS-UKF is tested using simulated air
raft

data. In this se
tion, the FDD performan
e of the ATS-UKF is validated using real �ight test data

of the Cessna Citation II air
raft. Air data information su
h as α and β are measured for post �ight

analysis. The real �ight data 
ontains un
ertainties su
h as biases and spikes. Additionally, in real

�ight, external disturban
es, su
h as 
hanging wind, 
an also in�uen
e the air data measurements.

Therefore, the real �ight data poses 
hallenges to the ADS FDD problem and provides a realisti


validation of the performan
e of FDD approa
hes su
h as the ATS-UKF.

The primary obje
tive of the �ight test is aerodynami
 model identi�
ation where a number of

maneuvers were performed by the air
raft in order to obtain su�
ient ex
itation. Sin
e there were

no faults during the �ight, sensor faults are inje
ted into the real �ight data to validate the FDD

performan
e of the ATS-UKF. Besides the fault s
enarios presented in Tables 1 and 2, a fault-free


ase is also studied.

The real �ight data used in this paper is the same as that in Lu et. al [26℄. In Lu et. al,

the estimated wind turns out to be time varying. This 
an test the ADS FDD performan
e of the

ATS-UKF under the 
ondition of winds.

The update rates of the on-board sensors are given in Table 3.

Table 3: Update frequen
ies of di�erent measurements

Measurements Unit Update frequen
y

V [ m/s ℄ 100 Hz

un, vn, wn [ m/s ℄ 1 Hz

α, β [ rad ℄ 100 Hz

φ, θ [ rad ℄ 100 Hz

ψ [ rad ℄ 10 Hz

A. Real-life measurement model

For simulated air
raft data, the measurement model is given in Eqs. (19) - (24). If f = 0,

the measurements are only 
orrupted by white Gaussian noises, as 
an be seen from the equations.
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However, this is never the 
ase in real life. In this �ight test, the air data information, su
h as α

and β, is measured by multiple vanes on a boom (shown in Fig. 6) whi
h is mounted on the nose

of the air
raft. The angle of atta
k and angle of sideslip measured by the vanes are denoted by

αvm and βvm, respe
tively. The measurements αvm and βvm is di�erent from Eqs. (20) and (21),

respe
tively. The measurement model for the real-life measurements is given as follows [32�34℄:

Vm = V + vV (68)

αm = Cα0 + (1 + Cup)α +
xαq

V
+ vα (69)

βm = Cβ0 + (1 + Csi)β − xβr

V
+
zβp

V
+ vβ (70)

φm = φ+ vφ (71)

θm = θ + vθ (72)

ψm = ψ + vψ (73)

where xα, xβ and zβ are the position of the vanes in the body frame, Cα0, Cβ0, Cup and Csi are the

boom 
orre
tion parameters. In this paper, zβ is assumed to be zero. The parameter estimation


an be found in Lu et al. [34℄. For the ADS FDD using real �ight data, this measurement model

is used. However, it should be noted that in this real-life measurement model, boom bending is


onsidered to be negligible for the maneuvers �own.

Fig. 6: The vanes on the boom for measuring the angle of atta
k and angle of sideslip. Photo


redits by Daan Pool.
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B. ADS FDD using real �ight data in the absen
e of faults

Using the real-life measurements, un
ertainties and disturban
es su
h as varying winds 
an also

have a negative in�uen
e on the FDD performan
e, whi
h 
an result in false alarms. Under this


ondition, the FDD approa
hes should not give false alarms. In this se
tion, the ATS-UKF is tested

in a fault-free 
ase to verify whether it gives false alarms.

In order to show the e�e
tiveness of the ATS-UKF, the RTS-UKF is also applied to estimate

the ADS faults. The initial 
ondition x0 given for the RTS-UKF is the �rst measurement whi
h is:

[104.8733, 0.0796, 0.0073, −0.0019, 0.0733, 4.6692]T (74)

The initial 
ondition x0 given for the ATS-UKF is:

[1, 0, 0, 0, 0, 0]T (75)

In this manner, the initial 
ondition given for the RTS-UKF is 
lose to the true state whereas

that of the ATS-UKF signi�
antly deviates from the true state. The threshold to stop the initial

measurement update is η = [5 × 10−3, 2 × 10−5, 2 × 10−5]T and the threshold to dete
t the fault

is T = [0.2, 1× 10−4, 5× 10−5]T , whi
h are the same as those used in the previous se
tion.

