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A B S T R A C T   

Advanced controls have attracted increasing interests due to the high requirement on smart and energy-efficient 
(SEE) buildings and decarbonization in the building industry with optimal tradeoff strategies between energy 
consumption and thermal comfort of built environment. However, a state-of-the-art review is lacking on 
advanced controls for SEE buildings, especially considering advanced building energy systems, machine learning 
based advanced controls, and advanced occupant-centric controls (OCC). This study presents a comprehensive 
review on the latest advancement of advanced controls for SEE buildings, which covers recent research on data 
collection through smart metering and sensors, big data and building automation, energy digitization, and 
building energy simulation. Machine learning based advanced controls are comprehensively reviewed, including 
supervised, unsupervised and reinforcement learning, together with their roles and underlying mechanisms. In 
addition, advanced controls for energy security, reliability, robustness, flexibility, and resilience are further 
reviewed for energy-efficient and low-carbon buildings, with respect to fault detection and diagnosis, fire 
alarming and building energy safety, and climate change adaptation. Moreover, this study explores the advanced 
OCC systems and their applications in SEE buildings. Last but not the least, this study emphasizes the challenges 
and future prospects of the trade-off between complexity and predictive/control performance, AI-based con-
trollers and climate change adaptation, OCC in thermal comfort and energy saving for the SEE buildings. This 
study offers valuable insights into the latest research progress concerning the underlying mechanisms, algorithms 
and applications of advanced controls for SEE buildings, paving the path for sustainable and low-carbon tran-
sition in building sectors.   

1. Introduction 

The global building sector accounts for approximately one-third of 

the world’s final energy consumption and carbon emissions, leading to 
the crucial role of building industry in mitigating the global climate 
change [1–3]. In the next 30–40 years, both developed and developing 
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countries will face the challenge of decarbonizing their existing building 
stocks [4,5]. As a result, energy efficiency and decarbonization in 
buildings have become one of the most critical concerns for sustainable 
development, attracting an increasing number of researchers to engage 
in related research activities [6–8]. In response to the urgent need to 
decrease energy consumption and mitigate climate change, there is an 
increasing demand for sustainable building solutions to minimize 
environmental impacts and ensure energy security [9–11]. With the 
integration of advanced technologies (e.g., smart sensors, big data an-
alytics, and machine learning (ML) algorithms), smart and energy- 
efficient (SEE) buildings have been identified as a potential solution to 
address these challenges to optimize energy performance, improve 
occupant comfort and health, and enhance building resilience [12,13]. 
Compared to the conventional intelligent buildings, SEE buildings spe-
cifically refer to buildings that not only incorporate intelligent features 
but also prioritize energy efficiency and sustainability. 

In recent years, SEE buildings have become increasingly popular, 
which leverage integrated technologies developed using existing and 
advanced control techniques, such as Internet of Things (IoT) sensors, 
artificial intelligence (AI), and augmented reality (AR) [14–16]. 
Advanced controls are crucial for improving energy efficiency in 
buildings while maintaining occupant comfort and safety. Compared to 
traditional controls that typically rely on fixed setpoints and predefined 
rules, advanced controls offer flexibility, adaptability, data-driven de-
cision making, and system integration. In addition, advanced controls 
differ from traditional controls in terms of control logic. Advanced 
control incorporates dynamic and adaptive strategies that utilize real- 
time data and are optimized using advanced algorithms, which en-
ables personalized adjustments, proactive decision-making and contin-
uous optimization [17] to achieve higher levels of energy efficiency and 
occupant comfort in SEE buildings [18,19]. Advanced controls play a 
key role in enabling SEE buildings to achieve these goals by providing 
the intelligence and automation for energy management in buildings 
[20,21]. 

Recently, there has been increasing interests in advanced energy 
management strategies using ML methods, such as supervised learning 
(SL), reinforcement learning (RL), unsupervised learning (UNSL), and 
semi-supervised learning [22,23]. ML applications mainly include op-
erations, optimization, control, scheduling, and management [24–26]. 
Zhou [27] comprehensively reviewed the applications of AI in carbon 
neutral and community energy management from the view of energy 
supply and storage, regional demand, and energy management. The 
results indicated that, in building energy management systems, SL works 
well on classification and regression problems, while UNSL and RL is 
mainly used for clustering optimal scheduling. For sustainable energy 
supply systems, such as solar and wind energy systems, ML algorithms 
are mainly applied to solar irradiance prediction, wind resource pre-
diction, photovoltaic power prediction, smart control, as well as fault 
detection and diagnosis (FDD). 

SEE buildings and related research have drawn significant attention 
in academic. In recent years, researchers have conducted comprehensive 
review analyses of smart buildings from different perspectives. Table 1 
summarizes these existing review studies on this topic. 

In general, these existing reviews on smart buildings focus on specific 
technologies (e.g., IoT, AI, 5G, BIM, and GIS). Some of them demon-
strates the significance of advanced control systems in smart buildings, 
as they optimize energy performance and enhance operational flexi-
bility. However, existing literature in the field of SEE building exhibits 
several research gaps: firstly, there is a lack of comprehensive up-to-date 
reviews focusing on advanced building energy systems, in terms of three 
components (i.e., smart metering and sensors, big data and building 
automation, energy digitalization and building energy simulation). 
Secondly, reviews on underlying mechanisms, fundamental roles, and 
advanced algorithms of advanced controls for SEE buildings, have not 
been conducted, although these aspects determine the possibility to 
achieve building automation based on the big data. More importantly, 

Table 1 
Summary of review literature related to smart buildings.  

Authors Time Topic Main viewpoints/ 
findings 

Alfalouji 
et al. [28] 

April 2023 A taxonomic review: 
co-simulation for 
buildings and smart 
energy systems 

This paper provides a 
systematic analysis of the 
technology, standards, 
tools, and applications of 
collaborative simulation 
in the fields of building 
and smart energy 
systems. The literature 
on collaborative 
simulation in this field 
was reviewed and 
categorized using a 
taxonomy approach. 

Rodríguez- 
Gracia 
et al.[15] 

April 2023 Review: AI techniques 
in green/smart 
buildings 

This survey investigates 
the correlation and 
benefits of integrating AI 
technology in green and 
smart buildings. Using 
Web of Science and 
Scopus databases 
through a comprehensive 
review on the publishing 
productivity, most 
influential articles, and 
relevant participants in 
this field through 
bibliometric analysis. 

Khan et al.  
[29] 

December 
2022 

Review: critical fire 
event library for 
buildings and safety 
framework 

This paper establishes a 
smart firefighting action 
framework based on 
significant fire incidents 
or consequences. The 
main reasons for 
casualties among 
firefighters in building 
fires are reviewed. By 
generating a database of 
key and precursor fire 
events, it guides future 
designs for intelligent 
firefighting and building 
fire safety. This 
framework can predict 
significant fire incidents 
in a sub-real-time 
manner. 

Liu et al.  
[30] 

January 
2023, 

Review: data-driven 
smart building- 
integrated photovoltaic 
systems 

This paper 
comprehensively 
summarizes recent 
literature on data-driven 
smart building 
integrated photovoltaic 
(SBIPV) from four 
aspects: data perception, 
data analysis, data- 
driven prediction, and 
data-driven 
optimization. 

Xia et al.  
[31] 

September 
2022 

Review: GIS 
(geographic 
information system) 
and BIM (building 
information modeling) 
integration as the city 
digital twin (DT) 
technologies for 
sustainable smart city 
design 

This paper summarizes 
the ontology-based data 
integration approaches 
for GIS and BIM 
integration in smart 
cities. This paper mainly 
uses the keyword 
analysis, co-occurrence 
analysis, and co-citation 
and coupling analysis 
using CiteSpace to 
achieve the viewpoint. 

Pinto et al.  
[25] 

February 
2022 

A critical review: 
algorithms, and 

This study provides a 
comprehensive overview 
on the application of 

(continued on next page) 
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the occupant-centric control (OCC) should be thoroughly reviewed as 
they represents a transformative approach to building management, 
integrating perceptions of indoor environmental quality, occupant 
presence, and occupant interaction with the building, which can be used 
to optimize the operational efficiency of building energy systems and 
occupant comfort [38]. In addition, there is a dearth of information on 
advanced controls regarding energy security, reliability, robustness, 
flexibility, and resilience in SEE buildings. Lastly, the latest de-
velopments, challenges, and opportunities in advanced controls within 
this domain remain unclear, and there is a lack of clear theoretical 
guidance for researchers. 

