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Summary

I n guaranteeing the supply of fresh water, navigable rivers, or flood safety, humans inter-
vene rivers, among others, by constructing dams, supplying sediment, or constructing

groynes. Interventions cause changes to the river system in the short term (days, months),
as well as in the long term (years, centuries). For instance, the construction of a dam im-
mediately changes the flow regime downstream from the dam. Moreover, by disrupting
the sediment course, it also causes a lowering and coarsening of the bed surface. The suc-
cess of such interventions depends, at least partially, on our ability to predict the river
response to the interventions. We essentially aim to answer questions such as: How fast
will the bed degrade? How much sediment should I supply to avoid degradation? Which
grain size should the supplied sediment have?

Mathematical models are used to answer such questions. A mathematical model sets
the relations between variables representing physical quantities such as the flow depth,
the bed elevation, or the mass of sediment of a certain grain size at the bed surface. The
relations between variables (i.e., the model equations) are derived from physical princi-
ples such as mass and momentum conservation and explain the rate at which variables
change with time. Hence, given an initial condition (e.g., the river state before a dam is
constructed) and the conditions at the boundaries of the domain of interest (e.g., the wa-
ter and sediment discharge far upstream of the dam), the solution of the model describes
the evolution of the river.

A crucial requirement to a mathematical model is the fact it needs to be well-posed
to be useful. Well-posedness implies that the model must have a unique solution which
depends continuously on the initial and boundary conditions. The fact that models de-
scribe a simplified version of reality causes that models may not always be well-posed.
When key physical processes are not well represented by a model, this may be ill-posed.
Ill-posed models are characterized by developing spurious oscillations in the solution and,
essentially, useless results.

The first and second parts of this study investigate the conditions inwhich fluvialmod-
els are ill-posed. First, we focus on ill-posedness due to accounting for changes in the bed
surface texture. For some applications, it is sufficient to consider that the river sediment
is of the same size. Yet, other questions are related to the grain size distribution of the bed
surface sediment. For the latter cases, the standard model for predicting changes in bed
surface grain size distribution is the active layer model (Hirano, 1971). It successfully pre-
dicts river morphodynamics with mixed-size sediment under a wide range of conditions.
Yet, it may be ill-posed. We conduct an analytical study that yields a methodology to
determine whether the model is well-posed. The study shows that the active layer model
is ill-posed under a wider range of conditions than was previously known. Moreover, we
find that an alternative model that omits the discretized nature of the active layer model
may also be ill-posed.

The first part of the study accounts for changes of the variables in the streamwise
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xiv Summary

direction only. The second part includes the changes in the transverse direction. In par-
ticular, we study ill-posedness due to accounting for secondary flow and bed slope effects.
Secondary flow is the circularmotion that occurs in the transverse direction due to the cur-
vature of the streamlines of the primary flow (i.e., due to bends). Secondary flow causes
the outer part of bends to become deeper than the inner part. This effect is counteracted
by the effect of the (transverse) bed slope, which causes sediment to be transported to the
outer part of the bend. Our analysis shows that the models of secondary flow and bed
slope effect may yield an ill-posed model.

The third and fourth part of this study focus on solving the problem of ill-posedness
due to accounting for changes in the bed surface texture (i.e., caused by the active layer
model), which appears to be the most essential problem. The active layer model is well-
posed over a wide range of conditions, it is computationally cheap, widely applied in
practice, and has been implemented in engineering software. For this reason, the first
proposed solution aims at obtaining a well-posed model without modifying the essence
of the active layer model. The core idea behind the strategy is that the active layer model
is ill-posed when the predicted time scale of mixing processes is physically unrealistic. We
devise a regularization strategy that, by modifying the time scale of the mixing processes,
guarantees well-posedness of the active layer model. A limitation of the strategy is that
it can only be applied to conditions in which the active layer thickness is constant with
time. This limitation hinders accounting for mixing of sediment due to, for instance,
dune growth.

We conduct a set of laboratory experiments to test the regularization strategy. The
experiments are conducted under conditions in which the active layer model is ill-posed.
In the experiments, we reproduce degradational conditions in which the bed surface sed-
iment is coarser than the substrate sediment. We observe that the entrainment of fine
sediment occurs in cycles. Fine sediment is exposed and entrained, causing a degrada-
tional wave. Subsequently, coarse sediment from upstream fills the space left by the
degradational wave. Degradation continues until fine sediment is exposed again. The
regularization strategy captures the changes in bed elevation and bed surface texture av-
eraged over the passage of several bedforms and entrainment cycles, but does not capture
the instability mechanism observed in the experiments.

The second proposed solution to the problem of ill-posedness overcomes the limita-
tions of the regularization strategy. We derive an alternative model to the active layer
model that is unconditionally well-posed, can be applied to conditions in which the ac-
tive layer thickness changes with time, and captures the instability mechanism observed in
the laboratory experiments. The crucial element of the model is the fact that it accounts
for the physical processes occurring at the small time and spatial scales. This is done by
relaxing the assumption that the sediment transport rate is at capacity.

The alternative model satisfactorily reproduces the new set of laboratory experiments
and an existing data set in which sedimentmixing occurs due to an increase in dune height.
It also reproduces the dynamics of tracer dispersion when temporary burial of sediment
due to bedforms is negligible. However, when temporary burial of sediment becomes an
important mechanism, the results appear to be less satisfactory.

Overall, we find ill-posedness to be ubiquitous. We expect modelling of other pro-
cesses than the ones we have studied to have a yet unknown domain of ill-posedness.



Samenvatting

M ensen grijpen in in rivieren om de zoetwatervoorziening, bevaarbaarheid, en over-
stromingsveiligheid te garanderen. Voorbeelden zijn de aanleg van dammen, supple-

tie van sediment en kribben. Dergelijke interventies veroorzaken veranderingen in het
riviersysteem op korte termijn (dagen, maanden), maar ook op de lange termijn (jaren,
eeuwen). Een dam verandert bijvoorbeeld onmiddellijk de hydrograaf stroomafwaarts
van de dam. Bovendien veroorzaakt een dam, door de sedimenttransport te verstoren,
ook vaak beddingerosie en vergroving van de rivierbedding. Het succes van interventies
hangt, althans gedeeltelijk, af van ons vermogen om de veranderingen die de interventies
veroorzaken te voorspellen. Vragen die we daarbij willen beantwoorden zijn bijvoorbeeld:
Hoe snel daalt de bodem? Hoeveel sediment moeten we suppleren om bodemerosie te
stoppen? Welke korrelgrootte moet het gesuppleerde sediment hebben?

Wiskundige modellen worden gebruikt om dergelijke vragen te beantwoorden. Een
wiskundigmodel beschrijft de relaties tussen fysieke grootheden, zoals de waterdiepte, het
bodemniveau, en de samenstelling van het sediment aan het beddingoppervlak. De rela-
ties tussen variabelen (d.w.z. de modelvergelijkingen) zijn afgeleid van fysische principes
zoals massabehoud en impulsbehoud, en beschrijven de snelheid waarmee deze variabe-
len veranderen. De oplossing van het model beschrijft de respons van de rivier op de
interventies(s), gegeven een initiële situatie (bijvoorbeeld de toestand van de rivier voor-
dat de dam werd gebouwd) en de omstandigheden aan de grenzen van het interessegebied
(bijvoorbeeld de hydrograaf en sedimentaanvoer ver stroomopwaarts van de dam).

Een cruciaal punt hierbij is dat het wiskundige model alleen van nut is als het goed ge-
steld is. Goedgesteldheid impliceert dat het model een unieke oplossing heeft die continu
afhankelijk is van de begin- en randvoorwaarden. Het feit dat modellen een vereenvou-
digde versie van de werkelijkheid beschrijven, zorgt ervoor dat modellen niet altijd goed
gesteld zijn. Wanneer belangrijke fysische processen niet goed worden weergegeven door
een model, kan het model slecht gesteld zijn. Slecht gestelde modellen worden geken-
merkt door het ontwikkelen van niet-fysische oscillaties in de oplossing en, in wezen,
nutteloze resultaten.

Het eerste en tweede deel van dit onderzoek analyseren we de omstandigheden waarin
riviermodellen slecht gesteld zijn. Als eerste richten we ons hierbij op slechtgesteldheid
als gevolg van veranderingen in de samenstelling van het beddingoppervlak. Soms volstaat
de aanname dat de korrelgrootte van het beddingsediment uniform en constant is. Andere
vragen hebben betrekking op veranderingen (in ruimte en tijd) van de samenstelling van
het beddingsediment. Voor deze laatste categorie is het actieve laagmodel (Hirano, 1971)
het standaardmodel. Het actieve laagmodel beschrijft met succes riviermorfodynamica in
situaties met gemengd sediment onder een breed scala aan omstandigheden. Toch kan het
model slecht gesteld zijn. Onze analytische analyse levert een methode om te bepalen of
het model goed is gesteld. We laten zien dat het actieve laagmodel slecht gesteld is onder
een bredere range aan omstandigheden dan voorheen bekend was. Bovendien vinden we
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dat een alternatief model dat de discretisatie van het actieve laagmodel vermijdt, ook slecht
gesteld kan zijn.

Het eerste deel van het onderzoek beperkt zich tot veranderingen van variabelen in
slechts de stroomrichting. Het tweede deel omvat ook veranderingen van variabelen in
de dwarsrichting van de rivier. We richten ons hier met name op de modellering van
secundaire stroming en bodemhellingseffecten. Secundaire stroming is de cirkelvormige
beweging die optreedt in de dwarsrichting van de rivier als gevolg van de kromming van
de stroomlijnen van de primaire stroming (d.w.z. in rivierbochten). Deze secundaire
stroming zorgt ervoor dat de buitenbocht dieper is dan de binnenbocht. Dit effect wordt
tegengegaan door het effect van de (dwars)bodemhelling. Onze analyse toont aan dat
de deelmodellen voor secundaire stroming en het bodemhellingeffect een slecht gesteld
model kunnen opleveren.

Het derde en vierde deel van deze studie richt zich op het oplossen van het probleem
van het slecht gesteld zijn. als gevolg van het modelleren van veranderingen in de bodem-
samenstelling (d.w.z. gerelateerd het actieve laagmodel), wat de meest essentiële oorzaak
van het slecht gesteld zijn lijkt te zijn. Het actieve laagmodel is goed gesteld over een breed
scala aan omstandigheden, het is rekentechnisch efficiënt, wordt in de praktijk breed toe-
gepast, en het is geïmplementeerd in grootschalig software. Om deze reden beoogt onze
eerste oplossing een goed gesteld model te verkrijgen zonder de essentie van het actieve
laagmodel te wijzigen. De gedachte achter deze regularisatiestrategie is dat het actieve
laagmodel slecht is gesteld wanneer de voorspelde tijdschaal van sedimentmenging fysisch
onrealistisch is. De regularisatiestrategie garandeert een goed gesteld actieve laagmodel
door de tijdschaal van het proces van sedimentmenging te wijzigen. Een beperking van
de strategie is dat deze alleen kan worden toegepast op omstandigheden waarbij de actieve
laagdikte in de tijd constant is. Deze beperking belet het modelleren van sedimentmen-
ging als gevolg van bijvoorbeeld duingroei.

We voeren een serie laboratoriumexperimenten uit om de regularisatiestrategie te tes-
ten. De experimenten zijn uitgevoerd onder omstandigheden waarbij het actieve laagmo-
del slecht gesteld is. In de experimenten reproduceren we omstandigheden met bodem-
erosie waarin het bodemoppervlak grover is dan het substraat. We zien dat de opname
van fijn sediment plaatsvindt in cycli. Fijn sediment wordt opgenomen, waardoor een
erosiegolf ontstaat. Vervolgens vult grof sediment dat van stroomopwaarts wordt aange-
voerd de ruimte die is achtergelaten door de erosiegolf. De voortgaande beddingerosie
maakt dat fijn sediment weer beschikbaar komt aan het bodemoppervlak. De regulari-
satiestrategie beschrijft de veranderingen van bodemniveau en samenstelling gemiddeld
over de cycli, maar beschrijft het instabiliteitsmechanisme dat we hebben gezien in de
experimenten niet.

Onze tweede oplossing voor het slecht gesteld zijn kent de beperkingen van de regula-
risatiestrategie niet. We leiden een alternatief model af dat onvoorwaardelijk goed gesteld
is, kan worden toegepast op omstandigheden waarin de actieve laagdikte verandert in de
tijd, en beschrijft het instabiliteitsmechanisme dat in de experimenten is waargenomen.
Het cruciale element van het model is het feit dat het rekening houdt met de fysische
processen die op kleine tijd- en ruimteschaal plaatsvinden. Dit doen we door het loslaten
van de aanname dat het sedimenttransport op capaciteit is.

Het alternatieve model reproduceert op bevredigende wijze zowel de nieuwe labo-
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ratoriumexperimenten als laboratoriumexperimenten waarin sedimentmenging optreedt
als gevolg van duingroei. Het reproduceert ook tracerdispersie, mits tijdelijke bedekking
door bodemvormen verwaarloosbaar is. In het laatste geval zijn de resultaten nog niet
bevredigend.

We vinden we dat het probleem van slechtgesteldheid alomtegenwoordig is. Het mo-
delleren van andere processen dan die we hebben bestudeerd hebben een nog onbekend
domein van slechtgesteldheid.





Preface

Y ou are holding in your hands the result of a journey in which I have learned as much
about rivers and science as about myself. As in a Greek epic poem, along this jour-

ney I have experienced happiness, sadness, despair, confidence, relief, curiosity, joy, pain,
tiredness, and euphoria. Luck is always part of great journeys. The lucky event that
brought me until here occurred on the 6th of June of 2012. By then, I was certain I liked
river engineering and morphodynamics. I had applied for conducting the last year of my
studies in Delft University of Technology and, although I only intended to do courses,
the regulation of the exchange program made me to do a research project too. How could
I find in a matter of days a supervisor and a project in a university I have never attended?
In despair, I went to the office of Prof. Dr. Juan Pedro Martín Vide. He opened the pro-
ceedings of the RCEM conference of 2011 saying “I remember a researcher from Delft
University of Technology...”, and fortunately found the email address he was looking for.
Within just a few minutes, I received a reply from Dr. Astrid Blom, who offered me a
project, a flume, and her supervision.

In that research project, I conducted laboratory experiments dealing with flow and
sediment of different sizes. When modelling the laboratory experiments, I found some
wiggles in the solution that I could not understand. These wiggles triggered the research
project that culminates in this book. This book will explain you why wiggles occur, why
they are undesired, and how we can prevent them.

You may be reading this text for several reasons. Maybe you have a personal connec-
tion with me and no background in rivers, models, and equations. The book is inevitably
technical, but you may want to read the introduction. I thought about you when writing
it. Specifically for you, I also cite this poem about the Mississippi River that perfectly
summarizes what a river is:

I do not know much about gods; but I think that the river
Is a strong brown god—sullen, untamed and intractable,
Patient to some degree, at first recognized as a frontier;
Useful, untrustworthy, as a conveyor of commerce;
Then only a problem confronting the builder of bridges.
The problem once solved, the brown god is almost forgotten
By the dwellers in cities—ever, however, implacable,
Keeping his seasons and rages, destroyer, reminder
Of what men choose to forget. Unhonoured, unpropitiated
By worshippers of the machine, but waiting, watching and waiting.

T. S. Eliot, part of Section 1 of The Dry Salvages in The Four Quartets.
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xx Preface

After you have read the introduction, jump directly to the acknowledgments section. Ask
me to explain you the topic if you are really interested. I will be glad to talk for hours
about it.

A reader learned in science, morphodynamics, rivers, flow, and equations, may want
to directly read Chapters 2-5, in which the core research is presented. The chapters are
presented in what I consider a logical order, but they can be read independently of each
other, as each chapter is structured as a journal article.

In writing this book, I have tried to conduct the “most appropriate charitable work
of our time: not to publish superfluous books” (Ortega y Gasset, 1937). For this reason,
I hope that you enjoy it, even if you only read the acknowledgments, skim through the
text, check a figure, or use it to fill your bookshelf.

Víctor CHAVARRÍAS BORRÀS
Delft, January 2019



1
Introduction

The greatest scientific discovery
was the discovery of ignorance.

Harari (2016)

Under various names, I have praised only you, rivers.
You are milk and honey and love and death and dance.

Miłosz (1988)

1
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1.1. Context

H umankind has intervened in rivers for millennia. An impressive example is the
Quatinah Barrage on the Oronte River (Syria), which is a dam built between 1319–

1304 BC during the reign of the Egyptian Pharaoh Sethi, and still in use (Chen, 2015).
The rise of the Roman Empire was accompanied by the rise of innovative systems of hy-
draulic structures to provide drinking water, irrigate, and for sanitary purposes (Mays,
2010). Emerita Augusta (the modern city of Mérida, Spain) is an example of such a sys-
tem of structures. The Romans built the Proserpina and Cornalvo dams (Figure 1.1),
which impounded the Las Pardillas and Albarregas rivers, two tributaries of the Guadi-
ana River. They dug channels and constructed several aqueducts to transport water. This
intervention has affected the Guadiana basin for almost 2000 years.

Figure 1.1: Proserpina dam, Mérida (Spain). Picture by Alonso de Mendoza (CC BY-SA4.0).

Compared to the long experience intervening the flow of rivers, the understanding of
the consequences of the interventions and, more specifically, the understanding of the dy-
namics of rivers has always lagged behind. Before the Scientific Revolution, which started
in Europe in the XVIth century (Hall, 1954), the dynamics of rivers were mainly explained
by the will of the gods such as Sobek in Egypt (Figure 1.2), Achelous in Greece, Yami in
India, or Yamata no Orochi in Japan (Gad, 2008; Lee, 2006; Warrier, 2014; Ouwehand,
1958). The empowerment of human reason within the Scientific Revolution brought a
more systematic approach to understanding the dynamics of rivers. However, interven-
tions were still largely based on empirical knowledge, experience, and previous successes
and failures. Examples can be found in the activities of Rijkswaterstaat, the Dutch na-
tional water management authority since 1798, during the XIXth century. The engineers
of Rijkswaterstaat achieved challenging tasks such as the compilation of a river atlas and
the introduction a national water gauge system. Yet, they were unable to arrive at a con-
sensus regarding river interventions due to, in part, a lack of understanding of the river
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Figure 1.2: Relief of Sobek in the temple of Kom Ombo (Egypt). Picture by Hedwig Storch (CC BY-SA3.0).

dynamics (Bosch, 2014).
A new paradigm arose with the use of scale models to help in the design of inter-

ventions. The work by Fargue (1894) was an early example of the use of scale models.
Fargue (1894) conducted 21 mobile bed experiments in an approximately 60 m long out-
door curved flume to generalize the observations he had done on the Garonne river as
regards to flow in bends (see also Hager (2003)). In the Netherlands the increase in use
of laboratory experiments occurred hand in hand with the foundation of the Waterloop-
kundig Laboratorium (WL | Delft Hydraulics) by Dr. Johannes Th. Thijsse (1893–1984)
in 1927 (Vreugdenhil et al., 2001). An example is the scale model of the Dutch Rhine-
Meuse branches constructed in the centre of Delft in the 1950’s (Figure 1.3). The insight
from these scale experiments was crucial in providing understanding of the processes un-
derlying fluvial dynamics as well as engineering solutions to water problems (e.g. Disco
and Toussaint, 2014). Drawbacks of scale experiments are the cost in terms of space, time,
and labor, and the fact that scale models cannot easily be modified. More importantly,
a scale model generally suffers from scale effects, as it is technically difficult to keep all
ratios between the relevant forces in the prototype (e.g., inertia, gravity, viscosity, surface
tension, pressure, et cetera) equal to the equivalent ratios in the scale model. Furthermore,
when the same fluid is used in the model and in the prototype, as usually occurs in mor-
phodynamic laboratory experiements, only one ratio between forces can be identical and
scale effects are unavoidable (Heller, 2011).

A second revolution, the one related to information and communication technology,
laid the groundwork for a paradigm change in river hydraulics. Mathematical models
explaining the flow of water, such as the Saint-Venant (1871) equations describing depth-
averaged one-dimensional flow, existed already in the XIXth century. Yet, the ability to
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Figure 1.3: Picture of the scale model of the Dutch Rhine-Meuse branches built by theWaterloopkundig Labora-
torium in the centre of Delft in 1950. The model was built in the Schuttersveld and the picture was taken from
Het Raam. The church on the top right corner is the Lutherse Kerk (also known as Saint George’s Chapel) and
the windmill on the top left is Molen de Roos. Flow goes from bottom to top. The right-hand branch is the
Lek. The second branch starting to count from the right is the Waal. The third one is the Meuse. The upstream
boundary is approximately at Wijk bij Duurstede and Tiel. The Biesbosch is visible in the centre of the domain
on the left. Picture courtesy of Deltares.

solve the equations was limited due to their complexity. Almost half a century after
the Saint-Venant (1871) equations were formulated, the Nobel laureate Dr. Hendrik A.
Lorentz (1853–1928) started leading a committee to study the hydrodynamic changes in
the Dutch Wadden Sea due to the closure of the Zuiderzee (now the IJsselmeer). There
were contradictory opinions on the effect of the closure on the tidal motions in the Wad-
den Sea. While Cornelis Lely (1854–1929), one of the engineers advocating for the closure,
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stated that the effects were going to be negligible (Mazure, 1963), Rijkswaterstaat Engineer
H. E. de Bruijn (1841–1915) said that the high tide water level would double (De Bruijn,
1911). The opinions were not based on experimental work or on calculations. As De
Bruin mentioned, “one has to sense it, as it were, based on experience gained elsewhere
and on relevant research” (Disco and Van den Ende, 2003). To properly assess the effect
of the closure on the tidal motion, Lorentz (1926) discretized the Wadden Sea considering
one-dimensional channels connected at nodes (Figure 1.4) and computed the flow solving
the Saint-Venant (1871) equations (Figure 1.5). The computations were done by hand and
the equations were simplified (linearizing the quadratic friction term) to obtain a man-
ageable problem. They predicted that the rise in the tidal range would be about 0.7 m (see
also Van Houweninge and De Graauw, 1982). The computations resulted to be very accu-
rate, as the error turned out to be a few centimeters only (Van den Ende, 1992). However,
it took the committee 8 years to find the answer (1918–1926), which was 3 years longer
than the construction of the 30 km long dike closing the Zuiderzee (1927–1932).

Figure 1.4: Numerical discretization of the Wadden Sea to compute the tide after closure of the Zuiderzee by
the Afsluitdijk (the straight line on the bottom part of domains 2c and 4). The subplot on the right indicates
the nodes and the channels that divide the domain. The general plot shows the area represented by each chan-
nel. Some channels are subdivided (e.g. 1a, 1b, and 1c) as the properties along the channel change significantly
although there is no connection (node) with another channel. This image is reproduced from the original in
Lorentz (1926).

World War II illustrated the power of computers in solving systems of equations and
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Figure 1.5: Predicted water level and water discharge division after closure of the Zuiderzee for the conditions
of the storm of 1894. The figure presents the prediction for the conditions on the 23rd of December of 1894
between 3 and 4 am. Water level values (in centimeters) are underlined. Water flow direction is shown using
arrows and discharge values (in cubic meters per second) are on the arrows. This image is reproduced from the
original in Lorentz (1926).

mathematical models in projects such as the Manhattan Project (see e.g. Anderson, 1986)
or in deciphering enemy coded messages (Booß-Bavnbek and Høyrup, 2003). Computer
power was first used for hydraulic purposes in the United States. Isaacson et al. (1954)
numerically solved the Saint-Venant (1871) equations to predict flood propagation in the
Ohio River. In Europe the first use of computer power for hydraulic purposes occurred
in 1961 (Cunge and Hager, 2015). Dr. Alexander Preissmann (1916–1990) developed the
famous numerical scheme bearing his name to build a numerical model of the Mekong
Delta. The numerical model that efficiently solved the Saint-Venant (1871) equations was
the preferred option byUNESCOover a scalemodel proposed byWL|DelftHydraulics.
With the increase in computer power, the use of mathematical models in solving river
related questions has become ubiquitous (Figure 1.6).

However, mathematical models are not all powerful. As a model represents a simpli-
fied version of the actual physical processes, it can be applied to reproduce processes at a
certain scale only. The range of applicability of different mathematical models depends
on the simplifications and assumptions considered to derive them. For instance, the flow
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Figure 1.6: Morphodynamic simulation of the Bovenrijn between Emmerich (Germany), Rhine-kilometer
852.3, and the bifurcation near Pannerden (the Netherlands), Rhine-kilometer 866.0 (Ottevanger et al., 2015).
The Rhine bridge at Emmerich is seen in the lower right-hand corner. The flow discharge is equal to 2251 m3/s.
The simulation is made using Delft3D. Data represents the river in 2015. Satellite data from Google Earth ®.

is assumed to be hydrostatic in the derivation of the Saint-Venant (1871) equations. For
this reason, these equations can represent phenomena occurring over length scales sig-
nificantly longer than the flow depth such as the propagation of a flood wave (Battjes
and Labeur, 2017), but cannot model flow recirculation occurring downstream of a dune
(Best, 2005). Flow recirculation is a strongly three-dimensional process not resolved by
the Saint-Venant (1871) equations.

The simplification of the physical processes causes models to be applicable under cer-
tain conditions only. As we will see in this thesis, when key assumptions used in deriving
a model are invalid, the model is incapable of reproducing the physical processes. In this
thesis we will deal with the problem of invalid assumptions in modelling river morpho-
dynamic processes. In the following section we will introduce these topics.

1.2. The Problem of Ill-Posedness

I n this section wewill focus on the problem of invalid assumptions and the consequences
that this has for mathematical models.
An accepted framework to mathematically describe fluvial processes (and any phys-

ical process in general) is to set up a system of partial differential equations that stem
from physical principles such as mass and momentum conservation. Each equation re-
lates the temporal rate of change of a variable to temporal and spatial changes of other
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variables. For instance, the Saint-Venant (1871) equations are a set of two partial differen-
tial equations relating the mean flow velocity and mean flow depth, which are obtained
considering conservation of mass and momentum within a control volume. The Exner
(1920) equation describes conservation of mass of bed sediment and allows for modelling
bed elevation change.

When modelling change with time we need to prescribe initial conditions (e.g., the
river bathymetry), as well as boundary conditions (e.g., the water and sediment discharge
at the upstream end of the domain and the water surface elevation at the downstream
end). For the model to be representative of the physical processes, a unique solution to
the mathematical problem needs to exist, and the solution needs to depend continuously
on the data (Hadamard, 1923). In mathematical terms this means that the model needs to
be well-posed.

The fact that a solution to the problem needs to exists and has to be unique is relatively
trivial. The fact that the solution needs to depend continuously on the initial and bound-
ary conditions is less evident. To explain the relevance of this condition we consider the
propagation with time of small waves on a string. The equation that models this physical
process is (Haberman, 2004):

∂ 2 f
∂ t 2

− γ
∂ 2 f
∂ x2

= 0 , (1.1)

where f (x, t ) [m] is the vertical displacement of the string (Figure 1.7a), t [s] represents
time, x [m] space, and γ [m2/s2 ] is a constant that depends on the properties of the
string. When the initial displacement and its derivative are equal to 0 (i.e., f (x, 0) = 0
and ∂ f /∂ t |(x,0) = 0 ∀x ), the string remains static (i.e., f (x, t ) = 0 ∀x, t ). This is the
equilibrium solution.

As in reality the initial displacement and its derivative are never exactly equal to 0,
we consider a situation in which the initial displacement is equal to 0 and its derivative is
close to 0 but not exactly equal to 0. We represent the disturbance in the derivative as a
wave-like perturbation:

∂ f
∂ t

�

�

�

�

(x,0)
=
ν

k
sin (k x) ∀x , (1.2)

where k [rad/m] is the wave number of the disturbance and ν [rad/s] a constant. Pa-
rameter ν provides the right dimensions to the equation and we arbitrarily set it equal to
1 rad/s without loss of generality. The solution to this problem (Equations (1.1), (1.2),
and f (x, 0) = 0) exists and is unique:

f (x, t ) =
ν

k2pγ
sin
�

k
p
γ t
�

sin (k x) ∀(x, t ) . (1.3)

In Figures 1.7b-c we show the displacement f as a function of space and time for a case
in which γ = 1m2/s2 and k equals 10 rad/m and 20 rad/m, respectively. Waves propagate
with time and a larger value of k creates perturbations of a smaller amplitude. As k tends
to infinity, the disturbance tends to 0 and the solution tends to the equilibrium solution.
This implies that the solution depends continuously on the initial condition. For this
reason, the problem is well-posed. Moreover, as observed in nature, ever smaller pertur-
bations have an ever smaller effect. We conclude that the model is physically realistic.
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Figure 1.7: Solutions of the model representing the propagation of waves on a string. In panel a we show the
model sketch. The transparent string represents the equilibrium solution. The solutions in panels b-c are found
considering γ = 1m2/s2 and imposing an initial conditions. In panels d-e we consider γ = −1m2/s2 and we
impose an initial condition. In panels f-g, we consider a value of γ =−1m2/s2 and we impose a future condition
at τ = 0.6 s. The value of k is equal to 10 rad/m in panels b, d, and f and it is equal to 20 rad/m in panels c, e,
and g.

We consider the same situation except for the fact that γ < 0. Just as in the previous
case, a solution exists and it is unique:

f (x, t ) =
ν

k2p−γ
sinh

�

k
p

−γ t
�

sin (k x) ∀(x, t ) . (1.4)
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In Figures 1.7d-e we show cases that are equivalent to the ones in Figures 1.7b-c except
for the fact that γ =−1m2/s2. As k tends to infinity, the disturbance tends to 0, but the
solution for the displacement tends to infinity. This is because, as k increases, 1/k2 tends
to 0, but the hyperbolic sine tends to infinity in a faster way (exponentially). The solution
for the disturbance tending to 0 is different from the equilibrium solution. The problem
is ill-posed, as the solution does not depend continuously on the data. The solution is
physically unrealistic, as it is unreasonable that a negligible disturbance causes infinitely
fast growth of perturbations. This model cannot represent physical processes.

The conclusion that the model for γ < 0 cannot represent physical processes can be
reached without finding and analyzing the solution. When deriving the model (Equation
(1.1)), one finds that γ = T /ρ where T [N] is the magnitude of the tension in the string
and ρ [kg/m] is the mass per unit length of the string (Haberman, 2004). As neither the
mass nor the tension can be negative, no physical interpretation exists for a value of γ < 0.
We conclude that the case of γ < 0 is a mathematical example of ill-posedness which has
no physical significance.

Alternatively, we reach the conclusion that the case for a value of γ < 0 cannot repre-
sent a physical process from the perspective of the conditions to the equation rather than
the model parameter. Considering a value of γ < 0 we solve Equation (1.1) assuming that
the perturbation at a certain time τ [s] is:

∂ f
∂ t

�

�

�

�

(x,τ)
=
ν

k
sin (k x) ∀x . (1.5)

In this case the unique solution is:

f (x, t ) =
ν

k2p−γ cosh (k
p−γτ)

sinh
�

k
p

−γ t
�

sin (k x) ∀(x, t ) . (1.6)

Just as in the case of γ > 0, an increase in k causes the perturbation to tend to 0 and we
find that the solution tends to the equilibrium solution (Figures 1.7f-g). For this reason,
this case is well-posed. However, the model is physically unrealistic, as we have imposed
a future condition. It is physically impossible to prescribe the entire solution at a cer-
tain future time. Worded differently, a case in which γ < 0 would be well-posed if we
would impose the solution in the future. We conclude that this model cannot describe
the propagation of disturbances in a string.

Ill-posedness is a symptom of the fact that there are key physical processes that are not
captured by the model (Joseph and Saut, 1990; Fowler, 1997). In other words, ill-posedness
can appear when one tries to apply a model under conditions in which the assumptions
used in deriving it are not valid. In the case of small waves on a string we have seen that
when using the right data (i.e., an initial condition rather than a future condition) and a
physically realistic value of the model parameter (i.e., γ > 0), the model is always well-
posed. Under these conditions the model is a fair simplification of the physical processes.
In more complex models the change of behavior from being well-posed to ill-posed is
set by a combination of parameters that may be physically realistic. An example is the
model of two superimposed inviscid shallow-flow layers used to represent, for instance,
stratified flow in the ocean or the atmosphere. When the difference between the velocity
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of the upper and lower layers exceed a certain threshold, the model becomes ill-posed
(Long, 1956; Armi, 1986; Pelanti et al., 2008). Under this condition, the model lacks a
key physical process. If, rather than assuming that the flow is inviscid, the forces at the
interface between the layers are accounted for, the domain in which the model is ill-posed
decreases (Travis et al., 1976; Lyczkowski et al., 1978; Abgrall and Karni, 2009). The range
of conditions over which the model is valid increases by an improved representation of
the physical processes.

For the simple model of small waves on a string there exists an analytical solution.
For more complex models we need to approach the problem numerically. Numerical
solutions of ill-posed problems typically show an oscillatory component: a growing wavy
pattern (e.g. Castro Díaz et al., 2011; Barker and Gray, 2017; Toro et al., 2018). However,
wave growth is certainly not a synonym of ill-posedness. The classical example of wave
growth in river morphodynamics is the growth of bars, which can be predicted using a
model that combines the Shallow Water Equations for two-dimensional flow with the
Exner (1920) equation. The model shows that long perturbations (in the streamwise and
transverse direction) superimposed to an initially flat state grow and short perturbations
decay. This implies that, as observed in nature, a narrow channel is stable but above
a certain value of width-to-depth ratio perturbations to an initially flat state grow and
bars form (Callander, 1969; Engelund and Skovgaard, 1973; Fredsøe, 1978; Colombini et al.,
1987). The existence of a lower limit of wave length for waves to grow is a property
characteristic of well-posed models.

Growth of short waves characterizes ill-posedness. In an ill-posed model there is no
lower limit to the wave length of growing perturbations. All perturbations grow inde-
pendently of the wave length. This causes the numerical solution of an ill-posed model
to continue to change as the grid is refined (Kabanikhin, 2008). The discretization of a
spatial domain into cells limits the smallest wave that the model resolves. Ever smaller
cells resolve ever shorter waves and, since all grow, the solution continues to change. In
numerical terms, one says that the solution does not converge with the grid. Certainly,
grid convergence is a property necessary for amodel to be useful. Moreover, as the growth
rate increases for decreasing wave length (e.g. Joseph and Saut, 1990), a refinement of the
mesh may lead to failure of the numerical solver.

Chaotic models and ill-posed models share the property that perturbations to the ini-
tial and boundary conditions yield divergent solutions. There are, however, two essential
differences between chaos and ill-posedness. The solution of a chaotic model may be sen-
sitive to the data but remains valid in statistical terms (Devaney, 1989). Second, there is
a certain initial period of time in which the solution of a chaotic model is valid, as per-
turbations to the data remain bounded for a sufficiently short time (Banks et al., 1992).
The solution of an ill-posed model has no period of time over which it is valid. In the
example above (Equation (1.4)), for any fixed value of time the solution tends to infinity
for a sufficiently small perturbation (i.e., for a sufficiently large value of parameter k ).

1.3. Ill-posedness in River Morphodynamics

A fter having introduced the problem of ill-posedness in general terms, here we will
focus on the problem of ill-posedness in river morphodynamic modelling.
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Cordier et al. (2011) studied the well-posedness of the one-dimensional river morpho-
dynamic model formed by the Saint-Venant (1871) equations and the Exner (1920) equa-
tion. Assuming a Chézy-type friction they found that the model is always well-posed.

In their model, the sediment is represented by a single grain size. This limits the ap-
plicability of the model to conditions where sediment sorting does not play a significant
role. Several important phenomena in rivers are intrinsically related to the fact that sedi-
ment consists of a range of grain sizes. One needs to account for mixed-size sediment to,
for instance, explain the typical downstream fining that characterizes rivers (Sternberg,
1875; Blom et al., 2016), the existence of a zone in which a gravel river suddenly changes
into a sand river (Yatsu, 1955; Blom et al., 2017a), the fact that the bed surface sediment is
typically coarser than the substrate sediment (Parker and Klingeman, 1982), and the fact
that sediment in the outer part of a bend is usually coarser than in the inner side (Parker
and Andrews, 1985).

Hirano (1971) formulated the active layer model to be able to predict such mixed-size
sediment phenomena. In the active layer model sediment is composed of several grain size
fractions that are each characterized by a representative grain size. The bed is discretized
into two layers. The top layer (i.e., the active layer) interacts with the flow, which im-
plies that sediment can be entrained from the active layer only and sediment is deposited
in the active layer only. The active layer is assumed to be homogeneous (i.e., sediment
in this layer is mixed). Contrary to the active layer, the substrate may be stratified. The
active layer model has successfully reproduced a large number mixed-size sediment phe-
nomena (including the processes above mentioned) over half a century. It is implemented
in software packages such as Delft3D (Sloff and Mosselman, 2012), BASEMENT (Vetsch
et al., 2006) and Telemac (Villaret et al., 2013). Unfortunately, the active layer model may
suffer from ill-posedness, which was first found by Ribberink (1987) using a simplified
version of the active layer model. He found that, under degradational conditions when
the mean grain size of the sediment in the active layer is coarser than that in the substrate,
the model may become ill-posed.

Several researchers have proposed alternatives to the active layer model. Ribberink
(1987) included an exchange layer in between the active layer and the substrate to account
for mixing due to dunes substantially higher than the average dune height. The model
by Ribberink (1987) reduces the likelihood that the model becomes ill-posed, but does
not exclude the possibility (Sieben, 1994). The most notable alternative is the framework
for conservation of sediment mass in which the bed is treated in a probabilistic manner
(Parker et al., 2000). This implies that there is no discrete distinction between the active
and the inactive sediment. The probability of entrainment weights the contribution to
the river dynamics of the sediment at each location in the vertical direction. This frame-
work was used by Blom and Parker (2004) and Blom et al. (2006, 2008) to derive a model
that accounts for vertical mixing due to dunes and by Viparelli et al. (2017) to model the
dynamics of a gravel bed river. Although the vertically continuous framework is more
realistic than a discrete representation, its well-posedness has never been studied. More-
over, the simplified character of the model by Viparelli et al. (2017) and the limited range
of applicability of the model by Blom and coauthors due to the small time step needed in
solving it have resulted in the fact that the active layer model is still the main formulation
accounting for mixed-size sediment river morphodynamics.
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When considering river morphodynamics in two-dimensional problems, we need to
account for two physical processes not present in one-dimensional models: (1) secondary
flow and (2) the effect of the bed slope on the direction of the sediment transport. In
a bend, the fact that the flow velocity varies along the vertical direction due to bed fric-
tion, causes the formation of a circular motion in the plane perpendicular to main flow
direction (Van Bendegom, 1947; Rozovskii, 1957). The upper part of the flow is directed
outwards and the part close to the bed is directed inwards. For this reason, secondary
flow causes sediment to be transported to the inner side of a bend creating a shallow inner
side and deep outer side, as first observed by Thomson (1876). This effect is counteracted
by gravity, which tends to move sediment downslope to the outer side of the bend. The
consequences of two-dimensional effects regarding the well-posedness of morphodynamic
models has never been assessed.

In the present study we further investigate the problem of ill-posedness in river mor-
phodynamic models. The results will provide insight into solutions to the problem of
ill-posedness.

1.4. Objectives and Research Questions

O ur objective is to assess the problem of ill-posedness in river morphodynamic mod-
elling and to provide solutions to it. We aim at gaining insight into the origin of

ill-posedness in one-dimensional as well as two-dimensional cases. As the active layer
model has proven its validity in representing an ample spectrum of phenomena, we aim
to find a first solution that preserves the essential dynamics of the active layer model. Yet,
as the origin of ill-posedness is an inaccurate representation of the physics, we aim to find
a second solution that solves the problem of ill-posedness from a physical perspective. To
this end we will focus on the following research questions:

1. Under which conditions are current models accounting for mixed-size sediment
mechanisms ill-posed?

(a) How can we determine whether the active layer model is ill-posed?

(b) What is the role of the active layer thickness as well as other model parameters
in the domain of ill-posedness of the active layer model?

(c) How do we recognize ill-posed numerical simulations?

(d) Under which conditions does a vertically continuous representation of the
bed yield an ill-posed model?

2. What is the role of two-dimensional effects with respect to model well-posedness?

(a) How does the formulation accounting for the secondary flow affect model
well-posedness?

(b) Howdoes the formulation accounting for the transverse bed slope affectmodel
well-posedness?

3. How can we prevent the active layer model from being ill-posed?
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(a) Which possible strategies can we follow to avoid ill-posedness of the active
layer model?

(b) Howphysically realistic are the results applying the strategy to avoid ill-posedness?

4. How can we obtain a new model describing mixed-size sediment river morphody-
namics that avoids ill-posedness?

(a) Which physical mechanisms need to be considered in the new model to guar-
antee its well-posedness?

(b) How physically realistic are the results of the new model?

1.5. Methodology

I n order to answer Research Question 1 we will conduct a mathematical analysis of the
system of equations used to model mixed-size sediment river moprhodynamics in one-

dimensional cases (Chapter 2). We will analyze the active layer model and we will study
the role of the model parameters. By means of numerical simulations we will gain insight
into the consequences of ill-posedness. A similar analysis will be conducted regarding the
simplified vertically continuous formulation of the bed processes developed by Viparelli
et al. (2017).

We will extend the analysis to two-dimensional cases to answer Research Question 2

(Chapter 3). We will consider the effect of accounting for secondary flow on the well-
posedness of a two-dimensional model. We will also assess the role of the different rela-
tions to account for the effect of the bed slope on the sediment transport direction.

In Chapter 4 we will survey possible strategies for preventing the active layer model
from being ill-posed (ResearchQuestion 3). We will develop a regularization strategy that
prevents the active layer model from being ill-posed, while retaining the core of the active
layer model. The results of the regularization strategy cannot be compared to the results
of the active layer model, as the active layer model is not applicable under the conditions
for which the regularization strategy is applied. For this reason we compare the results of
the regularization strategy to measured data of situations in which the active layer model
is ill-posed. We find that there is no data set to which we can compare the results of the
regularization strategy. For this reason, we will conduct a set of laboratory experiments
that allows for testing the regularization strategy.

ResearchQuestion 4 will be addressed in Chapter 5. In deriving a new model we will
first study which physical mechanisms need to be included to guarantee that the model
is well-posed. We will analyze the new set of conservation equations to prove its well-
posedness. The results of the new model will be compared to the above experimental
data. We also consider its applicability at larger spatial and temporal scales by modelling
a field case.



2
Ill-posedness in Modelling

Mixed-Sediment River
Morphodynamics

We may regard the present state of the universe
as the effect of its past and the cause of its future.

Laplace (1814)

The sediments are a sort of epic poem of the Earth.

Carson (1951)

In this chapter we analyze the Hirano active layer model used in mixed sediment river mor-
phodynamics concerning its ill-posedness. Ill-posedness causes the solution to be unstable to
short-wave perturbations. This implies that the solution presents spurious oscillations, the am-
plitude of which depends on the domain discretization. Ill-posedness not only produces phys-
ically unrealistic results but may also cause failure of numerical simulations. By considering
a two-fraction sediment mixture we obtain analytical expressions for the mathematical char-
acterization of the model. Using these we show that the ill-posed domain is larger than what
was found in previous analyses, not only comprising cases of bed degradation into a substrate
finer than the active layer but also in aggradational cases. Furthermore, by analyzing a three-
fraction model we observe ill-posedness under conditions of bed degradation into a coarse sub-
strate. We observe that oscillations in the numerical solution of ill-posed simulations grow
until the model becomes well-posed, as the spurious mixing of the active layer sediment and

This chapter has been published in Advances in Water Resources 114, (2018) 219–235.
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substrate sediment acts as a regularization mechanism. Finally we conduct an eigenstructure
analysis of a simplified vertically continuous model for mixed sediment for which we show that
ill-posedness occurs in a wider range of conditions than the active layer model.
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2.1. Introduction

T he mixed character of the sediment is a property necessary to explain physical phe-
nomena such as downstream fining (Sternberg, 1875; Blom et al., 2016), the gravel sand

transition zone (Yatsu, 1955; Blom et al., 2017a), the formation of bedload sheets (Semi-
nara et al., 1996), or bed surface armoring (Parker and Klingeman, 1982). Hirano (1971)
was the first to develop a mass conservation model for mixed-size sediment. The model
assumes that the topmost part of the bed, i.e. the active layer, interacts with the flow and
is instantaneously mixed. Below the active layer lies the substrate which can have vertical
stratification. In this schematic representation of the morphodynamic processes only the
active layer sediment is affected by entrainment and depositional processes. A vertical
flux of sediment originates from changes in elevation of the interface between the active
layer and the substrate.

One of the critical aspects of the active layer model is the fact that the vertical extent of
the active layer, or active layer thickness, shall be a priori assigned. However, it cannot be
physically measured, as it stems from the above schematic representation (Siviglia et al.,
2017; Church and Haschenburger, 2017). The active layer thickness is related to the time
scale of the process under consideration (Bennett and Nordin, 1977; Rahuel et al., 1989;
Sieben, 1997; Wu, 2007). In plane bed conditions and short time scales the active layer
thickness is assumed to be proportional to the size of a characteristic coarse fraction in
the bed, for instance, D84 or D90 (e.g., Petts et al., 1989; Rahuel et al., 1989; Parker and
Sutherland, 1990). If bed forms are predominant and the time scale under consideration
involves the mixing induced by the passage of several bed forms, the active layer thickness
is typically related to a characteristic bed form height (e.g., Deigaard and Fredsøe, 1978;
Lee and Odgaard, 1986; Armanini and Di Silvio, 1988). The active layer thickness may
vary over space and time, although often it is assumed to be a uniform constant.

The active layer modeling framework has proven to be able to represent a wide vari-
ety of physical phenomena such as bed surface armoring (e.g., Park and Jain, 1987) and
the morphodynamics of gravel-bed rivers (e.g., Vogel et al., 1992) and tidal basins (e.g.,
Carniello et al., 2012). Moreover, it is implemented in a large amount of software pack-
ages such as Telemac (Villaret et al., 2013), Delft3D (Sloff andMosselman, 2012), and BASE-
MENT (Vetsch et al., 2006).

The mathematical representation of river morphodynamics should be well-posed.
This means that the mathematical problem must have a unique solution which depends
continuously on the data (Hadamard, 1923). If the solution does not depend continuously
on the data, the model is unfit to represent the corresponding physics.

Despite its widespread use, the active layer model has one major mathematical short-
coming: the model can change its mathematical character under some parameter settings.
Therefore the mathematical problem that represents the physics of river morphodynam-
ics can become ill-posed. This fact was first recognized byRibberink (1987). To this end he
simplified the active layer model by considering an equation for the mean grain size of the
active layer sediment rather than one active layer equation for each grain size fraction. He
found that under aggradational conditions the problem is unconditionally well-posed and
the system may become ill-posed under degradational conditions if the substrate is finer
than the active layer (i.e. degradation in an armored river). Ribberink (1987) included a
third layer between the active layer and the substrate to model the effects of dunes excep-
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tionally larger than the average dune height. Although this model includes more physical
mechanisms and improves the prediction of mixed sediment processes in dune-dominated
cases, it may still become ill-posed (Sieben, 1994).

To understand the conditions in which the active layer model becomes ill-posed we
focus on how information propagates along a river. We first consider a certain reach char-
acterized by normal flow and immobile sediment. A perturbation of the flow propagates
along the river in the form of two waves traveling at speeds equal to u ±

p

g h where u
[m/s] denotes the mean flow velocity, h [m] the flow depth, and g [m/s2 ] is the acceler-
ation due to gravity. If sediment is mobile, yet uniform, a perturbation in bed elevation
(e.g., a sediment hump) will propagate with a speed that is termed the “bed celerity”
(De Vries, 1965; Lyn and Altinakar, 2002; Stecca et al., 2014). As the bed elevation affects
the flow, the bed elevation perturbation also induces a perturbation of the flow. Thus, un-
der unisize sediment conditions, a perturbation of the bed elevation leads to three waves
(Figure 2.1a). Although each of the waves perturb both bed elevation and flow, two of the
waves perturb mainly the flow without much change in bed level if the Froude number
(Fr= u/

p

g h ) is sufficiently small (De Vries, 1973; Needham, 1990; Zanré and Needham,
1994).

The consideration of mixed sediment (of two size fractions to simplify the exam-
ple) introduces another celerity which is termed the “sorting celerity” (Suzuki, 1976; Rib-
berink, 1987; Stecca et al., 2014). Thus, under mixed sediment conditions (with two grain
sizes), a perturbation of bed elevation causes four waves. Although each wave perturbs
the flow, bed elevation, and surface grain size distribution, two of these perturb mainly
the flow, one mainly the bed level, and one mainly the surface grain size distribution
(Ribberink, 1987; Stecca et al., 2014) (Figure 2.1b).

Sieben (1994) identified a region of parameters where, for a sediment mixture con-
sisting of two grain size classes under bed degradation into a substrate finer than the
active layer, the model is unconditionally ill-posed. This occurs when the “sorting celer-
ity” equals the “bed celerity”. This was confirmed by Stecca et al. (2014), who observed,
through numerical computation of the system eigenvalues, such model behavior also in
case of more than two sediment fractions.

Furthermore, Stecca et al. (2014) analytically confirmed the outcomes of Ribberink’s
analysis using a more realistic unsteady model for two sediment size fractions. They
considered grain size selectivity of the bedload but hiding in a limited manner. Hiding
accounts for the fact that grain size fractions finer than a characteristic mean grain size
of the mixture hide behind larger grains and so they experience a larger critical bed shear
stress compared to the unisize case (Einstein, 1950;Komar, 1987a,b). The opposite happens
for coarse sediment fractions, which experience a larger exposure to the flow than in a
unisize case. In their analysis Stecca et al. (2014) showed that the model can become ill-
posed under degradational conditions if and only if the substrate is finer than a reference
grain size distributionwhich is related to the grain size distribution of the bedload, instead
of the active layer (as in Ribberink (1987) analysis).

To overcome the problem of setting the active layer thickness, Parker et al. (2000)
developed a stochastic framework without the need for a distinction between the active
and inactive parts of the bed. Blom and Parker (2004), Blom et al. (2006), and Blom et al.
(2008) developed a model that accounts for dune sorting and the variability of bed ele-



2.1. Introduction

2

19

bed

t=0 t=t1

t=0 t=t1

water
water

water
waterbed

sorting

a

b

un
is

iz
e

m
ix

ed

Figure 2.1: Schematic of the effect of a perturbation in bed elevation in (a) a unisize sediment case and (b)
a mixed sediment case. In the latter case, a perturbation in bed elevation introduces another wave, which is
mainly related to the bed surface grain size distribution. Yet, each wave perturbs the flow, bed elevation, and
bed surface grain size distribution. The arrows indicate the direction of propagation of the perturbations under
subcritical flow conditions. The words “water”, “bed”, and “sorting” refer to a perturbation in water flow, bed
level, and surface grain size distribution, respectively.

vation based on the stochastic framework developed by Parker et al. (2000). The model
associates a probability of grain size selective entrainment to all elevations within the bed,
and hence allows for sediment at any elevation to be entrained and contribute to the bed-
load discharge. Viparelli et al. (2017) developed a simplified vertically continuous model
assuming slow changes in bed elevation and a steady probability distribution of entrain-
ment, deposition, and bed elevation, which make their model suitable for large space and
time domains. So far the well-posedness of the continuous model has never been assessed.

Our main objective is to analyze the problem of ill-posedness of the active layer model
used for mixed sediment morphodynamics. The present chapter provides four key im-
provements with respect to presently available knowledge: (i) we obtain analytical expres-
sions to characterize a simplified model (i.e., to find whether it is ill-posed or well-posed)
when only two sediment fractions are composed, (ii) we study the effect of model parame-
ter choice on ill-posedness, (iii) we find new (previously neglected) ill-posedness domains,
and (iv) we study the consequences of ill-posedness in numerical simulations. Our second
objective is to mathematically characterize the vertically continuous model developed by
Viparelli et al. (2017). In the next section we present the general set of equations for
modeling mixed sediment river morphodynamics using (a) the active layer model and
(b) the vertically continuous model developed by Viparelli et al. (2017). The models are
simplified and analyzed in Section 2.3. We analyze the effect of model parameters on the
ill-posedness of the active layer model in Section 2.4. In Section 2.5 we study the con-
sequences of ill-posedness using numerical runs. In Section 2.6 we relax and study the
simplifications of our analysis.
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2.2. Model Equations

I n this section we present the equations used to model river morphodynamics. These
equations represent one-dimensional hydrostatic flow over a mobile bed composed of

an arbitrary number N of non-cohesive sediment fractions characterized by a grain size
dk [m], where the subscript k identifies each fraction in increasing size (i.e., d1 < d2 <
...< dN ).

In the following section we describe the flow equations. As previous research has clar-
ified (Ribberink, 1987; Stecca et al., 2014), a key parameter in determining well-posedness
of the active layer model is the active layer thickness. In this chapter we both consider
a model with constant, and with unsteady (time-varying) active layer thickness. While
the well-posedness of the model with constant active layer thickness has been analyzed in
previous work (Ribberink, 1987; Stecca et al., 2014), to our knowledge no analysis of the
well-posedness of the model with unsteady active layer thickness is available, although use
of such a model is documented in the literature (e.g. Karim et al., 1983). The equations of
the adapted active layer model are presented in Section 2.2.2. In Section 2.2.3 we present
the vertically continuous model derived by Viparelli et al. (2017). The closure relations
for both models are treated in Section 2.2.4. In Section 2.2.5we present a compact matrix
formulation of the model equations.

2.2.1. Flow Equations
The flow is described by the 1D Shallow Water Equations (i.e., the Saint-Venant equa-
tions (Saint-Venant, 1871)) considering constant width. Assuming steady flow conditions
the water discharge is uniform and conservation of momentum reduces to the so-called
backwater equation (A.1). When assuming steady flow over a movable bed composed of
sediment of different sizes we implicitly assume that the flow adapts instantaneously to
perturbations in bed elevation and grain size distribution. Worded differently, we assume
that flow perturbations propagate infinitely fast relative to perturbations in bed eleva-
tion and surface grain size distribution. This assumption is referred to in literature as the
“quasi-steady flow assumption” (De Vries, 1965; Zhang and Kahawita, 1987, 1990; Cao and
Carling, 2002a). The quasi-steady flow assumption is acceptable provided that the Froude
number is sufficiently small, 1− Fr2 = O (1) (De Vries, 1973; Sieben, 1999; Lyn and Alti-
nakar, 2002). Note that in this context the term “quasi-steady” has a meaning different
from, for instance, its use in the modeling of flood waves where “quasi-steady” refers to
negligible inertia in the momentum balance.

2.2.2. Adapted Active Layer Model Equations
The conservation of the total amount of sediment in the bed is formulated by the Exner
equation (Exner, 1920). The active layer equation describes mass conservation for each
size fraction (Hirano, 1971). A.2 presents the details of the active layer model.

To analyze themodel with unsteady active layer thickness, we first need to set a closure
relation expressing the thickness change in time. We consider an empirical empirical
power relation between dune height H [m] and flow depth h [m] (Yalin, 1964; Gill,
1971):

H = aLh bL , (2.1)



2.2. Model Equations

2

21

η0

η

h

La

pe

Fak
fk

I

fsk(z)

pe

fk(z)

Active Layer Model Vertically Continuous Model

q

qbk

Figure 2.2: Representation of the main variables of the active layer model (Hirano, 1971) and the vertically
continuous model proposed by Viparelli et al. (2017).

where aL [m1−bL ] and bL [−] are constants. Allen (1968a,b) proposed values of aL = 0.1∼
0.2 m1−bL and bL = 0.9 ∼ 1.2 (with h in [m]). Assuming that the active layer thickness
La [m] is equal to the mean dune height (Blom, 2008), we relate the active layer thickness
to the flow depth as follows:

La = aLh bL . (2.2)

To obtain an equation for the active layer thickness variation we differentiate the con-
stitutive law, Equation (2.2), with respect to time and then substitute the continuity equa-
tion (A.1) in it:

∂ La

∂ t
=−aLbLh bL−1 ∂ q

∂ x
. (2.3)

Substitution of Equation (2.3) into the active layer equation (A.5) yields the following
adapted active layer equation:

∂ Mak

∂ t
− f I

k

∂ qb

∂ x
+ f I

k aLbLh bL−1 ∂ q
∂ x
+
∂ qbk

∂ x
= 0 , (2.4)

where t [s] denotes the time coordinate, x [m] the streamwise coordinate, q = u h [m2/s]
the water discharge per unit width, qb [m2/s] is the sediment transport rate per unit width
multiplied by 1/(1− p) where p [−] is the bed porosity (i.e., the sediment transport rate
qb accounts for pores), qbk [m2/s] is the sediment transport rate per size fraction, Mak
[m] is the volume of sediment of size fraction k in the active layer per unit of bed area,
and f I

k [−] is the volume fraction content of size fraction k at the interface between the
active layer and the substrate. In Figure 2.2 we show a schematic representation of the
main variables of the active layer model.

