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SPARSE DOMINATION FOR THE LATTICE

HARDY–LITTLEWOOD MAXIMAL OPERATOR

TIMO S. HÄNNINEN AND EMIEL LORIST

(Communicated by Alexander Iosevich)

Abstract. We study the domination of the lattice Hardy–Littlewood max-
imal operator by sparse operators in the setting of general Banach lattices.
We prove that the admissible exponents of the dominating sparse operator are
determined by the q-convexity of the Banach lattice.

1. Introduction

Various complicated operators of harmonic analysis can be dominated by simple
sparse operators and, via such domination, weighted estimates for them follow from
estimates for sparse operators. This approach, in its essence, was initiated by
Lerner by his median oscillation decomposition [22]. Its early highlight was the
domination of Calderón–Zygmund operators by sparse operators by Lerner [23,24].
This domination yielded an alternative, simple proof of the A2 theorem, which was
originally proved by Hytönen [16]. Since then, a wide variety of operators has been
dominated by sparse operators (or, more generally, sparse forms). We refer the
reader to the introductions, for example, in [1, 4, 21, 25, 26] for an overview of this
vast field.

We study pointwise domination of the lattice Hardy–Littlewood maximal operator
by sparse operators in the setting of general Banach lattices. Let E be a Banach
lattice, that is, a Banach space and a lattice such that both the structures are
compatible. An important class of Banach lattices is the class of Banach function
spaces, with the pointwise order as the lattice partial order. For an introduction to
Banach lattices, see for example [27,30]. Let μ be a locally finite Borel measure on
Rd, and let D be a finite collection of dyadic cubes in Rd. A subcollection S ⊆ D of
dyadic cubes is called sparse if for every S ∈ S there exists a subset ES ⊆ S such
that μ(ES) ≥ 1

2μ(S) and such that the sets {ES}S∈S are pairwise disjoint. The
operators of study are defined as follows:
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272 TIMO S. HÄNNINEN AND EMIEL LORIST

• The dyadic lattice Hardy–Littlewood maximal operator M̃μ
D is defined as follows:

For a locally integrable function f : Rd → E, we set

M̃μ
Df(x) := sup

Q∈D
〈|f |〉μQ 1Q(x), x ∈ Rd,

where the supremum and the absolute value are taken in the lattice sense, and
〈f〉μQ := 1

μ(Q)

∫
Q
f dμ.

• For an exponent q ∈ [1,∞) and a sparse collection S of dyadic cubes, the
sparse operator Aμ

q,S relevant to our study is defined as follows: For a locally

integrable function f : Rd → R, we set

Aμ
q,Sf(x) :=

(∑
S∈S

(
〈|f |〉μS

)q
1S(x)

)1/q
, x ∈ Rd.

We address the following problem:

Problem 1.1. For a Banach lattice E, for which exponents q ∈ [1,∞) can the

dyadic lattice maximal operator M̃μ
D be pointwise dominated by a sparse operator

Aμ
q,S?

The pointwise domination is meant in the following sense: For each locally in-
tegrable function f : Rd → E and for each finite collection D of dyadic cubes there
exists a sparse subcollection S ⊆ D such that

(1.1)
∥∥M̃μ

Df
∥∥
E
≤ CE,q Aμ

q,S(‖f‖E) μ-a.e.

Note that the larger the exponent q, the smaller the dominating sparse operator
Aμ

q,S and hence the problem is to determine the largest possible exponent in the
domination.

We study the problem among the Banach lattices E that have the Hardy–
Littlewood property. In the most important case that the measure μ is the Lebesgue
measure, this assumption is necessary for the domination, for any domination expo-
nent q ∈ [1,∞). The class of Banach lattices with the Hardy–Littlewood property
includes all reflexive Lebesgue, Lorentz, and Orlicz spaces. The Hardy–Littlewood
property is defined and further discussed in Section 2.

We find out that the admissible exponents are determined by the geometric
property of the lattice E called q-convexity. We recall that a Banach lattice E is
called q-convex, with q ∈ [1,∞), if

∥∥∥( n∑
k=1

|ek|q
)1/q∥∥∥

E
≤ CE,q

n∑
k=1

(
‖ek‖qE

)1/q
for all e1, · · · , en ∈ E. More precisely, we show that the exponent q∗, defined by

q∗ := sup{q ∈ (1,∞) : E is q-convex},

is critical in that the domination (1.1) holds for all q ∈ [1, q∗) and fails for all
q ∈ (q∗,∞).

We first study the necessity of q-convexity. The main contribution of this article
reads as follows.