To cover the aforementioned gaps, the objective of this paper is to 
comprehensively review advanced controls for SEE buildings and to 
specifically demonstrate the importance and advantages of OCC. To do 
so, advanced building energy systems are firstly summarized in terms of 

Table 1 (continued ) 

Authors Time Topic Main viewpoints/ 
findings 

applications for smart 
buildings 

transfer learning in smart 
buildings through 
categorizing 77 articles 
into 4 major application 
areas. In addition, this 
paper emphasizes the 
utilization of deep 
learning (DL) in transfer 
learning applications and 
discusses the solutions to 
integrate transfer 
learning into the 
ecosystem of smart 
buildings. 

Dwivedi 
et al. [32] 

April 2022 A systematic review: 
potential of Internet of 
Medical Things (IoMT) 
applications in building 
a smart healthcare 
system 

This paper identifies the 
role of the IoT 
applications in 
improving the healthcare 
system, and analyzes the 
research status on the 
benefits of IoT for 
patients and healthcare 
systems. It also briefly 
introduces the challenges 
of IoT and the challenges 
faced in developing 
intelligent healthcare 
systems. 

Huseien and 
Shah [12] 

January 
2022 

Review: 5G technology 
for smart energy 
management and smart 
buildings in Singapore 

This paper discusses the 
international trends of 
applying 5G technology 
to smart buildings and 
extensively reviews the 
support on 5G 
technology from the 
Singapore government. 

Aguilar et al. 
[13] 

November 
2021 

A systematic review: 
the use of AI in energy 
self-management for 
smart buildings 

This paper systematically 
reviews existing studies 
that implement AI to 
energy management 
systems in smart 
buildings. It groups these 
studies into specific tasks 
that autonomous 
management systems 
require, such as 
monitoring, analysis, and 
decision-making, to 
achieve goals in the 
environment. 

Malagnino 
et al. [16] 

August 
2021 

Review: BIM and IoT 
integration for smart 
and sustainable 
environments 

This paper reviews 
existing research on 
technological solutions 
of BIM and IoT to 
enhance the 
sustainability and 
intelligence of the built 
environment. It analyzed 
the literature published 
from 2015 to 2020. 

Stopps et al. 
[33] 

January 
2021 

A critical review: 
occupant-centric smart 
HVAC controls in 
residential buildings 

This paper critically 
reviews the latest 
research on simulation 
and field experiments, 
which are not entirely 
consistent with existing 
commercial intelligent 
home control 
technologies centered on 
residents. This paper 
compares and criticizes 
the demographic, 
location, building 
system, implementation 
goals, and experimental  

Table 1 (continued ) 

Authors Time Topic Main viewpoints/ 
findings 

methods of the research 
to understand the areas 
that need to be focused 
on in simulation and field 
experiments. 

Dakheel 
et al. [34] 

October 
2020 

Review: smart 
buildings features and 
key performance 
indicators 

This study aims to review 
the intelligence in the 
building environment, 
highlighting the key 
features, functions, and 
technologies of 
intelligent buildings, as 
well as discussing the 
challenges that may arise 
in implementing 
intelligent retrofitting 
applications. The paper 
reviews existing key 
performance indicators 
(KPIs) that measure the 
performance of 
intelligent buildings and 
their success in achieving 
goals. 

Panteli et al. 
[35] 

August 
2020 

A critical review: BIM 
applications in smart 
buildings from design 
to commissioning and 
beyond 

This study introduces the 
main progress when 
developing building 
integrated models for 
smart buildings, with a 
focus on integrating the 
IoT into building 
intelligence operations. 
The latest developments 
are also discussed 
considering 
interoperability issues 
related to data sharing 
among various BIM- 
related applications. 

Dong et al.  
[36] 

September 
2019 

Review: smart building 
sensing system for 
better indoor 
environment control 

This paper 
comprehensively reviews 
how indoor sensors 
impact the management 
of building environments 
from the aspect of energy 
efficiency, thermal 
comfort, visual comfort, 
and indoor air quality. 

Jia et al.  
[37] 

May 2019 Review: adopting IoT 
for the development of 
smart buildings 

This paper reviews IoT 
concepts and investigates 
the most advanced 
projects on the adoption 
of the IoT to smart 
buildings in both 
academia and industry.  

Z. Liu et al.                                                                                                                                                                                                                                       
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smart metering and sensor technology for data collection, big data 
analysis system and building automation system based on advanced 
control strategies [39], as well as data digitalization and building 
simulation system. Next, ML-based advanced control strategies are 
reviewed in terms of ML algorithms and their application. Then, to 
highlight the impact of occupancy behavior and occupants’ preference 
on the control performance, existing studies on OCC are summarized. 
Lastly, challenges and future perspectives are discussed for upcoming 
studies. Therefore, the primary contribution of this paper lies in 
providing a well-structured overview of the advancement and wide-
spread adoption of advanced controls (especially for OCC) in SEE 
buildings, as well as offering valuable insights into future research 
directions. 

2. Methodology 

The overall framework of this paper is presented in Fig. 1. It includes 
advanced building energy systems, ML based advanced controls, 
advanced OCC and also considering the current status, technical chal-
lenges and future prospects. Firstly, the advanced building energy sys-
tems are reviewed, in terms of data collection with smart metering and 
sensors, big data and building automation, energy digitalization and 
building energy simulation. Afterwards, ML algorithms and advanced 
controls are provided, including SL, UNSL, and RL, and different types of 
controls for energy-saving and low-carbon buildings, fault detection and 
diagnosis, fire alarming and building energy safety. Advanced OCCs in 
buildings are summarized. In addition, challenges and future perspec-
tives are also provided, including trade-off between complexity and 
predictive/control performance, AI-based controllers and climate- 
adaptive controls in SEE buildings, OCC in thermal comfort and en-
ergy saving with smart controls in buildings. 

To conduct the state-of-the-art review on advanced controls for SEE 
buildings, a comprehensive and targeted approach was employed. The 
review aimed to identify the latest advancements and trends in the field, 

focusing on the key themes of ‘smart building’, ‘energy-efficient build-
ing’, ‘intelligent control’, ‘machine learning’, and ‘occupant-centric 
control’. The reputable academic databases such as ScienceDirect, and 
other relevant databases were searched to identify recent journal arti-
cles, conference papers, and technical reports. 

The search was primarily focused on retrieving articles published 
between the years 2013 and 2023 to ensure the inclusion of the most 
recent developments in the field, which was conducted using the title, 
abstract, and keywords in the selected databases and platforms. Firstly, 
the titles and abstracts of the retrieved articles were meticulously 
evaluated to assess their relevance to the research topic. Articles that did 
not align with the key themes or were not recent were excluded at this 
stage. Then, the full texts of the remaining articles were critically 
analyzed to determine their suitability for inclusion in the state-of-the- 
art review. Articles that showcased the latest advancements, novel ap-
proaches, and substantial contributions to the field of advanced controls 
for SEE buildings were selected. From the selected articles, the relevant 
information on research objectives, key findings and future directions 
was carefully extracted. The extracted data are then synthesized to 
provide a well-structured and comprehensive overview of the current 
state-of-the-art in the field of advanced control of SEE buildings. This 
review aims to highlight recent advances, emerging trends, and note-
worthy contributions from researchers in the field. 

3. Advanced building energy systems 

This section presents a comprehensive summary of studies focusing 
on advanced building energy systems, specifically examining the areas 
of smart metering and sensor technologies, big data and building auto-
mation, and energy digitalization and building energy simulation. Each 
aspect encompasses an overview of relevant studies, encompassing the 
existing challenges, corresponding solutions, and discussions on poten-
tial implementation strategies. 

Fig. 1. A holistic overview on advanced controls for SEE buildings.  
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3.1. Data collection with smart metering and sensors 

Whereby providing detailed and accurate data about energy con-
sumption patterns and building performance for more targeted and 
effective energy management strategies, smart metering and sensor 
technology have been increasingly applied to improve energy efficiency 
of building energy systems in recent years [40,41]. As a result, the 
implementation of smart metering and sensor technology may 
contribute significant energy savings and cost reductions for building 
owners and operators [42,43]. Thus, it is expected that future building 
energy systems will become more intelligent by installing various smart 
IoT devices, building automation systems, distributed energy equip-
ment, electrical measurement devices, and smart meters. Furthermore, 
buildings are now being connected to external systems such as weather 
information and electricity markets to enhance the potential intelligence 
of building energy systems that operate more efficiently and provide a 
safer and more comfortable living environment for occupants [16,44]. 
Based on the on-board data collected from IoT devices, data-driven 
approaches are becoming increasingly popular in the field of building 
energy management, which integrates on-board data into statistical 
modeling techniques. The data-driven approaches mainly serve as 
“controllers” for building system control [45], such as in MPC, and the 
tool to characterize building energy performance [46,47]. 

