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A B S T R A C T

We introduce a novel approach for the polygonization of Multi-view Stereo (MVS) meshes of buildings,
which results in compact and topologically valid models. The main characteristic of our method is structure
awareness, i.e., the recovery and preservation of the initial mesh primitives and their adjacencies. Our proposed
methodology consists of three main stages: (a) primitive detection via mesh segmentation, (b) encoding of
primitive adjacencies into a graph, and (c) polygonization. Polygonization is based on the approximation of
the original mesh with a candidate set of planar polygonal faces. On this candidate set, we apply a binary
labelling formulation to select and assemble an optimal set of faces under hard constraints that ensure that
the final model is both manifold and watertight. Experiments on various building models demonstrate that
our simplification method can produce simpler representations for both closed and open building meshes.
Furthermore, these representations highly conform to the initial structure and are ready to be used for
spatial analysis. The source code of this work is freely available at https://github.com/VasileiosBouzas/
MeshPolygonization.
. Introduction

In recent decades, there is an ever-increasing demand, both by
cademia and industry, for 3D spatial information and 3D City mod-
ls (Biljecki et al., 2015). In contrast to 2D data, 3D data either provides
much more enriched context for some applications or makes others

ossible. Applications that benefit from the use of 3D data vary from
nfrastructure planning, utility management, and 3D cadastre to solar
otential estimation and visibility analysis.

One common practice to obtain 3D models of buildings and ur-
an scenes is the acquisition of massive point clouds through Air-
orne Laser Scanning (ALS), Structure from Motion (SfM), or Multi-
iew Stereo (MVS) (Furukawa and Hernández, 2015). These point
louds, combined with reconstruction techniques (Bernardini et al.,
999; Kazhdan et al., 2006), enable the representation of buildings
n the form of surface meshes. Although the quality of these meshes
s sufficient for visualization purposes, it is still not enough for other
pplications, such as urban planning and simulations (Holzmann et al.,
017), due to:

• Large memory size: The number of faces also increases the require-
ments of these meshes in memory space.

• Missing information: The incompleteness of the original point
cloud, due to occlusion or other causes, often prevents the re-
construction of a given scene in its entirety.

∗ Corresponding author.

• Noisy and undesired structures: Flaws both in the original point
cloud and the reconstruction method lead to defects in the final
mesh (e.g., self-intersecting parts or holes).

These problems are often addressed with mesh simplification and
polygonization. Despite the similarities of these two approaches, sim-
plification relates to the removal of redundant faces for representing
the original mesh (Garland and Heckbert, 1997). On the other hand,
the objective of polygonization is the approximation of the original
mesh with a set of polygonal surfaces. The existing simplification
and polygonization techniques (Garland and Heckbert, 1997; Salinas
et al., 2015; Cohen-Steiner et al., 2004) succeed in the production
of lightweight meshes with less complexity and memory requirements
than their original counterparts. However, these meshes often lack the
topological validity necessary for their use in real-world applications
such as simulations.

In this work, we propose a novel approach for producing sim-
pler, more compact representations for MVS building meshes through
polygonization (see Fig. 1). Our inputs are building mesh models ac-
quired from aerial and terrestrial imagery, for which we assume that
the building instances are extracted from urban scenes via semantic
segmentation (Landrieu and Simonovsky, 2018; Verdie et al., 2015;
Rouhani et al., 2017; Zhu et al., 2018; Valentin et al., 2013). Also, we
mainly target buildings whose geometry can be represented by closed
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Fig. 1. An urban scene with it buildings simplified using our method. Each building was simplified individually after the semantic segmentation of the scene).
polyhedra without dangling faces. We assess the effectiveness of our
simplification method with several criteria. Apart from a lightweight
representation of the original model, the resulting mesh should be also
manifold, watertight, and free of geometric errors. This allows us to use
it as input in software for different applications (e.g., energy estima-
tion, wind simulation, cadastre, and solar potential). Furthermore, the
outcome of this method should be independent of any imperfections
in the original mesh (e.g., geometric or topological defects, noise, and
undesired structures). Finally, simplification results should be accom-
plished within reasonable execution times to allow the processing of
large scale environments.