Theorem 1.2. Let E be a Banach lattice, let μ be a locally finite Borel measure
such that μ(Rd) = ∞, and let r ∈ (1,∞). Assume that for each finite collection D
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SPARSE DOMINATION FOR THE LATTICE MAXIMAL OPERATOR 273

of dyadic cubes and for each locally integrable function f : Rd → E there exists a
sparse collection S ⊆ D such that∥∥M̃μ

Df(x)
∥∥
E
≤ CE,q Aμ

r,S(‖f‖E)(x), μ-a.e. x ∈ Rd.

Then the Banach lattice E is q-convex for all exponents q ∈ [1, r).

We then study the sufficiency of q-convexity. For the particular Banach lattice
E = �q, a prototypical example of a q-convex lattice, the domination was obtained
by Cruz-Uribe, Martell, and Pérez [6, Section 8]. In this article, we mention how
their proof, based on Lerner’s median oscillation decomposition, can be extended
to general Banach lattices E. We also give an alternative, elementary proof of
this domination, via the technique of stopping cubes. In this proof, the lattice-
valued setting differs from the scalar-valued setting in that we need to use a lattice-
valued generalization of the usual Muckenhoupt–Wheeden principal cubes stopping
condition. The domination in full generality reads as follows.

Theorem 1.3. Let E be a Banach lattice and let μ be a locally finite Borel mea-
sure. Assume that E has the Hardy–Littlewood property and is q-convex for some
q ∈ (1,∞). Then for each finite collection D of dyadic cubes and for each locally
integrable function f : Rd → E there exists a sparse collection S ⊆ D such that∥∥M̃μ

Df(x)
∥∥
E
≤ CE,q Aμ

q,S(‖f‖E)(x), μ-a.e. x ∈ Rd.

As an immediate corollary of the domination, we mention sharp weighted weak
and strong Lp-estimates for the non-dyadic lattice Hardy–Littlewood maximal op-
erator (see Corollary 5.2).

Combining Theorem 1.3 and Theorem 1.2 yields the following corollary, which
has been mentioned above.

Corollary 1.4 (Admissible exponents are determined by q-convexity). Let E be a
Banach lattice with the Hardy–Littlewood property and let μ be a locally finite Borel
measure such that μ(Rd) = ∞. Define

q∗ := sup{q ∈ (1,∞) : E is q-convex}.
Then the sparse domination (1.1) holds for all q ∈ [1, q∗) and fails for all q ∈
(q∗,∞).

Remark. A Banach lattice E may be q∗-convex (for example, �q) or may fail to
be q∗-convex (for example, Lp,q with p < q). If E is q∗-convex, then the sparse
domination (1.1) holds for q∗ by Theorem 1.3. We do not know whether the converse
of this holds: is it true that if the sparse domination (1.1) holds for q∗, then E is
q∗-convex; or in other words, is it true that if E is not q∗-convex, then the sparse
domination (1.1) fails for q∗?

This article is organized as follows: We summarize the preliminaries in Section 2.
We then prove that the domination implies the q-convexity (Theorem 1.2) in Section
3. Furthermore, we give an alternative proof of the result that the domination
is implied by the q-convexity (Theorem 1.3) in Section 4, and mention weighted
bounds (Corollary 5.2) as its corollary in Section 5. In Appendix A, for the reader’s
convenience, we give a self-contained elementary proof of the well-known fact that
the strong Lp-bound with p ∈ (1,∞) implies the weak L1-bound for the dyadic
lattice maximal operator (Proposition A.1). This fact is used in our proof of the
sparse domination.
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274 TIMO S. HÄNNINEN AND EMIEL LORIST

2. Preliminaries

Let μ be a locally finite Borel measure on Rd, and let D be a finite collection of
dyadic cubes in Rd. It is well known that, for every q ∈ (0,∞), the sparse operator
Aμ

q,S , defined in the introduction, is bounded on Lp(μ) for every p ∈ (1,∞). This
can be checked, for example, by using duality and the Hardy–Littlewood maximal
inequality. Therefore, a necessary condition for the domination (1.1) is that the

dyadic lattice maximal operator M̃μ
D is bounded on Lp(μ;E). In our context the

most important measure is the Lebesgue measure, which leads us to consider the
Banach lattices that have the Hardy–Littlewood property.

Definition 2.1 (Hardy–Littlewood property). A Banach lattice E has the Hardy–
Littlewood property if for some p ∈ (1,∞), we have

(2.1) sup
D

∥∥M̃dx
D

∥∥
Lp(dx;E)→Lp(dx;E)

< ∞,

where the supremum is taken over all finite collections D of dyadic cubes and dx
denotes the Lebesgue measure.

