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A B S T R A C T   

The presence, duration, and amount of surface canopy water (SCW) is important in microwave remote sensing 
for agricultural applications. Our current understanding of the effect of SCW on total backscatter and the un
derlying mechanisms is limited. The aim of this study is to investigate the effect of SCW on backscatter as a 
function of frequency and polarization, and to understand the underlying mechanisms. For this purpose, the 
radiative transfer model developed at the Tor Vergata University was used to simulate the total backscatter at L-, 
C-, and X-band. First, simulations from the standard Tor Vergata model were compared to L-band observations. 
Then, two additional implementations of the model were developed to account for the effect of SCW and the 
presence of water on the soil surface on radar backscatter. Representing SCW by the inclusion of additional water 
in the vegetation leads to an increase in vegetation volume scattering and a reduction in the contribution from 
double bounce and direct scattering from the ground. This increases total backscatter, particularly at lower 
frequencies. Results suggest that the difference between backscatter in the presence and absence of SCW can be 
up to around 2.5 dB in L-band and likely less at higher frequencies. The effect of water on the canopy (SCW) 
reaches its maximum during the mid and late season as the crop reached its maximum biomass. The influence of 
dew on the reflectivity of the soil surface resulted in a difference of up to 3.8 dB between backscatter in the 
presence and absence of SCW. In particular, at low frequencies and low vegetation cover, the presence of water 
on the soil surface needs to be taken into account to correctly capture the sub-daily dynamics in backscatter. The 
findings of this study are relevant for current and future SAR missions including Sentinel-1, ROSE-L, NISAR, 
SAOCOM, ALOS, CosmoSkyMed, TerraSAR-X, TanDEM-X and constellations such as those of ICEYE, and Capella 
which have dawn/dusk overpasses or multiple overpasses per day.   

1. Introduction 

Surface canopy water (SCW) refers to water present in the form of 
dew or interception from irrigation or precipitation on the canopy sur
face. Several studies have investigated the influence of the presence of 
water on the canopy surface. It has been shown that the presence of SCW 
is instrumental in the restoration of water content in plants following 
significant dehydration. Moreover, SCW serves as a vital moisture 

provider for vegetation in dry regions. Particularly during the arid 
season, SCW can play an important role in the recovery of the water 
content in plants after heavy water loss (Willis, 1984; Agam and Ber
liner, 2006). Additionally, SCW can be beneficial for crops by reducing 
the local (near-leaf) vapor pressure deficit, thereby facilitating stomatal 
activity and photosynthesis (Gerlein-Safdi et al., 2018; Agam and Ber
liner, 2006; Dawson and Goldsmith, 2018). Dew formation and its 
accumulation on soil surfaces can serve to recharge soil moisture and 
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mitigate soil layer evaporation if the moisture is not evaporated before it 
can infiltrate (De Jeu et al., 2004). On the other hand, leaf wetness can 
contribute to the development of diseases in many crops (Huber and 
Gillespie, 1992; Agam and Berliner, 2006; Kabela et al., 2009). The 
duration and amount of SCW can influence fungal diseases, expansion of 
bacteria and fungal pathogens, and germination of spores on many crops 
(Huber and Gillespie, 1992). Therefore, information about the duration 
and amount of SCW can be valuable to support crop management de
cisions such as the optimal scheduling of fungicide applications. 

In addition to the direct effect of SCW on hydrology and plant 
biology, SCW can directly affect microwave observations and influence 
the retrieval and estimation of soil moisture, vegetation optical depth 
(VOD), biophysical variables, canopy fuel load, and crop classification 
(Wood et al., 2002; Riedel and Schmullius, 2003a,b; Kabela et al., 2009; 
Hornbuckle et al., 2010; Tanase et al., 2015; Heffernan and Strimbu, 
2021; Khabbazan et al., 2021a, 2021b). During the Soil Moisture 
Experiment 2005 (SMEX05) field campaign, Kabela et al. (2009) 
examined the occurrence, length, quantity, and distribution of dew in 
both corn and soybean. The study observed that dew was present for 
over 80 percent of the days, specifically between 00:30 and 06:30 cen
tral standard time (CST), throughout the SMEX05 campaign. The find
ings revealed that the dew quantity ranged from approximately 0.01 to 
0.6 mm in corn. Additionally, the spatial distribution of dew within the 
plant canopy showed variations during light, moderate, and heavy dew 
events. 

Radar observations from agricultural land are highly sensitive to the 
dielectric and structural properties of the crops and soil depending on 
system properties such as frequency, polarization, and incidence angle 
(Judge et al., 2021; Steele-Dunne et al., 2017; McNairn and Shang, 2016; 
Liu et al., 2013). The presence of SCW increases the amount of water 
present in the vegetation layer above the soil. However, this water will 
be on the outside of the plant tissue. Therefore, it does not increase the 
water content of the plant tissue. Having a water layer on top of the 
canopy changes the radar signal scattering and absorption characteris
tics, resulting in an increased observed backscatter (Allen and Ulaby, 
1984; Gillespie et al., 1990; Wood et al., 2002; Riedel and Schmullius, 
2003a,b; Kabela et al., 2009; Hornbuckle et al., 2010). 

Several experimental studies have been conducted using different 
radar configurations over different crop types to understand the effect of 
SCW on radar data. In an early study conducted by Gillespie et al. (1990) 
over a wheat field, it was found that radar backscatter increased by 4 dB 
in C-band and 1 dB in the L- and Ku-band during dew events. It was 
found that an incidence angle of 20◦ had the highest sensitivity to the 
presence of dew compared with incidence angles of 40 and 60◦. 

However, Herold et al. (2001) reported no significant effect from 
SCW on radar backscatter at X-band and a modest increase of up to 1 dB 
in C-band for forest and non-cereal crops such as corn and potato with 
heterogeneous surface structure. They found that L-band observations 
were less sensitive to SCW than C-band for all crop types. 

A series of experiments conducted by Riedel et al. (2002) and Riedel 
and Schmullius (2003a,b); Riedel and Schmullius (2003a,b) used 
polarimetric data at L-, C-, and X-band from E-SAR over different crop 
types to investigate the effect of SCW on radar observations, scattering 
mechanisms, and crop classification. At L-band (f = 1.3 GHz), they found 
that the effect of SCW was less dependent on plant structure and a strong 
influence of SCW was observed on cross-pol data while no impact was 
observed on VV-pol data. At C-band (f = 5.3 GHz), they observed that 
the impact on backscatter depended on vegetation structure and growth 
stages. At X-band (f = 9.6 GHz), no significant influence was observed 
from dew events. In the experiment carried out by Riedel and Schmullius 
(2003a,b) and Riedel et al. (2002), the impact of dew and interception 
was analyzed separately for volume, surface, and double-bounce scat
tering. For this purpose, the authors exploited polarimetric target 
decomposition. This decomposition relies on some assumptions and, 
therefore, the separation among scattering mechanisms is never perfect 
and, importantly, is affected by the presence of dew or SCW. They found 

an increase of about 2 dB in volume scattering in cross-pol under wet 
conditions. They also found a significant decline of around 4 dB in 
surface scattering and double bounce in the presence of SCW. They re
ported that the impact of dew on the signal was independent of vege
tation type. They found that classification accuracy increased as SCW 
amount decreased, and that crop separability was affected by SCW. 

Wood et al. (2002), compared RADARSAT-1 data from ascending 
and descending passes to understand the effect of SCW on crop sepa
rability. They found that the difference in backscatter between 
ascending and descending passes was similar among various crop types 
and that C-band backscatter was on average 1.7–2.5 dB higher during 
the dawn acquisition (6 a.m.) compared to the dusk acquisition (6 p.m.). 
Contrary to Riedel and Schmullius (2003a,b), they concluded that the 
overall separability of crops remains unaffected by the selection of 
overpass time. However, the choice of overpass time should be given 
consideration in the retrieval of crop biophysical variables, as the 
presence of dew increases the radar backscatter during dawn 
acquisitions. 

Recently, Khabbazan et al. (2021a), investigated the impact of SCW 
on radar backscatter and crop biophysical parameter retrieval using 
L-band radar data and detailed ground data. They found that SCW was 
typically present from midnight to 10 a.m. which increased the L-band 
backscatter by 2–3 dB. They demonstrated that SCW directly influenced 
the backscatter data and the relationship between backscatter and plant 
biophysical variables, suggesting that daily SCW patterns should be 
considered in retrievals. The presence of SCW led to higher VOD esti
mates, impacting vegetation water content estimation. However, this 
study was not able to fully explain the effects of SCW on polarization and 
total backscatter contributions due to limited understanding of how the 
presence of surface canopy water affects the various contributions to 
total backscatter and solely focused on L-band data. The availability of 
C-band SAR data from Sentinel-1, Radarsat Constellation Mission and 
the advent of Sentinel-NG, as well as the availability of X-band SAR data 
from TerraSAR-X and TanDEM-X and observations from ICEYE and 
CappellaSpace SAR constellations create many possibilities for moni
toring vegetation, and specifically agricultural monitoring using higher 
frequency radar observations. 