To achieve polygonization, we first detect the planar components
(geometry) of the input mesh along with their configuration (topology)
in the 3D space. Based on this information, we form an initial set of
candidate faces to approximate the mesh. To construct the simplified
model, we select candidate faces through a constrained optimization
process that ensures the final result is both manifold and watertight.
Our contributions to the current state of the art are the following:

• A novel mesh segmentation technique based on region growing for
the detection of planar components in surface meshes;

• An optimization-based method for the construction of the sim-
plified surface models based on the definition of sharp features
through a building scaffold and of faces through 2D arrangements.

2. Related work

There is a large volume of research on mesh polygonization. In
this section, we only review the most relevant work in the scientific
literature for topics directly related to ours.

Planar shape detection/abstraction. Contrary to natural ob-
jects, man-made constructions conform to clearly defined geometries,
thus allowing their approximation via an assembly of planar shapes.
This approximation stands as the basis for several mesh simplifica-
tion/polygonization techniques and therefore, there has been an exten-
sive literature on the detection and abstraction of planar shapes both
in point clouds and meshes. Several approaches to this problem (region
growing/RANSAC (Schnabel et al., 2007)) attempt to decompose the
input cloud or mesh into planes in one go, based on one or more at-
tributes (normal orientation, curvature, planarity, etc.). Others use this
decomposition as input for an optimization process during which the
initial planar set needs to conform to a predefined metric (Monszpart
et al., 2015; Oesau et al., 2015; Fang et al., 2018; Jonsson, 2016).
Following these work, we contribute to the current state of the art with
our proposed mesh segmentation technique (see Section 3.1).

Plane assemblies. The detection and assembly of planar shapes for
the construction of compact polygon meshes constitute the core of our
method. As in other existing methods (Nan and Wonka, 2017; Chauve
et al., 2010; Chen and Chen, 2007; Bauchet, 2019; Fang, 2019), the
main problems to be addressed in this approach is the completeness
of the final result despite imperfections in the input data (geomet-
ric/topological flaws, holes, and noise, etc.). While a holistic approach
(i.e. pairwise intersections between all available planes) proves to be
433
enough for tackling this problem, it often increases execution time
considerably. To balance this trade-off between completeness and com-
putational efficiency, it is therefore necessary to reduce the number of
computations but not at the expense of the quality of the result. In our
method, this is achieved with the introduction of our structure graph.

Urban reconstruction. The various methods currently existing for
the reconstruction of urban environments are divided into three main
categories: (1) building mesh reconstruction (Holzmann et al., 2017;
Nan and Wonka, 2017; Li et al., 2016; Bódis-Szomorú et al., 2015),
(2) building mesh regularization (Jonsson, 2016; Wang et al., 2016;
Kelly et al., 2017), and (3) urban scene reconstruction (Verdie et al.,
2015; Zhu et al., 2018). The first two categories produce 3D models
for individual buildings, while the third one focuses on recreating
entire urban scenes. Despite their effectiveness, many of these meth-
ods depend on multiple sources of information that are not always
available (e.g., aerial imagery, point clouds, GIS data) (Kelly et al.,
2017; Zhu et al., 2018). Others conform to the already reconstructed
models to certain geometric regulations (e.g., vertex projection to pla-
nar primitives, orthogonality, perpendicularity), but still maintain the
initial number of meshes faces (Bódis-Szomorú et al., 2015; Jonsson,
2016; Wang et al., 2016). Our method satisfies both the require-
ments of geometric regularity and simple representation, with only the
reconstructed mesh as an input.

Mesh simplification/polygonization. In computer graphics, var-
ious methods exist for the simplification of 3D meshes, mainly for
visualization and animation purposes. For example, Quadric Error met-
rics (QEM) (Garland and Heckbert, 1997) or Structure-Aware Mesh
Decimation (SAMD) (Salinas et al., 2015) simplifies meshes by it-
eratively reducing the number of their simplexes. A characteristic
example of polygonization techniques is Variational Shape Approxima-
tion (VSA) (Cohen-Steiner et al., 2004), which constructs an entirely
new mesh that approximates the original model and consists of planar
shapes (proxies). In either case, the topological validity of the simplified
mesh, essential for its usage in further applications, is not always en-
sured. In this work, we combine simple representation with topological
validity, resulting in building models ready for spatial analysis.