Remark.

• By a covering argument using shifted dyadic systems (see for example [18,
Lemma 3.2.26]), it is equivalent to take the supremum in (2.1) over all finite
collections of generic cubes or balls, in place of taking it over all finite collections
of dyadic cubes over several dyadic systems.

• The Hardy-Littlewood property is independent of the exponent p and of the
dimension d (see [9, Remark 1.3 and Theorem 1.7] or [7, Theorem 3]). The inde-
pendence of the exponent p also follows from the sparse domination (Theorem
1.3), since the dominating sparse operator is bounded on Lp for all p ∈ (1,∞).

• Among all the measures on Rd, the norm of the lattice maximal operator with
respect to the Lebesgue measure is the largest (see [14, Appendix A.2]), in
that for every locally finite Borel measure μ and for every finite collection D
of dyadic cubes, we have

∥∥M̃μ
D
∥∥
Lp(μ;E)→Lp(μ;E)

� sup
D′

∥∥M̃dx
D′

∥∥
Lp(dx;E)→Lp(dx;E)

.

Example.

• The Fefferman–Stein vector-valued maximal inequality states that the Banach
lattice �q with q ∈ (1,∞] has the Hardy–Littlewood property.

• Every Banach lattice with the UMD property (Unconditional Martingale Dif-
ferences) has the Hardy-Littlewood property [2, 33]. The class of Banach lat-
tices with the UMD property and hence with the Hardy–Littlewood property
includes all reflexive Lebesgue, Lorentz, and Orlicz spaces. For UMD spaces,
see for example [18, Chapter 4].

It is known that the domination (1.1) holds with the exponent q = 1. This

follows from viewing the operator M̃μ
D as an instance of a singular integral operator
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or a discrete analogue of such, operators for which the domination with q = 1 is
known:

• M̃μ
D can be viewed as a vector-valued singular integral (see [9,10]). The sparse

domination for vector-valued singular integrals follows by combining [15, The-
orem 2.10] (dominating vector-valued singular integrals by more complex op-
erators) and [5, Theorem A] (dominating the more complex operators by the
sparse operator Aμ

1,S).

• M̃μ
D can be viewed as a vector-valued martingale transform (see [29]). Vector-

valued martingale transforms can be dominated by the sparse operator Aμ
1,S

(see [20, Theorem 2.4]; for an alternative proof, see [13, Proposition 2.7]).

As stated in Problem 1.1, our purpose is to study whether the domination (1.1)
holds with some strictly larger exponent q ∈ (1,∞). The critical notion for this is
that of q-convexity:

Definition 2.2 (q-convexity). We say that a Banach lattice E is q-convex, with
q ∈ [1,∞), if ∥∥∥( n∑

k=1

|ek|q
)1/q∥∥∥

E
≤ CE,q

n∑
k=1

(
‖ek‖qE

)1/q
for all e1, · · · , en ∈ E.

Note that the expression
(∑n

k=1|ek|
q)1/q

can be defined pointwise in a Banach
function space. In a general lattice it can be defined using the Krivine calculus (see
for example [27, Theorem 1.d.1]).

Every Banach lattice with the Hardy–Littlewood property is q-convex for some
q > 1 [9, Theorem 2.8]. Recall that, in the case that the measure μ is the Lebesgue
measure, the Hardy–Littlewood property is necessary for the domination (1.1) to
hold for any q ∈ [1,∞). Thus, in the case of the Lebesgue measure, if the domi-
nation (1.1) holds for any exponent q ∈ [1,∞), then the lattice E is q-convex for
some q ∈ (1,∞).

3. Domination exponent is determined by q-convexity

In this section we prove Theorem 1.2 from the introduction, which states the
necessity of the q-convexity assumption for the domination (1.1) to hold.

Theorem 1.2. Let E be a Banach lattice, let μ be a locally finite Borel measure
such that μ(Rd) = ∞, and let r ∈ (1,∞). Assume that for each finite collection D
of dyadic cubes and for each locally integrable function f : Rd → E there exists a
sparse collection S ⊆ D such that∥∥M̃μ

Df(x)
∥∥
E
≤ CE,q Aμ

r,S(‖f‖E)(x), μ-a.e. x ∈ Rd.

Then the Banach lattice E is q-convex for all exponents q ∈ [1, r).