However, the heterogeneous data collected from the numerous data 
collection devices and sources may seriously affect the actual operation 
of the data collection platform. It may also cause compatibility issues 
and data silos [35]. For instance, the format and temporal granularity of 
data could be distinct among different external systems. The large 
number of measurement may impede the input of the data collection 
platform [48]. Thus, how to deal with or aggregate the massive het-
erogeneous data would be a challenging topic. One potential solution is 
to develop standardized and open protocols for different types of sensors 
and intelligent meters and to develop a common data model to ensure 
that the collected data can be easily shared and integrated across 
different systems. Furthermore, to aggregate the heterogeneous data, 
Antti et al. [49] developed a modern building data acquisition and 
auxiliary control platform for smart energy applications, as shown in 
Fig. 2. This platform allows various stakeholders to monitor and utilize 
various distributed energy sources. The platform includes an edge-based 
data collector for collecting, filtering, and buffering data, as well as for 

fast control operations, and an IoT back-end platform for energy man-
agement visualization and slow response. This platform offers the ability 
to support the heterogeneity of data sources, high capacity and time 
resolution of data, ML-based energy and power quality analysis. By 
providing these features, the platform enables comprehensive and 
dependable data collection, and it facilitates the more intricate inte-
gration of smart buildings in microgrids. 

Extracting informative features from massive data would be another 
challenge when adopting smart metering and sensor technologies. One 
example could be given in the field of building energy system renova-
tion, traditional renovation decisions heavily rely on expert knowledge 
and manual collection of building characteristics, which may require 
significant time and resources [50] [51]. To address this challenge, ML 
methods have been widely applied in the analysis of building energy 
system renovation. However, how to automatically collect building 
feature data became a problem to be solved [52,53]. To overcome this 
problem, Paul et al. [54] proposed a data-driven method for identifying 
building features from a raw smart meter data set to enable large-scale 
analysis of energy-efficient building renovation, as shown in Fig. 3. 
This method utilizes energy features, which condenses the electricity 
consumption of each building into an information-rich chart. By 
employing a support vector regression model, the proposed method 
extracts the shape of each signature and clusters them to automatically 
collect building feature data. This method can significantly improve the 
existing set of techniques that extract qualitative building features by 
solely utilizing smart meter data. As a result, it can enable large-scale 
and precise analysis of building renovations, making it a valuable tool 
for building management. However, the generalizability of the proposed 
solution to other applications remains to be demonstrated. 

Moreover, the use of smart metering and sensor technologies in 
advanced building energy systems can present issues of data privacy and 
security, such as the network attacks [55,56]. For instance, although 
monitoring human activity could provide valuable insights into the 
connection between energy consumption and occupant behavior [57], 
the collection of occupancy-related information, such as occupancy 
status and occupancy counts, may result in disclosing privacy informa-
tion. Such measures might cause apprehensions regarding the real-time 
tracking of human activity, e.g., work, study, and social activities. One 
direct solution to protect this private information is to eliminate it from 
the dataset [58]. However, this solution may destroy the information 

Fig. 2. Data acquisition and complementary control platform structure diagram [49].  
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quality of the collected data. Besides, it is necessary to develop strong 
data security protocols and policies to ensure that users’ sensitive in-
formation is protected or encrypted. Data encryption methods, such as 
homomorphic encryption method [59], could be considered. Addition-
ally, fuzzy information such as heat maps, low-resolution images, and 
low-quality videos can be employed to implement monitoring measures 
and tackle these challenges. However, the applicability of these data 
protection methods still have not been proofed in the building engi-
neering domain. 

3.2. Big data and building automation 

With the emergence of smart metering and sensor technology, 
massive data have been collected and analyzed to optimize building 
energy use and reduce energy waste. A plenty of researchers have 
explored various techniques to analyze the large amount of data to 
optimize building energy use, such as using ML to predict energy usage 
and identify patterns in data. Furthermore, big data analytics have also 
been applied to identify faults in building systems for secure and reliable 
operation [60,61]. 

Besides, building automation systems (BASs) could record thousands 
of real-time measurement and control signals, with data volume 
continuously increasing over the building lifecycle [62]. However, in 
practice, the data sources for existing buildings are generally collected 
through separate systems, resulting in low data utilization rates and 
making it difficult to achieve more accurate and detailed measurement 
data requirements for analyzing and controlling energy systems [49]. In 
addition, due to the advancements in information, computing the con-
trol technologies, BASs provide a valuable network-based digital plat-
form for automatically managing complex building systems, including 
HVAC, and lighting [63,64]. Currently, BASs are widely utilized in large 
residential and office buildings to control the electrical devices, enabling 
the automatic management and control of these devices. A prominent 
example is the BAS solutions offered by Siemens, which can be report-
edly increase the energy efficiency of HVAC system in commercial 
buildings by up to 30% [65]. 

Integrated BASs refer to integrated systems that could both remotely 
monitor energy consumption of end-users in real-time and optimize 
functionality. To achieve this goal, Marinakis et al. [66] proposed a 
building energy-saving automation integration system tailored to user 
requirements and building characteristics. The proposed system, com-
bined with optional installation and operation of sensors and instru-
mentation automation systems, can effectively enhance the interactivity 
of BASs, representing a significant advancement in the simulation and 
optimization of building industry energy consumption. As green build-
ings continue to gain importance in improving energy efficiency [67], 
BASs have become increasingly important in effectively reducing 
unpredictability in resident behavior and poor energy management. 
Qiang et al. [68] critically reviewed BASs used in green buildings for 
energy and comfort management. Their research findings suggest that 

there is still insufficient research on building automation systems in the 
field of green buildings, with a focus primarily on improving energy 
efficiency and resident comfort. Comprehensive integration of BASs and 
green buildings face four challenges: uncertainty, long-term prediction 
and control, sustainability goals supported by building automation 
systems, and privacy and security concerns. 

With the increasing interconnectivity among appliances and sensors, 
smart building systems are becoming vulnerable to network attacks 
[69]. These vulnerabilities are often targeted by attackers, leading to 
disruptions in the normal operation of building automation systems and 
serious infringement on user’ rights. While there are several network 
security technologies proposed for addressing these issues, few are 
designed specifically for smart building systems. To tackle this chal-
lenge, Yuan et al. [70] proposed an Adaptive Multi-Level Fusion 
Network Attack Detection framework (AMLFN-AD) to detect network 
attacks on smart building systems, as depicted in Fig. 4. The first level 
employs efficient and simple decision trees to quickly identify attacks 
from normal samples. The second level uses a hybrid model selection 
method to adaptively select basic classifiers from a model pool con-
taining multiple candidate classifiers. Additionally, oversampling and 
undersampling techniques are combined to mitigate data imbalance is-
sues. A series of experiments were conducted on three datasets to 
compare with other methods, and the results demonstrate that AMLFN- 
AD can achieve excellent performance. 

3.3. Energy digitalization and building energy simulation 

Currently, many urban building energy models rely on DT models as 
the primary input for energy simulation. A city-level DT is a precise 
virtual representation of urban objects that can be paired with a dy-
namic predictive model of their energy performance, but cities without 
DT datasets face limitations in energy assessments. To address this issue, 
HosseiniHaghighi et al. [71] proposed a workflow to enhance and 
integrate building datasets for urban building energy modeling, as 
depicted in Fig. 5. The workflow focuses on GIS data processing, uti-
lizing multi-level spatial data integration and refinement to address in-
consistencies in building databases and establish a unified housing 
dataset. The developed workflow enables programmatic 3D urban 
modeling and automatic conversion to semantic CityGML format, 
resulting in a DT of the study area in an open data model. 

As a significant contributor to urban energy consumption, buildings 
can play a crucial role in providing regulatory flexibility to energy sys-
tems through active management of energy demands [72,73]. However, 
sharing indoor temperature and occupancy information with external 
energy management systems can pose privacy risks for occupants and 
limit building energy flexibility. Except privacy protection methods 
summarized in Section 3.2, a privacy protection could be achieved by 
adding noise to the building’s state data. For instance, Song et al. [74] 
utilized the model-free advantages of the data-driven component and 
the building energy flexibility range obtained from the DT to manage 

Fig. 3. Smart meter data based on UNSL of energy features to identify heating systems and building types [54].  
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thermal parameter errors and state noise in building energy flexibility 
scheduling. The schematic diagram of flexible scheduling framework 
can be seen in Fig. 6. In this framework, the deduction results, constantly 
updated through the dispatch process, are utilized as the data-driven 
component to establish a dependable boundary for the regulatory 
range of the building energy flexibility in the dispatch formulation. The 
determination of this boundary remains unaffected by the building 
thermal dynamic mechanism model and thermal parameters. Conse-
quently, it effectively addresses the influence of parameter inaccuracies 
and state disturbances in the mechanism model on the dispatch per-
formance. By doing so, the proposed scheduling strategy can achieve 
parameter fault tolerance and privacy protection, significantly 
enhancing building energy flexibility. 