Structure awareness. Although the concept of structure still lacks
any universally accepted definition, there has been some research on
structure-aware shape processing over the last decades (Mitra et al.,
2013; Salinas et al., 2015). Regardless of their unique characteristics,
most structure-aware approaches define the structure of an object as
the assembly of two elements: (a) the parts composing the object and
(b) the interrelationships between these object parts. In return, shape
processing also consists of two separate procedures: structure detection
and processing according to the detected structure.

In this paper, we assume that the majority of real-world buildings
demonstrate piecewise planar structures. We define the structure of a
building by detecting the planar primitives of the input model along
with their adjacency relations. Furthermore, any information on the
structure is encoded into a structure graph, an undirected graph whose
vertices correspond to the detected primitives while the edges de-
note adjacency relations between primitive pairs. The main advantages
of structure awareness, in the form of the structure graph, for the

simplification process are the following:
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Fig. 2. Pipeline. The input MVS building mesh (a) is decomposed into planar primitives (b) and its structure is encoded into the structure graph (c). With the help of the graph,
a set of candidate faces is produced (d) out of which the simplified model is finally constructed via optimization (e).
Fig. 3. Two examples of 𝑘-ring planarity for the vertices of a given mesh. Planar regions (high planarity) are coloured in red, while non-planar (low planarity) in blue. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
• The structure of the original model is retained in the simpli-
fied version by preserving the formation of the graph along the
simplification process.

• The sharp features of the original model, formed out of adjacent
components, are recovered during polygonization by maintaining
the adjacencies in the graph.

3. Methodology

As shown in Fig. 2, our methodology consists of three main pro-
cessing stages: (a) detection of primitives via segmentation, (b) en-
coding of the primitive interrelationships in a structure graph, and (c)
structure-aware polygonization.

3.1. Segmentation

To define the structure, we first identify the primitives of the input
mesh via segmentation. We presume that the input mesh is composed
only of planar components, thus ignoring any spherical, cylindrical,
and conical geometries. The planar regions we wish to detect cor-
respond to floor, façade, and roof segments, while any architectural
details (e.g., windows, chimneys) are ignored. These details are usually
represented by a small number of faces due to the limited resolution of
MVS meshes, therefore their approximation with planar components is
difficult (Verdie et al., 2015).
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We detect planar segments via a region-growing algorithm, based on
the computation of planarity for the 𝑘-ring neighbourhood of each mesh
vertex (Gatzke and Grimm, 2006). Specifically, the 1-ring neighbour-
hood of a vertex consists of all vertices directly connected to it through
an edge. This notion of a neighbourhood can be defined for extended
mesh regions (for example, a 2-ring neighbourhood includes also the
vertices adjacent to those forming the 1-ring neighbourhood), as well
as for mesh faces. Hence, the 𝑘-ring planarity of a vertex describes
the degree of fitting a plane on its 𝑘-ring neighbourhood (Pauly et al.,
2002).

Our segmentation algorithm can be summarized as follows (for
further details, see Algorithm 1):

(a) We compute the 𝑘-ring planarity of all the mesh vertices, while
the planarity of each face is set equal to the average planarity of
its vertices.

(b) With the highest planarity face (seed), we initialize the first pla-
nar region and collect its 𝑘-ring neighbours to define a reference
plane via Principal Components Analysis (PCA) (Pauly et al.,
2002).

(c) By examining the k-ring neighbourhoods of the seed, we append
faces in the region as long as their vertices are within a distance
threshold from the reference plane.

(d) We repeat the whole process till the entirety of the mesh has
been decomposed into planar regions.
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Fig. 4. In MVS meshes, architectural details (chimneys etc.) are represented by a small
number of faces.

3.2. Structure graph

We detect interrelationships between the primitives of the segmen-
tation and encode that information to an undirected graph (structure
graph), resembling the graph of proxies of SAMD (Salinas et al., 2015).
Each graph vertex corresponds to a primitive, while a pair of vertices is
connected with an edge if their respective planar regions are adjacent.
Our structure graph mainly serves two purposes:

• To determine the components of the simplified mesh along with
their configuration in the 3D space, according to the structure of
the original model. In this way, we guarantee that the result of
our method closely approximates the initial model.