The estimation of V , α and β using the RTS-UKF is given in Fig. 7(a). The fault estimation

using the RTS-UKF is given in Fig. 7(b). As 
an be seen, the estimated faults deviate from their

true magnitudes. This result shows that the RTS-UKF is not able to be applied for real appli
ations

unless modi�
ations are made.

The results of the ATS-UKF are shown in Figs. 7(
) - 7(f). The estimation of V , α and β, and φ,

θ and ψ are shown in Fig. 7(
) and 7(d) respe
tively. The estimates of α and β using the ATS-UKF

are di�erent from those using the RTS-UKF. The fault dete
tion result, shown in Fig. 7(e), indi
ates

that there are no faults. This demonstrates that the ATS-UKF does not give false alarms in the

presen
e of no faults even when the real �ight data is used. The weighted estimates of fV , fα

and fβ, shown in Fig. 7(f), are zero-mean. This 
on�rms the fault estimation performan
e of the

ATS-UKF.
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Fig. 7: State estimation and ADS FDD of the real-life measurement model of the air
raft using

the RTS-UKF and the ATS-UKF approa
h in the absen
e of faults
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C. ADS FDD using real �ight data in the presen
e of multiple faults

In this subse
tion, the ADS FDD performan
e of the ATS-UKF will be veri�ed using the real-

life measurement model in the presen
e of multiple faults (given in Table 1). The initial 
ondition

for RTS-UKF is the same as in (74) and that of the ATS-UKF is the same as in (75).

The results using these two approa
hes are shown in Fig. 8.

The estimation of V , α and β using the RTS-UKF is shown in Fig. 8(a). The fault estimation is

shown in Fig. 8(b). Although the initial 
ondition of the RTS-UKF is 
hosen to be the measurements,

the estimation of the faults are still biased. This shows the drawba
k of the RTS-UKF when it is

used in pra
ti
e be
ause the initial 
ondition error will be estimated as a bias fault.

The estimation of V , α, β and φ, θ, ψ using the ATS-UKF is presented in Fig. 8(
) and 8(d)

respe
tively. It 
an be seen that the estimates of α, β are again di�erent from those of the RTS-UKF

shown in Fig. 8(a).

The fault dete
tion and isolation using the ATS-UKF is given in Fig. 8(e). No false alarms are

generated and the isolation is also 
orre
t. It 
an be seen that the performan
e is as good as that in

Fig. 4(b) where the simulation data is used. The os
illatory fault is also dete
ted, whi
h is shown

by the red dashed line.

The weighted estimation of fV , fα and fβ using the ATS-UKF is presented in Fig. 8(f). Even

though the initial 
ondition of the ATS-UKF deviates from the true state signi�
antly, its perfor-

man
e is not sensitive to the initial 
ondition. Sin
e the faults are estimated in an unbiased sense,

the estimates of α, β using the ATS-UKF are more reliable than those using the RTS-UKF.

D. ADS FDD using real �ight data in the presen
e of simultaneous faults

In this subse
tion, simultaneous faults (given in Table 2) are inje
ted into the real �ight data

to validate the performan
e of the ATS-UKF. The result of the RTS-UKF is also presented, whi
h

is given in Fig. 9. From this �gure, it is seen the fault estimation of the RTS-UKF is again biased

although the initial x0 is 
hosen to be the measurements. This highlights the limitation of the

RTS-UKF when used in reality.

The results using the ATS-UKF is shown in Fig. 10. The state estimation is presented in

29



0 10 20 30 40 50 60
104

106

108

V
 (

m
/s

)

0 10 20 30 40 50 60
0.06

0.08

0.1

α 
(r

ad
)

0 10 20 30 40 50 60
0

0.02

0.04

β 
(r

ad
)

time (s)

(a) Estimation of V , α and β using the RTS-UKF

0 10 20 30 40 50 60
−5

0

5

f V
 (

m
/s

)

0 10 20 30 40 50 60
−0.2

0

0.2

f α (
ra

d)

0 10 20 30 40 50 60
−0.05

0

0.05

f β (
ra

d)

 

 

true
estimation

time (s)