2.2.3. Simplified Vertically Continuous Model Equations
The conserved quantity in the vertically continuous model (similar to Mak in the active
layer model) is the product of the cumulative probability of bed elevation (Pe [−]) and the
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volume fraction content of a specific grain size class k ( fk [−]) (Parker et al., 2000; Pelosi
et al., 2014). The vertical coordinate is z [m]. To simplify the problem, the probability
distribution depends on a second vertical coordinate y = z − η which is centered at the
mean bed elevation. Assuming slow changes in mean bed elevation and a constant (in
time and space) probability distribution of bed elevation, Viparelli et al. (2017) obtain an
equation for the change in time of the volume fraction content, fk :

Pe
∂ fk

∂ t
=−pe

∂ qbk

∂ x
−
∂ qb

∂ x
∂ fk Pe

∂ y
, (2.5)

where pe [m−1 ] is the probability density function of bed elevation (Figure 2.2).
As in the active layer model, information is only advected in streamwise direction,

i.e., the conservation equation does not include divergence terms in the y direction and
the only independent variable in space is x. In contrast to the active layer model, there is
no inactive substrate and sediment at all elevations plays a role. This is illustrated by the
dependence of the probability function on the y coordinate and the gradient in the y di-
rection in Equation (2.5). Thus, although the system of equations is one-dimensional, the
mathematical character of the model is a property depending not only on the streamwise
coordinate x but also on the vertical coordinate y.

2.2.4. Closure Relations
We apply the Chézy law for the friction slope. Thus, the friction slope is proportional to
the square of the mean flow velocity divided by the flow depth, Sf = Cfu

2/(g h), where
Cf [−] is a nondimensional friction coefficient. For simplicity, we assume a constant
nondimensional friction coefficient that is independent of the flow and bed parameters.

We apply a generalized form of the Meyer-Peter and Müller (1948) transport relation,
in which the sediment transport rate is a power function of the excess bed shear stress:

q∗bk =A[max (θk − ξkθc, 0)]
B , (2.6)

where q∗bk [−] is a nondimensional sediment transport rate (A.3), A [−] and B [−] are
nondimensional parameters, θk [−] is the nondimensional bed shear stress of size fraction
k, also known as Shields (1936) parameter, θc [−] is the nondimensional critical bed shear
stress, and ξk [−] is the hiding coefficient. Table 2.1 summarizes appropriate values of A,
B , and θc according to several authors.

A common hiding function is the one due to Egiazaroff (1965) (A.3). A simpler rela-
tion was developed by Parker et al. (1982):

ξk =
�

Dm

dk

�b

, (2.7)

where Dm [m] is a characteristic mean grain size and b is a nondimensional parameter.
A value of b > 1 (Dhamotharan et al., 1980; Misri et al., 1984; Kuhnle, 1993) implies that
hiding is so strong that the coarser fraction(s) in the mixture is (are) more mobile than
the finer one(s), i.e., reverse mobility (Solari and Parker, 2000).

A final closure relation is required (only for the active layer model) for the volume
fraction content of sediment of size fraction k at the interface between the active layer



2.2. Model Equations

2

23

Author A [−] B [−] θc [−]
Meyer-Peter and Müller (1948) 8 1.5 0.047
Engelund and Hansen (1967) 0.05/Cf 2.5 0
Fernandez-Luque and Van Beek (1976) 5.7 1.5 0.037 - 0.0455
Wong and Parker (2006a) (1) 4.93 1.6 0.047
Wong and Parker (2006a) (2) 3.97 1.5 0.0495

Table 2.1: Values of parameters in Equation (2.6) according to several authors.

and the substrate, f I
k . When the interface lowers the texture at the interface is equal to

that at the topmost part of the substrate. When the interface elevation increases various
relations can be applied for f I

k . Hirano (1971) proposed that during aggradation the grain
size distribution at the interface is equal to the one of the active layer. According to Parker
(1991) also the bedload sediment plays a role in the aggradational flux to the substrate.
Hoey and Ferguson (1994) combined both concepts in one parameter α [−] spanning the
range [0,1] that describes the contribution of the active layer relative to the one of the
bedload:

f I
k =

¨

fsk (z = η− La) if ∂ (η−La)
∂ t < 0

αFak +(1−α) pk if ∂ (η−La)
∂ t > 0

, (2.8)

where pk = qbk/qb [−] is the fraction of sediment transport rate of size fraction k.

2.2.5. Matrix Formulation
In this section we introduce a matrix formulation to asses the well-posedness of the system
of equations.

A system of partial differential equations (PDEs) can be mathematically classified as
being of a hyperbolic, elliptic, or mixed type (e.g., Courant and Hilbert, 1989). To this
end we write the problem in matrix-vector form (e.g., Toro, 2001):

∂ Q
∂ t
+A

∂ Q
∂ x
= S . (2.9)

This equation is the one-dimensional quasi-linear non-conservative form of the advection
equation. Q is the vector of dependent variables, A is the system matrix, and S is the
vector of source terms.

A system is hyperbolic at a point (x, t ) if all the eigenvalues of matrix A are real.
Physical propagation problems are modeled with hyperbolic systems of equations. If all
eigenvalues are complex, the system is termed elliptic. Elliptic systems model equilibrium
physical problems. If matrix A has both real and complex eigenvalues it is a mixed-type
system.

A space-time dependent problem, in which we prescribe boundary conditions as a
function of time and an initial condition (as is the case in modeling river morphodynam-
ics), governed by an elliptic set of equations is ill-posed (Hadamard, 1923; Joseph and Saut,
1990; Kabanikhin, 2008). This is confirmed by a perturbation analysis that shows that, if
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all eigenvalues of matrix A are real, perturbations of a reference state are bounded (Ap-
pendix A.5). However, if there is at least one complex eigenvalue (or, precisely, at least
two, because of the complex conjugate), perturbations grow exponentially. The expo-
nential growth depends on the product of the imaginary part of the eigenvalues and the
wave number of the perturbation, which implies that the solution of an ill-posed problem
is unstable to short perturbations. Attempts to numerically integrate an ill-posed prob-
lem therefore produce results that continue to change as the grid is refined (Woodhouse
et al., 2012; Barker et al., 2015), as in numerical solutions perturbations always exist due
to at least truncation errors. In numerical simulations the wave number of the shortest
possible perturbation is inversely related to the horizontal discretization (∆x ).

By only using the eigenvalues of A to characterize the system of equations we are
neglecting the effect of friction (Appendix A.5). Yet, this suffices here as friction becomes
relevant for small wave numbers only (AppendixA.5) and themost critical wave numbers,
as regards to oscillation growth, are the large ones.

As a single complex pair of eigenvalues makes the problem ill-posed, we do not make
a distinction between the number of complex eigenvalues. We term a problem with at
least a pair of complex eigenvalues as elliptic.

We recast inmatrix-vector form the Saint-Venant equations, (A.1) and (A.2), the Exner
equation, (A.4), the active layer thickness equation, (2.3), and the adapted active layer
equation, (2.4). The vector of dependent variables is:

Qal =
�

h, q ,η, La, [Mak]
�ᵀ , (2.10)

the system matrix is:

Aal =









0 1 0 0 0

g h −
� q

h

�2 2 q
h g h 0 0

∂ qb
∂ h

∂ qb
∂ q 0

∂ qb
∂ La

�

∂ qb
∂ Mal

�

0 aL bL h bL−1 0 0 0
�

∂ qbk
∂ h − f I

k
∂ qb
∂ h

� �

∂ qbk
∂ q − f I

k
∂ qb
∂ q + f I

k
aL bL h bL−1

�

0

�

∂ qbk
∂ La

− f I
k
∂ qb
∂ La

� �

∂ qbk
∂ Mal

− f I
k
∂ qb
∂ Mal

�









, (2.11)

and the vector of source terms is:

Sal =
�

0,−g hSf, 0, 0,0
�ᵀ . (2.12)

The brackets ( [ ]) highlight those terms that are vectors or matrices.
We also recast in matrix-vector form the Saint-Venant equations, (A.1) and (A.2), the

Exner equation, (A.4), and the conservation equation of the vertically continuous model,
Equation (2.5). The vector of dependent variables is:

Qvc =
�

h, q ,η, [ fk]
�ᵀ , (2.13)

the system matrix is:

Avc =







0 1 0 0

g h −
� q

h

�2 2 q
h g h 0

∂ qb
∂ h

∂ qb
∂ q 0

�

∂ qb
∂ fl

�

�

1
Pe

�

pe
∂ qbk
∂ h +

∂ fk Pe
∂ y

∂ qb
∂ h

�� �

1
Pe

�

pe
∂ qbk
∂ q +

∂ fk Pe
∂ y

∂ qb
∂ q

��

0

�

1
Pe

�

pe
∂ qbk
∂ fl

+
∂ fk Pe
∂ y

∂ qb
∂ fl

��






, (2.14)



2.3. Characterization of the Mathematical Models

2

25

and the vector of source terms is:

Svc =
�

0,−g hSf, 0,0
�ᵀ . (2.15)

2.3. Characterization of the Mathematical Models

I n this section we analyze the mathematical character of the models described in Section
2.2. Eigenvalues computed numerically can be obtained for an unlimited number of

fractions. Here we study a simple case assuming steady flow and two size fractions to
obtain analytical expressions of the eigenvalues.

As in our case the temporal change of the active layer thickness depends on the spatial
gradient of the water discharge per unit width, Equation (2.3), the steady flow assumption
implies a constant active layer thickness. Yet, in a numerical simulation where the steady
flow assumption is used but the upstream discharge varies with time (i.e., alternating
steady flow), the active layer thickness may vary with time. However, in such a case the
perturbations due to a change in active layer thickness propagate infinitely fast relative to
the perturbations in bed elevation and surface grain size distribution.

The implications of more than two sediment size fractions and an active layer thick-
ness as a function of the flow depth are studied in Section 2.6.

2.3.1. Steady Active Layer Model Consisting of Two Size Fractions
Substitution of the backwater equation, (A.3), in the Exner equation, (A.4), and the active
layer equation, (A.5), allows us to obtain a reduced model where the vector of dependent
variables (QalS2 ) is:

QalS2 = [η, Ma1]
ᵀ , (2.16)

the vector of source terms (SalS2 ) reads:

SalS2 =−Sf
uψ

1−Fr2 [1,γ1]
ᵀ , (2.17)

and the system matrix (AalS2) is:

AalS2 = u





ψ
1−Fr2 χ1
ψ

1−Fr2 γ1 χ1µ1,1



 . (2.18)

We define ψ [−] as:

ψ=
∂ qb

∂ q
, (2.19)

which is a parameter related to the intensity of total bedload in the flow and ranges be-
tween 0 (null sediment discharge, i.e., fixed bed) and O (10−2) (high sediment discharge),
(e.g., De Vries (1965); Lyn and Altinakar (2002); Stecca et al. (2014)).

The parameter γ1 [−] is a measure of the fraction content of sediment in transport
relative to the fraction content of sediment at the interface between the active layer and
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the substrate (Stecca et al., 2014):
γ1 = c1− f I

1 , (2.20)

where c1 ∈ [0,1] [−] is a parameter expressing the increase in the sediment transport
intensity of the fine fraction relative to the total sediment transport intensity (Stecca et al.,
2014):

c1 =
1
ψ

∂ qb1

∂ q
. (2.21)

We now introduce the parameter χ1 [−] which is a nondimensional measure of the
derivative of the total sediment transport rate with respect to the volume of fine sediment
in the active layer:

χ1 =
1
u
∂ qb

∂ Ma1
. (2.22)

The parameter µ1,1 [−] is defined as:

µ1,1 = d1,1− f I
1 , (2.23)

where d1,1 [−] is a nondimensional measure of the derivative of the sediment transport
rate of the fine fraction with respect to the volume of fine sediment in the active layer:

d1,1 =
1

uχ1

∂ qb1

∂ Ma1
. (2.24)

We obtain the eigenvalues of the system matrix finding the roots of its second degree
characteristic polynomial. The eigenvalues are nondimensionalized dividing by the flow
velocity:

λalS2i =
1
2

�

λb+λs1±
p

∆alS2

�

for i = 1,2 , (2.25)

where the discriminant is:

∆alS2 = (λb−λs1)
2+ 4λbλs1

γ1

µ1,1
. (2.26)

The eigenvalues of the system carry coupled information on both the bed elevation
and the surface grain size distribution which shows that a perturbation in bed elevation
causes a perturbation in surface grain size distribution and vice versa (Section 2.1). Yet,
we identify two nondimensional celerities that approximate the changes in bed elevation
(λb ) and in surface grain size distribution (λs1 ) independently.

The bed celerity, which is independent of the active layer thickness, was first derived
by De Vries (1965) for unisize sediment:

λb =
ψ

1−Fr2 . (2.27)

We define the nondimensional sorting celerity as:

λs1 = χ1µ1,1 . (2.28)
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This sorting celerity differs from the one of Ribberink (1987) as he considered a per-
turbation in the mean grain size while here the sorting celerity relates to a perturbation
in the volume fraction content of each grain size fraction individually. The proposed ex-
pression for the sorting celerity in Equation (2.28) is a generalization of the expression
proposed by Stecca et al. (2014), as we have relaxed Stecca et al.’s assumption of limited
hiding.

The mathematical character of the model depends on the sign of the discriminant
∆alS2, Equation (2.26). If ∆alS2 > 0 the two eigenvalues are real and the system is hy-
perbolic. If ∆alS2 < 0 the eigenvalues are complex and the system is elliptic. A large
difference between the bed celerity and sorting celerity reduces the likelihood that the
model becomes elliptic. Hyperbolicity is guaranteed if γ1 > 0. If γ1 < 0 and the bed and
sorting celerities are equal, ellipticity is guaranteed (Sieben, 1994; Stecca et al., 2014).

Assuming that reverse mobility does not occur (Section 2.2.4), c1 is larger than the
volume fraction content of fine sediment in the active layer (Fa1 ) due to the grain size
selectivity of the sediment transport relation (Stecca et al., 2014). If we also assume that
the sediment transferred to the substrate in aggradational conditions has the same grain
size distribution as the active layer (Hirano, 1971), then the parameter γ1 is always positive
in aggradational conditions. Only a substrate finer than the active layer yields a negative
value of the parameter γ1. Thus, a two-fraction active layer model can only be ill-posed if
the bed degrades into a substrate that is finer than the active layer (a result also found by
Stecca et al. (2014) considering unsteady flow).

In Sections 2.4.1 and 2.4.2 we assess the relaxation of the assumptions that reverse
mobility does not occur and that the aggradational flux to the substrate has the same
grain size distribution as the active layer.

2.3.2. SteadyVertically ContinuousModel Consisting of Two Size Frac-
tions

We apply the same procedure used to analyze the active layer model to the vertically con-
tinuous model (Section 2.2.3). In this manner we obtain the discriminant of the eigenval-
ues (A.4):

∆vcS2 = (λb−λsc1)
2+ 4λbλsc1

g1

m1,1
, (2.29)

where λsc1, g1, and m1,1 are the equivalents to λs1, γ1, and µ1,1 of the active layer model
(A.4).

Similar to the active layer model (Section 2.3.1), the continuous model is hyperbolic
and well-posed if ∆vcS2 > 0 and vice versa. Although the expression of the discriminant
of the vertically continuous model, Equation (2.29), is similar to the one of the active
layer model, Equation (2.26), there is an essential difference between the two. In the
active layer model the discriminant is a function of the streamwise position,∆alS2(x), yet
in the continuous model the discriminant is also a function of the vertical coordinate,
∆vcS2(x, y). Thus, ellipticity or hyperbolicity is a property not only of the streamwise
coordinate but also of the elevation in the bed (Section 2.2.3). Hyperbolicity is guaranteed
if g1 > 0 but, contrary to the active layermodel, this parameter can be negative both under
aggradational and degradational conditions.
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Due to grain size selective transport we can assure that, if reverse mobility conditions
do not prevail, the concentration c1 is larger than the volume fraction content represen-
tative of the bed surface Fb1, Equation (A.14). However, Fb1 is a weighted average of all
sediment and for this reason there is no guarantee that for all bed elevations the average
volume fraction content (Fb1 ) is larger than the local volume fraction content in the bed
sediment ( f1 ). Moreover, as there is no distinction between aggradational and degrada-
tional cases, the domain in which the model is likely to be ill-posed is larger than for the
active layer model. The presence of fine sediment at the locations having larger probabil-
ity of entrainment in combination with a “smooth” vertical variation (small derivative)
of the volume fraction content of fine sediment reduces the likelihood of the model be-
coming elliptic.

2.4. Active Layer Model Parameter Study

I n this section we assess the effects of various model parameters on the mathematical
character of the active layer model. To this end we study the analytical expressions of

the eigenvalues of the steady model considering two sediment size fractions obtained in
Section 2.3.1.

2.4.1. Hiding
Given the fact that ill-posedness arises when considering different grain sizes in the mix-
ture and that a larger difference between grain sizes increases the ill-posed domain, intu-
itively hiding should reduce the likelihood of ill-posedness. Its effect, however, is opposite
as we will show here.

To explain this counter-intuitive result we analyze the term in the characteristic poly-
nomial intrinsically related to hiding. This term is the derivative of the sediment transport
rate of fine and coarse sediment with respect to the volume of fine sediment in the active
layer (∂ qbk/∂ Ma1 ). It can be considered as the summation of two terms:

∂ qbk

∂ Ma1
=

1
La











∂ Fak

∂ Fa1
Qbk

︸ ︷︷ ︸

presence

+Fak
∂ Qbk

∂ Fa1
︸ ︷︷ ︸

hiding











for k = 1,2 . (2.30)

We name the first and second terms on the right-hand side the “presence term” and the
“hiding term”, respectively. The “presence term” explains that an increase in the volume
fraction content of the fine sediment in the active layer implies both (1) an increase of the
sediment transport rate of the fine fraction as its presence at the bed surface is larger, and
(2) a consequent decrease of the sediment transport rate of the coarse fraction because its
presence at the bed surface decreases. The “hiding term” indicates the fact that a variation
of the volume fraction content of the fine sediment changes the sediment transport rate
of both fine and coarse fractions due to a change in the mean grain size of the sediment
mixture. The “presence term” is positive for the fine fraction and negative for the coarse
fraction. The “hiding term” is always positive.

In a situation where hiding is negligible, an increase of the characteristic size of the
coarse fraction or decrease of the fine fraction, which is associated with a larger likeli-
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Fa1 [-] f I
1 [−] d1 [m] d2 [m] Cf [−] u [m/s] h [m] La [m]

0 0.6 0.002 0.004 0.015 0.68 0.20 0.01

Table 2.2: Values of the reference case. For these values the active layer thickness can be seen as representative
of plane bed conditions (La ≈ 2.5D90 ) as well as bedform dominated conditions (La ≈ aL h bL ).

hood that the model is elliptic, causes an increase of the “presence term” and thus of
∂ qbk/∂ Ma1. With respect to such a situation, hiding decreases the “presence term” of
both fine and coarse sediment (reducing the likelihood of ellipticity) but introduces the
positive contribution of the “hiding term”. Overall, the “hiding term” may dominate,
which increases the value of ∂ qbk/∂ Ma1 and thus of the likelihood of ellipticity.

Interestingly, in degradational conditions into a fine substrate (a situation prone to be
elliptic) the hiding term dominates. Thus, hiding increases the likelihood that the model
is elliptic in degradational conditions into a substrate finer than the active layer.

In Figure 2.3a we show the effect of hiding on the discriminant of the steady active
layer model considering two size fractions, Equation (2.26). We consider the reference
case described in Table 2.2. The sediment transport rate is computed using the relation
derived by Meyer-Peter and Müller (1948). To obtain different values of hiding we vary
parameter b in the power law hiding function in Equation (2.7) between 0 and 1 (purple
line in Figure 2.3a). The yellow line in Figure 2.3a is obtained varying the characteristic
grain size of the fine fraction between 0.001 m and 0.004 m using the Egiazaroff hiding
relation, Equation (A.15). The discriminant decreases for increasing hiding independent
from the hiding function.

Besides these cases under degradational conditions, we may encounter problems even
under aggradation. In fact, if hiding is so strong that reverse mobility is induced, then one
of the assumptions of the analysis by Stecca et al. (2014), may not be fulfilled. In detail,
it may happen that the reference content c1 related to the fine sediment in the bedload,
Equation (2.21), is not greater than the content of fines in the active layer Fa1, which
was their assumption under grain size selective transport. When reverse mobility instead
determines conditions such that c1 < Fa1, then the discriminant, Equation (2.26), may be
negative, and the model may become elliptic even under aggradational conditions.

2.4.2. Aggradational Flux to the Substrate
The sediment transferred to the substrate under aggradational conditions using the model
byHoey and Ferguson (1994) (Section 2.2.4) is always finer than the sediment in the active
layer. This is because the bedload is finer than the bed surface due to grain size selec-
tive processes (provided that reverse mobility does not dominate). Thus, application of
the model by Hoey and Ferguson (1994) implies that under aggradational conditions the
interface between the active layer and the substrate is finer than the active layer. This
means that the condition γ1 > 0 (Section 2.3.1) may not be fulfilled under aggradational
conditions, which implies that the model may become ill-posed. Therefore, a larger con-
tribution of the bedload to the aggradational flux to the substrate (smaller value of the
parameter α in Equation (2.8)) implies a larger likelihood of the model becoming elliptic
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Figure 2.3: Discriminant ∆alS2, Equation 2.26, as a function of: (a) the hiding relation for the fine fraction
ξ1, (b) the prefactor of the sediment transport formula A, (c) the power B , and (d) the critical Shields stress
θc. The blue line is obtained varying the parameters from the reference state using the Meyer-Peter and Müller
(1948) (MPM) sediment transport relation. The red line is obtained using the Engelund and Hansen (1967)
(EH) relation. The yellow line is obtained by varying the characteristic grain size of the fine fraction using the
hiding relation by Egiazaroff (1965), Equation (A.15), in combination with the MPM relation, the purple line
by varying the coefficient b of the power law function by Parker et al. (1982), Equation (2.7), in combination
with the MPM relation. The dots represent the reference situation described in Table 2.2. Note that there is a
different reference situation depending on the sediment transport relation.
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(Appendix A.6).
However, in a hypothetical aggrading case in which the grain size distribution trans-

ferred to the substrate is fully composed of bedload sediment (α= 0), the relative content
of the fine fraction in the vertical sediment flux, γ1 (Equation (2.20)), that controls the
size of the ill-posed domain (Section 2.3.1), is still not as small as it can be found under
degradational cases (Appendix A.6). Thus, ill-posed cases are expected to occur primarily
under degradational conditions into a fine substrate.

2.4.3. Prefactor in a Sediment Transport Relation andMorphodynamic
Factor

The discriminant (∆alS2 ) of the steady active layer model for two size fractions, Equa-
tion (2.26), can be written as ∆alS2 = A2

Õ∆alS2, where Õ∆alS2 is the discriminant for a unit
prefactor (i.e., A= 1). The prefactor A increases or decreases the discriminant but does
not change its sign, and so it does not change the character of the mathematical system.
This is confirmed by Figure 2.3b, which shows the effect of varying the prefactor A in the
reference case described in Section 2.4.1.

Since morphodynamic time scales are usually several orders of magnitude larger than
the time scales of the flow (Section 2.2.1), computations usually cover a significant number
of years. The computational time is sometimes reduced using a morphodynamic factor
that multiplies the divergence of the sediment transport rate (Latteux, 1995; Roelvink,
2006; Ranasinghe et al., 2011). This factor can also be considered as a multiplication of the
sediment transport rate and therefore has the same effect as the prefactor A. Thus, the use
of a morphodynamic factor does not change the mathematical character of the model.

This result is obtained assuming quasi-steady flow. While the prefactor in the sediment
transport relation rarely varies by more than an order of magnitude, simulations may
be run with morphodynamic acceleration factors O (102). In these latter cases, the quasi-
steady flow assumption may not be acceptable, which limits the extension of our analysis.

2.4.4. Exponent and Critical Shields Stress in a Sediment Transport
Relation

The discriminant, Equation (2.26), tends to 0− with increasing values of B if the effective
Shields stress for all sediment fractions is smaller than 1, or to∞ if the effective Shields
stress is larger than 1 for at least one fraction. Thus, it is difficult to generalize the ef-
fect of the exponent. Its variation from a reference situation can both make the system
hyperbolic if the reference situation is elliptic or vice versa. In Figure 2.3c we show the
discriminant as a function of B for the same reference cases as in Section 2.4.3. The hy-
perbolic situation when using Meyer-Peter and Müller (1948) becomes elliptic if the value
of the exponent B increases towards the value in Engelund and Hansen (1967).

The effect of the critical Shields stress, θc in Equation (2.6), on the discriminant is
similar to the effect of the exponent, as its variation can bothmake a previously hyperbolic
case elliptic or vice versa. Figure 2.3d shows how a decrease of the critical shear stress
when using the sediment transport relation byMeyer-Peter and Müller (1948) increases the
discriminant reducing the likelihood of elliptic behavior.
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2.4.5. Active Layer Thickness
The discriminant of the eigenvalues, Equation (2.26), can be written as a second degree
polynomial of the inverse of the active layer thickness, i.e.,∆alS2 = a1(1/La)

2+a2(1/La)+
a3 where a1 > 0, a2, and a3 are coefficients independent of the active layer thickness.
This implies that: (1) the model is well-posed for a sufficiently thin active layer, (2) the
model is well-posed for a sufficiently thick active layer, and (3) there exists one ill-posed
domain only (regarding the active layer thickness). These results of the two-fractions
model confirm previous results based on the simplified active layer model (Ribberink,
1987; Sieben, 1994).

The inverse of the roots of the second degree polynomial are the limit values of the
active layer thickness that ensure that the model is well-posed:

L±a =
cλs1

Òλb



1− 2
Òγ1

dµ1,1
±

√

√

√

√

�

2
Òγ1

dµ1,1
− 1

�2

− 1





−1

, (2.31)

where we have used the notation (b) for the variables with unit active layer thickness
(i.e., La = 1m). Given the facts that the active layer thickness is one of the most empirical
parameters of the system of equations (Section 2.1) and that rivermorphodynamicmodels
often require calibration (e.g., Cao and Carling, 2002b), Equation (2.31) can be applied
to select a certain value for the active layer thickness to avoid a situation that is prone to
be ill-posed.

2.5. Consequences of Ill-Posedness

I n this sectionwe analyze the consequences of ill-posedness using numerical simulations.
Our aim is to provide modellers with the tools to detect occurrence of ill-posedness in

their results and understand how the observed unrealistic model behavior changes with
parameter and model choices. First we make numerical runs to qualitatively observe
the consequences of the non-linear effects that are neglected in the perturbation analysis
(Section 2.5.1). In Section 2.5.2 we conduct a sensitivity analysis to generalize the conse-
quences observed in the previous section.

2.5.1. Numerical Examples
The linear perturbation analysis shown in Section 2.2.5 indicates that perturbations grow
unboundedly if the model is elliptic. In this section we run four numerical simulations at
flume scale to analyze the effects of the neglected non-linear terms. The simulations are
one-dimensional for the flow and are computed using theDelft3D software package (Lesser
et al., 2004), which solves the unsteady ShallowWater Equations in combination with the
active layer model. For simplicity the active layer thickness is assumed constant. Under
aggradational conditions the sediment transferred to the substrate is composed of only
the active layer sediment (i.e., α = 1 in Equation (2.8)). Substrate stratigraphy is stored
using a bookkeeping system (Viparelli et al., 2010; Stecca et al., 2016). All simulations
start from equilibrium conditions under coarse sediment feeding. A lowering of the base
level is imposed, which causes degradation into a fine substrate. We consider a well-posed
reference case (Simulation 1) that (initially) has the same parameters as the reference case
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Simulation La [m] hiding Mf [−] Fs1 ∆z Math. character
1 0.010 no 1 0.6 0.10 hyperbolic
2 0.025 no 1 0.6 0.10 elliptic
3 0.010 yes 1 0.6 0.10 elliptic
4 0.010 yes 2 0.6 0.10 elliptic
5 0.010 no 1 0.6 0.01 hyperbolic
6 0.010 no 1 1.0 0.10 elliptic
7 0.010 no 1 1.0 0.01 elliptic

Table 2.3: Overview of the simulations. Only the parameters that are different between simulations are shown.

L [m] B [m] qb1 [m2/s] qb2 [m2/s] q [m2/s]
100 1 0 1× 10−4 0.14

T [h] low. rate [m/h] ∆x [m] ∆t [s]
2 0.03/2 0.1 0.2

Table 2.4: Domain definition, boundary conditions, and numerical parameters. The symbols not defined in the
text are: reach length (L), channel width (B ), simulation time (T ), lowering rate of the downstream water level
(low. rate), horizontal discretization length (∆x ), and time step (∆t ).

of the parameter study of Section 2.4 (Table 2.2). Then, the active layer thickness is
changed (Simulation 2) and hiding is considered (Simulation 3). Simulation 4 is equal to
Simulation 3 except for its morphodynamic factor. Table 2.3 summarizes the differences
between the four simulations. The boundary conditions that are in equilibrium with the
initial condition (Blom et al., 2016) as well as other parameters are described in Table 2.4.

In Figure 2.4a we plot the discriminant of the eigenvalues of the quasi-steady active
layer model, Equation (2.26), at the initial time as a function of the active layer thickness.
Note that the conditions of Simulation 1 yield a well-posed model (∆alS2 > 0) while the
conditions of Simulation 2 yield an ill-posed model (∆alS2 < 0). In Figure 2.4d-e we
show the evolution of the bed elevation for Simulations 1 and 2, respectively. The ill-
posed Simulation 2 shows an oscillatory behavior that is not present in the well-posed
Simulation 1. We have not imposed any initial perturbation, which implies that numerical
noise is sufficient to trigger the oscillatory behavior.

Simulation 3 is the same as Simulation 1, yet the sediment transport rate now accounts
for hiding using the Parker et al. (1982) function, Equation (2.7), with exponent b equal
to 0.8. Simulation 3 is ill-posed (Figure 2.4b) and the solution shows oscillations (Figure
2.4f) just as in the ill-posed Simulation 2.

Simulation 4 is the same as Simulation 3 except for its morphodynamic factor equal
to two, which decreases the value of the discriminant (Figure 2.4c), causing oscillations
to develop faster (Figure 2.4g).
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parameter values

ph
ys
ic
al d1 [m] 0.0005, 0.001, 0.002

d2 [m] 0.002, 0.003, 0.004
La [m] 0.010, 0.015, 0.020, 0.050
fs1 [−] 0.6, 0.8, 1.0

nu
m
er
ic
al ∆x [m] 0.1, 0.2

∆z [m] 0.01, 0.02, 0.05, 0.10

Table 2.5: Values of the physical and numerical parameters varied in the sensitivity analysis.

For all cases oscillations do not occur at the upstream end of the domain. This is
because oscillations require time (and so space) to grow. In all cases oscillations grow
until a maximum amplitude is reached and then propagate downstream. This maximum
amplitude is such that the conditions are at the brink of ill-posedness and well-posedness.
Worded differently, downstream from the location where the amplitude is maximum the
model is ill-posed and it is well-posed upstream from it.

The oscillations are associated with degradation and subsequent aggradation. The
deposited sediment has the same grain size distribution as the active layer (which is coarser
than the initial substrate), so the overall effect of an oscillation is a coarsening of the
topmost part of the substrate. This coarsening acts as a regularization mechanism, which
not only restores hyperbolicity but also dampens oscillations that arrive from upstream
by limiting the source of fine material.

It is likely that, because of the regularization mechanism, computations do not crash.
As a result the extent and likelihood of ellipticity may in practice be underestimated.
Yet, the results are physically unrealistic and implementing an automated check of the
eigenvalues would be good practice for software developers and users.

2.5.2. Sensitivity Analysis
The previous section has shown that, due to the non-linearity of the system, an ill-posed
simulation generates non-physical oscillations that propagate downstream and grow until
a certain maximum amplitude at which the mathematical problem is at the brink of ill-
posedness and well-posedness. In this section we run a sensitivity analysis to generalize
those results.

To this end, we vary 4 physical parameters and 2 parameters related to the domain
discretization, using Simulation 1 as a reference case. Table 2.5 summarizes the parameter
values used in the sensitivity analysis.

As we are interested in studying the behavior of simulations under ill-posed conditions
we exclude from the analysis those simulations in which the combination of parameters
yield a well-posed model. As we have observed that the oscillations need space to grow
until a maximum value (Section 2.5.1), we exclude those simulations in which the domain
is not long enough to develop an oscillation that travels with a constant amplitude. A set
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of 173 out of 256 simulations fulfills these two requirements.
In Figure 2.5a we plot the maximum flow depth (hmax ) nondimensionalized with the

normal flow depth (hn ), as a function of the discriminant, Equation (2.26). For the sake
of clarity we plot the results of the simulations with a horizontal discretization length
(∆x ) equal to 0.1 m and a thickness of the substrate layers equal to 0.01 m and 0.10 m
(see Appendix A.7 for the results of all simulations). The parameters used to evaluate the
discriminant are those at the start of the simulation (normal flow). The vertical black
lines join simulations with the same physical parameters (i.e., they only differ regarding
numerical parameters) and the color of each dot is related to the thickness of the substrate
layer. The linear analysis has shown that the growth rate depends on the discriminant
(Section 2.2.5), however there is only mild correlation between the discriminant and the
maximum amplitude of the oscillations.

A thinly discretized substrate is associated with a larger amplitude of the oscillations
(Figure 2.5a). This effect can be seen only empirically since it is not a parameter of the
system of equations nor does it appear in the linear stability analysis.

For all simulations we compute the flow depth that yields a value of the discriminant
at the initial condition equal to 0 (i.e., at the brink between ellipticity and hyperbolic-
ity). This is done numerically finding the root of ∆alS2(h), Equation (2.26), considering
the water discharge and volume of sediment in the active layer and at the substrate of
the initial condition. We term this flow depth the hyperbolic flow depth (hhyp ), which
is independent of the numerical parameters of the simulation and depends on physical
parameters only. In Figure 2.5b we compare the measured maximum flow depth and the
hyperbolic flow depth. The grey line represents the situation in which hmax = hhyp. We
see that the hyperbolic flow depth can be used as a rough estimate of the maximum flow
depth that will occur in an elliptic simulation. One important source of scatter is the fact
that the hyperbolic flow depth depends on the initial condition only, whereas the maxi-
mum flow depth also depends on the evolution of the solution as the oscillations interact
with each other.

In Figure 2.5c we plot the nondimensional maximum flow depth as a function of the
streamwise location where the maximum flow depth occurs (nondimensionalized with
the total length of the domain). For the sake of clarity we plot the results of the simu-
lations with a thickness of the bookkeeping layers (∆z ) equal to 0.01 m (see Appendix
A.7 for the results of all simulations). In the thinly discretized simulations we find the
maximum amplitude more upstream compared to the coarsely discretized simulations.
The location where the maximum amplitude of the oscillations is found is related to its
growth rate since a faster growing oscillation develops its maximum amplitude in less
distance than a slower one. This result confirms the findings of linear stability analysis
(Section 2.2.5).

Also the maximum flow depth and the domain discretization are mildly correlated.
Similar to the vertical discretization, smaller cells yield a larger maximum flow depth but
this effect can be seen only empirically.

The discretization of the substrate affects also the duration of the elliptic behavior.
Figure 2.6 shows the longitudinal profile of four simulations from the sensitivity analysis
at the end of the run (Simulations 1, 5, 6, and 7, see Table 2.3). The substrate of the
well-posed simulations at the end of the runs is unaltered, whereas it has coarsened in the
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a consequence of ellipticity. In (a) the maximum flow depth is plotted against the discriminant ∆alS2 for a
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Figure 2.6: Grain size stratification at the end of: (a) Simulation 1, (b) Simulation 5, (c) Simulation 6, and (d)
Simulation 7. The substrate of the ill-posed simulations coarsens unrealistically.

ill-posed cases due to the oscillatory behavior, which acts as a regularization mechanism
(Section 2.5.1). A thinly discretized substrate enhances the regularization mechanism
as one full layer is created with the grain size distribution of the (coarse) active layer
during the aggrading phase of the oscillation. If the bed is discretized into thick layers the
material transferred to the substrate will be averaged with the sediment already present
in the top substrate layer. The resulting grain size distribution of the substrate may not
be sufficiently coarse to prevent the model from being ill-posed.

2.6. Implications of Considering More than Two Size Frac-
tions or an Unsteady Active Layer Thickness

T o obtain an analytical expression of the eigenvalues we have restricted our analysis to
mixtures of sediment composed of two size fractions and steady flow. In this section

we explore the consequences of relaxing these assumptions.
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2.6.1. Ill-Posed Domain of a Three-Size-Fractions Case
A model for three sediment size fractions is too complex to obtain analytical expressions
of the eigenvalues. We therefore first attempt to provide insight addressing a specific case
based on the results of the case for two size fractions.

The concept of a finer or coarser active layer relative to the substrate is unequivocally
applicable in the case of two size fractions. However, this concept is not as straightforward
for three size fractions, as it requires the definition of a mean grain size. As an extension
of the results for the two size fractions case where the model can only be ill-posed in
degradational conditions into a substrate finer than the active layer (assuming certain
conditions on the closure relations, Section 2.3.1), we consider a situation with three size
fractions which, regardless of the method to compute the mean grain size, is governed
by degradation into a substrate coarser than the active layer. This happens, for instance,
if the volume fraction contents in the active layer of the fine, medium, and coarse size
fractions are 0.5, 0.5, and 0, respectively; and at the interface are 0.5, 0, and 0.5.

We consider a sediment mixture with the above volume fraction contents and char-
acteristic grain sizes of the fine, medium, and coarse fraction equal to 0.001 m, 0.003 m
and 0.005 m. All the other parameters are equal to the reference case (Table 2.2). This
situation is elliptic as two of the eigenvalues of the system matrix are complex. Thus, in
a three size fractions case the mean grain size of the sediment in the active layer relative
to that at the interface is not a valid discriminant of the mathematical character of the
system of equations.

Figure 2.7 shows the results of a numerical simulation based on the above parameters.
The solution presents oscillations as in the previous ill-posed cases. However, the am-
plitude of these oscillations is now significantly smaller (compare Figure 2.7a to Figure
2.4e). A relatively large oscillation appears after approximately 3 h which entrains coarse
sediment from the substrate (Figure 2.7b). During the aggradational phase of the oscilla-
tions fine sediment from the active layer is transferred to the substrate. Thus, at the end
of the simulation the top part of the substrate is finer than initially (Figure 2.7c).

To illustrate the implications of this result we study the effects of discretizing the same
sedimentmixture into two or three sediment fractions. To discretize the sample into three
sediment fractions we use characteristic grain sizes equal to 0.001 m, 0.003 m and 0.005 m
and to discretize it into two sediment fractions we use 0.002 m and 0.004 m. The volume
fraction content in the medium size of the three fraction mixture is equally split between
the fine and coarse bins of the two fraction mixture. We vary all volume fraction contents
between 0 and 1 to obtain different sediment mixtures and the flow depth (keeping the
water discharge per unit width constant) between 0.15 m and 1.5 m to obtain different
flow conditions. All other parameters are equal to the reference case.

Figure 2.8a-b shows the elliptic domain when the mixture is discretized into two and
three size fractions, respectively. On the vertical axis we plot the difference between the
mean grain size of the sediment in the active layer (Dma [m]) and at the interface between
the active layer and the substrate (DmI [m]). Note that some situations that are well-posed
when the mixture is discretized into two fractions are ill-posed when it is discretized into
three fractions.

We cannot prove that the eigenvalues of the system matrix for three size fractions
are always real under aggradational conditions due to the complexity of the expressions.
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Figure 2.7: Results of an ill-posed simulation with 3 grain size fractions under degradational conditions into a
substrate coarser than the active layer: (a) bed elevation at selected times, (b) surface mean grain size with time,
and (c) grain size stratification at the end of the simulation.
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Nevertheless, we have not obtained a single complex value in any of the aggradational
tests we have conducted.

2.6.2. Effect of an Unsteady Active Layer Thickness in the Ill-Posed
Domain

In this section we analyze the implications of considering a variable active layer thickness
with respect to the ill-posedness of the system of equations. The flow needs to be consid-
ered unsteady to study the variability of the active layer thickness if it is related to dune
growth (Section 2.3). We simplify the system assuming two sediment size fractions and
negligible hiding (Stecca et al. (2014) and Appendix A.8).

We obtain the characteristic polynomial of the system matrix, Equation (2.11). We
prove that in aggradational and degradational conditions into a substrate coarser than the
active layer the characteristic polynomial has 5 real roots (Appendix A.8). Therefore the
model is well-posed regardless of the unsteady active layer thickness. Regarding degrada-
tional conditions into a substrate finer than the active layerwe prove that if λb > λs1Fa1/ f I

1 ,
considering a variable active layer thickness increases the likelihood of the model becom-
ing elliptic. Note that, assuming a similar order of magnitude of the bed and sorting
celerities, in conditions prone to be elliptic (i.e., degradation into a substrate significantly
finer than the active layer) a variable active layer thickness increases the domain in which
the active layer model is elliptic. We numerically test several sets of parameters and we
find no case where the model is hyperbolic if the active layer is unsteady but elliptic if
it is constant (Appendix A.8). This suggests that, although we do not provide a formal
proof, an unsteady active layer thickness always increases the likelihood of the model
being ill-posed.

2.7. Conclusions

W e have assessed the well-posedness of the equations used to model mixed sediment
river morphodynamics. In particular we have studied the system formed by the

flow equations (Saint-Venant, 1871) together with the active layer model (Hirano, 1971)
and a simplified vertically continuous model (Viparelli et al., 2017). Our findings are the
following:

• Considering two size fractions and the quasi-steady flow assumption we obtain an
analytical expression for the discriminant that determines whether the active layer
and continuous models are ill-posed.

• Assuming (i) two size fractions, (ii) steady flow, (iii) no reverse mobility, and (iv)
that under aggradational conditions the depositional flux of sediment to the sub-
strate is entirely composed of active layer sediment, the active layer model can be
ill-posed under degradational conditions into a substrate finer than the active layer
only.

• The use of a hiding factor increases the likelihood of ill-posedness. Strong hiding
that causes reverse mobility may cause ill-posedness also in aggradational condi-
tions.
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• Aggradational cases may be ill-posed if the depositional flux of sediment to the
substrate includes bedload sediment (Hoey and Ferguson, 1994).

• The active layer model may be ill-posed in degradational conditions into a substrate
coarser than the active layer if more than two size fractions are considered.

• Considering a variable active layer thickness associated with dune growth increases
the likelihood that the active layer model is ill-posed.

• The simplified vertically continuous model can be ill-posed under both aggrada-
tional and degradational conditions. A small vertical gradient of the probability of
bed elevation and volume fraction content decreases the likelihood of the model
being ill-posed.

• Ill-posedness results in non-physical oscillations that grow until a maximum ampli-
tude is reached, at which the model recovers its hyperbolic character (and becomes
well-posed). The non-physical oscillations itself act as a regularizing mechanism by
coarsening the substrate.

The numerical solution of an ill-posed problemmay be reliable if perturbations do not
have space and/or time to grow or if the consequences of the perturbations are negligible
compared to the accuracy of the problem data. However, the reliability of the solution
becomes subjective. This implies that it is up to the modeller to decide whether a solution
is representative of the physical phenomenon under consideration.

In a well-posed model a finer grid provides more accurate results. This is opposite
in ill-posed models as the growth rate of oscillations decreases with grid size. Thus, if a
model is ill-posed, one may be tempted to use a larger grid size such that oscillations do
not have space to grow and numerical viscosity is sufficient to suppress the consequences
of ill-posedness. We do not recommend to follow this strategy because of the subjectivity
of the solution.

We do not recommend discarding the active layer and vertically continuous models
for modeling mixed sediment river morphodynamics. The former has proven its validity
over a large range of situations (Section 2.1) and the latter is yet a simplified version of
a continuous sediment conservation model. Moreover, both models are well-posed for a
vast range of situations.

The ill-posedness of the system of equations is a fundamental mathematical problem
independent of the numerical solver. It can only be solved by an improved set of equations
that represents physical processes in a better way than existing models do. In this regard
we are currently conducting laboratory experiments to investigate the physical mecha-
nisms that are relevant under conditions in which the active layer model is ill-posed. One
may want to introduce minimal changes to the active layer model to regularize it (i.e., to
ensure that the model is always well-posed). In this case, the most straightforward solu-
tion is to check whether the model is ill-posed and to change the active layer thickness to
a value that provides a well-posed model. One needs to be aware that this approach is not
simply a numerical trick, as it implies a change of the time scale of the physical processes
under consideration. Moreover, it implies a temporal change of the active layer thickness
which may be relatively large and local. Preliminary simulations show that this solution
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is not always stable. Another possibility may be to artificially modify the celerities with-
out changing the actual thickness of the active layer. A similar approach has been used by
Zanotti et al. (2007) to regularize the ill-posed two-layer shallow water model. Current
work by the authors builds on this idea.



3
Ill-posedness in Modelling

Two-Dimensional
Morphodynamic Problems:

Effects of Bed Slope and
Secondary Flow

The purpose of computing is insight, not numbers.

Hamming (1962)

Rivers are like stories.
They have a beginning, a middle, and an end.

In between, they flow. Or would flow, if we let them.

Hass (2000)

A two-dimensional model describing river morphodynamic processes under mixed-size sedi-
ment conditions is analysed with respect to its well-posedness. Well-posedness guarantees the
existence of a unique solution continuously depending on the problem data. When a model
becomes ill-posed, infinitesimal perturbations to a solution grow infinitely fast. Apart from
the fact that this behaviour cannot represent a physical process, numerical simulations of an

This chapter has been published in Journal of Fluid Mechanics 868, (2019) 461–500.
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ill-posed model continue to change as the grid is refined. For this reason, ill-posed models can-
not be used as predictive tools. One source of ill-posedness is due to the simplified description of
the processes related to vertical mixing of sediment. The current analysis reveals the existence
of two additional mechanisms that lead to model ill-posedness: secondary flow due to the flow
curvature and the gravitational pull on the sediment transport direction. When parametris-
ing secondary flow, accounting for diffusion in the transport of secondary flow intensity is a
requirement for obtaining a well-posed model. When considering the theoretical amount of
diffusion, the model predicts instability of perturbations that are incompatible with the shal-
low water assumption. The gravitational pull is a necessary mechanism to yield a well-posed
model, but not all closure relations to account for this mechanism are valid under mixed-size
sediment conditions. Numerical simulations of idealised situations confirm the results of the
stability analysis and highlight the consequences of ill-posedness.
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3.1. Introduction

M odelling of fluvial morphodynamic processes is a powerful tool not only to predict
the future state of a river after, for instance, an intervention or a change in the

discharge regime (Blom et al., 2017b), but also as a source of understanding of the processes
responsible for patterns such as dunes, meanders, and bars (Callander, 1969; Seminara,
2006; Colombini and Stocchino, 2012). A framework for modelling the morphodynamic
development of alluvial rivers is composed of a system of partial differential equations for
modelling the flow, change in bed elevation, and change in the bed surface texture. The
Saint-Venant (1871) equations account for conservation of water mass andmomentum and
enable modelling processes with a characteristic length scale significantly longer than the
flow depth in one-dimensional cases. The Shallow Water Equations describe the depth-
averaged flow in two-dimensional cases. Conservation of unisize bed sediment is typically
modelled using the Exner (1920) equation and, under mixed-size sediment conditions, the
active layer model (Hirano, 1971) accounts for mass conservation of bed sediment of each
grain size.

Althoughwidely successful in predicting rivermorphodynamics, a fundamental prob-
lem arises when using the above framework. Under certain conditions the description of
the phenomena is not captured by the system of equations, whichmanifests as an ill-posed
model. Models describe a simplified version of reality, which allows us to understand the
key elements playing a major role in the dynamics of the system one studies (Paola and
Leeder, 2011). Major simplifications such as reducing streamwise morphodynamic pro-
cesses to a diffusion equation allow for insight on the creation of stratigraphic records and
evolution on large spatial scales (Paola et al., 1992; Paola, 2000; Paola and Leeder, 2011).
There is a difference between greatly simplified models and models that do not capture
the physical processes. A simplified model reproduces a reduced-complexity version of
reality (Murray, 2007) and it is mathematically well-posed, as a unique solution exists that
depends continuously on the data (Hadamard, 1923; Joseph and Saut, 1990). An ill-posed
model lacks crucial physical processes that cause the model to be unsuitable to capture
the dynamics of the system (Fowler, 1997). An ill-posed model is unrepresentative of a
physical phenomenon, as the growth rate of infinitesimal perturbations to a solution (i.e.,
negligible noise from a physical perspective) tends to infinity (Kabanikhin, 2008). This
is different from chaotic systems, in which noise similarly causes the solution to diverge
but not infinitely fast (Devaney, 1989; Banks et al., 1992).

An example of an ill-posed model is the one describing the dynamics of granular flow.
The continuum formulation of such a problem depends on deriving a model for the gran-
ular viscosity. Jop et al. (2005, 2006) relate viscosity to a dimensionless shear rate. The
model captures the dynamics of granular flows if the dimensionless shear rate is within
a certain range, but otherwise the model is ill-posed and loses its predictive capabilities
(Barker et al., 2015). A better representation of the physical processes guaranteeing that
viscosity tends to 0 when the dimensionless shear rate tends to 0 extends the domain of
well-posedness (Barker and Gray, 2017).

Under unisize sediment and one-dimensional flow conditions, the Saint-Venant-Exner
model may be ill-posed when the Froude number is larger than 6 (Cordier et al., 2011).
As most flows of interest are well below this limit, we can consider modelling of fluvial
problems under unisize sediment conditions to be well-posed. This is not the case when
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considering mixed-size sediment. Using the active layer model we assume that the bed can
be discretised into two layers: the active layer and the substrate. The sediment transport
rate depends on the grain size distribution of the active layer. A vertical flux of sediment
occurs between the active layer and the substrate if the elevation of the interface between
the active layer and the substrate changes. The active layer is well-mixed, whereas the
substrate can be stratified. The above simplification of the physical processes responsible
for vertical mixing causes the active layer model to be ill-posed (Ribberink, 1987; Stecca
et al., 2014; Chavarrías et al., 2018a). In particular, the active layer is prone to be ill-
posed under degradational conditions into a substrate finer than the active layer (i.e., an
armoured bed (Parker and Sutherland, 1990)) for any value of the Froude number.

Previous analyses of river morphodynamic models regarding their well-posedness
have been focused on conditions of one-dimensional flow (Ribberink, 1987; Cordier et al.,
2011; Stecca et al., 2014; Chavarrías et al., 2018a). Our objective is to extend these analyses
to conditions of two-dimensional flow. More specifically we include the secondary flow
and the bed slope effect in the analysis of the well-posedness of the system of equations.

As the flow is intrinsically three-dimensional, the depth-averaging procedure elimi-
nates an important flow component: the secondary flow (Van Bendegom, 1947; Rozovskii,
1957). The secondary flow causes, for instance, an increase in the amplitude of meanders
(Kitanidis and Kennedy, 1984) and plays an important role in bar development (Olesen,
1982). To understand the morphology of two-dimensional features, it is necessary to
account for the fact that the sediment transport direction is affected by the gravitational
pull when the bed slope in the transverse direction is significant (Dietrich and Smith, 1984;
Seminara, 2006). This is usually done using a closure relation that sets the angle between
the flow and the sediment transport directions as a function of the flow and sediment pa-
rameters (Van Bendegom, 1947; Engelund, 1974; Talmon et al., 1995; Seminara et al., 2002;
Parker et al., 2003; Francalanci and Solari, 2007, 2008; Baar et al., 2018).

In this chapter we show that combining these two effects, secondary flow and sedi-
ment deflection by the bed slope, leads in some cases to an ill-posed system of equations.
The chapter is organised as follows. In Section 3.2 we present the model equations de-
scribing the primary and secondary flow, as well as changes in bed elevation and surface
texture. In Section 3.3 we extend the explanation of ill-posedness and relate it to growth
of perturbations. We subsequently conduct a stability analysis of the equations, which
indicates the conditions under which the secondary flow model and the closure relation
for the bed slope effect yield an ill-posed model (Section 3.4). In Section 3.5 we run nu-
merical simulations of idealised cases to test the validity of the analytical results and study
the consequences of ill-posedness.

3.2. Mathematical Model

I n this section we present the two-dimensional mathematical model of flow, accounting
for secondary flow, coupled to a morphodynamic model for mixed-size sediment. We

subsequently introduce the equations describing the primary flow (Section 3.2.1), the
secondary flow (Section 3.2.2), and morphodynamic change (Section 3.2.3). In Section
3.2.4 we linearise the system of equations to study the stability of perturbations.
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3.2.1. Primary Flow Equations
The primary flow is described using the depth-averaged Shallow Water Equations (e.g.
Vreugdenhil, 1994):

∂ h
∂ t
+
∂ qx

∂ x
+
∂ qy

∂ y
= 0 , (3.1)
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(3.3)

where (x, y) [m] are Cartesian coordinates and t [s] is the time coordinate. The variables
(qx, qy) = (u h, v h) [m2/s] are the specific water discharges in the x and y direction, re-
spectively, where h [m] is the flow depth and u [m/s] and v [m/s] are the depth-averaged
flow velocities. The variable η [m] is the bed elevation and g [m/s2 ] the acceleration
due to gravity. The friction slopes are (Sfx, Sfy) [−] and the diffusion coefficient ν [m2/s]
is the horizontal eddy viscosity. The depth-averaging procedure of the equations of mo-
tion introduces terms that originate from the difference between the actual velocity at a
certain elevation in the water column and the depth-averaged velocity. We separate the
contributions due to turbulent motion and secondary flow caused by the flow curvature.
The contribution due to turbulent motion is accounted for by the diffusion coefficient.
Elder (1959) derived an expression for the diffusion coefficient that accounts for the effect
of turbulent motion on the depth-averaged flow assuming a logarithmic profile for the
primary flow and negligible effect of molecular viscosity:

νE =
1
6
κh u∗ , (3.4)

where κ= 0.41 [−] is the von Kármán constant and u∗ =
p

CfQ/h [m/s] is the friction
velocity. Parameter Cf [−] is a nondimensional friction coefficient, which we assume
to be constant (Ikeda et al., 1981; Schielen et al., 1993) and Q =

Æ

q2
x + q2

y [m2/s] is the
module of the specific water discharge. In the numerical simulations we will assume the
eddy viscosity to be a constant equal to the value given by νE in a reference state (e.g.
Falconer, 1980; Lien et al., 1999). Appendix B.1 presents the limitations of the coefficient
derived by Elder (1959).

The terms (Fsx, Fsy ) [m2/s2 ] account for the effect of secondary flow. These terms are
responsible for a transfer of momentum that shifts the maximum velocity to the outer
bend (Kalkwijk and De Vriend, 1980), as well as for a sink of energy in the secondary
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circulation (Flokstra, 1977; Begnudelli et al., 2010). We deal with these terms in Section
3.2.2.

We assume a Chézy-type friction:

Sfx =
CfqxQ

g h3
, Sfy =

CfqyQ

g h3
. (3.5)

One underlying assumption of the system of equations presented above is that the
vertical length and velocity scales are negligible with respect to the horizontal ones. An-
other assumption is the fact that the concentration of sediment (the ratio between the
solid and liquid discharge) is small (below 6× 10−3 (Garegnani et al., 2011, 2013)), such
that we apply the clear water approximation.

3.2.2. Secondary Flow Equations
This section describes the equations that model secondary flow (i.e., formulations for Fsx
and Fsy in equations (3.2) and (3.3)). The secondary flow velocity profile u s [m/s] (i.e., the
vertical profile of the velocity component perpendicular to the primary flow) is assumed
to have a universal shape as a function of the relative elevation in the water column ζ =
(z − η)/h [−], where z [m] is the vertical Cartesian coordinate perpendicular to x and
y increasing in upward direction (Rozovskii, 1957; Engelund, 1974; De Vriend, 1977, 1981;
Booij and Pennekamp, 1984). Worded differently, the vertical profile of the secondary
flow is parametrised by a single value representing the intensity of the secondary flow
I [m/s], such that u s = f (ζ )I . The secondary flow intensity I is the integral of the
absolute value of the secondary flow velocity profile (De Vriend, 1981). Among others,
Rozovskii (1957), Engelund (1974), andDeVriend (1977), derive equilibrium profiles of the
secondary flow that differ in the description of the eddy viscosity, vertical profile of the
primary flow, and the boundary condition of the flow at the bed. Following De Vriend
(1977), we assume a logarithmic profile for the primary flow (i.e., a parabolic distribution
of the eddy viscosity) and vanishing velocity close to the bed at ζ = exp (−1− 1/α)where

α=
p

Cf

κ < 0.5.
The depth-averaging procedure yields the integral value (along z ) of the force per unit

mass that the secondary flow exerts on the primary flow (De Vriend, 1977; Kalkwijk and
De Vriend, 1980):

Fsx =
∂ Txx

∂ x
+
∂ Txy

∂ y
, (3.6)

Fsy =
∂ Tyx

∂ x
+
∂ Tyy

∂ y
, (3.7)

whereTl m [m3/s2 ] is the integral shear stress per unitmass in the direction l -m. Assuming
a large width-to-depth ratio (i.e., B/h � 1, where B [m] is the characteristic channel
width) and a mild curvature (i.e., h/Rs � 1, where Rs [m] is the radius of curvature of
the streamlines), the shear stress terms are:

Txx =−2
β∗I
Q

qxqy , (3.8)
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Txy = Tyx =
β∗I
Q

�

q2
x − q2

y

�

, (3.9)

Tyy = Tyy = 2
β∗I
Q

qxqy , (3.10)

where β∗ = 5α− 15.6α2+ 37.5α3.
The simplest strategy to account for secondary flow assumes that the secondary flow

is fully developed. This is equivalent to saying that the secondary flow intensity is equal to
the equilibrium value Ie =Q/Rs [m/s] found in an infinitely long bend (Rozovskii, 1957;
Engelund, 1974; De Vriend, 1977, 1981; Booij and Pennekamp, 1983). A change in channel
curvature leads to the streamwise adaptation of secondary flow to the equilibrium value
(De Vriend, 1981; Ikeda and Nishimura, 1986; Johannesson and Parker, 1989; Seminara and
Tubino, 1989). Booij and Pennekamp (1984) and Kalkwijk and Booij (1986) not only ac-
count for the spatial adaptation but also the temporal adaptation of the secondary flow
associated with a variable discharge or tides. Here we adopt the latter strategy, which
has been applied, for instance, in modelling the morphodynamics of braided rivers (Jav-
ernick et al., 2016; Williams et al., 2016; Javernick et al., 2018). The spatial and temporal
adaptation of secondary flow is expressed by (Jagers, 2003):
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h
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∂ x
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h
∂ I
∂ y
− ∂

∂ x
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∂ I
∂ x
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ν
∂ I
∂ y

�

= Ss , (3.11)

where Ss [m/s2 ] is a source term which depends on the difference between the local sec-
ondary flow intensity and its equilibrium value:

Ss =−
I − Ie

TI
, (3.12)

where TI [s] is the adaptation time scale of the secondary flow:

TI =
LIh
Q

, (3.13)

where LI = L∗I h [m] is the adaptation length scale of the secondary flow, which depends
on the nondimensional length scale L∗I =

1−2α
2κ2α (Kalkwijk and Booij, 1986).