Proof. Let Q0 be a dyadic cube such that μ(Q0) > 0 and such that for any C > 0
there exists a dyadic cube Q′ ⊇ Q0 with μ(Q′) > C, which is possible since μ(Rd) =
∞. Define recursively Qk+1 as the minimal dyadic cube such that Qk ⊆ Qk+1 and
μ(Qk) ≤ 1

2μ(Qk+1).
Fix n ∈ N and let e1, · · · , en ∈ E be pairwise disjoint (i.e., inf{ej , ek} = 0

for all 1 ≤ j, k ≤ n), such that ‖e1‖ ≤ · · · ≤ ‖en‖. Define D =
⋃n

k=0 Qk and
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276 TIMO S. HÄNNINEN AND EMIEL LORIST

f =
∑n

k=1 1Qk\Qk−1
ek. Let S ⊆ D be sparse such that

(3.1) ‖MDf‖E ≤ CE,r Aμ
r,S(‖f‖E),

μ-almost everywhere, and let x0 ∈ Q0 be such that (3.1) holds. Note that

〈|f |〉μQk
≥ μ(Qk \Qk−1)

μ(Qk)
|ek| ≥

(
1− 1

2

)
|ek| =

1

2
|ek|.

By the elementary relations

e+ e′ = sup{e, e′}+ inf{e, e′}
inf{sup{e, e′}, e′′} = sup{inf{e, e′′}, inf{e′, e′′}}

for e, e′, e′′ ∈ E, the disjoint vectors ek’s satisfy
∑n

k=1 ek = sup1≤k≤n ek. Therefore,

(3.2)
∥∥∥ n∑
k=1

ek

∥∥∥
E
≤

∥∥ sup
1≤k≤n

|ek|
∥∥
E
≤ 2

∥∥M̃μ
Df(x0)

∥∥
E
.

Moreover, since ‖e1‖ ≤ · · · ≤ ‖en‖, we have that

〈‖f‖E〉
μ
Qk

=
1

μ(Qk)

k∑
j=1

μ(Qj \Qj−1)‖ej‖E ≤ ‖ek‖E ,

which yields

(3.3) Aμ
r,S

(
‖f‖E

)
(x0) ≤

( n∑
k=1

(
〈‖f‖〉μQk

)r) 1
r ≤

( n∑
k=1

‖ek‖rE
) 1

r

,

Combining (3.1), (3.2), and (3.3), we deduce that∥∥∥ n∑
k=1

ek

∥∥∥
E
≤ CE,r

( n∑
k=1

‖ek‖rE
) 1

r

for all pairwise disjoint vectors e1, · · · , en ∈ E such that ‖e1‖ ≤ · · · ≤ ‖en‖ and
therefore for every collection of pairwise disjoint vectors in E. This is called an
upper r-estimate for E. By [27, Theorem 1.f.7], this implies that E is q-convex for
all q ∈ [1, r). �

4. Sparse domination for q-convex lattices

In this section we prove Theorem 1.3 from the introduction, which states the
sufficiency of the q-convexity for the domination (1.1) to hold.

Theorem 1.3 (Sparse domination for lattice maximal operator). Let E be a Ba-
nach lattice, and let μ be a locally finite Borel measure. Assume that E has the
Hardy–Littlewood property and is q-convex for some q ∈ (1,∞). Then for each fi-
nite collection D of dyadic cubes and for each locally integrable function f : Rd → E
there exists a sparse collection S ⊆ D such that∥∥M̃μ

Df(x)
∥∥
E
≤ CE,q Aμ

q,S(‖f‖E)(x), μ-a.e. x ∈ Rd.

Cruz-Uribe, Martell, and Pérez [6, Lemma 8.1] proved this domination in the case
where μ is the Lebesgue measure and E = �q, which is a prototypical Banach lattice
that has the Hardy–Littlewood property and is q-convex. Their proof extends to
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SPARSE DOMINATION FOR THE LATTICE MAXIMAL OPERATOR 277

the case of general measures and general Banach lattices as follows. First, in place
of the estimate 0 ≤ max{a, b}−b ≤ a for all positive reals a, b, one uses the estimate

0 ≤ ‖sup{e1, e2}‖qE − ‖e2‖qE ≤ ‖e1‖qE
for all positive vectors e1, e2 in a q-convex lattice E. This estimate holds provided
that the constant CE,q in the definition of q-convexity equals one, which can be
arranged by passing to an equivalent norm [27, Theorem 1.d.8]. Second, in place
of the usual Lerner median oscillation decomposition [22], one uses its variant for
general measures [13, Theorem 1.2].

We give an alternative proof for the sparse domination. Our proof is elementary
in that it uses neither Lerner’s median oscillation decomposition, unlike the Cruz-
Uribe–Martell–Pérez proof, nor renorming of the lattice. Our proof is via the tech-
nique of stopping cubes, using a lattice-valued generalization of the Muckenhoupt–
Wheeden principal cubes stopping condition. The generalized stopping condition
has been applied to characterize lattice-valued two-weight norm inequalities [14]
and is likely to have also other applications in the lattice-valued setting.