The aim of this study is to investigate the effect of SCW on back
scatter as a function of frequency, polarization, and growth stage and to 
understand the influence of SCW on the contributions to total back
scatter. The radiative transfer model developed at the Tor Vergata 
University is used to simulate the backscatter response as a function of 
frequency and polarization. The standard form of the Tor Vergata model 
does not consider the presence of SCW on leaves. Therefore, two addi
tional implementations of the Tor Vergata model are considered in this 
study, whereby the standard model is adapted to account for the pres
ence of water on the surface of the vegetation and soil by adjusting the 
leaves’ internal water content and soil moisture respectively. The three 
implementations are first compared to L-band data from the UF-LARS 
scatterometer and ground data collected during an intensive field 
campaign over a maize field in Florida, USA in 2018 to explore the 
potential difference in sensitivity to SCW as a function of polarization. 
Backscatter is also simulated (though it can not be validated) at C-band 
and X-band to provide some insight into the effect of SCW at higher 
frequencies according to the model. 

2. Data and methods 

2.1. Experimental site 

The data for this study were collected during a field campaign near 
Citra, Florida at the Plant Science Research and Education Unit (PSREU) 
of the University of Florida and the Institute of Food and Agricultural 
Sciences (UF| IFAS). The campaign started during the bare soil phase in 
early April 2018 and lasted roughly 70 days, until harvest in mid-June 
(Vermunt et al., 2020). Sweet corn was sown in sandy soil at a 
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planting density of 7.9 plants m− 2 and with row spacing of 92.5 cm. 
During the early vegetative stages, controlled irrigation was applied 
several times from midnight to early morning using a center-pivot irri
gation system. More detailed descriptions of the study site can be found 
in Vermunt et al. (2020) and Khabbazan et al. (2021a). 

2.2. Field measurements 

2.2.1. Surface canopy water 
The measurement of the presence, frequency, duration, and amount 

of surface canopy water (SCW) was conducted using three dielectric leaf 
wetness sensors (Pythos31) (METER Group, 2021b), with readings taken 
every 15 min. 

At the start of the season, these sensors were fixed to a wooden pole 
located between two rows. Once the corn plants matured and their stems 
became robust, the sensors were relocated and attached directly to one 
plant. As the plants grew, the sensors positions were adjusted to main
tain a uniform distribution along the plants height, capturing the ver
tical distribution of water droplets within the canopy. Additionally, each 
sensor angle was aligned to mimic the orientation of the adjacent leaves. 

The primary reading from these sensors is a voltage (expressed in 
mV) that corresponds to the dielectric constant of a region roughly 1 cm 
from the sensor upper surface (METER Group, 2021b). This dielectric 
constant is proportional to the water quantity on the surface of the 
sensor. The EM50 data logger (METER Group, 2019) then translates this 
voltage into a scale described as ”counts.” 

The water mass (Mw) deposited on the sensor surface (measured in g 
m− 2) is computed using an empirical formula provided by the manu
facturer (METER Group, 2021c) and Cobos (2013): 

Mw = 1.54 × exp(5.8×10− 3 × counts) (1) 

According to Vermunt et al. (2020), two assumptions were utilized to 
convert the water mass on the sensors into SCW. Initially, each corn leaf 
area (ALeaf) in m2 was determined from the leaf length (l) and width (w), 
based on the premise that corn leaves were elliptical: 

ALeaf =
π
4
× l × w (2) 

Subsequently, it was assumed that the wetness level on a leaf at any 
given height was equivalent to the wetness on the nearest sensor to that 
leaf. Consequently, SCW could be calculated as: 

SCW = ρplant ×
∑n

i=1
ALeafi × Mwi (3) 

Here, SCW is SCW per square meter of ground (kg m− 2), ρplant is the 
average number of plants per square meter of ground, n represents the 
number of leaves per plant, and Mwi refers to the water mass on the 
sensor closest to leaf i expressed in kilograms per square meter of leaf. 

2.2.2. Soil data 
Surface to root zone soil moisture was measured every 15 min using 

10 Decagon EC-5 sensors (METER Group, 2021a) in two pits located 40 
m apart at 5 different depths. These sensors have 5 cm prong length with 
a ~ 0.2 L measurement volume. At each depth, the sensor is fully 
inserted with 45◦ orientation from the nadir into the soil layer. In this 
study, only the averaged measurement at 5 cm depth was used as surface 
soil moisture. A site-specific calibration was conducted before the 
installation of sensors. Soil samples from the field were brought to the 
laboratory and soil moisture was measured using EC-5 sensors and the 
gravimetric sampling method for saturated to dry soil. The goodness of 
fit for the linear regression between the two methods was 0.993, and the 
RMSE was 0.028 m3 m− 3. 

In the time between planting and crop emergence, surface roughness 
was measured using a 2-m long grid board. Roughness profiles were 
gathered both along and perpendicular to the row direction, digitized at 

intervals of 1 cm. These digitized profiles were then utilized to calculate 
the root mean square (RMS) height and correlation length (L) using the 
exponential correlation function, following to the process describe in 
Jang et al. (2005). The averaged RMS height and correlation length 
derived from both directions were found to be 0.92 cm and 9.17 cm, 
respectively. 

2.2.3. Vegetation data 
The gravimetric water content (Mg) and the mass of water of various 

corn components like leaves, stems, ears, tassels, and tillers were 
measured through pre-dawn destructive sampling three times a week 
during the growing season, resulting in 20 observations. Four sampling 
locations were chosen outside the radar footprint. At each sampling 
time, eight field representative samples were taken from the sampling 
area, packed in plastic bags, and taken to the nearby lab for immediate 
processing. For each of the 8 samples, the leaves, stems, ears, tassels, and 
tillers were separated and labeled. Any surface water present on the 
plant tissue was gently removed with paper towels. Constituents with 
the same labels were collected in paper bags and weighed to determine 
fresh biomass. This process was done as quickly as possible to minimize 
changes in the internal water content of plant constituents. Then, all 
samples were placed in an oven at 60 ◦C for 4–8 days, depending on the 
growth stage, to dry completely. The dry samples were weighed again to 
compute VWC and Mg. 

The calculation of gravimetric water content (Mg) was performed 
using the following formula: 

Mg =
Wf − Wd

Wf
(4) 

where Wf and Wd represent the average fresh and dry mass of total 
plant or plant component (leaf, stem) per plant, respectively. 

It should be mentioned that in soil science, gravimetric water content 
is traditionally defined as the mass of water in a sample divided by its 
dry mass. However, in the analysis of microwave dielectric behavior in 
vegetation material, following Ulaby et al. (1981); Ulaby and El-Rayes 
(1987); Matzler (1994), the gravimetric water content of plant constit
uents is calculated differently, employing the fresh weight of the canopy 
instead of the dry weight, as represented in Equation (4). Additionally, it 
should be noted that the Tor Vergata model adopts this definition of 
gravimetric water content as an input for the gravimetric moisture of 
plant constituents. For measuring internal vegetation water content 
(VWC), we measured the total mass of water in the leaves, stems, ears 
and (total) vegetation per ground area. 

In addition to the destructive sampling, detailed vegetation geome
try measurements were conducted once a week on 4 representative 
samples, with 8–10 measurements in total during the growing season. As 
mentioned already, internal vegetation water content (VWC) of the 
plant constituents (leaves, stems, ears, tassels and tillers) were measured 
during pre-dawn destructive sampling three times per week during the 
growing season. Hourly destructive sampling of VWC, or Mg is prohib
itively laborious and time-consuming (Vermunt et al., 2022a, 2022b). 
Therefore, hourly values for Mg and vegetation geometry measurements 
were estimated using linear interpolation (see Fig. S1 in the supple
mentary material). 

More detailed descriptions about soil and vegetation data, along with 
further information, can be found in our existing works (Vermunt et al., 
2020; Khabbazan et al., 2021b). 