Despite significant progress in energy digitization and building en-
ergy simulation, there are still challenges that need to be addressed. One 
major challenge is the lack of standardized data and models. Building 
energy simulation heavily relies on accurate data and models, and the 
lack of standardization can lead to inconsistent results. In addition, there 
is a need to explore the synergy between energy digitization and 
building energy simulation to maximize their potential benefits. For 

example, energy digitization can provide real-time data for improving 
the accuracy of building energy simulation. 

4. Machine learning (ML) based advanced controls 

4.1. Machine learning (ML) algorithms 

In general, there are two main basic types of control systems, which 
are closed-loop and open-loop controls, as shown in Fig. 7. The closed- 
loop control is also called extrinsic control or ‘active’ control, permit-
ting interventions from users, which adopts an external decision-making 
system to return feedback signals. This mechanism will raise both the 
initial cost and complexity level [75]. In contrast, the open-loop control, 
also known as the intrinsic control, ‘direct’ and ‘passive’ control depends 
on internal self-adjustment, which forbids users’ involvement and any 
external input but demands low startup cost. Compared to closed-loop 
systems, open-loop systems allow more flexibility in calibration. In 
brief, in contrast to open-loop systems, the installation of sensors in 
closed-loop systems must be carefully calibrated [76]. Pre-known out-
comes of control inputs are supported by open-loop control. However, it 

Fig. 4. Adaptive multi-level integrated converged network attack detection framework [70].  

Fig. 5. Workflow of energy data preparation, modeling, simulation and mapping for urban buildings [71].  
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is impossible to assess the responses and corrections for any internal 
and/or external disruptions in open-loop control. The closed-loop con-
trol system addresses this limitation of open-loop by continuously 
comparing the responses with desired outcomes and adjusting the con-
trol process to narrow the deviation gap [77]. From another perspective, 

the common ML algorithms that used in smart buildings can be mainly 
divided into three categories, namely, SL, UNSL and RL, as shown in 
Fig. 8. Additionally, SL, UNSL, and RL are also used for controlling 
building environments through HVAC systems [78], aiming to maintain 
both the thermal comfort level of occupants and the building energy 

Fig. 6. Flexible scheduling framework for building energy based on DT (modified from [74]).  

Fig. 7. Diagrams of open-loop and closed-loop control algorithms (modified from [75]).  

Z. Liu et al.                                                                                                                                                                                                                                       



Energy & Buildings 297 (2023) 113436

9

efficiency [79]. A systematic summary and analysis of these three con-
tents will be presented in the following sections, respectively. 

4.1.1. Supervised learning (SL) 
ML models fundamentally function as black-box models [81], which 

require no physical information of the system for modeling. The black- 
box model is different from the grey-box [45,47,82] and white-box 
[83] models, where physical knowledge plays a vital role in model 
construction. In other words, ML models only explore and characterize 
the statistical correlations between input data and corresponding output 
targets, such as building energy performance based on given input data 
[84]. 

In general, both SL and UNSL methods work well for observing and 
predicting, but are less effective in adjustment, management, and 
interaction [85]. The usage of labeled data or observations clearly dis-
tinguishes between SL and UNSL methods, i.e., SL uses labeled input and 
output data, while UNSL algorithm does not use labeled input and 
output data [86]. Specifically, the SL algorithm involves observations i 
= 1, 2 …, n and a collection of associated response parameters (i.e., 
labeled data). Meanwhile, SL is goal-oriented and aims to ’supervise’ 
algorithms in making predictions or categorizing based on the labeled 
input and output data [87]. On the contrary, no associated response 
variables are needed in UNSL, since it only seeks to explore and char-
acterize the unrevealed correlation or relationship between the 

Fig. 8. Three main types of ML algorithms (modified from [80]).  

Fig. 9. Diagram of SL in buildings [84].  
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observations within an exploratory fashion [87]. Therefore, in SL, 
labeled historical data is required to characterize and extrapolate the 
potential correlation between inputs and outputs. The trained SL models 
are applicable to new datasets for predictive applications. Fig. 9 illus-
trates the general schematic diagram of SL in buildings, in which the 
recorded dataset was divided into training and test datasets to facilitate 
the training of the control model. 

It should be noted that the three aforementioned types of control 
approaches are not mutually exclusive. For example, Yu et al. [88] 
presented a technique that combines both SL and UNSL techniques to 
extract interpretable control rules, and its workflow can be seen in 
Fig. 10. Specifically, unsupervised clustering is used to identify domi-
nant patterns of recurring control, while supervised classification 
modeling is applied to determine the optimal strategy for regulating 
daily temperature. This approach has shown the promising potential to 
remarkably shrink energy consumption and corresponding energy costs. 

4.1.2. Unsupervised learning (UNSL) 
UNSL, on the other hand, offers an exploratory path to identify the 

hidden patterns in massive amounts of input data [89]. UNSL, 
commonly referred to unsupervised classification, is widely used to 
cluster unlabeled data ‘based on hidden patterns and similarities un-
derlying features’ [84]. In supervised learning, the model has prior 
knowledge that circle and triangle points are different (i.e., labeled 
data), and the goal is to understand how to separate the data space 
between these two types of data points. On the other hand, in UNSL, the 
model has no foreknowledge of the data (i.e., unlabeled data), and the 
model is required to comprehend how to divide the observed points into 
distinct clusters, with maximized similarity of data points within each 
cluster and with two clusters that are as different from one another as 
possible [90]. 

The natural advantage of UNSL is beneficial for discovering 

unknown information incorporated in the data. For example, UNSL can 
cluster buildings with the same or similar statistical characteristics more 
precisely, instead of categorizing buildings mainly based on the building 
usage types in the conventional approach. ‘Clustering is the most com-
mon general unsupervised approach applied to building performance 
data’ [87]. In addition to clustering, there are additional four main types 
of UNSL: novelty detection, motif and discord detection, rule extraction, 
and visual analytics [87]. In practical applications, owing to the lack of 
anomaly labels, unsupervised anomaly detection is more feasible for 
smart controlling via on-site building operational data, compared to 
supervised ones, since UNSL does not need anomaly labels [91,92]. 
UNSL has demonstrated considerable benefits in the data-driven 
modeling of building operational data, particularly in exploratory data 
analysis and knowledge mining applications [93]. 

Xu et al. [94] developed a unsupervised anomaly detection frame-
work based on DL, which incorporated both recurrent neural networks 
and quantile regression. Moreover, the framework is applicable to 
identify the building with unusual energy usage profile. Gunay et al. 
[95] presented a unsupervised ML clustering method for anomaly 
detection, which is capable of synthesizing building automatic operation 
data into distinct operational patterns. By visualizing these patterns, this 
method can facilitate fault detection and interpretation. In addition, by 
coupling both UNSL and RL, Homod et al. [96] proposed a hybrid deep 
clustering technique for multi-agent RL (HDCMARL), as shown in 
Fig. 11. In this study, the fundamental idea underlying the HDCMARL 
design is to construct a hybrid structure consisting of two-dimensional 
layers, enabling effective handling of extensive amounts of multi- 
agent action data and a large action space. The primary obstacle lies 
in appropriately adjusting the hybrid parameters, including neural 
network weights and physical parameters, leveraging the knowledge 
extracted from the collection of multi-agent actions. These hybrid pa-
rameters are fine-tuned to align with the cluster centers of the multi- 

Fig. 10. The workflow of combing UNSL and SL approaches (modified from [88]).  
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agent action data generated by the RL algorithm. HDCMAL is designed 
for scenarios with an extremely large state-action space, where con-
ventional RL methods typically perform poorly. By leveraging the ad-
vantages of hybrid deep clustering, providing a greater capacity to 
understand large spaces and process massive amounts of data, the out-
comes of this study revealed that, treating the results of commonly used 
proportional–integral–derivative controller (PID) controller as a refer-
ence, HDCMARL can achieve a 32% cutting in consumed energy and a 
21% enhancement in thermal comfort. 

4.1.3. Reinforcement learning (RL) 
As mentioned above, both SL and UNSL methods are suitable for 

observation and prediction, but less effective in adjustment, manage-
ment, and interaction [85]. On the contrary, RL is a suitable method for 
latter applications [97]. The RL method has been widely used for system 
control since 1990s [98], which is a goal-orientated algorithm that en-
gages in real-time decision-making while interacting with the environ-
ment [99]. Similar to UNSL, historically labeled data is not required for 
RL training, but a specific purposed environment has to be established 
for the agent of RL [85]. Inspired by psychology, RL investigates how 
artificial ‘agents’ might operate in an ‘environment’ to reach a particular 
goal. The ‘environment’ represents the dynamic system, which is char-
acterized by states in discrete time steps [100]. Fig. 12 illustrates the key 
concepts and processes of RL. In brief, the RL algorithm, so-called (RL) 
‘agent’, learns from the consequences of its activities (i.e., rewards or 

penalties from the ‘environment’), interacting in discrete time steps (i.e., 
t or t + 1) [101]. In other words, by executing an action at t, the ‘agent’ 
updates to a new state at t + 1 [100]. 