The generalized stopping condition is as follows. Let f : Rd → E+ be a non-
negative (in the lattice sense) locally integrable function. In the generalized stop-
ping condition, we choose the maximal dyadic subcubes S′ ⊆ S that satisfy the
stopping condition∥∥∥ sup

Q∈D
S′⊆Q⊆S

〈f〉μQ
∥∥∥
E
> 2

∥∥M̃μ
D
∥∥
L1(μ;E)→L1,∞(μ;E)

〈‖f‖E〉
μ
S .

Note that in the scalar-valued case E+ = R+ this reduces to choosing the maximal
dyadic subcubes S′ ⊆ S such that

〈f〉μS′ > 2〈f〉μS ;
this is the Muckenhoupt–Wheeden principal cubes stopping condition, which origi-
nally appeared in [31, Equation 2.5].

Proof of Theorem 1.3 via the technique of stopping cubes. Let f : Rd → E be a lo-
cally integrable function, which may be taken positive without loss of generality.
For a cube S ∈ D, we define its stopping children chS(S) to be the collection of
maximal (w.r.t. set inclusion) cubes S′ ∈ D such that S′ � S and the cube S′

satisfies the stopping condition

(4.1)
∥∥∥ sup

Q∈D
S′⊆Q⊆S

〈f〉μQ
∥∥∥
E
> 2

∥∥M̃μ
D
∥∥
L1(μ;E)→L1,∞(μ;E)

〈‖f‖E〉
μ
S .

Let S0 := {Q ∈ D : Q maximal} and define recursively Sk+1 :=
⋃

S∈Sk
chS(S). We

set S :=
⋃∞

k=0 Sk. For each Q ∈ D, we define its stopping parent πS(Q) as

πS(Q) = {S ∈ S : S minimal (w.r.t. set inclusion) such that Q ⊆ S}.
First, we show that the collection S of dyadic cubes is sparse. Fix S ∈ S and let

ES := S \
⋃

S′∈chS(S) S
′. Define the set

S∗ :=
{
x ∈ Rd :

∥∥M̃μ
D(f 1S)(x)

∥∥
E
> 2

∥∥M̃μ
D
∥∥
L1(E)→L1,∞(E)

〈
‖f‖E

〉μ
S

}
.

Note that by the definition of the weak L1-norm we have

(4.2) μ(S∗) ≤ 1

2
μ(S).
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278 TIMO S. HÄNNINEN AND EMIEL LORIST

Moreover, for S′ ∈ chS(S) and x ∈ S′, we have∥∥∥M̃μ
D(f 1S)(x)

∥∥∥
E
=

∥∥∥ sup
Q∈D

〈f 1S〉μQ 1S′(x)
∥∥∥
E
≥

∥∥∥ sup
Q∈D

S′⊆Q⊆S

〈f〉μQ
∥∥∥
E

so x ∈ S∗ by (4.1) and thus S′ ⊆ S∗. Using the disjointness of chS(S) and (4.2),
we get ∑

S′∈chS(S)

μ(S′) ≤ μ(S∗) ≤ 1

2
μ(S).

So μ(ES) ≥ 1
2μ(S), which means that S is a sparse collection of dyadic cubes.

Next, we check the pointwise estimate. Fix S ∈ S, x ∈ S and let Sx ∈ D be
the minimal (w.r.t. set inclusion) cube such that x ∈ Sx and πS(Sx) = S. By the
minimality, we have∥∥∥ sup

Q∈D
πS(Q)=S

〈f〉μQ 1Q(x)
∥∥∥
E
=

∥∥∥ sup
Q∈D

Sx⊆Q⊆S

〈f〉μQ
∥∥∥
E
1S(x),

and by the condition πS(Sx) = S, we have∥∥∥ sup
Q∈D

Sx⊆Q⊆S

〈f〉μQ
∥∥∥
E
1S(x) ≤ 2

∥∥M̃μ
D
∥∥
L1(μ,E)→L1,∞(μ,E)

〈‖f‖E〉
μ
S 1S(x).

Altogether,

(4.3)
∥∥∥ sup

Q∈D
πS(Q)=S

〈f〉μQ 1Q(x)
∥∥∥
E
≤ 2

∥∥M̃μ
D
∥∥
L1(E)→L1,∞(E)

〈‖f‖E〉
μ
S 1S(x).