2.2.4. Ground-based radar observations 
Backscatter observations (σ0) were collected using the University of 

Florida L-band Automated Radar System (UF-LARS). This system oper
ates at a central frequency of 1.25 GHz (Nagarajan et al., 2013) and is 
designed to acquire data at four polarization combinations (VV, HH, VH, 
and HV) simultaneously using a dual-polarization horn antenna. It was 
mounted on a 14 m Genie manlift and scanned the field at a fixed 
incidence angle of 40◦. The measurements of VH and HV were nominally 
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equal. Therefore, following previous studies (Liu et al., 2016), their 
average is used and referred to as the cross-polarized backscatter σ0

XP. 
The Single Target Calibration Technique (STCT) was used to calcu

late backscatter coefficient from the received signal and the overall 
uncertainty of UFLARS measurements was quantified to be 1.49 dB 
(Vermunt et al., 2020; Liu et al., 2016). Internal calibration was applied 
during each acquisition and a single-target calibration technique using a 
1 m trihedral corner reflector was applied several times during the 
season. The ground range and azimuth resolutions were calculated from 
the 3 dB beam-width, which measured 14.7◦ in the E-plane and 19.7◦ in 
the H-plane. Consequently, the single-scan footprints for HH, VV, and 
cross-pol were found to be 40, 39.7, and 29.1 m2, respectively (Nagar
ajan et al., 2013; Vermunt et al., 2020). The system was programmed to 
automatically acquire 32 measurements per day for most of the growing 
season. Comprehensive descriptions of both the observations and the 
specifics of the UF-LARS system are available in the cited works 
(Nagarajan et al., 2013; Vermunt et al., 2020; Khabbazan et al., 2021a). 

It is worth noting that all the sampling areas and sensor installations 
were positioned outside, yet close to, the radar footprint. This 
arrangement ensured no interference with the signal and protected 
against alterations in roughness that could occur due to foot traffic. 

2.3. Radiative transfer model 

In this study, the two-layer model developed at the University of 
Rome, Tor Vergata (Bracaglia et al., 1995) specifically for corn was used, 
and is referred to as the “Tor Vergata model” throughout. This model has 
been used in multiple studies for the simulation of radar backscatter 
across various crop types and frequencies, ranging from P- to X-band 
(Ferrazzoli and Guerriero, 1995, 1996; Ferrazzoli et al., 1999a,b; Della 
Vecchia et al., 2004, 2006a,b; Blaes et al., 2006; Della Vecchia et al., 
2007a, 2008; Guerriero et al., 2013; Stamenkovic et al.; Guerriero et al., 
2016; Link et al., 2017; Acuña et al., 2019). The model has been vali
dated at L-, C-, and X-band frequencies. In a study conducted by Della 
Vecchia et al. (2008), the model simulated corn scattering during the 
growth season across a frequency range of 2.5–10.2 GHz and incidence 
angles of 20–50◦ for all linear polarizations. This was compared with 
data from the tower based Radio ScAtteroMeter (RASAM). The findings 
indicated that the RMS error between the simulated and actual data 
across five different frequencies ranged from 1.37 to 2.23 dB. In another 
study, Della Vecchia et al. (2006a) employed the model for maize and 
wheat backscatter simulation at C-band frequencies, comparing it with 
ground-based and ERS-2 data. The model performance demonstrated 
RMSE of 1.44 and 0.96 dB when comparing simulated and observed data 
in corn fields, and 1.78 and 2.23 dB in wheat fields. The RMS errors of 
less than 2 dB in previous studies demonstrate the model performance 
matched observations, demonstrating its sensitivity to crop growth 
across various frequencies. Vermunt et al. (2020) leveraged the model to 
quantify the relative importance of soil and vegetation contributions to 
the total L-band backscatter of maize and how this changes during the 
growing season. Note that Vermunt et al. (2020) used the same obser
vations from UF LARS. However, they were not able to account for the 
influence of surface canopy water (SCW) or the presence of water on top 
of the soil layer on backscatter or on the contributions to total 
backscatter. 

This model is a discrete microwave scattering model based on radi
ative transfer theory. It is designed to simulate both the scattering and 
extinction properties of vegetation elements, as well as the underlying 
soil. This is achieved by applying the most suitable electromagnetic 
approximation, considering factors such as the shape of the scatterer and 
the wavelength. In this model, the cornfield is modeled as a homoge
neous half-space with a single-layer rough interface, representing the 
soil. This interface is overlaid by another single layer made up of the 
stems, leaves, and petioles (ribs). This version of the model does not 
consider ears, as Della Vecchia et al. (2006a) discovered that including 

them has a minimal impact on the total simulated backscatter from corn, 
with a change of less than 0.3 dB. The scattering coefficient for the 
single-layer soil is determined using the original formulation of the In
tegral Equation Model (IEM) (Fung et al., 1992). The required input 
parameters for this model include soil permittivity, and soil roughness 
factors like the root mean square (RMS) height (s), correlation length (l), 
and the exponential autocorrelation function. Baghdadi et al. (2004, 
2006); Álvarez-Mozos et al. (2008) and others suggest calibrating the 
correlation length, selecting the value that yields the minimum RMSE 
between observed and simulated backscatter for the measured RMS 
height. This approach is generally a pragmatic solution to the difficulty 
in measuring accurate correlation length in the field. However, we 
measured both RMS height and correlation length (Section 2.2.2), and 
use the measured values directly here. 

For the vegetation layer, leaves are represented by dielectric discs, 
while stems and ribs are represented by dielectric cylinders. The char
acteristics of the discs are described by their diameter and thickness, 
whereas the cylinders are defined by their diameter and length. Lengthy 
leaves are broken down into multiple discs, each with a diameter 
equivalent to the leaf width. The orientation of leaves and ribs scatterers 
within the canopy layer is arranged randomly assuming a uniform 
distribution. 

To compute the scattering matrices and the extinction vector, 
different approximations are used depending on the frequency. For 
frequencies up to 5 GHz, the Rayleigh-Gans approximation (Eom and 
Fung, 1984) is used for both leaves and ribs (L-band). For frequencies 
higher than 5 GHz, the Physical Optics approximation is used for leaves 
and the infinite length approximation (Karam and Fung, 1988) is used 
for ribs (C- and X-band). For stems, the infinite length approximation is 
used for all frequencies. The model utilizes the matrix doubling algo
rithm (Eom and Fung, 1984) to combine contributions from the various 
scatterers, and between vegetation and soil. This method allows for the 
inclusion of multiple scattering effects of any order in the calculation of 
the backscattering coefficient and it can separate contributions of 
different scatterers in the vegetation canopy. In the Tor Vergata model, 
the total backscatter has four contributions: 

σ0
total = σ0

v + σ0
vg + σ0

db + σ0
g (5) 

where σ0
total is the total backscatter coefficient, σ0

v is the vegetation 
scattering (volume scattering by the vegetation layer), σ0

vg is the 
vegetation-ground scattering (multiple scattering effects due to in
teractions between the vegetation and ground), σ0

db is the soil-stem 
double bounce specular reflection, and σ0

g is the direct component 
solely from the soil surface attenuated by the canopy. In σ0

vg, multiple 
interactions between the plant elements, and between the plant ele
ments and the ground are considered, whereas in σ0

db, only the corner 
reflection between the vertical stem and the ground is taken into ac
count, as illustrated in Fig. 1. 

A more detailed and comprehensive description of the model and its 
assumptions can be found in Bracaglia et al. (1995). A list of the input 
variables provided to the Tor Vergata model is presented in Table 1. 

2.4. Accounting for SCW in the Tor Vergata model 

The presence of SCW increases the amount of water present in the 
vegetation layer above the soil. In reality, SCW consists of droplets of 
free water on the outside of the leaves. It is not trivial to introduce this 
into a model because it would require parameterization of the shape, 
size, and distribution of the water droplets and a model to account for 
their behavior in an electric field. As a first approximation, we account 
for the presence of water on the surface of the vegetation by adjusting 
the internal gravimetric water content for the disc and small cylinders so 
that the additional moisture due to SCW “appears” as extra leaf mois
ture. It implicitly assumes that water on the surface of the leaf behaves in 
the same way as water within the leaf, which may not be the case. 
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Nonetheless, it at least includes the additional moisture, and ensures 
that it is distributed within the canopy using the canopy architecture. In 
the Tor Vergata model, the average gravimetric water content (Mg) of all 
corn leaves is used as an input parameter for the disc (leaf) and small 
cylinders (ribs) gravimetric moisture to account for their internal water 
content. The adjusted internal gravimetric water content (Mg+) for the 
disc and small cylinders is calculated as follows: 

Wf+Leaf = WfLeaf +
SCW
ρplant

(6)  

Mg+ =
Wf+Leaf − WdLeaf

Wf+Leaf

(7) 

where Wf+Leaf represents the aggregate mass of water within the corn 
leaves of one plant and the amount of SCW on the leaves of one plant, 
expressed in kilograms per plant. WfLeaf and WdLeaf represent the fresh and 
dry mass of corn leaves in one plant (kilograms per plant), respectively. 

Vermunt et al. (2020) and Khabbazan et al. (2021a) observed in
creases in radar backscatter during the bare soil period that could not be 
explained by in situ soil moisture measurements at 5 cm but coincided 
with non-zero measurements of the SCW sensors. They argued that these 
increases could be attributed to the presence of a thin layer of dew 
visually observed on the soil surface. Here, we account for the effect of 
the presence of dew on the soil surface by setting the soil moisture in the 
surface layer to the measured saturated value for sandy soil (0.37 m3 

m− 3) when the leaf wetness sensor indicates the presence of water. 
In the following analysis, we will consider three implementations to 

investigate the effect of SCW on the vegetation and the soil surface:  

(1) In the “VWC” scenario, the presence of SCW is not taken into 
account and the measured Mg was used for disc and small cylin
ders. This corresponds to a standard implementation of the Tor 
Vergata model.  