Based on the feedback from the ‘environment’ this updating process, 
such as ‘environmental’ benefits or punishments, ‘the agent gradually 
learns to take actions with beneficial outcomes’ [85] and aims to 
maximize the lumped rewards over time. RL has great potential to apply 
in complex, real-world scenarios [102], since RL can ‘learn through trial- 
and-error search by interacting with the environment’ [78]. The general 
data-driven controlling process is visualized in Fig. 13. 

Yang et al. [78] demonstrated the applicability of RL control in a 
real-world building equipped with a hybrid Photovoltaic/Thermal (PV/ 
T) and geothermal heat pump system. The case study revealed that 
reinforcement learning control (RLC) can achieve enhanced perfor-
mance compared to rule-based control (RBC), such as increasing the 
demand satisfaction for heating from 97% to 100% of the time. Mean-
while, the RLC system incrementally produced cumulative net power 
from the PV/T panels with progressively increased percentages, from 
5.73% to 11.47%, over three consecutive years of operation. Moreover, 
the natural advantages of RLC are confirmed in this work, including low 
demands in prior knowledge and remarkable self-adaptation capabilities 
for variations in environment and inputs. Liu et al. [103] also developed 
a multi-step prediction-orientated deep RL algorithm, named MSP-DRL 
method for effectively managing the model-free HVAC system. The MSP- 
DRL method is demonstrated to over-perform other control rules, 

Fig. 11. The framework OF HDCMARL for controlling HVAC systems in smart buildings (modified from [96]).  

Fig. 12. A diagram of interactions between the agent and the environment in RL (modified from [85,89]).  
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maintenance of indoor thermal comfort, with benefits such as a 12.79% 
decrease in power consumption costs, compared with commonly used 
on/off rule. Du et al. [104] also proposed a data-driven approach that 
uses deep RL to optimize the performance of HVAC systems for multiple 
objectives, which predominately targets minimizing energy consump-
tion while ensuring occupant’ comfort simultaneously. 

Qin et al. [105] proposed a novel control approach for distributed 
RL. Fig. 14 illustrates the structure of the multi-agent-based distributed 
RL algorithm. The control method combines multi-agent DRL with an 

iterative sequential action selection algorithm. This integration allows a 
controller to effectively model the electrical energy demands within a 
district building energy system. In this study, they tested this approach 
in campus buildings to minimize energy consumption while maintaining 
thermal comfort across nine regional buildings. This innovative control 
system includes sharing parameters and optimizing coordination be-
tween regional buildings, which goes beyond the standard RL tech-
niques used for a single building. Furthermore, this study demonstrated 
that the distributed RL method outperformed traditional control 
methods such as RBC and model predictive control (MPC). 

4.2. Advanced control applications 

4.2.1. Controls for energy-saving and low-carbon buildings 
As building energy systems become more complex and integrated, 

advanced control methods for energy efficiency and low-carbon build-
ings become increasingly important. Energy management systems in 
current buildings often lack flexibility and adaptability for optimization 
of energy systems [106]. To improve the flexibility and efficiency of 
building energy systems, control strategy upgrades and hardware ar-
chitecture improvements are often employed. While many studies have 
been conducted on the control of heating and cooling systems in 
buildings, implementing advanced control strategies remains a chal-
lenging task due to the distributed nature of building energy systems and 
the heterogeneity basic components. Despite the theoretical analysis of 
proposed control schemes, there is a lack of comprehensive, real-world 
demonstrations of their implementation and cost-effectiveness [107]. 
Furthermore, even when real-world testing is carried out, specific data 
collection and control implementation details are often limited to 
certain building types [108]. Against this backdrop and motivation, Bird 
et al. [109] developed a cloud-based monitoring platform for optimizing 
HVAC systems in commercial buildings. This platform includes a uni-
versal MPC framework for building HVAC systems, which can be applied 
to all modern building management systems at minimal upfront and 

Fig. 13. The general workflow of analyzing and applying building operational data (modified from [93]).  

Fig. 14. Diagram of distributed RL algorithm based on multi-agent (modified 
from [105]). 
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ongoing costs (as low as 6.39 USD/month). The MPC scheme calculates 
the optimal temperature setpoints for each AHU to minimize overall 
costs or carbon usage while ensuring occupants’ thermal comfort. 

Numerous studies have demonstrated that advanced control strate-
gies, including MPC, can achieve a balance between energy efficiency, 
thermal comfort, and indoor air quality, providing demand flexibility, 
minimizing peak load requirements, and maximizing renewable energy 
utilization in buildings, such as via using BIPV (Building-integrated 
photovoltaics) system [110]. In a recent study, Wei and Calautit [111] 
investigated the potential of combining price-responsive MPC with low- 
temperature heating systems and passive structural thermal storage, as 
well as integrating PV systems, as illustrated in Fig. 15. The study also 
examined different design and operational conditions, such as different 
heat gains, occupancy patterns, and internal heat gains, setpoint stra-
tegies, and operating temperatures for the low-temperature heating 
system, and evaluated the system performance under future climate 
conditions. The authors assessed the performance of passive building 
energy storage technologies under future climate conditions (2030, 
2050, and 2080) and found that higher utilization of low-cost energy 
and lower heating energy use can be achieved under future climate 
conditions. These findings have significant implications for achieving 
sustainability in the built environment and reducing the carbon foot-
print of buildings. 

In practice, the mismatch between heating supply and demand in 
building energy systems has restricted the efficient operation of district 
heating systems. Based on advanced automation and information tech-
nology, Liu et al. [112] proposed a dynamic integration control method 
for buildings and heat exchange stations (HES). This study verified the 
proposed method through a case study in Qingdao, China, as shown in 
Fig. 16. Through integration control, the calculated matching value of 
heating supply and actual heating demand for buildings ranged from 
85.46% to 96.90%, accounting for over 90% of the entire centralized 
heating system. Four years of operation data showed that this integra-
tion control method achieved energy saving rates ranging from 12.75% 
to 31.08%, electricity saving rates ranging from 5.23% to 24.62%, and 
reduced CO2, SO2, and NOx emissions by 3803 tons, 35 tons, and 10 tons, 
respectively. The facts also demonstrated that by adopting this method, 
almost all buildings were heated to the required indoor temperature, 
completely eliminating the imbalance between heating supply and 
demand. 

Although the potential benefits of advanced control are enormous, 
there are also significant challenges that need to be addressed. For 
example, advanced control techniques may be complex and require 
specialized knowledge and skills for design, installation, and effective 
operation. Building owners, operators, and designers may lack aware-
ness and understanding. Furthermore, different manufacturers may 
have different communication protocols and interfaces, making it 
difficult to integrate systems from different manufacturers. This can 
result in interoperability issues and reduce the effectiveness of advanced 
control systems. It is essential to address these challenges in the future to 

realize the potential of advanced control in achieving energy-efficient 
and low-carbon buildings [113,114]. 

4.2.2. Controls for fault detection and diagnosis 
As a subfield of control engineering, a FDD process that identifies 

fault occurrences and pinpoints the fault causes is vital for the safe and 
reliable operation of systems/devices. In buildings, FDD is widely used 
for identifying anomalies of equipment in HVAC systems, such as 
boilers, chillers, pumps, fans, and valves, etc. Besides, it could also be 
applied to lightings, elevators and any other equipment in buildings. 

The applications of AI and ML algorithms on FDD for building sys-
tems have been comprehensively summarized in existing studies. For 
instance, Shi and O’Brien [115] mentioned that black-box models (e.g., 
artificial neural network (ANN), support vector machine (SVM), and 
principal component analysis (PCA), etc.), have drawn increasing 
attention on feature generation for FDD of building systems since 2010. 
Mirnaghi and Haghighat [116] classified commonly used FDD methods 
for HVAC systems into three categories: model-based methods, data- 
driven methods, and knowledge-based methods. Further, data-driven 
methods could be separated into qualitative methods and quantitative 
methods. Among them, qualitative-based methods include expert sys-
tems, fuzzy logic, pattern recognition, and frequency analysis. On the 
other hands, data-driven quantitative-based methods include statistical 
methods and ML algorithms (such as neural networks). Zhao et al. [117] 
introduced commonly used AI-based FDD techniques for building en-
ergy systems, including classification-based methods, regression-based 
methods, and UNSL-based methods. Through comparing strengths and 
shortcomings of AI-based FDD technologies, they pointed out that these 
AI-based methods are limited by reliability and robustness. Chen et al. 
[118] reviewed the general procedure of data-driven FDD, which mainly 
include data collection, data cleaning, data preprocessing, baseline 
establishment, and FDD. Furthermore, Mariano-Hernández et al. [119] 
found that FDD is usually considered in non-residential buildings. 