Now, we have∥∥M̃μ
Df(x)

∥∥
E
=

∥∥∥sup
S∈S

sup
Q∈D

πS(Q)=S

〈f〉μQ 1Q(x)
∥∥∥
E

≤
∥∥∥(∑

S∈S

(
sup
Q∈D

πS(Q)=S

〈f〉μQ 1Q(x)
)q) 1

q
∥∥∥
E

‖ · ‖�∞ ≤ ‖ · ‖�q

≤ CE,q

(∑
S∈S

∥∥∥ sup
Q∈D

πS(Q)=S

〈f〉μQ 1Q(x)
∥∥∥q
E

) 1
q

q-convexity of E

≤ CE,q

∥∥M̃μ
D
∥∥(∑

S∈S

(
〈‖f‖E〉

μ
S

)q
1S(x)

) 1
q

(4.3),

with
∥∥M̃μ

D
∥∥ :=

∥∥M̃μ
D
∥∥
L1(μ;E)→L1,∞(μ;E)

. By Proposition A.1, we have∥∥M̃μ
D
∥∥
L1(μ;E)→L1,∞(μ;E)

≤ Cp

∥∥M̃μ
D
∥∥
Lp(μ;E)→Lp(μ;E)

for every p ∈ (1,∞). By the remark after Definition 2.1, we have∥∥M̃μ
D
∥∥
Lp(μ;E)→Lp(μ;E)

≤ sup
D′

∥∥M̃dx
D′

∥∥
Lp(dx;E)→Lp(dx;E)

.

Note that the quantity supD′
∥∥M̃dx

D′

∥∥
Lp(dx;E)→Lp(dx;E)

is finite for some p ∈ (1,∞)

by the assumption that E has the Hardy-Littlewood property. This completes the
proof of the theorem. �
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5. Weighted estimates for non-dyadic maximal functions

As is well known, via the domination of an operator by sparse operators, the
weighted bounds for the sparse operator carry over to the dominated operator. In
this section, we mention weighted bounds that carry over via the domination from
sparse operators to the non-dyadic lattice Hardy–Littlewood maximal operator.

Non-dyadic lattice Hardy–Littlewood maximal operator. We define the

non-dyadic lattice Hardy–Littlewood maximal operator M̃μ as follows: for a locally
integrable function f : Rd → E, we set

(5.1) M̃μf(x) := sup
Q

〈|f |〉μQ 1Q(x), x ∈ Rd,

where the supremum is taken in the lattice sense over all cubes Q ⊆ Rd with sides
parallel to the coordinate axes.

For this definition to make sense, the supremum needs to exist for μ-a.e. x ∈ Rd,

and M̃μf needs to be strongly μ-measurable, i.e., it needs to be pointwise approx-
imable by simple functions (see [18, Chapter 1] for more on strong measurability).
This is the case if the Banach lattice is order continuous. (On order continuity, see
for example [27, Section 1.a].) Since, in particular, every reflexive Banach lattice is
order continuous, this is a rather general sufficient condition.

Lemma 5.1 (Well-definedness of the non-dyadic lattice maximal operator). Let E
be an order continuous Banach lattice and let μ be a locally finite Borel measure.

Then for every simple function f : Rd → E the maximal function M̃μf exists and
is strongly μ-measurable.

Proof. Note that since E is order-continuous, the space of all strongly μ-measurable
functions L0(μ;E) is order-complete by [12, Theorem 2.6], i.e., every order bounded
set in L0(μ;E) has a supremum in L0(μ;E).

Let f : Rd → E be a simple function, that is, f =
∑n

k=1 ek 1Ak
with e1, · · · , en ∈

E and A1, · · · , An ⊆ Rd measurable, pairwise disjoint and μ(Ak) < ∞ for k =
1, · · · , n. Since we have for all cubes Q ⊆ Rd that

〈|f |〉μQ 1Q ≤
( n∑
k=1

|ek|
)
1Rd ∈ L0(μ;E),

it follows that

M̃μf = sup
Q

〈|f |〉μQ 1Q ∈ L0(μ;E). �

Muckenhoupt weights. We now turn to the weighted estimates for the non-
dyadic Hardy–Littlewood maximal operator. For this, we fix μ to be the Lebesgue

measure dx and denote M̃ := M̃dx, M̃D := M̃dx
D , Aq,S := Adx

q,S , and 〈 · 〉Q := 〈 · 〉dxQ .