(2) In the “VWC+” scenario, the internal water content is adjusted so 
that the gravimetric water content used in the model is Mg +
calculated using Eq. (7). In this scenario, the role of dew on the 
soil surface is not considered.  

(3) In the “VWC + SM+” scenario, the internal water content is 
adjusted so that the gravimetric water content used in the model 
is Mg + calculated using Eq. (7). In addition, the surface soil layer 
is assumed to be saturated when the presence of SCW is detected. 
Note that during the bare soil/early vegetation periods, the 
presence of water on the soil was visually observed during sam
pling periods and coincided with periods when dew had formed 
on the LWS. In this study, only a yes/no condition is considered 
rather than inferring an amount from the LWS which was slightly 
above the ground, not in contact with the soil, and oriented to 
emulate the geometry of a leaf. 

3. Results and discussions 

3.1. Field measurements 

3.1.1. Hydrometeorological data 
Detailed descriptions of all field measurements are provided by 

Vermunt et al. (2020); Khabbazan et al. (2021a). For completeness, 
these data, particularly the soil moisture at 5 cm, precipitation, and 
irrigation data are summarized in the Supplementary Material. 

3.1.2. SCW data 
Fig. 2 (a) illustrates that the average water mass (Mw) deposited on 

the surface of the three leaf wetness sensors (LWS) due to dew was 
approximately one-third of that resulting from interception. In the early 
season, the water accumulation on the LWS and canopy was primarily 
due to dew and interception from irrigation, whereas, in the mid-season, 
it was predominantly from interception from frequent rain events. In the 
late season, dew was the main source of wetness. 

The results from Fig. 2 (a) indicate variability in the water mass on 
the LWS caused by dew events during the early season, highlighting both 
moderate and high dew occurrences. For example, the dew event on 6 
May was the heaviest of the season, resulting in a water deposition of 
0.125 kg m− 2 on the LWS, while the following day event (7 May) led to 
only 0.02 kg m− 2. In case of the interception events, early season irri
gation resulted in lower water deposition on the LWS compared to the 
precipitation events during the mid and late seasons. 

Fig. 2 (b) displays a time series of the surface canopy water (SCW) on 
the corn leaves, which is derived from the water mass data on the LWS 
(Fig. 2 (a)) by applying equations (2) and (3). The results show that the 
amount of SCW increased with biomass accumulation. During the early 
season, the SCW was relatively low for both dew and interception 
events, approximately 0.04 and 0.09 kg m− 2 respectively. This increased 
up to 0.47 and 1.28 kg m− 2 in the late season. Comparing results from 
Fig. 2 (a) and (b) for the early season reveals that although the water 

Fig. 1. Schematic representation of the radiative transfer model geometry for 
corn. The four components of rough soil, main stems, leaves, and ribs, and 5 
scattering mechanisms of (A) direct soil (σ0

g ), (B) vegetation (σ0
v ), (C) ground- 

vegetation (σ0
vg), and (D, E) double bounce (σ0

db) are shown. 

Table 1 
List of input parameters for Tor Vergata model simulation (Vermunt et al., 
2020).  

Parameter Value or Time series 

Frequencies (GHz) L = 1.25/C = 5.405/X = 9.6 
Incidence angle (degree) 40 
Soil volumetric moisture content Time series 
Soil RMS height (cm) 0.92 
Soil correlation length (cm) 9.17 
Plant density (plant m− 2) 8 
plant height (cm) Time series 
LAI Time series 
number of leaves per plant Time series 
Leaf area (cm2) Time series 
Leaf half width (cm) Time series 
Disc (leaf) thickness (cm) 0.03 
Disc (leaf) gravimetric moisture Time series 
Stem height Time series 
Stem radius Time series 
Stem gravimetric moisture Time series 
small cylinder (ribs) length (cm) 70% of leaf length 
small cylinder (ribs) maximum radius (cm) 0–0.4 
small cylinder (ribs) gravimetric moisture Time series    
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mass on the LWS exhibited significant variation due to dew and irriga
tion, the SCW remained relatively consistent. This consistency in SCW 
can be attributed to the small size of the corn leaves during this period. 
As the corn reached its maximum biomass in the late season, the SCW 
increased by up to 10 times compared to the early season, even though 
the water mass on the LWS remained almost similar throughout. These 
results highlight the impact of biomass accumulation on the amount of 
water on top of the canopy surface. 

The frequency of the presence of SCW is shown in Fig. S2 (supple
mentary material). SCW was present on more than 80 % of days after 
midnight and on more than 90 % of days after 3 a.m. until 10 a.m. This is 
noteworthy because many polar-orbiting, sun-synchronized satellites 
have an overpass during this period. 

3.1.3. Vegetation data 
Crop development and internal water content dynamics during the 

whole season are shown in Fig. 3. The corn leaves reached their 
maximum size around 25 May when LAI reached its maximum value of 
3.8. Results show that variations in the whole-plant gravimetric water 
content throughout the season (see Fig. S5) are consistent with those 
reported in Fig. 4 of the study by Togliatti et al. (2019). Before 25 May, 
the gravimetric water content of both stems and leaves were almost 
stable. Tassel emergence occurred around 25 May, after which Mg of 
both stems and leaves decrease. A sharp decrease is observed after 1 
June. Ear formation results in a significant decrease in the Mg of the 
stems. The hourly interpolated and the adjusted gravimetric water 
content of the leaves (Mg+) calculated using Eq. (7) are also shown in 

Fig. 2. Time series of (a) water mass (Mw) deposited on the leaf wetness sensors surface in kg per square meter of leaf wetness sensor, and (b) the amount of estimate 
surface canopy water in kg of water per unit ground area. 

Fig. 3. Seasonal pattern of measured LAI and pre-dawn gravimetric water content for total plant and per constituent, in addition to hourly interpolated gravimetric 
water content of stems and leaves and the adjusted gravimetric water content of corn leaves using the SCW amount (Mg+). Note that the hourly gravimetric water 
content values required by the model are calculated by linearly interpolating between the pre-dawn destructive sampling measurements which were obtained three 
times per week. 
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this figure. Note, that the adjusted gravimetric water content never ex
ceeds 1. 

3.2. Representing the effect of SCW in the Tor Vergata model 

Here, we compare the three implementations of the Tor Vergata 
model in terms of their capacity to simulate total L-band backscatter. 
The results for these three implementations at L-band for HH, VV, and 

Fig. 4. The time series of observed backscatter and modeled backscatter for the three implementations at L-band and HH polarization. Light blue vertical lines 
indicate the presence of SCW during radar acquisition (a). The scatter plot between the observed and modeled backscatter for data when there was no SCW for time 
periods before 15 May (bare soil and early season) (b), and after 15 May (mid-to late season) (c). The scatter plot between the observed and modeled backscatter for 
data when the SCW was presented for time periods before 15 May (bare soil and early season) (d), and after 15 May (mid-to late season) (e). Note that simulations use 
hourly Mg values that were obtained by linear interpolation of the pre-dawn destructive measurements obtained three times per week. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. The time series of observed and modeled backscatter for the three implementations at L-band and VV polarization. Light blue vertical lines indicate the 
presence of SCW during radar acquisition (a). The scatter plot between the observed and modeled backscatter for data when there was no SCW for time periods before 
15 May (bare soil and early season) (b), and after 15 May (mid-to late season) (c). The scatter plot between the observed and modeled backscatter for data when the 
SCW was presented for time periods before 15 May (bare soil and early season) (d), and after 15 May (mid-to late season) (e). Note that simulations use hourly Mg 
values that were obtained by linear interpolation of the pre-dawn destructive measurements obtained three times per week. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

S. Khabbazan et al.                                                                                                                                                                                                                             



Science of Remote Sensing 9 (2024) 100137

8

XP polarizations are shown in Figs. 4–6 respectively. Statistics 
describing the agreement between the model and L-band observations 
are provided in Table 2. 