• To indicate only the pairwise intersections necessary for recover-
ing edges of the simplified mesh, instead of computing all of them.
As a consequence, computational complexity considerably de-
creases in comparison with traditional plane assembling methods
such as Polyfit (Nan and Wonka, 2017).

Similar to other techniques, our segmentation method often iden-
tifies more planar segments than those present in the input mesh
(oversegmentation). To address this problem, we apply a refinement
process over the initial segmentation, similar to Nan and Wonka (2017).
The refinement reduces the original number of planar segments by
iteratively merging them into new ones. In particular, two segments
are merged if they share the same orientation and the faces of the first
are coplanar to the supporting plane of the second (and vice versa).

Despite this refinement, some segments still cannot be used later
during the polygonization process. These correspond to architectural
details represented by a small number of faces due to the limited
resolution of MVS meshes (see Fig. 4). Therefore, we assign to each
planar segment an importance value equal to its area over the surface
area of the entire mesh. With an importance threshold, we select only
those segments which are meaningful to us and discard the rest.

Having established the set of primitives in the original model, we
finally record their interrelationships in the structure graph. In this
work, we focus only on adjacency relations between the primitives.
Furthermore, we assume that two primitives are adjacent if they share
at least one common vertex.

3.3. Polygonization

With the structure of the input model fully defined, we move to
the polygonization itself. Our polygonization process is divided into
three separate stages: (1) the construction of a building scaffold, (2) the
generation of candidate faces, and (3) the selection of candidate faces
through optimization to form the simplified model.
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3.3.1. Building scaffold
Similar to Variational Shape Approximation (VSA) (Cohen-Steiner

et al., 2004), our method also approximates the original model with a
set of planar shapes (proxies). Each of these proxies corresponds to a
primitive we detected via segmentation. To form the simplified mesh,
we first define the boundaries of these proxies. These boundaries should
connect proxies whose primitives are also adjacent in the original
model, thus preserving the adjacencies recorded in our structure graph.

Here, we determine the borders of the proxies with the construction
of the building scaffold. This scaffold is a graph consisting of any sharp
features detected in the original model. We specifically focus on sharp
features of two types; corners (formed out of three adjacent primitives)
and non-planar edges (formed out of two adjacent primitives). To detect
corners, we identify all triplets of adjacent regions in the structure
graph and compute the intersections of their supporting planes. In the
same way, we compute the intersections for pairs of adjacent regions
to detect non-planar edges (see Fig. 5).

3.3.2. Candidate faces
With the construction of the building scaffold, we first approximate

the original mesh with a wireframe mesh consisting only of vertices and
edges. We also define the faces of this mesh (candidate faces) through
the following procedure:

• For each planar region, we collect its scaffold edges and project
them on the supporting plane of that region.

• The projections of the edges form a 2D arrangement (see Fig. 6),
a subdivision of the plane into vertices, edges, and faces (Agar-
wal and Sharir, 2000). The faces of this arrangement define the
candidate faces representing the planar region in our simplified
mesh.

The outcome of this procedure is the formation of a proxy mesh (see
Fig. 7). However, several adjacencies recorded in the structure graph
might be incorrect due to segmentation errors, which results in candi-
date faces that do not correspond to any of the primitives from the input
model. To reliably eliminate these redundant faces, the construction of
the final, simplified mesh is achieved via an optimization process.

3.3.3. Optimization
We adopt and adapt here the optimization process developed by

Nan et al. (Nan and Wonka, 2017) for the reconstruction of polyg-
onal surfaces from point clouds. This optimization is based on the
formulation of a binary linear programming problem (Papadimitriou and
Steiglitz, 1982; Williams, 2009). For this type of problem, each of the
unknowns is represented by a variable whose value can be either 0 (not
chosen) or 1 (chosen). These variables are connected through (a) an
energy function that maximizes the expectation of some reconstruction
objectives and (b) a set of constraints that ensure the resulting mesh
is both manifold and watertight. For the binary variable 𝑥𝑖 of each
candidate face, our objective function consists of three energy terms:
face coverage, data fitting, and model complexity.

