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Abstract

Explaining the behaviour of Artificial Intelligence models has become a necessity. Their opaqueness
and fragility are not tolerable in high-stakes domains especially. Although considerable progress is
being made in the field of Explainable Artificial Intelligence, scholars have demonstrated limits and
flaws of existing approaches: explanations requiring further interpretation, non-standardised explana-
tory format, and overall fragility. In light of this fragmentation, we turn to the field of philosophy of science
to understand what constitutes a good explanation, that is, a generalisation that covers both the ac-
tual outcome and, possibly multiple, counterfactual outcomes. Inspired by this, we propose CHIME:
a human-in-the-loop, post-hoc approach focused on creating such explanations by establishing the
causal features in the input. We first elicit people’s cognitive abilities to understand what parts of the
input the model might be attending to. Then, through Causal Discovery we uncover the underlying
causal graph relating the different concepts. Finally, with such a causal structure, we compute the
causal effects different concepts have on a model’s outcome. We evaluate the Fidelity, Coherence,
and Accuracy of the explanations obtained with CHIME with respect to two state-of-the-art Computer
Vision models trained on real-world image data sets. We found evidence that the explanations re-
flect the causal concepts tied to a model’s prediction, both from the perspective of causal strength and
accuracy.






Acknowledgements

Over the course of last year working on this thesis was nothing short of a roller-coaster ride. But as
they say, it is not about the destination, nor is it about the journey but the people you share your journey
with. | have been extremely lucky and blessed in sharing my journey with so many wonderful people,
all of whom | want to thank from the bottom of my heart.

The journey began 2 years back in a thought-provoking classroom lecture by Prof. G.J.P.M. Houben
who re-ignited my passion for Computer Science.

My daily supervisors, Prof. Jie and Stefan, were a constant feature every Wednesday afternoon, chal-
lenging and pushing me towards coming up with new ideas and not letting me tunnel vision. Needless
to say, without those scintillating discussions, their constant motivation, understanding and flexibility
this project will not be where it is today. | am humbled at the opportunity to work under such brilliant
minds and grateful for the time and effort they put into this project.

Lorenzo, you came into this project later but we immediately connected and due to your amazing
ability to adapt to what was a fairly new domain we as a team benefited a lot and achieved new highs.

Agathe, although you were not directly part of this project your work and supervision in courses were
a big motivator and | am grateful for it.

Caroline, Rebecca and Ojas you 3 were my pillars. During my darkest hours your never-ending love,
kindness and motivation helped me beyond words can express. This project is dedicated to you guys.

Alex, Anitej you guys are the best group mates | have ever had. | am glad | decided to pair up with you
in Q3 which then turned into a beautiful friendship. The Dream Team.

Victor, you were my first friend in the Netherlands, our endless discussions about life helped me survive
during all those days in lockdown, and you always made me feel at home.

Jie and Haiyin you guys came towards the very end but when you did you gave me many reasons
to smile and helped me conclude this amazing journey.

Lastly, | would like to thank my parents for providing me this opportunity to come to the Netherlands
and allowing me to pursue my dreams and my sister who has been a constant source of light in my life.

Shreyan Biswas
Delft,






Contents

Introduction
Background Information
21 Background. . . . ...
2.1.1 Computer Vision - Image Classification by Deep Neural Networks . . . . . . . ..
2.1.2 Explainable Al . . . . . . . e
2.1.3 Human-in-the-loop Process . . . . . . . . . . . . .. .. ... ...
214 Causallnference . . . . . . . . . . e
215 CausalGraphs . . . . . . . . . . . e
2.1.6 Causal Inference terminologies . . . . . . . . .. . . ... .. ... .. .. ...
2.1.7 Interveningon Causal Graph . . . . . .. ... ... ... ... .. .. ...
2.1.8 Causal Discovery. . . . . . . . . . e
22 RelatedWork . . . . . . .
2.21 Explanations in Philosophy . . . . . . . . .. ..
2.2.2 Causality in Explainable Al. . . . . . . . . .. ... ...
2.2.3 Explainability of Computer Visionmodels. . . . . ... ... ... .. .......
Framework
3.1 Data Collection - Establishing Correlation. . . . . . . ... ... ... ... ........
3.1.1 C1: Saliency Map Extraction. . . . . . . . . ... ... . ... o
3.1.2 H2: Human Annotation of SaliencyMaps. . . . . . . . . ... ... ... ... ..
3.1.3 Concept Aggregation. . . . . . . . . . ..
3.2 C3: CausalDiscovery . . . . . . . e
3.3 C4: Performing Interventions to Determine Causal Effects . . . . . . . .. .. .. .. ..
3.4 C5: Answering what-if questions . . . . . . . .. .. L
3.5 ToyExample . . . . . . . .
Experiment Set up
4.1 Fidelity . . . . . e
4.2 ACCUMACY . . . . . i e e e e e e e e
4.3 Causal Verification . . . . . . . . . e
4.4 CoOherence . . . . . . . o i i e
4.4.1 Finding Similar Instances for Coherence . . . . . . ... .. .. ... .......
4.5 Mediation Analysis . . . . . . . . e e
4.6 Setup . . . . . e e
4.6.1 Causal Discovery Configurations . . . . . . . ... ... ... ... ........
46.2 Models&Datasets . . . . . . . .. .. ...
4.6.3 Crowd ComputingTaskSetup . . . . . .. ... ... ... ... ... . ......
Results and Discussion
5.1 Fidelity - Uncovering Injected Biases . . . . . . . . . . . .. ... .. .. ... .. ...
5.2 Template-based vs. Pairwise Causal Discovery . . . . . .. ... ... ... .......
53 ACCUIACY . . . . o e
5.4 Causality Verification. . . . . . . . ..
55 Coherence . . . . . . .
5.6 Mediation Analysis . . . . . . . . e
5.7 Limitations . . . . . . ..
571 ImpactofBiases . . . . . . . . ...
5.7.2 Limitations of our implementation of Causal Inference . . . . . . .. ... ... ..