(b) Estimation of fV , fα and fβ using the RTS-UKF

0 10 20 30 40 50 60
104

106

108

V
 (

m
/s

)

0 10 20 30 40 50 60
0

0.05

0.1

α 
(r

ad
)

0 10 20 30 40 50 60
−0.05

0

0.05

β 
(r

ad
)

time (s)

(
) Estimation of V , α and β using the ATS-UKF

0 10 20 30 40 50 60
−0.1

0

0.1

φ 
(r

ad
)

0 10 20 30 40 50 60
0

0.05

0.1
θ 

(r
ad

)

0 10 20 30 40 50 60
4.65

4.7

ψ
 (

ra
d)

time (s)

(d) Estimation of φ, θ and ψ using the ATS-UKF

0 10 20 30 40 50 60
0

0.5

1

F
A

V
 

0 10 20 30 40 50 60
0

0.5

1

F
A

α 

0 10 20 30 40 50 60
0

0.5

1

F
A

β 

 

 

OFC

time (s)

(e) Fault dete
tion and isolation using the ATS-UKF

0 10 20 30 40 50 60
−2

0

2

f V
 (

m
/s

)

0 10 20 30 40 50 60
−0.1

0

0.1

f α (
ra

d)

0 10 20 30 40 50 60
−0.05

0

0.05

f β (
ra

d)

 

 

true
estimation

time (s)

(f) Weighted estimation of fV , fα and fβ using the

ATS-UKF

Fig. 8: State estimation and ADS FDD of the real-life measurement model of the air
raft using

the RTS-UKF and the ATS-UKF approa
h in the presen
e of multiple faults
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Fig. 9: ADS FDD of the real-life measurement model of the air
raft using the RTS-UKF approa
h

in the presen
e of simultaneous faults

Fig. 10(a) and 10(b) respe
tively.

The fault dete
tion and isolation using the ATS-UKF is shown in Fig. 10(
). No false alarms

are observed from the �gure and the os
illatory faults are also dete
ted. The performan
e is as good

as that in Fig. 5(
) where the simulation data is used. This 
on�rms the FDI performan
e of the

ATS-UKF.

Estimation and weighted estimation of fV , fα and fβ using the ATS-UKF are shown in Fig. 10(d)

and 10(e), respe
tively. All fault estimates a
hieve an unbiased estimation. The fault estimation

errors are demonstrated in Fig. 10(f). Although the errors are not zero-mean, they are small


ompared to the states.

V. Con
lusions

This paper deals with the Air Data Sensor (ADS) Fault Dete
tion and Diagnosis (FDD) of

air
raft. First, the Robust Three-Step Kalman Filter (RTS-KF) is extended to the Robust Three-

Step Uns
ented Kalman Filter (RTS-UKF) to 
ope with nonlinear systems. Se
ond, the RTS-UKF is

found to be sensitive to the initial 
ondition. The problem is analyzed theoreti
ally and subsequently,

a novel Adaptive Three-Step Uns
ented Kalman Filter (ATS-UKF) is proposed to dete
t, isolate

and estimate the ADS faults. The ATS-UKF 
ontains three steps: time update, fault estimation
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Fig. 10: State estimation and ADS FDD of the real-life measurement model of the air
raft using

the ATS-UKF in the presen
e of simultaneous faults

and measurement update. The ATS-UKF is validated using simulated air
raft data, whi
h shows
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good FDD performan
e.

The performan
e of the ATS-UKF is further validated using real �ight data of the Cessna

Citation II air
raft to test its performan
e under real-life un
ertainties. It was found that although

the measurement data 
ontains biases whi
h 
an not be removed 
ompletely and the initial 
ondition

is far from the true state, the ATS-UKF is still able to maintain its satisfa
tory FDD performan
e.

This demonstrates that it 
an be applied in pra
ti
e.

This ATS-UKF, whi
h deals with ADS FDD, 
an be in
orporated into Fault Tolerant Control

(FTC) systems to further enhan
e the safety of the air
raft. It 
an dete
t faults without giving false

alarms. In addition, it 
an provide both unbiased state estimation and fault estimation, whi
h are

important for the re
overy from sensor faults.

In the future, the ATS-UKF should be integrated into a FTC system. Finally, it is highly

re
ommended that a real-world �ight experiment is designed and exe
uted to dete
t and estimate

ADS faults in air
raft during �ight.
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