AI-based FDD, especially supervised learning-based FDD, heavily 
relies on data measured from sensors, while sensor failure could be a 
major equipment failure. There are mainly four types of sensor faults 
[120]: drifting, bias, complete failure, and precision degradation. Sensor 
failure may harm the control performance of controllers designed based 
on the residual difference between measured value and set-point. Thus, 
identifying misplaced sensors or locating sensor failures would be an 
effective way to recognize potential energy saving directions [121]. 
Furthermore, faults occurred during equipment operation process could 
be classified into system level and component level [122]. For instance, 
for an air conditioning system, insufficient refrigerant maybe a system 
level failure, while fan failure is a component level failure. As failure 
varies among devices/systems, verification of the robustness and 
generalizability of AI-based FDD techniques become a challenging 
research direction. 

UNSL-based FDD is also considered by some researchers to enhance 
building energy efficiency [123]. Fan et al. [92] developed an 

Fig. 15. Predictive control framework diagram for a low-temperature heating system with passive thermal storage and PV system [111].  
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autoencoder-based UNSL method for anomaly detection based on 
building energy data. In addition, this study also examined and 
compared the performances of the proposed technique on different 
autoencoder types and training schemes. Autoencoder is an algorithm 
for UNSL, composed by encoder and decoder (Fig. 17). To compress 
input data, the encoder extracts characteristics from the input data 
without any support from label information [90]. 

Du et al. [124] presented a data-driven technique for enhancing 
operative building energy efficiency through fault detection and diag-
nosis, which combines dual neural networks and the subtractive clus-
tering method. The use of the subtractive clustering method in this 
technique empowers its ability to diagnose previously unknown faults, 
such as sensor faults in buildings. Guo et al. [125] presented a fault 

diagnosis technique by optimizing the back propagation neural network. 
This technique was applied to control the variable refrigerant flow air 
conditioning system in a heating scenario, which achieved the best fault 
diagnosis correct ratio of 96.40%. 

While building data is valuable, excessive and irrelevant data di-
mensions may cause overfitting and excessive computational loads if not 
used appropriately. Recently, DTs have emerged as a promising concept 
for smart building FDD. Xie et al. [126] used building HVAC systems’ 
FDD process as an example and applied symbolic AI techniques to 
identify specific sensory dimensions related to building faults through 
the symbolic representation of labeled time series data. They developed 
a DT data platform that labels real-time data with fault labels, as 
depicted in Fig. 18. By identifying the informative subsystems for 

Fig.16. The configuration of the integrated control platform [112].  
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arbitrary faults and assigning appropriate knowledge tags to relevant 
sensors within each subsystem, the ad-hoc temporal knowledge is 
retained. This enables the customization of data pipelines to drive FDD 
processes. Auxiliary fault label annotation on the data stream enables 
additional low-latency, high-bandwidth real-time data streams to be 
automatically extracted with designated fault labels for FDD 

functionality. This provides data for dynamic asset management func-
tionality using DTs. The divide-and-conquer strategy applied here helps 
to achieve real-time capabilities and reduce the computational burden of 
providing intelligent functionality. 

Fig. 17. The structure diagram of Autoencoder network (modified from [90]).  

Fig. 18. Diagram of the FDD process of the building HVAC system (modified from [126]).  

Fig. 19. Prediction process for the key events [29].  
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4.2.3. Controls for fire alarming and building energy safety 
Effective building safety diagnosis relies on professionals who can 

organize and transform data into actionable frameworks. The use of IoT, 
BIM, and fire simulation tools generates real-time data that can be 
analyzed with AI and ML technology to provide quick decision support 
information for emergency responders [127,128]. Computer vision 
technology and natural language processing based on DL algorithms can 
provide real-time feedback on building conditions to the command and 
control center [129]. Fig. 19 illustrates a framework that uses a key 
event library to predict events through sensor data and ML algorithms 
[29]. Predicting key events can be achieved through data-driven 
methods, using AI and ML techniques to match real-time data streams 
with large-scale databases. Sensors continuously collect relevant data 
such as temperature and heat generation, which can be processed by IoT 
devices or read on cloud-based servers. AI engines enable automation of 
firefighting processes by providing advanced information about the fire 
scene and facilitating the use of DTs. This study creates an intelligent fire 
DT for the building by creating an event library and predicting events 
using AI engines. 

To enhance fire safety management in dense buildings, advanced 
computational modeling concepts like BIM, fire dynamic simulator 
(FDS), and agent-based modeling (ABM) have been used for simulating 
fire safety performance [130,64]. However, these methods face chal-
lenges such as data interoperability and technical limitations of 
currently available BIM software, making it difficult to simulate 
fire-driven fluid flow and personnel evacuation processes simulta-
neously. Sun and Turkan [131] developed a BIM-based simulation 
framework to address these challenges, implementing FDS and ABM for 
improved accuracy of fire simulation results, as shown in Fig. 20. The 
proposed framework can minimize casualties and property damage, as 
well as optimize building fire protection design and explore factors that 
affect personnel evacuation efficiency. 

In recent years, researchers have proposed various ML algorithms to 
establish complex relationships between sensor data and fire events for 
real-time fire prediction [132,133]. For example, RNN-based AI algo-
rithms have been used to identify fire scene information and predict 
critical fire events in the future [134], while convolutional neural net-
works (CNN) algorithms are better suited for supporting firefighting 
commanders’ on-site decision-making [135]. Despite these advances, 
the current application of AI in fire engineering is still relatively 
immature. However, it is expected that future AI algorithms will become 
more sophisticated and capable of predicting complex fire scenarios in a 
super-real-time manner and revealing deep information from large da-
tabases. With the development of building IoT and DTs, it is envisioned 

that mature AI-driven fire prediction engines will be installed in every 
building to identify and predict fire scenarios and support intelligent 
firefighting. 

4.2.4. Climate change adaption with advanced controls 
SEE buildings can play a key role in mitigating the impact of climate 

change. By implementing advanced controls and technologies, these 
buildings can be designed to adapt to changing environmental condi-
tions while minimizing energy consumption. To achieve the goal of 
automatically adjusting HVAC systems based on environmental condi-
tions, efficient HVAC control systems are crucial. However, most exist-
ing methods require accurate knowledge of system parameters and/or 
sufficient historical data and may not perform well in situations where 
dynamic parameter changes occur due to human activity, material 
degradation and wear, or weather conditions. To address these issues, 
Lymperopoulos and Ioannou [136] proposed a distributed adaptive 
control scheme for HVAC systems in multiple climate regions, shown in 
Fig. 21. This scheme regulates zone temperatures effectively by applying 
online learning and assuming information exchange between adjacent 
zones. Unlike other methods, this scheme does not require accurate 
knowledge of system parameters and utilizes real-time parameter esti-
mators to estimate unknown parameters and update controller param-
eters accordingly. Similarly, Ghahramani et al. [137] proposed an 
adaptive hybrid metaheuristic algorithm using ML, while Radhak-
rishnan et al. [138] proposed learning-based adaptive methods. The 
combination of adaptive control and learning technologies, along with 
distributed control, eliminates the need for precise and up-to-date in-
formation on system parameters and has high practical significance for 
HVAC systems. 

Numerous studies have indicated that improving building intelli-
gence can help mitigate the impact of climate change by optimizing 
energy management through the use of IoT, sensors, and data analysis. 
However, implementing distributed sensor systems is complex and re-
quires accurate positioning to optimize building systems. To address 
this, Tsao et al. [139] proposed a continuous approximation approach to 
determine the required number and location of sensors and the intelli-
gence level of each sensor while maximizing the total network cost 
reduction. The building energy system includes renewable energy gen-
eration systems, energy storage systems, the grid, and intelligent sen-
sors, which are connected through IoT and Wi-Fi, as shown in Fig. 22(a). 
The sensor system (Fig. 22(b)) collects information and transmits it to 
application services through gateways and network servers, which then 
analyze and make decisions for other applications. The proposed model 
can be a useful tool for building managers to determine the type/level of 

Fig. 20. The BIM-based simulation framework [131].  
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sensors and the number of sensors while maximizing the total cost 
reduction of the building energy system. 

Advanced control for SEE buildings provides a promising solution to 
make buildings adaptable to climate change and reduce energy con-
sumption. However, the implementation of advanced control brings 
various problems and challenges that need to be addressed, including 
high costs, lack of awareness, and lack of consensus on the best imple-
mentation methods. In addition, effective integration with existing 
building energy systems is also one of the major challenges faced in 
implementing smart control systems to make buildings adaptable to 
climate change, which involves developing interfaces and protocols that 
can communicate with various building energy systems. 