Figs. 4–6(a) show that, in all three implementations, there is poor 
agreement between simulated and observed L-band backscatter during 
the bare soil and early vegetative stage (before 15 May). However, the 
model performance improves during the middle and late season (after 
15 May) when the LAI is above 1.5. In Table 2, the RMSE values are 
always higher for the period before 15 May than the period after 15 May. 
This is primarily due to the performance of the IEM soil scattering model 
during the bare soil and early season period. Even for days without SCW, 
the IEM model does not capture the observed dynamics in radar back
scatter due to the change in surface soil moisture. In addition, in HH 
polarization (Fig. 4), a significant bias occurs due to a challenge related 
to determining the surface roughness (Álvarez-Mozos et al., 2008), our 
treatment of which is discussed in Section 2.3, and the presence of 
system noise in the first few days of this period in HH backscatter 
(Khabbazan et al., 2021a, 2021b). It worth mentioning that, in the 
UF-LARS scatterometer, all channels are designed to be independent, 
which results in independent noise levels. During the first few days of 
the season, up to May 8th, the power ratios at HH polarization were 
closer to the noise floor compared to those at VV polarization. This noise 
led to variability in the backscatter data obtained post-calibration. 
Despite extensive investigations, the primary reason for this noise 
remained undetermined and unresolved. These HH data are plotted for 
completeness but are not used in any quantitative analyses. 

In all three polarizations (Figs. 4–6(a)), in the presence of SCW, even 
when the surface layer is assumed to be fully saturated to represent the 
presence of SCW, the IEM model underestimates the scattering from the 
soil surface. In this period, the VWC + implementation has a limited 
effect due to the small size of the corn leaves. However, the VWC + SM +

implementation reduced the RMSE considerably. This will be discussed 
in detail in Section 3.3. 

In the absence of SCW the RMSE and ubRMSE values after 15 May 
are half of those obtained before 15 May. In addition, the bias is close to 
zero for data without SCW after 15 May. This can be easily seen by 

comparing Figs. 4–6(b) to Figs. 4–6(c). These results show that the 
standard version of the Tor Vergata model can simulate the observed 
backscatter from corn in L-band, and in all polarizations (RMSE<0.85 
dB) at the mid and late season (LAI>1.5) in the absence of SCW. 

For data with SCW, the performance of all three Tor Vergata model 
implementations is better for the period after 15 May (mid to late sea
son) compared with the period before 15 May (early season). This can be 
seen by comparing Figs. 4–6(d) to Figs. 4–6(e). Comparing the three 
implementations, the RMSE and bias values after 15 §May are always 
highest for the standard VWC implementation. The reduction in RMSE, 
and particularly, bias values in the VWC + implementation shows that 
representing the observed SCW as additional internal water content of 
leaves (Modeled VWC+) leads to some improvement in the agreement 
between modeled and simulated L-band backscatter. However, the bias 
is still higher than that observed for data without SCW, suggesting that 
there is considerable scope for improvement in how SCW on the vege
tation can be represented. The additional value of VWC + SM + over 
VWC+ is limited after 15 May due to the limited sensitivity to the soil 
surface under the fully grown canopy. 

3.3. The effect of dew on soil 

Fig. 7 provides a detailed view of the period before 15 May when the 
soil is transitioning from bare to light vegetation cover (LAI<1.5) for VV 
and XP pol. The HH pol is not included here due to a presence of system 
noise in the first few days of this period in this channel as explained in 
section 3.2. 

The gradual increase in the observed radar backscatter during this 
period is related to crop growth (Fig. 3). The daily cycles superimposed 
on this upward trend are due to dynamics in the soil moisture, internal 
vegetation water content, and the presence of interception or dew. 
Midnight irrigation (indicated by the blue background) led to a rapid 
increase of around 0.09 m3 m− 3 in soil moisture at 5 cm depth which 
resulted in an increase of more than 5 dB in backscatter in both polar
izations. On nights without irrigation, the accumulation of dew from 
midnight until sunrise (periods indicated by gray background) led to a 

Fig. 6. The time series of observed backscatter and modeled backscatter for the three implementations at L-band and cross-polarization (XP). Light blue vertical lines 
indicate the presence of SCW during radar acquisition (a). The scatter plot between the observed and modeled backscatter for data when there was no SCW for time 
periods of before 15 May (bare soil and early season) (b), and after 15 May (mid-to late season) (c). The scatter plot between the observed and modeled backscatter 
for data when the SCW was presented for time periods before 15 May (bare soil and early season) (d), and after 15 May (mid-to late season) (e). Note that simulations 
use hourly Mg values that were obtained by linear interpolation of the pre-dawn destructive measurements obtained three times per week. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Table 2 
Comparison of modeled and observed backscatter per polarization, where a distinction is made between early (before 15 May) and late (after 15 May) season, as well as 
between acquisitions obtained in the presence and absence of SCW.  

Polarization Assessment parameter Model dataset conditions 

Before 15 May After 15 May 

Without SCW With SCW Without SCW With SCW 

VWC VWC VWC+ VWC + SM+ VWC VWC VWC+ VWC + SM+

VV RMSE 1.63 3.18 3.07 2.72 0.85 1.58 1.49 1.46 
UbRMSE 1.62 2.4 2.38 2.71 0.85 1.06 1.49 1.46 
Bias − 0.17 2.09 1.93 − 0.18 0.01 1.17 − 0.05 − 0.09 
R2 0.68 0.55 0.58 0.62 0.79 0.69 0.71 0.72 
RMSE 4.24 3.84 3.96 3.06 0.78 1.14 1.05 1.05 

HH UbRMSE 2.37 1.97 2.27 1.77 0.78 0.79 0.98 0.97 
Bias 3.52 3.3 3.24 2.5 0.08 0.82 − 0.37 − 0.41 
R2 0.45 0.61 0.62 0.64 0.67 0.68 0.69 0.69 
RMSE 1.34 1.84 2.27 2.51 0.73 1.94 1.29 1.25 

XP UbRMSE 1.26 2.07 2.25 2.38 0.73 1.22 1.28 1.25 
Bias 0.44 1.21 0.33 − 0.8 − 0.01 1.51 0.13 0.02 
R2 0.39 0.56 0.57 0.59 0.63 0.65 0.66 0.67  

Fig. 7. Time series of observed backscatter and modeled backscatter for three implementations in (a) VV-polarization and (b) cross-polarized (XP). The vertical gray 
and blue lines indicate the presence of dew and interception during the radar acquisition respectively. (c) averaged volumetric soil moisture (m3 m− 3) profile at 5 cm, 
and SCW (dew/interception) amount (kg m− 2) for 15 days during the early season. Note that simulations use hourly Mg values that were obtained by linear 
interpolation of the pre-dawn destructive measurements obtained three times per week. (For interpretation of the references to color in this figure legend, the reader 
is referred to the Web version of this article.) 
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gradual increase in backscatter of up to 2–3 dB, even though soil 
moisture (measured at 5 cm) was steady. Since the corn leaves are small 
during this period, this increase can be related to the accumulation of 
dew on the soil surface as discussed by Vermunt et al. (2020); Khab
bazan et al. (2021a). 

In VV, simulated backscatter from the VWC and VWC + imple
mentations are virtually identical. With the exception of 9 and 11 May, 
the VWC + results overlay the VWC results completely. Due to the 
limited vegetation cover, the total VV backscatter is primarily affected 
by the soil surface rather than the vegetation. Both implementations 
simulate the increase in the observed backscatter due to crop growth and 
biomass accumulation, and the variation in 5 cm soil moisture. But 
neither captures the observed sub-daily dynamics. The RMSE from the 
VWC and VWC + implementations are 3.18 dB and 3.08 dB in VV. Part of 
the discrepancy is due to the limitations of the IEM model discussed 
earlier. However, our working hypothesis is that the failure to account 
for water on the soil surface explains the lack of sub-daily dynamics. In 
VV, the VWC + SM + implementation introduces a steep change in 
backscatter as soon as any SCW is detected on the leaf wetness sensor. 
The high values, during the dew and interception period, correspond to 
the VV backscatter from saturated soil. The value increases from − 12 dB 
on 28 April to − 9 dB on 12 May. While this introduces a response in 

backscatter at the right time, it is too high for dew events before 4 May, 
and too low for interception events after 4 May. The VWC + SM + leads to 
an increase in ubRMSE compared to VWC + because it has limited 
variability, but it results in a significant reduction in absolute bias. 

In cross-pol, the sensitivity of total backscatter to even a small 
amount of vegetation means that the VWC and VWC + simulations can 
be distinguished during most dew and interception events. The inclusion 
of additional moisture in the leaves of these young crops is enough to 
increase backscatter and reduce the bias between simulated and 
observed XP backscatter. However, even the increase in VWC+ is not 
enough to explain the dynamics in backscatter during interception 
events from 4 May onwards. The effect of VWC + SM+ is most significant 
in the first few days (before 4 May). Once the XP backscatter starts to 
increase due to plant growth, the limited difference between VWC+ and 
VWC + SM + suggests that the backscatter is primarily sensitive to the 
vegetation rather than the soil. Again, it seems that VWC + SM+ is too 
wet for dew in the first few days but not wet enough to capture inter
ception in the latter half of this period. Table 2 confirms that while there 
is an increase in the random errors through the inclusion of the extra 
moisture, there is a considerable reduction in bias in VV and XP using 
the VWC + SM + model. 