Vi



viii Contents
6 Conclusions 41
6.1 Conclusions. . . . . . . . . 41
6.2 Future Work. . . . . . . o 41
6.2.1 Usageofabstractconcepts . . . . .. .. .. ... . ... .. ... .. .. ... . 41

6.2.2 Constrative Explanations. . . . . . . . . . ... 42

6.2.3 Implementing Randomised Control Trialsin XAl . . . . .. ... ... ....... 42

A HCOMP Submission 43
B Fidelity Results 57



Introduction

Context Curiosity is inherent to being human (Kidd & Benjamin, 2015). Thus when the usage of deep
neural networks became the vogue of the decade everyone became curious about its internal workings.
But curiosity is not the only reason, the potency of these automated marvels made them ubiquitous to
a multitude of societal domains where ethical concerns and lack of trust for the users of these systems
called for an increased focus on fairness and interpretability (Miller, 2019). As a byproduct, there were a
plethora of research methodologies and a generation of researchers seeking to make these black-box
models transparent which resulted in an almost unbridled amount of research output in the domain of
explainable artificial intelligence (XAl in short).

Problem Focus As part of this thesis, we focus on explaining the outcome of a computer vision
model to end users. The rise of deep neural networks can be primarily contributed to the pioneering
domain of computer vision Greene, 2020. Over the years it enjoyed heightened performance across
various benchmarks. This, however, came at the cost of transparency (Freitas, 2014). Past research
has established that these computer vision models while ubiquitous in various social domains (Lee
et al., 2019) show biased behaviours Mehrabi et al., 2019. Recently scientific literature written by
Wu and Zhang, 2016 titled "Automated Inference on Criminality using Face Images” was subjected to
massive criticism. Despite their best effort at training their model without representation bias, in a later
case study (Bergstrom & West, 2016) it was found that the dataset still had observer bias as images
of criminals (from mugshots) and non-criminals (from promotional websites) were sourced differently.
Examples like these call for further scrutiny of computer vision models and a paradigm that can explain
behaviour to validate the generated outcomes and uncover confounding biases.

Motivation While many attempts were made at explaining deep computer vision models, a funda-
mental flaw surfaced - The answer to the question "What makes an explanation an explanation?” -
failure to have a proper grounding on the definition of explanation led practitioners of the domain to
rely on their intuitions of what constitutes a ‘good’ explanation (Miller, 2019). Woodward, 2003 and
Buijsman, 2022 provided insights from the philosophy of science literature exhuming explanatory prop-
erties that contribute towards a good explanation. According to them, a good explanation must provide
answers to contrastive why questions that drill down to presenting a generalisation that covers 1) the
factual outcome of the model, and 2) a counterfactual outcome. Presenting factual outcomes, for a
computer vision model can be attributed to presenting the salient pixels. Salient pixels are those pix-
els which contribute most to the outcome of the model. However, lack of semantic clarity in these
salient pixels leads to ambiguity when generating an explanation - is the model looking at the colour of
the object represented by the pixel cluster or the object itself or perhaps its shape? Answering these
questions is fundamental to providing a good explanation, however, it lacks an important property - the
consideration for the counterfactual “what-if’ scenario. Counterfactual scenarios are those which occur
contrary to the factual outcomes. To solidify this let us consider a very common scenario when it comes
to discussing algorithmic fairness - In a loan application, the user may get a factual explanation as to
why his load was rejected - "The loan was rejected because your income is less than X”. The end user
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2 1. Introduction

in response may query “what-if” my income had been greater than X. Note that the user already has a
certain amount of income which constitutes the factual scenario at that time, but wants to query about
a counterfactual scenario where his income was higher than his current income. Empirical evidence
suggests that the inclusion of these kinds of counterfactual scenarios in an explanation improves user
understanding of model behaviour (van der Waa et al., 2018) as it provides more clarity and depth to
an explanation.