A weight is a non-negative locally integrable function w : Rd → (0,∞). For
p ∈ [1,∞), the weighted Lebesgue–Bochner space Lp(w;E) is the space of all
f ∈ L0(dx;E) such that

‖f‖Lp(w;E) :=
(∫

Rd

‖f‖pEw dx
)1/p

< ∞.
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280 TIMO S. HÄNNINEN AND EMIEL LORIST

For p ∈ [1,∞), the class of the Muckenhoupt Ap-weights contains all weights w
such that

[w]Ap
:= sup

Q
〈w〉Q

〈
w− 1

p−1
〉p−1

Q
< ∞,

where the supremum is taken over all cubes Q ⊆ Rd with sides parallel to the
coordinate axes, and where the second factor is replaced by ‖w−1‖L∞(Q) for p = 1.

For p = ∞, the class contains all weights such that

[w]A∞ =

∫
Q
M(w 1Q) dx∫

Q
w dx

< ∞,

where M is the usual (scalar) Hardy-Littlewood maximal operator. We call [w]Ap

the Ap-characteristic of w. For a general overview of Muckenhoupt weights, see
[11, Chapter 9], and for an introduction to the A∞-characteristic, see [19] and the
references therein.

Weighted bounds for maximal operators. As is well known, there are bound-
edly many shifted dyadic systems such that every cube is contained in some dyadic
cube of comparable side length (see for example [18, Lemma 3.2.26]). Hence, as is
well known, non-dyadic maximal operators can be dominated by dyadic maximal
operators. Via the domination of non-dyadic lattice maximal operators by dyadic
lattice maximal operators and the domination of dyadic lattice maximal operators
by sparse operators, the weighted bounds for the sparse operator carry over to the
non-dyadic lattice maximal operator. In this way the weighted bounds for sparse
operators from

• [17, Theorem 1.1. and Theorem 1.2.] in the case Lp(w) → Lp(w) and Lp(w) →
Lp,∞(w),

• [8, Theorem 1.3] in the case L1(w) → L1,∞(w),

yield the following weighted estimates.

Corollary 5.2. Let E be an order-continuous Banach lattice. Assume that E has
the Hardy–Littlewood property and is thus q-convex for some q ∈ (1,∞). Then for
all p ∈ (1,∞), w ∈ Ap, and f ∈ Lp(w;E) we have∥∥M̃f

∥∥
Lp(w;E)

≤ CE,p,q,d [w]
1
p

Ap

(
[w]

1
q−

1
p

A∞
+ [w1−p′

]
1
p

A∞

)∥∥f∥∥
Lp(w;E)

(5.2)

≤ CE,p,q,d[w]
max

{
1

p−1 ,
1
q

}
Ap

∥∥f∥∥
Lp(w;E)

,(5.3)

and if p �= q we have∥∥M̃f
∥∥
Lp,∞(w;E)

≤ CE,p,q,d [w]
1
p

Ap

(
[w]

1
q−

1
p

A∞
+ 1

)∥∥f∥∥
Lp(w;E)

(5.4)

≤ CE,p,q,d [w]
max

{
1
p ,

1
q

}
Ap

∥∥f∥∥
Lp(w;E)

.(5.5)

If w ∈ A1 and f ∈ L1(w;E) we have∥∥M̃f
∥∥
L1,∞(w;E)

≤ CE,d [w]A1

(
1 + log([w]A∞)

)
‖f‖L1(w;E).(5.6)

In the particular case E = �q, the strong-type weighted bound (5.3) together
with its sharpness was proved in [6]. After the appearance of this manuscript on
arXiv, another manuscript appeared, in which the weighted bounds (5.2) and (5.4)
for the lattice maximal operator were deduced independently in the particular case
E = �q; see [3, Theorem 2].
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Remark. In the particular case E = �q, the dependence on the Ap-characteristic is
sharp both in the strong-type weighted estimate (5.3) (see [6]) and in the weak-type
weighted estimate (5.5) (this follows from combining [6] and [32, Theorem 1]). In
the general case that E is Banach lattice, that is, q-convex for some q ∈ (1,∞), the
exponent

q∗ := sup{q ∈ (1,∞) : E is q-convex}

is critical: The strong-type weighted estimate (5.3) with the dependence

[w]
max

{
1

p−1 ,
1
q

}
Ap

holds for all q < q∗ and fails for all q > q∗. Similarly, the weak-type (5.5) weighted
estimate with the dependence

[w]
max

{
1
p ,

1
q

}
Ap

holds for all q < q∗ and fails for all q > q∗. This follows from embedding a copy of �qn
with q < q∗ into the lattice E for a large enough n (by applying [27, Theorem 1.f.12])
and using the sharpness in the case �qn. This sharpness for weighted estimates can
be compared with the sharpness for domination; see Corollary 1.4.