These results illustrate that for low vegetation cover before 15 May 

Fig. 8. Tor Vergata model simulations and observed backscatter in L-band for three polarization combinations and three implementations. Each column shows 
results for one implementation in VV, HH, and XP polarization from top to bottom. The gray background indicates the period when no leaf wetness sensors were 
installed. Note that simulations use hourly Mg values that were obtained by linear interpolation of the pre-dawn destructive measurements obtained three times 
per week. 
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(LAI<1.5), the presence of water on the soil surface during dew and 
interception events needs to be accounted for. Setting surface soil 
moisture to saturation in the presence of dew or interception is a prag
matic interim solution, but it provides a conservative estimate of the 
effect of interception in these conditions. Furthermore, the agreement 
between model and simulation is still not comparable to the agreement 
in the absence of SCW. This suggests that there is considerable scope for 
improvement in how the effect of dew on the soil surface could be 
represented in the model. 

3.4. Effect of SCW on scattering mechanisms at L-band 

Fig. 8 shows the simulated total backscatter as well as the contri
butions from each scattering mechanism for the three Tor Vergata model 
implementations at L-band. The (standard) VWC implementation (Fig. 8 
left column) shows that the co-polarized backscatter was dominated by 
ground scattering until 4 May. From 4 to 15 May, increasing biomass 
resulted in attenuation of ground scattering and an increase in vegeta
tion scattering, double bounce, and vegetation-ground scattering. After 
15 May, when LAI > 1.5, the simulated backscatter is dominated by 
vegetation scattering with the double bounce term providing the second 
largest contribution. During this period, the contributions of ground, 
and vegetation-ground scattering were negligible in VV-pol (Fig. 8(a)), 
while in HH-pol (Fig. 8(b)) they had some limited effect. In cross- 
polarization (Fig. 8(g)), ground scattering was dominant until 29 
April. From 29 April (one week after crop emergence) onward, vegeta
tion scattering dominated. 

The inclusion of additional internal water in the VWC + imple
mentation (Fig. 8 middle column), mainly has an effect after 15 May. 
The presence of SCW led to an increase in the total backscatter in all 
polarizations mainly due to the increase in the vegetation scattering 
term. The SCW also slightly increases the vegetation-ground scattering 
while it reduces the double bounce and ground scattering contributions 
to close to − 40 dB in all polarizations. This illustrates that the presence 
of SCW affects penetration through the canopy layer, consistent with 
previous studies (Khabbazan et al., 2021a; Xu et al., 2021). 

Accounting for water on the soil surface using the VWC + SM +

implementation during the dew and interception events (Fig. 8 right 
column) leads to an increase in all contributions except the vegetation 
scattering term before 15 May. This is mainly due to an increase in 
ground scattering and vegetation-ground scattering. After 15 May, the 
combined effect of SCW and dew on the soil surface led to a decrease in 
double bounce and ground scattering. Comparing the rows in Fig. 8, it is 
clear that the impact on total backscatter varies somewhat with polar
ization, depending on the relative importance of the vegetation and 
ground scattering. 

3.5. The effect of SCW alone on backscatter 

In previous sections, the agreement between observations and sim
ulations of the three implementations at L-band, as well as the contri
bution of scattering mechanisms was investigated. However, these 
simulations considered the combined effect of several factors simulta
neously: change in internal vegetation water content caused by plant 
growth, soil moisture, SCW (modeled by adding the amount of SCW as 
internal water content of corn leaves, denoted as Mg+), and dew on the 
soil surface (modeled by considering saturated soil moisture). It is 
important to clarify that the increase in the internal water content of 
corn leaves (Mg+) in our simulations was solely to mimic the impact of 
SCW. This simulated increase should not be not be mistaken as an actual 
change in the internal water content of corn leaves. Moreover, these 
simulations could not consider the effect of change in observed back
scatter due to diurnal changes in water in crop tissue. 

Therefore, to understand the influence of SCW alone, we need to 
compare observations where the only change is in SCW, while the 
change in soil moisture and internal vegetation water content is 

minimal. For this purpose, we will compare backscatter values for times 
at which we can be sure that the difference is only due to the presence 
and absense of SCW. Observations at 6 a.m. are used as representative of 
the presence of SCW, as this time coincides with the maximum SCW 
amount. It is also pre-sunrise, so the internal water content is at a 
maximum as discussed by Vermunt et al. (2022a). They found, by esti
mating transpiration using reference ET and actual sap flow, that the 
VWC in corn can reach its maximum value around 10 p.m., stay constant 
until sunrise, and then decrease again after sunrise. To choose data for 
the absence of SCW or moisture on the soil surface, two times were 
considered: 10 p.m. on the previous day or 9 or 10 a.m. on the same day. 

When morning SCW is due solely to dew, the change in backscatter 
from 10 p.m. to 6 a.m. of the next day is only related to the accumulation 
of dew. It is assumed here that crop tissue water does not change during 
this period based on the finding of Vermunt et al. (2022a). As illustrated 
in Fig. 9 (c), the coincident difference in soil moisture is less than 0.007 
m3 m− 3. Therefore, its effect on backscatter is considered negligible. 

As shown in Fig. S3, irrigation was applied on several dates, gener
ally at night. During these interception events, the 5 cm soil moisture 
changed considerably between 10 p.m. and 6 a.m., having a significant 
effect on backscatter between these two times. Therefore, for intercep
tion events, the first acquisition after 9 a.m. was used as the observation 
without SCW to ensure that these are the first acquisitions after the SCW 
has fully dissipated. The soil moisture data in Fig. 9(c) show that the 5 
cm soil moisture variations between 6 a.m. and 9 a.m. are negligible. 
Therefore the backscatter dynamics in Figs. 9 and 11, and Fig. S4 can 
mainly be attributed to the presence of water on the vegetation and soil 
alone. Since VWC may decrease between 6 a.m. and the first acquisition 
after 9 a.m. (Vermunt et al., 2022a), the Δσ0 value due to SCW may be 
slightly lower than the values reported in these figures. Fig. 10 shows 
ΔSCW on the corn leaves. For dew events, ΔSCW is defined as the dif
ference between SCW amount at 6 a.m. and 10 p.m. on the previous day. 
For interception events, ΔSCW is defined as the difference between early 
morning (6 a.m.) and late morning (after 9 a.m.) SCW. The time series in 
Fig. 10 shows only days when the leaf wetness sensors indicated no SCW 
at either 10 p.m. or 9 AM. 

Fig. 9 shows Δσ0, the difference between backscatter acquired during 
the presence and absence of SCW or moisture on the soil surface. 
Extracting the Δσ0 allows us to focus on the ability of the model to 
capture the Δσ0 rather than the absolute value of σ0. Fig. 9 shows that 
variations in Δσ0 during the season is in average around 1.18 dB for co- 
pol and 1.2 dB for cross-pol, and can reach up to 3.41, 2.60 and 2.41 dB 
in VV, HH and XP polarizations respectively. Fig. 9 shows that the 
Δσ0 values from the standard (VWC) model implementation are close to 
zero and that this implementation does not capture the observed 
Δσ0 values in L-band. For the period before 15 May, the VWC + imple
mentation does not capture the Δσ0 values in the observed VV or HH 
backscatter (Fig. 9(a) and (b)). In VV, the VWC + implementation is 
indistinguishable from the VWC implementation due to the lack of 
sensitivity to vegetation in the bare soil and early vegetative stages. This 
could be related to the fact that considering only the water on the leaves 
mostly affects the direct vegetation term which is small at this time. 
Allowing for wet stems may lead to an increase vegetation-ground 
interaction. VWC + introduces some dynamics in Δσ0 in HH, but it 
does not improve the estimation. Recall, however, that the character
ization of roughness in IEM in HH-polarization resulted in poor simu
lations during this time. In XP, the VWC + implementation improves the 
simulated Δσ0. 

Recall from Fig. 7 (a) that for the period before 15 May, the dynamic 
range of the model for VWC + SM + implementation was limited 
resulting in a maximum σ0 value (red data) higher than that observed 
during dew events but lower than observed during interception. How
ever, in Fig. 9 (a) the Δσ0 estimated for VWC + SM + implementation 
during interception events (May 4 to May 15) from the models agrees 
well with the observed Δσ0 with RMSE of 0.28 dB and bias of − 0.27 dB. 
Moreover, the VWC + SM + implementation produces a larger 
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Fig. 9. Time series of difference in early morning observed and modeled L-band backscatter (Δσ0) for three implementations from vegetation with and without SCW 
in (a) VV polarization, (b) HH polarization, and (C) cross-polarization (XP). The difference is calculated between 6 a.m. and 10 p.m. of a day before for dew events 
and between 6 a.m. and late morning (after 9 a.m.) for interception events. For reference, the error bars indicate the overall uncertainty (1.49 dB) of the UF LARS. 
The difference in 5 cm soil moisture values for the canopy with and without SCW is shown in (c). Note that simulations use hourly Mg values that were obtained by 
linear interpolation of the pre-dawn destructive measurements obtained three times per week. 