Contribution Through this work, we aim to establish a properly grounded explainable Al framework
that outputs factual explanations of a computer vision model by utilising crowd computing - thereby
following the methodology of the people for the people. Furthermore, we introduce the causal frame-
work into the computer vision explainability which apart from establishing causal relationships between
semantic concepts and model outcomes, allows the framework the capability to answer what-if ques-
tions. As an additional dimension, we also present mediation analysis that showcases how much an
explanatory attribute is mediated by another attribute which further clarifies model behaviour.



Background Information

This chapter is divided into two main parts. In the first part, concepts that are pertinent to this thesis
are introduced. In the second part, scientific research in relevant domains and their corresponding
sub-domains are presented and discussed

2.1. Background

In this section, we briefly introduce relevant concepts that are an integral part of this work. The section
also mentions terminologies that recur throughout this report.

2.1.1. Computer Vision - Image Classification by Deep Neural Networks
Computer vision is a field within artificial intelligence that focuses on developing techniques that extract
and interpret information from visual inputs such as images, and videos to draw meaningful conclusions
in various tasks. One of its main goals is to develop autonomous systems that replicate or surpass the
behaviour of the human visual system (Huang, 1996). The most common types of algorithms that solve
the problems of this domain are called deep neural networks or DNNs. These DNNs are very complex
algorithms that contain as many as hundreds of billions of learnable parameters (Brown et al., 2020).
Because it is very difficult to gauge their learned behaviour by decoding the entire intricate machinery
they are often referred to as black-box models. One subdomain within the field of computer vision is
image classification. Here the computer vision algorithms are presented with digital images from which
they extract visual cues that help them generate a higher level understanding of the image data (Bezdek
et al., 1999) and classify them into specific categories. The most common types of algorithms that do
these are convolution neural networks or CNNs (O’Shea & Nash, 2015). Primarily they differ from other
deep neural networks in their introduction of convolution layers, these layers contain techniques that
help the algorithm learn various visual patterns. These learned patterns often referred to as features
are then utilised to help the algorithm categorise the image instance into higher-level representations
- called class labels. A class label can be anything with a semantic meaning - from animal names to
cancer cell types.

2.1.2. Explainable Al

We briefly mentioned the notation of explainability in Al in Chapter 1, while introducing our work. Here
we formally introduce the concept of Explainable Al. Explainable Al undertakes the task of explaining
the behaviours of Al systems. Note that the term explainability is often interchanged with interpretability.
Defining explainability is difficult and remains a topic of research. However, if we look at its goals and
target audience, the notion of XAl becomes clearer.

Firstly, the goal of explainable Al is to provide transparency into a black box model's decision-
making the black box into a white box. The ways to achieve this goal can be different and based
on these differences XAl frameworks are generally divided into two main categories - 1) Intrinsic:
Here the objective is achieved by designing a simple model that allows for translucency in its decision-
making process. A very popular example of this is decision trees, where the outcome can be predicted
based upon the conditions of each node within the tree; 2) Post-hoc: These types of methods provide

3



4 2. Background Information

explainability by scrutinising the outputs generated by the black box model after it has finished training.
Note that these categories are not mutually exhaustive as one can utilise intrinsic models for post-hoc
explanations. Apart from this, based on applicability the XAl methods can be divided into two more
categories - 1) Model-specific and 2) Model-agnostic XAl.

There exists large corpora of diverse sets of machine learning models. Some are very distinctive
from others. Due to this, the applicability across XAl frameworks varies. Some methods are more
generic whereas others like to focus on a specific category of models. “Model-specific” XAl methods
cater to the latter. These methods rely heavily on the internal workings of a model and are more likely
to be intrinsic in nature. On the contrary “model-agnostic” methods are more generic and by definition,
they do not rely upon a model’s architecture or its trained weights. Instead, they base their work upon
post-hoc explainability, i.e. by analysing input-output interaction. There exists one more categorisation
- based on the scope of the XAl frameworks. The scope here signifies the capacity of the framework
to explain the model’'s behaviour fully or partially.

Local XAl frameworks focus on generating explanations for specific instances of input. Global
methods on the contrary aim to explain the behaviour of the entire model. As state-of-the-art deep
learning has billions of parameters, aggregating a small sample of local instances may not be repre-
sentative of the full picture. Thus while it is intuitive to aggregate local explanations to arrive at a global
explanation, without specifying a constraint it is almost impossible to arrive at a complete global picture.
However, there exist various ways to define the scope of global explainability in such a way that it is
still feasible for XAl methods to approximate the behaviour of a complex model. In this thesis, we build
an XAl framework that is model-agnostic and generates explanations in a post-hoc manner and the
scope of the framework is global. We achieve the global scope by constraining the model behaviour
to a specific dataset.