The radius of curvature of the streamlines is defined as (e.g. Legleiter and Kyriakidis,
2006):

1
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=

dx
dt
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dt 2 −
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+
�
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�2
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, (3.14)

assuming steady flow and in terms of water discharge we obtain:

1
Rs
=
−qxqy

∂ qx
∂ x + q2

x
∂ qy
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The secondary flowmodel described in this section closes the primary flowmodel de-
scribed in Section 3.2.1 given a certain bed elevation. In the following section we describe
the model equations that describe changes in bed elevation as a function of the primary
and secondary flow.

3.2.3. Morphodynamic Equations
We consider an alluvial bed composed of an arbitrary numberN of non-cohesive sediment
fractions characterised by a grain size dk [m], where the subscript k denotes the grain size
fraction in increasing order (i.e., d1 < d2 < ... < dN ). Bed elevation change depends on
the divergence of the sediment transport rate (Exner, 1920):

∂ η

∂ t
+
∂ qbx

∂ x
+
∂ qby

∂ y
= 0 , (3.16)

where qbx =
∑N

k=1 qbxk [m2/s] and qby =
∑N

k=1 qbyk [m2/s] are the total specific (i.e.,
per unit of differential length) sediment transport rates including pores in the x and y
direction, respectively. The variables qbxk [m2/s] and qbyk [m2/s] are the specific sediment
transport rates of size fraction k including pores. For simplicity we assume a constant
porosity and density of the bed sediment. The sediment transport rate is assumed to be
locally at capacity, which implies that we do notmodel the temporal and spatial adaptation
of the sediment transport rate to capacity conditions (Bell and Sutherland, 1983; Phillips
and Sutherland, 1989; Jain, 1992).

Changes in the bed surface grain size distribution are accounted for using the active
layer model (Hirano, 1971). For simplicity, we assume a constant active layer thickness La
[m]. Conservation of sediment mass of size fraction k in the active layer reads:

∂ Mak

∂ t
+ f I

k
∂ η

∂ t
+
∂ qbxk

∂ x
+
∂ qbyk

∂ y
= 0 k ∈ {1,N − 1} , (3.17)

and in the substrate (Chavarrías et al., 2018a):

∂ Msk

∂ t
− f I

k
∂ η

∂ t
= 0 k ∈ {1,N − 1} , (3.18)

where Mak = Fak La [m] and Msk =
∫ η0+η−La

η0
fsk (z)dz [m] are the volume of sediment

of size fraction k per unit of bed area in the active layer and the substrate, respectively.
Parameter η0 [m] is a datum for bed elevation. Parameters Fak ∈ [0,1], fsk ∈ [0,1], and
f I
k ∈ [0,1] are the volume fraction content of sediment of size fraction k in the active layer,
substrate, and at the interface between the active layer and the substrate, respectively. By
definition, the sum of the volume fraction content over all size fractions equals 1:

N
∑

k=1

Fak = 1 ,
N
∑

k=1

fsk (z) = 1 ,
N
∑

k=1

f I
k = 1 . (3.19)

Under degradational conditions, the volume fraction content of size fraction k at the
interface between the active layer and the substrate is equal to that at the top part of the
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substrate ( f I
k = fsk (z = η− La) for ∂ η/∂ t < 0). This allows for modelling of arbitrarily

abrupt changes in grain size due to erosion of previous deposits. Under aggradational
conditions the sediment transferred to the substrate is a weighted mixture of the sediment
in the active layer and the bed load (Parker, 1991; Hoey and Ferguson, 1994; Toro-Escobar
et al., 1996). Here we simplify the analysis and we assume that the contribution of the bed
load to the depositional flux is negligible (i.e., f I

k = Fak for ∂ η/∂ t > 0) (Hirano, 1971).
The magnitude of the sediment transport rate is assumed to be a function of the local

bed shear stress. We apply the sediment transport relation by Engelund andHansen (1967)
in a fractional manner (Blom et al., 2016, 2017b) as well as the one by Ashida and Michiue
(1971) (Appendix B.2).

The direction of the sediment transport (ϕsk [rad]) is affected by the secondary flow
and the bed slope (Van Bendegom, 1947):

tanϕsk =
sinϕτ −

1
gsk

∂ η
∂ y

cosϕτ −
1

gsk

∂ η
∂ x

k ∈ {1,N} , (3.20)

where gsk [−] is a function that accounts for the influence of the bed slope on the sediment
transport direction and ϕτ [rad] is the direction of the sediment transport accounting for
the secondary flow only:

tanϕτ =
qy− hαI

qx
Q I

qx− hαI
qy

Q I
. (3.21)

Assuming a mild curvature, uniform flow conditions, and a logarithmic profile of the
primary flow, the constant αI [−] is (De Vriend, 1977):

αI =
2
κ2
(1−α) . (3.22)

The effect of the bed slope on the sediment transport direction depends on the grain size
(Parker and Andrews, 1985). We account for this effect setting:

gsk =Asθ
Bs

k k ∈ {1,N} , (3.23)

where As [−] and Bs [−] are nondimensional parameters and θk [−] is the Shields (1936)
stress (Appendix B.2). Different values of the coefficients As and Bs have been proposed
(for a recent review, see Baar et al. (2018)). We consider two possibilities: (1) As = 1, Bs = 0
(Schielen et al., 1993) and (2) As = 1.70 and Bs = 0.5 (Talmon et al., 1995). In the first and
simpler case, the bed slope effect is independent from the bed shear stress (Engelund and
Skovgaard, 1973; Engelund, 1975). In the second, more complex, case, the bed slope effect
is assumed to be dependent on the fluid drag force on the grains, which is assumed to
depend on the Shields stress (Koch and Flokstra, 1981).

3.2.4. Linearised System of Equations
The system of equations describing the flow, change of bed level, and change of the bed
surface texture is highly non-linear. Here we linearise the system of equations to provide
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insight into the fundamental properties of the model and to study the stability of per-
turbations. To this end we consider a reference state that is a solution to the system of
equations. The reference state is a steady uniform straight flow in the x direction over an
inclined plane bed composed of an arbitrary number of size fractions. Mathematically:
h0 = ct., qx0 = ct., qy0 = 0, I0 = 0, ∂ η∂ x = ct. = −Cfq

2
x0

g h3
0
, ∂ η∂ y = 0, Mak0 = ct. ∀k ∈ {1,N − 1},

where ct. denotes a constant different from 0 and subscript 0 indicates the reference solu-
tion.

We add a small perturbation to the reference solution denoted by ′ and we linearise
the resulting system of equations. After substituting the reference solution we obtain a
system of equations of the perturbed variables:
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where the vector of dependent variables is:

Q′ =
�
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�
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�ᵀ
, (3.25)

where the square bracket indicates the vector character.

The diffusive matrix in x direction is:
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(3.26)
where 0 denotes the zero matrix. The diffusive matrix in y direction is:
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The advective matrix in x direction is:
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The advective matrix in y direction is:
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The matrix of linear terms is:

B0 =
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(3.30)
We assume that the perturbations can be represented as a Fourier series, which implies

that they are piecewise smooth and bounded for x = ±∞. Using this assumption the
solution of the perturbed system is expressed in the form of normal modes:

Q′ =Re
�

Vei(kwx+kwy−ωt)
�

, (3.31)

where i is the imaginary unit, kwx [rad/m] and kwy [rad/m] are the real wave numbers in
x and y direction, respectively,ω =ωr+ iωi [rad/s] is the complex angular frequency, V
is the complex amplitude vector, and Re denotes the real part of the solution (which we
will omit in the subsequent steps). The variable ωr is the angular frequency and ωi the
attenuation coefficient. A value of ωi > 0 implies growth of perturbations and ωi < 0
decay. Substitution of Equation (3.31) in Equation (3.24) yields:

[M0−ω1]V= 0 , (3.32)
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where:

M0 =Dx0k2
wxi+Dy0k2

wyi+Ax0kwx+Ay0kwy−B0i , (3.33)

and 1 denotes the unit matrix. Equation (3.32) is an eigenvalue problem in which the
eigenvalues of M0 (as a function of the wave number) are the values ofω satisfying Equa-
tion (3.32).

The solution of the linear model provides information regarding the development of
small amplitude oscillations only, but for an arbitrary wave number. For this reason the
linear model is convenient for studying the well-posedness of the model, which we will
assess in the following section.

3.3. Instability, Hyperbolicity, and Ill-Posedness

I ll-posedness has been related to the system of governing equations losing its hyperbolic
character. Stability analysis investigates growth and decay of perturbations of a base

state. The two mathematical problems may seem unrelated but in fact they are strongly
linked. In this section we clarify the terms unstable, hyperbolic, and ill-posed, and present
the mathematical framework that we use to study the well-posedness of the system of
equations.

A system is stable if perturbations to an equilibrium state decay and the solution
returns to its original state. This is equivalent to saying that all possible combinations
of wave numbers in the x and y directions yield a negative growth rate (ωi, Equation
(3.31)). An example of a stable system in hydrodynamics is the inviscid Shallow Water
Equations (iSWE) for a Froude number smaller than 2 (Jeffreys, 1925; Balmforth and Man-
dre, 2004; Colombini and Stocchino, 2005). In Figure 3.1a we show the maximum growth
rate of perturbations to a reference solution (Case I1, tables 3.1 and 3.2) of the iSWE on
an inclined plane (i.e., the first 3 equations of the complete system, Equation (3.24), with
neither secondary flow nor diffusion). The growth rate is obtained numerically by com-
puting the eigenvalues of the reducedmatrixM0 (the first 3 rows and columns in Equation
(3.33)) for wave numbers between 0 and 250 rad/m, which is equivalent to wavelengths
( lwx = 2π/kwx and equivalently for y ) down to 1 cm. Figure 3.1b presents the same infor-
mation as Figure 3.1a in terms of wavelength rather than wave number to better illustrate
the behaviour for large wavelengths. The growth rate is negative for all wave numbers,
which confirms that the iSWE for Fr< 2 yield a stable solution.

u [m/s] v [m/s] h [m] Cf [−]
1 0 1 0.007

Table 3.1: Reference state.

A system is unstable when perturbations to an equilibrium state grow and the solu-
tion diverges from the initial equilibrium state. The growth of river bars is an example of
an unstable system in river morphodynamics. A straight alluvial channel is stable if the
width-to-depth ratio is sufficiently small and, above a certain threshold value, the channel
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Case model Fr stability mathematical character

I1 iSWE 0.32 stable well-posed
B1 iSWE+Exner 0.32 unstable well-posed
I2 iSWE 2.01 unstable ill-posed

Table 3.2: Cases of a stable well-posed model (I1), an unstable well-posed model (B1), and an ill-posed model
(I2). Case I2 has the same parameter values as Case I1 but for the mean flow velocity which is equal to 6.30 m/s.

becomes unstable and free alternate bars grow (Engelund and Skovgaard, 1973; Fredsøe,
1978; Colombini et al., 1987; Schielen et al., 1993). Mathematically, an unstable system has
a region, a domain in the wave number space, in which the growth rate of perturbations is
positive. In Figure 3.1c-d we present the growth rate of perturbations to a reference solu-
tion consisting of uniform flow (table 3.1) on an alluvial bed composed of unisize sediment
with a characteristic grain size equal to 0.001 m (Case B1, table 3.2). The sediment trans-
port rate is computed using the relation by Engelund and Hansen (1967) (Equation (B.6))
and the effect of the bed slope on the sediment transport direction is accounted for using
the simplest formulation, gs = 1. Figure 3.1d confirms the classical result of linear bar
theory: there exists a critical transverse wavelength ( lwyc ) below which all perturbations
decay. In our particular case lwyc = 40.2m. Impermeable boundary conditions at the river
banks limit the possible wavelengths to fractions of the channel width B [m] such that
lwy = 2B/m for m = 1,2, ... (Callander, 1969). As the most unstable mode is the first one
(i.e., m = 1, alternate bars) (Colombini et al., 1987; Schielen et al., 1993), the minimum
channel width above which perturbations grow is Bc = lwyc/2= 20.1m, which confirms
the results of Schielen et al. (1993). Figure 3.1c highlights, as for case I1, the decay of short
waves.

A particular case of instability is that in which the domain of positive growth rate
extends to infinitely large wave numbers (i.e., short waves). Under this condition there
is no cutoff wave number above which we can neglect the contribution of ever shorter
waves with non-zero growth rates. For any unstable perturbation a shorter one can be
found which is even more unstable. This implies that the growth rate of an infinitesi-
mal perturbation (i.e., noise) tends to infinity. Such a system cannot represent a physical
phenomenon, as the growth rate of any physical process in nature is bounded. A system
in which the growth rate of infinitesimal perturbations tends to infinity does not have a
unique solution depending continuously on the initial and boundary conditions, which
implies that the system is ill-posed (Hadamard, 1923; Joseph and Saut, 1990). An example
of an ill-posed hydrodynamic model is the iSWE for flow with a Froude number larger
than 2. In Figure 3.1e-f we show the growth rate of perturbations to the reference solution
of a case in which the Froude number is slightly larger than 2 (Case I2, table 3.2). The
growth rate extends to infinitely large wave numbers, which confirms that this case is ill-
posed. Amodel being ill-posed is an indication that there is a relevant physical mechanism
that has been neglected in the model derivation (Fowler, 1997). Viscous forces regularise
the iSWE (i.e., make the model well-posed) and rather than ill-posed, the viscous Shallow
Water Equations become simply unstable for a Froude number larger than 2, predict-
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Figure 3.1: Growth rate of perturbations added to the reference case (tables 3.1 and 3.2) as a function of the
wave number and the wavelength: (a)-(b) iSWE, Fr < 2 (Case I1, well-posed), (c)-(d) iSHE+Exner (Case B1,
well-posed), and (e)-(f) iSWE, Fr > 2 (Case I2, ill-posed). The subplots in the two columns show the same
information but highlight the behaviour for large wave numbers (left column) and for large wavelengths (right
column). Red and green indicates growth and decay of perturbations, respectively.

ing the formation of roll-waves (Balmforth and Mandre, 2004; Balmforth and Vakil, 2012;
Rodrigues and Zumbrun, 2016; Barker et al., 2017a,b).

Chaotic models, just as ill-posed models, are sensitive to the initial and boundary con-
ditions and lose their predictive capabilities in a deterministic sense (Lorenz, 1963). Yet,
there are two essential differences. First, chaotic systems lose their predictive capabilities
after a certain time (Devaney, 1989; Banks et al., 1992), yet there exists a finite time in
which the dynamics are predictable. In ill-posed models infinitesimal perturbations to
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the initial condition cause a finite divergence in the solution in an arbitrarily (but fixed)
short time. Second, while the dynamics of a chaotic model are not predictable in deter-
ministic terms after a certain time, these continue to be predictable in statistical terms.
For this reason, although being sensitive to the initial and boundary conditions, a model
presenting chaotic properties can be used, for instance, to capture the essential dynam-
ics and spatio-temporal features of river braiding (Murray and Paola, 1994, 1997). On the
contrary, the dynamics of an ill-posed model cannot be analysed in statistical terms.

The numerical solution of an ill-posed problem continues to change as the grid is
refined because a smaller grid size resolves larger wave numbers with faster growth rates
(Joseph and Saut, 1990; Kabanikhin, 2008; Barker et al., 2015; Woodhouse et al., 2012). In
other words, the numerical solution of an ill-posed problem does not converge when
the grid cell size is reduced. This property emphasizes the unrealistic nature of ill-posed
problems and shows that ill-posed models cannot be applied in practice.

We present an example of grid dependence specifically related to river morphodynam-
ics under conditions with mixed-size sediment. We consider a case of degradation into a
substrate finer than the active layer, as this is a situation in which the active layer model
is prone to be ill-posed (Section 3.1). The reference state is the same as in Case B1, yet
the sediment is a mixture of two sizes equal to 0.001 m and 0.010 m. The bed surface is
composed of 10 % of fine sediment. The active layer thickness is equal to 0.05 m, which in
this case is representative of small dunes covering the bed (e.g.Deigaard and Fredsøe, 1978;
Armanini and Di Silvio, 1988; Blom, 2008). Depending on the substrate composition,
this situation yields an ill-posed model (Chavarrías et al., 2018a). When the substrate is
composed of 50 % of fine sediment (Case H1, table 3.3), the problem is well-posed and it
is ill-posed when the substrate is composed of 90 % of fine sediment (Case H2, table 3.3).

We use the software package Delft3D (Lesser et al., 2004) to solve the system of equa-
tions. We stress that the problem of ill-posedness is inherent to the system of equations
and independent from the numerical solver. We have implemented a subroutine that as-
sesses the well-posedness of the system of equations at each node and time step. The
domain is 100 m long and 10 m wide. The downstream water level is lowered at a rate
of 0.01 m/h to induce degradational conditions. The upstream sediment load is constant
and equal to the equilibrium value of the reference state (Blom et al., 2017b). The cells
are square and we consider three different sizes (table 3.3). The time step varies between
simulations to maintain a constant value of the CFL number.

Case f I
1 [−] ∆x [m] mathematical character

H1a 0.5 0.50 well-posed
H1b 0.5 0.25 well-posed
H1c 0.5 0.10 well-posed
H2a 0.9 0.50 ill-posed
H2b 0.9 0.25 ill-posed
H2c 0.9 0.10 ill-posed

Table 3.3: Cases showing the effect of grid cell size on the numerical solution of well-posed and ill-posed models.
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Figure 3.2 presents the bed elevation after 10 h. The result of the well-posed case (H1,
left column) is grid independent. The result of the ill-posed case (H2, right column)
changes as the grid is refined and presents an oscillatory pattern characteristic of ill-posed
simulations (Joseph and Saut, 1990; Woodhouse et al., 2012; Barker et al., 2015; Chavarrías
et al., 2018a). The bed seems to be flat in the ill-posed simulation with a coarser grid
(Figure 3.2b). This is because oscillations grow slowly on a coarse grid and require more
time to be perceptible. The waviness of the bed is seen in the result of the check routine,
as it predicts ill-posedness only at those locations where the bed degrades (the stoss face of
the oscillations). The fact that the model is well-posed in almost the entire domain in the
ill-posed case solved using a cell sizes equal to 0.25 m (H2b, Figure 3.2d) and 0.10 m (H2c,
Figure 3.2f) does not mean that the results are realistic. Non-physical oscillations have
grown and vertically mixed the sediment such that the situation is well-posed after 10 h
(Chavarrías et al., 2018a). We provide a movie of Figure 3.2 in the online supplementary
material.

In the above idealised situations it is evident that the oscillations are non-physical and
it is straightforward to do a converge test to clarify that the solution is grid dependent.
In complex domains in which several processes play a role, it is more difficult to associate
oscillations to ill-posedness. Moreover, in long term applications the growth rate of per-
turbations may be fast compared to the frequency at which model results are assessed,
which may hide the consequences of ill-posedness. If one studies a process that covers
months or years (and consequently analyses the results on a monthly basis) but pertur-
bations due to ill-posedness grow on an hourly scale, it may be difficult to identify that
the problem is ill-posed. Using poor numerical techniques to solve the system of equa-
tions also contributes to hiding the consequences of ill-posedness as numerical diffusion
dampens perturbations. These factors may explain why the problem of ill-posedness in
mixed-sediment river morphodynamics is not widely acknowledged.

In the river morphodynamics community, the term ellipticity has been used to refer
to ill-posedness of the system of equations in contrast to hyperbolicity, which is associ-
ated to well-posedness (Ribberink, 1987; Mosselman, 2005; Stecca et al., 2014; Siviglia et al.,
2017; Chavarrías et al., 2018a). In general the terms are equivalent, but not always. We
consider a unit vector n̂ in the direction (x, y), n̂ = (n̂x, n̂y ). The system of equations
(3.24) is hyperbolic if matrix A = Ax0n̂x +Ay0n̂y diagonalises with real eigenvalues ∀n̂
(e.g. LeVeque, 2004; Castro et al., 2009). Neglecting friction and diffusive processes (i.e.,
B0 =Dx0 =Dy0 = 0), hyperbolicity implies that the eigenvalues of M0 (Equation (3.33))
are real. In this case, as the growth rate of perturbations (i.e., the imaginary part of the
eigenvalues of M0 ) is equal to 0 regardless of the wave number, the system of equations
is well-posed. As the coefficients of A are real, complex eigenvalues appear in conjugate
pairs. This means that if A has a complex eigenvalue (i.e., the problem is not hyper-
bolic), at least one wave will have a positive growth rate. Neglecting friction and diffusive
processes, non-hyperbolicity implies that infinitely large wave numbers have a positive
growth rate. We conclude that, in the absence of diffusion and friction, lack of hyperbol-
icity implies ill-posedness. Note that ellipticity (i.e., the eigenvalues of A are all complex)
is not required for the problem to be ill-posed, as it suffices that the problem is not hyper-
bolic. When considering diffusion and friction even when A has complex eigenvalues, the
imaginary part of the eigenvalues of M0 may all be negative and the problem well-posed.
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Finally, well-posedness and hyperbolicity are similar terms when dealing with prob-
lems arising from conservation laws and changes with time, as hyperbolicity guarantees
the existence of wave solutions (Lax, 1980; Courant and Hilbert, 1989; Strikwerda, 2004;
Toro, 2009; Dafermos, 2010; Bressan, 2011; Dafermos, 2016). In communities such as ma-
terials science, it is the term hyperbolicity that is associated to ill-posedness, as a smooth
solution of, for instance the stress, requires that the system is elliptic (Knowles and Stern-
berg, 1975, 1976; Veprek et al., 2007).
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Figure 3.2: Simulated bed elevation (surface) and mean grain size at the bed surface (colour) of a well-posed
case (left column, H1, table 3.3) and an ill-posed case (right column, H2, table 3.3). In each row we present the
results for varying cell size. The colour of the x − y plane shows the result of the routine that checks whether
the conditions at each node yield a well-posed (green) or an ill-posed (red) model.
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3.4. Stability Analysis

I n this section we study the applicability of the system of equations to model two-
dimensional river morphodynamics by means of a stability analysis of perturbations.

We study the effects of the secondary flow model (Sections 3.4.1) and the bed slope (Sec-
tion 3.4.2) on model ill-posedness.

3.4.1. Ill-Posedness Due to Secondary Flow
In this section we study how the stability of the system of equations is affected by the
secondary flow model. To gain insight we compare three cases. In the first case we omit
secondary flow. In the second and third cases we include the secondary flow model with
and without considering diffusion (table 3.4).

Case secondary flow ν stability mathematical character

S1 no νE stable well-posed
S2 yes νE unstable well-posed
S3 yes 0 unstable ill-posed

Table 3.4: Variations to the reference state (table 3.1) and results of the linear analysis with respect to secondary
flow.

The first case is equivalent to I1 (table 3.2), yet the eddy viscosity is equal to the value
derived by Elder (Equation (3.4), ν = νE = 0.0057m2/s). In Figure 3.3a-b we plot the
maximum growth rate of perturbations as a function of the wave number and the wave-
length, respectively. Diffusion appears to significantly dampen perturbations (compare
Figure 3.1a in which diffusion is neglected to Figure 3.3a).

In the second case we repeat the analysis including the equation for advection and
diffusion of the secondary flow intensity (i.e., the first 4 rows and columns of matrix
M0 in Equation (3.33), Case S2, table 3.4). We observe that accounting for secondary
flow introduces an instability mechanism (Figure 3.3d). For the specific conditions of the
case, a growth domain appears for wavelengths between 0.7 m and 39 m long and between
0.4 m and 19 m wide. The maximum growth corresponds to a wavelength in the x and
y direction equal to 1.29 m and 0.74 m, respectively. This situation is well-posed, as for
large wave numbers perturbations decay (Figure 3.3c). Yet, the model is unsuitable for
reproducing such instability, as it predicts growth of perturbations with a length scale of
the order of the flow depth and shorter, for which the SWE model is not suited. Given
the fact that we consider a depth-averaged formulation of the primary flow, processes that
scale with the flow depth are not resolved by the model and consequently perturbations at
that scale must decay to yield physically realistic results. Otherwise, scales of the order of
the flow depth become relevant, which contradicts the assumptions of the depth-averaged
formulation. To model processes that scale with the flow depth such as dune growth, it is
necessary to account for non-depth-averaged flow formulations that consider, for instance,
rotational flow (Colombini and Stocchino, 2011, 2012), or non-hydrostatic pressure (Giri
and Shimizu, 2006; Shimizu et al., 2009).

In the third case we test the secondary flow model without accounting for diffusion
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Figure 3.3: Growth rate of perturbations added to the reference case (tables 3.1 and 3.4) as a function of the
wave number and the wavelength: (a)-(b) without secondary flow (Case S1, well-posed), (c)-(d) accounting for
secondary flowwith diffusion (Case S2, well-posed), and (e)-(f) accounting for secondary flowwithout diffusion
(Case S3, ill-posed). The subplots in the two columns show the same information but highlight the behaviour
for large wave numbers (left column) and for large wavelengths (right column). Red and green indicates growth
and decay of perturbations, respectively.

in the system of equations (ν = 0, Case S3, table 3.4). We observe that the instability
domain extends to infinitely large wave numbers (Figure 3.3e), which implies that this
model is ill-posed (Section 3.3). We now aim to prove that the Shallow Water Equations
in combination with the secondary flow model without diffusion always yields an ill-
posedmodel. To this end we obtain the characteristic polynomial of matrixM0 (Equation
(3.33)). We compute the discriminant of the fourth order characteristic polynomial and
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we find that for kwx < kwy the growth rate of perturbations is positive (Appendix B.3).
The model is ill-posed, as there always exists a domain of growth extending to infinitely
large wave numbers in the transverse direction.

We assess how the length scale of the instability related to the secondary flow model
depends on the flow parameters. For this purpose we compute the shortest wave with
positive growth for a varying diffusion coefficient and flow conditions (Figure 3.4). We
observe that, independently from the flow conditions, the theoretical value of the dif-
fusion coefficient derived by Elder (1959) (Equation (3.4)) is insufficient for dampening
oscillations scaling with the flow depth. We conclude that if the diffusion coefficient is
realistic, the treatment of the secondary flow yields an unrealistic model. It is necessary
to use an unrealistically large value of the diffusion coefficient to obtain a realistic depth-
averaged model in which perturbations scaling with the flow depth decay.

3.4.2. Ill-Posedness Due to Bed Slope Effect
In this section we study the influence of considering the effect of the bed slope on model
well-posedness. To gain insight we compare 5 cases in which we consider unisize and
mixed-size sediment, various sediment transport relations, and various bed slope func-
tions (table 3.5). We neglect secondary flow and diffusion to reduce the complexity of the
problem (Parker, 1976; Fredsøe, 1978; Colombini et al., 1987; Schielen et al., 1993).

Our reference case is B1 (Section 3.3) which considers unisize sediment conditions,
and the effect of the bed slope on the sediment transport direction is accounted for using
the simplest formulation, gs = 1. We have shown that this case is well-posed. Neglecting
the effect of the bed slope on the sediment transport direction (Case B2, table 3.5) makes
the problem ill-posed (Figure 3.5a). This illustrates that accounting for the effect of the
bed slope is required for obtaining not only physically realistic but also mathematically
well-posed results. We prove that the Shallow Water Equations in combination with the
Exner (1920) equation without considering the effect of the bed slope always yields an
ill-posed model by studying the growth rate of perturbations in the limit for the wave
number kwy tending to infinity (Appendix B.4).

Case sediment d2 [m] sed. trans. bed slope mathematical character

B1 unisize - EH gs = 1 well-posed
B2 unisize - EH No ill-posed
B3 mixed-size 0.004 AM gsk = 1 well-posed
B4 mixed-size 0.004 AM gsk = 1.7θ0.5

k ill-posed
B5 mixed-size 0.012 AM gsk = 1 ill-posed

Table 3.5: Variations to the reference state (table 3.1) and results of the linear analysis with respect to the effect
of the bed slope on the sediment transport direction. EH and AM refer to the sediment transport relations by
Engelund and Hansen (1967) and Ashida and Michiue (1971), respectively.

The fact that the bed slope effect dampens perturbations under unisize conditions is
expected from the fact that the only diffusive term in the system of equations is ∂ qby/∂ sy
(Equation (3.27)), where sy = ∂ η/∂ y. This term is negative and approximately equal
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Figure 3.4: Wavelength of the shortest perturbation with positive growth rate ( lwm ) relative to the flow depth
(h ) as a function of the Froude number (Fr) and the diffusion coefficient (ν ) relative to the diffusion coefficient
according to Elder (1959) (νE ). Different flow conditions are studied varying the flow depth between 0.2 m
and 1.5 m from the reference case (table 3.1). The cyan markers indicate the conditions of three numerical
simulations with different values of the diffusion coefficient (Section 3.5.1). The arrow next to the diamond
marker indicates that the value lies outside the figure. Red (green) colours indicate that the shortest wave length
with positive growth rate are smaller (larger) than the flow depth.

to −qb/gs for a small streamwise slope. When we consider more than one grain size,
diffusive terms appear in each active layer equation. We find that these diffusive termsmay
be positive, which hints at the possibility of an antidiffusive behaviour, which may lead
to ill-posedness. To study this possibility we compute the growth rate of perturbations
of a simplified case consisting of two sediment size fractions. In the limit for the wave
numbers tending to infinity, the maximum growth rate is:

ωlim
i = α1

�

ry1− dx1,1

�2
+α2

�

ry1− dx1,1

�

+α3 , (3.34)

where αi for i = 1,2,3 are parameters relating the flow and the sediment transport rate
(Appendix B.5). The parameter ry1 explains how the sediment transport rate of the fine
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fraction is affected by changes in the transverse bed slope:

ry1 =
∂ qby1/∂ sy

∂ qby/∂ sy
, (3.35)

and the parameter dx1,1 relates changes in the sediment transport rate to changes in the
volume of sediment in the active layer:

dx1,1 =
∂ qbx1/∂ Ma1

∂ qbx/∂ Ma1
. (3.36)

Asα1 > 0 (Appendix B.5), there exist an interval
�

ry1− dx1,1

�−
<
�

ry1− dx1,1

�

<
�

ry1− dx1,1

�+

in which ωlim
i < 0 and the model is well-posed. Outside the interval, ωlim

i > 0 and the
problem is ill-posed.

The physical interpretation of the limit values for obtaining a well-posed model is as
follows. The effect of the transverse bed slope ( ry1 ) needs to be balanced with respect to
the effect of changes in surface texture (dx1,1 ) to obtain a well-posed model. For a given
dx1,1, if parameter ry1 is too small (i.e., the bed slope effect is not sufficiently strong)
perturbations in the transverse direction are not dampened and the model is ill-posed.
On the other hand, for a given ry1, if parameter dx1,1 is too small (e.g. due to relatively
strong hiding or in conditions close to incipient motion) perturbations in the streamwise
direction do not decay and the model is also ill-posed. The critical values r±y1 that allow
for a well-posed model are shown in Appendix B.5.

In Cases B3-B5we illustrate the possibility of ill-posedness due to the bed slope closure
relation (table 3.5). In Case B3 the sediment mixture consists of two grain size fractions
with characteristic grain sizes equal to 0.001 m and 0.004 m. The volume fraction content
of the fine sediment in the active layer and at the interface between the active layer and
the substrate is equal to 0.5. The sediment transport rate is computed using the relation
developed by Ashida and Michiue (1971). The other parameters are equal to the reference
case (table 3.1). The system is well-posed when the effect of the bed slope does not depend
on the bed shear stress (Figure 3.5c). The situation is ill-posed if the effect of the bed slope
depends on the bed shear stress (Case B4, table 3.5, Figure 3.5e). The cause of ill-posedness
is not found in the closure relation for the bed slope effect only but in the combination of
the closure relation with the flow and bed surface conditions. A case equal to B3 except
for the fact that the coarse grain size is equal to 0.012 m is ill-posed (Case B5, table 3.5,
Figure 3.5g).

We assess how the domain of ill-posedness due to the bed slope effect depends on the
model parameters. For given sediment sizes, flow, and bed surface texture, parameter
Bs (Equation (3.23)) controls the effect of the bed slope by modifying ry1 only. The
parameter As (Equation (3.23)) cancels in ry1 and does not play a role. For this reason we
study how gs1/As [−] affects the domain of ill-posedness for varying sediment properties,
flow, and bed surface grain size distribution (Figure 3.6). We consider Case B3 and we
vary Bs between 0 and 0.5 to vary the bed slope effect. The sediment size of the coarse
fraction varies between d1 and 0.020 m. The mean flow velocity varies between 1 m/s and
2.8 m/s. The volume fraction content of fine sediment at the bed surface varies between
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0 and 1. We aim to isolate the problem of ill-posendess due to bed slope effect from the
problem of ill-posedness due to a different grain size distribution at the bed surface and
at the interface between the bed surface and the substrate (Chavarrías et al., 2018a). For
this reason, in this analysis the volume fraction content of fine sediment at the interface
is equal to the one at the bed surface. Under this condition the problem can be ill-posed
due to the effect of the bed slope only.

As we have shown analytically, under unisize conditions (i.e., d1/d2 = 1 or Fa1 = 1 or
Fa1 = 0) themodel is well-posed (Figure 3.6a and 3.6c). For sufficiently different grain sizes
(d1/d2 ¯ 0.15) the model is well-posed regardless of the bed slope effect but for a small
range of values (0.08¯ d1/d2 ¯ 0.1). This small range of ill-posed values is associated with
ry1 increasing for decreasing values of d1/d2 and acquiring a value larger than r+y1 such that
the model becomes ill-posed for all values of the bed slope effect. A further decrease in
d1/d2 increases the limit value r+y1 faster than ry1 such that the model becomes well-posed
for all values of the bed slope effect.

An increase in the Froude number decreases the domain of well-posedness, which is
explained from the fact that an increase in Froude number decreases ry1 while it does
not modify r−y1. We have assumed steady flow in deriving ωlim

i to reduce the complexity
of the model such that we can find an analytical solution (Appendix B.5). This causes a
physically unrealistic resonance phenomenon for Fr→ 1 (Colombini and Stocchino, 2005).
In reality we do not expect that for Fr= 1 the model is always ill-posed regardless of the
bed slope effect. Apart from the limit values in which the problem becomes unisize, the
surface volume fraction content does not significantly affect the domain of ill-posedness
(Figure 3.6c) as it rescales in more or less a similar way r±y1 and ry1.

While Case B4 is ill-posed because the effect of the bed slope ( ry1 ) is small, Case B5
is ill-posed because parameter dx1,1 is small. The different origin of ill-posedness does not
cause a significant difference in the growth rate of perturbations as a function of the wave
number (Figure 3.5e-g). However, we will find out that the pattern resulting from the
perturbations depends on the origin of ill-posedness.
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Figure 3.5: Growth rate of perturbations added to the reference case (tables 3.1 and 3.5) as a function of the wave
number and the wavelength: (a)-(b) Case B2 (ill-posed), (c)-(d) Case B3 (well-posed), (e)-(f) Case B4 (ill-posed),
and (g)-(h) Case B5 (ill-posed). The subplots in the two columns show the same information but highlight
the behaviour for large wave numbers (left column) and for large wavelengths (right column). Red and green
indicates growth and decay of perturbations, respectively.
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Figure 3.6: Domain of ill-posedness due to the bed slope effect under mixed-size sediment conditions: as a
function of the ratio between fine and coarse sediment (a), the Froude number (b), and the volume fraction
content of fine sediment in the active layer (c). The bed slope effect is measured by gs1/As and the range of
parameters is obtained by varying Bs (Equation (3.23)). The range of values of d1/d2 is obtained by varying
d2. The range of values of the Froude number is obtained by varying u. The volume fraction content of fine
sediment at the interface between the active layer and the substrate is kept equal to the volume fraction content
of fine sediment in the active layer. The conditions represent unisize sediment when d1/d2 = 1, Fa1 = 0, or
Fa1 = 1.
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3.5. Application

T he results of the linear stability analysis (Section 3.4) neglect second order terms and
non-linear interactions. In this section we study the effects of the terms neglected in

the linear analysis and the development of perturbations by means of numerical simula-
tions. We use the software package Delft3D (Lesser et al., 2004). This exercise provides
information on the consequences of ill-posedness in numerical simulations and clarifies
the limitations of the current modelling approach. We study the effect of secondary flow
(Section 3.5.1) and the bed slope effect (Section 3.5.2).

3.5.1. Secondary Flow
We run 5 numerical simulations with a fixed bed (i.e., only the flow is computed) to study
the role of the secondary flow model and the diffusion coefficient on the ill-posedness of
the system of equations. The first 3 simulations reproduce the conditions of Cases S1,
S2, and S3 (table 3.4). The domain is rectangular, 100 m long and 10 m wide. We use
square cells with size equal to 0.1 m. The time step is equal to 0.01 s and we simulate
10 minutes of flow. We set a constant water discharge and the downstream water level
remains constant with time. The initial condition represents normal flow for the values
in table 3.1 (i.e., equilibrium conditions).

The simulation not accounting for secondary flow does not present growth of pertur-
bations as predicted by the linear analysis and remains stable with time (Figure 3.7a). We
observe growth of perturbations when we account for secondary flow with the diffusion
coefficient derived by Elder (1959) (Figure 3.7b). The results are physically unrealistic as
the flow depth presents variations of up to 7 % of the normal flow depth and the length
scale of perturbations is smaller than the flow depth. We have not introduced any per-
turbation in the initial or boundary conditions which implies that perturbations grow
from numerical truncation errors. This supports the fact that the simulation is physically
unrealistic. The case with a diffusion coefficient equal to 0 is ill-posed and the solution
presents unreasonably large oscillations (Figure 3.7c). These numerical results confirm
the results of the linear stability analysis.

In the fourth simulation we set a diffusion coefficient 100 times larger than the one
derived by Elder (1959) (Figure 3.7d). Under this condition the linear analysis predicts
all short waves to decay (diamond in Figure 3.4). These numerical results confirm the
linear theory. The last simulation is equal to Case S2 except for the fact that we use a
coarser grid (∆x =∆y = 1m). In this case the numerical grid is not sufficiently detailed
for resolving the perturbations due to secondary flow and the simulation is stable (Figure
3.7e). This last case highlights an important limitation of a physically unrealistic model.
Although Case S2 is mathematically well-posed, the solution presents similarities with
ill-posed cases in the sense that a refinement of the grid causes non-physical oscillations
to appear.

3.5.2. Bed Slope Effect
In this section we focus on the consequences of accounting for the bed slope effect on the
mathematical character of the model. To this end we run 5 more numerical simulations
without accounting for secondary flow and updating the bed (i.e., accounting for mor-
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Figure 3.7: Flow depth at the end of the simulations: (a) without accounting for secondary flow (Case S1),
(b) setting ν = νE (Case S2), (c) setting ν = 0 (Case S3), (d) setting ν = 100νE, and (e) setting ν = νE using a
coarser numerical grid (Case S2). The colour map is adjusted for each case and centred around the initial and
equilibrium value (h = 1m).

phodynamic change). The simulations reproduce Cases B1-B5 (table 3.5). We simulate 8 h
using a time step ∆t = 0.1 s.

We have proved that accounting for the effect of the bed slope makes a unisize simu-
lation well-posed (Section 3.4.2 and Figure 3.1c). The numerical solution of this case (B1,
table 3.2) is stable and perturbations do not grow (Figure 3.8a). Moreover, no alternate
bars appear as the channel width is below the critical value (Section 3.3). Perturbations
grow when the effect of the bed slope is not taken into account (Case B2, Figure 3.8b),
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which confirms that this case is ill-posed.
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Figure 3.8: Flow depth at the end of the simulations of: (a) Case B1, (b) Case B2; and volume fraction content
of fine sediment in the active layer: (c) Case B3, (d) Case B4, (e) Case B5. The colour map is adjusted for each
case and centred around the initial and equilibrium value.

The mixed-size sediment conditions of Case B3 yield a well-posed model (Figure 3.5e)
and the simulation is stable (Figure 3.8c). On the other hand, the ill-posed cases B4 and B5
present growth of unrealistic and non-physical perturbations (Figure 3.8d-e). While the
growth of perturbations in Case B5 seems random, in Case B4we observe a clear pattern.
Moreover, oscillations have grown significantly faster in Case B5 than in Case B4. While
after 8 h the changes in volume fraction content at the bed surface are of the order of 10−3
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in Case B4, these are of order 1 in Case B5.
The fact that oscillations grow faster in Case B5 than in Case B4 is related to the

different origin of ill-posedness. While Case B4 is ill-posed because the effect of the bed
slope is not sufficiently strong (i.e., ry1 < r−y1 ), Case B5 is ill-posed because changes in
the sediment transport rate due to changes in the volume of fine sediment in the active
layer are too small (i.e., ry1 > r+y1 ). The first case is closely linked to the lateral direction,
in which sediment transport is initially zero. The fact that initially the lateral sediment
transport rate is zero limits the rate at which lateral changes occur. In the second case
perturbations are linked to the streamwise direction, in which the sediment transport
rate initially is non-zero, which enhances the rate at which changes develop.

3.6. Discussion

T he origin of the instability due to secondary flow is found in the source term (Ss in
Equation (3.11)). As the source term depends on the flow curvature, the source term

is 0 in a straight flow. A small perturbation in the flow causes the flow to curve. The
flow curvature causes a source of secondary flow intensity, which further increases the
flow curvature, causing a positive feedback. The flow curvature is largest for the smallest
perturbations, which explains why the model is ill-posed if a dampening mechanism (i.e.,
diffusion) is not taken into account. This destabilizing mechanism may seem plausible to
explain secondary flow circulation observed in straight channels (Nikuradse, 1930; Brun-
drett and Baines, 1964; Nezu and Nakagawa, 1984; Gavrilakis, 1992). However, secondary
flow in a straight channel can only be caused by anisotropy of turbulence (Einstein and
Li, 1958; Gessner and Jones, 1965; Bradshaw, 1987; Colombini, 1993), which is not included
in the model for secondary flow. For this reason, the secondary flow model must predict
decay of secondary flow intensity in case of straight flow. Diffusion of secondary flow
intensity causes decay of perturbations, but the theoretical diffusion coefficient derived
by Elder (1959) appears to be insufficient to dampen perturbations.

The advection equation of the secondary flow intensity was initially derived for steady
decaying secondary flow on a straight reach after a bend neglecting the effect of diffusion
(De Vriend, 1981). It is assumed that the same advective behaviour is valid for a varying
curvature (De Vriend, 1981; Olesen, 1982) and in an unsteady situation (Booij and Pen-
nekamp, 1984). These assumptions have, to our knowledge, not been tested. Moreover,
secondary flow affects the vertical profile of the primary flow. This feedback mechanism,
which limits the development of secondary flow (Blanckaert and De Vriend, 2004; Blanck-
aert, 2009), is not included in the model. Blanckaert and de Vriend (2003), Blanckaert and
Graf (2004) andOttevanger et al. (2013) propose non-linear models that take into consid-
eration this mechanism. We expect that accounting for the feedback mechanism yields a
well-posed model.

The feedback mechanism between the secondary and the primary flow may be seen
as an increase of diffusivity, as it causes an enhanced momentum redistribution. For a
situation in which the non-linear model for the secondary flow appears to be excessively
expensive in computational terms, a diffusion coefficient depending on the secondary
flow intensity would (partially) account for the enhanced momentum redistribution and
provide a well-posed and realistic model.
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We have assumed that the diffusion coefficient is constant and equal in all directions,
which is a crude approximation, as in the streamwise direction diffusion is larger than
in the transverse direction (Appendix B.1). It would be interesting to study the effect
of anisotropic diffusion, however, we do not expect that this will significantly alter our
results. This is because a larger diffusion coefficient in the streamwise direction will not
alter the most unstable wavelength in the lateral direction. For this reason the shortest
unstable waves remain to be of the order of the flow depth.

The non-linear relation between the flow and the sediment transport rate causes the
growth of perturbations in bed elevation. Worded differently, a deep flow attracts the
flow and vice versa, which enhances the growth of perturbations. This mechanism is
counteracted by the bed slope effect, which causes deep parts to fill in. In this sense, it
seems logical that it is necessary to account for bed slope effects to obtain a well-posed
model. This may be confirmed by the facts that Parker (1976), by not considering the
bed slope effect, found that all streams tend to form bars and, similarly, Olesen (1982)
concluded that “the stream will develop an infinite number of submerged bars”. From
our point of view the fact that all streams seem to be unstable and develop an infinite
number of submerged bars is a consequence of the model being ill-posed. Our analysis
shows that the bed slope effect is a crucial physical process in analysing two-dimensional
morphodynamic processes.

Nevertheless, the numerical simulations by Qian et al. (2016) of bar development
without accounting for the bed slope effect do not show unrealistic oscillatory behaviour
as is characteristic of ill-posedness. Yet, there is an essential difference between their model
and the one we analyse here. We do not model the interaction between the sediment
in the bed and the sediment in transport as we assume that the sediment transport rate
adapts instantaneously to changes in the flow (i.e., the sediment transport rate depends
on the flow variables only). Essentially, sediment in transport is not conserved and bed
elevation and surface texture changes depend on the divergence of the sediment transport
rate at capacity conditions. Qian et al. (2016) account for the conservation of mass of the
sediment in transport and use an entrainment-deposition formulation for modelling bed
elevation and surface texture changes (Parker et al., 2000). In this formulation changes
depend on the difference between the rate at which sediment is entrained from the bed
and at which it is deposited on the bed. The fact that their model does not show symptoms
of ill-posedness, while the effect of the bed slope is not taken into consideration, raises
the question whether the entrainment-deposition formulation in combination with mass
conservation of the sediment in transport is responsible, like the bed slope effect, for a
mechanism that counteracts growth of perturbations in bed elevation. If the model used
by Qian et al. (2016) is indeed well-posed, the effect of the bed slope may be a crucial
process only when mass conservation of the sediment in transport is not considered.

Lanzoni andTubino (1999) investigated the development of alternate bars undermixed-
size sediment conditions using a model similar to the one we apply here. They assumed
secondary flow to be negligible and considered a different set of closure relations for fric-
tion, the sediment transport rate, and the effect of the bed slope. Under the conditions
they studied, they found that, similarly to the unisize case, growth of perturbations occurs
if the width-to-depth ratio is above a critical value. This implies that they found that their
model is well-posed, as short wave length perturbations decay. Given that the essence of
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the closure relations they considered is the same as the ones considered here and there is
no fundamental difference, we suppose that their model may become ill-posed if different
conditions are studied (i.e., different flow or sediment parameters). This is because well-
posedness is not related to the model equations only, but also to the conditions in which
the model is applied.

The bed slope effect (represented by the parameter ry1 ) needs to be balanced with
respect to the effect of changes in the bed surface grain size distribution (represented by
dx1,1 ) to yield a well-posed model. The balance depends on the flow and bed conditions.
For this reason, a particular closure relation may yield an ill-posed model in some sub-
domain of a simulation and a well-posed model in some other subdomain. It is necessary
to further study the development of the transverse bed slope under mixed-size sediment
conditions (e.g. Baar et al., 2018) to obtain a universally applicable closure relation.

Overall, there are three causes of ill-posedness of the model: (1) the secondary flow
parametrisation, (2) the closure relation for the bed slope effect, and (3) the representa-
tion of the vertical mixing processes when using the active layer model (Ribberink, 1987;
Chavarrías et al., 2018a). We summarise all the conditions in which the model may be-
come ill-posed in Figure 3.9.

Only in idealised simulations it is straightforward to relate instability of the system
of equations to ill-posedness. We advocate for an a priori test of whether the system of
equations is well-posed or ill-posed, especially when dealing with mixed-size sediment
cases. If at some time a location in the model becomes ill-posed, the model results should
be carefully evaluated. The fact that some domain area has always been well-posed does
not guarantee a unique solution, as oscillations caused by upstream or downstream ill-
posed areas propagate through the domain. Similarly, the fact that the entire domain is
well-posed at some time is no guarantee of a unique solution, as past oscillations due to
ill-posedness affect the present solution.
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Figure 3.9: Conditions in which the flow model (top) and the morphodynamic model (bottom) is stable, un-
stable, or ill-posed. The code below the model type (e.g., S1) indicates an example case of such a situation. See
tables 3.2, 3.3, 3.4, and 3.5 for an explanation of the cases S1-3, B1-4, H1-2, and I2. ∗ Parameter βc denotes the
critical width-to-depth ratio (Engelund and Skovgaard, 1973; Colombini et al., 1987; Schielen et al., 1993).

3.7. Conclusions

W e have studied a two-dimensional system of equations used tomodel mixed-size river
morphodynamics as regards to its well-posedness. The model is based on the depth-

averaged ShallowWater Equations in combination with the Exner (1920) and active layer
(Hirano, 1971) equations to model bed elevation and surface texture changes, respectively.
In particular we have focused on modelling of the secondary flow induced by flow cur-
vature and the effect of the bed slope on the sediment transport direction, which causes
particles to deviate from the direction of the bed shear stress.

By means of a linear stability analysis of the system of equations we find that:

• The parametrisation accounting for secondary flow yields an ill-posed model if dif-
fusion is not accounted for.

• The theoretical amount of diffusion due to depth-averaging the vertical profile of
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the primary flow (Elder, 1959) yields a well-posed model but it predicts growth of
perturbations that are incompatible with the shallow water assumption.

• The effect of the bed slope on the direction of the sediment transport is a neces-
sary mechanism for the model being well-posed. Yet, a different modelling strat-
egy accounting for conservation of the sediment in transport and an entrainment-
deposition formulation may yield a well-posed model without accounting for the
effect of the bed slope.

• Not all closure relations accounting for the bed slope effect are valid under mixed-
size sediment conditions. There needs to be a balance between the effect of the bed
slope and the effect of the streamwise variation of grain size distribution on the
sediment transport rate.

Numerical simulations of idealised cases confirm the above results of the linear stabil-
ity analysis.
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A Regularization Strategy for

Modelling Mixed-Sediment River
Morphodynamics

It is important to rethink the notion
that the best ideas reliably rise to the top.

Poole (2016)

Si (como afirma el griego en el Cratilo)
El nombre es arquetipo de la cosa,

En las letras de rosa está la rosa
Y todo el Nilo en la palabra Nilo.

Borges (1964)

A notable drawback inmixed-size sediment morphodynamic modeling is the fact that the most
commonly used mathematical model in this field (i.e., the active layer model (Hirano, 1971))
can be ill-posed under certain circumstances. Under these conditions the model loses its pre-
dictive capabilities, as negligible perturbations in the initial or boundary conditions produce
significant differences in the solution. In this chapter we propose a preconditioning method
that regularizes the model to recover well-posedness by altering the time scale of the sediment
mixing processes. We compare results of the regularized model to data from four new labora-
tory experiments conducted under conditions in which the active layer model is ill-posed. The

This chapter has been published in Advances in Water Resources 127, (2019) 291–309.
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regularized active layer model captures the change of bed elevation and surface texture aver-
aged over the passage of several bedforms. Neither the active layer model nor the regularized
one account for small scale changes due to individual bedforms.
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4.1. Introduction

T he presence of mixed-size sediment is a key feature of rivers. Sediment sorting pat-
terns develop in the streamwise direction (e.g., the characteristic downstream fining

profile (Sternberg, 1875)), in the transverse direction (e.g., bend sorting (Allen, 1970)),
and in the vertical direction (e.g., bed armoring (Parker and Klingeman, 1982) and dune
sorting (Blom et al., 2003)). Modeling applications in which the mixed-size character of
river morphodynamics is not negligible mandate the use of a suitable continuity model
accounting for mass conservation of each of the considered sediment size fractions. Hi-
rano (1971) was the first to develop a mixed-sediment continuity model. He assumed that
the river bed can be vertically divided into an active top part (the active layer), which
interacts with the flow, and an inactive substrate. In the model, sediment transport and
friction depend on the texture of the active layer, whereas the sediment in the substrate
only plays a role if net aggradation creates new substrate sediment or net degradation
leads to the entrainment of substrate sediment into the active layer.

Although it has been fruitfully used to represent physical phenomena related tomixed-
sediment for nearly half a century (see Chavarrías et al. (2018a)), the active layer model
suffers from a drawback. Under certain conditions it becomes ill-posed (Ribberink, 1987;
Stecca et al., 2014; Chavarrías et al., 2018a). A model is ill-posed if a unique solution does
not exist, or if the solution does not depend continuously on the initial and boundary con-
ditions (Hadamard, 1923). If a model is ill-posed, infinitesimal variations in the initial or
boundary conditions yield a significant deviation of the solution within an infinitesimal
time (Hadamard, 1923). When solving the mathematical model by numerical approxi-
mations, perturbations in the initial and boundary conditions simply arise by truncation
errors. This makes an ill-posed model unsuitable in practice.

The problem of ill-posedness arises from an inaccurate representation of the physi-
cal processes (Joseph and Saut, 1990). For instance, a two-fluid model for incompressible
and inviscid flow in two layers with a velocity discontinuity is ill-posed (Kelvin, 1871;
Von Helmholtz, 1868). It is regularized (i.e., becomes well-posed) if viscous effects are
taken into account (Joseph and Saut, 1990). From this perspective, the preferred approach
to regularize the active layer model would be the development of a new model that in-
cludes those physical mechanisms that are not accounted for by the active layer model.

There exist alternatives to the active layer that typically aim to improve the physical
description of sediment mixing process. Ribberink (1987) introduced a second layer to
account for the mixing due to dunes exceptionally larger than the average dune height.
Besides producing a vertical sorting profile that better reproduces the results of a lab-
oratory experiment (Blom, 2008), Ribberink’s two-layer model makes the occurrence
of ill-posedness less likely, although it does not completely avoid it (Sieben, 1994). Luu
et al. (2004, 2006) proposed a model in which the active layer is replaced by the sediment
transport layer representing the sediment in transport rather than the sediment at the bed
surface. The thickness of the sediment transport layer is estimated with a closure relation
such as the one developed by Egashira and Ashida (1992). Although conceptually differ-
ent, the model by Luu et al. (2004, 2006) is mathematically equivalent to the active layer
model, which implies that it can also be ill-posed.

Blom and Parker (2004) and Blom et al. (2006, 2008) developed a model in which both
bed elevation and bed grain size distribution are treated using a vertically continuous for-
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mulation (Parker et al., 2000). This implies that there is no distinction between the active
and inactive part of the bed. The model by Blom and coauthors satisfactorily describes
the vertical stratigraphy due to dunes at laboratory scale, but it requires a time step too
small to be applicable at large scale. Moreover, its well-posedness has not been studied.
Simplifying the continuous framework proposed by Parker et al. (2000), the vertically
continuous model by Viparelli et al. (2017) overcomes the need for a small time step.
Although applicable at large spatial and temporal scales, their model does not solve the
problem of ill-posedness (Chavarrías et al., 2018a).

Given the facts that: (a) there is not yet a practically feasible alternative to the ac-
tive layer model, (b) the active layer model remains well-posed over a large range of ap-
plications (Chavarrías et al., 2018a), and (c) it is a computationally cheap model imple-
mented in several software packages, here our objective is to develop a strategy to avoid
ill-posedness while maintaining the conceptual framework of the active layer model. To
this end, we develop a regularization strategy that recovers well-posedness of the active
layer model and we conduct 4 laboratory experiments under conditions in which the
active layer model is ill-posed to obtain data to which we compare the results of our reg-
ularized model.

The chapter is organized as follows. In Section 4.2we review strategies for regularizing
ill-posedmodels. In Section 4.3we present the regularization strategy. Section 4.4 presents
the laboratory experiments and Section 4.5 focuses on the numerical runs to reproduce
the experimental results. In Section 4.6 we discuss the limitations of the regularization
strategy, as well as other possible modeling strategies.