Appendix A. Strong Lp
-bound implies weak L1

-bound

As is well known, for the dyadic lattice Hardy Littlewood maximal operator
the strong Lp-boundedness implies the weak L1-boundedness. This result can be
proven by viewing the lattice maximal operator as a vector-valued singular integral
operator (see [9, 10]) and using the Calderón–Zygmund decomposition, or alter-
natively, by viewing the lattice maximal operator as a martingale transform (see
[29]) and using the Gundy decomposition. In this Appendix, we give an elementary
proof of this result.

Proposition A.1. Let E be a Banach lattice, let μ be a locally finite Borel measure,
and let D be a finite collection of dyadic cubes. Then for all p ∈ (1,∞)∥∥M̃μ

D
∥∥
L1,∞(μ;E)→L1(μ;E)

≤ Cp

∥∥M̃μ
D
∥∥
Lp(μ;E)→Lp(μ;E)

.

Proof. Fix f ∈ L1(μ;E), which may be taken positive without loss of generality.

Let D̃ be the dyadic grid such that D ⊆ D̃ and for a cube Q ∈ D̃ let its dyadic

parent Q̂ be the minimal cube Q′ ∈ D̃ such that Q � Q′. Define for λ > 0

S := {Q ∈ D̃ maximal with 〈‖f‖E〉Q > λ}.

We write Ω :=
⋃

S∈S S. For a fixed cube Q ∈ D we have

〈f〉Q =
∑
S∈S
S�Q

〈f 1S〉Q +
∑
S∈S
S⊇Q

〈f 1S〉Q + 〈f 1Ωc〉Q

≤
∑
S∈S

μ(S)

μ(Ŝ)

〈
〈f〉S 1Ŝ

〉
Q

+
∑
S∈S
S⊇Q

〈f〉Q + 〈f 1Ωc〉Q,
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as Ŝ ⊆ Q if S � Q. Therefore, we have the decomposition

M̃μ
Df ≤ M̃μ

D

(∑
S∈S

μ(S)

μ(Ŝ)
〈f〉S 1Ŝ +f 1Ωc

)
+ sup

Q∈D

∑
S∈S
S⊇Q

〈f〉Q 1Q

=: M̃μ
D(g1 + g2) + b.

(A.1)

Note that b is supported on Ω and Ω = {M
˜D(‖f‖E) > λ}, where M

˜D is the

usual dyadic (scalar) Hardy–Littlewood maximal operator over the dyadic grid D̃.
By the weak L1-boundedness of M

˜D (see for example [34]), we have

(A.2) μ
(
‖b‖E > λ

)
≤ μ

(
M

˜D(‖f‖E) > λ
)
≤ 1

λ
‖f‖L1(μ;E).

Since S is a family of disjoint dyadic cubes, we have by [28, Lemma 3.3] that

(A.3)

‖g1‖pLp(E) ≤
∫
Rd

(∑
S∈S

μ(S)

μ(Ŝ)
〈‖f‖E〉

μ
S 1Ŝ

)p

dx

≤ Cp

(
sup
S∈S

〈‖f‖E〉
μ

Ŝ

)p−1
∫
Ω

‖f‖E dx ≤ Cp λ
p−1‖f‖L1(E).

By the Lebesgue differentiation theorem and the definition of Ω, we have

‖g2(x)‖E = ‖f(x)‖E 1Ωc(x) ≤ sup
Q∈ ˜D:Q⊆Ωc

〈‖f‖E〉Q ≤ λ

for μ-a.e. x ∈ Rd and therefore

(A.4) ‖g2‖pLp(E) ≤ λp−1‖f‖L1(μ;E).

Combining (A.2), (A.3), and (A.4) we obtain

μ
(∥∥M̃μ

Df
∥∥
E
> 2λ

)
≤ μ

(∥∥M̃μ
D(g1 + g2)

∥∥
E
> λ

)
+ μ

(
‖b‖E > λ

)
≤

∥∥M̃μ
Df

∥∥
Lp,∞(μ;E)→Lp,∞(μ;E)

·
‖g1+g2‖pLp(μ;E)

λp
+
1

λ
‖f‖L1(μ;E)

≤ Cp
1

λ

∥∥M̃μ
Df

∥∥
Lp,∞(μ;E)→Lp,∞(μ;E)

‖f‖L1(μ;E)

≤ Cp
1

λ

∥∥M̃μ
Df

∥∥
Lp(μ;E)→Lp(μ;E)

‖f‖L1(E),

which completes the proof of the proposition. �

Remark. The functions g1 and g2 are a subpart of the good part of the non-doubling
Calderón–Zygmund decomposition [28, Theorem 2.1]. Our decomposition (A.1) can
be viewed as a hands-on variant of that Calderón–Zygmund decomposition.
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