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ABSTRACT

During the recent development of information technology and the

prevalent breakthroughs of its services, more digital data tend to be

readily stored online. Although the massive advantages, there is a

pivotal necessity for curating digital data forgetting. Online content

can pose perilous threats in terms of privacy and security that may

hinder the right to be forgotten, encompassed by the GDPR act,

since the released data can be archived and accessed retrospectively.

Prior approaches focused on various access heuristics and elastic

expiration times to make the data unreachable to some extent.

However, there are still many pending issues related to the proposed

studies, such as securing ephemeral key storage and co-ownership

data deletion. In this paper, we attempt to tackle the problem of

storing ephemeral keys during the estimated validity period. Hence,

we devise a novel concept called key decay over time, which can

achieve the ephemeral existence of the key. The decay idea entails

the gradual, irreversible corruption of the key with time passing. In

the current work, we combine the concept of gradual time elapsing

and corruption into a single notion of the decay rate. Meanwhile, the

irreversibility merit formed by randomness and various obfuscation

strategies impedes retrospective attacks. Over time, the decay rate

will give an estimated range for the key to be destroyed entirely.

Finally, we implement and thoroughly assess a proof-of-concept

regarding the key decay, including computational complexity and

security analysis.

CCS CONCEPTS

• Security and privacy → Privacy-preserving protocols; Pri-

vacy protection;

KEYWORDS

Digital Forgetting; Retrospective Privacy; Key Decay
ACM Reference Format:

Marwan Adnan Darwish and Apostolis Zarras. 2023. Digital Forgetting Us-
ing Key Decay. In The 38th ACM/SIGAPP Symposium on Applied Computing
(SAC ’23), March 27-March 31, 2023, Tallinn, Estonia. ACM, New York, NY, 
USA, Article 4, 8 pages. https://doi.org/10.1145/3555776.3577641

1 INTRODUCTION

Online data has been increasing rapidly, exponentially challenging
our ability to manage and store it. IBM released a study that data
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growth witnessed a tremendous increment in 2020 to reach 40 tril-

lion gigabytes (or 40 zettabytes), meaning every person on earth

generates 1.7MB of data each second [11]. Meanwhile, according to

Cisco, Internet consumers have reached 3.9 billion in 2018, and the

number is expected to reach up to 5.6 billion in 2023 [5]. Neverthe-

less, the data ownermay not need the online content to be accessible

when its need ceases over time. On the other hand, the inadequate

deletion practice of outsourced data jeopardizes plenty of security

and privacy risks, including the possibility of data alteration or

misuse by unauthorized parties and loss of confidentiality [12, 18].

The General Data Protection Regulation (GDPR) of the European

Union enshrines the Right to Erasure or the Right to be Forgotten as

it is widely known [15, 19]. This notion is gaining thrust and be-

coming extremely significant in protecting online privacy. Digital

forgetting refers to the disappearance of data that has been up-

loaded to online storage platforms after it has fulfilled its purpose.

In this sense, several underlying mechanisms have been developed

to support digital data forgetting. For instance, cryptographic mech-

anisms have been proposed to encrypt the uploaded data in cipher

form alongside the links. These links are the map for each data

object to combine its key from ephemeral storage in order to be

able to decrypt the online content within the validity period [21, 22].

On top of that, distributed architectures allow data owners to di-

vide encryption/decryption keys in a distributed manner, using

predetermined or flexible expiration periods, and bypassing single

authority failures [4, 8, 14, 16, 25]. These approaches utilize various

services, such as the Domain Name System (DNS), the Distributed
Hash Table (DHT), or website pages, to store ephemeral keys (i.e.,

keys with a short lifetime).

Unfortunately, the previous approaches depend on ephemeral

storage for their decryption keys. This is problematic due to insuf-

ficient deterrence of the archival process. Even with DNS entries,

the storage for ephemeral keys is still vulnerable to being cached

and used retroactively [20]. As long as the ephemeral keys exist,

anyone with access and sufficient resources or the service provider

can cache them beforehand. The adversary will be interested in

reaching out to the data after its validity has ceased. The crucial

characteristic to be offered by any infrastructure is to impede and

prevent keys collection on a large scale during the lifetime of the

online content. This is challenging due to the availability of the

keys to the public on the ephemeral storage.