Fig. 10. Time series of difference in surface canopy water amount kg m− 2 on top of corn leaves between 6 a.m. and 10 p.m. of a day before for dew events and 
between 6 a.m. and late morning (after 9 a.m.) for interception events. The ΔSCW was calculated only for days when the leaf wetness sensors indicated no SCW at 
either 10 p.m. or 9 AM. 
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Fig. 11. Time series of the difference in early morning simulated total backscatter (Δσ0) from vegetation with and without SCW, for three polarizations at L-band. 
The VWC + implementation is shown in the left column and for VWC + SM + implementation is shown in the right column. Note that simulations use hourly Mg values 
that were obtained by linear interpolation of the pre-dawn destructive measurements obtained three times per week. 

Fig. 12. The relationship between Δσ0 (VWC + implementation) and the ΔSCW for three polarizations and L-, C-, X-band is shown. The color for each data point 
shows the amount of VWC for the 6 a.m. acquisition. Pearson correlation coefficients are shown in the bottom right of each plot. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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Δσ0 during dew events (squares) compared to interception events (tri
angles) for this period, while the observed data shows that the Δσ0 from 
interception is not always lower than those of the dew. This can be 
related to the fact that the dew on the soil surface does not penetrate to 5 
cm depth. Therefore assuming the saturated soil moisture at 5 cm depth 
to model the effect of dew on the soil surface can cause an over
estimation of the isolated effect of dew compared to interception, which 
can be an indication that dew on the soil surface is not represented in an 
optimal way. In XP, Fig. 9 (c) shows that the VWC + implementation 
could model the Δσ0 from SCW and moisture on the soil surface before 
15 May better than VWC + SM + implementation, while results in Fig. 7 
showed the VWC + SM + implementation better captured the absolute 
values of the σ0 than VWC + implementation. 

For the period after 15 May, sensitivity to the soil surface is limited 
and the total backscatter is dominated by the vegetation scattering 
(Fig. 8), so the Δσ0 estimated using the VWC+ and VWC + SM + imple
mentations are virtually identical. Between 15 May and 1 June, the 
Δσ0 from both implementations is higher than observed. Recalling 
Figs. 6–8, this is during the high biomass period (LAI>1.5) which was 
also very wet. The observed σ0 was close to saturation, however, the 
model VWC+ and VWC + SM + could still increase in the presence of 
SCW. After 1 June, results show that both implementations simulate the 
observed Δσ0 with higher accuracy except for the last two dates. The 
overestimation on these two dates could be related to the fact that the 
corn reached its maximum biomass after 25 May and the amount of SCW 
was very high on those dates (Fig. 10). 

Fig. 11 shows simulated Δσ0 at L-band using the VWC+ and the VWC 
+ SM + implementations. Similar simulated results for C- and X-band is 
shown in Fig. S4 in the supplementary material. Comparing the results in 
Fig. 11 and Fig. S4 left column, it is clear that the magnitude of the 
difference due to water on the canopy may vary by frequency. The 
modeled Δσ0 can reach up to around 2.5 dB in L-band, while simulation 
in C- and X-band suggest lower value of around 0.6 dB. It should be 
noted that although the simulations in Fig. 9 could not capture 
Δσ0 dynamics perfectly, the simulations approximate the maximum and 
average magnitude of the change in Δσ0 during the season. Based on the 
simulation results in Fig. S4, during the interception events in the middle 
of the season, the simulated Δσ0 values at C-band in various polariza
tions are comparable in magnitude. In X-band, the Δσ0 in XP is larger 
than that in co-polarized backscatter. Results also suggest that the effect 
of water on the vegetation is lower during the early season (especially in 
co-polarized channels) and reaches its maximum during the mid and 
high season as crop reaches its maximum biomass. 

Fig. 12 shows the relationship between ΔSCW and the modeled 
Δσ0 in L-, C-, and X-band from the VWC + implementation. The Pearson 
correlation coefficients are relatively high for all frequencies and po
larizations. Fig. 12 highlights the contrast between frequencies in terms 
of sensitivity, and shows that the relationship between ΔSCW and 
Δσ0 evolves with VWC as the contribution of direct scattering to total 
backscatter changes. The highest amount of SCW on 22 May (0.52 kg 
m− 2), caused by the heaviest rain event during the growing season 
(Fig. S3 in supplementary material), resulted in a peak on Δσ0 at L-, C-, 
and X-band (Fig. 11 and Fig. S4 left column). The reduction in the 
amount of ΔSCW from 22 May until 4 June resulted in the reduction in 
modeled Δσ0 in all polarization at 3 bands. The rapid increase in ΔSCW 
between 6 and 11 June happened due to the heavy rain event on 7 June 
and heavy dew event on 10 June. It should be noted that based on the L- 
band data from Fig. 9, the Δσ0 in this period could also overestimate the 
effect of dew on C- and X-band. In X-band, the effect of SCW was highest 
in XP polarization which can be explained by the scattering mechanisms. 
However, in this study due to the lack of experimental evidence on 
higher frequencies, the scattering mechanism was not investigated. 

Fig. 11(b) shows that in L-band, the effect of water on the soil surface 
at the early season can be as significant as the effect of water on the 
vegetation later in the season and both cases can affect the signal around 
2.5–3.5 dB. However, in C- and X-band (Figs. S4(b) and (d)), simulation 

results suggest that accounting for the effect of dew on the soil surface 
during the bare soil and early vegetative stage could have a stronger 
effect than the presence of SCW during the mid and late season. Simu
lation results also suggest that dew on the soil surface during the bare 
soil and early season could affect the radar signal in C- and X-band for up 
to 3 dB, while the effect of SCW during the mid and late season can only 
affect the simulated signal for up to 0.6 dB. However, due to a lack of 
experimental evidence on these frequencies, further investigation is 
required to be able to make a firm conclusion. 

The simulation results presented in Fig. S4 suggest that the water on 
the canopy could have a limited impact in C- and X-band but that water 
on the soil surface at the beginning of the season could have a 
comparatively large effect. Results in Fig. 11(b) and Figs. S4(b) and (d) 
also suggest that the effect of dew on the soil surface mostly decreases 
with the increase in crop biomass. The reduction in the sensitivity of 
backscatter to water on the soil surface diminishes earlier at higher 
frequencies. This finding is very relevant for applications such as soil 
moisture estimation over bare soil or sparsely-vegetated areas when the 
combined data from ascending and descending overpasses would be 
used at C- and X-band. If data from ascending and descending overpasses 
are combined without considering the effect of the presence of dew on 
the soil surface, it could lead to spurious soil moisture values. 

4. Discussion 

This study provides new insights into the effect of SCW on radar 
backscatter and various contribution to total backscatter. The observa
tions and model simulations suggest that the presence of dew and 
interception can reach up to 2.5 dB at L-band. To put these variations in 
context, note that while the overall uncertainty of the ground-based UF- 
LARS was approximately 1.49 dB (Liu et al., 2016), the maximum 
impact of changes in soil moisture and the dynamic range in backscatter 
due to crop growth at L-band was around 5 dB and 10 dB, respectively. 
The presence of dew and/or intercepted precipitation can lead to a 
change corresponding to 25%–50% of the expected dynamic range in 
this vegetation type. Therefore, both observations and model simula
tions suggest that the presence of dew and intercepted precipitation 
should be considered at low microwave frequencies. This is relevant for 
current SAR missions such as SAOCOM, and ALOS as well as upcoming 
SAR missions, like NISAR and ROSE-L. In addition, this sensitivity of 
sub-daily SAR data to water on the canopy suggests that future sub-daily 
SAR data could be valuable in understanding the influence of inter
ception on evaporation and evaporation partitioning. This is relevant in 
the context of Cosmo SkyMed, TerraSAR-X and TanDEM-X and data 
from commercial constellations such as those from Capella Space and 
ICEYE. 

Simulations results in Fig. 11 and Fig. S4 suggest that the isolated 
effect of dew on the soil surface during the early season on backscatter 
could reach up to 3.8 dB in all bands. These simulation results suggest 
that while the presence of SCW potentially illustrated limited impact at 
higher frequencies, the presence of dew on the soil surface at the 
beginning of the season should be considered during bare soil and low 
vegetation cover for all frequencies. To our knowledge, this is the first 
study to consider the influence of dew on soil on backscatter. Measuring 
this quantity directly is challenging because, while some soil moisture 
sensors like Hydra Probes have large measurement volumes of around 
30–40 cm3, most sensors designed for more localized soil moisture 
measurements such as EM-5 sensors need to be buried beneath the 
surface and typically measure a volume extending a few centimeters 
around the sensor. While we assumed the leaf wetness sensors could 
detect the events, additional research is recommended to explore the 
potential to observe this more deliberately during field experiments 
using commercial-off-the-shelf (COTS) sensors and providing a more 
direct method to quantify the amount of water on the soil surface. 