So far we discussed how different XAl frameworks achieve their goals, Now, let us take a look at one
of the most important aspects of any XAl framework - the target audience. Since an XAl framework will
be utilised to explain the model outcome to an end-user, human interpretability is considered to be one
of the most important aspects. However, the “human-interpretability” aspect of an XAl framework can
sometimes be ambiguously defined, especially when it comes to explaining the behaviour of a computer
vision model. While many prominent frameworks (e.g. LIME (Ribeiro et al., 2016)) use indicative means
to present explanation - i.e. just highlighting salient regions in an image. While this can still rate high on
the human interpretability scale, the actual outcome may be opaque or correlational. This is because
a cluster of pixels can conduce different information to different people.

Nevertheless, based on these two distinctions Murdoch et al. (Murdoch et al., 2019) defined explain-
able machine learning as “Extraction of relevant knowledge from a machine-learning model concerning
relationships either contained in data or learned by the model“. This definition however leaves out an
important aspect of explainability defined by Miller (Miller, 2019), which brings forth the human aspect.
According to Miller “interpretability is the degree to which a human can understand the cause of a de-
cision“. This decision is further reinforced by (Kim et al., 2016) - “ Interpretability is the degree to which
a human can consistently predict the model’s result®.

From the above definitions we can see that there is an agreement that human interpretability should
be a constant feature in every XAl framework. Especially since its outcomes can have a major effect
- practitioners may utilise XAl systems as a debugging tool to uncover bugs in an ML model, espe-
cially in a sensitive domain such as healthcare, criminal justice etc. Uncovered bugs, biased and unfair
outcomes due to uninterpretable or ambiguity can lead to harmful consequences (McGregor, 2021).
Despite this many of the XAl frameworks aim to establish human interpretability with the help of au-
tomated systems. Which are then evaluated by human users (Doshi-Velez & Kim, 2017). This is a
familiar process within the domain of machine learning and leads to automated systems failing to learn
high-level semantics of the data they process generate Jo and Bengio, 2017. This led to practitioners
switching to a different strategy called Human-in-the-loop process or HITL for short, that to some extent
alleviates the shortcomings of automated systems.

2.1.3. Human-in-the-loop Process

Al systems deployed in real-world systems led to concerns about reproducibility, explainability and
controllability (Thiele et al., 2016). To tackle these challenges a new domain of research was proposed
called the human-in-the-loop machine learning process (HITL) (Wu et al., 2021). Initially, it was intro-
duced as a means to improve the performance of the automated systems (Zagalsky et al., 2021) but
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since then researchers have discovered many ways of integrating human knowledge into their frame-
works. The philosophy behind this is very simple. On one hand, humans are ingenious and efficient
at many basic tasks (e.g. pattern recognition, contextual understanding, seamless translation of low-
level to high-level semantics etc.) that even state-of-the-art ML algorithms fail to comprehend. On the
other hand, the human brain has limitations when it comes to processing a large amount of information,
which computing systems excel. Hence, a framework that combines these two things can potentially
be able to overcome the shortcomings of individual elements. HITL processes come under the do-
main of crowd computing, where the idea is to utilise human knowledge to build robust and responsible
systems. However, HITL processes suffer from various problems - and one of the most prominent
problems is related to bias. While utilising the power of the crowd for computing is an effective solu-
tion, it brings upon caveats of subjective perception, selection bias, sampling bias etc. Thus to avoid
these pitfalls there is a need for another paradigm that can complement the HITL process concealing
its pitfalls.

2.1.4. Causal Inference

Causal inference is the “discipline that considers the assumptions, study designs, and estimation strate-
gies that allow researchers to draw causal conclusions based on data” (Hill & Stuart, 2015). Drawing
causal conclusions is important as it provides clarity to our understanding of how a system works. This
is very different from establishing statistical dependence/independence, as the latter may be suscep-
tible to confounding paradoxes or are simply misleading. For example, a barometer reading can be
statistically correlated with chances of rain but the reading itself does not cause the rain to fall directly.
Confounding mechanisms like air pressure causes rain to fall which in turn also affects barometer read-
ing. Thus, only looking at the barometer reading may give us an indication of rain but is not sufficient to
generate an explanation for rainfall. Similar situations can be considered when it comes to explainable
Al frameworks, especially for frameworks that aim to explain the learning of computer vision models.
While highlighting salient pixels one may conclude that the model is making its decision based on the
object that the pixels represent. However, it is plausible that the model is looking at the colour of the
object or its shape rather than the object itself. For example, the model may not have any understand-
ing of the high-level concept “bed”, but during the training phase, it has noticed that the colour white is
strongly correlated with the class label bathroom. Thus upon presenting it with a white coloured bed
it predicts a bathroom instead of a bedroom. Any XAl framework presenting the concept of bed as an
explanation for a bathroom (or bedroom) may be misleading as clearly, the colour is the confounding
factor.

2.1.5. Causal Graphs

So far we have introduced causal inference conventionally. But before we explore more about causality
we must get ourselves familiar with some of the formal terminologies associated with causal inference.
Any process has an underlying data generating process. This is not just limited to the data itself but the
story behind capturing the data. To uncover this process we need a hypothesis. This is where Causal
Graphs is important. Causal graphs are directed acyclic graphs (DAG) that represent a graphical
model of underlying causality.