In this work, we focus on excluding the necessity of the key

storage and preventing the archival process from a retrospective

adversary acting periodically by caching the whole data on the

available distributed infrastructures such as DNS. More specifically,

we introduce the main idea of key decay. The decay concept is

formed by three major ingredients: time, corruption, and irreversibil-
ity. Time implies a gradual sequence of events that follow one after

another. Corruption entails changing from a state of soundness
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or perfection into a completely unusable and unsound state. Irre-

versibility is closely related to the notion of time in physics. This

must be added separately due to the simplicity of reversing any

temporal sequence in computer science without adding extra means

to ensure such irreversibility.

As such, encryption is based on a key powered by random num-

bers to obtain a unique output called a seed. The creation seed of

the key depends on a value that gradually changes from an old state,

resulting in an entirely new one. Finally, the key irreversibility con-

cept consists of randomization and obfuscation: different elements

are combined in randomization to obtain miscellaneous values from

online sources, while obfuscation complicates the origin key by

crystallizing several techniques.

In essence, our approach reinforces the online data deletion by en-

suring the transience of the key without counting on any ephemeral

storage. The creation seed (i.e., randomly generated value) for the

key will be obtained from online data, such as YouTube views,

Twitter reposts, and Facebook likes. These online values will be

represented as 𝑥𝑖 coordinate in the Lagrange-basis polynomial [7].

Gradually these online data values will modify, leading to utterly

different values. This evolution of the values over time will coin

the corruption concept. This corruption process for online values

leads to a key forgetting in the end. For the key recovery, we use

Shamir Secret Sharing Schema (SSSS) to combine the correct parts

during the reconstruction phase. The more corruption, the less key

recovery as time goes on. Eventually, when the key decays, the

irreversibility attribute prevents retrospective attacks from expos-

ing the origin of the key. Moreover, the decay rate will provide

insights into the expiration time of the key (i.e., days, weeks, years)

according to the ephemerality level of the online data. We imple-

ment a system incorporating SSSS with the decay notion as a proof

of concept. Introducing the key decay concept ultimately prevents

the retrospective impact of an attacker or cloud provider that aims

to store private keys and use them afterward.

In summary, we make the following main contributions:

• We propose using key decay for digital forgetting and prove

how this will provide security against retrospective attacks.

• We design a scheme that guarantees the key ephemerality

without relying on ephemeral storage.

• We evaluate our key decay approach by implementing a

prototype. Our results illustrate the decay rate in terms of

evolution, stability, irreversibility, and computational com-

plexity.

2 THREAT MODEL

Existing data deletion schemes [4, 8, 14, 16, 25] frequently adopt

the following procedure: (𝑖) Data owners outsource their data to
service providers after encrypting the content. In addition, the

owners provide the corresponding links necessary for compiling

the decryption keys at the recipients’ end. (𝑖𝑖) During the validity

(i.e., a dedicated lifetime of the data), within a specific period stated

by the owners (i.e., fixed or flexible), the recipients with valid access

can combine the key bits to decrypt the online content. (𝑖𝑖𝑖) After
the validity, no one should be able to access the encrypted data

object except those who already have private keys. In principle,

those schemes generally leverage ephemeral storage such as cache

entries, including DHT, website ciphers, and the DNS cache to

support digital oblivion.

The main objective of our approach is to impede the retrospec-

tive adversary and fulfill online privacy. As such, we assume an

adversary who is only curious about accessing the online content

after its expiration. We also assume a cloud provider, or any other

party, who periodically caches the key in the ephemeral storage.

Snapshotting all the shared content can defeat the concept of digital

forgetting. Owners should be conscious that the provider storage

and machines do not belong to them. Eventually, keys will be used

to decrypt the content and expose privacy across the platform. In

essence, data objects will be present even after the key is destructed.

Once the dedicated expiration time is reached, acquiring the keys

will help an adversary reveal the content again.

3 HIGH-LEVEL IDEA

This section discusses the research goals and the general view of

our proposed scheme.

3.1 Security Goals

We must consider several security aspects to make a proposed solu-

tion as robust as possible. Therefore, in the following, we formalize

our security goals.

• SG1 – Achieve Retrospective Privacy: An attacker must be

incapable of accessing the data when the time is due.

• SG2 – Ensure the Ephemerality of the Key: Decryption
keys should be destructed automatically by excluding the

repository that stores them the whole time.