4.2. Overview of Regularization Techniques

I n this section we review techniques used to regularize ill-posed problems. Propagation
problems aremost completelymathematically represented by a set of partial differential

equations constituting an initial value problem. In these problems an initial state changes
with time subject to conditions at the boundaries of the domain. The matrix-vector for-
mulation provides a compact expression of the set of equations (e.g., Lyn and Goodwin,
1987; Courant and Hilbert, 1989; Toro, 2001):

∂ Q
∂ t
+A

∂ Q
∂ x
= S , (4.1)

where Q is the vector of dependent variables, A is the system matrix, and S is the vector
of source terms. The velocity at which small waves propagate throughout the domain
(i.e., the eigenvalues of matrix A) must be real for the problem to be well-posed (e.g.,
Hadamard, 1923; Lax, 1957, 1958; Mizohata, 1961; Ivrii and Petkov, 1974; Lax, 1980; Ka-
banikhin, 2008). When the eigenvalues are real, the problem is hyperbolic. If the eigen-
values have an imaginary component (the problem being elliptic or of mixed-type), an
initial value problem is ill-posed.

The two-fluid shallow flow model (i.e., a model of the flow of two layers of superim-
posed fluids at different velocities) is known to be ill-posed when the difference in flow ve-
locity between the upper and lower layers exceeds a certain threshold (Long, 1956;Ardron,
1980;Armi, 1986; Lawrence, 1990; Pelanti et al., 2008). In general terms ill-posedness arises
in multiphase models (e.g., bubbles in a fluid) (Murray, 1965; Harlow and Amsden, 1975;
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Stewart, 1979; Stewart andWendroff , 1984;Kumbaro andNdjinga, 2011). Multiphase mod-
els are regularized by accounting for the forces at the interface between the two fluids
(Travis et al., 1976; Lyczkowski et al., 1978; Stuhmiller, 1977; Stewart, 1979; Ramshaw and
Trapp, 1978; Drew et al., 1979; Liska et al., 1995; Tiselj and Petelin, 1997; Abgrall and Karni,
2009). Although the physics of multiphase problems is better represented when includ-
ing the effects of the interface forces, this approach does not completely eliminate the
possibility of the problem being ill-posed.

Fernández Nieto (2003), Castro Díaz et al. (2011), and Sarno et al. (2017) introduce an
additional term in the momentum equations to account for friction between the fluid
layers. Their regularization strategy yields a well-posed model and has a physical origin.
However, the additional physical term depends on the time step of the numerical solution,
which implies that it cannot be considered a fully physically-based solution.

The numerical solution of a mathematically ill-posed model can be well-posed (Savary
and Zech, 2007;Chen and Peng, 2006;Chen et al., 2007; Spinewine et al., 2011) if the numer-
ical solution neglects information in the physical equations (Greco et al., 2008). Worded
differently, in such a case the physical equations are ill-posed, but the numerical equations
that we actually solve are well-posed. In particular, when using the HLL solver (a com-
mon approximate Riemann solver proposed by Harten, Lax, and Van Leer (Harten et al.,
1983; Toro, 2009)), one only uses the fastest and slowest eigenvalues of the system, which
implies that the dynamics due to the intermediate celerities are not resolved. This hides
the problem of ill-posedness rather than solves it.

In determining the steady (equilibrium) state of a fluid dynamics problem, a com-
monly adopted strategy to achieve fast convergence is to modify the celerities at which in-
formation propagates (i.e., the system eigenvalues) (Chorin, 1967; Plows, 1968;Grabowski
and Berger, 1976; Soh and Berger, 1984). For instance, in aerodynamics, the speed of sound
may differ significantly from the air velocity, which causes a slow convergence to steady
state (Feng and Merkle, 1990; Van Leer et al., 1991; Godfrey et al., 1993; Choi and Merkle,
1993). Preconditioning methods (Turkel, 1987, 1993, 1999) aim at bringing the eigenvalues
of the system closer to each other such that a larger time step is allowed.

Analogously, the “bed celerity” (i.e., the speed of the wave related to changes in bed el-
evation (De Vries, 1965; Morris and Williams, 1996; Lyn and Altinakar, 2002; Stecca et al.,
2014)) is generally slow compared to the celerities associated with perturbations of the
flow. This fact has encouraged the use of a “morphodynamic acceleration factor” in mor-
phodynamic modeling to reduce the computational time (Latteux, 1995; Lesser et al., 2004;
Roelvink, 2006; Ranasinghe et al., 2011). Mathematically, as we will show later, the use of
a morphodynamic acceleration factor is equivalent to the application of a particular pre-
conditioning method.

By altering the celerity at which information propagates, the transient state of the
preconditioned problem is altered with respect to the original problem, but both prob-
lems converge to the same steady state solution if the boundary conditions are steady.
A drawback of preconditioning is the fact that, when the problem is subject to unsteady
boundary conditions, preconditioningmethodsmodify the steady state, as they indirectly
modify the timing of the boundary conditions (Turkel, 1999). For this reason, the bound-
ary conditions of a preconditioned model need to be adjusted if these vary with time.

The fact that a preconditioning method alters the transient state was used by Zanotti
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et al. (2007) to regularize the two-fluid model. They modified the system of equations
by introducing two parameters. One parameter modifies the continuity equation, which
affects the imaginary part of the eigenvalues. Depending on the relations between veloci-
ties and densities of the two fluids, a specific value of this parameter makes the imaginary
part equal to zero. Apart from modifying the imaginary component, the parameter also
modifies the real part of the eigenvalues. They introduce a second parameter that affects
all equations to recover the original real part of the eigenvalues. They compare the solu-
tion of the regularized model to analytical solutions and they show that the regularized
two-fluid model is stable. In the next section we will follow a similar approach to derive
a regularization strategy for the active layer model.

4.3. Regularization Strategy for the Active Layer Model

I n this sectionwe propose a strategy for recovering thewell-posed character of the system
of equations for modeling mixed-sediment river morphodynamics. The modified set

of equations is presented in Section 4.3.1. In Section 4.3.2 we derive the parameters used
to recover the well-posed character of the model considering a simplified case with two
sediment size fractions and steady flow, which allows us to obtain analytical expressions.
We then extend the validity to unsteady flow conditions (Section 4.3.3) and to conditions
with more than 2 sediment size fractions (Section 4.3.4). In Section 4.3.5 we discuss the
implementation of the strategy.

4.3.1. Modified System of Equations
We consider one-dimensional hydrostatic flow over a bed composed of N non-cohesive
size fractions. The flow is described by the Saint-Venant (1871) equations. We assume a
Chézy-type friction in which the nondimensional friction coefficient is independent of
the flow and bed parameters. The sediment transport rate is considered to adapt instanta-
neously to changes in the bed shear stress (Bell and Sutherland, 1983). The mass conserva-
tion of the bed sediment is described by the Exner (1920) equation, and the N − 1 active
layer equations (Hirano, 1971) account for the conservation of the mass of each grain size
fraction within a discrete top layer of the bed surface (i.e., the active layer). Given the
flow, friction, and sediment transport assumptions, the model cannot represent small-
scale processes (i.e., processes at the scale of bed elevation fluctuations due the stochastic
nature of sediment transport, ripples, dunes, or bed load sheets). In other words, the
variables represent parameters averaged over a period larger than the characteristic time
of small-scale bed elevation fluctuations (Ribberink, 1987; Armanini and Di Silvio, 1988;
Parker et al., 2000; Blom et al., 2008;Wong and Parker, 2006b). We refer to Appendix C.1
for the model equations and the matrix-vector formulation of the system.

Analogous to Zanotti et al. (2007) (Section 4.2), the system of equations in Equation
(4.1) is modifiedmultiplying the time derivative term by a diagonal matrixM to regularize
the problem:

M
∂ Q
∂ t
+A

∂ Q
∂ x
= S . (4.2)

Matrix M modifies the transient state only. The preconditioning technique does not affect
the solution of the steady state (i.e., ∂ /∂ t = 0).
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The morphodynamic model under unisize conditions was analyzed by Cordier et al.
(2011). They found that the Saint-Venant-Exner model is always well-posed assuming
a Chézy-type friction. This confirms that the ill-posed character of the mixed-size sed-
iment model results from the inappropriate representation of the mixing processes by
the active layer model (Chavarrías et al., 2018a). For this reason, we propose a regular-
ization strategy that recovers the well-posed character modifying the celerities at which
mixed sediment processes occur. This is done by means of a set of parameters αk [−] for
1 ≤ k ≤ N − 1 that multiply the time derivative of each active layer equation. Similarly
to Zanotti et al. (2007), we consider a parameter β [−] that can be used to rescale the
celerities after being modified by αk . We stipulate that this parameter β affects only the
sediment processes (including the Exner (1920) equation) but not the flow.

The modified system of equations must be mass conservative with respect to the sed-
iment. This implies that αk cannot be grain size dependent (i.e., αk = α ∀k ) and that the
preconditioning technique is only applicable when the active layer thickness is constant
(Appendix C.2).

4.3.2. Derivation of the Regularization Coefficients
In this section we derive the values of the coefficients α and β that enable regularization
of the active layer model. We consider a simplified case with two sediment size fractions
under steady flow conditions, as this allows us to obtain analytical expressions of the
regularization parameters.

In this case, the dependent variables of the system are the bed elevation η [m] and the
volume of fine sediment in the active layer per unit of bed area, Ma1 [−] (Chavarrías et al.
(2018a) and Appendix C.1):

Qs2 = [η, Ma1]
ᵀ . (4.3)

The system matrix is:

As2 = u

�

λb
λs1
µ1,1

λbγ1 λs1

�

, (4.4)

where the parameters λb [−] and λs1 [−] are the nondimensional approximated bed and
sorting celerities, which (approximately) represent the celerities at which infinitesimal
perturbations in bed level and grain size distribution of the bed surface propagate through
the domain (De Vries (1965); Stecca et al. (2014); Chavarrías et al. (2018a) and Appendix
2.2.5), and u [m/s] is the mean flow velocity. The parameters γ1 [−] and µ1,1 [−] relate
the changes in the sediment transport rate to the properties of the bed (Appendix 2.2.5).
Subscript s indicates that the model is steady and subscript 2 highlights that it accounts
for two sediment size fractions only.

The preconditioning matrix is:

Ms2 =β
�

1 0
0 α

�

. (4.5)

Note that β does not affect the mathematical character of the system, as it modifies all
equations equally. Worded differently, the parameter β changes the magnitude of the
eigenvalues but not the type (real or complex). We compute the eigenvalues (λk for k =
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1,2) of the modified system of equations as the roots of the characteristic polynomial
det(Ms2λ−As2) = 0:

λk =
u

2β

�

λb+
λs1

α
±
p
∆

α

�

for k = 1,2 , (4.6)

where the discriminant ∆ is a second degree polynomial on α equal to:

∆= λ2
bα

2+ 2λbλs1

�

2γ1

µ1,1
− 1

�

α+λ2
s1 . (4.7)

We consider a situation which is ill-posed if the regularization strategy is not applied.
This implies that when α = 1 (the regularization strategy is not applied), ∆ < 0 (the
eigenvalues are complex). We aim to modify the system of equations as little as possible
in regularizing it. Worded differently, we aim at changing α as little as possible from
1. The minimum modification is obtained when the discriminant is equal to 0 (i.e., the
eigenvalues are in the limit for having an imaginary part different than 0). The threshold
values αc that modify the system of equations as little as possible are found by equating
(4.7) to zero:

αc =
λs1

λb



1− 2
γ1

µ1,1
± 2

√

√

√

√

γ1

µ1,1

�

γ1

µ1,1
− 1

�



 . (4.8)

There are two possible values of αc that yield real eigenvalues. The discriminant (Equation
(4.7)) as a function of α is a concave parabola as λ2

b > 0. Moreover, when α= 0,∆= λ2
s1 >

0 and when α= 1, ∆< 0. This shows that one critical value of parameter α is between 0
and 1, and the second value is larger than 1 (i.e., 0<αc1 < 1<αc2 ).

We compute the value of parameter β that, assuming α = αc, recovers the real part
that the eigenvalues would have if they had not been modified using the parameter α:

β=
λb+λs1/αc

λb+λs1
. (4.9)

In this case, irrespective of the value of α, the eigenvalues of the regularized system are
equal to:

λk =
u
2
(λb+λs1) for k = 1,2 . (4.10)

If we do not use β to recover the original real part of the eigenvalues (i.e., if β= 1), the
eigenvalues of the regularized system are equal to

λk =
u
2

�

λb+
λs1

α

�

for k = 1,2 . (4.11)

Parameter α can be selected to be larger or smaller than 1 and if we choose to use β
(i.e., if β 6= 1) the eigenvalues are independent of α. Summarizing, we find three possible
regularization strategies:



4.3. Regularization Strategy for the Active Layer Model

4

87

1. α 6= 1 and β 6= 1

2. α < 1 and β= 1

3. α > 1 and β= 1

In general terms, the approximated sorting celerities are positive, and under subcritical
flow conditions (i.e, Fr < 1) the approximated bed celerity is also positive. However,
due to hiding in the sediment transport relation, under conditions in which ill-posedness
likely occurs, λs1 may be negative regardless of the Froude number (Chavarrías et al.,
2018a). In this case, Strategies 1 and 2 do not guarantee that the eigenvalues λk > 0. We
consider that it is physically unrealistic that morphodynamic information travels in the
upstream direction under subcritical flow conditions. A negative eigenvalue would imply
that the boundary condition for morphology needs to be imposed at the downstream end
to yield a well-posed model, and this is contradictory to the fact that the morphodynamic
state under subcritical flow conditions depends on the load coming from upstream (Blom
et al., 2016, 2017b). On the other hand, Strategy 3 guarantees that λk > 0 (Appendix C.4).
Thus, we consider that the only possible regularization strategy is the one in which α > 1
and β= 1.

We need to guarantee that the celerities of the system of equations modified by the reg-
ularization strategy are not physically unrealistic. In particular, under a sufficiently small
Froude number, the modified bed and sorting celerities must be significantly smaller than
the celerities of the flow. The regularization technique does not modify the approximated
celerity associated with bed elevation changes (i.e., β = 1) and decreases the celerity as-
sociated with mixing processes (i.e., α > 1, we will discuss this point in Section 4.6.1).
For this reason, the regularization technique does not cause the celerities to be physically
unrealistic.

The regularization strategy is not limited to a particular range of parameter settings.
Yet, when using the value of α derived in this section, the Froude number cannot be in the
transcritical region, as in this case the quasi-steady approximation is not valid (Lyn, 1987;
Sieben, 1999; Lyn andAltinakar, 2002;Cao andCarling, 2002b;Cao et al., 2002;Colombini
and Stocchino, 2005). In the following section we consider unsteady flow, which extends
the regularization technique to the transcritical region.

4.3.3. Validity under Unsteady Flow Conditions
In this section we extend the validity of the regularization parameter α found for steady
flow cases (Section 4.3.2) to unsteady flow conditions.

When considering unsteady flow conditions, we cannot obtain an analytical expres-
sion of αc for regularizing the system of equations. Nevertheless we can numerically
find the smallest value of α > 1 for which the roots of the characteristic polynomial of
det(Muλ−Au) = 0 are real values (i.e., the eigenvalues are real), where subscript u indi-
cates that the model is unsteady. Matrices Mu and Au are listed in Appendix 2.2.5. This
procedure is nonetheless expensive computationally in comparison with an algebraic cal-
culation. Figure 4.1 shows the maximum imaginary part of all eigenvalues of a reference
ill-posed case (Table 4.1) considering unsteady flow for varying α. The sediment transport
rate is computed using a fractional version of the Engelund and Hansen (1967) sediment
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transport relation (Blom et al., 2017b). A value α > 16.1 yields a well-posed model (i.e.,
all eigenvalues are real).
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Figure 4.1: Maximum imaginary part of all the eigenvalues of the reference case (Table 4.1) as a function of α.
In this case αc = 16.1 is the smallest value of α > 1 that yields a well-posed model (i.e., all eigenvalues are real).

u [m/s] h [m] Cf [−] La [m] Fa1 [−] f I
1 [−] d1 [m] d2 [m]

1 1 0.01 0.20 0 1 0.001 0.005

Table 4.1: Reference values in the comparison of the value of αc computed analytically and numerically.

To test the validity of the algebraic value of αc obtained assuming steady flow we con-
sider the same reference case (Table 4.1) and we vary the flow velocity to obtain a range
of conditions. In Figure 4.2a we present the value of αc necessary to obtain a well-posed
model computed assuming steady flow (Equation (4.8)) and numerically considering un-
steady flow. We conclude that for a Froude number below approximately 0.6, there is
no significant difference between the values for steady and unsteady flow. This implies
that, for Fr < 0.6, the value of αc obtained analytically assuming steady flow is a good
approximation of the actual value.

4.3.4. Validity under Multiple Size Fractions Conditions
In a model with more than 2 size fractions, we cannot analytically obtain the value of
αc that regularizes the active layer model. Similar to the unsteady case, it is possible to
numerically obtain the smallest value of α > 1 that yields real eigenvalues computed as
the roots of the characteristic polynomial det(Msλ−As) = 0 (matrices Ms and As are
presented in Appendix 2.2.5). Again, this process is relatively expensive in computational
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Figure 4.2: Comparison between (a) the steady and unsteady values of the regularization parameter αc, and (b)
the exact and approximate values for a 3 size fractions case.

terms. In this section we propose a method to obtain an approximate value of αc for such
cases and compare it to the exact value obtained numerically.

Assuming steady flow, a system that models N sediment size fractions has N equa-
tions (Appendix C.1). We reduce the system of N equations to an approximate system
of 2 equations following the approach of Ribberink (1987). We sum the N active layer
equations to obtain one equation that models the changes of the mean grain size of the
bed surface sediment (Appendix C.1.3). Subsequently, we apply the same technique as
the one we have used in the case of 2 size fractions to obtain a critical value of α that
guarantees that the approximate model is well-posed:

αcm =
λm

λb

 

1− 2
γm

µm
± 2

√

√

√
γm

µm

�

γm

µm
− 1

�

!

, (4.12)

where the symbols are the equivalent of the case for two size fractions in the approximate
model (Appendix 2.2.5).

We consider a case with 3 sediment size fractions, where the fine and coarse fractions
have characteristic sizes equal to d1 = 0.001m and d3 = 0.005m, respectively. The vol-
ume fraction contents of the 3 size fractions in the active layer are Fa1 = 0, Fa2 = 0.9, and
Fa3 = 0.1. The substrate is fully composed of fine sediment. We vary the medium grain
size (d2 ) to obtain a range of conditions. The remaining parameters are the same as the
ones presented in Table 4.1. In Figure 4.2b we compare the exact value of αc (computed
numerically) to the approximated one (computed using Equation (4.12)). The approxi-
mated value of αc follows the same trend as the exact one. However, the approximated
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value is both larger and smaller than the exact one depending on the sediment conditions.
This implies that the current approximate approach may be insufficient to regularize the
active layer model in the case of more than 2 sediment size fractions.

The approximate system of equations can be ill-posed under degradational conditions
into a fine substrate only (Ribberink, 1987;Chavarrías et al., 2018a). However, a 3 size frac-
tions case can be ill-posed under degradational conditions into a coarse substrate (Chavar-
rías et al., 2018a), which further limits the applicability of the approximate solution for
the threshold value of α.

4.3.5. Implementation
In this section we describe our approach for numerically solving the system of equations
and apply the regularization strategy.

We have developed the numerical research code Elv to model mixed-size sediment
river morphodynamics (Blom et al., 2017b,a) which solves the equations for flow, bed
elevation, and the bed surface grain size distribution in a decoupled manner (i.e., in series
and not as a coupled system of equations). Thus, our code is not appropriate for solving
transcritical situations (Lyn, 1987; Lyn and Altinakar, 2002; Sieben, 1999) or cases with a
high sediment concentration (Morris and Williams, 1996; Cao and Carling, 2002a).

The one-dimensional spatial domain is discretized using an equispaced grid. All vari-
ables are computed at the cell centers and are considered constant in each time step. Here
we assume steady flow, which is represented by the backwater equation (Eq. (C.3)). This
ordinary differential equation is integrated using the standard fourth-order finite differ-
ence Runge-Kutta method (RK4). The Exner (1920) equation (Eq. (A.4)) and active layer
equation (Eq. (C.6)) are solved in conservative form using a first order upwind scheme in
combination with forward Euler to integrate in time. We discretize the vertical domain
in a finite number of cells having a certain thickness to account for stratigraphic changes
in the substrate. Our scheme is balanced for the vertical fluxes between the active layer
and the substrate (Stecca et al., 2016). This means that mass conservation is guaranteed in-
dependent of the substrate discretization. The time step varies with time and is computed
such that the CFL number (Courant et al., 1928) is constant and equal to 0.9 (Wu, 2007;
Toro, 2009). The details of the numerical implementation are described in Appendix C.5.

When the regularization strategy is applied, we first determine the mathematical char-
acter of the model (i.e., well-posed or ill-posed) at each node using the approach proposed
by Chavarrías et al. (2018a). For the case of 2 size fractions, this is done evaluating an
algebraic equation, and for more than 2 size fractions we numerically compute the eigen-
values of the system matrix. At continuation, for each node we compute the threshold
value αc that guarantees that the model is well-posed. Again, this is done evaluating an
algebraic expression (Equation (4.8)) for 2 size fractions and it is done numerically for
more than 2 size fractions (Section 4.3.4).

The regularization strategy yields equal eigenvalues (i.e., in a two size fractions case
λ1 = λ2, Equation (4.11)). This implies that the problem is hyperbolic but not strictly
hyperbolic (Lax, 1980; Toro, 2009; Cordier et al., 2011). In a non-strictly hyperbolic prob-
lem, the solution may not be unique and resonance may occur, which gives rise to strong
non-linear interactions (Liu, 1987; Isaacson and Temple, 1992). In avoiding a non-strictly
hyperbolic, problem we modify the value of αc using a small parameter ε > 0 [−] such
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that α∗ = αc(1+ε), where α∗ [−] is the value used for updating the bed surface grain size
distribution. For the cases we have studied a value of ε = 0.005 is sufficient to avoid the
problems associated with non-strict hyperbolicity.

Ill-posedness causes short-wave instability (Joseph and Saut (1990); Chavarrías et al.
(2018a) and Section 4.5.1) meaning that perturbations will grow unstable at rates depend-
ing on the inverse of their length. Diffusion counteracts these effects by dampening per-
turbations (Gray and Ancey, 2011). Regularization of the problem can be provided by
numerical diffusion if a first-order (diffusive) method is used. However, if the underlying
problem is ill-posed, cell refinement will be able to reveal its ill-posed character even if a
first-order method is used in its solution, as we do in this chapter. This is because, with
decreasing cell size, the numerical diffusion coefficient of a first-order method will gener-
ally decrease, while at the same time shorter (more unstable) perturbations will be solved.
Therefore, an ill-posed problem will show no convergence due to its inherent instability
when the mesh is progressively refined, regardless of the low-order method in use.

We observe such a behavior in Section 4.5.1where we show that our low-order numer-
ical scheme suffices to capture the consequences of ill-posedness by revealing instability
and non-converging character in simulations conducted within the ill-posed range. It is
likely that, with a higher-order (non-diffusive) method, these features would have become
apparent even at lower mesh resolution due to absence of spurious diffusion dampening
perturbations. However, it must be considered that our upwind scheme is characterized
by small numerical diffusion coefficient, and that Stecca et al. (2016) and Siviglia et al.
(2017) have shown that a first-order upwind scheme with a fine grid resolution is suffi-
cient to capture the main features of mixed-size sediment morphodynamic simulations
such as the ones we conduct.

4.4. Laboratory Experiments

I n this section we describe the laboratory experiments conducted under conditions in
which the active layer model (Hirano, 1971) is ill-posed in order to obtain a data set to

which we can compare the results of the proposed regularization strategy. We describe
the experimental plan, materials, and measurements in Section 4.4.1. In Section 4.4.2 we
present the experimental results.

4.4.1. Experimental Plan and Measurements
We conducted 4 laboratory experiments (I1, I2, I3, and I4). The experiments reproduced
degradational conditions into a fine substrate, which are conditions prone to be ill-posed
(Ribberink, 1987; Stecca et al., 2014; Chavarrías et al., 2018a). The experiments were con-
ducted in a 14 m long, 0.40 m wide, and 0.45 m high tilting flume in theWater Laboratory
of the Faculty of Civil Engineering and Geosciences of Delft University of Technology.
At the upstream end, a turbulence dissipation device was installed (item (a) in Figure 4.3).
An inclined plane was placed downstream from the turbulence dissipation device (item
(b) in Figure 4.3) to allow for an alluvial bed (item (c) in Figure 4.3). The structure was
covered with glued sediment such that friction was similar to the one of the alluvial bed.
Its elevation could be adjusted.

We consider a reference system with coordinate origin at the bottom of the flume at
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Figure 4.3: Sketch of the flume set-up: (a) turbulence dissipator, (b) metal plate with glued sediment, (c) alluvial
bed, (d) feeder, (e) sand trap, (f) sediment pump, (g) weir, (h) laser sensors for water and bed surface elevation,
and (i) camera for measuring the bed surface grain size distribution.

Experiment Lp [m] xp0 [m] xpf [m]
I1 0.50 4.70 5.20
I2 1.00 4.49 5.49
I3 2.00 4.47 6.47
I4 4.00 4.47 8.47

Table 4.2: Length (Lp ) and position (initial xp0 and final xpf coordinates) of the patch of fine sediment below
the coarse bed surface.

the downstream end of the metal structure. The z-axis is parallel to gravity and pointing
up. The x-axis follows the streamwise direction of the flume, being positive in the direc-
tion of the flow. The y-axis is perpendicular to the other two axes forming a right handed
orthonormal basis.

We used two sediment size fractions (fine and coarse) with characteristic grain sizes
(computed as the arithmetic mean in φ scale) equal to 2.1 mm and 5.5 mm. The standard
deviation of the two size fractions is 1.1 mm and 1.2 mm, respectively. The bed surface
was initially flat, with a constant slope, and composed of coarse sediment only. Below
a 0.03 m thick layer of coarse sediment, we installed a patch of fine sediment of varying
length Lp [m] (Figure 4.3 and Table 4.2). We imposed a constant water discharge and a
constant sediment feed rate of the coarse fraction only, which was in equilibrium with
the initial condition (Table 4.3 and Appendix C.6). The sediment was introduced using
a feeder placed on top of the flume (item (d) in Figure 4.3). The downstream water
level was lowered at a rate of 0.01 m/h during 8 h by adjusting a sharp-crested weir at
x = 12.60m (item (g) in Figure 4.3). The lowering of thewater level led to bed degradation
and entrainment of the fine sediment in the patch. We have tested that in these conditions
the active layer model is ill-posed regardless of the active layer thickness and sediment
transport relation.
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q [m2/s] s0 [−] qb0 [m2/s] h [m] u [m/s] Fr [−]
0.150 3.50× 10−3 7.86× 10−6 0.187 0.799 0.59

Table 4.3: Experimental conditions, where q denotes water discharge per unit width, s0 initial bed slope, qb0
sediment feed rate per unit width, h flow depth, u mean flow velocity, and Fr is the Froude number.

Sediment was collected in a sand trap (item (e) in Figure 4.3) at the downstream end
of the flume (x = 12.10m). The sediment was pumped from the sand trap (item (f) in
Figure 4.3) into a tank positioned on a weight balance next to the flume. This system
allowed us to continuously measure the sediment transport rate. The water inflow was
measured using an ultrasonic flow meter and the downstream water level using a position
sensor. We obtained profiles of the water and bed elevation using laser sensors that were
fixed to a carriage (item (h) in Figure 4.3). A camera was mounted on the carriage to
measure the grain size distribution of the bed surface using the technique developed by
Orrú et al. (2016a,b) (item (i) in Figure 4.3). To this end, the coarse sediment was painted
red and the fine sediment blue. Our experimental set-up allowed us to measure either a
profile of bed and water surface elevation or the bed surface grain size distribution at a
certain location with time.

For the modeling of the laboratory experiments (Section 4.5), it is important to ob-
tain turbulent flow conditions of a relatively deep flow (i.e., flow cannot be affected by
individual grains), where sediment is predominantly transported as bed load. The concen-
tration of sediment needs to be so small that we can assume clear water. These conditions
were satisfied (Appendix C.6).

4.4.2. Results
All experiments were governed by the same conditions before the fine sediment in the
patch was entrained. We observed the superposition of bedforms of two different length
scales (Figure 4.4). Secondary bedforms approximately 0.5 m long and 0.01 m high were
superimposed on primary longer bedforms of the order of 3 m and twice as high. The
primary bedforms are interpreted as incipient gravel dunes (Carling, 1999; Carling et al.,
2005). The characteristics of these features remained steady as the bed degraded. The
steadiness of the features’ characteristics is confirmed in a preparatory experimental run
without a patch of fine sediment (Appendix C.6).

After approximately 2 h the bed had degraded up to a point at which the trough of
a long bedform was lower than the top part of the patch (Figure 4.5a). At that moment
fine sediment was exposed, entrained, and transported. The larger mobility of the fine
sediment created a downstream moving degradational wave (Figure 4.5b). As erosion
proceeded, the shear stress was reduced (due to the increased flow depth), which reduced
the degradation rate. Meanwhile, the subsequent bedform advanced and started to fill the
degradational pit with coarse sediment (Figure 4.5c). Overall, the passage of bedforms
induced entrainment of fine sediment and subsequent coarsening of the top part of the
substrate. Since the degradational wave increased in depth in downstream direction, also
the thickness of the coarse top layer increased in downstream direction (Figure 4.5d).

The substrate coarsening mechanism created an irregular interface between coarse
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Figure 4.4: Measured bed elevation before fine sediment of the patches is entrained showing the superposition
of bedforms of two different length scales (Experiment I4 at 1:51 h).

a
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d

Figure 4.5: Sketch of the cyclic entrainment of substrate sediment: (a) bedforms formed out of coarse sediments
only, (b) fine sediment from the patch is entrained in the trough of a bedform, (c) a degradational wave forms
and travels downstream, (d) coarse sediment from upstream fills the pit left by the degradational wave.
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Figure 4.6: Measured surface fraction content of coarse sediment as a function of time for various lengths of the
patch Lp: at the center of the patch (a,c,e,g), and at the downstream end (b,d,f,h). Note that the streamwise
location of the center of the patch varies for each experiment while the downstream position is the same for all
cases (x = 9.15m).

and fine sediment compared to the initial situation where the interface was parallel to
the bed surface. As a consequence, the entrainment of fine sediment became a pseudo-
random process in space and time. Degradational waves formed at those locations where
fine sediment was closest to the bed surface. Yet, most of the waves grew for only a
limited length, as, due to the irregular interface, at some point the sediment present at
the trough was coarse rather than fine. Sometimes the interface was sufficiently parallel
to the bed surface and a large degradational wave formed. This is seen in the content of
coarse sediment at the bed surface of the patch (Figure 4.6a,c,e,g) and in the bed elevation
(Figure 4.7). One or two small degradational waves formed after the passage of a large
degradational wave, characterized by the fact that the bed surface is composed of mainly
fine sediment and the trough of a bedform reaches elevations significantly lower than
average.

A longer patch allowed for the development of longer (in space and time) and deeper
erosional waves (Figures 4.6 and 4.7). Yet, the decrease in degradation rate as the wave
advanced acted as a saturation mechanism limiting the height of the wave. Thus, the
probability of lower bed elevation at the patch zone was not significantly larger for an
increasing patch length (Figure 4.8). After the patch, where the substrate was composed
of coarse sediment only, wave height decreased and the bed elevation profile tended to the



4

96

4. A Regularization Strategy for Modelling Mixed-Sediment River
Morphodynamics

one upstream of the patch (Figure 4.7). Yet, the presence of fine sediment downstream
of the patch slightly increased the height of the bedforms with respect to the bedforms
upstream of the patch (Figure 4.8a,c). Bedforms downstream of the patch were charac-
terized by a coarse front and fine tail, and were approximately 2 grain sizes of the coarse
sediment high. These characteristics may indicate the presence of bedload sheets (Whiting
et al., 1988;Dietrich et al., 1989; Recking et al., 2009) or bedforms in a transitional phase to
small dunes. The domain downstream from the patch was not long enough to precisely
conclude on the type of bedforms. The changes in volume fraction content of coarse sedi-
ment at the bed surface were less pronounced downstream of the patch compared to at the
patch (Figure 4.6b,d,f,h). This is because fine sediment entrained at the patch dispersed
in the downstream direction.
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Figure 4.7: Detrended bed elevation as a function of time in Experiment (a) I1, (b) I2, (c) I3, and (d) I4. The
dashed black lines indicate the boundaries of the patch. The bed elevation is detrended subtracting the bed slope
of each profile individually, obtained fitting a first degree polynomial.
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4.5. Numerical Modeling

I n this section we apply the regularization strategy in modeling the laboratory experi-
ments conducted under conditions in which the active layer model is ill-posed (Section

4.5.1). In Section 4.5.2 we compare the results of the regularized active layer model to
the results of the two-layer model developed by Ribberink (1987) by applying them to a
thought experiment under conditions in which the active layer model is ill-posed.

4.5.1. Modeling of our Laboratory Experiments
In Section 4.5.1 we calibrate the numerical model. In Section 4.5.1 we conduct a conver-
gence test to show the consequences of ill-posedness and the benefits of the regularization
strategy. In Section 4.5.1 we apply the numerical model to the laboratory experiments
described in the previous section. In Section 4.5.1 we test the regularization strategy as-
suming three sediment size fractions.

Calibration
Modeling the laboratory experiments requires values for the active layer thickness and the
friction coefficient, and the choice of a sediment transport relation. To this end we use the
results of a set of preparatory experiments (Appendix C.6). To chose a sediment transport
relation, we run two experiments conducted under equilibrium conditions, while feeding
the fine and the coarse sediment size fractions. The sediment transport relation by Ashida
and Michiue (1971) reproduces our results reasonably well (Appendix C.7). To obtain the
skin friction coefficient (Cfb ) for computing the sediment transport rate (Appendix C.1.4)
we correct the total measured friction coefficient Cf for side wall friction with the method
developed by Johnson (1942) (see Guo (2015)). We obtain the values Cf = 0.0104 and
Cfb = 0.0084. Bedform drag was negligible during the initial phase as bedforms were low.
When fine sediment was entrained, bedforms grew and bedform drag may have played a
role. It is not reasonable to model this additional friction using standard relations (e.g.
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Engelund andHansen, 1967;Haque andMahmood, 1983;Wright and Parker, 2004), as these
relations provide a bedform-averaged friction coefficient, while in our case large bedforms
were isolated in space and time. We decide to use a constant friction coefficient and we
think that the most sensible approach is to neglect bedform drag.

A reasonable value for the active layer thickness is 0.01 m, which corresponds to the
distance below the mean bed elevation with a probability of entrainment below approxi-
mately 5% (Ribberink, 1987; Blom, 2008). This value is also in accordance with 1−3 times
D90 as proposed by, for instance, Hirano (1971), Hoey and Ferguson (1994), and Seminara
et al. (1996).

In one preparatory experiment under equilibrium conditions, we fed coarse sediment
only and, from some point, we started feeding tracer sediment (i.e., sediment of a different
color). Modeling the propagation of the front of tracer sediment, we confirm that 0.01 m
is a reasonable value for the active layer thickness (Appendix C.7).

Convergence Test
First we aim to show the consequences of ill-posedness. To this end, we simulate condi-
tions similar to the ones of the experiments using the active layer model. In the exper-
iments, degradation into a coarse substrate (i.e., under well-posed conditions) occurred
for approximately 2 h, as the patch of fine sediment was placed 3 cm below the initial bed
surface. In order to obtain ill-posed conditions at the start of the simulations, the patch
of fine sediment is placed right below the active layer. In this manner, 300 s simulations
suffice for our purpose. Moreover, the patch extends over a distance of 8 m (from x = 1m
to x = 9m) to maximize the domain over which the model is ill-posed.

We conduct 13 simulations using cell sizes ranging from 0.1 m down to 2.44× 10−5 m.
The results do not converge and continue to change as the grid is refined (Figure 4.9a). We
compute the error as a function of the cell size to quantify the (lack of) convergence. As
there is no analytical solution to which we can compare the results of the numerical runs,
we compute the error between the results of two successive simulations s and s +1 (Roy,
2005; Love and Rider, 2013). To this end, first we interpolate the bed elevation results
of all simulations using the smallest cell size. The interpolation, rather than linear, takes
into consideration that each value is constant inside a cell. Second, we compute the error
as the norm 1 of the difference between bed elevations of two successive simulations at a
certain time t :

errort
s =

1
LNx

Nx
∑

r=1

�

�

�ηt
rs
−ηt

rs+1

�

�

� , (4.13)

where Nx denotes the number of cells of the simulation with the smallest cell size, and
L [m] the domain length. Figure 4.9c shows the error as a function of the cell size for
several times. If the cell size is large (for instance, larger than 0.01 m), for short simula-
tion times (for instance, shorten than 10 s), the results seem to converge. Yet, using the
same cell size, the results do not converge if one considers a longer simulation time. Sim-
ilarly, considering a simulation time equal to 10 s, the results do not converge when the
cell size is smaller than 0.002 m. This behavior is characteristic of ill-posed simulations.
The growth rate of perturbations increases with decreasing cell size. For this reason, the
consequences of ill-posedness arise earlier for smaller cell sizes. Given a certain cell size,
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if the simulation is short enough, perturbations do not have time to grow and the solu-
tion seems to converge. For a fixed time, simulations seem to converge after the error
grows (for instance, for t = 120s, simulations seem to converge for cell sizes between
0.001 m and 0.01 m). This is due to the fact that, at the given time, perturbations have
already grown significantly and have coarsened the bed material causing the simulation to
be well-posed. A further decrease of the cell size or an analysis at a different time shows
that the active layer model does not converge.
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Figure 4.9: Bed elevation at t = 300s predicted using the (a) active layer model (Hirano, 1971) and (b) regularized
active layer model. Each of the 13 lines presents the results computed using a different cell size (ranging from
0.1 m down to 2.44× 10−5 m, where darker colors represent smaller cell sizes). Panels (c) and (d) present the
error at a certain time using a particular cell size (see Equation (4.13)) when using the active layer model and
the regularized active layer model, respectively. In panels (b) and (d) only one line is visible, as it overlaps all
other lines.
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We repeat the same simulations applying the regularization strategy. The initial value
of the parameter that recovers the well-posed character of the system is αc = 11.6. In
this case the solution does not show oscillations (Figure 4.9b). Moreover, the solution
converges for a decreasing cell size independently from the time at which convergence
is tested (Figure 4.9d). This supports the fact that the regularized model is well-posed,
contrary to the active layer model. The rate at which the solution converges confirms
that the numerical scheme is first-order accurate (Section 4.3.5).

Two sediment size fractions
We reproduce all laboratory experiments using a cell size equal to 0.05 m. The regularized
model shows spatial or temporal oscillations in none of the cases (Figure 4.10). For all
cases the bed elevation decreases smoothly in the streamwise direction (Figure 4.10b,f,j,n).
This contrasts with the measured temporal change of bed elevation, which presents bed-
forms and the formation of degradational waves at the upstream end of the patch (Figure
4.10a,e,i,m). The measured increase in wave height at the patch (Figure 4.10a,e,i,m and
Section 4.4.2) is not captured. The effect of the patch is observed in the model results in
the fact that degradation occurs faster for a long patch (Figure 4.10n) than for a short one
(Figure 4.10b).

The continuous and smooth predicted entrainment of substrate sediment yields an
almost steady volume fraction content of sediment in the active layer both at the patch
(Figure 4.10c,g,k,o) and at the downstream end (Figure 4.10d,h,l,p). The measured data
shows, on the other hand, a variable volume fraction content at the bed surface. The
model correctly captures the mean value and nicely reproduces that a longer patch causes
an increase in the amount of fine sediment at the bed surface. The fact that the model
does not capture bedforms is not surprising, as the mechanisms necessary for bedform
formation are not present in the model. For instance, the fact that the flow model is
based on the hydrostatic pressure assumption prevents modelling processes such as flow
separation. The possibility of capturing the formation of the degradational waves at the
patch is also discarded, as from the analysis of well-posedness we see that the regularized
model does not show any instability mechanism that could induce wave growth. For this
reason, the model results represent values averaged over the passage of several bedforms
and degradational waves. We choose not to filter the measured bed elevation data, as
given the characteristics of the bedforms, it would introduce a large amount of spurious
information (e.g., the degradational wavewould start at thewrong location) andwewould
lose a significant amount of data at the beginning and end of the domain.

Overall the regularized model yields a reasonable approximation of the mean tem-
poral change of the measured data. The degradational trend is captured and the surface
grain size distribution approximates the average measured values. The substrate is not
unrealistically altered as there are no oscillations in the solution.

Three sediment size fractions
To test the regularization strategy formultiple grain sizes, wemodel Experiment I4 (Table
4.2) using 3 different grain sizes by applying the exact solution to obtain the regularization
parameter. The fine size fraction remains the same and the previous coarse size fraction is
represented in this case by two characteristic grain sizes equal to 4.895 mm and 5.895 mm.
For an initial volume fraction content at the bed surface of the medium size sediment
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equal to 0.375, the initial bed slope is the same as when using two characteristic sizes and
the sum of the sediment transport rate of the medium and coarse fractions when using
three sizes is equal to the sediment transport rate of the coarse fraction when using two
sizes. In this manner the simulation accounting for three sediment fractions is comparable
to the one accounting for two size fractions.

In Figure 4.11 we compare the bed elevation and mean grain size of the bed surface
sediment predicted by the regularized model using 2 and 3 sediment size fractions. The
evolution of the bed elevation shows only a weak dependence on the number of size
fractions used to discretize the sedimentmixture. Themodel with 3 size fractions presents
a mild coarsening (0.2% increase in mean grain size) with time before sediment from the
patch is entrained (after 2 h). This coarsening is not visible when using 2 size fractions,
because in this case, during the initial state, the bed surface sediment consists of one single
grain size only. We conclude that the regularization technique is applicable for a general
case with more than 2 size fractions.
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Figure 4.10: Comparison between measured data and regularized model results: Experiment I1 (a-d), Experi-
ment I2 (e-h), Experiment I3 (i-l), and Experiment I4 (m-p). The first and second columns show the measured
and predicted bed elevation with time, respectively. The vertical dashed lines indicate the position of the patch
of fine sediment. The third and fourth columns present the surface fraction content of coarse sediment at the
center of the patch of fine sediment and at the downstream end of the flume, respectively.
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Figure 4.11: Bed elevation (a) and mean grain size at the bed surface (b) as a function of time predicted in
Experiment I4 using the regularized active layer model using 2 and 3 sediment sizes.
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4.5.2. Comparison between Ribberink’s (1987) Two-Layer Model and
the Regularized Model

To our knowledge there is no other laboratory data set apart from the one presented in
Section 4.4 to which we can apply the regularized active layer model to test its perfor-
mance. This is because either the conditions that other researchers have studied yield a
well-posed active layer model (e.g. Ashida and Michiue, 1971) or the active layer model is
ill-posed but the active layer thickness varies with time due to dune growth (Blom et al.,
2003). The latter case is a situation that the regularization strategy cannot deal with
(Section 4.3.1). However, Ribberink (1987) applies his two-layer model to a thought ex-
periment under conditions in which the active layer model is ill-posed. In this section we
apply the regularized active layer model to his thought experiment and compare it to the
two-layer model.

Ribberink (1987) conducted a laboratory experiment withmixed-size sediment, which
was dominated by aggradation after a period of degradation (Experiment E8-E9). The
initial bed was characterized by a uniform slope, composed of a bimodal mixture (a coarse
and fine fraction), and well mixed both in the streamwise and vertical direction. The
sediment supply was initially in equilibrium. A temporal increase of the proportion of the
coarse fraction in the sediment supply perturbed the equilibrium condition and induced
the downstream propagation of a coarsening wave. The downstream migration of the
coarsening front caused a preceding and temporary bed degradation as a result of the
difference in sediment mobility between the coarse sediment forming the wedge and the
fine sediment downstream of the front of the wedge. Eventually, the bed aggraded and
was characterized by a larger slope than the initial one, so as to allow for the transport of
the coarser fed sediment under equilibrium conditions.

During the short degradational part of the experiment, the bed surface was coarser
than the substrate (i.e., conditions in which the active layer model is prone to be ill-posed
(Ribberink, 1987; Stecca et al., 2014; Chavarrías et al., 2018a)). However, while reproduc-
ing the experiment numerically, Ribberink (1987) found that the active layer model was
well-posed. Subsequently, Ribberink (1987) applied his two-layer model to a thought ex-
periment that was equal to E8-E9 except for the fact that the substrate sediment was finer
than in the flume experiment such that the active layer model is ill-posed. A numerical
simulation of the thought experiment using the active layer model showed oscillations
that eventually made the code crash (Ribberink, 1987). The thought experiment was re-
produced well by a numerical code implementing Ribberink’s (1987) two-layer model.

Here we run a numerical simulation of the thought experiment using our regularized
active layer model and compare it to the results of Ribberink’s (1987) two-layer model
reported in Figure 7.9 of Ribberink (1987). Simulation details can be found in Appendix
C.3.

Figure 4.12 presents the time series of bed elevation and mean grain size of the bed
surface sediment at a location 20 m downstream from the inlet. During the first 20 h the
effects of the coarsening of the fed sediment are not felt 20 m downstream from the inlet.
While the regularized active layer model predicts a constant bed elevation and grain size
distribution of the bed surface sediment during this period of time, the two-layer model
predicts a fining of the bed surface (Figure 4.12b). This is due to the fact that the initial
grain size distribution of the exchange layer is not in equilibrium with the one at the
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active layer and causes a vertical flux of sediment. However, the bed elevation remains
constant as predicted by both models (Figure 4.12a).

The aggradational phase is preceded by a degradational wave, which is much more
pronounced in the regularized active layer model than in the two-layer model. This is
because in the regularized active layer model degradation causes entrainment of the fine
substrate sediment, whereas in the two-layer model the exchange layer acts as a buffer
that slows down the process. The coarsening of the bed surface between approximately
25 h and 40 h as predicted by both models is very similar. While after 40 h the regularized
active layer model predicts a constant grain size distribution of the bed surface sediment,
the two-layer model predicts an asymptotic adaptation toward equilibrium conditions.
This effect is again caused by the exchange layer that coarsens slowly compared to the
active layer on top of it, as it accounts for the effects of occasionally large bedforms. The
equilibrium state differs between the two models. We believe that this is due to the fact
that we do not know exactly what values were used by Ribberink (1987) for the constants
in the sediment transport relation (Appendix C.3).
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Figure 4.12: Bed elevation (a) and mean grain size of the bed surface sediment (b) with time predicted for the
thought experiment based on Experiment E8-E9 conducted by Ribberink (1987) using Ribberink’s two-layer
model and the regularized active layer model. The results of the two-layer model are extracted from Figure 7.9
of Ribberink (1987).

The regularized active layer model captures the dynamics predicted by the two-layer
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model of Ribberink (1987). The advantage of the two-layer model is that it accounts for
a source of vertical mixing that the regularized active layer model does not take into
consideration (i.e., the mixing due to occasionally large bedforms). On the other hand,
the two-layer model may become ill-posed (Sieben, 1994) while the regularized active layer
model is always well-posed.

4.6. Discussion

I n this section we discuss the physical interpretation of the regularization strategy (Sec-
tion 4.6.1), as well as possible extensions and further development (Section 4.6.2).

4.6.1. Physical Interpretation of the Regularization Strategy
The ill-posed solution predicted by the active layer model is characterized by oscillations
that temporarily fine the bed surface and coarsen the substrate. This behavior is also
observed in our laboratory experiments (Figures 4.6 and 4.7). One may be tempted to
conclude that the active layer model, although being mathematically ill-posed, provides
reasonable results. This argument is wrong for two reasons. The first reason is that the
numerical solution does not converge for a decreasing mesh size. The solution keeps
changing and oscillations become larger when the cell size is reduced (Joseph and Saut,
1990; Chavarrías et al., 2018a). Such a solution cannot be representative of physical phe-
nomena. Second, the physical processes responsible for the small scale variability in bed
elevation (i.e., ripples, bedload sheets) are not accounted for by the active layer model
(Section 4.3.1). Any resemblance of the model results with bed elevation fluctuations due
to small scale bedforms is therefore coincidence.

The frequently usedmorphodynamic factor (Φη ) (Latteux, 1995;Roelvink, 2006;Ranas-
inghe et al., 2011) is a particular case of a preconditioningmatrixwith parametersβ= 1/Φη
and αk = 1 ∀k. The proposed regularization strategy can be considered as the use of a
morphodynamic factor not only for the changes in bed elevation (η) but also for the
changes in grain size distribution of the bed surface (Mak ). The “sorting morphodynamic
factor” (Φsk ) is then defined as Φsk = 1/(αkβ). We have seen that the only applicable
regularization strategy is that in which αk = α > 1 ∀k and β = 1, which is equivalent
to saying that the regularization strategy is based on a “sorting morphodynamic factor”
0 < Φs < 1. This implies that the mixing or sorting processes associated with changes in
grain size distribution of the bed surface sediment are slowed down with respect to the
celerity predicted by the active layer model.

The effect of applying the regularization strategy is a slowdown of the sediment mix-
ing processes in the model computations. This effect is similar to the effect of a (tempo-
rary) increase of the active layer thickness. From a physical perspective this slowdown
of mixing processes may be associated with a (temporary) increase of the range of eleva-
tions covered by the bed level fluctuations (Blom et al., 2008). The slowdown of mixing
processes resulting from applying the regularization strategy implies that the regularized
active layer model can be applied to a wider range of physical problems (i.e., also those
characterized by a fairly small time scale of mixing) than the active layer model.
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4.6.2. Alternatives to the Regularization Strategy
Our regularization strategy is applied locally and temporally. Worded differently, only
when and where the model is ill-posed, we update the grain size distribution of the bed
surface sediment using the parameter αc. Moreover, αc depends only on the conditions at
the location under consideration (note that the preconditioning matrix is diagonal). This
is the simplest strategy but one could decide to avoid discontinuities in the value of αc
throughout the domain by coupling neighboring nodes.

Carraro et al. (2018) propose a technique to decrease the computational cost of mor-
phodynamic simulations. As in our case, their strategy can be seen as a preconditioning
technique. They consider unisize sediment conditions and modify not only the Exner
(1920) equation but also the continuity equation. Here we modify the active layer equa-
tion but not the flow equations or the Exner (1920) equation. A combination of both
strategies could yield a technique that both decreases the cost of numerical simulations
and guarantees that the model is well-posed.

We have focused on restoring the hyperbolic character of the system of equations and
to this end we based our study on the linear solution (i.e., short waves). This focus suffices
here, as short waves are most sensitive to ill-posedness (Joseph and Saut, 1990). However,
the regularization strategy modifies the celerity and growth rate not only of short waves
but also of long ones. For this reason, we suggest to further study how long waves are
affected and whether the results of the regularization strategy are physically realistic based
on a similar analysis to that of Lanzoni et al. (2006).

We have assumed a constant active layer thickness to avoid the added complexity due
to a cumbersome closure relation linking the preconditioning parameters to the change in
time of the active layer thickness. It may be possible to extend our regularization strategy
to situations in which the active layer thickness changes with time (e.g., due to dune
growth) by providing such a closure relation. On the other hand, it is reasonable that
the regularization strategy requires a constant active layer thickness given the fact that
mathematically the strategy has the same effect as an increase in the active layer thickness
(i.e., a decrease in the celerity of the mixing processes).

We have concluded that the regularization strategy needs to slowdown the mixing
processes (i.e., αc > 1) to guarantee that the eigenvalues are always positive regardless of
the value of the sorting celerity λs1. However, if the sorting celerity is guaranteed to be
positive (e.g., because hiding is negligible), the acceleration of the mixing processes also
yields positive eigenvalues and a well-posed model. There may be cases in which the latter
strategy yields more realistic results. Moreover, we have chosen to guarantee that the reg-
ularized eigenvalues are positive reasoning that morphodynamic information travels in
the downstream direction under subcritical conditions (Suzuki, 1976; Lyn and Altinakar,
2002; Lanzoni et al., 2006; Stecca et al., 2014). This statement is partially contradictory
to recent studies that consider sediment transport as a stochastic process (Furbish et al.,
2012a; Ancey and Heyman, 2014). The stochastic nature of sediment transport yields an
advection-diffusion equation that models the amount of moving particles per unit of bed
area. The diffusive character implies that information also travels in the upstream di-
rection. For this reason, a regularization strategy in which information travels in the
upstream direction may be physically realistic under certain circumstances.

For a case with more than two sediment size fractions (Section 4.3.4), the approxi-
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mate value of the parameter αc is not (completely) satisfactory as well-posedness is not
guaranteed. We have observed in our tests that ill-posedness occurs when (at least) two
eigenvalues of the bed and sorting eigenvalues are similar with respect to the other bed
and sorting eigenvalues. For a case considering two sediment size fractions this is referred
in literature as the “crossing of eigenvalues” (Sieben, 1997; Stecca et al., 2014). Worded
differently, the difference between two eigenvalues must be large enough for the model
to be well-posed. A regularization strategy based on guaranteeing a minimum distance
between eigenvalues could yield an inexpensive solution for the case with more than two
sediment size fractions.

4.7. Conclusions

W e have developed a preconditioning method for regularizing the active layer model
(Hirano, 1971) used inmodelingmixed-sediment rivermorphodynamics. Ourmethod

recovers the well-posed character of the system of equations by means of one parameter
that modifies the celerity of the mixing processes. Physically this means that the mixing
processes are slowed down or the time scale of the mixing processes is increased.

We conduct 4 laboratory experiments under conditions in which the active layer
model is ill-posed and we compare the observations to the predictions of the regular-
ized active layer model. The regularized active layer model captures the mean behavior
observed in the experiments associated with changes averaged over the passage of several
bedforms.





5
A Well-posed Alternative to the
Hirano Active Layer Model for

Mixed-Size Sediment Rivers

All models are wrong, but some are useful.

Box (1976)

Mirar el río hecho de tiempo y agua
Y recordar que el tiempo es otro río,
Saber que nos perdemos como el río

Y que los rostros pasan como el agua.

Borges (1977)

The active layer model (Hirano, 1971) is most frequently used for modelling mixed-size sedi-
ment river morphodynamic processes. It assumes that all the dynamics of the bed surface are
captured by a top homogeneous layer that interacts with the flow. Although successful in repro-
ducing a wide range of phenomena, it has two problems: (1) it may become mathematically
ill-posed, which causes the model to lose its predictive capabilities, and (2) it does not capture
dispersion of tracer sediment. We extend the active layer model by accounting for conserva-
tion of the sediment in transport and obtain a new model that overcomes the two problems.
We analytically assess the model properties and discover an instability mechanism associated
with the formation of waves under conditions in which the active layer model is ill-posed.
Numerical simulations of tracer dispersion show that the model reproduces reasonably well a
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laboratory experiment under conditions in which the effect of temporary burial of sediment
due to bedforms is negligible. Simulations of a field experiment show that the model does not
capture the effect of temporary burial of sediment by bedforms. We are capable of reproduc-
ing two laboratory experiments conducted under conditions in which the active layer model
is ill-posed. The new model captures the formation of waves and mixing due to an increase in
active layer thickness.
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5.1. Introduction

A common approach in modelling river morphodynamic changes in space and time
consists of solving a set of differential equations that account for the flow and bed

changes. As the hydrostatic pressure assumption is typically valid in fluvial problems, the
flow is often modelled using the Shallow Water Equations (e.g. Tan, 1992; Vreugdenhil,
1994) in two-dimensional systems, which reduce to the Saint-Venant (1871) equations un-
der one-dimensional conditions. Bed elevation changes are accounted for using the Exner
(1920) equation and changes in the bed surface texture using the active layer model (Hi-
rano, 1971). Changes in bed elevation and surface texture depend on the gradient of the
sediment transport rate. This modelling framework has been applied for decades (e.g.
Bennett and Nordin, 1977; Ferguson et al., 2015), it is implemented in major software pack-
ages (e.g. Vetsch et al., 2006;Mosselman and Sloff , 2007; Sloff and Mosselman, 2012; Villaret
et al., 2013), and has proven to be a powerful tool able to model processes from the lab to
the field scale (e.g. Cui et al., 2003; Williams et al., 2016; Orrú et al., 2016a).

Yet, the above modelling approach has two drawbacks. First, the solution may be in-
valid as the system of equations may become mathematically ill-posed (Ribberink, 1987;
Stecca et al., 2014; Chavarrías et al., 2018a). In ill-posed problems, the growth rate of per-
turbations tends to infinite as the wavelength decreases (Hadamard, 1923; Joseph and Saut,
1990; Kabanikhin, 2008). This is physically unrealistic, as physical processes are subject
to short-wavelength perturbations (e.g., noise) that do not grow unbounded. Numerical
solutions of ill-posed problems continue to change as the grid is refined (i.e., do not con-
verge with the grid) (Joseph and Saut, 1990). Ill-posedness is a symptom of a model not
capturing key physical elements (Joseph and Saut, 1990; Fowler, 1997).

Chavarrías et al. (2018a) show an example of the consequences of ill-posedness in river
morphodynamic simulations. As the model becomes ill-posed, perturbations due to nu-
merical truncation error grow up to the scale of the flow depth and alter the stratigraphy
in an unrealistic manner.