One of the main motivation behind using such a graphical model is the occurrence of Simpson’s
paradox. When an association is established on population level gets reversed or ceases to exist
when the same is divided into subpopulations it is called (Sprenger & Weinberger, 2021). The original
example of this comes from (Simpson, 1951). Where he shows that the efficacy of a drug is less
effective when considering the general population however the trend reverses when one considers the
male and female sub-populations separately. The baffling fact appears to concur that if one to not know
the gender then the drug is less effective than when the gender is known. These kinds of examples keep
occurring in a lot of social studies but can also be found in various data science practices. According
to (Pearl, 2016) the paradox appears because “the story behind the data is missing“. And rightly so,
given the account, it is impossible to arrive at any rational conclusion. However, if we are to look at the
story behind the data - like perhaps the presence of an additional factor independent of the effect of
drugs reduces the likelihood of recovery and if that factor is present in most samples when sampling
the population data, this can explain the drop is efficacy. For telling such stories graphical models are
great tools.

Causal graphs are also very useful to deflate the credibility of seemingly interpretable models ( e.g.
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linear regression). In many situations, XAl research aims to build these so-called interpretable models
out of observational data to exhume model behaviour and generate explanations. Many of these mod-
els may aim to paint a causal picture but they can be misleading. This is especially true for building
a multiple linear regression model without much consideration for the story behind the data. Often
termed as the “Table 2 Fallacy” (Westreich & Greenland, 2013) occurs when multiple adjusted effects
are estimated from a single model in a single table. Despite being purely correlational, this inadvertently
paints a causal picture due to human nature to draw causal conclusions from interpretable/predictive
models. A very famous example of this comes from a paper published in Nature that aimed to stratify
risk factors of COVID-19 by presenting an interpretable model of the same (Williamson et al., 2020).
A bizarre fact emerged - regular smokers were found to be safe from COVID-19. The distorted as-
sociation occurred due to conditioning on a descendent (mediator or child) of a treatment variable (in
this case smoking) which induced a phenomenon called collider bias (Griffith et al., 2020). Thus, even
though their predictive model was interpretable it was meaningless (Goren et al., 2020).

2.1.6. Causal Inference terminologies

But before we discuss more causal graphs let us first introduce some terminologies associated with
the causal inference paradigm as a whole. First, we clarify the difference between conditioning and
intervening as these two are very common terminologies used whenever we interact with a variable.
Intervention is when we fix a value for a variable, for example, if we open up a barometer and manually
adjust the pointer to a specific value, that will be defined as an intervention. On the contrary condi-
tioning is when we do not change anything. So for example, if we condition the barometer reading, we
leave it as itis. To further simplify it, conditioning can be thought of as filtering - According (Pearl, 2016)
“When we condition on a variable, we change nothing; we merely narrow our focus to the subset of
cases in which the variable takes the value we are interested in. What changes, then, is our perception
about the world, not the world itself”

Now within a causal graph exists 3 primary relationships between namely: Confounders(Z), Medi-
ators(M), and Colliders(C). A Confounder e.g., Z, is that factor which has an effect on other variables,
e.g., X and Y, such that X and Y show correlation despite not being causally related. A Confounder
can be visualised as X « Z — Y. Confounders need to be accounted for when studying the relationship
between X and Y. On the other hand, a Mediator is an additional variable M, causally related to an
independent variable X causing an indirect effect on the outcome Y. A Mediator can be visualised as
X - M - Y. Finally, Colliders are factors that have a common outcome. Given two independent
variables X and Y, a Collider can be representedas X - C « Y.

Backdoor Criterion The above three terminologies (confounder, mediator and collider) are associ-
ated with the “backdoor criterion” (Pearl, 2009). The main idea behind establishing a backdoor criterion
is to ensure no form of non-causal association flows when we are trying to establish the causal esti-
mate between a random variable, X and the outcome variable, Y. Only the directed edge between the
Xand Y is considered to be the causal path and every other edge that perhaps passes through other
nodes are considered to be non-causal. Blocking these non-causal paths or backdoor paths ensures
that the causal association or causation flows only through the direct edge that connects X and Y. A
set of variables Z satisfies the backdoor criterion if -
1. Z blocks all backdoor paths (Figure 2.1) - For this to happen two different cases needs

to be considered based on if Z is a collider or not - 1) If Z is not a collider, then condition-

ing on Z blocks the backdoor path 2) If Z is a collider then it should not be conditioned

on to block the backdoor path

2. Z does not contain any descendent of the variable, X.

Average Causal Effect Lastly we briefly introduce the concept of average causal effect (ACE) or
average treatment effect (ATE). While graphical models allow us to tell the story behind the data they
do not necessarily give the strengths of a causal association between the variables. That is where ACE
or ATE are used. The quantify the strength of the causal relationship by taking the average difference
between if the (binary) treatment had been administered and if it had not been administered. We will
discuss this in detail and present its mathematical formulation when we introduce our framework in the
next chapter.
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Causal Association