• SG3 – Data Confidentiality: Secure the data objects that
will exist over the provider machine when the key decays

after a certain period of time.

• SG4 – Anti-archiving: Hinder the service provider to cache
or archive the ephemeral keys on a large scale during the

content’s lifetime.

SG1 pertains to retrospective privacy by successfully preventing

access to a data object after its expiration. SG2 and SG3 guarantee
that the keywill be self-destructed over time. SG4 prevents attackers
or cloud providers from taking a snapshot of a sheer number of

data objects with their keys. Caching all the sources in a way to

generate a key for each uploaded object is an impossible way to

reach. A large-scale attack is out of the question for the adversary.

3.2 Abstract Architecture

Our scheme aims to enable digital forgetting by encrypting content

and then generating and reconstructing ephemeral decryption keys

without needing temporary storage for the keys. In more detail, the

sender utilizes the key generated by our scheme to encrypt spec-

ified content before uploading it. The scheme uses online values

to create the key. The creation seed of the key counts on Lagrange

basis polynomials to be utilized in both encryption and decryption

phases [7]. After that, the creation seed will be utilized as an input

for the AES algorithm to generate the private key [6]. Eventually,

the recipient with valid access only will reconstruct the key simi-

larly to obtain the original file. Figure 1 illustrates the high-level

architecture of our proposed scheme.
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Figure 1: Proposed system model

4 SCHEME DESCRIPTION

This section delves into the details of the proposed system model.

Our scheme-based key decay consists of four main steps: (𝑖) Key
Generation Phase, (𝑖𝑖) Encryption Phase, (𝑖𝑖𝑖) Reconstruction Phase,
and (𝑖𝑣) Decay Phase. Table 1 provides a convenient summary of

the notation used in this section.

4.1 Key Generation Phase

At this stage, data owners need a key to encrypt their content before

uploading it. For each new key, our scheme performs the following:

Step 1. Our system depends on randomization to derive the key.

The creation seed of the key will utilize various online sources

(i.e., YouTube, Facebook, Twitter) to get certain types of values (i.e.,

views, likes, tweets). To this end, the scheme will produce a wide

range of online values to be fitted within the Lagrange polynomial.

Step 2. After achieving the list of online values, they will be used

to produce a random polynomial. The points are 𝑃𝑖 (𝑥𝑖 , 𝑦𝑖 ), where
𝑥𝑖 represents the online values (i.e., views, likes, tweets), and 𝑦𝑖
represents randomly generated values to fit the polynomial. In our

case, Lagrange polynomial interpolation consists of two aspects:

the threshold 𝐾 , which means the minimum required number of

points to produce the polynomial, and the total number of points

𝑁 , which means the maximum number of points to produce the

exact polynomial.

Step 3. From the online values mentioned above, the polynomial

will take only 𝐾 points (i.e., threshold) to be fitted. In principle, the

Lagrange basis polynomial from 𝐾 degree (i.e., minimum points)

will be:

𝑙 𝑗 (𝑥) =
∏

𝑖≠𝑗,0<𝑖<𝑘

𝑥 − 𝑥𝑖
𝑥 𝑗 − 𝑥𝑖

=
(𝑥 − 𝑥0)
(𝑥 𝑗 − 𝑥0)

....
(𝑥 − 𝑥𝑘 )
(𝑥 𝑗 − 𝑥𝑘 )

(1)

By using this formula to generate the polynomial interpolation

relying on the minimum points 𝐾 , 𝐹 (𝑥):

𝐹 (𝑥) =
𝑘∑︁
𝑗=0

𝑦 𝑗 𝑙 𝑗 (𝑥) (2)

Table 1: Summary of notation

Notation Description

𝑥,𝑦 Coordinates of the polynomial

𝐾 Threshold of the polynomial

𝑁 Total number of the polynomial points

𝑙 Lagrange-basis polynomial

𝐶 (𝑘, 𝑛) Key recovery combination

𝑛 Total number of leading zeros

As a convention, the creation seed will be coefficient-free after

getting the formula. The obtained polynomial represents this point’s

seed, 𝐹 (0).