Our exploration of C- and X-band is limited to model simulations due 
to the lack of observational data at these frequencies. Recall from 
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Section 2.3 that the Tor Vergata model has been validated extensively at 
C- and X-band as well as L-band. The use of the UF LARS L-band data 
demonstrates the value and importance of tower-based radar experi
ments to improve our understanding of microwave interactions with 
vegetation and to guide model development to support future applica
tions and exploitation of future satellite missions. Our simulated results 
provide valuable insights, but higher frequency observational data are 
essential to make these findings definitive. In addition, this study 
highlights the need to develop realistic representations of dew and 
interception on the vegetation and soil surfaces in EM models. With the 
number of radar satellites, and novel applications of their data on the 
rise, these model developments are urgently needed to enable the use of 
SAR to model rapid water processes in the soil-vegetation-atmosphere 
continuum. 

Finally, the impact of SCW extends beyond radar backscatter, 
influencing parameters like differential interferometry, phase differ
ences, polarimetry, and interferometric coherence. Studies such as the 
TROPISCAT Expriment over tropical dense forests (Essebtey et al., 2019, 
2021; Minh et al., 2014; Hamadi et al., 2017), and studies using the 
BorealScat on boreal forest areas (Monteith and Ulander, 2021a, 2021b; 
Ulander et al., 2018) have explored the effect of SCW on interferometric 
coherence, particularly how rain and wind cause temporal decorrelation 
in tropical and boreal forests. Yet, the impact of dew accumulation, 
especially heavy dew, on interferometric coherence in temperate agri
cultural regions remains unclear. A study conducted by Brancato et al. 
(2017) investigated the relationship between plant surface moisture and 
differential interferometric observables, such as the magnitude and 
phase of the interferometric coherence, in a controlled electromagnetic 
experiment. This study highlighted potential misinterpretations of 
moisture changes on top of the canopy either for soil water content or 
fresh biomass variations. Future research should further investigate 
SCW effects using polarimetry, interferometry and backscatter across a 
range of cover types. 

5. Conclusions 

The goal of this study was to improve our understanding of the in
fluence of surface canopy water (SCW) on radar backscatter as a func
tion of frequency and polarization. Observations were available from the 
UF LARS tower-based radar at L-band. In a previous study, these data 
had been analyzed against continuous leaf wetness sensor, soil moisture 
and crop geometry data to quantify the impact of SCW on observed L- 
band backscatter. Here, the L-band observations were compared to three 
implementations of the Tor Vergata model in which we attempted to 
account for the presence of SCW by increasing the vegetation and soil 
moisture contents. These L-band simulations provide insight into the 
contributions to total backscatter and how they may be affected by the 
presence of SCW. 

The standard implementation of the Tor Vergata model accounts for 
internal vegetation water content, but does not explicitly consider the 
presence of SCW. One approach to account for the additional water 
present due to dew or interception would be to allow for a ”cloud” of 
water droplets throughout the vegetation layer or specifically the leaf 
layer. However, SCW within the vegetation layer due to dew or inter
ception is primarily concentrated on the leaves and so the additional 
water should be located at the leaves. Therefore, we accounted for the 
additional water present of SCW on the vegetation by augmenting the 
VWC, so that the additional water present as dew or interception is 
spatially distributed within the dielectric medium according to the ge
ometry and architecture of the vegetation. In other words, the structural 
representation of the scatterers is the same, but they are wetter. Results 
at L-band from Table 2, showed that the VWC + implementation 
improved the agreement between simulated and observed backscatter 
particularly when total backscatter was dominated by the impact of 
vegetation. This can be seen from the reduction of 0.09 dB, 0.09 dB, and 
0.65 dB in the RMSE and the reduction of 1.12 dB, 0.45 dB and 1.38 dB 

in the bias for VV, HH, XP respectively. However, while the bias was 
considerably reduced from 1.17 dB, 0.82 dB, and 1.51 dB–0.05 dB, 
− 0.37 dB, and 0.82 dB in VV, HH, and XP respectively, the agreement 
between model simulations and observations was far from perfect. 
Further improvements are necessary and could include, for example, the 
addition of a thin layer of droplets on the surface of the leaves. This 
would ensure that the spatial distribution was consistent with that of the 
vegetation elements, while representing the additional water as “free” 
water on the leaf surface. 

Agreement between the VWC + simulations and the L-band obser
vations was comparatively poor during the bare soil and early vegetative 
stages. We hypothesized that this could be due to the presence of dew, in 
the form of water on top of the soil layer. We investigated if the effect on 
backscatter could be emulated by assuming the surface soil layer was 
saturated if the leaf wetness sensor indicated the presence of moisture on 
the field. This improved the agreement between the modeled and 
observed backscatter during the bare soil and early vegetative stages 
somewhat. However, the remaining mismatch suggests that this 
approach is less than optimal and should be improved. In past studies, 
the inclusion of a litter layer has proved beneficial in the simulation of 
emission and scattering from forest areas (Della Vecchia et al., 2007b; 
Dente et al., 2014). So, one option could be to represent dew as a thin 
saturated litter layer. Alternatively, it may be physically more plausible 
to include an additional thin layer of water droplets on the surface above 
the soil when the leaf wetness sensors indicate the presence of moisture. 
Nonetheless, the comparison of simulated and observed L-band back
scatter suggests that while there is room for improvement, the VWC +

SM + implementation provides better agreement with observations than 
the standard (VWC) or VWC + implementations. This can be seen by 
reduction of 0.46 dB (VV) and 0.78 dB (HH) in the RMSE and a reduction 
in bias from 2.09 dB, 3.3 dB and 1.21 dB to − 0.18 dB, 2.5 dB and − 0.8 
dB in VV, HH, XP respectively. It provides some insight into the 
importance of water on the soil surface during the bare and early 
growing stages. 

Analysis of the contributions of the various scattering mechanisms at 
L-band shows that including the SCW as additional internal water con
tent of leaves, in general, led to an increase in vegetation volume 
contribution and a reduction in the contribution from double bounce 
and direct scattering from the ground in all bands. This finding is 
consistent with Riedel et al. (2002) and Riedel and Schmullius (2003a, 
b), who also observed an increase in volume scattering and a decrease in 
surface and double-bounce scattering based on use of the target 
decomposition theorem at L-band in the presence of SCW. Assuming a 
saturated surface soil layer to model the effect of dew on the soil surface 
has a significant effect on the scattering mechanisms during the bare soil 
and early season. This generally led to an increase in all contributions 
except the vegetation volume contribution. The influence of surface soil 
moisture or water at the soil surface is less important when the vege
tation starts to dominate the total backscatter. Therefore, accounting for 
water on the soil surface is primarily important during the bare soil and 
early vegetative stages. While Wood et al. (2002) also found that the 
presence of dew increases radar backscatter during dawn acquisitions, 
our study is the first to highlight the importance of considering the 
presence of dew on the soil surface at the beginning of the season 
potentially for all frequencies, particularly for applications involving 
bare soil and low vegetation cover. 

The Tor Vergata model was also used to explore the potential 
sensitivity of backscatter to SCW as a function of frequency and polar
izations. Simulated results of Δσ0 due solely to SCW on backscatter were 
always low during the early season and reached a maximum during the 
mid and late season. This effect varied with polarization and fre
quencies, with simulations suggesting that the impact of SCW alone on 
backscatter could reach up to 2.5 dB in L-band and likely less at higher 
frequencies. This finding emphasizes the importance of considering SCW 
in low frequency data, in agreement with the findings of Wood et al. 
(2002). This is in contrast to the findings of Gillespie et al. (1990), who 
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observed a higher increase in radar backscatter at C-band than at L-band 
during dew events. However, the different conclusions may be due to the 
difference in crop type (wheat versus corn). Additionally, our findings 
differ from those reported by Riedel et al. (2002) and Riedel and 
Schmullius (2003a,b), who observed no significant influence from dew 
events on VV-pol at L-band. While they studied a similar crop type as this 
study (corn), the different conclusions may be related to their compar
atively sparse dataset (using data from 2 days to 3 times of the day: 6 a. 
m., 9 a.m., and 12 p.m.). They also used indirect measures, such as 
microclimatological data, to infer the presence of SCW. In contrast, our 
study could avail of high temporal resolution radar data combined with 
direct, continuous measurements of the SCW amount from leaf wetness 
sensors throughout the entire growing season. The divergence among 
previous studies underscores the complexities inherent in understanding 
the impact of SCW on radar observables. While our simulated results 
provide valuable insights, but higher frequency observational data are 
essential to make these findings definitive. In addition, further 
ground-based studies and modeling experiments are recommended to 
extend the finding of this study to a wider range of land cover types and 
frequencies. 
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