Face coverage. The face coverage term is related to the area of a
candidate face covered by the faces of the original mesh (see Fig. 8),

𝐸𝑐 =
1

𝐴(𝑀)

𝑁
∑

𝑖=1
𝑥𝑖 ⋅ (𝐴(𝑓𝑖) − 𝐴(𝑀𝑎

𝑖 )) (1)

where 𝐴(𝑀) is the total surface area of the simplified mesh 𝑀 , 𝐴(𝑓𝑖) the
area of the candidate face 𝑓𝑖, and 𝐴(𝑀𝑎

𝑖 ) the face area covered by the
original region. This term favours choosing faces with high coverage
from the original mesh. Computing the 𝐴(𝑀) term is not possible as the
area of the simplified mesh is unknown. However, we expect that the
simplified version should conform to the original mesh. This allows us
to use the surface area of its bounding box instead, i.e., 𝐴(𝑀) ≈ 𝐴(𝑏𝑏𝑜𝑥).
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Fig. 5. By traversing the structure graph (a), the adjacency of the planar segments can be recovered. Thus, the scaffold vertices and edges (b) are computed as the intersections
of their supporting planes.
Fig. 6. A 2D arrangement of the projected scaffold edges.
Fig. 7. Proxy mesh. The 2D arrangements of the scaffold edges (left) form a set of candidate faces (right) for the proxy mesh. Notice that errors in the structure graph may cause
the production of additional faces (red arrow) or self-intersections (yellow arrow). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
Fig. 8. Two examples of face coverage. The border of the candidate face are coloured in black, while the faces of the input mesh in yellow. The value below each figure indicates
the coverage ratio of each face. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
436
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Fig. 9. (a) Planar and (b) non-planar edges. The latter are edge whose incident faces
are not co-planar, and they are used to define distinct features in meshes.

Data fitting. Apart from the area coverage, we also consider the
number of faces from the input mesh covering a candidate face. This is
expressed through the data fitting term

𝐸𝑓 = 1 − 1
|𝐹 |

𝑁
∑

𝑖=1
𝑥𝑖 ⋅ 𝑠(𝑓𝑖), (2)

where |𝐹 | is the total number of the original faces and 𝑠(𝑓𝑖) the number
of those faces covering the candidate face. As a consequence, faces with
a great amount of supporting faces have a higher chance to be selected
in the final solution.

Model complexity. The data-fitting term complies with discontinu-
ities in the original mesh (such as holes). To avoid such gaps in the final
model and enforce the creation of large planar regions, we introduce a
model complexity term, related to the number of model features (details).
These features are represented by edges which are incident to faces
from different supporting planes (see Fig. 9). To this end, we define
the model complexity term to evaluate the ratio of non-planar edges
over the total number of edges in the simplified model

𝐸𝑚 = 1
|𝐸|

|𝐸|

∑

𝑖=1
𝑐(𝑒𝑖), (3)

where |𝐸| is the total number of edges in the proxy mesh. On the other
hand, 𝑐(𝑒𝑖) is an indicator function, whose value is determined by the
configuration of the candidate faces adjacent to an edge and selected in
the final optimization solution. If the faces are co-planar, the function
has a value of zero (Fig. 9(a)). Otherwise, if the faces are not co-planar
forming a sharp edge, the function has a value of one (Fig. 9(b)).

We select the optimal subset of candidate faces to form the sim-
plified model by minimizing the weighted sum of these energies. The
complete objective function, along with the hard constraints to ensure
that the resulting mesh is both manifold and watertight (meaning that
each edge is adjacent to exactly two faces), is given in Eq. (4).

min
𝑥

𝜆𝑓 ⋅ 𝐸𝑓 + 𝜆𝑐 ⋅ 𝐸𝑐 + 𝜆𝑚 ⋅ 𝐸𝑚

s.t.
⎧

⎪

⎨

⎪

⎩

∑

𝑗∈𝑁(𝑒𝑖)
𝑥𝑗 = 2 or 0, 1 ≤ 𝑖 ≤ |𝐸|

𝑥𝑖 ∈ {0, 1} , 1 ≤ 𝑖 ≤ 𝑁

(4)

This optimization is bound to produce a simplified, topologically
valid representation, despite the various geometric or topological de-
fects in the input MVS mesh (see Fig. 10).