Step 4. After the threshold (i.e., minimum points) and the creation

seed are achieved, we use the same manner as in SSSS to generate

the total number of shares (i.e., maximum points) to be represented

within the exact polynomial interpolation. The reason behind gen-

erating more points is to increase the possibility of retrieving the

polynomial of degree 𝐾 . To do that, by using equation 2 and a new

set of online types (i.e., views, likes, tweets), 𝑃𝑛 (𝑥1, 𝑥2, ....., 𝑥𝑛), to
be replaced in the formula to get 𝑃𝑛 (𝑦1, 𝑦2, ....., 𝑦𝑛) as points/shares
𝑁 belonging to the same polynomial. Consequently, the achieved

polynomial will contain a total number of points, and any 𝐾 out of

𝑁 will be sufficient to produce the same polynomial.
1

Step 5. Instead of using the actual values from the online sources,

hashing function (i.e., SHA512) will be used to output a fixed-size

hash. Proof-of-Work (PoW) is an additional mechanism to increase

the computational complexity against brute force attacks [3]. For

both 𝑥𝑖 and 𝑦𝑖 coordinates, the hash of a leading zero will be calcu-

lated from the binary value. The following equation refers to the

number of leading zeros needed to get the target hash.

ℎ𝑎𝑠ℎ[: 𝑛] = 𝑆𝐻𝐴512(𝑥𝑖 , 𝑦𝑖 ) (3)

Step 6. On top of PoW, we also apply other obfuscation techniques

(i.e., alternating sums, mod are explained in Section 5) to confuse the

attacker’s predictability and prevent retrospective brute-forcing.

Step 7. Eventually, the key will be derived after getting the seed

from the Lagrange.

4.2 Encryption Phase

The sender will outsource the online content to the service provider

at this juncture.

Step 1.Once the key is derived (i.e., from the creation seed), the data

owner uses it to compile an Encrypted Data Object (EDO), which
will later upload to the cloud. We use AES to encrypt the data; AES

is a symmetric block cipher scheme. It uses keys of 128, 192, and 256

bits to convert these individual original blocks. After encrypting

these blocks, it combines them to generate the ciphertext. In our

scheme, we use a 256-bit key of the AES algorithm to encrypt the

online content as it is more secure than smaller lengths.

1
Both K and N values should be pre-selected by the user
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Figure 2: Data object structure

Step 2. Another prerequisite is the checksum, which will be calcu-

lated to detect any errors and verify the integrity of the original

file later. We use the SHA512 hash to generate the checksum from

the uploaded file.

Step 3. After encrypting the data, we get the EDO stored in the

cloud provider. The EDO structure includes the encrypted data, the

used points to generate the polynomial (𝑥𝑖 , 𝑦𝑖 ), and the checksum

value from the original file. Figure 2 depicts how an EDO looks like.

4.3 Reconstruction Phase

During this phase, the recipient with valid access will reconstruct

the key to decrypt the online content.

Step 1. The main task is to assemble the points for the Lagrange

basis polynomial to reconstruct the seed. The data object (i.e., EDO)

consists of two sections: the online values (i.e., link, type) to repre-

sent 𝑥𝑖 and a list of values to represent𝑦𝑖 . For the actual polynomial

construction, the minimum points (𝐾) out of the total generated

points (𝑁 ) are sufficient for the correct reconstruction. The follow-

ing formula considers the possible threshold combinations for the

seed:

𝐶 (𝑛, 𝑘) =
(
𝑛

𝑘

)
=

𝑛!

𝑘!(𝑛 − 𝑘)! (4)

Step 2. After reconstructing the seed from the polynomial formula

𝐹 (0), the key will be reconstructed successfully. Then, the receiver

can decrypt the content into its original form again.

Step 3. Over time, some values of the online data (i.e., views, likes,

tweets) may differ from the old ones, as the central idea of the

proposed scheme is to decay the key. The checksum validation

will ensure the file’s integrity from the selected threshold out of

the total number. If the checksum is not matched, the scheme will

provide a new threshold combination 𝐶 (𝑛, 𝑘) set to reconstruct the

key until the match is fulfilled.

4.4 Decay Phase

The decay phase is an essential concept of our proposed scheme.

The validity period to recover the key falls between the threshold

and the total number of points (shares). In contrast, the key recovery

will no more applicable if the threshold is broken (i.e.,𝐾−1), leading
to a key decay. The following inequalities show both validity and

decay intervals.