5. Advanced occupant-centric control (OCC) and its applications 

OCC refers to control mechanisms that control system/device oper-
ations and internal building conditions based on occupants’ preferences 
[33,140]. Because occupants’ energy usage habits/pattern determines 
the actual energy consumption of a building, the OCC for demand-side 
management works effectively on energy conservation and energy 
flexibility, while maintaining the indoor environment within occupants’ 
comfort requirement [141,142]. Sensors and technologies for collecting 
occupancy-related data, such as occupant presence/number, occupants’ 
location, occupants’ activity and energy behaviors, occupants’ physio-
logical parameters related to thermal comfort, etc., are summarized in 
Ref. [143–145]. Moreover, in Ref. [145], existing research on OCCs was 
summarized in terms of reactive response to occupancy, control to in-
dividual occupant preference, control based on the prediction of future 
occupancy/behaviors, and control to individual behaviors/activities. 
Predicting occupant-related context enables the HVAC system to pre-
emptively condition a thermal comfort space while achieving energy 

saving. However, the complex prediction models would require more 
computational cost. Thus, balancing the complexity of a prediction 
model against its contribution to energy saving would be a critical point 
for the application of AI-based occupant prediction models to OCC. 

Advanced OCC in buildings are increasingly utilizing ML techniques, 
such as DL and RL, to reach optimization in multi-objectives, such as 
thermal comfort enhancement and building energy reduction. For 
instance, a controller of OCC for building lighting systems is proposed by 
Park et al. [146]. In this study, based on the experiment data in five 
offices for eight weeks, it was demonstrated that the proposed occupant- 
centric lighting controller, called LightLearn, can adjust its control pa-
rameters by customized set-points determination for its operation, 
which is fundamentally based on the learning of occupants’ behaviors 
and interior environment dynamics. According to the survey findings, 
participants reported that overall lighting has been slightly enhanced by 
LightLearn, compared to the previous lighting situation. Yang et al. 
[147] conducted a preliminary investigation on how stratum ventilation 
systems can adapt to dynamic occupancy using OCC. The multi- 
objectives were reducing energy consumption, improving occupants’ 
thermal comfort, and maintaining indoor air quality. This study 
employed a DL-based computer vision method to monitor real-time 
occupant information, and the data on the number of occupants are 
used to adjust the OCC control in stratum ventilation. Based on experi-
ments conducted in a controlled climate chamber, initial findings 
showed promising outcomes compared to the conventional control 
strategy, including a 43%–73% improvement in thermal comfort and a 
2.3%–8.1% energy saving while ensuring acceptable indoor air quality. 
Fig. 23 shows a framework for building performance metrics that can be 
employed in OCC, and Fig. 24 illustrates a diagram of a RL-based OCC 
framework. 

Supervised ML technologies have been integrated into OCC through 

Fig. 21. The distributed adaptive control scheme for HVAC systems [136].  
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predicting occupants’ presence/behavior. For instance, Yayla et al. 
[149] proposed a HVAC control mechanism that schedules set-point 
based on hourly predicted occupancy counts from an ANN model. 
Through comparing with a traditional control strategy that sets set-point 
temperature based on real-time measured occupancy-related data, the 
AI-based OCC achieves over 10% energy saving while providing a more 
thermal comfort indoor environment in a shopping mall, located in 
Istanbul, Turkey. Taheri and Razban [150] developed ML models to 
predict CO2 concentration of a campus classroom, and then, adjusted the 
ventilation rate of the HVAC system based on the predictive result. The 
novel control strategy reduced the energy consumption of fans in a 
HVAC system by 51.4%, while ensuring the required ventilation by the 
ASHRAE standard. Based on DL and RL algorithms, Jung et al. [151] 
developed an OCC system for managing buildings’ real-time indoor 
temperature, named Real-COMFORT. This OCC system enables 

optimizing both the thermal comfort of individual occupants and 
building energy consumption. Specifically, in this system, occupants’ 
activities are automatically recognized by CNN-based model to satisfy 
the dynamic and customized demands in OCC. The development of this 
system incorporates data from a climate chamber experiment, including 
indoor environment, occupant, and energy consumption data. This 
study showed that, with the same building energy consumption, the 
proposed system can mitigate 10.9% of thermal discomfort experienced 
by occupants engaged in dynamic activities, thereby improving indoor 
thermal comfort. 

Besides, unsupervised algorithms, such as Explicit Duration Hidden 
Markov Model (EDHMM), show the ability to detect occupant presence 
and provide a basis for occupant-centric load management [152]. 
Furthermore, using RL for OCC has been proved to be effective on 
minimizing energy consumption while ensuring occupants’ comfort 

Fig. 22. (a) Intelligent building system; (b) Sensor network structure [139].  
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[153]. Compared with other OCC strategies, e.g., rule-based control 
[154] or MPC strategies, RL shows the advantages of considering the 
stochastic occupants’ behavior with no requirement of predictive 
models. To adapt to the schematic occupancy profile when scheduling 
space heating, Heidari and Khovalyg [155] proposed a control frame-
work, namely DeepValve, based on RL. The proposed controller could be 
quickly applied to new control spaces to save energy while maintaining 
thermal comfort. Lei et al. [156] offered a multivariate OCC system, 
based on DRL that takes into account individual thermal comfort and 
occupancy status. The objective of this control system is to enhance the 
learning efficiency of HVAC system control. This study validated the 
control performance of the proposed controller in a real office, and the 

results showed a 13.9% reduction in building cooling load while 
simultaneously improving the total thermal acceptability by 11%. Hei-
dari et al. [157] presented a model-free RL based control framework 
aimed at optimizing several conflicting objectives of heat pump water 
heating systems in buildings, including water hygiene, occupants’ 
comfort, and energy saving. This OCC framework focuses on under-
standing stochastic occupants’ behavior to effectively optimize the said 
objectives. In this study, a stochastic hot water usage model, powered by 
offline training, is introduced to mimic the hot water use behavior of 
tenants. Based on a case study of a residential home in Switzerland, this 
study demonstrated that the RL-based OCC framework successfully met 
both occupants’ hot water demand and maintain comfort, while 

Fig. 23. A diagram of metrics for occupant-centric building performance [148].  

Fig. 24. A diagram of the RL based OCC framework [2].  
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achieving a remarkable 23.8% reduction in energy consumption, by a 
deeper understanding of occupants’ behavior and its integration into the 
control framework. More studies on RL for OCC could be found in 
Ref. [156,158,159]. 

6. Challenges and future perspectives 

6.1. Trade-off between complexity and predictive/control performance 

As illustrated in Section 5, predictive-based OCC shows improved 
control performance than other types of OCCs [145]. The control per-
formance of predictive-based OCC highly depends on the predictive 
accuracy. For AI-based building/occupancy models, plenty of studies 
have focused on improving their predictive accuracy through imple-
menting supervised ML algorithms with more complex structure in 
recent years. For instance, DL algorithms have been widely used to 
predict energy consumption [160,161] and integrate into MPC to con-
trol devices in buildings [162]. Deep RL has been implemented to 
strength the control performance of traditional RL algorithms 
[163,164]. 

However, the increased complexity of predictive or control algo-
rithms would result in more computational cost, including both 
computational time and computational power. A longer computational 
time may harm the effectiveness of predictive results or control strate-
gies. For instance, if a MPC is established to control a HVAC system by 
sending an optimal control signal every 5 min but the predictive process 
takes more than 5 min, the temporal mismatch between the control 
process and prediction process will impose challenges on the practica-
bility feasibility. Besides, a higher requirement on computational power 
indicates more investment on computing resources. Therefore, although 
more complex predictive or control algorithms may lead to better pre-
dictive accuracy or control performance, balancing the complexity and 
predictive/performance remains an interesting and vital research 
direction. 

6.2. AI-based controllers and climate-adaptive controls in SEE buildings 

Existing studies on smart control in buildings show diverse meth-
odologies and research targets. For instance, for a MPC, various of 
predictive models could be selected. A proposed control framework 
could be implemented to different types of buildings, such as commer-
cial buildings, educational buildings, and residential buildings. The 
implementation scale would vary in terms of spatial (e.g., zone level, 
building level, district level, and national level) and temporal (e.g., 
minute, hour, year, and decades). 

Therefore, a verified predictive model or control strategy in a specific 
case study could not ensure its generalizability on other cases. There are 
existing studies on evaluating and enhancing the robustness of ML al-
gorithms [165–167]. The generalizability of ML models and pre- 
processing methods have been investigated in Ref. [168]. However, 
the study on robustness and generalizability of AI-based control strate-
gies is still lacking. Because of this research gap, suggestions on selecting 
proper AI technologies for distinct study cases could not be consistent. 