The second limitation of the active layer model is related to sediment dispersion. The
active layer model predicts tracer sediment to be advected downstreamwithout dispersing
(Iwasaki et al., 2017;Chavarrías et al., 2019a). Yet, both in the field (e.g. Sayre andHubbell,
1965; Rathbun et al., 1971; Drake et al., 1988;Hassan et al., 1991; Nikora et al., 2002; Bradley
and Tucker, 2012; Bradley, 2017), and in the laboratory (e.g. Hill et al., 2010; Roseberry
et al., 2012; Martin et al., 2012), traced sediment particles are observed to disperse as they
move downstream. In general, particles may disperse in a superdiffusive, subdiffusive,
or normal (Fickian) manner (Havlin and Ben-Avraham, 1987; Metzler and Klafter, 2000).
Normal diffusion means that the variance of the particle position scales linearly with
time. This behavior arises from collisions between a large amount of particles (Einstein,
1905) and is ubiquitous in nature. If variance does not scale linearly with time, particle
diffusion is called anomalous. Anomalous diffusion is superdiffusive or subdiffusive de-
pending on whether the relation between the variance and the time is larger or smaller
than linear, respectively (Havlin and Ben-Avraham, 1987; Metzler and Klafter, 2000). As
the variance characterizes the celerity at which particles spread, anomalous diffusion im-
plies that dispersion is scale-dependent (i.e., it depends on the time scale (Bouchaud and
Georges, 1990)).

In order to solve for the first limitation and recover well-posedness of the active layer
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model, Chavarrías et al. (2019a) have proposed a regularization strategy. The strategy is
based on identifying the locations at which the active layer model is ill-posed and locally
modifying the celerity at which mixing processes occur. In essence, the strategy alters
the celerity of the mixing processes predicted by the active layer model, such that the
regularized model is well-posed. Chavarrías et al. (2019a) conducted a set of laboratory
experiments under conditions in which the active layer model is ill-posed to test the reg-
ularization strategy. In particular, the experiments were characterized by degradation of
a coarse bed surface into a substrate consisting of fine sediment. The situation appeared
to be unstable: bedforms composed of coarse sediment grew due to entrainment of fine
sediment in the troughs, and decayed when coarse sediment coming from upstream cov-
ered the bed. The oscillations due to the instability mechanism were superimposed on
the overall degradational trend. The regularized model captured the overall degradational
trend but did not reproduce the oscillations due to the instability mechanism (Chavarrías
et al., 2019a). Another drawback of the regularization strategy is the fact that it can only
be applied if the active layer thickness remains constant with time.

As regards to the second limitation of the active layer model, dispersion of tracer sed-
iment is captured when sediment transport is treated in a stochastic manner, which was
first shown by Einstein (1936). He described sediment transport as particles traveling in
a series of jumps of varying length and frequency. This allowed for deriving the prob-
ability that a tracer particle is at a certain location as a function of time, although the
model was not linked to flow and bed elevation changes. Einstein (1936)’s theory was ap-
plied by Sayre and Hubbell (1965) and Habersack (2001), among others, to explain tracer
dispersion in field cases in the United States and New Zealand, respectively. Recent re-
finements of Einstein (1936)’s theory include, for instance, the work by Fan et al. (2016,
2017), who considered the effect of the travel time in simulating tracer motion. Yet, just
as in Einstein (1936), their approach to sediment transport is not combined with flow and
morphodynamic change.

A different approach for modelling tracer dispersion consists of accounting for the
number of static and moving particles in the bed. In this way, Lajeunesse et al. (2013,
2017, 2018) model dispersion of a plume of unisize tracer sediment. In their idealized
conditions, sediment disperses in a Fickian manner. Ancey et al. (2006, 2008) considered
the statistics of unisize sediment transport and showed that this can be well captured us-
ing a discrete statistic theory (i.e., birth-death discrete Markov processes). A continuum
version of the theory was derived byAncey (2010) andAncey andHeyman (2014), who ac-
counted for the variability in particle velocity. This led to an advection-diffusion equation
modeling the ensemble average of the volume of sediment in transport per unit of bed
area. The diffusive behavior of the equation explains tracer dispersion. Bohorquez and An-
cey (2015) coupled the model developed by Ancey and Heyman (2014) to the Saint-Venant
(1871) flow equations to model the formation of antidunes. Interestingly, an advection-
diffusion equation for modelling the volume of sediment in transport was obtained also
by Furbish et al. (2012a) starting from a continuous probabilistic formulation. These re-
cent advances improve our understanding of sediment transport, but remain focused on
unisize sediment conditions.

Our objective is to develop a model that accounts for mixed-size sediment river mor-
phodynamic changes and overcomes the two limitations mentioned above. In particular,
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we aim at a well-posed model that captures tracer dispersion and the instability mech-
anism due to the entrainment of fine substrate sediment. To this end, we combine the
active layer model with the model by Bohorquez and Ancey (2015), after we extend the
latter to mixed-size sediment conditions.

In Section 5.2 we present the mathematical model. In Section 5.3 we linearize the
system of equations and study the growth rate of perturbations to explain the instability
associated with the entrainment of fine substrate sediment. We follow this approach,
as it has been useful to explain the formation of other patterns such as ripples (Sumer
and Bakioglu, 1984; Colombini and Stocchino, 2011), dunes (Kennedy, 1963; Colombini and
Stocchino, 2008), bars (Callander, 1969; Schielen et al., 1993), and meanders (Ikeda et al.,
1981; Seminara, 2006). We also use the linear model to corroborate the well-posedness
of the system of equations and to study the manner in which tracer sediment disperses.
In Section 5.4 we reproduce two cases of tracer propagation under laboratory and field
conditions, and two laboratory cases conducted under conditions inwhich the active layer
model is ill-posed. In Section 5.5 we discuss the results.

5.2. The SILKE model

I n this section we present the SILKE model (SedIment Layers with source-sinK Ex-
change) for mixed-size sediment river morphodynamics. In Section 5.2.1 we present

the model equations. The closure relations are shown in Section 5.2.2. In Section 5.2.3
we explain the numerical technique that allows for solving the system of equations.

5.2.1. Conservation Equations
We consider one-dimensional flow over a bed composed of an arbitrary number of non-
cohesive sediment fractions. The sediment fractions are characterized by a grain size dk
[m], where the subscript k identifies each fraction in increasing size (i.e., d1 < d2 < ...<
dN ) and N is the total number of size fractions.

We assume that the concentration of solid to liquid discharge is below 6× 10−3, so
that the effect of the concentration of sediment on the flow is negligible (Garegnani et al.,
2011, 2013). Under these conditions, unsteady depth-averaged flow is modelled by the
Saint-Venant (1871) equations. Here, for simplicity, we assume steady flow to obtain the
backwater equation (e.g. Chow, 1959).

Similarly to Hirano (1971), we assume that sediment can be in 3 states: (1) in motion,
predominantly in the streamwise direction, (2) at the bed surface, where it can be en-
trained into motion and deposited, or (3) in the substrate, where sediment is immobile
and cannot be entrained. Subsequently, we will provide equations describing the conser-
vation of mass of the sediment in each of the three states. Hirano (1971) did not consider
conservation of the sediment in transport in deriving the active layer model. This was
done by Armanini and Di Silvio (1988), who extended the active layer model with two
more layers to account for suspended load and bed load. In applying their model, they
simplified it by assuming that the sediment transport rate is at capacity and that the tem-
poral change of the volume of sediment in the bed load layer is negligible compared to the
divergence of the sediment transport rate and the flux of sediment to the bed load layer.
These two assumptions essentially remove the dynamics of the bed load layer, which is
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the key focus of our analysis.
Bohorquez andAncey (2015) describe themotion of unisize sediment based on a stochas-

tic interpretation of sediment transport. We extend their framework to mixed-size sedi-
ment conditions by considering all variables to be grain size dependent. Conservation of
the mass of sediment in transport is described by:

∂ Γk
∂ t
+
∂ vpkΓk

∂ x
−
∂ 2κkΓk
∂ x2

= Ek −Dk , (5.1)

where t [s] denotes the time coordinate, x [m] is the streamwise coordinate, Ek [m/s]
and Dk [m/s] are entrainment and deposition rates of each size fraction k, and vpk [m/s]
is the ensemble average of the instantaneous velocity of the moving particles of size frac-
tion k. Parameter κk [m2/s] is the diffusivity of size fraction k due to the variability in
particle velocity from an Eulerian perspective (Roseberry et al., 2012; Furbish et al., 2012b,
2017). This is essentially different from the Lagrangian diffusivity obtained from tracer
dispersion experiments. Parameter Γk [m] is the ensemble average of the volume of sedi-
ment in transport of size fraction k per unit of bed area. Following Furbish et al. (2012a)
we will term Γk the particle activity.

The particle activity can be interpreted as a fictitious layer with thickness Γk . Yet, it is
important to note that here no thickness of the bed load layer is specified as opposed to, for
instance, Van Rijn (1984), Luu et al. (2004),Wu (2004), Colombini (2004), andColombini
and Stocchino (2005). Contrary to Armanini and Di Silvio (1988), we do not make a
distinction between suspended and bed load sediment. In our extension to mixed-size
sediment conditions, we implicitly neglect the covariance terms that appear in Equation
(5.1) due to the correlation between particle size, velocity, and diffusivity (Furbish et al.,
2012a). The possible implications of this assumption are assessed in Section 5.5.2.

The sediment transport rate of size fraction k (qbk [m2/s]) does not depend on the
flow properties only and is equal to:

qbk = vpkΓk −
∂ κkΓk
∂ x

. (5.2)

This expression is a mixed-size sediment version of the expression derived by Furbish et al.
(2012a), where we have assumed that all variables are grain size dependent.

Following Einstein (1950), we assume that the changes in bed elevation are due to
the difference between entrainment and deposition rates. Mass conservation of the bed
surface sediment (considering all sediment size fractions) yields the entrainment form of
the Exner (1920) equation (Nakagawa and Tsujimoto, 1980a; Borah et al., 1982; Parker et al.,
2000; Furbish et al., 2012a):

(1− p)
∂ η

∂ t
=D − E , (5.3)

where p [−] denotes the bed porosity, η [m] the bed elevation, and E [m/s] and D
[m/s] are the total entrainment and deposition rates. For simplicity, mechanisms such
as subsidence and uplift, compaction and dilation of sediment are neglected in the above
equation (Paola and Voller, 2005).

Following Hirano (1971), we assume that only the top part of the bed, characterized
by a certain thickness (i.e., the active layer thickness), interacts with the flow. Sediment in
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the active layer is homogeneously mixed such that the layer has no vertical stratigraphy.
Sediment is entrained from and deposited in the active layer, and a vertical flux of sediment
between the active layer and the substrate occurs if the elevation of the interface between
the active layer and the substrate changes.

Using this formulation, one implicitly assumes that the probability of entrainment is
constant within the active layer and equal to 0 in the substrate (Parker et al., 2000). This
is an approximation, as in reality there is no discrete distinction between the active and
inactive part of the bed. In reality, the probability of a particle of being entrained depends
on its probability of being exposed to the flow (Galvin, 1965; Ribberink, 1987;Hassan and
Church, 1994; Parker et al., 2000; Blom and Parker, 2004). Bed elevation fluctuations due
to ripples, dunes, bars, or any other sort of bedforms, cause the probability of exposure
to vary with vertical position. Particles deposited at lower elevations have a smaller prob-
ability of being re-entrained. For this reason, using a single discrete active layer it is not
possible to capture the effect of temporary burial of sediment due to bedforms rework-
ing sediment at an elevation significantly lower than the lower limit of the active layer
(Ribberink, 1987; Blom, 2008).

The entrainment formulation of the active layer model reads (Parker et al., 2000):

(1− p)
∂ Mak

∂ t
+(1− p) f I

k
∂ (η− La)

∂ t
=Dk − Ek , (5.4)

where Mak = Fak La [m] is the volume of sediment of size fraction k in the active layer per
unit of bed area, La [m] is the active layer thickness, and Fak ∈ [0,1] [−] and f I

k ∈ [0,1] [−]
are the volume fraction content of size fraction k in the active layer and at the interface
between the active layer and the substrate, respectively. Conservation of sediment in the
substrate for each size fraction yields (Stecca et al., 2014):

(1− p)
∂ Msk

∂ t
− (1− p) f I

k
∂ (η− La)

∂ t
= 0 , (5.5)

where Msk [m] represents the volume of sediment in the substrate per unit of bed area.
By definition, the sum of the volume fraction content over all size fractions equals 1:

N
∑

k=1

f I
k = 1 ,

N
∑

k=1

Fak = 1 , (5.6)

and the total entrainment and deposition rates are the sum of the rates per size fraction:

E =
N
∑

k=1

Ek , D =
N
∑

k=1

Dk . (5.7)

The main variables of the SILKE model are shown in Figure 5.1, together with the
active layer model for comparison.

The model requires closure relations for the entrainment and deposition rates, the
particle velocity, diffusivity, as well as friction. In the following section we will discuss
these closure relations.



5

118

5. A Well-posed Alternative to the Hirano Active Layer Model for Mixed-Size Sediment
Rivers

η0

η

h

LaFak
fk

I

fsk(z)

Active Layer Model SILKE Model

q

qbk

LaFak
fk

I

fsk(z)

Γk

FaFaFa

vpk
DkEk

Figure 5.1: Sketch representing the main variables of the active layer model (Hirano, 1971) and the SILKEmodel.
The figure is adapted from Figure 2 in Chavarrías et al. (2018a).

5.2.2. Closure Relations
In this section we introduce the closure relations of the model. We assume a Chézy-
type friction such that Sf = CfFr

2, where Sf [−] denotes the friction slope, Cf [−] is a
nondimensional friction coefficient that we assume to be independent of the flow and
bed parameters, and Fr= u/

p

g h [−] is the Froude number. Parameter u [m/s] denotes
the mean flow velocity, h [m] the mean flow depth, and g [m/s2 ] is the acceleration due
to gravity.

We assume that, for a given bed shear stress, the rate at which particles of size fraction
k are set into motion per unit of bed area, Ek , depends on the volume fraction content of
sediment of size fraction k in the active layer Fak (e.g. Parker, 2008). The rate at which
particles of size fraction k settle per unit of bed area, Dk , depends, for a given bed shear
stress, on the volume of sediment of size fraction k in transport per unit of bed area, Γk
(e.g. Seminara et al., 2002). The particle activity, Γk , is nondimensionalized using the grain
size and the entrainment and deposition rates are nondimensionalized using the parameter
p

Rg dk (Kalinske, 1947; Einstein, 1950; Fernandez-Luque and Van Beek, 1976; Seminara
et al., 2002), where R= (ρs −ρw )/ρw [−] is the submerged specific gravity, ρs [kg/m3 ]
is the sediment density, and ρw [kg/m3 ] the water density. We assume ρs = 2650kg/m3

and ρw = 1000kg/m3. It is convenient to define a capacity of entrainment and deposition
( Êk [1/s] and D̂k[1/s], respectively), which depend on the variables of the model Mak and
Γk , for the later mathematical analysis of the model:

Ek =Mak Êk , Dk = Γk D̂k . (5.8)

Parameters Êk and D̂k expressed in terms of the nondimensional entrainment and depo-
sition rates E∗k and D∗k are:

Êk =

p

Rg dk

La
E∗k , D̂k =

p

Rg dk

dk
D∗k . (5.9)
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The entrainment rate does not depend on the amount of particles being transported,
which implies we neglect the entrainment due to collisions of particles in transport with
the bed (i.e., collective entrainment (Ancey and Heyman, 2014)).

The nondimensional particle velocity v∗pk [−] is defined as (Fernandez-Luque and
Van Beek, 1976; Seminara et al., 2002):

v∗pk =
vpk

p

Rg dk

. (5.10)

We need to specify closure relations for the dimensionless particle entrainment E∗k ,
deposition D∗k , and velocity v∗pk . Yet, the sediment transport rate under equilibrium con-
ditions, qbkeq

[m2/s], is the variable traditionally related to the flow properties (e.g.Meyer-
Peter and Müller, 1948; Engelund and Hansen, 1967; Ashida and Michiue, 1971;Wilcock and
Crowe, 2003). Under equilibrium conditions, we find the following relation between
entrainment, deposition, velocity, and transport:

q∗bkeq
=

E∗k v∗pk

D∗k
, (5.11)

where q∗bkeq
= qbkeq

/
Æ

Rg d 3
k [−] is the nondimensional equilibrium sediment transport

rate. One can decide which three variables are specified using closure relations. We choose
for E∗k , v∗pk , and q∗bkeq

. In principle any combination of closure relations can be used.
However, attention needs to be paid when using closure relations which account for a
critical Shields (1936) stress in conditions close to incipient motion, as this may create
discontinuities in, for instance, q∗bkeq

if D∗k is zero but not the product E∗k v∗pk .

Fernandez-Luque and Van Beek (1976) developed closure relations for unisize sediment
conditions. We generalize their expressions to mixed-size sediment conditions. To this
end, we consider the bed shear stress for each size fraction and account for hiding effects.
These hiding effects represent the facts that: (a) fine fractions in a sediment mixture hide
behind large grains and experience a larger critical bed shear stress than under unisize
conditions and (b) coarse particles are more exposed to the flow than under unisize sed-
iment conditions (and so experience a smaller critical bed shear stress) (Einstein, 1950).
The relations by Fernandez-Luque and Van Beek (1976) extended to mixed-size sediment
conditions read:

E∗k = 0.0199 (θk − ξkθc)
3/2 , (5.12)

v∗pk = 11.5
�

Æ

θk − 0.7
Æ

ξkθc

�

, (5.13)

q∗bkeq
= 5.7 (θk − ξkθc)

3/2 , (5.14)

where θk = Cfbu2/g Rdk [−] is the Shields (1936) stress, θc [−] is the critical Shields
(1936) stress, and ξk [−] is the hiding function. The parameter Cfb [−] is the skin friction
coefficient.
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We also apply the sediment transport relation developed byAshida andMichiue (1971):

q∗bkeq
= 17 (θk − ξkθc)

�

Æ

θk −
Æ

ξkθc

�

, (5.15)

where:

ξk =











0.843
�

dk
Dm

�−1
for dk

Dm
≤ 0.4

�

log10(19)

log10(19
dk

Dm
)

�2

for dk
Dm
> 0.4

, (5.16)

where Dm [m] denotes the geometric mean grain size of the bed surface sediment and
θc = 0.05. To avoid discontinuities under conditions close to incipient motion, we de-
rive an entrainment function that prevents discontinuities in the deposition rate. The
discontinuity is avoided using an entrainment function that depends on the excess bed
shear stress in a similar manner as the sediment transport rate. As a result, the deposition
rate is a constant multiplying the relation for the particle velocity function (see Equation
5.11). The entrainment function reads:

E∗k = 0.0591 (θk − ξkθc)
�

Æ

θk −
Æ

ξkθc

�

, (5.17)

where the value of the constant is chosen such that the deposition rate is equal to the
one found by Fernandez-Luque and Van Beek (1976), as we lack data to derive a relation
ourselves. This decision is arbitrary but fine for our purpose.

The diffusivity in the sediment transport κk is equal to the product of the variance of
the particle velocity and the Lagrangian integral time scale of the particle velocity, which
is a measure of the time over which the particle velocity is significantly autocorrelated
(e.g. Nieuwstadt et al., 2016). Assuming an exponential distribution of particle velocities
(Lajeunesse et al., 2010; Roseberry et al., 2012; Furbish et al., 2012c; Furbish and Schmeeckle,
2013; Fathel et al., 2015), the variance of the particle velocity is equal to the square of the
average particle velocity. As particle travel time is of the same order of magnitude as the
integral time scale (Roseberry et al., 2012), particle diffusivity is proportional and of the
same order of magnitude as the product of the average particle velocity and the step length
(Furbish et al., 2012b).

Various relations for the mean step length have been proposed. Nakagawa and Tsuji-
moto (1980b) found that, under mixed-size sediment conditions, the step length is 10−30
times the grain size and it slightly increases with the bed shear stress. Sekine and Kikkawa
(1992) derived a relation depending on the bed shear stress and the sediment fall velocity
and Niño et al. (1994) found that the step length varies between 4.5− 8 times the grain
size. Similar results were obtained by Hu and Hui (1996a,b), who included the effect of
sediment density. In our analysis only the order of magnitude of the diffusivity matters.
For this reason, we choose the simple relation by Fernandez-Luque and Van Beek (1976)
in which the mean step length is 16 times the grain size. Then, the particle diffusivity is:

κk = 16vpk dk . (5.18)

We can analytically derive somemodel properties that help us understand its behavior
and mathematical character (Section 5.3). Yet, in a general case we need to solve the
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problem numerically. In the next section we explain the technique to numerically solve
the system of equations.

5.2.3. Numerical Solution
To numerically solve the system of equations of the active layer model, we use the nu-
merical research code Elv as explained in Chavarrías et al. (2019a). In brief, we solve the
backwater equation in combination with the flux form of the Exner (1920) and active
layer equations in a decoupled manner. This implies that the equations are assumed to
weakly interact with each other, which is acceptable if the Froude number is below ap-
proximately 0.7 (Lyn, 1987; Lyn and Altinakar, 2002; Sieben, 1999). The backwater equa-
tion is solved using the standard fourth order Runge-Kutta method, and the Exner (1920)
and active layer equations are solved using a first order upwind scheme (i.e., FTBS (Sonke
et al., 2003; Long et al., 2008; Zima et al., 2015)) using a variable time step to guarantee a
CFL number equal to 0.9. The substrate is discretized using Eulerian cells such that only
the cell below the active layer has a variable thickness. Cells are created when a specified
thickness of this cell is reached under aggradational conditions. The implementation is
mass conservative independent of the number of cells created or consumed in one time
step (Stecca et al., 2016).

We have extended Elv to solve the system of equations of the SILKE model. Equation
(5.3) for the bed elevation and Equation (5.4) for the volume of sediment of each size
fraction in the active layer are solved using a first order forward Euler scheme. When
the diffusion coefficient of Equation (5.1) for the particle activity is set to 0, the equa-
tion is solved using an FTBS scheme. When considering diffusion, the difference in the
order of magnitude between the advective and diffusive components limits the applica-
tion of a second order centered scheme. In order to reduce the computational time, we
solve the advective term using an upwind scheme and the diffusive term using centered
differences. The time integration is performed using the scheme proposed by Crank and
Nicolson (1947). The source term complicates the implementation of an automatic time
stepping method. For this reason, the time step is fixed and the largest possible value that
guarantees a monotone solution is found by trial and error.

Boundary conditions are necessary for the backwater and particle activity equations
only. Regarding the backwater equation, we impose the downstream water surface eleva-
tion, which agrees with the fact that the flow is subcritical. Regarding the particle activity,
we consider two possibilities: a recirculating and a feed flume-like simulation (Parker and
Wilcock, 1993). In the case of recirculating flume-like simulation, we impose cyclic bound-
ary conditions on the particle activity by copying the downstream value of the particle
activity at the upstream end (i.e., a Dirichlet boundary conditions).

In the case of a feed flume-like simulation, we make a distinction between the cases
accounting for diffusion and the cases neglecting it. When diffusion is neglected (κk = 0
∀k ), information in the particle activity equation travels in the downstream direction
only. In this case, only an upstream boundary condition is required to solve the particle
activity equation. The variable that is usually set is the sediment transport rate, which
in this case is equivalent to a condition on the particle activity (i.e., a Dirichlet bound-
ary condition, see Equation (5.2)). Diffusion requires both upstream and downstream
boundary conditions to solve the equation. Imposing the sediment transport rate at the



5

122

5. A Well-posed Alternative to the Hirano Active Layer Model for Mixed-Size Sediment
Rivers

upstream end involves a condition on the particle activity and its derivative (i.e., a Robin
boundary condition, see Equation (5.2)). It is difficult to impose a boundary condition at
the downstream end, as there is no physical constraint regarding the sediment transport
rate or the particle activity. As in our simulations the downstream end of the domain
is initially under equilibrium conditions, we impose equilibrium sediment transport rate
at the downstream end (i.e., a Robin boundary condition) and ensure that the domain is
long enough such that this downstream boundary condition does not affect the solution
within the domain of interest.

5.3. Instability, Well-Posedness, and Dispersion

B efore applying the model to laboratory and field cases, this section aims to gain insight
on its properties and characteristics. To be able to conduct the study in analytical

terms, we simplify the equations and work with a linearized version of the model (Section
5.3.1). We focus on the 3 characteristics that the model is expected to capture (Section 5.1).
We study the stability of the model (Section 5.3.2), its well-posedness (Section 5.3.3), and
the dispersion of tracer sediment (Section 5.3.4).

5.3.1. Linear Model
In this section we linearize the SILKE model. The dependent variables of the system are
η, Γk ∀k, Mak ∀k ∈ {1,N −1}. Note that the N -th volume of sediment in the active layer
is not a variable of the system due to the constraint on the volume fraction content in
Equation (5.6). As the substrate equation is a linear combination of Equations (5.3) and
(5.4), the substrate equations does not play a role in the dynamics of the system and can
be treated in a decoupled form (Stecca et al., 2014; Chavarrías et al., 2018a).

To linearize the system of equations we consider a reference state of dependent vari-
ables η0, Γk0 ∀k, Mak0 ∀k ∈ {1,N − 1}, which is a solution of the system of equations.
The subscript 0 indicates that these are constant values at the reference state, which rep-
resents steady uniform straight flow over a flat sloping bed composed of an arbitrary but
uniform grain size distribution. A small perturbation η′, Γ ′k ∀k, M ′ak ∀k ∈ {1,N − 1} is
added to the reference state, such that η = η0 + η

′, Γk = Γk0 + Γ
′
k ∀k, Mak = Mak0 +M ′ak

∀k ∈ {1,N−1}. We substitute the perturbed variables in the system of equations, and we
neglect all non-linear terms. By substituting the reference solution, we obtain a system
of equations of the perturbed variables that we arrange in matrix form:

∂ Q′

∂ t
+K0

∂ 2Q′

∂ x2
+A0

∂ Q′

∂ x
+B0Q′ = 0 . (5.19)

where Q′ is the vector of dependent variables:

Q′ =
�

η′,
�

Γ ′k
�

︸︷︷︸

N−1

,Γ ′N ,
�

M ′ak

�

︸ ︷︷ ︸

N−1

�ᵀ . (5.20)

Matrices K0, A0, and B0 contain the diffusive, advective, and linear terms, respectively
(Appendix D.1).

We assume that the perturbations can be represented by means of a Fourier series,
which implies that the functions representing the variables are piecewise smooth and



5.3. Instability, Well-Posedness, and Dispersion

5

123

bounded for x = ±∞. In this case, the solution of the system of equations can be ex-
pressed in the form of normal modes:

Q′ =Re
�

Vei(kw x−ωt )
�

, (5.21)

where kw [rad/m] is the real wave number and V is the complex amplitude vector. Re
denotes the real part of the solution and i is the imaginary unit. The variableω =ωr+iωi
[rad/s] is the complex angular frequency, where ωr is the angular frequency and ωi the
attenuation coefficient. Perturbations grow ifωi > 0 and decay ifωi < 0. Substitution of
Equation (5.21) in Equation (5.19) yields:

[M0−ω1]V= 0 , (5.22)

where 1 is the unit matrix and:

M0 =K0k2
wi+A0kw−B0i . (5.23)

Equation (5.22) is an eigenvalue problem. The eigenvalues of M0 are the values ofω that
satisfy the equation. In the following sections we solve this eigenvalue problem to gain
insight on the model behavior.

5.3.2. Instability Mechanism
In this section we analyze the stability of the model. To this end and following the frame-
work set by Callander (1969) (Section 5.1), we study the growth rate of perturbations
using the linear model (Section 5.3.1) as a function of the wave number.

Considering a two sediment size fractions case, we reduce the variables of the linear
model to 4 (η, Γ1, Γ2, and Ma1 ). Furthermore, we neglect the variability in particle velocity,
which implies that particle diffusion is zero (i.e., κk = 0 ∀k ). The model is still too
complex to be solved analytically. We observe that the particle activity equation has an
advective character (second term on the left hand side in Equation (5.1)) which is not
present neither in the equation for the bed elevation (Equation (5.3)) nor in the one for the
bed surface texture (Equation (5.4)). Moreover, in the source term of all equations (i.e.,
the right hand side of Equations (5.1), (5.3), and (5.4)) the term multiplying the particle
activity (i.e., D̂k ) is larger than the term multiplying the volume of sediment in the active
layer (i.e., Êk ). These differences hint at the possibility of two different time scales, one
associated with changes in particle activity and one with changes in bed elevation and
the bed surface texture. Appendix D.2 indeed confirms that there exist two different
time scales and that the time scale of changes associated with particle activity is shorter
(changes are faster) than the time scale associated with changes in bed elevation and bed
surface texture. We use this property to decouple the model and obtain an approximate
solution of the fast variables (ωf

1, ω
f
2 ) and the slow variables (ωs

1 and ω
s
2 ).

The complex angular frequencies of the fast variables are:

ωf
1 = vp1kw− D̂1i , (5.24)

ωf
2 = vp2kw− D̂2i . (5.25)
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Independently of the wave number, the growth rate is negative, which means that the fast
variables are stable.

The complex angular frequencies of the slow variables are the solution to the second
order polynomial equation:

b2ω
s2
+ b1ω

s+ c0 = 0 , (5.26)

where parameters b1, b2, and c0 are complex numbers depending on the wave number
(Appendix D.2). Depending on the value of these parameters, the imaginary part of ωs

can be positive, which means that perturbations grow.
We identify 3main parameters controlling the growth or decay of perturbations. The

first parameter is Ψ [−] (Appendix D.2):

Ψ = Fa1

��

1− f I
1

�

φV +
�

f I
1 − 2

��

+(1− Fa1)
�

f I
1

1
φ
−V

�

1+ f I
1

�

�

, (5.27)

where φ = Ê1D̂2/Ê2D̂1 is a parameter relating the entrainment and deposition rates of
the two size fractions and V = vp1/vp2 relates the particle velocities. Parameter Ψ is a
measure of the grain size distribution of the active layer sediment relative to the grain
size distribution at the interface between the active layer and the substrate. Parameter
Ψ decreases when the active layer is coarse compared to the interface between the active
layer and the substrate. Perturbations are stable if Ψ > 0, and perturbations may grow
if Ψ < 0 (Appendix D.2). Parameter Ψ is small under the conditions in which the active
layer model is prone to be ill-posed (i.e., degradation into a fine substrate (Ribberink, 1987;
Stecca et al., 2014; Chavarrías et al., 2018a)). Hence, under the conditions in which the
active layer model is ill-posed, the SILKE model may be unstable.

The second parameter is the ratio between the grain size of the fine sediment and the
active layer thickness, d1/La. This parameter relates the particle activity to the volume of
sediment in the active layer, as the first scales with the grain size and the second with the
active layer thickness.

The third parameter is the ratio between grain sizes, d1/d2. A ratio close to one
indicates conditions close to unisize sediment.

In Figure 5.2 we present the separatrix between growth (G) and decay (D) of pertur-
bations as a function of the wave number based on the reference case of Table 5.1. The
results are presented as a function of the three dimensionless parameters. Considering the
reference case, we vary the volume fraction content of fine sediment at the interface be-
tween the active layer and the substrate between 0.5 and 1. In Figure 5.2a the active layer
thickness varies between 3 times the coarse grain size (representative of plane bed condi-
tions (Petts et al., 1989; Rahuel et al., 1989; Parker and Sutherland, 1990)) and 0.2 times the
water depth (representative of a dune dominated case (Deigaard and Fredsøe, 1978; Lee and
Odgaard, 1986)). In Figure 5.2b the characteristic size of the fine sediment varies between
0.0005 m and 0.003 m.

A fining of the sediment at the interface (i.e., an increase in f I
1 , which causes a decrease

inΨ ) increases the instability domain (i.e., there is a larger range of unstable wave numbers
(Figure 5.2)). When the fine sediment at the interface is below a minimum threshold,
the model is stable and perturbations do not grow. For instance, for d1/La < 0.01, all
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Figure 5.2: Separatrix between the growth domain (G) and decay domain (D) as a function of the wave number
(kw ) and Ψ (Equation (5.27)). The wave number is nondimensionalized using the fine grain size. Parameter Ψ
is relative to its minimum value Ψmin = 1/φ− 2V . Each line represents a separatrix as a function of the ratio
between: (a) the grain size of the fine fraction and the active layer thickness, and (b) the grain sizes. In (a) the
active layer thickness is varied to obtain different conditions while in (b) we vary the grain size of the fine size
fraction. The green markers represent the conditions of two numerical simulation under growth (circle) and
decay (square) conditions. In the numerical simulations d1/La = 0.01 and d1/d2 = 0.2, and the separatrix is
highlighted using a dashed black line.

h [m] u [m/s] Fr [−] Cf [−] Cfb [−] La [m] d1 [m] d2 [m]
1 1 0.32 0.008 0.008 0.10 0.001 0.005

Table 5.1: Reference parameters for studying the domain in which perturbations grow or decay.

perturbations decay if Ψ/Ψmin > −0.93, which is equivalent to f I
1 < 0.8. This shows

that the mechanism underlying growth of perturbations is associated with the origin of
ill-posedness in the active layer model. The active layer thickness significantly affects the
domain in which perturbations grow (Figure 5.2a). This corresponds to the active layer
model, where the active layer thickness plays a significant role in defining the region in
which the model is ill-posed (Chavarrías et al., 2018a). A decrease in active layer thickness
(i.e., an increase in d1/La ) decreases the unstable domain, which is consistent with the
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fact that the active layer model is well-posed if the active layer thickness is sufficiently thin
(Chavarrías et al., 2018a). The active layer model is well-posed if the active layer thickness
is sufficiently thick too. Yet, we do not see an eventual decrease in the growth domain for
increasing values of the active layer thickness (i.e., decreasing values of parameter d1/La ),
as, in our reference case, this effect occurs for unrealistically large values of the active
layer thickness. The domain of instability decreases when the ratio of the two grain sizes
tends to 1 (Figure 5.2b). This shows that the model is stable under unisize conditions,
which supports the fact that the mixed-sediment character is a condition that allows for
instability.

When using the backwater equation, we implicitly assume that the relevant processes
occur on a length scale longer than the flow depth (e.g. Battjes and Labeur, 2017), as for
waves shorter than the flow depth hydrostatic flow cannot be assumed. For this reason,
the model would be physically unrealistic if perturbations shorter than the flow depth
would grow. In this reference case, perturbations with a wave length below approximately
5 m do not grow. Thus, the length scale of growing perturbations is at least 5 times the
flow depth (h = 1m, see Table 5.1). We conclude that the minimum length scale of grow-
ing perturbations is consistent with the assumption of hydrostatic flow in the derivation
of the backwater equation. The minimum length scale also indicates that instabilities are
strongly linked to the process of adaptation of the particle activity to changing conditions,
as this process occurs over lengths characterized by vpk/D̂k (Bohorquez and Ancey, 2016),
which is of order 1.

We run two idealized numerical simulations with the parameters of the reference case
(Table 5.1) to test the results of the linear analysis and to verify that under the conditions
in which we predict growth, the solution of the system of equations including non-linear
terms shows growth of perturbations. The domain is 200 m long and is discretized using
0.25 m long cells. The initial bed elevation is formed by a sinusoidal perturbation with
an amplitude equal to 0.001 m and wave length equal 10 m superimposed to a constant
slope equal to 8.2× 10−4, which is the equilibrium bed slope (Blom et al., 2016, 2017a,b).
The small value of the amplitude of the perturbation guarantees that the linear solution
is initially valid. The active layer is initially composed of coarse sediment only. We use
periodic boundary conditions. The two simulations differ only regarding the initial com-
position of the substrate sediment. In one case the substrate is composed of fine sediment
only, and the linear analysis predicts growth (circle in Figure 5.2), while in the second case
the substrate is composed of 80% fine sediment and the linear analysis predicts decay of
the perturbation (square in Figure 5.2). Figure 5.3 shows the bed elevation relative to the
mean longitudinal bed profile as a function of time. A fine substrate causes oscillations
to grow (Figure 5.3a), whereas a slightly coarser substrate yields decay of perturbations
(Figure 5.3b).

The numerical results confirm that themodel presents an instabilitymechanism strongly
linked to the mixed-size character of the sediment. An active layer coarser than the in-
terface between the active layer and the substrate triggers the formation of waves, as was
observed by Chavarrías et al. (2019a) in laboratory experiments. The numerical results
also confirm the validity of the analytical predictor for instability conditions.

We note that we are not the first authors reporting a one-dimensional instabilitymech-
anism linked to the mixed-size character of sediment. Tsujimoto and Motohashi (1989) and
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Figure 5.3: Detrended bed elevation (i.e., bed elevation substracting the initial bed elevation) as a function of
space and time for two numerical simulations run under conditions in which the linear model predicts: (a)
growth of perturbations, and (b) decay of perturbations.

Tsujimoto (1989a,b, 1990, 1989c) also found an instability mechanism. In their case the
instability was driven by a spatial lag between the sediment transport rate and the bed
surface grain size distribution. The phase difference originates from considering the sed-
iment transport rate as the convolution integral of the product of the entrainment rate
and probability of step length. This instability mechanism explains the formation of al-
ternating fine and coarse stripes in the streamwise direction, as well as in the transversal
direction (Ikeda and Iseya, 1986; Iseya and Ikeda, 1987;Kuhnle and Southard, 1988). In both
the SILKE model and the model by Tsujimoto and coauthors, the instability mechanism
is intrinsically related to mixed-size sediment, it is one-dimensional, and predicts the for-
mation of alternate fine and coarse stripes. Yet, the models represent different processes,
as only in the SILKE model the substrate sediment plays a role. In the SILKE model, a
homogeneous mixed-size sediment bed is stable and waves do not grow, contrary to the
model by Tsujimoto and coauthors. The instability mechanism due to entrainment of fine
substrate sediment is only captured by the SILKE model.

The fact that for an increasing wave number the domain in which perturbations decay
increases (Figure 5.2) indicates that the SILKEmodel may be well-posed. In the following
section we prove that this is true.
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5.3.3. Well-Posedness
In this section we show that the SILKE model considering two sediment size fractions is
well-posed. To this end we study the growth rate of infinitely short perturbations (e.g.
Barker and Gray, 2017).

We first consider negligible diffusion in the sediment transport rate. The growth rates
of the two fast variables are always negative regardless of the wave number (Equations
(5.24) and (5.25)). This implies that they are stable. For a wave number tending to infinity,
the angular frequencies of the slow variables are:

ωs
1lim
=−i

1
2 (1− p)

H1 , (5.28)

ωs
2lim
=−i

1
2 (1− p)

H2 , (5.29)

where H1 and H2 are complex numbers with positive real part (Appendix D.2). For this
reason, the angular frequency is a negative pure imaginary number. As a consequence,
the growth rate of perturbations for both fast and slow variables is negative for a wave
number tending to infinity. Thus, the model is well-posed.

To account for the effect of particle diffusivity, we assume the same value of diffusion
for both grain sizes. We find that for a wave number tending to infinity the angular
frequency of the slow variables are:

ωsK
1lim
= 0 , (5.30)

ωsK
2lim
=− 1

1− p
e3i , (5.31)

where the superscript K indicates that these values are the ones accounting for particle
diffusion. As the growth rate (i.e., the imaginary part of the angular frequencies) is neg-
ative, the model is well-posed. We conclude that, independently from diffusion in the
sediment transport, the model is well-posed.

Interestingly, for intermediate wave numbers diffusion increases the instability do-
main, although in the limit for a wave number tending to infinity diffusion dampens
oscillations. Perturbations that decay when diffusion in the sediment transport is not ac-
counted for appear to grow when diffusion is considered. This result is consistent with
the results of Bohorquez andAncey (2015). Using their unisize sedimentmodel, they found
that diffusion increases the instability domain.

5.3.4. Tracer Sediment Dispersion
In this section we analytically study the propagation of tracer sediment predicted by the
SILKE model. While the active layer model predicts no dispersion of tracer sediment
(Section 5.1), we expect that in the SILKE model the interaction between the sediment at
the bed surface and the sediment in transport captures sediment dispersion.

We consider a simplified case of tracer dispersion under unisize and normal flow con-
ditions. We assume the active layer thickness to be constant. Under these conditions and
neglecting the effect of diffusion in sediment transport, the SILKE model is similar to
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the one developed by Lajeunesse et al. (2013, 2017, 2018) based on the sediment balance
model developed by Charru et al. (2004), Charru and Hinch (2006), Charru (2006), and
Lajeunesse et al. (2010). The difference is that here we include particle diffusion and we
maintain the active layer concept, whereas Lajeunesse et al. (2013, 2017, 2018) model the
number of static and moving particles.

Under the above conditions the equation modelling change in the volume fraction
content of tracer sediment is:

∂ Fa1

∂ t
=− 1

1− p
ΓT
La

D̂ (Fa1− FΓ1) , (5.32)

and changes in particle activity are modelled by:

∂ FΓ1
∂ t
+ vp

∂ FΓ1
∂ x
−κ

∂ 2FΓ1
∂ x2

= D̂ (Fa1− FΓ1) , (5.33)

where ΓT = Γ1+Γ2 [m] is the total volume of active particles per unit of bed area and FΓ1 =
Γ1/ΓT [−] is the fraction of active tracer particles. Appendix D.3 details the derivation of
Equations (5.32) and (5.33). As the measurements of tracer sediment in experiments and
field cases usually provide the total amount of tracer sediment without distinguishing
between the sediment at the bed surface and the sediment in transport (Lajeunesse et al.,
2018), we introduce the variable c [−] that accounts for the total concentration of tracer
sediment:

c =
Ma1+ Γ1
La+ ΓT

=
Fa1La+ FΓ1ΓT

La+ ΓT
. (5.34)

It is convenient to define the variable δ = Fa1 − FΓ1 [−], which represents the dif-
ference between the fraction of tracer sediment at the bed surface and the fraction of
tracer sediment in transport. This variable drives the transient state of the system, as
it is the sink term of Equation (5.32) and the source term of Equation (5.33). We con-
duct a change of variables and replace FΓ1 and Fa1 by c and δ. The change of variables
yields two advection-diffusion equations modelling changes of c and δ (Appendix D.3).
In the steady state (i.e., ∂ /∂ t=0), δ = 0 while c 6= 0. This means that, after a long time,
δ << c . We use this property to obtain an analytical solution of c at first order:

∂ c0

∂ t
+ vc

∂ c0

∂ x
−κc

∂ 2c0

∂ x2
= 0 , (5.35)

where the subscript 0 indicates the approximate value of the solution at first order. This
is an advection-diffusion equation in which the advective velocity is:

vc = vp
ΓT

(1− p)La+ ΓT
, (5.36)

and the diffusivity is
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When κ= 0, the diffusivity is not equal to 0. This result shows that the model predicts
dispersion of tracer sediment as a result of the interaction between the active layer and
the particle activity equations. In particular, tracer sediment diffuses in a normal (Fick-
ian) manner as it propagates in the downstream direction. Long particle travel distances,
characterized either by a large particle velocity or a small deposition flux, increase par-
ticle diffusion. The propagation velocity of tracer sediment is smaller than the particle
velocity, and it depends on the inverse of the active layer thickness. The dependence on
the active layer thickness is consistent with the fact that a thick active layer represents
conditions in which vertical mixing occurs over a significant range of elevations, which
slows down the streamwise propagation of tracer sediment.

An advection-diffusion equation for the propagation of tracer sediment in the long
term was also obtained by Lajeunesse et al. (2018) using their sediment balance model. In
the following, we compare their results to the ones of the SILKE model. The advective
velocity in both models is mathematically equivalent if we consider that the number of
static and moving particles in their model is represented by the active layer thickness and
the particle activity, respectively, in our model. The diffusivity of the model by Lajeunesse
et al. (2018) depends on the square of the particle step length and inversely on the particle
travel time. Our results are mathematically equivalent to theirs if we relate the deposition
rate to the inverse of the particle travel time. Although mathematically equivalent, the
variables represent different properties, such that each model is most suited for reproduc-
ing certain physical processes. For instance, the active layer thickness is representative of
the range of elevations at which the sediment interacts with the flow and that are respon-
sible for significant vertical mixing, and this property is not physically equivalent to the
number of static particles. Moreover, while in the model by Lajeunesse et al. (2018) the
number of static particles is a variable of the model under unsteady conditions, in our
case the active layer thickness is a priori assigned (or related to flow and bed properties).

An advantage of the SILKE model is that it explicitly accounts for the effect of poros-
ity. If bed particles are loosely packed and the porosity is large, there are less particles per
unit of bed area and tracer sediment propagates faster, as there is less interaction with the
bed surface. Moreover, the SILKE model shows the effect of the variability in particle
velocity: it increases the diffusive behavior caused by the interaction between particles at
the bed surface and in transport.

In summary, we have shown that our model is well-posed and predicts tracer disper-
sion and an instability mechanism linked to mixed-size sediment which causes perturba-
tions to grow under the conditions in which the active layer model is ill-posed. We need
to analyze whether the results of the model are physically realistic. In the next section we
compare the results of the model to laboratory and field data to answer this question.

5.4. Model Application

I n this section we run numerical simulations of laboratory and field cases to test the
performance of the SILKE model against measured data and to compare the results to

those of the active layer model. In Section 5.4.1 we study a case of tracer propagation in
which the effect of temporary burial due to bedforms is negligible. In Section 5.4.2 we
model tracer propagation under conditions in which temporary burial due to bedforms
plays a significant role. In Sections 5.4.3 and 5.4.4 we model two experiments conducted
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under conditions in which the active layer model is ill-posed. In the first case it is reason-
able to assume a constant active layer thickness, while in the second one the active layer
thickness varies with time.

5.4.1. Tracer Propagation Without Temporary Burial
In this section we model a laboratory experiment conducted by Chavarrías et al. (2019a)
to study whether the model captures tracer propagation under conditions in which the
effect of temporary burial of sediment due to bedforms is negligible (Section 5.1). We also
investigate the role played by diffusion in sediment transport. The experiment consisted
of feeding painted (i.e., tracer) unisize sediment under equilibrium conditions. A regular
pattern of small bedforms approximately 2 cm high covered the bed surface. Measure-
ments of bed elevation fluctuations confirm that the active part of the bed was restricted
to a narrow range of elevations. Worded differently, the probability of entrainment and
deposition decreases fast at lower elevations, such that temporary burial due to bedforms
is negligible. The content of tracer sediment at the bed surface at the downstream end
of the flume was measured using a submerged camera. Appendix D.4 explains further
details of the experiment.

In modeling the experiment we use the same closure relations and parameters as the
ones used byChavarrías et al. (2019a). The sediment transport rate at capacity is computed
using the relation by Ashida and Michiue (1971). The domain of interest is 10 m long. We
add an additional 40 m at the downstream end to guarantee that the downstream boundary
condition for the particle activity does not affect the domain of interest (Section 5.2.3).
The domain is discretized using 0.01 m long cells.

In Figure 5.4 we compare the measured content of tracer sediment to the results pre-
dicted using the active layer model and the SILKE model. The active layer model predicts
that tracer propagates as a front and does not capture the slow increase in tracer content
at the bed surface. The deviation of the solution from a step function is due to numerical
diffusion. The overall rate of adaptation of the bed surface fraction content is captured
by the SILKE model. In particular, when considering an active layer thickness equal to
0.01 m, which is reasonable based on measurements of the bed elevation fluctuations, the
agreement is satisfactory. Although the general trend due to the exchange of particles
between the bed surface (i.e., in the active layer) and the particles in motion (i.e., the par-
ticle activity) is captured by the SILKE model, the fluctuations in tracer content due to
bed elevation fluctuations is not captured. This is because the dynamics due to individual
bedforms are resolved neither by the active layer model nor the SILKE model. Yet, deep
burial of sediment at elevations significantly lower than the lower limit of the active layer
was negligible, such that temporary trapping of sediment can be neglected and the active
layer captures the dynamics of the system.

Diffusion in sediment transport does not play a significant role in the dispersion
of tracer sediment (Figure 5.4). This is explained from the fact that there exist three
time scales in which different physical processes play a role in dispersing tracer sediment
(Nikora et al., 2002). The shortest (local) scale considers the movement of particles be-
tween impacts with the bed surface. Processes at this scale are not included in the model.
The intermediate scale considers processes related to a single entrainment and deposition
cycle. The variability in particle velocity is a relevant process in this scale. For this reason,
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Figure 5.4: Bed surface fraction content of tracer sediment 9.17 m downstream from the feeding location. The
black dots are measured data (Chavarrías et al., 2019a) and the lines are the results of numerical simulations.
The dash-dotted, dashed, and continuous lines present the results using the active layer model (Hirano, 1971),
and the SILKE model with and without diffusion, respectively. The different colors represent a different active
layer thickness.

diffusion plays a role in this scale. In the global scale, sediment dispersion is governed by
the rest time of sediment particles and the interaction between the bed surface and the
sediment in transport (Martin et al., 2012, 2014; Voepel et al., 2013; Pelosi et al., 2014; Fur-
bish et al., 2017). This scale is captured by the interaction between the active layer and the
particle activity equations regardless of the diffusion in sediment transport.

Nikora et al. (2002) sets the limit time between the intermediate and global scales in
t = 15dk/u∗ (which is of the order of 1 s for the specifications of the present experiment).
This supports the fact that diffusion is not relevant to explain dispersion of sediment on
a time scale of 5 h.

5.4.2. Tracer Propagation With Temporary Burial
In this section we study tracer propagation under conditions in which the effect of tempo-
rary burial of sediment due to bedforms may not be negligible. To this end, we consider
the study conducted by Sayre and Hubbell (1965). They tracked the propagation of tracer
sediment along a 550 m long stretch of the North Loup River (Nebraska, US) during
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approximately 12 days. The minimum and maximum sizes of the bed sediment were
equal to 0.088 mm and 9.424 mm, respectively, with a geometric mean grain size equal to
0.315 mm. The bed was covered with dunes between 0.30 m and 0.46 m height, and based
on core samples the average maximum depth at which tracer was found was 0.44 m below
the bed surface. The flow conditions did not significantly vary during the measurement
campaign and a reasonably constant flow depth was measured. Figure 5.5 presents the
measured concentration of tracer sediment at the end of the experiment. Details about
the conditions of the experiment are presented in Appendix D.5.

The active layer model predicts no dispersion of tracer sediment under unisize con-
ditions (Sections 5.1 and 5.4.1). Under mixed-size sediment conditions, the active layer
model does predict sediment dispersion, as the sediment transport rate varies per size
fraction. Contrary to the active layer model, the SILKE model predicts sediment disper-
sion even without considering diffusion in the sediment transport rate (Sections 5.3.4 and
5.4.1). Here our objective is twofold. First, we study whether the mixed-size sediment
character is enough to capture tracer dispersion using the active layer model. Second, we
study whether the SILKE model is capable of reproducing the propagation of tracer dis-
persion under conditions in which the effect of temporary burial of sediment may play a
significant role.

We select appropriate closure relations and a reasonable value for the skin friction
coefficient and active layer thickness to model the field case. We find that the sediment
transport relation by Ashida and Michiue (1971) in combination with the skin friction
predictor by Engelund and Hansen (1967) performs best with an error of only 3 % (Ap-
pendix D.5). For simplicity, we assume that normal flow prevailed in the study area. We
assume that the active layer thickness is equal to the average maximum depth below the
bed surface at which tracer was found. We discretize the domain using 0.5 m long cells.

We run two numerical simulations using the active layer model to test whether the
mixed-size sediment character is enough to capture tracer sediment dispersion. In the first
simulation, we consider unisize sediment with a characteristic size equal to the geometric
mean grain size of the bed surface sediment. In the second one, we approximate the grain
size distribution of the bulk mixture using 11 grain size fractions (which is the number
of sieves reported by Sayre and Hubbell (1965)). The tracer sediment had a narrower
grain size distribution than the parent material and is represented by 3 grain size fractions
(Appendix D.5).

In Figure 5.5a we present the total (i.e., considering the mass in both the active layer
and in transport) tracer concentration at the final time assuming unisize sediment. The
small dispersion in Figure 5.5a is entirely due to numerical diffusion. In Figure 5.5b we
observe that accounting for mixed-size sediment causes dispersion. We see three peaks
corresponding to the three fractions which, in total, cover a longer river stretch than
under unisize conditions. We run two simulations under the same conditions as the ones
with the active layer model but using the SILKE model (Figure 5.5c-d). Dispersion as
predicted by the SILKE model is larger than when using the active layer model. Yet, for
all cases the amount of dispersion is an order of magnitude smaller than the measured
one. Moreover, the model predicts that tracer sediment disperses in the form of normal
(i.e., Fickian) diffusion (Section 5.3.4), whereas the field data suggest that the downstream
tail spreads faster than normal (i.e., it decreases linearly in logarithmic scale).
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We consider three possible explanations for the discrepancy between the measured
and the predicted results in Figure 5.5. First is that Sayre and Hubbell (1965) explain that
the measurements of the right-hand side after approximately 120 h could be affected by
the late re-entrainment of tracer sediment placed on the left-hand side. It appears to be
that sediment placed on the left-hand side was initially trapped at the locationwhere it was
dumped and only later re-entrained, reaching the right-hand side. This two-dimensional
effect cannot be captured using our one-dimensional model. The second explanation is
that the imposed diffusivity in sediment transport is too small. This may be due to the
assumption of an exponential distribution of particle velocities (Section 5.2.2). It is possi-
ble that particle velocities are better approximated by a different probability distribution
that causes a larger diffusivity. The third explanation is that the dominant mechanism re-
sponsible for sediment mixing is not captured by the combination of the active layer and
the particle activity equations. In particular, this mechanism may be temporary burial
due to bedforms (Section 5.2.1).

To study whether the first possibility (i.e., the late re-entrainment of trapped sedi-
ment) is responsible for the disagreement between the data and the modelling results, we
compare the measured concentrations along the last longitudinal traverse that was unaf-
fected by the re-entrainment to the results of the model (Figure 5.6). The predicted peak
concentration is six times larger than the measured concentration and the amount of pre-
dicted dispersion is significantly smaller than the measured dispersion. We conclude that
the late re-entrainment of sediment is not responsible for the disagreement between the
measured and predicted results.

We test the second possibility (i.e., an underestimation of the diffusion in sediment
transport) (Figure 5.6). The peak concentration would be captured if the diffusion coeffi-
cient is 1000 times larger than our original value. Apart from the fact that this amount of
diffusion is not physically realistic, the downstream tail is not captured independently of
the diffusion coefficient. We conclude that the SILKEmodel is not capable of reproducing
the measured data of tracer propagation, as it lacks an important mechanism responsible
for sediment mixing that is relevant under the conditions of the experiment.

The main conclusion here is the fact that the assumption that the part of the bed that
interacts with the flow is well represented by an active layer becomes questionable when
large rest times occur due to temporary tracer burial by bedforms (Ribberink, 1987; Blom,
2008).

This exercise highlights the limitations of active layer based models. Yet, the main
strength of the model is that it is mathematically well-posed. In the following two sections
we study this property in detail.
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Figure 5.5: Tracer concentration (accounting for the sediment in the active layer and in transport) along a reach
of the North Loup River (Nebraska, US) 287.4 h after placing the tracer sediment. Results are computed using:
(a) the active layer model under unisize conditions, (b) the active layer model under mixed-size conditions, (c)
the SILKE model under unisize conditions, and (d) the SILKE model under mixed-size conditions. The dots
represent the measured data by Sayre and Hubbell (1965) (profile 12R). The black lines indicate the total tracer
concentration which is the sum over all tracer size fractions (i.e., d1, d2, and d3 ) in the mixed-size sediment
simulations.
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5.4.3. Ill-posed Conditions Assuming Constant Active Layer Thickness
The fact that the SILKE model is always well-posed is particularly important when re-
producing a situation of degradation into a substrate finer than the bed surface, as under
these conditions the active layer model is prone to be ill-posed (Ribberink, 1987; Stecca
et al., 2014; Chavarrías et al., 2018a). In this section we model Experiment I4 conducted
by Chavarrías et al. (2019a) and compare the results to predictions using the active layer
model, the regularized model (Chavarrías et al., 2019a), and the SILKE model.

Experiment I4 consisted of a 4 m long patch of fine sediment (d1 = 2.1mm) placed
below a 3 cm layer of coarse sediment (d2 = 5.5mm). Degradational conditions were
imposed by lowering the downstream water level 8 cm during 8 h. All other parameters
were the same as in the experiment considered in Section 5.4.1.

Figure 5.7a shows the bed elevation data. Before fine sediment from the patch was
entrained, the bed was covered by bedforms. As degradation proceeded, fine sediment
from the substrate started to be entrained at the troughs of bedforms. The entrainment
of fine sediment caused the bedforms to grow. Coarse sediment was deposited in the
troughs, which prevented subsequent entrainment of fine sediment. Fine sediment was
again available for entrainment as degradation continued, which caused the periodic for-
mation of large bedforms superimposed to the original ones.

The active layer model is ill-posed when reproducing this experiment and the conse-
quences are clearly seen in the predicted bed elevation (Figure 5.7b). An unrealistically
large oscillation develops as soon as the interface between the active layer and the substrate
is composed of fine sediment. Moreover, the solution is grid dependent and a simulation
using a smaller grid size causes ever larger oscillations (Chavarrías et al., 2018a). The regu-
larized model provides more satisfactory results (Figure 5.7c). The solution is well-posed
and captures the changes in mean bed elevation, but it does not capture the oscillatory
behavior when large bedforms entrain fine substrate sediment (Chavarrías et al., 2019a).
On the contrary, the SILKE model shows oscillatory behavior that starts right where the
patch starts (Figure 5.7d). Fine sediment from the substrate is transferred to the active
layer and entrained. The particle activity adapts in the streamwise direction, which causes
an imbalance between erosion and deposition and induces oscillations superimposed to
the overall degradational trend.