𝐾 ⩽ 𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 ⩽ 𝑁 (5)

0 ⩽ 𝐷𝑒𝑐𝑎𝑦 ⩽ 𝐾 − 1 (6)

Over time, the online values will change, affecting the 𝑥𝑖 coor-

dinates used to construct the polynomial curve. This change will

create new (i.e., corrupted) points that are different from the old

ones. Our scheme will capture these changes and present a different

𝐾 combination from 𝑁 to achieve the seed and eventually the key.

In case of corruption has affected more 𝐾 combination set than the

limit (see inequality 6), this will cause the key to decay.

In a nutshell, the proposed methodology is inspired by SSSS.

Shamir’s one starts by having the key and creating the total number

of shares and threshold to divide it. However, our approach varies

as online values will construct a Lagrange polynomial of degree 𝐾

to obtain the seed. Then generating more points as the total number

of points. Correspondingly, PoW will be incorporated to increase

the complexity of large-scale attacks. Moreover, the randomization

notion is fulfilled by relying on different online values. Key traces

will vanish over time as the values will keep corrupting till the

threshold 𝐾 is broken, leading to the key decay. Even though the

data object will be present, the key will be no more in hand, which

accomplishes the main concept of promoting digital data forgetting.

5 EVALUATION

We have implemented a simulation prototype in Python to prove

our proposed scheme’s feasibility. Our prototype can dynamically

provide values inbound of billions to simulate the online sources.

Similarly, additional modules (Math, Random, Statistics, Itertools)

simulate the Lagrange polynomial and the threshold combinations

from the total number of shares. Cryptodome and Hashlib are used

to encrypt and decrypt the content with the AES algorithm and PoW

integration. The machine used for this evaluation is a MacBook

(Processor: 2.3 GHz Dual-Core Intel Core i5, Memory: 8 GB).

Our experiments focused on four main aspects: randomization,

decay rate, computational complexity, and security analysis. Finally,

we demonstrate the limitations of the proposed scheme.

5.1 Randomization

As we mentioned (Section 4), the randomization notion is one of

the crucial parts of our proposed scheme. In the real world, online

sources provide various APIs (powered by pagination, different

query order per request) to retrieve types (i.e., views, likes, tweets).

To simulate that in our proposed system, we relied on different

random generators inbound between million and billion to get the

same values expected from the actual scenario. We even defined

a scraper for limited sources (i.e., YouTube) to acquire the exact

response with all the types included (i.e., views, duration, tags).

5.2 Decay Rate

The rate represents the total increment of the 𝑥𝑖 value to decay

over time. As mentioned, the creation seed will compose of online

values, which will change constantly. Furthermore, three folds of
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Figure 3: Decay rates

the decay were studied, (𝑖) Evolution (i.e., the specific increment

where the decay rate is due to forgetting the ephemeral keys),

(𝑖𝑖) Stability (i.e., elapsed time taken for the key to transform from

valid into decayed), and (𝑖𝑖𝑖) Irreversibility (i.e., the impossibility

of reversing the operation to expose the origin of the key).

Evolution.We measured the decay rate with different types of

evolution. By doing so, the incremental values will corrupt the key

slowly till reaching complete decay. The rates studied vary between

static rates (i.e., moderate and high (+100, +10000) respectively per

minute) and exponential rate (i.e., 𝑒𝑥𝑖 per minute). Figure 3 displays

how different function influences decay in various fashions, starting

from exponential to a more direct static approach. The main reason

for this experiment is to simulate the positive relationship between

corruption level and ratio/fixed increment over time. The following

equation explains the decay factor for a key, where 𝜆 refers to the

corruption rate:

𝐷𝑒𝑐𝑎𝑦 = 1 − 𝜆 (7)

In our experiments, we decided to go with static rates as follows:

(𝑖) Low Rate, which means no change over time; (𝑖𝑖) Moderate
Rate, which means an average increment over time; (𝑖𝑖𝑖) High Rate,
which means a high increment over time. Table 2 shows the average

increment over time (i.e., per minute in our case).

Table 2: Static Decay Rates

Decay Rate Increment Per Minute

Low 0

Moderate 100

High 10000

However, the static decay rates lead us to reliable destruction

of the key based on the parameters studied to initialize the rate,

and forget the key over time. Furthermore, we focused on different

combinations in order to measure the decay rate with the passage

of time. Figure 4 shows the Lagrange polynomial before and after

the decay rates (i.e., moderate and high rates) where the threshold

𝐾 was surpassed, and the Lagrange polynomial has deviated from

the original set of points.