3.4. Implementation details

We have implemented our method in C++ using the CGAL library.
Through experimentation, we performed the computation of planarity
for our segmentation technique over 3-ring neighbourhoods for both
mesh vertices and faces. The distance threshold varied according to
both the minimum width of a building component we wish to detect
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(see Fig. 11) and the respective scale of the input mesh. To eliminate
architectural details from the simplification procedure, we used an
importance threshold of 1% for all the available models. Finally, the
weights of the energy terms in our optimization were those defined
by Nan and Wonka (2017), i.e., 𝜆𝑓 = 0.43, 𝜆𝑐 = 0.27, and 𝜆𝑚 = 0.30.

4. Results & analysis

We applied our method over a set of building models. The results
are shown in Fig. 12 where most of the examples refer to open meshes,
with the exceptions of models (d) and (g). Furthermore, we performed
polygonization over individual building models, again with the excep-
tion of model (a) which contains two separate buildings. The available
meshes consist only of planar components in various configurations,
with roof superstructures varying from simple, flat roofs [(h), (i)] to
more complicated assemblies [(e), (f)]. The level of noise in those
models is also variable, from clean [(d), (g)] to more distorted ones
[(h), (i)], and dependent on the noise of the original point clouds.

Although the result of our method is always a closed mesh, the input
is still allowed to be open which is the case with most building models
extracted from urban scenes. To complete the simplified model, our
implementation exploits the ground plane of the original urban scene
from which the input model was extracted. However, an alternative
implementation could allow the user to import such a plane, according
to their needs.

We assess the conformity of our simplified version to the orig-
inal model by computing the Hausdorff distance between the two
meshes (Guthe et al., 2005). From Table 1, we observe that the RMSE
error is small for both closed and open meshes, which indicates that our
simplified versions closely follow the initial building models, especially
when the original mesh is clean [(d), (g)]. Our simplification method
performs rather well, also when the input model is quite noisy [(h),
(i)].

A comparison between model (a) and models (b), (c) reveals that
the method can be applied to an urban scene consisting of multiple
buildings. Nevertheless, processing each building model individually
results in much more detailed models of higher geometric accuracy.
This is because the area of building primitives remains constant while
their importance changes as the mesh surface area increases. This leads
eventually to their exclusion from the simplification process.

Parameters.We have conducted a quantitative analysis of the effect
of the parameters on the final results. This analysis shows that ring
neighbourhoods of order 3 are more than sufficient for the detection of
borders between adjacent planar regions (see Fig. 3). Any lower order
is not sensitive enough for this task, while any higher order increases
the computational time considerably.

The distance threshold is highly dependent on the scale of the input
model. Nevertheless, our experiments have shown that the mean edge
length of the input model is a good indicator of the distance threshold
that achieves the best results for all the tested data.

Furthermore, the importance threshold of 1% is sufficient for the
polygonization of all our tested models. Experimentation reveals that
this parameter has a maximum range from 0.1% to 5%, in which
it produces simplified meshes conforming adequately to the original
structure (see Fig. 13).

As for the weights of the energy terms in the optimization process, a
wide range of their values can produce the same results, except for cases
where one of the data-fitting or coverage terms is extremely favoured
over the other (in a proportion greater than four to one). A small
coverage coefficient allows the selection of a larger amount of faces,
while a high value of it reduces the candidate faces to only a few (see
Fig. 14). In general, the data-fitting coefficient should always be slightly
higher since coverage is a much stricter indicator of face validity, thus
disregarding most of the candidate set.
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Fig. 10. Robustness. Even though various defects are present in the original mesh (holes, self-intersections, occlusions etc.), our proposed method is guaranteed to produce a
simplified version of the original model.
Fig. 11. By altering the distance threshold of our segmentation method, we are able to detect or ignore building components (here depicted with different colours).
Table 1
Statistics on the simplified meshes. Notice that for this comparison, the polygonal faces of the simplified meshes have been previously triangulated
for the visualization purpose.
Mesh (Fig. 13) (a) (b) (c) (d) (e) (f) (g) (h) (i)