Figure 2.1: Causal graph and showcasing the flow of causal association and backdoor path - here the backdoor paths are those
paths that have edges that go into X and also have a path connecting X to Y

Air Pressure .,
(2

Barometer atrdoor Aty f Barometer f
Reading Rainfall Reading Rainfall

Figure 2.2: Barometer Example: Effect of intervention on a causal graph
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2.1.7. Intervening on Causal Graph

Let us now continue with our barometer example again. A causal graph of the underlying problem is
presented in Figure 2.2. U1, U2 and U3 represent the unobserved variables that affect the outcomes,
these are coagulation of different factors that impact the actual values (e.g. air temperature, amount
of dust particles in the air, humidity). By utilising this causal graph we can visualise the story behind
the data and notice how due to the presence of a backdoor path non-causal association flows from
barometer reading to the chances of rain. However, when we intervene in the reading of the barometer
i.e. to change the reading of the barometer manually we remove all incoming edges to the barometer
node. We remove all incoming edges because by performing intervention (changing the reading of the
barometer manually) we ensured that the true cause of the barometer reading is our manual interven-
tion and not air pressure or U2. Consequently, the backdoor path is broken as now there exists no
edge (non-directional) that connects the barometer with the outcome rainfall leaving only the causal
association between air pressure and rainfall. By logically intervening in our underlying graphical model
we were able to establish the true cause of rainfall without performing any quantitative analysis.

2.1.8. Causal Discovery

Structuring a causal graph is usually done by experts, or based on prior studies on the same topic.
Modelling the relevant factors, mediators, confounders, colliders, and how these are related to each
other is not a trivial task. However, the causal discovery process can help ease building causal graphs
by inferring the causal structure from observational data. There exist multiple algorithms implement-
ing such discovery processes, each with different assumptions regarding both causal and sampling
processes underlying observational data. Glymour et al., 2019 provided a categorisation for graphical
methods for causal discovery; here we report only the main ones. Constraint-based causal discovery
algorithms, like Peter-Clark (PC) and Fast Causal Inference (FCI) (Spirtes et al., 2000), are based on
a complete and undirected graph including all the variables involved and use statistical (conditional)
independence tests to prune the edges. On the other hand, score-based models like Greedy Equiva-
lence Score (GES) (Chickering, 2002) start with an empty graph and add edges as long as the scoring
function (e.g., Bayesian Information Criterion) increases. Edges are then queried to understand if any
removal would further increase the score. Finally, Functional Causal Models attempt to capture the
asymmetry that is present between causes and effects by modeling effects Y as a function of causes
X, noise €, and some unobserved factors 0.Y = f(X,¢,6). Besides graphical approaches to causal
discovery, there exist many pairwise approaches that aim to define causal relations between any two
variables by evaluating the fithess of the data to an additive noise model (Hoyer et al., 2008), by bidi-
rectionally comparing the standard deviation of the rescaled values of one variable to the other one in
the pair (Fonollosa, 2016), or by leveraging asymmetries (Daniusis et al., 2012).

Causal discovery is a powerful tool as traditional ways (i.e., randomised control trials) of uncovering
causal relations may be expensive, time-consuming, or impossible. Despite this, their application is
not simple and there are many challenges: they might not lead to unique solutions, causal directions
might be missing, and faithfulness (i.e., variables connected in the causal graph are probabilistically
dependent (Weinberger, 2018)) is sometimes assumed. If not, additional assumptions need to be
included (Hyvarinen & Pajunen, 1999; K. Zhang et al., 2015).

2.2. Related Work
2.2.1. Explanations in Philosophy

On the topic of explanations in the field of XAl, Miller’s survey (Miller, 2019) was one of the first studies
mentioning causality as a possible means to implement XAl frameworks and tackle the limitations of
existing methodologies. Particularly, Miller points to the Ladder of Causation by (Pearl & Mackenzie,
2018) in which explanatory questions are grouped in three classes: what-questions (e.g., “What event
happened?”), how-questions (e.g., “How did that event happen?”), and why-questions (e.g., “Why did
event that happen?”). Along those lines, (Buijsman, 2022) reports the properties a good explanation
should have: first, a rule answering why we got a specific output, and second a counterfactual compo-
nent aimed at answering why X occurred rather than Y. Furthermore, Buijsman also conceptualised the
depth of an explanation in terms of abstractness of variables and generality. Having a more abstract
explanation allows us to answer more why-questions, but this needs to be balanced with the specificity
of the explanation (i.e., the information should be relevant to model outcomes). On the other hand,
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generality is related to the number of inputs covered (i.e., breadth), balanced against the correctness
of the explanation on those inputs (i.e., accuracy). The former refers to the preference for more abstract
variables, that is, in his words