Stability. We addressed two sides of stability as follows:

1. Without Using Means (Original): This entails using only one

type (i.e., YouTube view) to represent the 𝑥𝑖 coordinate of the

𝑃𝑖 (𝑥𝑖 , 𝑦𝑖 ). This one value will increase immediately after a lim-

ited period leading us to complete decay in no time. Table 3 shows

the different combinations 𝐶 (𝑘, 𝑛), and the elapsed time taken to

corrupt the threshold using either one of the decay rates. The main

reason for the selected combinations 𝐶 (𝑘, 𝑛) is to cover various

samples that will not add stability to the scheme by relying on one

value. Also, the threshold was selected according to equation 4 to

reach the highest possibility (i.e., high combinations acquired) of

recovering the key.

Table 3: Decay Rate Combinations

No. Combinations Random Decay Rate (min.)

𝐶1 (3, 5) 4

𝐶2 (5, 10) 6

𝐶3 (10, 20) 11

𝐶4 (15, 30) 16

𝐶5 (20, 40) 22

𝐶6 (25, 50) 26

2. Using Means: From a different viewpoint, using means entail

taking a sheer number of values to represent the 𝑥𝑖 coordinate of

the 𝑃𝑖 (𝑥𝑖 , 𝑦𝑖 ). The mean will result in more stability of the acquired

seed before being corrupted. Table 4 shows the elapsed time taken

to corrupt a single 𝑥𝑖 value using a different number of samples.

Table 4: Mean Samples

No. Samples Moderate Rate (min.) High Rate (min.)

10 8 3

50 45 16

75 69 25

100 80 35

150 110 40

Example. Let us assume we defined (𝐾 = 15 and 𝑁 = 50), respec-

tively. For a moderate decay rate of corruption, each 𝑥𝑖 coordinate

takes the mean output of 100 online values to represent its coor-

dinate. It took 80 minutes to corrupt one 𝑥𝑖 value. According to

our experiments, the threshold is 15. It is applicable to mutate up

to 35 points as a maximum to recover the same seed again. The

total time to corrupt the threshold and retrieve a different value

is roughly 2800 minutes. For a high decay rate of corruption, it

took only 35 minutes to corrupt one 𝑥𝑖 value. As a result, a total of

1200 minutes is enough to surpass the threshold leading to a key

decay. For more experiments, Figure 5 compares the stability time

with/without using means in terms of different threshold samples

(i.e., [5, 30]) over time, locating the same total number 𝑁 .
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Figure 4: Moderate & High decay rates using means for 100

samples of (15, 50) Lagrange-basis polynomial
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Figure 5: Stability comparison with/without means usage

Irreversibility.We highlighted two sides of irreversibility as

follows:

1. Using Alternating Sums: The use of means that always deter-

mine the cumulative average (between old and new values) will

be expected at some point. Thus, using an alternating sum will

confuse the attackers by switching between positive and negative

signs of the mean outcome to get a less predictable polynomial; the

following formula indicates that; where 𝑘 represents the threshold

and 𝑖 represents the increment number of alternating the sign:

𝐴𝑙𝑡𝑒𝑟 (𝑠𝑢𝑚) =
𝑘∑︁
𝑖=0

(−1)𝑖𝜇𝑖 (8)

Figure 6 shows the alternating sums achieved from a polynomial

after calculating the output with a negative sign.

2. Using Mod: From a different angle, the attacker could determine

the order of the polynomial by linking the points to get a predictable

path. This will reduce the unknown possibilities of the shares since

all points lie on a smooth curve. By using the following formula to

fill the exposed values (i.e., 𝐾 − 1) from the threshold, respectively;

where 𝐾 represents the threshold, 𝑎 represents the coefficients, and

the seed represents 𝐹 (0):

𝐹 (𝑥) = 𝑠𝑒𝑒𝑑 + 𝑎1𝑥 + 𝑎2𝑥2 + .... + 𝑎𝐾−1𝑥
𝐾−1

(9)
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Figure 6: Decay rate using alternating sums for 100 samples

of (15, 50) Lagrange-basis polynomial
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Figure 7: Difference between (𝑥, 𝐹 (𝑋 )), and (𝑥, 𝐹 (𝑥) 𝑚𝑜𝑑 𝑝)

After calculating the formulas (i.e., replacing and subtracting

the exposed values), the attacker will obtain a fixed number range

that will be used to guess instead of the infinite quantity of nat-

ural numbers. The attacker will narrow the prediction to expose

the seed 𝐹 (0). To tackle this issue, finite field arithmetic will be

used 𝑝 ∈ P : 𝑝 > 𝑁, 𝑠𝑒𝑒𝑑 . The polynomial will be calculated as

(𝑥, 𝐹 (𝑥) 𝑚𝑜𝑑 𝑝) instead of (𝑥, 𝐹 (𝑥)). Figure 7 represents the dis-

organized and disjointed polynomial using mod compared to the

smooth one.