The oscillatory behavior is also observed in the volume fraction content of coarse
sediment at the bed surface (Figure 5.8). The bed is composed of coarse sediment only
and the growth of large bedforms that lead to the entrainment of fine sediment is associ-
ated with a fining of the bed surface (Figure 5.8a). The entrainment cycles are less clear
downstream from the patch, as fine sediment entrained at the patch mixes with coarse
sediment while traveling downstream.

The result of the active layer model is meaningless. It predicts that the bed surface
is composed of coarse sediment only. This is because, after the large nonphysical oscil-
lation, coarse sediment from upstream fills the space and forms a new coarse substrate.
Hence, further degradation does not entrain fine sediment. The regularized model pre-
dicts a constant bed surface grain size distribution as a function of time at each location
after a short period of adjustment at the beginning of the run (not visible in Figure 5.8).
The bed surface becomes finer with increasing streamwise position, as fine sediment is
entrained from the patch. The instability mechanism of the SILKE model induces oscil-
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latory behavior in the bed surface grain size distribution. Yet, the variation in bed surface
volume fraction content is smaller than the measured one. Similarly to the field tracer
case (Section 5.4.2), this indicates that our model lacks some mechanisms responsible for
the fast fining and coarsening that we will discuss in Section 5.5.2.

The SILKE model shows a clear advantage with respect to the regularized model, as
it contains an instability mechanism responsible for mixing which is not captured by the
regularized model. Even though the SILKE model explains more physical processes than
the regularizedmodel, bothmodels arewell-posed and reproduce the overall degradational
trend. For this reason, the regularized model may yield a satisfactory solution if only the
general trend is to be captured. However, as the regularized model requires that the active
layer thickness is constant with time (Chavarrías et al., 2019a), there are cases that cannot
be modelled using the regularized model. In the following section we study a case that
only the SILKE model can reproduce.
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Figure 5.7: Bed elevation as a function of time in Experiment I4 conducted by Chavarrías et al. (2019a): (a)
measured, (b) predicted using the active layer model (Hirano, 1971), (c) predicted using the regularized active
layer model (Chavarrías et al., 2019a), and (d) predicted using the SILKE model. Dashed lines indicate the
position of the patch of fine sediment.
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5.4.4. Ill-posed Conditions Assuming Variable Active Layer Thickness
In this section we reproduce a laboratory experiment that cannot be reproduced using nei-
ther the active layer model (Hirano, 1971) nor the regularized active layer model (Chavar-
rías et al., 2019a). We consider Experiment B2 conducted by Blom et al. (2003).

Blom et al. (2003) studied vertical mixing of sediment due to dune growth using a
trimodal sediment mixture. Barchan dunes migrating over a coarse sediment layer char-
acterized the starting conditions of the experiment. Below the coarse layer, a fine substrate
was present, which was not exposed to the flow. The water discharge was increased, which
mobilized the coarse layer, led to the entrainment of fine substrate sediment, and caused
dunes to grow adapting to a new equilibrium situation. Sediment was recirculated and
normal flow conditions were maintained during the entire experiment. The details of the
experiment are described in Appendix D.6.

As normal flow conditions were maintained, the mean bed elevation (averaged over
the passage of several bedforms) remained constant with time. For this reason, in mod-
elling the experiment using the active layer model, the only source of mixing in the active
layer is the flux of sediment from the substrate due to a lowering of the interface between
the active layer and the substrate. The lowering of the interface occurs due to an increase
of the active layer thickness that represents the increase in dune height.

We have tested themathematical character of the active layermodel using the approach
by Chavarrías et al. (2018a) and we find that when fine substrate sediment is entrained,
the active layer model is ill-posed. We run a numerical simulation of the 50 m long flume
discretized using 0.02 m long cells to study the consequences of modelling this experiment
using the active layer model. The substrate is discretized using 0.005 m thick cells and the
measured initial grain size distribution is used as initial condition of the substrate. We
impose a linear increase of the active layer thickness with time between half the initial
and final values of the mean dune height during the first 4 h of the 25 h experiment, as
this is the approximate period of time over which dunes adapted to the new equilibrium
value (Blom et al., 2003). Based on the initial and final values of the sediment transport
rate, flow conditions, and volume fraction content in the active layer, we select a sediment
transport relation which reasonably approximates the initial and final conditions. We find
that the relation by Meyer-Peter and Müller (1948) using the hiding correction by Parker
et al. (1982) with a power parameter equal to 0.9 yields a reasonable approximation.

In Figure 5.9 we present the volume fraction content in the sediment transport rate
as a function of time at the downstream end of the flume. The coarsening of the load
over the first hour is due to the entrainment of the coarse layer underneath the migrating
barchan dunes. This is captured by the active layer model. Subsequently, the sediment
at the interface between the active layer and the substrate becomes fine and the active
layer model becomes ill-posed. The oscillations due to ill-posedness are not instantly felt
at the downstream end. A large wave develops that makes the bed surface to consist
of fine sediment only. The wave is felt at the downstream end after approximately 5 h.
The solution breaks down after 10 h, as the flow solver is incapable of dealing with such
abrupt changes in bed elevation. A decrease of the grid size causes the large wave to arrive
downstream at a different time and the simulation to break down earlier.

We simulate the same conditions using the SILKE model without accounting for the
effect of diffusion in sediment transport andwe find a stable solution (Figure 5.9). Initially,
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Figure 5.9: Volume fraction content of fine, medium, and coarse grain size fractions in the transported sediment
as a function of time in Experiment B2 conducted by Blom et al. (2003).

the solution is very similar to the one predicted using the active layer model. This is
reasonable, as variations in particle activity aremuch faster than changes in the active layer
thickness. For this reason, over the 4 h increase in active layer thickness, we can assume
that the particle activity is at capacity conditions. Yet, although the effect seems negligible
initially, the consequences of accounting for the dynamics of the particle activity become
striking after 4 h. The simulation does not loose its well-posed character and after the
active layer thickness becomes constant with time, there no longer is a flux of sediment
between the substrate and the active layer and the grain size distribution of the active
layer becomes constant with time too.

In conclusion, it is crucial to account for the interaction between the bed surface and
the sediment in transport occurring at “short” time scales to obtain a well-posed model
that captures the dynamics of the “long” time scale. Although the effect of accounting for
particle activity may seem negligible at first instance, as changes in the volume fraction
content of sediment in the active layer are slow, we have to consider the small short time
scale to obtain a physically realistic model at long time scales.



5.5. Discussion

5

143

5.5. Discussion

I n this section we discuss the reasons for the SILKE model to be well-posed (Section
5.5.1). Subsequently, we discuss the limitations of the model (Section 5.5.2), and of the

model’s instability mechanism (Section 5.5.3). We provide remarks on the modelling of
the experiment by Blom et al. (2003) in Section 5.5.4.

5.5.1. Physical Reasoning of the Well-Posedness of the Model
In Section 5.3.3 we have shown that the SILKE model is well-posed, a property shared
with the regularized model (Chavarrías et al., 2019a). Here we clarify why, although
being totally different approaches, both the SILKEmodel and the regularized model yield
well-posed problems.

We consider a situation in which the active layer model is ill-posed such as the labo-
ratory experiment in Section 5.4.3. The active layer model becomes ill-posed because it
is incapable of reproducing the “short” time scale phenomena related to the entrainment
of fine substrate sediment. In the active layer model, the sediment transport is assumed
to be at capacity conditions and this results in a too crude approximation of the cycles of
fine sediment entrainment.

The regularization strategy slows down themixing processes (Chavarrías et al., 2019a),
which is mathematically equivalent to considering a thicker active layer. The active layer
represents the part of the bed material that can be entrained into transport and where sed-
iment is deposited and mixed. Worded differently, it represents the part of the bed that
interacts with the flow. This means that the active layer thickness actually is a stochas-
tic parameter depending on the time scale under consideration (see recent discussions by
Church and Haschenburger (2017) and Ashmore et al. (2018)). A thick active layer repre-
sents changes over a “long” time scale that encompasses the effect of large and less frequent
bed elevation fluctuations. A slowdown of the mixing processes by the regularization
strategy yields a well-posed model, as “short” term processes of entrainment and deposi-
tion are filtered out and not resolved.

The SILKE model resolves the “short” time scale by accounting for conservation of
the sediment in transport. Sediment transport is not assumed to be at capacity, and this
allows for the formation of oscillations that enhance vertical mixing of sediment. Solving
for this physical process yields a well-posed model.

In summary, in both cases the regularized model and the SILKE model yield a well-
posed model by considering the processes occurring at a “short” time scale. The regular-
ized model filters the processes while the SILKE model resolves them.

5.5.2. Limitations of the SILKE Model
In developing the SILKE model, we combine and extend previous modelling strategies.
We maintain the active layer concept of Hirano (1971) to capture mixed-size sediment
processes at the bed surface. In dealing with the sediment in transport, we consider the
variability in particle velocity (Furbish et al., 2012a; Ancey and Heyman, 2014; Bohorquez
and Ancey, 2015). Nevertheless, in our generalization to mixed-size sediment conditions,
we neglect the correlation terms that appear in the particle activity equation (Furbish et al.,
2012a). Worded differently, we consider sediment of different sizes travelling at different
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speeds, yet each size fraction is treated independently from the other fractions. There is
a need to derive a particle activity equation which considers the effect of the correlation
terms. This, presumably, would affect both the advective and diffusive components of
the particle activity. As we have seen, if one is interested in the “long” time scale, the
diffusive component does not significantly affect the solution. For this reason, we do not
expect that sediment dispersion at a “long” time scale differs considerably when taking
into consideration the correlation terms if these only affect the diffusive component. Yet,
the advective component may also be affected by the correlation terms and this could
have a significant influence.

In the field, large rest times are measured due to sediment being trapped in bars, pools,
and floodplains (Hassan et al., 1991; Schmidt and Ergenzinger, 1992; Ferguson et al., 2002;
Pyrce and Ashmore, 2003;Malmon et al., 2003). Nakagawa and Tsujimoto (1979) argue that
under plane bed conditions the rest period and step length follow an exponential distribu-
tion and ripples and dunes cause them to be non-exponential, as the rest period depends
on the elevation at which particles are deposited. The lowest elevation at which tracer
sediment is found increases with time, as the probability of a large bedform that deposits
sediment lower in the substrate increases (Crickmore and Lean, 1962a,b). This process
also decreases the lowest elevation at which tracer sediment is found in the streamwise
direction (Galvin, 1965; Hassan et al., 1999). These effects are not included in the model,
as all sediment in the active layer has the same probability of being entrained and there is
no sediment flux to the substrate under normal flow conditions.

The fact that the model does not capture large resting times due to the temporary
burial of sediment by bedforms, causes it to not properly reproduce tracer dispersion
under conditions in which the active layer does not properly represent the probability
of bed elevation fluctuations (Section 5.4.2). The existence of large rest times is related
to the manner in which sediment disperses. Laboratory and field data suggest that tracer
sediment diffuses anomalously (Nikora et al., 2002; Ferguson et al., 2002; Haschenburger,
2011, 2013; Bradley et al., 2010; Bradley, 2017; Fan et al., 2017), whereas the model predicts
normal (i.e., Fickian) diffusion. The propagation of tracer sediment is best represented by
means of a fractional advection-diffusion equation (Schumer and Jerolmack, 2009; Ancey,
2010; Martin et al., 2012), which originates, for instance, from heavy-tail resting times
under unisize sediment conditions (Fan et al., 2016), as well as from a relation between
the travel distance and grain size under mixed-size sediment conditions (Ganti et al., 2010;
Hill et al., 2010).

To model the increased complexity and the possibility of large rest times, it may be
necessary to abandon the active layer model embedded in the SILKE model in favor of a
continuous formulation of the bed sediment such as that by Pelosi et al. (2016). The latter
predicts anomalous diffusion in the propagation of tracer sediment (i.e., scale dependence)
even considering thin-tailed sediment statistics, as it models the trapping of sediment deep
in the substrate. The challenge is to combine this formulation with mixed-size sediment,
bed elevation change, and mass conservation of the sediment in transport. Recently, Wu
et al. (2019) captured anomalous diffusion using an adapted version of the active layer
model that accounts for permanent burial of tracer sediment by means of an extra sink
term in the active layer equation. This line of research may allow for the possibility of
preserving the essence of the active layer model in improving our understanding of mor-
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phodynamic processes. A following step may be to consider the effect of a variable active
layer thickness due to, for instance, changes in bedform geometry, on tracer dispersion.
An analysis similar to the one conducted in Section 5.3.4 including this effect may yield
anomalous diffusion as observed in the field.

5.5.3. Limitations of the Interpretation of the Model Instability
In Section 5.3.2 we found that the SILKE model presents an instability mechanism and
in Section 5.4.3 we related the mechanisms to the formation of waves in the experiments
conducted by Chavarrías et al. (2019a). In this section we discuss limitations in the inter-
pretation of the mathematical instability.

One limiting factor in physically interpreting the mathematical instability is the lin-
earization of themodel. The solution is only valid for small perturbations and short times
such that non-linearities do not play a significant role. In this sense, as in all other linear
studies, the main outcome of the analysis is the fact that it predicts the initial formation of
waves but not their evolution. A second limitation specific to our mathematical analysis
is the fact that we assume that the grain size distribution of the sediment at the interface
between the active layer and the substrate is constant and equal to the one of the substrate.
This is valid under degradational conditions or when the active layer grows. However,
as soon as a wave is formed, there exist aggradational (i.e., the lee face) and degradational
(i.e., the stoss face) zones. In the aggradational zone, the grain size distribution at the
interface between the active layer and the substrate is a combination of the grain size dis-
tribution of the sediment in the active layer and in transport (Hoey and Ferguson, 1994;
Toro-Escobar et al., 1996). For this reason, the formation of a wave coarsens the substrate
sediment. This substrate coarsening mechanism reduces the time over which our linear
solution is valid. Nevertheless, numerical simulations confirm the persistence of the in-
stability mechanism at the non-linear level.

We have assumed steady flow in the analysis. This assumption is reasonable for long
waves (i.e., wavelength of several times the flow depth), but it may be interesting to study
whether the result is significantly different when considering unsteady flow. Assuming
unsteady flow would not only yield a more accurate result for the cases we have con-
sidered, but also increase the applicability range to supercritical conditions. This would
allow for studying, for instance, the effect of mixed-size sediment in antidune formation.

Themodelling of the experiment conducted under conditions inwhich the active layer
model is ill-posed and the active layer thickness can be assumed to be constant (Section
5.4.3) predicts the formation of waves that we relate to the oscillatory behavior measured
in the laboratory experiment. Yet, there are several differences. In the laboratory ex-
periment the formation of waves was strongly linked to bedforms. Bedforms developed
upstream of the patch of fine sediment (i.e., under unisize conditions) grew when fine
sediment was entrained at the troughs. The SILKE model does not predict the formation
of bedforms, which implies that the physical mechanism of entrainment of fine sediment
at the troughs may be similar but not completely equivalent to the instability causing
wave formation in the model.

Moreover, there is also a difference between the waves predicted in the numerical sim-
ulation of the experiment and the ones predicted by the linear analysis. In the numerical
simulation of the laboratory experiment, waves form at a discontinuity in the grain size
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distribution of the substrate sediment in the streamwise direction because of the presence
of a patch of fine sediment. This mechanism of wave formation is related but not equiva-
lent to the one predicted in the linear analysis, in which the substrate is uniform. As the
predicted wave length is of the order of several meters, we would need laboratory experi-
ments in a longer flume to capture these waves. Such laboratory experiments would shed
light on the evolution of oscillations for long time scales and the validity of the instability
domain.

5.5.4. Modelling of the Experiment by Blom et al. (2003)
One of the reasons to develop the SILKE model is that there are conditions, such as
the ones in the experiment conducted by Blom et al. (2003), that cannot be reproduced
using neither the active layer model (Hirano, 1971) nor the regularized model (Chavarrías
et al., 2019a). Yet, Blom (2008) modelled this experiment using the active layer model and
compared it to the results of the model developed by Blom and Parker (2004) and Blom
et al. (2006, 2008), in which the bed is treated in a continuous fashion and specifically
accounts for mixing due to dunes. This was possible because, by considering normal flow
conditions, Blom (2008) neglected all spatial derivatives. As there is no dependence on
the spatial coordinate, the active layer equation is no longer a partial differential equation
and it does not suffer from ill-posedness.

The continuous model by Blom and Parker (2004) and Blom et al. (2006, 2008) satis-
factorily reproduced the experimental data, yet spatial changes are not accounted for and
an instability mechanism cannot be captured. It would be interesting to model spatial
changes using the continuous formulation under conditions in which we predict growth
of perturbations. Maybe the model by Blom and Parker (2004) and Blom et al. (2006,
2008) also predicts an instability mechanism and captures the formation of waves that
contribute to the vertical mixing caused by dunes. If this mechanism is not present, the
continuous formulation could be extended relating the dune size to the grain size distri-
bution of the bed surface. This would increase the vertical mixing when dunes migrate
over a fine substrate.

5.6. Conclusions

W e derive the SILKE model that accounts for mixed-size sediment morphodynamic
processes. The model combines the active layer concept (Hirano, 1971) for mass

conservation of sediment in the top part of the bed and the particle activity concept
(Furbish et al., 2012a; Ancey and Heyman, 2014) for mass conservation of transported sed-
iment. The model is unconditionally well-posed. This is contrary to the active layer
model, which can be ill-posed primarily under degradational conditions into a fine sub-
strate (Ribberink, 1987; Stecca et al., 2014; Chavarrías et al., 2018a).

Chavarrías et al. (2019a) derived a regularized active layer model that can deal with
situations in which the active layer model is ill-posed. Yet, the regularized active layer
model cannot deal with situations in which the active layer thickness changes with time,
for instance, when representing the vertical mixing due to changes in dune height. This
limitation is overcome by the newly proposed model.

Analytically we find that (1) the SILKEmodel presents an instability mechanism caus-
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ing growth of perturbations, and (2) unisize tracer sediment advects and diffuses in a nor-
mal (i.e., Fickian) manner for long time scales. The instability mechanism is triggered by
substrate sediment that is fine compared to the bed surface. We compare model results
to data from laboratory experiments conducted by Chavarrías et al. (2019a) under condi-
tions in which the active layer model is ill-posed. The instability mechanism is related to
the formation of waves observed in the experiments. As the new model allows for an in-
crease in active layer thickness with time, we are able to model the laboratory experiment
by Blom et al. (2003) accounting for spatial changes.

The model is compared to laboratory and field data of tracer propagation. When
conditions are such that the effect of large rest times caused by temporary burial due to
bedforms is negligible, the model well predicts tracer propagation. When the effect of
temporary burial of sediment becomes the dominant mechanism, the model yields an
underprediction of sediment dispersion. Moreover, dispersion may be anomalous (non-
Fickian) while our model predicts normal diffusion.
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I am not so enamoured of my own opinions
that I disregard what others may think of them.

Copernicus (1543)

There exists, in the depth of the oceans,
in the rivers and in the evolution of turbulent vortices,
the phenomena complexity of which gives you vertigo.

Alexander Preissmann (see Cunge and Hager (2015)).
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In this section we discuss a few overarching topics from the individual chapters. We con-
nect the research we have conducted to gain perspective and to be able to have an outlook
on the general implications and the future of river morphodynamic modelling. We first
focus on the general problem of ill-posedness in morphodynamic modelling (Section 6.1).
Subsequently, we comment on the proposed solutions to avoid ill-posedness due to ac-
counting for mixed-size sediment (Section 6.2). In Section 6.4 we reflect on how to select
one of the proposed solutions. Section 6.5 deals with how to approach the problem of ill-
posedness due to accounting for the secondary flow and the bed slope effect. Section 6.6
discusses the possibility of ill-posedness in other topics relevant for river morphodynamic
modelling.

6.1. The Problem of Ill-Posedness

T he complete picture of the evolution of rivers is too complex to be tackled holistically.
For this reason, the current tendency to improve our predicting capabilities and the

accuracy of our predictions consists of identifying and studying processes individually
(i.e., methodological reductionism). The complete picture is made a mosaic in which
each tessera represents a particular physical process. Each process is studied ignoring or
simplifying all other processes such that we comprehend the physical principles behind
it. These principles are translated into mathematical terms in a model representing the
process in question. Eventually, through the combination of separate models represent-
ing different processes we obtain a view of the complete picture. For instance, on the
basis that for the cases we consider, changes in bed elevation and grain size distribution
depend most predominantly on bed load transport (Carling et al., 2000; Ten Brinke, 2005;
Jerolmack and Mohrig, 2005; Naqshband et al., 2014), we have neglected in this study the
influence of suspended load, although it represents at least 75 % of the sediment trans-
ported by the Rhine as it enters the Netherlands (Frings et al., 2015). Similarly, we have
not considered the effect of vegetation, which has a direct impact on the morphology of
rivers contributing not only to friction but also to preventing bank migration and shape
river bars (Vargas-Luna et al., 2014; Corenblit et al., 2015; Vargas-Luna, 2016). Likewise, in
modelling vegetation processes the effects of mixed-size sediment are neglected to reduce
the complexity of the problem (Caponi and Siviglia, 2018).

Approaching the big picture through small pieces certainly works for increasing our
understanding but the fact that the color of a tessera is beautiful does not imply that the
mosaic is beautiful. The combination of sound submodels may yield an overall ill-posed
model that is unable to represent the combination of physical processes. For instance,
Talmon et al. (1995) derived a model to account for the effect of the bed slope on the direc-
tion of the sediment transport based on experiments conducted under unisize conditions.
Their model is reasonable and well-posed when applied to conditions similar to the ones
of their experiments, but, when combined with fractional sediment transport, the model
may become ill-posed (Chapter 3).

The tendency to increase the number of processes combined in a model increases the
likelihood that themodel is ill-posed, as the different parts of it may interact in unexpected
manners. In avoiding this problem it is crucial to conduct a mathematical analysis that
confirms that the addition of independently realistic models is realistic. Furthermore, in
deriving models, empirical fit to data should be avoided in favor of theoretical construc-
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tions, as the ultimate goal is not to accurately fit particular data relevant for each individual
process (i.e., each tessera), but to reflect the structures underlying physical processes (i.e.,
the mosaic). Elementary particle physics provides an inspiring example. The existence
of the Higgs field, which in simple terms gives mass to the universe, was predicted in
1964 (Higgs, 1964; Englert and Brout, 1964; Guralnik et al., 1964), while it was shown to
exist experimentally nearly half a century later (Cho, 2012). On the contrary, an essential
concept in river morphodynamics such as the critical bed shear stress remains based on
empirical fit to data (Shields, 1936;Dey, 1999). Experimentation should preferably be used
to gain insight into physical phenomena and to strengthen a theory rather than to derive
it.

The problem of ill-posedness of the system of equations stems from an incorrect math-
ematical representation of the physical processes, which originates from excessive extrap-
olation of results based on empirical knowledge. A deeper theoretical understanding of
the physical processes, responsible for rivermorphodynamics and the interaction between
processes aids in decreasing the likelihood that a model is ill-posed.

6.2. Extending the Regularization Strategy

A solution to the problem of ill-posedness of the active layer model (Hirano, 1971)
accounting for mixed-size sediment processes has been provided purely based on a

mathematical analysis of the system of equations (i.e., the regularization strategy, Chap-
ter 4). Although the strategy guarantees that the model is well-posed, it does not guar-
antee that the results are realistic. The regularization strategy captures the mean (i.e.,
averaged over the passage of several bedforms) changes in bed elevation and surface tex-
ture measured in laboratory experiments specifically conducted for the purpose of testing
the regularization strategy. The fact that there is no other data set to which we can ap-
ply the strategy clearly limits the proven range of applicability. It is necessary to test the
strategy against a large data set of experiments conducted under conditions in which the
active layer model is ill-posed to analyze the limits of the strategy in representing reality.
Once its applicability is broadly tested under isolated conditions, it is necessary to test
the strategy in more complex field cases in which several processes play a role.

As we have derived the regularization strategy under one-dimensional conditions, the
following step in order to increase the applicability of the strategy is to extend it to ac-
count for morphodynamic processes in two dimensions. The extension is straightfor-
ward. Under two-dimensional conditions, one has to consider that not only the gradient
of the sediment transport rate in the streamwise direction, but also in the lateral direc-
tion, is affected by the preconditioning factor. Interestingly, preliminary results show
that the modification of the time scale of the mixing processes does not regularize the
two-dimensional active layer model. This may be explained from the fact that, while un-
der two-dimensional conditions the bed slope effect plays a role in model well-posedness
(Chapter 3), this effect is neglected in deriving the regularization strategy. It seems that
the regularization strategy solves for the problem associated to the incorrect representa-
tion of the mixing processes in the streamwise direction only and it has no effect regarding
the problem associated to an incorrect description of the effect of the bed slope.

These preliminary results encourage us to explore other strategies to regularize the
two-dimensional active layermodel. In obtaining a solution applicable under two-dimensional
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conditions, we aim at amodification of the active layermodel that has similar implications
as the regularization strategy has on the one-dimensional model. Worded differently, we
aim at filtering out the small time scale processes in capturing the mean value averaged
over the passage of several bedforms. We find an analogy in turbulence. The effect of the
instantaneous flow velocity on the mean value can be accounted for by means of diffu-
sion. Worded differently, the small time scale processes are accounted for by means of a
diffusive component in the equations for the mean motion. We consider that diffusion
in the active layer equation (i.e., diffusion in the volume of sediment of a certain grain
size fraction in the active layer per unit of bed area) may be a reasonable mechanism ac-
counting for the small time scale mixing processes. Preliminary results show that, indeed,
accounting for a diffusive mechanism regularizes the two-dimensional active layer model.

The regularization strategy derived in Chapter 4 may become redundant if the ad-
dition of a diffusive mechanism guarantees model well-posedness. Yet, similarly to the
fact that the regularization strategy guarantees well-posedness of the one-dimensional
model but not of the two-dimensional model, the diffusive mechanism may guarantee
well-posedness of the two-dimensional model but not of the one-dimensional model. In-
terestingly, preliminary results confirm this point. If this result is verified, we find that
we need two different strategies to guarantee well-posedness of the active layer model de-
pending on whether we account for one or for two dimensions. However, both strategies
implicitly account for the same physical process: mixing of sediment occurring on a small
scale.

6.3. Extending the SILKE model

O ur second solution to the problem of ill-posedness arises from considering the in-
teraction between the sediment at the bed surface and the sediment in transport

(Chapter 5). Apart from being well-posed, the most striking feature of the new model is
the fact that it is unstable under the conditions in which the active layer model is ill-posed.
It predicts growth of perturbations under conditions in which the active layer model fails.
The oscillations observed in the experiments conducted to test the regularization strategy
seem to support the idea that the instability mechanism responsible for growth of pertur-
bations indeed occurs in nature. However, the length scale of the feature as predicted by
the model is too large to be clearly captured in those experiments. For this reason, there is
a need to conduct similar laboratory experiments on a larger scale, such that the predicted
instability can be clearly captured.

Another feature of the new model is that, contrary to the active layer and the reg-
ularization strategy, it predicts dispersion of tracer sediment and the rate of dispersion
is realistic when compared to our laboratory data. Yet, when applied to the experiment
conducted by Sayre and Hubbell (1965) the agreement is less satisfactory. We speculate
that this is due to the fact that temporary burial of tracer sediment due to bedforms is a
mechanism not included in the SILKE model. This mechanism is not relevant in our lab-
oratory experiments, but becomes important under the conditions studied by Sayre and
Hubbell (1965). Essentially, when the probability density distribution of bed elevation is
well approximated by a constant value along a limited height, we expect that the SILKE
model will yield reasonable results. This is because, in these cases, the active layer well
approximates the actual probability distribution of bed elevation. As temporary burial of
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sediment becomes relevant, the probability that sediment is deposited at a lower elevation
increases and the lower tail of the probability density distribution becomes non-negligible.
Laboratory experiments at a larger scale than the ones we conducted, such that temporary
burial due to bedforms becomes relevant, may provide insight into this matter.

An added complexity in modelling such experiments is that, as the model does not
explicitly resolve the dynamics of dunes, the particle velocity, activity, and diffusivity,
are values representative of the conditions averaged throughout the passage of several
bedforms. Using the latest measuring techniques that we have developed, the experiments
can also be used to study the variability of particle motions due to bedforms under mixed-
size sediment conditions.

Well-posedness of the newmodel comes at the expense of resolving the short time scale
related to entrainment and deposition of sediment and the interaction between sediment
at the bed surface and sediment load. If one is interested in long term processes (i.e., years
or decades), solving the short time scale processes results in an unnecessary computational
burden. A different modelling strategy may yield a well-posed model without resolving
the small scale dynamics. The active layer model can be seen as a multiphase model (one
phase being the sediment in the active layer and the other the sediment in the substrate)
with a sharp interface between the phases. Ill-posedness is ubiquitous in mathematical
models accounting for different phases (e.g Ardron, 1980; Toro et al., 2018). This suggests
that the solution may come from abandoning the idea of discretizing in multiple phases
by treating the medium in a continuous form. In river morphodynamics this would mean
abandoning the active layer concept by treating the bed in a vertically continuous form
(Parker et al., 2000; Blom et al., 2006, 2008; Pelosi et al., 2016; Viparelli et al., 2017). We
have seen that the continuous formulation by Viparelli et al. (2017) may yield an ill-posed
model too (Chapter 2), but a more refined continuous formulation may lead to a well-
posed model applicable at large time and spatial scales.

6.4. Selecting a Solution to Account for Mixed-Size Sedi-
ment

W e have presented two solutions for the problem of ill-posedness in morphodynamic
simulations accounting for mixed-size sediment. The question that arises is: Which

one should we use? In fact, there are three possibilities, the first being to do nothing (i.e.,
to use the active layer model (Hirano, 1971)). To continue using the active layer model
should not be disregarded immediately. The active layermodel is well-posed inmost cases,
and, under certain conditions, we are certain that it is well-posed (Chapter 2). The active
layer model is computationally cheap, easy to implement, and it is already implemented
in a large amount of software packages. Moreover, the growth rate of perturbations is
limited by the numerical grid (Chapter 2). For this reason, even when the problem be-
comes ill-posed, the consequences of ill-posedness may be limited if the simulation is short
enough (relative to the growth rate of perturbations), such that perturbations do not grow
significantly during the simulation time.

Fromour point of view, doing nothing is a valid solution if one checks for ill-posedness
and sets a strategy to deal with ill-posed cases. The check can better be done in the code
with a routine such as the one implemented in the research code Elv (Chapter 4) or in
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Delft3D (Chavarrías et al., 2018b, 2019b). If for some reason this is not possible, one
can manually test whether the conditions of the simulation are prone to be ill-posed by
checking the eigenvalues of a representative condition. For evaluating the likelihood of
ill-posedness in an approximate manner, one can reduce the sediment mixture to two
grain sizes and test whether the situation is prone to be ill-posed by means of an analyt-
ical expression (Equation 2.26). This approach can only identify ill-posedness due to a
substrate finer than the active layer. Despite this, this effort is a useful one, as a fine sub-
strate relative to the active layer remains the most likely cause of ill-posedness (Chapter
2).

If one finds that the conditions are (prone to be) ill-posed the simplest approach to
avoid ill-posedness is to consider a different value of the active layer thickness. This “sim-
ple” approach hides a difficult problem. A change in the active layer thickness essentially
changes the physical interpretation of the problem, as it modifies the time scale associated
with sediment mixing and sorting processes. When increasing the active layer thickness
in a particular case, one considers mixing due to less frequent bed elevation fluctuations
that are able to entrain and remix sediment from deeper in the substrate. For this reason,
an increase in active layer thickness implies that the results represent values averaged over
a longer time and vice versa. Summarizing, changing the active layer thickness is a valid
strategy if one first changes the interpretation of the model results. Worded differently,
an increase in active layer thickness is a valid strategy if one considers that the results of
the model represent values averaged over the time necessary for infrequent bed elevation
fluctuations to play a significant role in mixing sediment.

If one faces an unavoidable ill-posed case, the approach should be to set a threshold
for the maximum amplitude of spurious perturbations accepted in the solution. By com-
puting the fastest growth rate of perturbations, one can set a limit time below which a
simulation is acceptable. The fastest growth rate is associated to the shortest wave length,
which is associated to the smallest cell size. Given the usual values of maximum growth
rate, we expect that this approach yields, in general, a limit time below the time of in-
terest. One can increase the limit time at the expenses of the model resolution (i.e., by
increasing the cell size).

When considering the above points, using the active layer model is a valid approach.
Yet, we do not advocate for continuing using the active layer model for two reasons. First,
a change in the active layer thickness implies a change in the physical interpretation of
the situation that is modelled, which may not be wanted. Moreover, a change in the
active layer thickness to guarantee that a location is well-posed may cause the model to
become ill-posed at a different location or at a different time. Second, limiting the extent
of the validity of a numerical run based on the fact that the numerical grid limits the
growth of physically unrealistic perturbations is dangerous, as the basic requirement of
grid convergence of a numerical simulation is lost.

Nevertheless, the major reason to be against continuing using the active layer model is
that the implementation of the regularization strategy is simple and the essence of the ac-
tive layer model is left untouched. Moreover, if one tests for ill-posedness in the code, the
first step of the regularization strategy is already done. The implementation of the new
model is not particularly more complex, as it is an extension of the active layer model.
The main consideration to choose between the two solutions regards the different phys-
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ical processes accounted for by each model. If one is interested in an overall trend, the
regularization strategy may be the preferred solution. The new model may be preferred
if one wants to resolve the small scale morphodynamic processes related to entrainment,
deposition, and non-local sediment transport. The main difference between the twomod-
els lies on the fact that the new model captures an instability which is averaged out by
the regularization strategy. Although it may seem that the regularization strategy yields
simpler results, from our point of view is opposite, as the results require the interpreta-
tion of the effects of the regularization parameter. The vertical mixing of sediment due
to the instabilities that is evident in the new model has to be inferred when using the
regularization strategy from the value of the regularization parameter.

A second consideration to choose between the two solutions is based on the idea that
physical processes associated with non-capacity sediment transport are usually regarded
to be relevant at laboratory scale or when dealing with suspended load only. This may
favor the use of the regularization strategy for field applications in which bed load is
the dominant process leading to aggradation, degradation, and changes in bed surface
grain size distribution (Carling et al., 2000; Ten Brinke, 2005; Jerolmack and Mohrig, 2005;
Naqshband et al., 2014). However, there is a reason to abandon the concept of sediment
transport at capacity for all cases. The boundary condition at the upstream end of the
domain in both field and laboratory cases is usually the sediment transport rate. This
is per se inconsistent with assuming the sediment transport rate to be at capacity. If it
is at capacity, it is determined by the flow conditions and it cannot be imposed. This
yields a grid-dependency problem in numerical simulations. The bed elevation change at
the upstream end depends on the difference between the sediment transport rate set as
boundary condition and the sediment transport rate (at capacity) computed at the first
node, divided by the grid size. As the difference between the sediment transport rates
is finite regardless of the grid size, in the limit for the grid size tending to 0 (i.e., in the
continuous limit), the rate of change of the bed elevation at the upstream end becomes
infinite. The numerical discretization hides this problem but does not solve it.

Other possibilities for the upstream boundary condition such as imposing the bed
elevation or the sediment load under normal flow conditions yield the same problem.
For all these cases the boundary condition is inconsistent with the equations. For this
reason we advocate for abandoning the concept of sediment transport rate at capacity for
all cases in favor of the new model. The new model not only solves for the problem of
ill-posedness but also for the problem associated with the upstream boundary condition.

With regard to the computational time, the new model requires a smaller time step
than the regularized active layer model, which may seem a burden. Yet, the strategy
involves solving several eigenvalue problems in which the size of the matrix increases
quadratically with the number of grain sizes. Which solution requires more computa-
tional time depends on the number of size fractions and the number of cells in which the
domain is discretized, among other factors. There is no clear guideline on which solu-
tion yields a faster numerical model and the speed will largely depend on implementation
details such as the eigenvalue problem solver.
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6.5. Solution to Ill-posedness due to Accounting for Sec-
ondary Flow and Bed Slope Effect

W e have provided solutions to the problem of ill-posedness associated with the active
layer model, but not for the problem of ill-posedness associated with the secondary

flow and the bed slope effect. In this section we discuss possible solutions to this origin
of ill-posedness and paths to explore.

Similarly to how we have approached the problem of the active layer model, we con-
sider two types of solutions: a simple strategy that retains the basic principles and a more
sophisticated solution that includes the relevant physical processes necessary to yield a
well-posed model. As regards to the bed slope effect, we have seen that, under mixed-size
sediment conditions, the model may become ill-posed depending on the closure relation
for the direction of the sediment transport rate. A simple strategy could be to compute
the parameters of the closure relation to guarantee that the problem is well-posed. We
foresee the difficulty that there is no unique set of parameters which guarantee model
well-posedness, which implies that there is a need to decide which would be the most rep-
resentative of reality. We suggest to conduct experiments under the conditions in which
themodel is ill-posed to gain insight into the physical reasons that cause themodel to be ill-
posed. This is not as simple as it may seem. While in the experiments that we conducted,
ill-posedness was governed by the size of the sediment initially placed in the substrate, in
the experiments we suggest here, ill-posedness is governed by the closure relation used to
model the bed slope effect. One can easily set the size of the substrate sediment, but one
cannot easily set up an experiment in which the sediment transport rate has the direction
predicted by a certain closure relation. It is plausible that it is impossible to conduct an
experiment under such conditions. Even more, we suspect that this could be the case, as
the fact that the model becomes ill-posed indicates that, under the studied conditions, the
closure relation to account for the effect of the bed slope yields unrealistic results which
do not occur in nature.

In obtaining a well-posed model we suggest to “start from the physics”. Rather than to
conduct experiments varying the grain size, the sediment mixture, the flow parameters,
and curve-fitting the results, we suggest to derive a model based on physical principles
that is guaranteed to be always well-posed and then test whether the predictions of the
model agree with experiments. Well-posendess (i.e., the mosaic) is much more impor-
tant than accurately reproducing a limited set of experiments (i.e., the tessera). Further-
more, we suggest to study whether an entrainment-deposition formulation of the equa-
tions to account for bed elevation and surface grain size distribution contributes to the
well-posedness of the system of equations when considering the effect of the bed slope, as
the entrainment-deposition formulation has proven to be key in solving for the problem
of ill-posedness due to the modelling of mixed-size sediment.

As regards to modelling of secondary flow in depth-averaged simulations, a simple
strategy to guarantee that the length scale of the oscillations predicted by the model is
compatible with the shallow water assumption could be to consider that the diffusion
coefficient of the secondary flow equation depends on the secondary flow intensity. This
mechanism would account for the fact that when the secondary flow increases, the verti-
cal profile of the primary flow changes and the momentum redistribution increases. In



6.6. Ill-posedness in Other Topics and Remaining Challenges

6

157

testing how physically realistic are the results of such strategy, it is simpler to compare
the results to the ones of three-dimensional simulations than to the ones of laboratory
experiments. A sophisticated solution to guarantee a reasonable length scale of the oscil-
lations predicted by the model could consider the effect of non-linearities in secondary
flow when the secondary flow increases significantly (Chapter 3). Non-linearities limit
the development of secondary flow, and we suspect that including this effect would yield
a more realistic model.

6.6. Ill-posedness inOther Topics andRemainingChallenges

A striking outcome of our research is that all the models that we have studied (i.e.,
the active layer model, the secondary flow model, and the bed slope effect model)

have a domain in which they are ill-posed. Ill-posedness appears to be ubiquitous. For
this reason, it is likely that there are other models that have a yet unknown domain of ill-
posedness. In this section we focus on two processes which may yield an ill-posed model:
interaction with mud and with vegetation.

One candidate is the model to account for the interaction between mud and sand
(Van Ledden, 2003;Van Ledden et al., 2004a,b;VanKessel et al., 2011a,b). Two-dimensional
model results show a pattern of mud concentration that resembles a chessboard (M. Klein-
hans, personal communication). Worded differently, areas of high and low mud concen-
tration alternate at the scale of the numerical grid. It is possible that the length scale of a
particular process related to mud is smaller than the cell size used in the numerical runs.
In this case, the numerical results will converge if the grid is refined. Once the cell size
is sufficiently small such that it captures the particular length scale, the alternate pattern
will disappear.

Another possibility is that the model is ill-posed. The fact that the smallest waves
resolved by the model (i.e., waves with wavelength equal to two times the cell size) are
the fastest growing waves, explains the chessboard pattern (see, for instance, Figure 3.8b).
In this case, similarly to the cases we have shown here, the results will not converge with
decreasing cell size and the chessboard pattern will replicate at smaller scales. The reason
for us to consider that a domain in which the model is ill-posed is likely to exist is that,
similarly to the active layermodel, themudmodel combines discrete layers with empirical
closure relations. An analysis as the one we have conducted in Chapter 3 would be useful
to test whether the mudmodel has a domain in which it is ill-posed. If it proves to be well-
posed, the analysis would yield the length scale of all processes described in the model.
This result would be useful to determine the minimum cell size in numerical simulations.

A second remaining challenge is modelling of vegetation. Vegetation plays an impor-
tant role in shaping rivers (e.g. Corenblit et al., 2015) by, for instance, increasing flow
resistance (Västilä and Järvelä, 2014) and reducing the bed shear stress (Vargas-Luna et al.,
2014). In modelling the effect of vegetation, empirical closure relations are used to, for
instance, compute the flow resistance exerted by vegetation (Västilä and Järvelä, 2014).
The applicability of the relation derived by Västilä and Järvelä (2014) is limited to con-
ditions in which the flow velocity is sufficiently large due to the asymptotic nature of
the expression as the velocity tends to 0. We find similarities with the closure relation to
account for granular viscosity in the model describing the dynamics of granular flow (Jop
et al. (2005, 2006), Section 3.1). The closure relation by Jop et al. (2005, 2006) is derived
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for condition in which the dimensionless shear rate is above a certain threshold value and
yields an ill-posed model otherwise (Barker et al., 2015). It is likely that a similar prob-
lem occurs when accounting for vegetation in morphodynamic modeling. One way to
prevent ill-posedness (in case it occurs) is to improve the closure relation accounting for
the dynamics of vegetation under low flow velocity conditions. This is equivalent to the
strategy followed by Barker and Gray (2017) in extending the well-posed domain of the
model describing granular flow.



7
Conclusions and

Recommendations

Everything is changing,
nothing has endurance,

and nothing is completely satisfying.

Three marks of existence in Buddhism (see e.g. Walshe (1995))

All our life passes in this way:
we seek rest by struggling against certain obstacles,

and once they are overcome,
rest proves intolerable because of the boredom it produces.

Blaise Pascal, Pensées, 136.
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In this chapter we summarize the main conclusions by answering the research questions
we initially posed (Section 7.1) and we outline the topics that need further research (Sec-
tion 7.2).

7.1. Conclusions

O ur objectives were to assess the problem of ill-posedness in river morphodynamic
modelling and to provide solutions to it. In Section 1.4 we formulated the following

research questions:

1. Under which conditions are current models accounting for mixed-size sediment
mechanisms ill-posed?

2. What is the role of two-dimensional effects with respect to model well-posedness?

3. How can we prevent the active layer model from being ill-posed?

4. How can we obtain a new model describing mixed-size sediment river morphody-
namics that avoids ill-posedness?

These questions will be answered in the following sections.

7.1.1. Ill-Posedness due to Accounting for Mixed-Size Sediment
In this section we answer the first research question:

Under which conditions are current models accounting for mixed-size sedi-
ment mechanisms ill-posed?

1. How can we determine whether the active layer model is ill-posed?

2. What is the role of the active layer thickness as well as other model parameters in
the domain of ill-posedness of the active layer model?

3. How do we recognize ill-posed numerical simulations?

4. Underwhich conditions does a vertically continuous representation of the bed yield
an ill-posed model?

Throughmathematical analysis of the active layermodel (Hirano, 1971) in one-dimensional
problems, we find an expression to discretize between ill-posed and well-posed cases. The
expression applies to simplified conditions assuming steady flow and two sediment size
fractions. Using this expression we prove that the active layer thickness plays a major
role in the well-posedness of the system of equations. The problem is always well-posed
for a sufficiently thin and sufficiently thick active layer. However, the values of the ac-
tive layer thickness to obtain a well-posed model may be physically unrealistic. We find
that, when accounting for hiding in the sediment transport relation, the likelihood that
the model is ill-posedness increases. Strong hiding can cause the active layer model to be
ill-posed even under aggradational conditions. This is a new finding as earlier the only
case possibly leading to ill-posedness was degradation into a substrate finer than the ac-
tive layer. Furthermore, ill-posedness under aggradational conditions can also arise if the
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sediment transferred to the substrate consists not only of active layer sediment but also
of transported sediment.

For more complex cases (e.g. with more than two sediment size fractions or unsteady
flow), it is not possible to obtain a simple expression for discretizing between ill-posed
and well-posed cases, but we provide a method to determine whether a case is ill-posed.
Using this method we find another new case in which the active layer model may be ill-
posed. Under degradational conditions into a substrate coarser than the active layer, the
model may become ill-posed without accounting for hiding if one considers more than
two sediment size fractions.

We conduct a similar analysis to the system of equations of the vertically continuous
model derived by Viparelli et al. (2017) and we find that this model can also be ill-posed.
A large vertical gradient in the volume fraction content of the bed sediment increases the
likelihood that the model is ill-posed.

These analyses provide means to predict the occurrence of ill-posedness but do not
predict the consequences. By means of numerical simulations, we studied the effect of
non-linear interactions in the development of ill-posed simulations and in general the
consequences of ill-posedness in numerical simulations. Ill-posedness causes growth of
infinitesimal perturbations. Numerical truncation errors are sufficient to trigger the for-
mation of physically unrealistic waves in numerical simulations. Waves grow until the
situation becomes well-posed. The formation of waves acts as a regularization mecha-
nism as the waves enhance unrealistic vertical mixing of sediment that yields conditions
in which the model is well-posed.

7.1.2. Ill-Posedness due to Two-Dimensional Effects
In this section we answer the second research question:

What is the role of two-dimensional effects with respect tomodel well-posedness?

1. How does the formulation accounting for the secondary flow affect model well-
posedness?

2. How does the formulation accounting for the transverse bed slope affect model
well-posedness?

We extend the analysis of the system of equations to two-dimensional conditions. In
particular, we focus on the effect of the secondary flow that originates from the flow cur-
vature, as well as the effect of the bed slope on the direction of the sediment transport.
We find that modelling of the secondary flow yields an ill-posed model if the diffusion
coefficient of the equation accounting for the transport of the secondary flow intensity is
equal to 0. This situation is physically unrealistic though. When considering a physically
realistic value of the diffusion coefficient, the system of equations is well-posed. Neverthe-
less, it predicts growth of perturbations that are not compatible with the shallow water
assumption used in deriving the two-dimensional flow equations. Only, an unrealistically
large amount of diffusion dampens the oscillations.

The effect of the bed slope on the direction of the sediment transport is crucial to
obtain a well-posed model. Under mixed-size sediment conditions, it is not only impor-
tant to account for the bed slope effect, but also to carefully select the closure relation for
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this purpose. We derive an expression to test whether, in a simple case considering two
sediment size fractions, a certain closure relation yields an ill-posed model.

7.1.3. Regularization of the Active Layer Model
In this section we answer the third research question:

How can we prevent the active layer model from being ill-posed?

1. Which possible strategies can we follow to avoid ill-posedness of the active layer
model?

2. How physically realistic are the results applying the strategy to avoid ill-posedness?

We derive a regularization strategy to recover well-posedness of the active layer model
(Hirano, 1971). The regularization strategy modifies the active layer model when and
where this is ill-posed only. The strategy is based on the use of preconditioning techniques
to modify the time scales of the physical processes. We consider a diagonal precondition-
ing matrix and we choose not to modify the time scales associated with flow processes.
Under these conditions, we find that the only possibility to regularize the active layer
model is by slowing down the time scale related to the mixing processes while not mod-
ifying the time scale associated to bed elevation change. A limitation of the proposed
regularization strategy is the fact that it can be applied when the active layer thickness is
constant only. Otherwise, mass is not conserved.

There is a close mathematical similarity between the regularization strategy and the
morphodynamic acceleration factor used to decrease the computational time of numeri-
cal simulations (Latteux, 1995; Lesser et al., 2004; Roelvink, 2006; Ranasinghe et al., 2011).
In physical terms the morphodynamic acceleration factor speeds up the bed elevation
changes with respect to the flow and sediment mixing processes. The regularization strat-
egy slows down the sediment mixing processes with respect to the flow and bed elevation
changes.

We derive an analytical expression of the parameter controlling the time scale of the
mixing processes that regularizes the active layer model. The expression is only applicable
to mixtures of sediment composed of two sediment size fractions. For a general case with
more than two sediment size fractions, the method to find the value of the regularizing
parameter involves minimization of an eigenvalue problem (i.e., solving several eigenvalue
problems). For this reason, the general case is at this moment relatively expensive in
computational terms.

The results of the regularization strategy cannot be compared to those of the active
layer model, as when the regularization strategy affects the solution the active layer model
is ill-posed and not applicable. In testing the ability of the regularization strategy to re-
produce physical phenomena, we need to compare its results to data from physical exper-
iments. We find no data set obtained under conditions in which the active layer model is
ill-posed and the active layer thickness can be assumed to be constant with time. For this
reason we conduct a set of laboratory experiments to which we can apply the regulariza-
tion technique. The experiments consist of imposing degradational conditions on a situ-
ation that is initially under equilibrium conditions. Fine sediment is placed below a top
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layer composed of coarse sediment. The entrainment of fine sediment from the substrate
results to be a cyclic process. Initially the bed surface is covered by bedforms composed
of coarse sediment only. Degradation causes fine sediment to be entrained at the trough
of coarse bedforms. The difference in mobility between the coarse and fine sediment trig-
gers the formation of a degradational wave traveling downstream. The erosional pit left
by the degradational wave is filled by coarse sediment. Degradation continues over the
newly formed coarse deposit until fine sediment from the substrate is exposed again.

The regularization strategy does not explicitly capture the formation of the degrada-
tional waves. However, it reproduces the enhanced vertical mixing of sediment due to the
formation of degradational waves.

7.1.4. Development of a New Model to Account for Mixed-Size Sedi-
ment Morphodynamics

In this section we answer the fourth research question:

How can we obtain a new model describing mixed-size sediment river mor-
phodynamics that avoids ill-posedness?

1. Which physical mechanisms need to be considered in the new model to guarantee
its well-posedness?

2. How physically realistic are the results of the new model?

In obtaining a well-posed model, it appears to be crucial to account for the short
term processes associated with the entrainment and deposition of sediment. Accounting
for these processes relaxes the hypothesis that the sediment transport rate is at capacity
conditions. We propose a newmodel that results from combining the active layer concept
(Hirano, 1971) with a model conserving the mass of the sediment in transport. The model
for mass conservation of the sediment in transport originates from a stochastic treatment
of sediment transport (Furbish et al., 2012a; Ancey and Heyman, 2014). We prove that
the new model is always well-posed. The new model presents an instability mechanism
under conditions in which the active layer model is ill-posed. The newmodel captures the
oscillatory behavior measured in our experiments conducted under conditions in which
the active layer model is ill-posed.

The interaction between the bed surface and the sediment in transport leads to disper-
sion of tracer sediment, which the active layer model cannot reproduce. While the active
layer model predicts tracer sediment to propagate downstream in a purely advective form,
the new model predicts tracer sediment to diffuse as it is advected downstream. We com-
pare predictions of the new model to data regarding tracer sediment dispersion. The new
model captures dispersion as measured in our laboratory experiments. However, it does
not well reproduce the dispersion measured in the field experiment conducted by Sayre
and Hubbell (1965). This is explained from the fact that temporary burial of sediment
due to bedforms is not included in the model. This mechanism is not relevant for the
conditions of our experiments but it is relevant for the conditions of the experiment by
Sayre and Hubbell (1965).
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Contrary to the regularization strategy, the new model can account for a temporal
change in the active layer thickness. The newmodel satisfactorily reproduces a laboratory
experiment conducted by Blom et al. (2003). This laboratory experiment was conducted
under conditions in which the active layer model is ill-posed and in which vertical mixing
in the active layer model can only be induced by a temporal change in the active layer
thickness accounting for an increase in dune height.

7.2. Recommendations

I n this section we recapitulate our main recommendations in terms of suggestions to be
considered in the short, mid, and long term with a focus to the practical relevance of

our research.
In the short term, it is important to test the validity of the regularization strategy

against a large variety of cases and, in particular, against field cases. The ability of the
strategy to regularize two-dimensional conditions needs to be further explored. If it is
confirmed that the strategy does not regularize two-dimensional cases, the alternative
consisting in adding a diffusive mechanism to the active layer equation needs to be further
explored. A strategy that regularizes the two-dimensional model needs to be implemented
in software used to predict the consequences of river interventions. We think that it would
be interesting for practitioners to re-run engineering cases such as the DVR simulations
(Ottevanger et al., 2015) using the regularization strategy to test whether ill-posedness has
significantly affected the results of the simulations.

In the mid term, we recommend to test the validity of the SILKE model conducting a
set of laboratory experiments. In particular, the laboratory experiments should be aimed
at capturing the instability mechanism predicted by the SILKE model. Furthermore, it is
important to study tracer dispersion at a laboratory scale larger than the one we studied
such that temporary burial due to bedforms becomes a relevant mechanism. This exercise
may provide insight into the reasons why the SILKE model does not capture dispersion
for the conditions of the experiment by Sayre and Hubbell (1965). The simple strategy to
avoid ill-posedness due to the bed slope effect (i.e., the strategy consisting in modifying
the parameters of the closure relation) should be implemented and its validity should be
tested. Similarly, the possibility of a diffusion coefficient depending on the secondary
flow intensity should be considered in avoiding physically unrealistic oscillations.

In the long term, we advocate for rejecting the capacity-based sediment transport ap-
proximation. Accounting for conservation of the sediment in transport not only recov-
ers well-posedness of the system of equations but also prevents inconsistent boundary
conditions in morphodynamic modelling. We suggest to study the possibility of mod-
ifying the SILKE model by replacing the active layer with a continuous formulation of
the bed (Parker et al., 2000) that allows modelling of spatial changes (e.g. Pelosi et al.,
2016). This modified model may be able to capture anomalous (i.e., non-Fickian) diffu-
sion of sediment and account for changes in bed elevation and surface texture. As regards
to secondary flow, its parameterization in two-dimensional cases should be further stud-
ied. Accounting for the effect of the secondary flow in the vertical profile of the primary
flow could yield a model that, considering a physically realistic amount of diffusion, it
does not predict growth of perturbations at a scale incompatible with the shallow water
assumption.
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Overall, we recommend a methodological reductionist approach in improving the
prediction of morphodynamic change in rivers. First, the small scale processes need to
be well understood and modelled. Models need to be based on theoretical analysis and
principles. Detailed laboratory experiments and field data should be used to gain insight
and inspiration and to test the models, but not to derive them. Integrating and filtering
the short time scale processes, one derives the effects and implications at the large scale.
The approach we recommend is opposed to a holistic approach in which predictions at
the large scale are derived from observation at the large scale including all the complexity
without detailed understanding of the small scale processes.

A reductionist approach cannot outperform predictions obtained bymeans of holistic
methods in the range of conditions in which a holistic method has been based. However,
a reductionist approach is expected to yield reasonable results for all conditions, apart
from the most important outcome: deep understanding of nature.
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Epilogue

A t the beginning of the Ph.D. I read Phaedo and I took the following paragraph as a
driver for the rest of the project:

[Socrates to Simmias]
Then he [a person] will do this [come closest to the knowledge of the

reality of all other things] most perfectly who approaches the object with
thought alone, without associating any sight with his thought, or dragging in
any sense perception with his reasoning, but who, using pure thought alone,
tries to track down each reality pure and by itself, freeing himself as far as
possible from eyes and ears, and in a word, from the whole body, because the
body confuses the soul and does not allow it to acquire truth and wisdom
whenever it is associated with it. Will not that man reach reality, Simmias, if
anyone does?

Plato, Phaedo

By the end of the Ph.D. I read the Pensées and I encountered the following paragraph:

The world is a good judge of things, for it is in natural ignorance, which is
man’s true state. The sciences have two extremes which meet. The first is the
pure natural ignorance in which all men find themselves at birth. The other
extreme is that reached by great intellects, who, having run through all that
men can know, find they know nothing, and come back again to that same
ignorance from which they set out; but this is a learned ignorance which is
conscious of itself. Those between the two, who have departed from natural
ignorance and not been able to reach the other, have some smattering of this
vain knowledge and pretend to be wise. These trouble the world and are bad
judges of everything. The people and the wise constitute the world; these
despise it, and are despised. They judge badly of everything, and the world
judges rightly of them.

Blaise Pascal, Pensées

I do not completely agree with Pascal, as I feel ignorant and I do not think I have “run
through all that man can know” (which is evident from the long list of recommendations
for further research in Chapter 7). Yet, Pascal’s pensée is a good reminder of the risk of
thinking that Socratic reality is achievable: bad judgment of everything.