“As long as both are correct, we tend to see the explanation using red as better.”
when given the following explanations:

» The pigeon pecked because it was presented with a scarlet stimulus

» The pigeon pecked because it was presented with a red stimulus

Having more abstract explanations allows us to answer more why-questions. However, increasing the
level of abstractness means lowering the specificity of the explanation. To be considered good, an ex-
planation should be abstract enough by incorporating only relevant information, i.e., not compromising
on specificity. On a related note, generality is tied to abstractness and can be quantified in terms of
breadth and accuracy. The former simply means that an explanation can cover more inputs. The latter
means that the explanation is correct for every input in its range. Similar to abstractness and specificity,
the relation between breadth and accuracy is one of balance. Furthermore, they also highlighted the
relevant aspect and structure of an explanation. For the most part, past works in philosophy of science
and social sciences are critical of XAl given a large number of definitions, their sparsity, and lack of
clarity across the literature. But in general, various aspects of what makes an explanation as the con-
cept of explanation is undeniably defined in better terms outside of the domain of computer science.
We take inspiration from these discussions and ground our proposed method on the result of these
works.

Differently from existing approaches, in our work, we specifically take an interventionist account
(Grimsley et al., 2020) for generating explanations by leveraging causal inference methods on top of
crowd-generated concepts (discussed in the remainder of this section).

2.2.2. Causality in Explainable Al

There have been various attempts at implementing the concept of causality into the field of XAl, by
drawing inspiration from the Causal Inference field, especially via generating counterfactual-based ex-
planations. Works specifically related to Causal Inference will be presented in more detail later on, in
the Background section. As a reference point, counterfactual examples differ from adversarial ones
as the former aim to define changes in the input so that alternative outcomes happen instead of the
original one (Brughmans et al., 2021), the adversarial examples are meant to fool the attacked model
and make it fail in its task (Freiesleben, 2021). Counterfactual explanations can be obtained by altering
the values assumed by the different variables governing the given phenomenon through interventions.
Interventions are not new in XAl frameworks but, to produce meaningful results, they must be designed
carefully (Woodward, 2003) so that they precisely target variables of interest. Several approaches have
been proposed to generate counterfactuals through heuristic searches, instance-based strategies, de-
cision trees, or by framing optimisation problems. Guidotti, 2022 provides a thorough review of these
approaches. Two examples are the ones by Wachter et al., 2017 and Dandl et al., 2020, both of which
are based on minimising loss functions that constrain certain desired properties (e.g., the high similarity
between the actual instance and the counterfactual). Counterfactuals have also been used in the NLP
field. For example, scholars have created counterfactually-augmented datasets that enabled them to
produce models which learn causal features and achieve better performance on unseen data (Kaushik
et al., 2019; Kaushik et al., 2020). More specific to computer vision, Goyal et al., 2019 proposed an
approach that, given two images, identifies the key discriminative regions in them such that swapping
those regions leads the model to change its prediction. The approach is specific to convolutional neural
networks as the authors focus on the feature extracted in the earlier layers of the network. Besides the
plethora of approaches proposed to generate counterfactual generation, Guidotti, 2022 raises an im-
portant point by uncovering, based on existing counterfactual explainers, how researchers have mostly
overlooked causality thus far. To the best of our knowledge, ours is the first approach focusing on this
dimension of counterfactual explanations in the field of XAl.

2.2.3. Explainability of Computer Vision models
In the context of computer vision explainability, saliency is the most widely applied approach. Saliency
is a local, post-hoc explainability method that highlights the most important pixels in a single image
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with respect to the model prediction (Simonyan et al., 2013). Saliency can be computed by computing
the gradient of the activation functions (Selvaraju et al., 2019; Simonyan et al., 2013), by backtracking
the features to the inputs (Shrikumar et al., 2017; Bach et al., 2015), or with more sophisticated ap-
proaches like SmoothGRAD (Smilkov et al., 2017). From a different angle, Kim et al., 2017 provides
a concept-based approach to explaining CV models by introducing the notion of Testing with Concept
Activation Vector (TCAV) and using it to perform translations between the internal states of a model to
human-friendly concepts. Ghorbani et al., 2019 later expanded on TCAV by identifying concept-level
information across different images, clustering them, and testing their importance. The main disad-
vantage of these approaches is that the highlighted regions still need interpretation. Finally, two more
recent approaches by Balayn, Soilis, et al., 2021 and Sharifi Noorian et al., 2022 use crowdsourcing to
address two XAl problems: concept extraction for global model interpretability and unknown unknowns
characterisation respectively. Considering the existing contributions in establishing procedures to an-
swer the why aspect of explanations, our study complements those by adding a counterfactual anal-
ysis. We do so by eliciting people’s cognitive abilities to collect human-understandable concepts as
hypotheses to be further validated through causal inference. We focus on analysing the causal effects
different concepts in images have on the final model prediction. By taking a causal stance in explaining
model behaviour, we are enabled to consider confounding factors as well as perform interventions on
individual concepts to explain a model’s output.
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Figure 3.1: Overview of the CHIME workflow.