In light of the results, the low rate keeps the content for a very

long period as there is no change. The threshold and the total num-

ber of points can be deduced from the previous experiments to

estimate the expiration times for the online data forgetting for both

moderate and high rates. The relationship between decay and re-

covery rate is inverse: the less threshold with more points, the more

applicability for key recovery contrary to the decay rate. Eventu-

ally, implementation with/without means alone is inadequate for

the real-world scenario to fulfill the irreversibility. Thus, we pro-

pose the obfuscation strategies (i.e., alternating sums and mod) to

construct disorganized and unpredictable Lagrange polynomials.

5.3 Computational Complexity

The complexity of the proposed scheme means the amount of time

and resources needed to achieve the target. PoW is an additional

requirement to increase the computational complexity of the hash

and make it time-consuming to obtain. Leading zeros is requested

to find the optimal nonce (i.e., increment value) that matches the

target hash with specific zeros [3]. Table 5 shows the different

leading zeros implemented in our proposed framework to acquire

only a single 𝑥𝑖 value.
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Table 5: Complexity Measurement

Number of Iterations Time Elapsed (sec.) Leading Zeros

27 0.000103 𝐻𝑎𝑠ℎ[: 1] = 0

601 0.00119 𝐻𝑎𝑠ℎ[: 2] = 00

21674 0.0206 𝐻𝑎𝑠ℎ[: 3] = 000

22748 1.10501 𝐻𝑎𝑠ℎ[: 4] = 0000

148454 600 𝐻𝑎𝑠ℎ[: 5] = 00000

890724 2881 𝐻𝑎𝑠ℎ[: 6] = 000000

The study shows the total iterations and time elapsed to get

only one hash for a specific 𝑥𝑖 value. The number of leading zeros

determines the difficulty. Acquiring proper nonce to compute the

hash is time-consuming; instead, the confirming part is relatively

easy.

5.4 Security Analysis

We analyze the proposed approach regarding different security

goals and threats.

Retrospective privacy. All physical data control is handed to the

service provider when information is published on the Internet; data

owners do not own the server storage. Also, the service provider

or anyone can access and store all the keys within the ephemeral

storage. However, our scheme provides a key decay notion without

counting on ephemeral storage. Under those circumstances, the

attacker will be incapable of performing a retrospective attack. The

data will be secure, and retrospective privacy will be completely

attained.

Brute force attack. An attack on all possible 𝑥𝑖 coordinates (on-

line values) involves guessing the old value according to the data

creation time and trying to brute force the remaining values retro-

spectively. PoW was integrated within the scheme to prevent such

attacks on a large scale and provide more durability for seed gener-

ation. In our prototype, we investigated the elapsed time taken to

exploit a single value 𝑥𝑖 (see Table 5).

Predictability. An attack to predict the incremental values that

lie on the smooth polynomial and expose the seed. To address this

problem, the results section introduced alternating sums with mod

usage and assessed them thoroughly. The outcome distinguishes

the difference by using these concepts to make the polynomial less

predictable and more disorganized (i.e., disjointed) to be used in

the real-world scenario (see Section 5.2).

Curious-but-non-interfering attacker. This attacker aims to

snapshot the public data indiscriminately before its expiry for mali-

cious use. The snapshot process will happen periodically (i.e., daily,

weekly) to extract sensitive information. Our scheme relies on two

central notions: randomization and the exclusion of ephemeral stor-

age. Thus, this will hinder the curious attackers from caching and

archiving the data periodically to keep them for future use.