# faces (original) 70,910 13,389 21,454 27,258 6,172 9,923 39,044 39,948 37,269
# faces (simplified) 32 46 110 338 62 38 284 130 100
Planarity (s) 0.9 0.3 0.4 0.5 0.1 0.2 0.7 0.8 0.7
Segmentation (s) 12.4 1.3 1.4 2.5 0.1 0.3 5.7 23.1 10.9
Struct. graph (s) 0.5 0.1 0.2 0.2 0.1 0.1 0.4 0.5 0.4
Simplification (s) 0.2 0.1 0.2 0.6 0.1 0.1 0.9 0.3 0.2
RMSE (% BBox Diagonal) 0.5 0.4 0.3 0.1 0.4 0.5 0.1 1.0 0.8
Structural accuracy. Certain inconsistencies might be observed
between the original models and our simplified versions. These incon-
sistencies are related to parts of the structure that appear (a) with
different geometry in each model or (b) only in one of the two models.
The former error (see Fig. 15(a)) is associated with flaws due to
segmentation, i.e., the detection of less planar components than the
ones necessary to fully approximate a given model. The latter one
(see Fig. 15(b)) with the hard constraints imposed in our optimization
process to ensure the manifoldness of the final result. Specifically, the
hard constraints will include candidate faces in the resulting model
regardless of their face coverage, if the manifoldness of the final mesh
remains unaffected.

Comparisons. Fig. 16 presents a comparison between our method
and other available simplification and polygonization methods. In this
comparison, we have simplified a model to have the same number of
faces for each method. We observe that the error of our method is
smaller than those from all the competing techniques. Additionally, the
error on our results is distributed uniformly along the mesh surface
contrary to the other methods where the error is located on specific
model features. Furthermore, our approach is the only one to produce
lightweight models, valid to be used for further applications, despite
the topological and geometric defects of the original mesh.

We have also compared the performance of our method to the plane
assembly technique PolyFit. We applied both methods to the building
block model shown in Fig. 17 for the same number of initially detected
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planes. Our method took less than two seconds while PolyFit could not
finish the optimization within two hours (see Table 2 for more details).
This comparison proved that our approach is computationally more
efficient than PolyFit.

Limitations.
Our definition of structure is based on the detection of the building

primitives, along with their interrelationships, which, in our case, are
limited only to adjacency relationships. This requires that both of these
elements need to be recovered so that the model structure is completely
acquired. This requirement may not be satisfied due to two reasons,
both related to mesh segmentation (see Fig. 18):

(a) The set of building primitives is not fully recovered. This may
occur when the distance threshold is too big or when the input
mesh is ‘‘smooth’’, meaning that the curvature on the borders
of planar regions changes gradually. As a result, certain compo-
nents cannot be represented with a planar region and therefore,
are ignored during the construction of the building scaffold.

(b) The topological relationships, necessary to recover the border of
a planar region in the building scaffold (as vertices and edges),
are not included in the structure graph. This may occur when
the region extends in a limited area of the mesh, i.e., it shares a
common border with some of the adjacent regions, smaller than
the one required to define a closed shape.
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Fig. 12. Simplification results. From left to right: original model, refined segmentation, candidate faces, simplified mesh, and the visualization of the Hausdorff distance defined
between the input model and the result.
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Fig. 13. The effect of the importance threshold.
Fig. 14. The effect of the energy coefficients.
Fig. 15. Two types of structure inaccuracy.
Table 2
Comparison between our method and PolyFit. The execution of PolyFit was terminated
after two hours.

#planes #candidate #variables #constraints time

Ours 144 454 2100 804 1.7 s
PolyFit 144 43655 133701 278183 >2 h
440
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Fig. 16. Comparison between our method and other simplification techniques for the
same number of faces.

Fig. 17. Application of our method on a building block.

Another limitation of our method is that it is mostly developed for
reconstructing individual buildings. If two buildings that are very close
or adjacent, it is possible that the resulting volumes intersect, which
would be due to elongated and/or unwanted features. Processing these
two buildings together would be one way to avoid this (although these
buildings could be merged into one instance).