The reader that has accompanied me during this journey will realize that this journey
is not finished, and that we are condemned to remain ignorant for the rest of our lives.
Let’s try to at least make good judgment with the mere knowledge we gained.
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improves when you are there. All details matter.
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conversations about how things are in Galiza
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Zeinab never missing a “good morning” and “good
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better place,... Thanks because a thesis is less
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Jakob. I could discuss for hours with you. Thanks
for showing me the world with a different prism and
sharpen my arguments. We were not successful in
programing a robot (actually we were very
unsuccessful) but it was a great experience to work
with you.
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Thanks for bringing your good vibes to the lab.
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even economically supported a few of the first
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Moreover, you motivated me to study rivers. I will
never be able to thank you enough for all these
things you have unselfishly done for me.
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commit my changes. Thanks for unceasingly
answering all my Delft3D questions.

Kees appears. I know your time is very
limited and, for this reason, I thank you for so
enthusiastically explaining me all river related
issues that are going on around the world.

I take a deep breath when I receive an email
from Ralph. I know it is going to be full of very
tough questions that will keep me thinking for a
week. Or maybe it comes with a paper attached with
more Greek than Latin characters. Thank you for
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interesting once you get out it.
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replied. Trembling, I take the phone. Everything
is in order. She wants to make sure that all my
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information I needed. Thanks Otti for being so
patience with me. You oil the gears of this
department.

Ioannis sends an email and a picture with
Theofili. The first two years in Delft were very
nice thanks in part to you. Thanks for adopting me
at your house ad infinitum. It is a pity that you
are far from here. Thanks for your companionship.

I have a Skype call with Nunzio. What was
meant to be a short discussion ends up being a 2
hour 40 minutes long conversation that enlightens
me. Thank you for so selflessly and
disinterestedly invest time an effort in improving
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As I go home, I get a message from Herrando
inviting me to go visit him in Basel in a few
weeks. Thank you for all these years of
friendship. I feel very lucky every time you send
me a message.
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Timo, Mauri, Laia, Mihoko, Ramón, Xancó, De Miguel.
This thesis has nothing to do with judo, but I
think I am greatly moulded and influenced by it.
Thanks because this character imprint that made the
thesis possible would have not been possible
without you.
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is Silke doing. Thanks Dani and Dovi for all the



love, attention, and care that you are able to
convey in the distance. Thanks, mother, for
bringing me until here. And thanks, Sergio, for
helping my brother, my mother, and me. You have
done much more than you think. I would have liked
to finish my thesis at the age of 21, like
Heisenberg, for one reason only: my grandfather to
read it. I am certain he would have been the only
one reading it top to down. Thanks for the
engineering background. And thanks, Luci, for
cementing the family.
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up. Thanks Elisa Pascual, for the love with which
you treat me. Thanks Juan for, among others, the
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If we are too young our judgement is impaired,
just as it is if we are too old.

Thinking too little about things or thinking too much
both make us obstinate and fanatical.

Blaise Pascal, Pensées, 381.

No man ever steps in the same river twice,
for it’s not the same river and he’s not the same man.

Heraclitus
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This appendix provides the supplementary material to Chapter 2 “Ill-posedness in model-
ing mixed sediment river morphodynamics”. The appendix is organized as follows. The
flow and active layer equations are presented in Sections A.1 and A.2, respectively. In
Section A.3 we present the closure relations to compute the sediment transport rate. In
Section A.4we present the equations of the steady vertically continuous model consisting
of two size fractions. In Section A.5 we conduct a perturbation analysis to show that the
mathematical character of a system of equations is determined by the eigenvalues of the
systemmatrix. In Section A.6we show the effect of the aggradational flux to the substrate
on the extent of the elliptic domain. In Section A.7 we present the results of the numer-
ical analysis for all simulations conducted to analyze the consequences of ill-posedness.
In Section A.8 we prove that considering an unsteady active layer thickness increases the
likelihood of the active layer model becoming ill-posed.

A.1. Flow Equations

T he water phase is mathematically described by the Saint-Venant equations (Saint-
Venant, 1871) in which mass conservation is represented by the continuity equation:

∂ h
∂ t
+
∂ q
∂ x
= 0 , (A.1)

where t [s] denotes the time coordinate, x [m] the streamwise coordinate, and q = u h
[m2/s] the water discharge per unit width. The balance of streamwise momentum is
represented by:

∂ q
∂ t
+
∂ (q2/h + g h2/2)

∂ x
+ g h

∂ η

∂ x
=−g hSf , (A.2)

where η [m] denotes the bed elevation and Sf [−] the friction slope.
Considering steady flow, the conservation of water mass, Equation (A.1), reduces to a

spatially constant discharge, and the conservation of momentum, Equation (A.2), to the
backwater equation:

∂ h
∂ x
=
−1

1−Fr2

∂ η

∂ x
−

Sf

1−Fr2 . (A.3)

A.2. Active Layer Equations

T he conservation of the total amount of sediment in the bed is represented by the Exner
equation (Exner, 1920):

∂ η

∂ t
+
∂ qb

∂ x
= 0 , (A.4)

where qb [m2/s] is the sediment transport rate per unit width multiplied by 1/(1− p)
where p [−] is the bed porosity (i.e., the sediment transport rate qb accounts for pores).
For simplicity, mechanisms such as subsidence and uplift, compaction and dilation of
sediment are neglected in the above equation (Paola andVoller, 2005). Of special relevance
is the implicit assumption that the temporal change of the storage of sediment within the
water column and its effects on bed elevation are negligible (Park and Jain, 1987; Stevens,
1988; Correia et al., 1992; Morris and Williams, 1996). We consider that there is no lag
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between changes in bottom bed shear stress (Bell and Sutherland, 1983; Jain, 1992). Worded
differently, the sediment transport rate is at capacity and adapts instantaneously to the
flow field. Thus, the sediment transport rate does not require a constitutive equation and
is treated as a closure relation.

Assuming constant porosity and density, the active layer equation describes the con-
servation of mass of grain size fraction k in the active layer (Hirano, 1971):

∂ Mak

∂ t
+ f I

k

∂ (η− La)
∂ t

+
∂ qbk

∂ x
= 0 , (A.5)

where Mak [m] is the volume of sediment of size fraction k in the active layer per unit of
bed area, f I

k [−] is the volume fraction content of size fraction k at the interface between
the active layer and the substrate ( f I

k ∈ [0,1]), La [m] is the active layer thickness, and
qbk [m2/s] is the sediment transport rate per unit width of size fraction k multiplied by
1/(1− p). The addition of the sediment transport rate for each size fraction equals the
total amount of sediment in transport including pores:

qb =
N
∑

k=1

qbk . (A.6)

Assuming constant porosity and density, mass conservation of sediment of size frac-
tion k in the substrate is expressed by:

∂ Msk

∂ t
− f I

k
∂ (η− La)
∂ t

= 0 , (A.7)

where Msk [m] is the sediment volume of size fraction k in the substrate per unit of bed
area.

The volume of sediment per unit of bed area in the active layer and the substrate are
defined as:

Mak = Fak La, Msk =
∫ η−La

η0

fsk (z)dz , (A.8)

where Fak [−] is the volume fraction content of size fraction k in the active layer (Fak ∈
[0,1]), fsk (z) [−] is the volume fraction content of size fraction k in the substrate at
elevation z [m] ( fsk (z) ∈ [0,1]), and η0 [m] is the time invariant datum for bed elevation.
The volume fraction contents are constrained by the equations:

N
∑

k=1

f I
k = 1,

N
∑

k=1

Fak = 1,
N
∑

k=1

fsk (z) = 1 . (A.9)

Thus, the volume of sediment per unit of bed area is constrained by the equations:

N
∑

k=1

Mak = La,
N
∑

k=1

Msk = η− La−η0 . (A.10)

The summation of N active layer equations yields the Exner equation (Ribberink,
1987; Parker et al., 2000), as the active layer equation, (A.5), represents fractional mass
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conservation of sediment and the Exner equation, (A.4), represent the conservation of
the total amount of sediment. Thus, to consider N active layer equations is equivalent to
considering N − 1 active layer equations and the Exner equation. We here choose for the
second option, as in this way the conservation of sediment mass per size fraction can be
considered as an extension of the unisize model.

The substrate equation, (A.7), is a linear combination of the Exner equation, (A.4),
and the active layer equation, (A.5), which means that the substrate equation does not
play a role in the mathematical behavior of the system and can be treated in a decoupled
manner.

A.3. Sediment Transport Closure Relation

T he sediment transport rate of size fraction k per unit width (including pores), qbk , is
expressed as the product of the volume fraction content of size fraction k at the bed

surface (Fbk [−]) and the sediment transport capacity Qbk [m2/s] which is the sediment
transport we would obtain if the bed was formed by unisize sediment yet including hiding
effects (Deigaard and Fredsøe, 1978; Ribberink, 1987; Armanini, 1995):

qbk = Fbk Qbk . (A.11)

The sediment transport capacity is the product of a nondimensional sediment transport
rate (q∗bk [−]) and the parameter

Æ

g Rd 3
k (Einstein, 1950):

Qbk = q∗bk

Æ

g Rd 3
k

1− p
, (A.12)

where we account for the volume of pores multiplying by 1− p. R= ρs/ρw−1 [−] is the
submerged specific gravity, ρs = 2650kg/m3 the sediment density, and ρw = 1000kg/m3

the water density. The volume fraction content of size fraction k at the bed surface is
constrained by the condition:

N
∑

k=1

Fbk = 1 . (A.13)

In the active layer model the volume fraction content of size fraction k at the bed sur-
face is considered to be equal to the volume fraction content in the active layer (Fbk = Fak ).
In the vertically continuous model developed by Viparelli et al. (2017), it is considered
equal to the integral of the volume fraction content of size fraction k in the bed sediment
weighted by the elevation’s exposure to the flow:

Fbk =
∫ +∞

−∞
fk (y)pe(y)dy . (A.14)

The sediment transport rate q∗bk is related to the mean characteristics of the flow. Here
we consider a generalized form of the Meyer-Peter and Müller (1948) transport relation,
which estimates sediment transport as a power function of the excess bed shear (Equation
2.6). The nondimensional bed shear stress of size fraction k or Shields (1936) parameter
is computed as θk =Cfu

2/(g Rdk ) [−].
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A commonly used hiding relation is the one due to Egiazaroff (1965):

ξk =





log10 (19)

log10

�

19 dk
Dm

�





2

, (A.15)

where Dm [m] is a characteristic mean grain size of the mixture obtained as an average
of the grains in movement and in the bed surface. In practical terms, Dm is computed as
the arithmetic mean (e.g, Wu et al., 2000), geometric mean (e.g., Bettess and Frangipane,
2003) or the median grain size (e.g., Van Niekerk et al., 1992; Kleinhans et al., 2002) of the
bed surface sediment. A simpler expression was developed by Parker et al. (1982):

ξk =
�

Dm

dk

�b

, (A.16)

where the characteristic mean grain size is the median grain size (D50 ) of the subpavement
sediment (below an armor layer) (Parker et al., 1982) or the geometric mean of the surface
sediment (Parker, 1990).

If the nondimensional parameter b is equal to 0, there is no hiding effect and each grain
size behaves independently of each other. If b = 1, the sediment transport of each size
fraction is independent of its grain size (for B = 1.5), thus only depends on its presence
at the surface (Fbk ). Buffington and Montgomery (1997) made an inventory of values of b
spanning between 0.32 and 1.25. A value of b > 1 implies reverse mobility (Solari and
Parker, 2000).

Here, we compute the characteristic mean grain size, Dm, as the geometric mean:

Dm = dref2
∑N

k=1 Fbk log2

�

dk
dref

�

, (A.17)

where dref = 1mm is a reference grain size that makes the grain size onφ-scale nondimen-
sional.

A.4. System of Equations of the Steady Vertically Contin-
uous Model Consisting of Two Size Fractions

T he vector of dependent variables (QvcS2 ) is:

QvcS2 = [η, f1]
ᵀ , (A.18)

the vector of source terms is:

SvcS2 =−Sf
uψ

1−Fr2

�

1,
pe

Pe
g1

�ᵀ

, (A.19)

and the system matrix is:

AvcS2 = u





ψ
1−Fr2

1
pe

X1
ψ

1−Fr2
pe
Pe

g1 X1
1
Pe

m1,1



 . (A.20)
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Parameters g1, X1, m1,1, and d1,1 are the equivalent of parameters γ1, χ1, µ1,1, and δ1,1
in the active layer model (Section 2.3.1):

g1 = c1−ϕ1 , (A.21)

ϕ1 =−
1
pe

∂ f1Pe

∂ y
, (A.22)

X1 =
pe

u
∂ qb

∂ f1
, (A.23)

m1,1 = δ1,1−ϕ1 , (A.24)

δ1,1 =
pe

uX1

∂ qb1

∂ f1
. (A.25)

The eigenvalues of the system matrix, Equation (A.20), nondimensionalized dividing
by the flow velocity, are:

λvcS2i =
1
2

�

λb+λsc1±
p

∆vcS2

�

for i = 1,2 , (A.26)

where the discriminant is:

∆vcS2 = (λb−λsc1)
2+ 4λbλsc1

g1

m1,1
. (A.27)

We define λsc1 as the nondimensional sorting celerity of the vertically continuous
model, as the equivalent of the sorting celerity in the active layer model in Equation
(2.28):

λsc1 =
X1m1,1

Pe
. (A.28)

A.5. Perturbation Analysis

I n this section we conduct a perturbation analysis of the one-dimensional quasi-linear
non-conservative form of the advection equation:

∂ Q
∂ t
+A

∂ Q
∂ x
= S . (A.29)

We consider a reference state of dependent variables Q0 which is a solution of Equation
(A.29) and a small perturbation to the state Q′ so that Q=Q0+Q′. The reference state
is that of steady uniform straight flow over a flat sloping bed composed of an arbitrary
uniform grain size distribution. Linearizing and using the fact that Q0 is a solution we
obtain the system of equations of the perturbations:

∂ Q′

∂ t
+A0

∂ Q′

∂ x
+B0Q

′ = 0 , (A.30)
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where A0 is the systemmatrix of the unperturbed state (Equation (2.11) for the case of the
general active layer model) and B0 is the matrix containing the linearized friction terms
and the linear terms of the reference solution. For the general active layer model this is
equal to:

B0 =















0 0 0 0 0

Cfq
2
0

h3
0
−2 Cfq0

h2
0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















. (A.31)

Assuming a wave-type perturbation, Q′ = Q̂(t )e ikw x , where i is the imaginary unit
and kw is the wave number of the perturbation, we obtain:

∂ Q̂(t )
∂ t

=−ikw

�

A0−
B0

ikw

�

Q̂(t ) . (A.32)

Using the properties of the eigenvalues we obtain the ordinary differential equation:

dΦ
dt
=−ikwλΦ , (A.33)

where Φ and λ are an eigenvector and eigenvalue of matrix A0 −
B0
ikw

, respectively. The
perturbed solution grows exponentially with a factor−ikwλt . Thus, large wave numbers
grow fastest. Note that friction matters in the characterization of the model. However,
for large wave numbers the effect of friction vanishes. Thus, we can neglect friction in
the analysis since we are interested in the perturbations that grow fastest.

A.6. Effect of Grain SizeDistribution of the Aggradational
Flux to the Substrate on the Elliptic Domain

I n this appendix we assess the effect of the contribution of the bed load to the aggrada-
tional flux to the substrate on the elliptic domain of the active layer model assuming

quasi-steady flow and two sediment fractions.
According to Hoey and Ferguson (1994), under aggradational conditions the sediment

at the interface ( f I
k ) is a combination of the sediment transport rate and the active layer

sediment (Section 2.2.4). As such, the volume fraction content of the sediment transferred
to the substrate can be written as:

f I
k = αFak +(1−α) pk = α (Fak − pk )+ pk , (A.34)

where α ∈ [0,1] is a nondimensional parameter and pk ∈ [0,1] is the fraction of sediment
k in transport:

pk =
Fak Qbk

∑N
l=1 Fal Qbl

. (A.35)
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We now substitute Equation (A.34) in the discriminant of the eigenvalues of the two-
fractions active layer model assuming steady flow, Equation (2.26):

∆alS2(α) =
�

1
uLa
(Qb1−Qb2) (Fa1− p1)

�2

α2

+
2

uLa
(Qb1−Qb2) (Fa1− p1)

�

1
uLa
(Qb1−Qb2) p1−

Qb1

uLa
−

ψ

1−Fr2

�

α

+
1

uLa
(Qb1−Qb2) p1

�

1
uLa
(Qb1−Qb2) p1− 2

�

Qb1

uLa
−

ψ

1−Fr2

��

+
ψ

1−Fr2

�

ψ

1−Fr2 +
2

uLa
(2c1 (Qb1−Qb2)−Qb1)

�

+
�

Qb1

uLa

�2

,

(A.36)

which is a second degree equation on α.
For simplicity we rewrite Equation (A.36) as aα2+ bα+ c . The fact that a > 0 proves

that the parabola is concave (direct because it is a power 2). A value of−b/2a < 0 implies
that the discriminant increases with an increasing value of α:

−b
2a

< 0⇒ b > 0⇒ 1
uLa
(Qb1−Qb2) p1−

Qb1

uLa
−

ψ

1−Fr2 < 0⇒

1
uLa
[Qb1 (p1− 1)−Qb2 p1]−

ψ

1−Fr2 < 0 ,
(A.37)

which is always true. In the derivation we have used that:

Qb1 <Qb2 and Fa1 < p1 . (A.38)

Thus, a larger contribution of the active layer sediment decreases the likelihood that
the model becomes elliptic.

We investigate the limit of the effect of α in the elliptic domain. To this end we con-
sider the parameter settings in which the likelihood of ellipticity is higher under aggrada-
tional conditions: α= 0 (the sediment transferred to the substrate has the same grain size
distribution as the bed load), and ξk = 1 ∀k (the sediment transport relation is as grain
size selective as possible, Section 2.2.4). In this case the volume fraction content of fine
sediment at the interface ( f I

1 ) can be written as:

f I
1 =

Fa1

Fa1+ Fa2P
, (A.39)

where the nondimensional parameter P ∈ (0,1) is defined as:

P =
Qb2

Qb1
=
�

d2 (θ2−θc)
d1 (θ1−θc)

�3/2

. (A.40)

The parameter c1, Equation (2.21), can be written as:

c1 =
Fa1

Fa1+ Fa2G
, (A.41)
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where the nondimensional parameter G ∈ (0,1) is defined as:

G =
�

d2 (θ2−θc)
d1 (θ1−θc)

�1/2

, (A.42)

thus, γ1 (Equation (2.20)), can be written as:

γ1 =
Fa1Fa2 (P −G)

(Fa1+ Fa2G) (Fa1+ Fa2P )
. (A.43)

Note that γ1 < 0 which implies that the model can be elliptic. Yet, γ1 tends to 0 (thus
minimizing the likelihood of ellipticity) for both a very fine or coarse active layer (Fa2→ 0
or Fa1→ 0) and also for a large or small effective Shields stress (θ−θc→ θ or θ−θc→ 0).
Moreover, P and G have the same order of magnitude so its difference is small. This fact
yields a small absolute value of γ1 (close to zero) in comparison with a degradational case
into a fine substrate in which the parameter γ1 can be as negative as − f I

1 (Stecca et al.,
2014).

A.7. Results of all Simulations of the Sensitivity Analysis

I n this section we present the results of all simulations of Section 2.5.2. For clarity rea-
sons, Figure 2.5a shows the simulations with a horizontal discretization length (∆x )

equal to 0.1 m and a thickness of the substrate layers equal to 0.01 m and 0.10 m. Here
Figure A.1a presents the results of all simulations. The intermediate values of the book-
keeping layer thickness follows the trend explained in Section 2.5.2. An increase in the
bookkeeping layer thickness slightly increases the maximum amplitude of the oscillations
in the solution. Similarly, Figure 2.5c shows the results for those simulations with a thick-
ness of the bookkeeping layers (∆z ) equal to 0.01 m only. Here Figure A.1c presents the
results of all simulations. A thinly discretized domain causes oscillations to achieve its
maximum amplitude value more upstream than if a coarse domain is used.
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Figure A.1: Maximum flow depth hmax (nondimensionalized by the normal flow depth hn ) that develops as a
consequence of ellipticity. In (a) the maximum flow depth is plotted against the discriminant ∆alS2, Equation
2.26, for a thickness of the bookkeeping layers (∆z ) equal to 0.01 m (red dots), 0.02 m (orange dots), 0.05 m
(green dots), and 0.10 m (blue dots). The vertical black lines connect two simulations in which all parame-
ters but ∆z are the same. In (b) the maximum flow depth is plotted against the hyperbolic flow depth (hhyp )
nondimensionalized with the normal flow depth. Each black dot is the result of a simulation. The black lines
connect simulations with the same physical parameters and the grey line shows the perfect agreement. In (c) the
maximum flow depth is plotted against the distance from upstream at which the maximum flow depth occurs
(xmax ) nondimensionalized with the length of the domain (L) for a horizontal discretization length equal to
0.1 m (orange dots) and 0.2 m (green dots). The black lines connect two simulations in which all parameters
but ∆x are the same.
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A.8. Implications of an Unsteady Active Layer Thickness
in the Ill-posed Domain

I n this appendix we analyze the implications of considering that the active layer thick-
ness varies as a function of the flow depth in a two-fractions case assuming negligible

hiding. The assumption of negligible hiding allows for obtaining a simple expression of
the derivative of the sediment transport with respect to the volume of sediment in the
active layer (Stecca et al., 2014):

∂ qbk

∂ Mal
=
¨Qbk

La
for 1≤ k = l ≤N − 1

0 for k 6= l
, (A.44)

and:
∂ qb

∂ Mal
=

Qbl −QbN

La
, (A.45)

The implications of this assumption are studied in Section 2.4.1.
The derivative of the sediment transport rate with respect to the active layer thickness

is:
∂ qbk

∂ La
=−

qbk

La
for 1≤ k ≤N − 1 , (A.46)

and:
∂ qb

∂ La
=−

qb−QbN

La
. (A.47)

The two-fractions active layer model considering a variable active layer thickness has
5 dependent variables. We obtain the nondimensional characteristic polynomial ( p(λ))
of the model by equating the determinant of the system matrix (Equation 2.11) to zero
and dividing it by u5:

p(λ) = λn(λ) , (A.48)

which implies that the roots of p are the roots of n and 0 where:

n(λ) = m(λ)− d (λ) , (A.49)

being m a fourth order polynomial and d a first order polynomial:

m(λ) = mc(λ)+mv(λ) , (A.50)

and

d (λ) = dc(λ)+ dv(λ) , (A.51)

where

dc(λ) = γ1
ψ

Fr2

Qb1−Qb2

uLa
(λ− 1) , (A.52)
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dv(λ) =β f I
1

1
Fr2

Qb1−Qb2

uLa

�

λ−
Fa1

f I
1

λs1

�

, (A.53)

mc(λ) = (λ−λs1)V (λ) , (A.54)

mv(λ) = (λ−λs1)βFa1
Qb1−Qb2

uLa

1
Fr2 , (A.55)

where the parameter β is defined as:

β= aLbLh bL−1 , (A.56)

and V (λ) refers to the Saint-Venant-Exner characteristic polynomial:

V (λ) =
ψ

Fr2 (1−λ)+λ
�

(λ− 1)2− 1
Fr2

�

. (A.57)

λs1 is the sorting celerity defined in Equation (2.28). Assuming negligible hiding we ob-
tain:

λs1 =
Qb1

�

1− f I
1

�

+ f I
1 Qb2

uLa
. (A.58)

The subscript v indicates that the term is only present if we consider a variable active layer
thickness while the subscript c indicates that the term in question is also obtained if the
active layer thickness is constant.

Note that in aggradational conditions or in degradational conditions into a substrate
coarser than the active layer the slope of d is positive and its root (d0 ) is larger than λs1
since λs1 < 1.

A sufficient condition that guarantees that the polynomial n has four real roots (the
system thus being hyperbolic) is that the slope of a line with the same root as d that
crosses m at x = 0 has a larger slope than d . This is mathematically written as:

d
′
<
−m(0)

d0
⇒
ψ uLa

Qb1−Qb2
+βFa1

λs1 uLa
(Qb1−Qb2)γ1

ψ uLa
Qb1−Qb2

+βFa1

<
λs1uLa

(Qb1−Qb2)γ1
, (A.59)

where the apostrophe indicates a derivative and the subscript 0 indicates the root. In-
equality (A.59) is true provided that:

1<
λs1uLa

(Qb1−Qb2)γ1
=

Qb1(1− f I
1 )+ f I

1 Qb2

(Qb1−Qb2)γ1
. (A.60)

We know that Inequality (A.60) is true since:

γ1 < 1− f I
1 <

Qb1(1− f I
1 )+ f I

1 Qb2

(Qb1−Qb2)
⇒ 1<

1− f I
1

γ1
<

Qb1(1− f I
1 )+ f I

1 Qb2

(Qb1−Qb2)γ1
, (A.61)

where the first condition was proven by Stecca et al. (2014).
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Thus, in aggradational conditions or in degradational conditions into a substrate coarser
than the active layer, the system of equations formed by the unsteady flow equations in
combination with the active layer model for two sediment size fractions considering an
unsteady active layer thickness proportional to dune height is hyperbolic.

In degradational conditions into a substrate finer than the active layer the line dv al-
ways has a positive slope and its root is smaller than λs1 since Fa1 < f I

1 by definition. If the
root of dv is smaller than the intersection between dc and m, dv is positive in the domain
where dc intersects m and thus d > dc. In degradational conditions into a substrate finer
than the active layer, the volume fraction content of fine sediment in the active layer is
small (Fa1 << 1). Thus, we assume that m does not appreciably change by considering
β 6= 0. Worded differently, we assume m ≈ mc. Using this assumption, with respect to a
situation where the effects of variable active layer thickness are not considered (dv = 0), a
variable active layer thickness increases the likelihood that the model is elliptic.

Thus,

1. if λs1 < λb, the root of dv is smaller than the intersection between dc and mv, and a
variable active layer thickness increases the likelihood that the model is elliptic.

2. if λs1 > λb but λs1Fa1/ f I
1 < λb, the root of dv is smaller than the intersection between

dc and mv, and a variable active layer thickness increases the likelihood that the
model is elliptic.

To study the relative importance of the cases in which λb < λs1Fa1/ f I
1 we study a case

where the characteristic grain sizes of the fine and coarse sediment are equal to 0.001 m and
0.01 m, the nondimensional friction coefficient equals 0.01, and the sediment transport
rate is computed using the Meyer-Peter and Müller (1948) transport relation. We vary
the flow velocity between 0.5 m/s to 5 m/s, the flow depth between 0.5 m to 5 m, and
the volume fraction content in the active layer and at the interface between 0 to 1. We
analyze the cases which provide subcritical flow and degradation into a fine substrate
obtaining 39.253.500 cases. The active layer thickness is set a function of the flow depth
using Equation (2.2) with parameters aL = 0.2m0.1 and bL = 0.9.

In FigureA.2we plot the parameter λs1−λb with respect to Fa1
f I
1
λs1−λb for all situations.

Note that the majority of cases fall into the domain in which considering an unsteady
active layer thickness increases the likelihood of obtaining an ill-posed model. The green
dots mark those cases which are hyperbolic. Red dots identify elliptic cases, and blue dots
mark those situations which are elliptic if the active layer is considered unsteady only.
We do not find a case in which the model is hyperbolic if the active layer is unsteady but
elliptic if it is constant.

Based on the histograms we note that although a variable active layer thickness in-
creases the domain of ill-posedness, the main cause of ill-posedness is due to the active
layer model itself and not to the unsteady active layer thickness.

The assumption that m does not appreciably change by consideringβ 6= 0 is sustained
by the fact that in none of the considered cases, a situation that is hyperbolic for a constant
active layer thickness becomes elliptic for a variable active layer thickness.
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Figure A.2: Parameter λs1 −λb with respect to Fa1
f I
1
λs1 −λb for 39.253.500 cases. The majority of cases fall into

the domain in which we prove that an unsteady active layer thickness increases the likelihood of the model
being elliptic. In the remaining cases an unsteady active layer thickness also increases the likelihood although
we do not prove it. Nevertheless, only a small percentage of cases become elliptic strictly due to the unsteady
active layer thickness.
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Who do you look up the most?
People who think for themselves and spread joy in the world.

Olle Eksell

Antes de hablar del agua hay que haberla contemplado mucho.

Claudio Rodríguez (see e.g. Yubero-Ferrero (1998))
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This appendix provides the supplementary material to Chapter 3 “Ill-posedness in mod-
elling 2Dmorphodynamic problems: Effect of bed slope and secondary flow”. In Section
B.1 we explain the limitations of the eddy viscosity coefficient derived by Elder (1959). In
Section B.2 we present the closure relations to compute the sediment transport rate. We
prove that the two-dimensional morphodynamic model presented in Section 3.2 may be
ill-posed due to not accounting for diffusion in the equation modelling the transport of
the secondary flow intensity (Section B.3) and due to not accounting for the effect of the
bed slope on the sediment transport direction under unisize conditions (Section B.4). In
Section B.5 we present the details of the computation of the domain in which the model
accounting for mixed-size sediment is well-posed regarding the effect of the bed slope.

B.1. Eddy Viscosity

I n general terms, given the anisotropy of the flow field, the diffusion tensor has non-
diagonal terms and the diagonal terms are not equal (i.e., the diffusion coefficient in the

streamwise direction νs is different than in the transverse direction νn ). The non-diagonal
terms become significant close to corners (Fischer, 1973) but far from corners the diagonal
terms dominate. Elder (1959) derived an eddy viscosity coefficient in the streamwise and
lateral direction assuming a logarithmic profile for the primary flow:

νs =
�

0.4041
κ3

+
1
6
κ
�

h u∗ , (B.1)

νn =
1
6
κh u∗ . (B.2)

Elder neglected the effect of the viscous sublayer, which causes his analytical expression
to be a lower limit of the diffusion coefficient (Fischer, 1967).

Several researchers (e.g. Erdogan and Chatwin, 1967; Simons and Albertson, 1963; Fis-
cher, 1969; Holley, 1971; Fischer, 1973; Kyong and Il, 2016) propose values for the diffusion
coefficient that are significantly larger than the one derived by Elder (1959). These values
are used, for instance, by Parker (1978); Ikeda and Nishimura (1985) and Van Prooijen and
Uijttewaal (2002). These values of the diffusion coefficient are derived from experimental
measurements and implicitly account for the enhanced momentum redistribution due to
secondary flow that we account for by means of the dispersive stresses.

In numerical simulations resolving the secondary flow, the diffusion coefficients de-
rived by Elder (1959) are valid if the grid is of the order of magnitude of the flow depth
(assuming that the relevant turbulent processes scale with the flow depth). Otherwise the
numerical grid filters out significant two-dimensional turbulent motions that need to be
accounted for in the closure model (Talstra, 2011). In our numerical runs the grid cell size
is always smaller than the flow depth.

B.2. Magnitude of the Sediment Transport Rate

T he module of the specific sediment transport rate of size fraction k, qbk [m2/s], has
a direction given by the angle ϕsk [rad]:

(qbxk , qbyk ) = qbk (cosϕsk , sinϕsk ) . (B.3)
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The magnitude of the sediment transport rate is equal to:

qbk = Fak

Æ

g Rd 3
k

1− p
q∗bk , (B.4)

where p is the porosity and q∗bk [−] is a nondimensional sediment transport rate (Einstein,
1950) dependent on the Shields (1936) stress:

θk =
Cf

�

Q
h

�2

g Rdk
. (B.5)

The parameter R= ρs/ρw−1 [−] is the submerged sediment density, ρs = 2650kg/m3 is
the sediment density and ρw = 1000kg/m3 is the water density. To compute the nondi-
mensional sediment transport rate we use a fractional form (Blom et al., 2016, 2017b) of
the relation proposed by Engelund and Hansen (1967) neglecting form drag:

q∗bk =
0.05
Cf

θ5/2
k , (B.6)

and the relation including a nondimensional critical shear stress θc [−] proposed by
Ashida and Michiue (1971):

q∗bk = 17 (θk − ξkθc)
�

Æ

θk −
Æ

ξkθc

�

. (B.7)

The parameter ξk [−] is the hiding factor that accounts for the fact that fine sediment in a
mixture hides behind larger grains and a coarse sediment in amixture ismore exposed than
in unisize coarse sediment (Einstein, 1950). Ashida and Michiue (1971) proposes θc = 0.05
and the relation:

ξk =











0.843
�

dk
Dm

�−1
for dk

Dm
≤ 0.4

�

log10(19)

log10(19
dk

Dm
)

�2

for dk
Dm
> 0.4

, (B.8)

where Dm is a characteristic mean grain size of the sediment mixture.

B.3. Proof of Ill-posedness Due to Secondary Flow without
Diffusion

I n this section we prove that the model based on the Shallow Water Equations account-
ing for secondary flow without diffusion is ill-posed.
The system of equations is composed of the first four rows and columns of the full

system of equations in Equation (3.24). Neglecting diffusive processes matrices Dx0 and
Dy0 are equal to 0. As we are interested in the short-wave domain, friction can be ne-
glected. The resulting matrix M0 of the linearised eigenvalue problem (Equation (3.33))
is:

M0 =Ax0kwx+Ay0kwy . (B.9)
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We compute the fourth order characteristic polynomial ofmatrixM0. The roots of the
characteristic polynomial are the eigenvalues (i.e., the angular frequencies ω in Equation
(3.31)). The discriminant of a fourth order polynomial p(ω) = p4ω

4 + p3ω
3 + p2ω

2 +
p1ω+ p0 = 0 is equal to (Beeler et al., 1972):

∆4 = (p
2
1 p2

2 p2
3 − 4 p3

1 p3
3 − 4 p2

1 p3
2 p4+ 18 p3

1 p2 p3 p4− 27 p4
1 p2

4 + 256 p3
0 p3

4 )

+p0(−4 p3
2 p2

3 + 18 p1 p2 p3
3 + 16 p4

2 p4− 80 p1 p2
2 p3 p4− 6 p2

1 p2
3 p4+ 144 p2

1 p2 p2
4 )

+p2
0 (−27 p4

3 + 144 p2 p2
3 p4− 128 p2

2 p2
4 − 192 p1 p3 p2

4 ) .

(B.10)

We find that the discriminant of the characteristic polynomial is:

∆4 =
16g h2T 2βu

LI
k2

wx

�

k2
wx− k2

wy

�

, (B.11)

where βu =β
∗q2

x/h2 and:

T = LI g
h

LI g
�

k2
wx+ k2

wy

�2
+βu

�

6k2
wxk2

wy− 2k4
wx

�

i

+β2
uk4

wx . (B.12)

As the coefficients of the characteristic polynomial p(ω) are all real, a positive discrim-
inant indicates that either all the roots are real or all the roots are complex. A negative
discriminant indicates that there are two real and two complex roots. The complex roots
come in pairs of complex conjugates. For this reason, if the discriminant is negative there
exist an eigenvalue with a positive imaginary component. As the discriminant is nega-
tive for kwx < kwy independently from the wave number, there exists always a region of
growth. This implies that the model is ill-posed.

B.4. Proof of Ill-posedness Due to Lack of Bed Slope Effect
under Unisize Conditions

I n this section we prove that the model based on the Shallow Water Equations with-
out accounting for the effect of secondary flow in combination with the Exner (1920)

equation to model bed elevation changes is ill-posed if the effect of the bed slope on the
direction of the sediment transport is not taken into consideration.

The system of equations is composed of the first three and the fifth rows and columns
of the system of equations in Equation (3.24). Neglecting diffusive processes in the mo-
mentum equations and the effect of the bed slope, matrices Dx0 and Dy0 are equal to 0.
The system of equations has 4 unknowns (h, qx, qy, and η). The unknowns are coupled
meaning that a change in bed elevation influences the flow and vice versa. The celerity
of perturbations associated with the flow variables (i.e., h, qx, and qy ) are orders of mag-
nitude larger than the celerity of perturbations in bed elevation if the Froude number is
sufficiently small (Fr ¯ 0.7 (De Vries, 1965, 1973; Lyn and Altinakar, 2002)). Under this
condition we can decouple the system and consider steady flow to study the propaga-
tion of perturbations in bed elevation (i.e., quasi-steady flow assumption (De Vries, 1965;
Cao and Carling, 2002a; Colombini and Stocchino, 2005)). In this manner we reduce the
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number of unknowns to one (η), which means that there is only one eigenvalue (ω). We
obtain ω equating to 0 the determinant of matrix:

R=









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ω









−M0 .

(B.13)
The growth rate (the imaginary part of ω) is:

ωi =
qbCfk

2
wx

k2
wxw2

2 +w2
1

�

w3+(n− 1)k4
wy

�

, (B.14)

where w1, w2, and w3 are second degree polynomials on kwy:

w1 =Cf

�

�

1− 4Fr2�k2
wx+ 2k2

wy

�

, (B.15)

w2 = b1+
�

1−Fr2�k2
wx+ k2

wy , (B.16)

w3 =−3Fr2nk4
wx− b1nk2

wx+
�

n
�

2−Fr2�−
�

2+Fr2��k2
wxk2

wy+ b1 (n− 3)k2
wy , (B.17)

where b1 is:

b1 =
3C 2

f Fr
2

h2
. (B.18)

Parameter n is the degree of non-linearity of the sediment transport relation (Mossel-
man et al., 2008):

n =
Q
qb

∂ qb

∂ Q
, (B.19)

which is larger than 1. For instance, n = 5 in the relation developed by Engelund and
Hansen (1967) and n > 3 in the one byMeyer-Peter and Müller (1948). In general n > 3 for
the sediment transport relation to be physically realistic (Mosselman, 2005).

For kwy tending to infinity, parameter w3 becomes negligible with respect to (n −
1)k4

wy. As all other terms in Equation (B.14) are positive, for a large wave number the
growth rate is positive which implies that the model is ill-posed.

B.5. Well-Posed Domain under Mixed-Size Sediment Con-
ditions

I n this sectionwe show that the ShallowWater Equations in combinationwith the active
layer model (Hirano, 1971) used to account for mixed-size sediment morphodynamics

may yield an ill-posed model depending on the closure relation used to account for the
effect of the bed slope on the sediment transport direction.

We consider a model with two sediment size fractions. The system of equations is
composed of the first three, the fifth and the sixth rows and columns of the full system
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of equations in Equation (3.24). We neglect diffusive processes in the momentum equa-
tions. The system of equations has 5 unknowns (h, qx, qy, η, and Ma1 ). We consider that
the Froude number is sufficiently small such that the quasi-steady approximation is valid
(Appendix B.4) and we assume that the celerity associated with changes in the grain size
distribution of the bed surface are of the same order of magnitude as the celerity of bed
elevation changes (Ribberink, 1987; Sieben, 1997; Stecca et al., 2016). Under these condi-
tions it is valid to decouple the system and consider steady flow to study the propagation
of perturbations in bed elevation and bed surface grain size distribution. In this manner
we reduce the number of unknowns to two (η and Ma1 ), which means that there are two
angular frequencies to find. We obtain ω equating to 0 the determinant of matrix:

R=













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 ω 0
0 0 0 0 ω













−M0 .

(B.20)
We define a set of physically meaningful parameters useful to simplify the expression

of the growth rate. Subscripts k and l refer to the grain size fraction while the subscript j
refers to the direction (i.e., x and y ). The parameters are a generalization of the parameters
used by Stecca et al. (2014) and Chavarrías et al. (2018a) to the x and y direction.

Parameter ψ j [−] represents the sediment transport intensity (e.g.De Vries, 1965; Lyn
and Altinakar, 2002; Stecca et al., 2014) and ranges between 0 (no sediment transport) and
O (10−2) (high sediment discharge):

ψ j =
∂ qb j

∂ q j
. (B.21)

Parameter c j k ∈ [0,1] [−] represents the sediment transport intensity of fraction k relative
to the total sediment transport intensity:

c j k =
1
ψ j

∂ qb j k

∂ q j
. (B.22)

Parameter γ j k [−] represents the sediment transport intensity of fraction k relative to the
fraction content of sediment of fraction k at the interface between the active layer and
the substrate:

γ j k = c j k − f I
k , (B.23)

Parameter χ j k [−] represents the nondimensional rate of change of the total sediment
transport rate with respect to the change of volume of sediment of size fraction k in the
active layer:

χ j k =
1
u j

∂ qb j

∂ Mak
. (B.24)



B.5. Well-Posed Domain under Mixed-Size Sediment Conditions

B

233

Parameter d j k ,l [−] represents the nondimensional rate of change of the sediment trans-
port rate of size fraction l with respect to the volume of sediment of size fraction k in
the active layer:

d j k ,l =
1

u jχ j k

∂ qb j l

∂ Mak
. (B.25)

Parameter µ j k ,l [−] represents the rate of change of the sediment transport rate with
respect to the volume of sediment in the active layer relative to the fraction content of
sediment of fraction k at the interface between the active layer and the substrate:

µ j k ,l = d j k ,l − f I
k . (B.26)

Parameter R j < 0 [m2/s] represents the effect of the bed slope on the direction of the
sediment transport rate:

R j =
∂ qb j

∂ s j
, (B.27)

where s j = ∂ η/∂ j . Parameter r j k [−] represents the effect of the bed slope on the direc-
tion of the sediment transport rate of fraction k relative to the total effect:

r j k =
1

R j

∂ qb j k

∂ s j
. (B.28)

Parameter l j k [−] represents the effect of the bed slope on the direction of the sediment
transport rate of fraction k relative to the fraction content of sediment at the interface
between the active layer and the substrate:

l j k = r j k − f I
k . (B.29)

The largest of the two growth rates (i.e., the largest imaginary part of the two eigen-
values ω of the system) is:

ωi =
1
2

�p
2

2

Æ

f1−
Æ

f2

�

, (B.30)

where:
f1 =

Æ

m2
1 +m2−m1 , (B.31)

and:
f2 = R2

yk4
wy . (B.32)

When parameter f1 is larger than 2 f2, ωi > 0 and perturbations grow. Parameter f1 be-
comes large with respect to f2 when parameter m2 becomes large with respect to m1
where:

m1 = k2
wxu2a3− f2 , (B.33)

and:
m2 = 4k2

wxu2 f2o2 . (B.34)
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Focusing on the bed slope effect, for a given value of f2 (i.e., a given value of Ry ), parameter
m2 becomes large with respect to m1 when parameter o becomes large, where:

o = a1+ 2χx1

�

ry1− dx1,1

�

. (B.35)

Thus, the growth rate of perturbations is prone to be positive when the absolute value of
ry1− dx1,1 increases. The parameters am for m = 1,2,3 are:

a1 = ex+ ey+χx1µx1,1 , (B.36)

a2 = γx1ex+ γy1ey−µx1,1ex−µx1,1ey , (B.37)

a3 = a2
1 + 4χx1a2 . (B.38)

The parameters e j for j = x, y are:

ex =ψx
k2

wx
�

1−Fr2
�

k2
wx+ k2

wy

, (B.39)

ey =ψy

k2
wy

�

1−Fr2
�

k2
wx+ k2

wy

. (B.40)

We compute the limit of the growth rate (Equation (B.30)) for kwx and kwy tending
to infinity:

ωlim
i = α1

�

ry1− dx1,1

�2
+α2

�

ry1− dx1,1

�

+α3 , (B.41)

where:

α1 =
−u2χx1

Ry
χx1 , α2 =

−u2χx1

Ry
alim

1 , α3 =
u2χx1

Ry
alim

2 , (B.42)

where the superscript lim indicates that these are the limit values and:

e lim
x =

ψx

2−Fr2 , (B.43)

e lim
y =

ψy

2−Fr2 . (B.44)

As Ry < 0 and χx1 > 0, the mathematical character of the system of equations is given by
the sign of the second degree polynomial with variable

�

ry1− dx1,1

�

. The fact that α1 > 0
(the factor of the squared term) indicates that themodel is well-posedwhen r−y1 < ry1 < r+y1
where:

r±y1 =
1

2χx1

�

−alim
1 ±

q

alim2

1 + 4χx1alim
2

�

+ dx1,1 . (B.45)
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To argue with a person who has renounced the use of reason
is like administering medicine to the dead.

Paine (1776)

Chance is the name we give to what we choose to ignore.

Voltaire (see e.g. Jiménez (2018))
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This appendix provides the supplementary material to Chapter 4 “A regularization strat-
egy for modelling mixed-sediment river morphodynamics”. The document is organized
as follows. In Section C.1 we present the model equations. In Section C.2 we study the
possible values of the regularization parameters by imposing that the regularized active
layer model is mass conservative. The parameters of the experiment conducted by Rib-
berink (1987) are shown in Section C.3. In Section C.4 we show that the eigenvalues of
the regularized active layer model are always positive. This guarantees that the regular-
ized model is well-posed. In Section C.5 we describe the numerical technique used in
solving the system of equations. In Section C.6 we describe the preparatory laboratory
experiments. These experiments are used to calibrate the friction coefficient, estimate a
reasonable value of the active layer thickness, study the initial condition of the laboratory
experiments conducted under conditions in which the active layer model is ill-posed, and
select a sediment transport relation. In Section C.7 we calibrate the numerical model ap-
plied to reproduce the laboratory experiments. In Section C.8 we derive the celerity at
which tracer sediment propagates downstream, which is useful to select the thickness of
the active layer.

C.1. Model Equations

I n this section we present the system of equations for modeling mixed-sediment river
morphodynamics. In Section C.1.1 we present the flow equations. In Section C.1.2 we

present the active layer model (Hirano, 1971). A simplified active layer model is presented
in Section C.1.3. In Section C.1.4 we show the closure relations. In Section C.1.5 we
present the system of equations in matrix-vector formulation.

C.1.1. Flow Equations
We consider a one-dimensional mixture of water and sediment flowing over a mobile
bed. A set of partial differential equations that accounts for the interactions between
sediment and water is found by applying mass and momentum conservation principles
for the mixture of sediment and water (e.g., Garegnani et al., 2011; Greco et al., 2012).
The complete system of equations reduces to the Saint-Venant-Exner model (i.e., clear
water approximation) under low sediment concentrations (c = qb/q < 0.006, where qb
[m2/s] and q [m2/s] are the sediment transport rate and flow discharge per unit width,
respectively (e.g., Garegnani et al., 2011, 2013)). In the remaining we will assume that the
clear water approximation is valid.

The flow is modeled using the Saint-Venant (1871) equations:

∂ h
∂ t
+
∂ q
∂ x
= 0 , (C.1)

∂ q
∂ t
+
∂ (q2/h + g h2/2)

∂ x
+ g h

∂ η

∂ x
=−g hSf , (C.2)

where t [s] denotes the time coordinate, x [m] the streamwise coordinate, h [m] the flow
depth, g [m/s2 ] the acceleration due to gravity, η [m] the bed elevation, and Sf [−] the
friction slope.
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The flow equations can be further simplified assuming steady flow. Under this con-
dition the conservation of water mass and momentum reduce to a spatially constant dis-
charge, and the backwater equation:

∂ h
∂ x
=
−1

1−Fr2

∂ η

∂ x
−

Sf

1−Fr2 , (C.3)

where Fr= q/
p

g h3 is the Froude number.

C.1.2. Active Layer Model
To model changes in bed elevation we assume that the sediment transport rate adapts
instantaneously to changes in bed shear stress. Spatial and/or temporal adaptation to
capacity load (Bell and Sutherland, 1983; Phillips and Sutherland, 1989, 1990) is not consid-
ered. Neglecting mechanisms such as subsidence and uplift (Paola and Voller, 2005), and
assuming a constant bed porosity, we obtain the Exner (1920) equation:

∂ η

∂ t
+
∂ qb

∂ x
= 0 , (C.4)

where for simplicity the sediment transport rate includes the pores.
The sediment phase is composed of a mixture of N non-cohesive sediment size frac-

tions. Each fraction is characterized by a grain size dk [m] where k is an index identifying
a size fraction. The total sediment transport rate per unit width is the sum of the sediment
transport rate of size fraction k, qbk [m2/s]:

qb =
N
∑

k=1

qbk . (C.5)

The conservation of the volume of sediment of size fraction k in the active layer per unit
of bed area (Mak = Fak La [m]) is expressed mathematically as (Hirano, 1971):

∂ Mak

∂ t
+ f I

k
∂ (η− La)
∂ t

+
∂ qbk

∂ x
= 0 for 1≤ k ≤N − 1 , (C.6)

where Fak ∈ [0,1] [−] is the volume fraction content of size fraction k in the active layer,
f I
k ∈ [0,1] [−] is the volume fraction content of size fraction k at the interface between
the active layer and the substrate, and La [m] is the active layer thickness. By definition,

N
∑

k=1

Fak = 1,
N
∑

k=1

f I
k = 1 . (C.7)

From the first constrain in Equation (C.7) one obtains the change of the volume of sedi-
ment in the active layer of the N th grain size with time.

The system is complete with an equation for the conservation of mass in the substrate.
Yet, this equation is linearly dependent on the Exner (1920) and Hirano (1971) equations
which implies that it does not play a role in the mathematical character of the system
(Stecca et al., 2014; Chavarrías et al., 2018a).
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C.1.3. Simplified Active Layer Model
To simplify the system of equations we replace the N − 1 equations that account for the
change in bed surface volume fraction content of the N fractions by one equation that
models the average grain size following the approach of Ribberink (1987). We multiply
each regularized active layer equation by its characteristic grain size and we add all the
equations:

α
∂ Dma

∂ t
−

DI
m

La

∂ qb

∂ x
+

1
La

N
∑

k=1

dk
∂ qbk

∂ x
= 0 (C.8)

where Dma =
∑N

k=1 dk Fak [m] is the mean grain size of the sediment in the active layer
and DI

m =
∑N

k=1 dk f I
k [m] is the mean grain size of the sediment at the interface between

the active layer and the substrate. The mean grain size is computed arithmetically as
it is a necessary step to obtain an approximate equation. Yet, we consider that the mean
grain size is better approximated assuming the grain size distribution to be logarithmically
distributed.

We write the sediment transport rate qbk as a function of the flow depth h and the
mean grain size of the sediment in the active layer Dma such that:

∂ qbk

∂ x
=
∂ qbk

∂ h
∂ h
∂ x
+
∂ qbk

∂ Dma

∂ Dma

∂ x
. (C.9)

We use that:

Dma =
N
∑

k=1

dk Fak = dN +
1
La

N−1
∑

k=1

Mak (dk − dN ) , (C.10)

where we have used the constrain that
∑N

k=1 Fak = 1. Thus,

∂ qbk

∂ Dma
=

N−1
∑

l=1

∂ qbk

∂ Mal

∂ Mal

∂ Dma
= La

N−1
∑

l=1

1
dl − dN

∂ qbk

∂ Mal
, (C.11)

where we have used that:
∂ Mal

∂ Dma
=

La

dl − dN
. (C.12)

We substitute the backwater equation (Eq. C.3) in the Exner (1920) equation (Eq. C.4)
and the equation of the mean grain size (Eq. C.8) to obtain the final set of equations:

∂ η

∂ t
− 1

1−Fr2

∂ qb

∂ h
∂ η

∂ x
+
∂ qb

∂ Dma

∂ Dma

∂ x
=

1
1−Fr2

∂ qb

∂ h
Sf , (C.13)

α
∂ Dma

∂ t
+

1
La

1
1−Fr2

�

DI
m
∂ qb

∂ h
−

N
∑

k=1

dk
∂ qbk

∂ h

�

∂ η

∂ x

− 1
La

�

DI
m
∂ qb

∂ Dma
−

N
∑

k=1

dk
∂ qbk

∂ Dma

�

∂ Dma

∂ x
=

=
−1

La

�

1−Fr2
�

�

DI
m
∂ qb

∂ h
−

N
∑

k=1

dk
∂ qbk

∂ h

�

Sf .

(C.14)
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C.1.4. Closure Relations
To close the system of equations we provide closure relations for the friction term, the
sediment transport rate, and the flux between the active layer and the substrate.

We adopt the following Chézy closure relation for the friction term:

Sf =
Cfu

2

g h
, (C.15)

where Cf [−] is a nondimensional friction coefficient that we assume to be constant (i.e.,
independent of the flow or bed properties), and u = q/h [m/s] is the mean flow velocity.

The sediment transport rate of size fraction k per unit width is assumed to be the
product of a nondimensional sediment transport rate (q∗bk [−]) and the bed surface frac-
tion content. The latter we assume equal to the active layer volume fraction content. The
Einstein (1950) parameter (

Æ

g Rd 3
k ) scales the nondimensional quantity such that:

qbk = Fak

Æ

g Rd 3
k

1− p
q∗bk , (C.16)

where R= ρs/ρw−1 [−] is the submerged specific gravity, ρs = 2650kg/m3 the sediment
density, and ρw = 1000kg/m3 the water density. The sediment transport rate qbk includes
the volume of pores. The nondimensional sediment transport rate is assumed to be a
function of the nondimensional bed shear stress, θk (Shields, 1936):

θk =
Cfbu2

g Rdk
, (C.17)

where Cfb [−] is the skin friction coefficient.
The nondimensional sediment transport rate is computed using a sediment transport

relation such as the one proposed by Ashida and Michiue (1971):

q∗bk = 17 (θk − ξkθc)
�

Æ

θk −
Æ

ξkθc

�

. (C.18)

The parameter ξk [−] is the hiding function:

ξk =











0.843
�

dk
Dm

�−1
for dk

Dm
≤ 0.4

�

log10(19)

log10(19
dk

Dm
)

�2

for dk
Dm
> 0.4

, (C.19)

where Dm is a characteristic mean grain size of the sediment mixture. Ashida and Michiue
(1971) propose θc = 0.05.

Under degradational conditions we assume that the volume fraction content of sedi-
ment at the interface between the active layer and the substrate is equal to the sediment in
the top part of the substrate. Under aggradational conditions the sediment in the active
layer is assumed to be transferred to the substrate (Hirano, 1971):

f I
k =

¨

fsk (z = η− La) if ∂ (η−La)
∂ t < 0

Fak if ∂ (η−La)
∂ t > 0

. (C.20)

Other formulations include those of Hoey and Ferguson (1994).
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C.1.5. Matrix Formulation
In this section we present the matrix-vector form (Equation (2.9)) of the active layer
model in combination with the unsteady flow equations (Stecca et al., 2014) and assuming
steady flow (Chavarrías et al., 2018a) as well as the simplified morphodynamic model.

The vector of dependent variables (Qu ), system matrix (Au ), and vector of source
terms (Su ) of the fully unsteady system is (Stecca et al., 2014):

Qu = [h, q ,η, [Mak]]
ᵀ , (C.21)

Au =













0 1 0 0

g h −
� q

h

�2 2 q
h g h 0

∂ qb
∂ h

∂ qb
∂ q 0

�

∂ qb
∂ Mal

�

�

∂ qbk
∂ h − f I

k
∂ qb
∂ h

� �

∂ qbk
∂ q − f I

k
∂ qb
∂ q

�

0

�

∂ qbk
∂ Mal
− f I

k
∂ qb
∂ Mal

�













, (C.22)

Su = [0,−g hSf, 0,0]ᵀ . (C.23)

The preconditioning matrix is in this case:

Mu =



















1 0 0
0 1 0 0

0 0 β
βα1

0
. . .

βαN−1



















. (C.24)

Assuming steady flow, the vector of dependent variables (Qs ), system matrix (As ),
and vector of source term (Ss ) are equal to (Chavarrías et al., 2018a):

Qs = [η, [Mak]]
ᵀ , (C.25)

As =





− 1
1−Fr2

∂ qb
∂ h

�

∂ qb
∂ Mal

�

�

− 1
1−Fr2

�

∂ qbk
∂ h − f I

k
∂ qb
∂ h

�� �

∂ qbk
∂ Mal
− f I

k
∂ qb
∂ Mal

�



 , (C.26)

Ss =
�

Sf

1−Fr2

∂ qb

∂ h
,
�

Sf

1−Fr2

�

∂ qbk

∂ h
− f I

k
∂ qb

∂ h

���ᵀ

. (C.27)

The preconditioning matrix assuming steady flow is:

Ms =β











1 0

α1

0
. . .