Research on adapting to climate change through intelligent control 
in SEE buildings is a rapidly developing field that has the potential to 
significantly impact reducing CO2 emissions and mitigating the effects of 
climate change [21,169,170]. However, there are still many research 
challenges that need to be addressed to fully realize the potential of 
advanced controls in SEE buildings. One key challenge is developing 
smart control systems that are effective across various building types 
and climate zones. Building characteristics, occupant behavior, and 
local climate conditions all affect the effectiveness of smart control 
systems [36,171,172]. Therefore, future research should focus on 
developing smart control solutions that are tailored to different building 
types and regions and can adapt to changing conditions over time. 
Developing cost-effective climate adaptation solutions is another major 

challenge as it requires identifying affordable solutions that can easily 
be integrated into existing buildings. Future research should explore 
using data analysis and ML to optimize smart control systems for cost- 
effectiveness. ML algorithms can identify patterns and trends in data 
from building sensors, meters, and other sources that can be used to 
optimize energy usage and reduce costs [173]. 

6.3. OCC in thermal comfort and energy saving 

OCC in SEE buildings aims to achieve the dual objectives of thermal 
comfort and energy efficiency. However, this approach encounters 
several challenges that must be addressed for its effective implementa-
tion. In this section, a critical analysis of the challenges faced by OCC 
was presented and the future research directions to advance this field 
was proposed to drive the development of OCC in SEE buildings. 

One of the major challenges in smart buildings is the diversity of 
occupant behaviors and preferences, which poses challenges to 
achieving thermal comfort and energy-saving goals. Each occupant has 
different requirements for thermal comfort, activity patterns, and 
sensitivity to temperature. Moreover, occupants have varied priorities 
regarding thermal comfort and energy-saving. This complexity makes it 
difficult to develop control strategies that cater to the needs of each 
individual while balancing energy-saving requirements [174,175]. 
Therefore, OCC strategies need to be flexible enough to accommodate 
individual preferences while ensuring overall efficiency [144]. Future 
research should focus on developing adaptive control algorithms that 
personalize indoor environments based on individual preferences and 
behavior patterns, while considering thermal comfort and energy-saving 
goals. Additionally, integrating advanced sensing technologies (e.g., 
IoT-based sensors, wearable devices, and occupant tracking systems 
[176]) along with ML algorithms, can help capture and analyze occu-
pant behavior data, leading to a better understanding and prediction of 
occupant behavior and improved accuracy of control strategies. 

Providing occupants with real-time feedback on energy consumption 
and the impact of their behaviors is crucial for promoting energy-saving 
behaviors and enhancing thermal comfort [177]. However, achieving 
this goal is not without challenges. In practice, occupants may have 
limited awareness of their energy consumption and the impact of their 
behaviors. Effective feedback mechanisms can increase occupants’ 
awareness of the relationship between their behaviors and energy con-
sumption, thereby motivating energy-saving behaviors. Future research 
should explore user-friendly interfaces, energy dashboards, and occu-
pant feedback mechanisms to effectively communicate energy con-
sumption and energy-saving-related information, empowering 
occupants to make informed decisions and better manage and adjust 
their behaviors [178]. Additionally, leveraging data visualization tech-
niques, combined with occupant education programs and awareness 
campaigns, can enhance occupants’ awareness and engagement in 
energy-saving practices. 

Seamless integration of OCC systems with other smart building sys-
tems and automation platforms is essential to achieving thermal comfort 
and energy-saving goals [68,179]. However, this integration may face 
technical and operational challenges. Incompatibility between different 
systems and challenges in information exchange may lead to conflicts 
between thermal comfort and energy-saving goals. Future research 
should focus on developing standardized protocols and communication 
frameworks to facilitate interoperability among different building sys-
tems. Additionally, exploring comprehensive approaches to building 
systems integration, where different subsystems can collectively opti-
mize thermal comfort and energy-saving goals, can help address con-
flicts and improve overall performance. 

In summary, OCC in SEE buildings presents a promising approach for 
achieving thermal comfort and energy efficiency goals. By addressing 
the challenges posed by diverse occupant behaviors, limited occupant 
awareness, integration issues, and the need for adaptive control strate-
gies, researchers can advance the field. Future research endeavors 
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should focus on developing personalized control strategies, improving 
occupant feedback mechanisms, enhancing integration techniques, and 
leveraging advanced sensing technologies. By doing so, OCC can effec-
tively contribute to the realization of thermal comfort and energy-saving 
objectives in SEE buildings. 

7. Conclusions 

In this study, a state-of-the-art review was conducted on advanced 
controls for SEE buildings. Data collection with smart meters and sen-
sors, big data and building automation, energy digitalization and 
building energy simulation are reviewed for advanced energy systems. 
Advanced ML algorithms that can be equipped in advanced controls are 
reviewed, and their roles and underlying mechanisms of advanced 
controls are provided in SEE buildings. Advanced controls for energy 
security, reliability, robustness, flexibility, and resilience are reviewed 
for SEE buildings, with respect to fault detection and diagnosis, fire 
alarming and building energy safety and climate change adaptation. 
Moreover, this study explores the advanced OCC systems and their ap-
plications in the SEE buildings. Last but not the least, this paper high-
lights the current challenges and future potential, thereby establishing a 
foundation for reaching sustainability and facilitating a low-carbon 
transition within the domain of the building sectors.. Main conclusions 
are summarized below:  

1) The use of smart metering and sensor technologies in advanced 
building energy systems can provide more detailed and accurate data 
on energy consumption patterns and building performance. How-
ever, the use of these technologies raises concerns about data privacy 
and security. Building automation systems can automatically 
manage complex building systems and record real-time measure-
ment and control signals, but the low data utilization and indepen-
dent data sources of existing buildings remain a challenge. Remote 
control technology can monitor end-user energy consumption in 
real-time and optimize functionality, and a DT-based building energy 
flexibility data-model fusion scheduling strategy can achieve 
parameter fault tolerance and privacy protection. 

2) ML algorithms for advanced control of SEE buildings with funda-
mental differences between SL, UNSL, and RL algorithms. SL and 
UNSL are mainly used for observation and prediction, while RL is 
suitable for adjustment, management, and interaction. Furthermore, 
RL is a goal-oriented algorithm that participates in real-time deci-
sion-making with dynamic interaction with the environment. 
Advanced control technologies play crucial roles in reducing energy 
consumption while enabling buildings adaptive to climate change. 
Various FDD methods have been investigated and analyzed for 
building systems, with data-driven methods being more commonly 
used. AI and ML algorithms have been widely applied to FDD in 
building systems. However, the reliability and robustness of these AI- 
based methods are still limited. DTs can reduce the computational 
load with intelligent functions.  

3) A plenty of ML algorithms have been integrated into OCC to predict 
the presence and behavior of occupants, while minimizing energy 
consumption and ensuring their comfort. The results show that OCC 
can achieve a balance between energy efficiency, thermal comfort, 
and indoor air quality, while providing energy flexibility to maintain 
the indoor environment within occupants’ comfort requirement.  

4) Challenges and future prospects of advanced controls for SEE 
buildings mainly include balancing the prediction complexity and 
computational cost, the robustness and scalability of AI-based con-
trol strategies, climate adaptive controls, and OCC in thermal com-
fort and energy saving. 

Overall, this study provides a comprehensive understanding of the 
current state-of-the-art advanced controls for SEE buildings. Advanced 
control has significant potential to improve energy efficiency, security, 

and resilience of buildings, but the various technical, organizational, 
and social factors involved in its implementation should be carefully 
considered. By addressing these challenges and issues, building owners 
and operators can achieve significant energy savings and cost reductions 
while also contributing to reducing carbon emissions in the building 
industry. Future studies are suggested to focus on developing tailored 
smart control solutions that can adapt to changing conditions over time 
and integrate with climate models to predict future environmental 
changes. In addition, researchers should explore the use of data analysis 
and ML to optimize the cost-effectiveness of smart control systems and 
to assess their environmental and economic impacts throughout their 
life cycle. Finally, there are social and behavioral challenges that need to 
be addressed, such as the design of user-centered intelligent control 
systems and the development of strategies to promote energy-efficient 
behavior among building occupants. 
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B. Tokdemir, Artificial intelligence (AI)-based occupant-centric heating 
ventilation and air conditioning (HVAC) control system for multi-zone 
commercial buildings, Sustainability 14 (23) (2022) 16107. 

[150] S. Taheri, A. Razban, Learning-based CO2 concentration prediction: Application 
to indoor air quality control using demand-controlled ventilation, Build. Environ. 
205 (2021), 108164. 

[151] S. Jung, J. Jeoung, T. Hong, Occupant-centered real-time control of indoor 
temperature using deep learning algorithms, Build. Environ. 208 (2022), 108633. 

[152] L. Rueda, K. Agbossou, N. Henao, S. Kelouwani, J.C. Oviedo-Cepeda, B.L. Lostec, 
S. Sansregret, M. Fournier, Online unsupervised occupancy anticipation system 
applied to residential heat load management, IEEE Access 9 (2021) 
109806–109821. 
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