It is also theoretically possible that, for one input model, two or
more faces would intersect and be selected for the final model (see as an
example the candidate faces where the yellow arrow points in Fig. 7).
However, during our tests, we have never encountered such a case. This
is because those faces get assigned a low confidence value before the
optimization, and are therefore never selected (the data fitting term
forbids choosing the ones with a low confidence value). In theory, this
could be guaranteed if we detected self-intersections in the candidate
set as part of an iterative process before the optimization. As soon
as such a case is found, we could split the two corresponding faces
into four new ones, and then the hard constraints (i.e., each edge is
associated with 0 or 2 faces) would ensure the final model is free of
self-intersections.
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5. Conclusions

We have presented a novel approach for the structure-driven pro-
duction of simple, topologically valid building models out of dense
MVS meshes. Our structure graph, an abstraction of the structure of the
original model, stands as the cornerstone of the simplification proce-
dure. Its main role is to dictate the geometric operation necessary to
reproduce simplified versions of the building primitives, as well as their
initial configuration in the 3D space. As a consequence, our method is
both accurate and computationally efficient. It should be noticed that
currently regularity is not enforced in or after the simplification. This
means that corners and edges in the resulting simplified model are not
adjusted to feature orthogonality, and neither are the façades forced
to be vertical. In other words, our method is generic. However, such a
regularization step could be applied to our output as a post-processing
step.

Applications. Our approach can be included as an individual part of
a more general procedure for the reconstruction of entire urban scenes.
Utilizing semantic segmentation (Landrieu and Simonovsky, 2018; Zhu
et al., 2018), the buildings of a given urban scene can be isolated, sim-
plified separately with our proposed technique and then, recombined
with the rest of the scene (as shown in Fig. 1).

Future work. We would like to further refine our means for recov-
ering the structure of the original model, thus improving its robustness.
In addition to the planar primitives, we would like to incorporate
additional primitive geometries (such as cylinders, spheres, and cones),
to handle a wider range of building structures.
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Appendix

See Algorithm 1.

Algorithm 1 Region growing with 𝑘-ring planarity
Input:

• Triangle Surface Mesh  with faces 

• 𝑘-ring Planarity Estimates {𝑝}

• 𝑘-ring Neighbouring Face Finding Function 𝛺𝑘(.)

• Distance Threshold 𝑑𝑡
Output: Triangles assigned to segments
Initialize:

• Regions {𝑅} ← ∅ // a list of integers (face indices)

• Available Faces {𝐹} ← {1, 2,..., m} // a list of integers (face integers)
while {𝑉 } ≠ ∅ do

- Current Region: {𝑅𝑐 } ← ∅ // face indices
- Current Seeds: {𝑆𝑐 } ← ∅ // face indices
Face with highest planarity {𝐹} ← 𝑓𝑚𝑎𝑥
{𝑆𝑐 } ← {𝑆𝑐 } ∪ 𝑓𝑚𝑎𝑥
{𝑉 } ← {𝑉 } ⧵ 𝑓𝑚𝑎𝑥
Find 𝑘-ring neighbouring faces {𝐵𝑐 } ← 𝛺𝑘{𝑓𝑚𝑎𝑥}
Fit plane to Neighbours 𝑝𝑙𝑎𝑛𝑒 ← PCA{𝐵𝑐 }
while {𝑆𝑐 } ≠ ∅ do

{𝐵𝑐 } ← ∅ // face indices
for 𝑠 in {𝑆𝑐 } do

{𝐵𝑐 } ← {𝐵𝑐 } ∪ 𝛺1{𝑠} // 1-ring neighbours
{𝑆𝑐 } ← {𝑆𝑐 } ⧵ 𝑠

end for
for 𝐵 in {𝐵𝑐 } do

{𝑣𝐵} ← vertices of 𝐵
if 𝐵 ∈ {𝐹 } and 𝑑𝑖𝑠𝑡(𝐵, 𝑝𝑙𝑎𝑛𝑒) ≤ 𝑑𝑡 then

{𝑅𝑐 } ← {𝑅𝑐 } ∪ 𝐵
{𝑉 } ← {𝑉𝑐 } ⧵ {𝑣𝐵}
{𝑆𝑐 } ← {𝑆𝑐 } ⧵ {𝑣𝐵}

end if
end for
Re-fit plane to current region 𝑝𝑙𝑎𝑛𝑒 ← PCA{𝑅𝑐 }

end while
Add current region {𝑅} ← {𝑅𝑐 }

end while
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Fig. 18. Structure errors.
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