αN−1











. (C.28)

The nondimensional appoximated bed and sorting celerities are (DeVries, 1965;Chavar-
rías et al., 2018a):

λb =
ψ

1−Fr2 , (C.29)
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λs1 = χ1µ1,1 , (C.30)
where the parameters are (Stecca et al., 2014; Chavarrías et al., 2018a):

ψ=
∂ qb

∂ q
, (C.31)

γk = ck − f I
k , (C.32)

ck =
1
ψ

∂ qbk

∂ q
, (C.33)

χl =
1
u
∂ qb

∂ Mal
, (C.34)

µl ,k = dl ,k − f I
k , (C.35)

dl ,k =
1

uχl

∂ qbk

∂ Mal
. (C.36)

In the simplifiedmorphodynamic model (Section C.1.3), the vector of dependent vari-
ables (Qm ), system matrix (Am ), and vector of source term (Sm ) are:

Qm = [η, Dma]
ᵀ , (C.37)

Am = u





− 1
1−Fr2

∂ qb
∂ h

∂ qb
∂ Dma

1
La

1
1−Fr2

�

DI
m
∂ qb
∂ h −

∑N
k=1 dk

∂ qbk
∂ h

�

− 1
La

�

DI
m

∂ qb
∂ Dma

−
∑N

k=1 dk
∂ qbk
∂ Dma

�



 ,

(C.38)

Sm =
Sf

1−Fr2

�

∂ qb

∂ h
,
−1
La

�

DI
m
∂ qb

∂ h
−

N
∑

k=1

dk
∂ qbk

∂ h

��ᵀ

. (C.39)

The preconditioning matrix is:

Mm =β
�

1 0
0 α

�

. (C.40)

The parameters are:
λm = χmµm , (C.41)
γm = cm− f I

m , (C.42)

cm =
1
ψLa

N
∑

k=1

dk
∂ qbk

∂ q
, (C.43)

f I
m =

DI
m

La
, (C.44)

χm =
1
u
∂ qb

∂ Dma
, (C.45)

µm = dm− f I
m , (C.46)

dm =
1

uχmLa

N
∑

k=1

dk
∂ qbk

∂ Dma
. (C.47)
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C.2. Mass Conservation of the Modified System

M ass conservation of the modified system of equations (Section 4.3.1) is guaranteed
if the sum of the N modified active layer equations is equal to the modified Exner

(1920) equation. As we already substituted the Exner (1920) equation in the active layer
equation, the addition of the N modified active layer equations must yield an identity:

N
∑

k=1

βαk
∂ Mak

∂ t
+

N
∑

k=1

f I
kβ
∂ (η− La)

∂ t
+

N
∑

k=1

∂ qbk

∂ x
= 0⇒

β
∂ La

∂ t

�

N
∑

k=1

αk Fak − 1

�

+βLa

N
∑

k=1

�

αk
∂ Fak

∂ t

�

= 0 .

(C.48)

To allow for morphodynamic changes the parameterβmust be different than 0. This
yields a multiplicity of cumbersome closure relations for αk relating the temporal change
of the active layer thickness to those of the volume fraction contents at the bed surface.
We choose to simplify the problem assuming that αk = α ∀k so that we obtain:

β
∂ La

∂ t
(α− 1) = 0 . (C.49)

Given that α 6= 1 to recover the well-posedness of the system of equation, the active layer
thickness must be constant to conserve mass in the modified system of equations.

C.3. Parameters of theNumerical Simulation of the Thought
Experiment

I n this section we provide the details of our numerical simulation of the thought ex-
periment conducted by Ribberink (1987). The thought experiment is based on the

laboratory Experiment E8-E9 conducted by Ribberink (1987). The only difference is that
in the thought experiment the substrate is finer than in the laboratory experiment.

The domain is 30 m long and it is discretized into 0.01 m long cells. The simulation
time is 120 h. The total and skin friction coefficient are equal to 0.0117. The sediment
mixture is composed of two sediment sizes equal to 0.78 mm and 1.29 mm. The flow
discharge per unit width is constant and equal to 0.0803 m2/s. The downstream water
level is constant and such that initially the bed is in equilibrium. The upstream sediment
load is initially equal to 5.64× 10−6 m2/s and it is composed of 50% of the fine fraction.
During the first 30 h the fraction of fine sediment linearly decreases to 0. The total amount
of sediment decreases to 95% of the initial value. The active layer thickness is equal to
0.02 m. The initial volume fraction content of fine sediment in the substrate is 0.6.

It is not fully clear to the authors which sediment transport relation and which pa-
rameters Ribberink (1987) used in the simulation of the thought experiment using the
two-layer model. We have inferred that he used the relation developed byMeyer-Peter and
Müller (1948) with the hiding function by Egiazaroff (1965) with the calibrated parame-
ters A= 15.85, B = 1.5, and θc = 0.0307. The mean grain size is computed arithmetically.
We calibrate the ripple factor (a constant multiplying the Shields (1936) stress) such that
the bed slope and volume fraction content of fine sediment are as close as possible to
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the reported values. We obtain that for a ripple factor equal to 0.3169 the bed slope is
1.65× 10−3 (the same as Ribberink (1987) reported) and the volume fraction content of
fine sediment in the active layer is equal to 0.409 (Ribberink (1987) reported a value equal
to 0.43).

C.4. Proof of Positive Regularized Eigenvalues

I n this section we prove that the eigenvalues of the regularized active layer model con-
sisting of α > 1 and β= 1 are always positive.
The eigenvalues are (Equation (4.11)):

λk =
u
2

�

λb+
λs1

αc

�

for k = 1,2 , (C.50)

and the value of αc that regularizes the system of equations is (Equation (C.51)):

αc =
λs1

λb



1− 2
γ1

µ1,1
± 2

√

√

√

√

γ1

µ1,1

�

γ1

µ1,1
− 1

�



 . (C.51)

Substituting Equation (C.51) in Equation (C.50) we obtain:

λk =
uλb

2









1+
1

1− 2 γ1
µ1,1
± 2

È

γ1
µ1,1

�

γ1
µ1,1
− 1

�









for k = 1,2 . (C.52)

The two eigenvalues are equal (i.e., λ1 = λ2 ) and the sign of the square root term is chosen
such that that αc > 1. The symbols are defined in Appendix C.1.5.

If λs1 > 0, the fact thatαc > 1 implies that the square root term is positive (see Equation
(C.51)). Moreover, as αc > 0 the following inequality holds:

1− 2
γ1

µ1,1
+ 2

√

√

√

√

γ1

µ1,1

�

γ1

µ1,1
− 1

�

> 0 . (C.53)

The above inequality implies that λk > 0 (see Equation (C.52)).
If λs1 < 0, the fact that αc > 1 implies that the square root term in negative (see

Equation (C.51)). Moreover, as αc > 0 the following inequality holds:

1− 2
γ1

µ1,1
− 2

√

√

√

√

γ1

µ1,1

�

γ1

µ1,1
− 1

�

< 0 . (C.54)
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The eigenvalues are positive if and only if:

1+
1

1− 2 γ1
µ1,1
− 2

È

γ1
µ1,1

�

γ1
µ1,1
− 1

�

> 0 =⇒

−
γ1

µ1,1
<

√

√

√

√

γ1

µ1,1

�

γ1

µ1,1
− 1

�

.

(C.55)

The discriminant∆ (Equation (4.7)) is negative for α= 1, as the problem is ill-posed if we
do not regularize it. This implies that the sign of λs1 is opposite to the sign of 2γ1/µ1,1−1,
as λb > 0. For this reason γ1/µ1,1 > 1/2 and Inequality (C.55) is true.

Thus, the regularization strategy based on α > 1 and β = 1 always yields positive
eigenvalues.

C.5. Numerical Solution of the System of Equations

W e have developed the code Elv to numerically solve the system of equations that
models river morphodynamic processes. In this section we present the details of

the numerical technique. In Section C.5.1 we present the model equations. In Section
C.5.2 we describe the procedure to solve the system of equations. The discretized flow,
bed elevation, substrate, and bed surface equations are shown in Sections C.5.3, C.5.4,
C.5.5, and C.5.6, respectively.

C.5.1. Model Equations
The model accounts for one-dimensional river morphodynamic processes on a domain
of length L [m] over time T [s]. The cross section is assumed rectangular and wide with
respect to the flow depth, such that the hydraulic radius is assumed equal to the flow
depth. The flow is assumed to be steady. Under these conditions, mass and momentum
conservation of water flow reduce to the backwater equation:

∂ h
∂ x
=
−1

1−Fr2

∂ η

∂ x
−

Sf

1−Fr2 , (C.56)

where x [m] denotes the streamwise coordinate, h [m] the flow depth, η [m] the bed
elevation, Sf [−] the friction slope, Fr = q/

p

g h3 the Froude number, g [m/s2 ] the
acceleration due to gravity, and q [m2/s] the flow discharge per unit width.

The bed is assumed to be alluvial and composed of a mixture of N non-cohesive size
fractions with characteristic size dk [m] for 1 ≤ k ≤ N . Bed elevation changes are mod-
elled using the Exner (1920) equation:

∂ η

∂ t
+
∂ qb

∂ x
= 0 , (C.57)

where t [s] denotes the time coordinate and qb [m2/s] the sediment transport rate per
unit width (including pores). The sediment transport rate results from the addition of the
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sediment transport rate of each size fraction such that qb =
∑N

k=1 qbk , where qbk [m2/s]
is the sediment transport rate of size fraction k per unit width (including pores).

Changes in grain size distribution at the bed surface are modelled by means of the
modified active layer equation:

α
∂ Mak

∂ t
+ f I

k

∂ (η− La)
∂ t

+
∂ qbk

∂ x
= 0 for 1≤ k ≤N − 1 , (C.58)

where α [−] denotes the regularization parameter, Mak = Fak La [m] the volume of sed-
iment of size fraction k in the active layer per unit of bed area, Fak ∈ [0,1] [−] is the
volume fraction content of sediment of size fraction k in the active layer, f I

k ∈ [0,1] [−]
is the volume fraction content of sediment of size fraction k at the interface between the
active layer and the substrate, and La [m] is the active layer thickness.

Mass conservation of sediment of size fraction k in the substrate is expressed by:

∂ Msk

∂ t
− f I

k
∂ (η− La)
∂ t

= 0 for 1≤ k ≤N − 1 , (C.59)

where Msk [m] is the volume of sediment of size fraction k in the substrate per unit of
bed area.

The friction slope and the sediment transport rate depend on the local properties of
the flow and the bed surface. Worded differently, Sf and qbk are functions of h, q , and
Mak for 1≤ k ≤N − 1. These functions are presented in Section C.1.4.

The parameters of the model include the acceleration due to gravity g , the active layer
thickness La, the nondimensional friction coefficient Cf [-], the skin-related nondimen-
sional friction coefficient Cfb [-], the water and sediment densities ρw [kg/m3 ] and ρs
[kg/m3 ], and the parameters of the sediment transport relation (see Section C.1.4).

The boundary conditions are the the flow discharge, q , the sediment transport rate of
size fraction k at the upstream end of the domain, qbk0, and the downstream water eleva-
tion ηwL. The initial condition consists of the bed elevation η0, the volume of sediment
in the active layer Mak0 for 1≤ k ≤N − 1, and in the substrate Msk0 for 1≤ k ≤N − 1 at
the initial time t0.

We refer to Appendix C.1 for a description of the assumptions underlying the model
equations.

C.5.2. Solution Procedure
In this section we detail the procedure followed in solving the model equations. The
domain L is discretized using cells of equal length ∆x [m]. The equation are solved
in a decoupled form. This assumes a weak interaction between the equations (Section
4.3.5) and allows, at each time step, to solve Equations (C.56)-(C.59) in series. Worded
differently, all equations are solved assuming all variables to be constant during one time
step. All variables are computed at cell centers and the boundary conditions are imposed
at the edges of the first and last cells.

The workflow is as follows. First, the input is checked for errors and inconsisten-
cies and memory is allocated for all variables. Starting from the initial condition, the
flow depth is updated (Section C.5.3). Second, the sediment transport rate is computed.
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Using the sediment transport rate, the bed elevation is updated (Section C.5.4). Subse-
quently, the substrate is updated, which allows for computing the volume fraction content
of sediment at the interface between the active layer and the substrate (Section C.5.5). If
the regularization strategy is applied, the mathematical character of the model (i.e., well-
posed or ill-posed) at each node is obtained. This implies computing an algebraic relation
for a case with two sediment size fractions and solving an eigenvalue problem for more
than two sediment size fractions (Chavarrías et al., 2018a). Subsequently, the value of the
regularization parameter α at each ill-posed node is computed (Section 4.3.2). Using pa-
rameter α (or α = 1 for the case in which the regularization strategy is not applied), the
volume of sediment of each size fraction k in the active layer is updated (Section C.5.6).
At this point, all dependent variables have been computed. The celerities (i.e., the system
eigenvalues) are computed (Equation (4.11)), which allows for computing the time step
of the next loop iteration given a predefined maximum CFL number. The variables are
checked for inconsistencies and, if required, are saved. This last step finishes the loop it-
eration, which starts again by computing the flow depth given the new bed elevation and
grain size distribution. The loop finishes once the final time T is reached. The workflow
is shown in Figure C.1.

C.5.3. Flow Solver
We have implemented a steady and an unsteady solver in Elv. For the case of steady flow,
as we assume here, the flow is represented by one Ordinary Differential Equation, as the
bed level is assumed to remain constant such that there is only one independent variable
(i.e., the streamwise coordinate x ). The user can choose between a first-order and fourth-
order solver. Moreover, the user can choose to solve the backwater equation in its flow
depth or in its energy form. Here we describe the standard fourth-order Runge-Kutta
method (Runge (1895); Kutta (1901), see e.g. Butcher (1996); Butcher and Wanner (1996))
used to solve the backwater equation (Equation (C.56)) in its flow depth form.

The bed elevation η, flow discharge per unit width q , and nondimensional friction
coefficient Cf are known at the center of each cell. Given the flow depth at the center of
cell n, hn , we compute the flow depth at the center of the cell immediately upstream (i.e.,
hn−1 ):

hn−1 = hn −
1
6

�

R1n
+ 2R2n

+ 2R3n
+R4n

�

, (C.60)

where:

R1n
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, (C.61)
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R4n
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h=hn+R3n

, (C.64)
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where:
dh
dx
=

sn −CfFr2

1−Fr2 , (C.65)

where:

Fr2 =
q2

g h3
, (C.66)

sn =
ηn −ηn−1

∆x
. (C.67)

The computation of the flow depth at the cell center of the most downstream cell (i.e.,
the first computation) takes into consideration that the boundary condition is at ∆x/2
distance from the cell center and linearly extrapolates the bed slope between the last two
cells.

C.5.4. Bed Elevation Solver
We apply the Method Of Lines (e.g., Carver and Hinds, 1978; Verwer and Sanz-Serna,
1984; LeVeque, 2004; Toro, 2009) in solving the Partial Differential Equation representing
changes in bed elevation (i.e., the Exner (1920) equation (Eq. (C.57))). The divergence of
the sediment transport rate at the cell edges is computed using first order upwind differ-
ences. The time integration is conducted using a forward Euler scheme. This strategy,
often referred in literature as a Forward in Time and Backward in Space (FTBS) scheme
(e.g., Sonke et al., 2003; Long et al., 2008; Na Ranong et al., 2010; Esfahanian et al., 2013;
Zima et al., 2015), is first-order accurate in both space and time and widely applied in
solving transport equations.

Our numerical method is finite difference, not spectral, and hence does not suffer
from overshoots and undershoots caused by the spectral reconstruction of data around
a discontinuity (i.e., Gibbs phenomenon (Wilbraham, 1848; Gibbs, 1898, 1899; Hewitt
and Hewitt, 1979)). The numerical technique could cause oscillations in the vicinity of
shock waves because of numerical instability (i.e., Gibbs-like phenomenon (Liu et al.,
1994; Biondini and Trogdon, 2017; Hovda, 2017)). All numerical schemes of order larger
than 1 suffer from such a problem (Godunov, 1959, 1999) and the adoption of techniques
to avoid them, such as TVD methods (Harten, 1983, 1984; Yee et al., 1985) and WENO
reconstructions (Liu et al., 1994; Jiang and Shu, 1996), are mandatory. In our case, we use
a first-order method that is proven to be monotone (i.e., stable at shocks) (Section C.6).

Given the sediment transport rate and the bed elevation at the center of each cell n
at time m (i.e., q m

bn
and ηm

n ), we compute the bed elevation at the center of cell n at time
m+ 1 as:

ηm+1
n = ηm

n −
∆t
∆x

�

q m
bn−1
− q m

bn

�

. (C.68)

The boundary condition is applied at the upstream edge of the most upstream cell.

C.5.5. Substrate Solver
The substrate is discretized into Ns layers of thickness Lsl

such that Msk =
∑Ns

l=1
mskl

,
where index l = 1, . . . ,Ns refers to the substrate layers from top to down and mskl

is the
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volume of sediment of size fraction k per unit of bed area in layer l of the substrate.
The lower elevation of the substrate is fixed and must always be lower than the interface
between the active layer and the substrate.

Under aggradational conditions, sediment is transferred from the bed surface to the
substrate and the thickness of the top substrate layer increases. When the thickness of the
top substrate layer exceeds a predefined value, a new layer is created. In this case, if the
number of substrate layers exceeds Ns, the lowermost two layer are combined into one
single layer such that eventually the total number of substrate layers does not exceed Ns.

Under degradational conditions, sediment is transferred from the substrate to the ac-
tive layer. When degradation occurs on only the top substrate layer, the thickness of this
layer decreases. When degradation occurs over more than one substrate layer, the thick-
ness of the topmost layer(s) becomes equal to 0 and degradation continues on the first
substrate layer with nonzero thickness.

In solving each of the N−1 substrate equations (Equation (C.59)), we apply a forward
Euler scheme. Given the volume of sediment of size fraction k in the substrate per unit of
bed area at the cell center of each cell n at time m (M m

skn
), the bed elevation at the center

of each cell n at times m and m+ 1 (ηm
n and ηm+1

n ), and the active layer thickness at the
center of each cell n at times m and m + 1 (Lm

an
and Lm+1

an
), we compute the volume of

sediment of size fraction k in the substrate per unit of bed area at the cell center of each
cell n at time m+ 1 (M m+1

skn
) as:

M m+1
skn
=M m

skn
+ f Im

kn

�

ηm+1
n −ηm

n + Lm
an
− Lm+1

an

�

. (C.69)

The volume fraction content of sediment at the interface between the active layer and
the substrate ( f Im

kn
) depends on whether the interface between the active layer and the

substrate lowers or increases its elevation:

f Im

kn
=







f m
skntop

if ηm+1
n −ηm

n + Lm
an
− Lm+1

an
< 0

F m
akn

if ηm+1
n −ηm

n + Lm
an
− Lm+1

an
> 0

, (C.70)

where F m
akn
= M m

akn
/Lm

an
is the volume fraction content of sediment of size fraction k in

the active layer and f m
skntop

is the volume fraction content of sediment of size fraction k

at the top part of the substrate. The top part of the substrate contains the substrate
cells in which degradation takes place. If degradation occurs on only the top layer of the
substrate f m

skntop
= f m

skn1

. If degradation consumes the entire first substrate layer and part

of the second layer, the volume fraction content at the interface between the active layer
and the substrate is a weighted average of the sediment in both layers. This approach
guarantees mass conservation of the substrate sediment.

C.5.6. Active Layer Solver
The N−1 active layer equations (Equation (C.58)) must be solved using the same scheme
as the Exner (1920) equation (Section C.5.4) to preserve mass.
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Given the volume of sediment of size fraction k in the active layer per unit of bed area
at the center of each cell n at time m (M m

skn
), the bed elevation at the center of each cell n

at times m and m+ 1 (ηm
n and ηm+1

n ), the active layer thickness at the center of each cell
n at times m and m+1 (Lm

an
and Lm+1

an
), and the sediment transport rate of size fraction k

at the center of each cell n at time m (q m
bkn

), we compute the volume of sediment of size
fraction k in the active layer per unit of bed area at the center of each cell n at time m+1
(M m+1

skn
) as:

M m+1
akn
=M m

akn
− 1
α

�

f Im

kn

�

ηm+1
n −ηm

n + Lm
an
− Lm+1

an

�

+
∆t
∆x

�

q m
bkn−1
− q m

bkn

�

�

. (C.71)

The volume fraction content of sediment at the interface between the active layer and the
substrate is obtained from solving the substrate equation (Section C.5.5). The regulariza-
tion parameter α is equal to 1 for the active layer model and it is computed following the
methodology explained in Section 4.3.2 when applying the regularization strategy.
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Figure C.1: Elv flowchart.
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C.6. Preparatory Experiments

I n this section we describe 4 preparatory experiments (P1, P2, P3 and P4) conducted:
(1) to calibrate the friction coefficient, (2) to select a sediment transport relation, (3) to

select a value for the active layer thickness, and (4) to estimate the equilibrium conditions
in which we start the experiments conducted under conditions in which the active layer
model is ill-posed (i.e., Experiments I1, I2, I3, and I4, Section 4.4).

In Experiments P1 and P2 we feed coarse and fine sediment, respectively. The ex-
periments are run under equilibrium conditions. In these experiments we measure the
sediment transport rate and profiles of bed and water elevation. The conditions of Exper-
iment P1 are equal to the initial condition of Experiments I1, I2, I3, and I4. In the latter
experiments degradational conditions are imposed decreasing the level of the downstream
weir. Yet, the lowering rate is sufficiently small such that the degradational conditions do
not significantly differ from the conditions of Experiment P1. Experiment P3 is equal to
P1 except for the fact that we feed tracer sediment to study its propagation under equilib-
rium conditions. The aim of Experiment P4 is to study the same degradational conditions
imposed in Experiments I1, I2, I3, and I4 except for the fact that we use unisize sediment.
The sediment in the patch is tracer sediment rather than fine sediment. In Experiments
P3 and P4 we measured the surface volume fraction content of tracer sediment (Table
C.1).

Experiment Sediment Tracer Conditions Measurements
P1 coarse no Equilibrium water and bed elev., sed. trans.
P2 fine no Equilibrium water and bed elev., sed. trans.
P3 coarse yes Equilibrium tracer content
P4 coarse yes Degradational tracer content

Table C.1: Preparatory experiments.

Table C.2 summarizes the main parameters of Experiments P1 and P2. The granular
roughness (drel =

dk
h ) is smaller than 0.05, which implies that flow is deep in the sense that

individual grains do not affect bed friction (e.g. Ferguson, 2007; Church, 2013, 2015). The
flow Reynolds number (Re = q

ν , where ν = 1× 10−6 m2/s is the kinematic viscosity of
water) is far above 500, which implies that the flow is fully turbulent (e.g. Allen, 1985;
Lajeunesse et al., 2010). The particle Reynolds number (Re∗ = u∗dk

ν , where u∗ [m/s] is
the shear velocity) is above 300 for Experiment P1, which indicates the lack of a viscous
sublayer (i.e., rough wall) (e.g. Shields, 1936; Lajeunesse et al., 2010;Nieuwstadt et al., 2016).
In Experiment P2, the fact that Re∗ = 101 indicates that the viscous sublayer may not be
negligible in this case. The Rouse number (Ro= Vs

κu∗ , whereVs [m/s] is the settling veloc-
ity and κ= 0.41 [−] is the von Kármán constant) is larger than 7, which implies that, as
observed, sediment is transported as bed load predominantly (e.g.Dade and Friend, 1998).
The Stokes number (St=Resρs

9ρw
, where Res =

Vsdk
ν is the settling Reynolds number) is far

above 1 and the sediment concentration c = qb/q is below 6× 10−3. This implies that the
fluid and particles move in a quasi-autonomous way (i.e., they do not affect each other)
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and that the concentration of sediment does not need to be accounted for in the equa-
tions for the conservation of water mass and momentum (i.e., clear water approximation
Garegnani et al. (2011, 2013); Heyman et al. (2016)).

We assume the particle settling velocity to be given by Vs =
p

Rg dk which neglects
the weak dependency of the drag coefficient on the Reynolds number (Lajeunesse et al.,
2010). To obtain the bed friction coefficient Cfb we correct the total friction coefficient
Cf for side wall friction with the method developed by Johnson (1942) (see Guo, 2015).

We conclude that in the experiments conducted under conditions in which the active
layer model is ill-posed we can assume that the flow is fully turbulent, deep (single grains
do not affect bed friction), and rough (lack of viscous sublayer). Moreover, sediment is
mainly transported as bed load and in a small enough concentration such that the clear
water approximation holds.

P1 P2
Q [m3/s] 0.060 0.045
s [−] 3.6× 10−3 1.8× 10−3

h [m] 0.187 0.174
drel [−] 0.029 0.012
q [m2/s] 0.15 0.11
Fr [−] 0.59 0.49
u [m/s] 0.799 0.647
θ [−] 0.061 0.067
u∗ [m/s] 0.073 0.048
Cf [−] 0.0104 0.0074
Cfb [−] 0.0084 0.0055
Re∗ [−] 403 101
Res [−] 1600 390
Re [−] 1.5× 105 1.1× 105

Ro [−] 10 9
St [-] 480 110

q̄b [g/min] 400 80
σqb

[g/min] 190 30
c [−] 4.2× 10−5 1.1× 10−5

Table C.2: Mean parameters of Experiments P1 and P2.

In both Experiments P1 and P2 the mean value of the measured sediment transport
rate at the downstream end ( q̄b ) is slightly smaller than the feed rate. This indicates that
statistical equilibrium conditions (i.e., conditions where the mean supply rate equals the
mean transport rate) are not achieved. The difficulty of achieving those conditions arise
from the large variability of the sediment transport rate with time (σqb

and Figure C.2).
Yet, we consider that we were in conditions sufficiently close to equilibrium as we did not
measure significant aggradation or degradation.

The bed was covered by low relief bedforms, which were two or three grain sizes high
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and approximately 2 m long.
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Figure C.2: Measured sediment transport rate in the equilibrium experiments with coarse sediment (P1, red)
and fine sediment (P2, blue): (a) time series, (b) probability density, and (c) cumulative probability.

The probability distribution of bed elevation (Figure C.3) indicates that a reasonable
value for the active layer thickness is 0.01 m, corresponding to the elevation with a prob-
ability of exposure below approximately 5% (Ribberink, 1987; Blom, 2008). This value is
also in accordance with 1−3 times D90 as proposed by, for instance, Hirano (1971), Hoey
and Ferguson (1994), and Seminara et al. (1996).

Experiment P3 is the same as Experiment P1 except for the fact that the feed sediment
has a different color than the initial bed sediment. This allows us to measure the surface
fraction content of tracer material at the downstream end of the flume as a function of
time (Figure C.4).

The fed tracer sediment travels downstream mainly through the migration of incipi-
ent dunes (Carling, 1999; Carling et al., 2005). Some individual particles travel at a faster
speed and reach the downstream end of the flume more quickly. The incipient dunes
entrain non-tracer substrate sediment, which decreases the tracer content of the bed sur-
face sediment. This vertical sediment mixing also induces tracer sediment to be deposited
(and temporarily stored) at relatively low elevations of the bed, which creates a top layer
of tracer sediment of a certain thickness (2 to 3 times D90 ). The temporary storage of
tracer sediment at low elevations slows downs the propagation of the (tracer) sediment
and increases the variation of the time needed for particles to reach the downstream end
of the flume (Ribberink, 1987; Blom et al., 2003). The tracer content of the bed surface
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Figure C.3: Measured bed elevation in the preparatory experiments with coarse sediment (P1, red) and fine
sediment (P2, blue): (a) probability density and (b) cumulative probability.

sediment stops increasing once the top layer is so thick that the incipient dunes no longer
entrain non-tracer substrate sediment.
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Figure C.4: Surface fraction content of tracer sediment at x = 9.17m: measured (black dots), and predicted
values using an active layer thickness equal to 0.005 m, 0.010 m, and 0.020 m (lines).
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Experiment P4 is equal to Experiment I1 (Section 4.4.1) except for the fact that the
sediment in the patch is tracer sediment rather than fine sediment. In the bedform troughs,
substrate sediment is entrained, which causes a periodic entrainment of tracer sediment
at the location of the patch (Figure C.5a). Downstream from the patch, the oscillating
behavior diffuses as tracer and non-tracer sediment is mixed and reworked. The more
downstream, the less pronounced are the changes in volume fraction content of tracer
sediment (Figure C.5b).
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Figure C.5: Surface fraction content of tracer sediment with time (a) at the center of the patch x = 4.95m, and
(b) downstream of the patch x = 9.15m.

C.7. Calibration of the Numerical Model

I n this section we select a sediment transport relation and calibrate the value of the active
layer thickness for modeling of the experiments.
Assuming that Experiments P1 and P2 are in equilibrium, we compute a time-average

bed shear stress based on the mean bed slope computed individually for each bed eleva-
tion profile. Based on the time-average values of the measured sediment transport rate at
the downstream end we compute the nondimensional sediment transport rate q∗b (Section
C.1.4) andwe compare ourmeasurements to the values predicted using the sediment trans-
port relations by Meyer-Peter and Müller (1948), Fernandez-Luque and Van Beek (1976),
Engelund and Hansen (1967), Ashida and Michiue (1972), and Wilcock and Crowe (2003)
(Figure C.6).

All sediment transport relations predict the sediment transport rates of the coarse
and the fine size fractions reasonably well. We choose to apply the sediment transport
relation by Ashida and Michiue (1972) in our analysis. We have verified that the choice of
the sediment transport relation does not affect the conclusions of our analysis.

We model Experiment P3 (feed of unisize tracer sediment under equilibrium condi-
tions) using different values of the active layer thickness to estimate a suitable value. The
cell size is equal to 0.01 m. As the active layer model does not capture the phenomena
related to small scale variability in bed elevation (Section 4.3.1), it predicts that the tracer
sediment propagates downstream as a front (i.e., a step or Heaviside function). Worded
differently, downstream of the tracer front the volume fraction content of tracer sediment
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Figure C.6: Comparison between the measured (error bars) and predicted (lines) sediment transport rate using
the closure relations by Meyer-Peter and Müller (1948) (MPM), Fernandez-Luque and Van Beek (1976) (FLvB),
Engelund and Hansen (1967) (EH), Ashida and Michiue (1972), and Wilcock and Crowe (2003) (WC). The error
bars are one standard deviation long in each direction.

is 0 and it is 1 upstream of it. The speed at which the front travels is inversely related to
the active layer thickness (Section C.8). The results show that an active layer thickness
equal to 0.01 m seems reasonable (Figure C.4), which is consistent with the value for the
active layer thickness obtained from the bed elevation profiles (Section C.6).

In numerical results, the discontinuous nature of the tracer front is not exactly pre-
served due to spurious numerical diffusion (Figure C.4). We have verified that the ob-
served diffusive behavior is only numerical performing test with a finer mesh, as it reduces
numerical diffusion.

We model Experiment P4 using the calibrated friction coefficient, sediment transport
relation, and active layer thickness. The active layer model predicts a constant entrain-
ment of substrate sediment with time (Figure C.5a). This is because the active layer model
does not capture the measured periodic entrainment of substrate sediment due to fluctua-
tions in bed elevation. There is a slight increase in the surface content of tracer sediment
with streamwise position along the patch. Downstream of the patch, the entrainment
of non-tracer sediment causes a decrease in the content of tracer sediment with stream-
wise direction. At the downstream end of the flume, where the influence of the periodic
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tracer entrainment is negligible, the active layer model reasonably well captures the mean
behavior (Figure C.5b).

C.8. Predicted Propagation Speed of Tracer Sediment un-
der Normal Flow Conditions

I n this section we derive the celerity at which the active layer model predicts tracer
sediment to propagate downstream under normal flow conditions.
The active layer equation for a tracer fraction reads:

∂ Ma1

∂ t
+ f I

1
∂ (η− La)
∂ t

+
∂ qb1

∂ x
= 0 , (C.72)

where the subscript 1 indicates the tracer fraction. Symbols are explained in Section C.5.1.
Under normal flow conditions, the bed elevation remains constant with time because
there is no streamwise imbalance in the total sediment transport rate, as the tracer has the
same transport capacity as the non-tracer sediment. We assume a constant active layer
thickness such that:

∂ Ma1

∂ t
+
∂ qb1

∂ x
= 0 . (C.73)

Applying the chain rule to the sediment transport relation we obtain:

∂ Ma1

∂ t
+
∂ qb1

∂ h
∂ h
∂ x
+
∂ qb1

∂ q
∂ q
∂ x
+
∂ qb1

∂ Ma1

∂ Ma1

∂ x
= 0 . (C.74)

Under normal flow conditions there are neither gradients in flow depth nor discharge.
Thus, we write:

∂ Ma1

∂ t
+
∂ qb1

∂ Ma1

∂ Ma1

∂ x
= 0 . (C.75)

Equation (C.75) is an advection equation with characteristic speed:

ct1 =
∂ qb1

∂ Ma1
=

qb

La
. (C.76)

Note the inverse proportionality between the propagation celerity of tracer sediment and
the active layer thickness. From a physical point of view, this can be understood from
the fact that a thicker active layer is associated with larger oscillations in bed elevation,
and larger oscillations in bed elevation are associated with a slower adaptation of sorting
processes (Blom et al., 2008).





D
Supplementary material to

Chapter 5

Had I been present at the Creation,
I would have given some useful hints
for the better ordering of the universe.

King Alfonso X “el Sabio” (“the Learned”) of Castile

The water you touch in a river is the last of that which has passed,
and the first of that which is coming. Thus it is with time present.

Da Vinci (ca. 1478–1518)
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This appendix provides the supplementarymaterial to Chapter 5 “Awell-posed alternative
to the Hirano active layer model for mixed-size sediment rivers”. Section D.1 presents
the linearized SILKE model. In Section D.2 we derive the eigenvalues of the model and
prove that (1) there exists a different time scale between the “fast” and “slow” eigenvalues,
(2) that the model presents an instability mechanisms, and (3) that the model is well-
posed. In Section D.3 we present the details of the derivation of the advection diffusion
eqution describing tracer sediment propagation. Section D.4 presents the conditions of
the experiment by Chavarrías et al. (2019a). Section D.5 presents the conditions of the
experiment by Sayre and Hubbell (1965) and the procedure to select a closure relation
for the sediment transport rate under equilibrium conditions. Section D.6 presents the
conditions of the experiment by Blom et al. (2003).

D.1. Matrices of the Linear Model

I n this sectionwe recast the perturbed system intomatrix-vector formwhich is necessary
to study the stability of the model and its well-posedness.
The reference state is obtained imposing equilibrium conditions. The reference bed

slope is equal to the friction slope (i.e., ∂ η
∂ x |0 = −Sf0 ). The grain size distribution is

uniform and arbitrary (Mak0 = ct. ∀k ∈ {1,N − 1}, where ct. means a constant which
satisifies the condition in Equation (5.6)). The particle activity is in equilibrium with
the arbitrary grain size distribution. For this reason, imposing that the erosional rate is

equal to the deposition rate we obtain that Γk0 = Fak La
Êk

D̂k

∀k ∈ {1,N − 1} and ΓN0 =
�

1−
∑N−1

k=1
Fak

�

La
ÊN

D̂N

.

We write the system of equations as:

∂ Q′

∂ t
+K0

∂ 2Q′

∂ x2
+A0

∂ Q′

∂ x
+B0Q

′ = 0 . (D.1)

The vector of dependent variables is:

Q′ =
�

η′,
�

Γ ′k
�

︸︷︷︸

N−1

,Γ ′N ,
�

M ′ak

�

︸ ︷︷ ︸

N−1

�ᵀ , (D.2)

The diffusion matrix is:

K0 =











0 0 0 0

0

�

−κkδi , j

�

0 0

0 0 −κN 0

0 0 0 0











. (D.3)

The matrix of gradient terms is:

A0 =













0 0 0 0
h

−Γk
1

1−Fr2

∂ vpk

∂ h

i

�

vpkδi , j

�

0 0

−ΓN
1

1−Fr2

∂ vpN

∂ h 0 vpN 0

0 0 0 0













. (D.4)
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The matrix of linear terms is:

B0 =





0
h

− 1
1−p D̂l

i

− 1
1−p D̂N

h

1
1−p

�

Êl −
ˆEN
�

i

0

h

D̂kδi , j

i

0

h

−Êkδi−1, j−3

i

0 0 D̂N
�

ˆEN
�

0

h

1
1−p

�

D̂l f I
k
−δk ,l D̂k

�i h

1
1−p

�

D̂N f I
k
−δk ,l D̂k

�i h

1
1−p

�

− f I
k

�

Êl −
ˆEN
�

+δk ,l Êk

�i



 . (D.5)

To avoid an excess of notation, we do not mark that the variables in the matrices are
evaluated at the reference state. The symbol δi , j represents the Dirac function.

For a case with two sediment size fractions the vector of dependent variables is:

Q′2 =
�

η′,Γ ′1,Γ ′2, M ′a1

�ᵀ . (D.6)

The diffusion matrix is:

K02
=









0 0 0 0
0 −κ1 0 0
0 0 −κ2 0
0 0 0 0









. (D.7)

The matrix of gradient terms is:

A02
=











0 0 0 0

−Γ1
1

1−Fr2

∂ vp1

∂ h vp1 0 0

−Γ2
1

1−Fr2

∂ vp2

∂ h 0 vp2 0
0 0 0 0











. (D.8)

The matrix of linear terms is:

B02
=













0 − 1
1−p D̂1 − 1

1−p D̂2
1

1−p

�

Ê1− Ê2

�

0 D̂1 0 −Ê1

0 0 D̂2 Ê2

0 1
1−p

�

D̂1 f I
1 − D̂1

�

1
1−p D̂2 f I

1
1

1−p

�

− f I
1

�

Ê1− Ê2

�

+ Ê1

�













. (D.9)

D.2. Eigenvalues of the Linear Model

I n this section we study the order of magnitude of the eigenvalues of a case considering
two sediment size fractions without diffusion. The fact that there are two different

time scales, one associated with changes in bed elevation and bed surface texture, and a
second one associated with changes in particle activity, allows us to decouple the problem.
Studying the limit for a wave number tending to infinity we prove that our model is well-
posed.

First we study the relative growth rate of perturbations associated with the different
processes of the model. To this end we compute the characteristic polynomial of the
system equating to zero the determinant det (M−ω1) = 0:

ω4+ c3ω
3+ c2ω

2+ c1ω+ c0 = 0 , (D.10)
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where:

c3 =−ζ1− ζ2+ e3
1

1− p
i , (D.11)

c2 = ζ1ζ2− e3
1

1− p
(ζ1+ ζ2) i−

1
1− p

�

a1vp1kw+ e1D̂1i+ a2vp2kw+ e2D̂2i
�

i , (D.12)

c1 =
1

1− p

�

vp1vp2k2
w (a1+ a2+ e3) i+ vp1kw

�

D̂2 (a1+ e1)+ Ê2a1
1

1− p

�

+

vp2kw

�

D̂1 (a2+ e2)+ Ê1a2
1

1− p

��

,
(D.13)

c0 =−
�

1
1− p

�2

vp1vp2k2
w

�

a1Ê2+ a2Ê1

�

, (D.14)

where:

ζ1 = vp1kw− D̂1i , (D.15)

ζ2 = vp2kw− D̂2i , (D.16)

e1 = Ê1

�

1− f I
1

�

, (D.17)

e2 = Ê2 f I
1 , (D.18)

e3 = e1+ e2 , (D.19)

a1 =−Fa1La
Ê1

vp1
ν , (D.20)

a2 =− (1− Fa1)La
Ê2

vp2
ν , (D.21)

ν =
1

1−Fr2

∂ vpk

∂ h
. (D.22)

The parameter ν is independent from the grain size because the derivative is independent
from the grain size:

∂ vpk

∂ h
= 11.5

p

Cf
u
h

, (D.23)

where we have assumed negligible hiding and the relation for the particle velocity devel-
oped by Fernandez-Luque and Van Beek (1976).

In our domain of interest the wave number of the perturbations is of order 1 or larger
(equivalent to perturbations of the order of tens of meters or smaller). In this case, the
real part of the parameters ζ1 and ζ2 scale with the particle velocity. The imaginary part
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(D̂k ) also scales with the particle velocity. This can be seen from the fact that vpk/D̂k =
0.0035/dk (Section 5.2.2). The maximum order of parameters e1, e2, and e3, is that of
the capacity entrainment rate ( Êk ). The capacity entrainment rate is significantly smaller
than the particle velocity, which can be seen from the fact that vpk/Êk = 575La f (θk ),
where f (θk ) is of order 1. Applying a similar analysis, we find that parameters a1 and a2
are also significantly smaller than the particle velocity. Hence, it is appropriate to discern
between fast variables scaling with the particle velocity and slow variables.

To obtain an approximate solution of the eigenvalues we expand the eigenvalues in
terms of an asymptotic power series ω = ωf + εωs where ε is a parameter an order of
magnitude smaller than the particle velocity and the superscript f and s indicate the fast
and slow variables. Substituting the expansion in the characteristic polynomial (Equa-
tion (D.10)) and equating terms of equal order of magnitude we obtain the characteristic
polynomial at first order:

ωf4
+(−ζ1− ζ2)ω

f3
+ ζ1ζ2ω

f2
= 0 . (D.24)

Two solutions of Equation (D.24) are equal to 0, which is consistent with the assumption
of different orders of magnitude of the eigenvalues. The other 2 solutions areωf

1 = ζ1 and
ωf

2 = ζ2. These are the eigenvalues associated to changes in particle activity.
At first order, the characteristic polynomial is:

b2ω
s2
+ b1ω

s+ c0 = 0 , (D.25)

where:

b2 = ζ1ζ2 , (D.26)

b1 =
1

1− p

�

ζ1

�

−e2D̂2+ a2vp2kwi
�

+ ζ2

�

−e1D̂1+ a1vp1kwi
�

+ e3ζ1ζ2i
�

. (D.27)

The two solutions of Equation (D.25) are:

ωs =
−b1

2b2
± 1

2b2

Æ

b 2
1 − 4b2c0 . (D.28)

The imaginary part of −b1/2b2 is negative. Hence growth of perturbations of the slow
variables (i.e., a positive imaginary part ofωs ) is only possible if the imaginary part of the
square root of the discriminant is positive. The discriminant can be written as a fourth
order polynomial as a function of the wave number:

b 2
1 − 4b2c0 = α4k4

w+α3k3
w+α2k2

w , (D.29)

where αk are parameters depending on b1, b2, and c0. Parameter α3 is purely imaginary
and parameter α2 is real. For this reason, for long waves (i.e., small values of kw ) the
imaginary part of the discriminant is negligible. Under this condition, α2 > 0 implies
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that the imaginary part of ωs is only due to −b1/2b2 and hence negative. If α2 < 0 the
imaginary part of ωs may be positive. The parameter α2 can be written as:

α2 =β1+β2+β3Ψ , (D.30)

where β1 > 0, β2 > 0, and β3 > 0 are parameters depending on b1, b2, and c0 and Ψ is
given by Equation (5.27). Summarizing, only if Ψ < 0 perturbations can grow.

To proof that the model considering two sediment size fractions and no diffusion is
well-posed, we compute the limit of the eigenvalues that are solution to Equation (D.25)
for the wave number tending to infinity:

ωs
1lim
=−i

1
2 (1− p)

H1 , (D.31)

ωs
2lim
=−i

1
2 (1− p)

H2 , (D.32)

where:

H1 = p1+ e3+ a1+ a2 , (D.33)

H2 =−p1+ e3+ a1+ a2 , (D.34)

where:

p1 =
q

e3
3 +(a1+ a2)

2+ 2e3 (a1 r1+ a2 r2) , (D.35)

r1 =
�

1−
2Ê2

e3

�

, (D.36)

r2 =



−1−
2 f I

1

�

Ê1− Ê2

�

e3



 . (D.37)

The subscript lim indicates that the parameter is the one in the limit for the wave
number tending to infinity. Parameters a1, a2, and e3 are real and positive, and parameters
r1 and r2 are real and smaller than 1. If the term in the square root of p1 is positive, the
angular frequency is a negative pure imaginary number as p1 < e3 + a1 + a2. On the
contrary, if the term in the square root is negative, it does not contribute to the growth
rate, as it is a real number and the growth rate is negative. In summary, the growth rate
of perturbations for both fast and slow variables is negative for a wave number tending
to infinity. Thus, the model is well-posed.

D.3. Advection-Diffusion Behavior at Long Time Scales

I n this section we present the details of the analysis of the SILKE model as regards to
tracer propagation in the “long” time scale (Section 5.3.4).
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The system of equations modelling unisize tracer sediment propagation is:

(1− p)
∂ η

∂ t
=D − E , (D.38)

(1− p)
∂ Ma1

∂ t
+(1− p) f I

1
∂ η

∂ t
=D1− E1 , (D.39)

∂ Γ1
∂ t
+
∂ vpΓ1

∂ x
−
∂ 2κΓ1
∂ x2

= E1−D1 , (D.40)

∂ Γ2
∂ t
+
∂ vpΓ2

∂ x
−
∂ 2κΓ2
∂ x2

= E2−D2 , (D.41)

where, subscript 1 identifies the tracer sediment. Note that as the properties of the tracer
sediment are equal as those of the parent material, the particle velocity, diffusivity, capac-
ity of entrainment and deposition are also equivalent. Due to the equilibrium conditions
(i.e., ∂ η/∂ t=0) we obtain:

D = E =⇒ ΓTD̂ = LaÊ1 , (D.42)

where we have defined ΓT = Γ1+Γ2 [m] as the total amount of active sediment. In Equation
(D.42) we observe that ΓT remains constant with time. We write Equation (D.39) as:

∂ Fa1

∂ t
=− 1

1− p
ΓT
La

D̂ (Fa1− FΓ1) , (D.43)

where we define FΓ1 = Γ1/ΓT [−] as the fraction of active tracer sediment. We write
Equation (D.40) as:

∂ FΓ1
∂ t
+ vp

∂ FΓ1
∂ x
−κ

∂ 2FΓ1
∂ x2

= D̂ (Fa1− FΓ1) , (D.44)

where we have used that the particle velocity and diffusivity do not vary in space as the
flow is uniform.

We introduce the variables:

c =
Ma1+ Γ1
La+ ΓT

=
Fa1La+ FΓ1ΓT

La+ ΓT
, (D.45)

δ = Fa1− FΓ1 . (D.46)

Change of variables yields:

∂ c
∂ t
+ vp

ΓT
La+ ΓT

∂ c
∂ x
−κ

ΓT
La+ ΓT

∂ 2c
∂ x2

=

vp
LaΓT

(La+ ΓT)
2

∂ δ

∂ x
−κ

LaΓT
(La+ ΓT)

2

∂ 2δ

∂ x2
−

p
1− p

D̂
ΓT

La+ ΓT
δ ,

(D.47)
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∂ δ

∂ t
+ vp

La

La+ ΓT

∂ δ

∂ x
−κ

La

La+ ΓT

∂ 2δ

∂ x2
=

vp
∂ c
∂ x
−κ ∂

2c
∂ x2

− D̂
�

1
1− p

ΓT
La
+ 1

�

δ .
(D.48)

We seek an approximation of the system of equations in terms of the asymptotic power
series:

c = c0+ εc1+ · · · , (D.49)

δ = εδ1+ ε
2δ2+ · · · . (D.50)

We see that we cannot use a naive approximation, as in this case δ would disappear from
the problem. For this reason we introduce the slow variables T = εt and X = εx. The
derivatives are:

∂ c
∂ T
=
∂ c
∂ t

∂ t
∂ T
=

1
ε

∂ c
∂ t

, (D.51)

∂ c
∂ X
=
∂ c
∂ x

∂ x
∂ X
=

1
ε

∂ c
∂ x

, (D.52)

∂ 2c
∂ X 2

=
1
ε2

∂ 2c
∂ x2

. (D.53)

Substituting the expansions, the problem is rewritten as:

ε
∂ (c0+ εc1)

∂ T
+ vp

ΓT
La+ ΓT

ε
∂ (c0+ εc1)

∂ X
−κ

ΓT
La+ ΓT

ε2 ∂
2 (c0+ εc1)
∂ X 2

=

vp
LaΓT

(La+ ΓT)
2 ε
∂
�

εδ1+ ε
2δ2

�

∂ X
−κ

LaΓT
(La+ ΓT)

2 ε
2 ∂

2
�

εδ1+ ε
2δ2

�

∂ X 2

−
p

1− p
D̂

ΓT
La+ ΓT

�

εδ1+ ε
2δ2

�

,

(D.54)

ε
∂
�

εδ1+ ε
2δ2

�

∂ T
+ vp

La

La+ ΓT
ε
∂
�

εδ1+ ε
2δ2

�

∂ X
−κ

La

La+ ΓT
ε2 ∂

2
�

εδ1+ ε
2δ2

�

∂ X 2
=

vpε
∂ (c0+ εc1)

∂ X
−κε2 ∂

2 (c0+ εc1)
∂ X 2

− D̂
�

1
1− p

ΓT
La
+ 1

�

�

εδ1+ ε
2δ2

�

.

(D.55)

We obtain a problem at order ε:

∂ c0

∂ T
+ vp

ΓT
La+ ΓT

∂ c0

∂ X
=−

p
1− p

D̂
ΓT

La+ ΓT
δ1 , (D.56)

0= vp
∂ c0

∂ X
− D̂

�

1
1− p

ΓT
La
+ 1

�

δ1 , (D.57)

and a problem at order ε2:

∂ c1

∂ T
+vp

ΓT
La+ ΓT

∂ c1

∂ X
−κ

ΓT
La+ ΓT

∂ 2c0

∂ X 2
= vp

LaΓT
(La+ ΓT)

2

∂ δ1

∂ X
−

p
1− p

D̂
ΓT

La+ ΓT
δ2 , (D.58)



D.4. Conditions of the Experiment by Chavarrías et al. (2019)

D

267

∂ δ1

∂ T
+ vp

La

La+ ΓT

∂ δ1

∂ X
= vp

∂ c1

∂ X
−κ

∂ 2c0

∂ X 2
− D̂

�

1
1− p

ΓT
La
+ 1

�

δ2 . (D.59)

From Equation (D.57) we obtain:

∂ δ1

∂ X
=

vp

D̂
�

1
1−p

ΓT
La
+ 1

�

∂ 2c0

∂ X 2
. (D.60)

Substituting in Equations (D.56) and (D.58) we obtain:

∂ c0

∂ T
+ vp

ΓT
La+ ΓT



1+
p

1−p

1
1−p

ΓT
La
+ 1





∂ c0

∂ X
= 0 , (D.61)

∂ c1

∂ T
+ vp

ΓT
La+ ΓT

∂ c1

∂ X
−

ΓT
La+ ΓT



κ+ v2
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La

La+ ΓT
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1
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ΓT
La
+ 1
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∂ 2c0

∂ X 2
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−D̂
ΓT

La+ ΓT
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1− p
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We multiply Equation (D.62) by ε and we add the result to Equation (D.61). Substituting
back to the original dependent variables, at first order the result is:

∂ c0

∂ t
+vp

ΓT
(1− p)La+ ΓT

∂ c0

∂ x
−

ΓT
La+ ΓT

�

κ+
v2

p

D̂

�

La

La+ ΓT

��

(1− p)La

(1− p)La+ ΓT

�

�

∂ 2c0

∂ x2
= 0 .

(D.63)

D.4. Conditions of the Experiment by Chavarrías et al.
(2019)

I n this section we summarize the parameters of the experiment conducted by Chavar-
rías et al. (2019a). The bed was initially flat, with a constant slope, and composed of

sediment painted red color. The same sedimentwas fed upstream at a constant rate. A con-
stant flow rate and downstream water level were imposed. After a steady pattern of bed
forms was established and equilibrium conditions where satisfied, unpainted (tracer) sedi-
ment was fed at the upstream end. Using a submerged camera situated at the downstream
end of the flume (9.17 m downstream from the feeding location) allowed measuring the
combined content of tracer sediment (at the bed surface and in transport) over time until
the bed surface was composed mainly of tracer sediment (after approximately 5 h). The
main parameters of the experiment are shown in Table D.1.
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h [m] u [m/s] Fr [−] qb0 [m2/s] Cf [−] Cfb [−] d1 [m]
0.187 0.799 0.59 7.86× 10−6 0.0104 0.0084 0.0055

Table D.1: Main parameters of the experiment conducted by Chavarrías et al. (2019a) of unisize tracer propaga-
tion under equilibrium conditions. Parameter qb0 is the sediment feed rate.

D.5. Conditions, Results, andModel Calibration of the Ex-
periment by Sayre and Hubbell (1965)

Sayre and Hubbell (1965) conducted an experiment to evaluate the risk of nuclear disposal
in rivers. To this end, they added 18 kg of radioactively-labeled sand along an approx-
imately 17 m wide stretch of the North Loup River (Nebraska, US). They tracked the
propagation of the tracer sediment during approximately 12 days (287.4 h) by means of a
scintillation detector, covering a distance of about 550 m. They took 11 longitudinal pro-
files on the right and left-hand side of the river and 2 along the centerline. The minimum
and maximum sizes of the bed sediment were equal to 0.088 mm and 9.424 mm, respec-
tively, with a geometric mean grain size equal to 0.315 mm. They discretized the sediment
mixture in 11 characteristic grain sizes. The tracer sediment had a narrower grain size dis-
tribution. The minimum and maximum sizes were 0.175 mm and 0.500 mm and it was
selected to have a mean grain size similar to the bed material and to be transported as bed
load. The flow conditions did not significantly vary during the measurement campaign
and it is reasonable to assume that normal flow prevailed. The time-averaged values of the
hydraulic parameters are presented in Table D.2. Sayre and Hubbell (1965) report that the
bed was covered with dunes between 0.30 m and 0.46 m height and based on core samples
they found that the average maximum depth at which tracer was found was 0.44 m below
the bed surface.

h [m] u [m/s] Fr [−] qb0 [m2/s] Cf [−] Cfb [−]
0.63 0.69 0.28 7.09× 10−5 0.0107 0.0049

Table D.2: Main parameters of the field campaign conducted by Sayre and Hubbell (1965). The skin friction
coefficient is derived using the predictor by Engelund and Hansen (1967).

Sayre and Hubbell (1965) explain that the left-hand side measurements are less repre-
sentative of the general dispersion behavior because a significant amount of tracer was
captured in a deep trough near the upstream location for several days. Later it was re-
entrained and part of it caught up with the sediment at the downstream part of the do-
main. For this reason we focus on the measurements that Sayre and Hubbell (1965) did
on the right-hand side of the river (Figure D.1). According to Sayre and Hubbell (1965),
the last measurement on the right-hand side unaffected by the later re-entrainment of sed-
iment from the left-hand side was the one done 117.7 h after placing the tracer sediment
(Table D.3).

The measured concentration at the downstream tail decreases linearly in logarithmic
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scale, which indicates the possibility of anomalous diffusion. This observation is valid
for all measurements. In assessing the possibility of anomalous diffusion it would be
beneficial to know the confidence interval of the measured data. This is important as
the difference between the concentration at the tails and at center spans two orders of
magnitude and the measurement error increases for the small concentrations at the tails.
This makes difficult to judge whether data shows anomalous diffusion or not.
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Figure D.1: Tracer concentration measured Sayre and Hubbell (1965) for all profiles taken along the right-hand
side of the river. See Table D.3 for the time after dosing at which each profile was taken.
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profile R1 R2 R3 R4 R5 R6 R8 R9 R10 R11 R12
time [h] 3.2 22.2 44.2 70.9 96.2 117.7 170.1 196 216.5 241.6 287.4

Table D.3: Time after dosing at which concentrations where measured.

Sayre and Hubbell (1965) estimate the bed load transport rate of the size fractions
comprised between 0.225 mm and 0.420 mm to be 171 ton/day. This is equivalent to
4.48× 10−5 m2/s (without including pores). The estimate is based on the measured aver-
age propagation celerity of the tracer sediment they placed in the river bed. We consider
the bed surface grain size distribution reported by Sayre and Hubbell (1965) discretized
using 11 characteristic grain sizes. Based on the bed surface grain size distribution and the
mean flow parameters (Table D.2), we compute the sediment transport rate using several
closure relations varying the skin friction coefficient (Cfb ). In Figure D.2 we plot the
sum of the sediment transport rate of the two fractions comprising the range estimated
by Sayre and Hubbell (1965). Based on the mean surface grain size, bed shear stress, and
geometry of the dunes reported by Sayre and Hubbell (1965), we compute the skin fric-
tion coefficient predicted using different closure relations (Figure D.2). We find that the
sediment transport relation by Ashida and Michiue (1971) in combination with the skin
friction predictor by Engelund and Hansen (1967) performs best, with an error of only
3%.
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Figure D.2: Sediment transport rate in the range of the tracer sediment predicted using the relations by Meyer-
Peter and Müller (1948) with Egiazaroff (1965) to account for hiding (MPM), Fernandez-Luque and Van Beek
(1976) with Egiazaroff (1965) to account for hiding (FLvB), Engelund and Hansen (1967) (EH), Ashida and
Michiue (1971) (AM), and Wilcock and Crowe (2003) (WC). The value estimated by Sayre and Hubbell (1965) is
shown in black. The vertical dashed lines indicate the value of the skin friction as predicted using the relations by
Haque and Mahmood (1983) (HM), Nikuradse (1933) (N), Smith and McLean (1977) (SMcL), Wright and Parker
(2004) (WP), and Engelund and Hansen (1967) (EH).

D.6. Conditions of the Experiment by Blom et al. (2003)

I n this section we present the initial and final conditions of Experiment B2 conducted
by Blom et al. (2003) (Table D.4). The characteristic grain sizes of the trimodal mixture

where equal to 0.68 mm, 2.1 mm, and 5.7 mm.
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variable initial final
h [m] 0.155 0.389

u [m/s] 0.63 0.69
Sf [−] 1.9× 10−3 2.2× 10−3

H [m] 0.018 0.122
Cfb [−] 0.0032 0.0069

qb [m2/s] 1.79× 10−5 4.45× 10−5

Fb1 [−] 0.34 0.90
Fb2 [−] 0.54 0.05
Fa1 [−] 0.50 0.88
Fa2 [−] 0.43 0.07

Table D.4: Main parameters of the experiment conducted by Blom et al. (2003). The symbols not defined
previously are the mean dune height (H ), and the fraction of the sediment transport rate of size fraction k
(Fbk ). We derive the skin friction coefficient by correcting the total friction reported by Blom (2008) for (1)
flume wall friction using the method by Johnson (1942) (see e.g.Guo (2015)), and (2) form drag using the method
by Smith and McLean (1977). The values for the volume fraction content of sediment in the active layer are
derived integrating the measured vertical grain size distribution profiles. The subscripts 1 and 2 correspond to
the fine and medium size fractions, respectively.
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