5.5 Limitations

As with any other work, ours has its limitations, which are demon-

strated below.
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Figure 8: Latency for different thresholds

Latency.As wementioned in the scheme description, the checksum

will be validated during the reconstruction phase to get the cor-

rect polynomial seed 𝐹 (0). However, according to the combination

calculation

(𝑁
𝐾

)
, choosing a rate for the threshold close to half of

the total number will give many possibilities for key recovery (see

equation 4). This will add latency over the system to match the

correct checksum by performing many attempts. Figure 8 shows the

total latency added to the scheme by performing different samples

of thresholds between [5, 50].

Attacker with high computational power. The most recent mod-

els of GPUs, which have capabilities for integer computations, and

specialized hardware like FPGAs, can be used by well-funded attack-

ers to increase performance. According to certain studies, commer-

cially available hardware can speed up public-key cryptosystems

like the RSA scheme by about four times, which can then be ap-

plied to these challenges [10]. This will affect the power of the PoW

technique by reducing the computational complexity introduced

by our scheme.

6 RELATEDWORK

This section briefly highlights the various current state-of-the-art

studies that look into digital forgetting and provide an online data

revocation between the data owners and the service providers. Thus,

researchers have presented diverse solutions to compensate for the

existing vulnerabilities and provide secure approaches to tackle

this issue.

In this sense, the most common solution to cope with this vulner-

ability is to define the data’s expiration time. Several techniques are

proposed to help deal with this security issue, including flexible and

predefined expiration periods (e.g., Ephemerizer [14], Vanish [8],

Neuralyzer [25], EphPub [4], and Timed Revocation [16]. Another

study [2] carried out the scheme using time-lock cryptographic

puzzles to support digital forgetting. The essence of the proposed

study is to limit the deletion or collection of the data during the life-

time of the content by adding complex overhead to the large-scale

attack. The time-lock puzzle will provide proof of work to anyone

that wants to access the data. Another approach [17] integrates

an automated protocol for handling data revocation by examining
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contractual agreements between cloud providers and data owners.

A protocol for this specification of revocation conditions was im-

plemented using smart contracts on a local Ethereum blockchain.

Yang et al. [24] have used a novel authentication data structure,

namely, the number-rank-based Merkle hash tree (NR-MHT). The

prime core of this research is to provide a provable data deletion

scheme based on efficient data integrity auditing and dynamic data

insertion. Xiong et al. [23] proposed a novel key derivation encryp-

tion algorithm that will be used to apply a secure deletion in the

Internet of things devices. The proposal is based on flash memory’s

hierarchical structure by partially merging the block’s erasure and

deleting the key. The deletion will be from both the cipher form and

components that belong to the key when the data validity is ceased.

On the other hand, Ginart et al. [9] proposed deletion efficiency for

large-scale learning systems and possibly deletion-efficient unsuper-

vised clustering algorithms. They identified potential algorithmic

principles that may facilitate deletion efficiency for different learn-

ing systems and paradigms. A lethe mechanism was introduced by

Minaei et al. [13] to provide post-deletion privacy by withdrawing

intermittently Twitter posts. The attacker will be confused between

the temporary and permanent contents after a long time of the

content deletion. The core of this mechanism is to provide a data

owner’s deniability against their online posts. This technique will

prevent adversaries from archiving posts from the Twitter platform.

Moreover, the Forgits data structure strengthens the online deletion

by gradually dropping the lowest bits or pixels (least significant

bits) from old to the most significant bits from new data [1]. This

structure provides infinite retrievals by forgetting the older stored

data. However, these approaches provide a digital forgetting-based

third authority involvement to forget the desired data; they cannot

eliminate the central need for third-party storage or actions. To the

best of our knowledge, a key decay notion is a novel approach that

has yet to be studied. In this work, we showed that it might be used

to prevent adversaries from performing retrospective attacks on

tailor-made data to be forgotten without the need for ephemeral

key storage.

7 CONCLUSION

In this study, we proposed a novel scheme of key decay in the realm

of digital forgetting. Because of the ubiquitousness and popularity

of digital data, solutions that enable transientness and ephemeral-

ity are in high demand. Retrospective privacy is extremely critical

since adversaries are keen to exploit the data after its expiration.

Our approach introduced a decay vision that implies a change from

soundness to complete corruption without counting on the key’s

storage throughout the period. Furthermore, using different re-

sources to construct the key besides integrating the obfuscation

strategies will impede the attackers from storing or taking a snap-

shot of the keys during the content’s validity. Finally, we implement

and thoroughly assess a prototype with promising results regarding

decay rate, complexity, and irreversibility.
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