Causal Graph

In this section, we discuss the CHIME framework and the underlying motivations. CHIME is an en-
semble of different methods applied toward the common goal of identifying and explaining the behaviour
of Deep Learning models for Computer Vision, given their predictions on a set of images. The ground-
ing for this is derived from interventionist account of philosophy (Grimsley et al., 2020; Buijsman, 2022;
Woodward, 2003; Miller, 2019) which is then combined with logical structure of causation proposed by
Pearl et al. (Pearl & Mackenzie, 2018). The interventionist account states that if X (estimand) causes Y
(outcome) then any intervention on X, represented by do(X) := Xinitiai = Xfinar Where Xinitiar # Xfinal
will generate the subsequent change the value of Y (Yintiq1 = Yfinai) such that Yipitiar # Yrinai- The
idea behind intervention was already depicted in Section 2.1.6 with the help of a graphical model in
Figure 2.2. Subsequently, we now apply the counterfactual account to further solidify the outcomes
of the framework. This is also reminiscent of the three layers in causal hierarchy presented by Pearl
(Pearl & Mackenzie, 2018). The first level is association - this is our initial hypothesis about what the
model learns; the second level is Intervention - Establishes a causal perspective by intervening on
learned features in the first level, and finally, the third level is Counterfactuals - helps the framework
generate a more extensive set of answers, especially for “what-if questions.

Given this high-level overview of the framework, fully visualised in Figure 3.1, we will explain each
more in detail each component in the remainder of this section.

3.1. Data Collection - Establishing Correlation

The first component of our framework aims to capture the correlation between model prediction and
corresponding salient pixels. To do this we first need two inputs - 1) A computer vision model trained for
the image classification task and 2) A dataset - whose instance will be used to explain model behaviour.

3.1.1. C1: Saliency Map Extraction

Once we have the pre-trained model we can use it to make predictions on all instances within the
dataset provided. Since the datasets are generally large, it can be costly to consider all instances, thus
we perform random normal sampling across different classes within the dataset to select a small subset
of images. Once the model has made predictions, we then utilise that information to capture salient
pixels. This is generally done using saliency map detection algorithms as described in Section 2.1.6.
While there exist many variants of generating saliency maps we utilise a method called SmoothGrad
(Smilkov et al., 2017). SmoothGrad is an architecture agnostic saliency map generation technique that
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generates sensitivity maps by adding noise to the underlying image. This algorithm to some extent also
follows the interventionist account (adding noise to the image can be considered as intervening on the
image) thus aligning well with our causal framework. Upon identifying the sensitivity maps which are
nothing but heat maps depicting most activated pixels with respect to the model predicted class, we
can begin translating the blob of pixels to meaningful high-level semantics.

3.1.2. H2: Human Annotation of Saliency Maps

Object - Sign; Shape - Triangle;
Colour - White, Red

Object - Spoon; Part - Head; Object - Fork; Part - Head;
Shape - Oval; Colour - Silver Shape - Fork Shape; Colour - Gold

Figure 3.2: Examples of annotated concepts from different biased models: Neg. Set Biased Inception (top-left), Neg. Set Biased
Squeezenet (top-right), Colour-Biased Inception (bottom-left), Colour-Biased Inception (bottom-right)

As mentioned earlier a cluster of pixels represented by the heat map albeit interpretable can be
ambiguous - they can refer to different concepts: an object, its shape, or its colour. There is no straight-
forward way to distinguish these individual concepts. Automatic methods such as object detection (Lin
et al., 2014) can be utilised but despite their high accuracy these methods are generally very much
limited by the supervised labels they were trained on. This can affect the generalisability of the frame-
work. Furthermore, doing so would introduce a black-box component in our framework - and explaining
its behaviour will add additional overhead. Thus, motivated by (Balayn, Soilis, et al., 2021) we apply a
crowd computing approach. The idea here is to involve crowd workers and elicit their cognitive abilities
to annotate salient patches. This is fairly effective as human cognition is highly accurate at detecting
concepts and it also provides us with a wide variety of meaningful concepts. Our approach differs from
Balayn et al. in terms of the crowdsourcing task design. In the original work for each saliency map
entity attribute, pair was captured. However, based on our initial hypothesis (if the model is looking
at the object, its colour or perhaps its shape), we needed more specific labels. Thus our task design
incorporated fields that specifically captured the name of the 1) Concept (or object) 2) the colour of
Concept 3) the shape of the Concept. Additionally, we capture the part-of relationship - sometimes,
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the heat-map may not identify the concept as a whole but rather part of it e.g. leg of a chair or head
of a person etc. By implementing this framework implicitly we were also able to formulate a template
for causal discovery and validate our hypothesis. Apart from this, the task design also incorporated
a drop-down suggestion field to direct/suggest annotators toward the intended values. These were
not restrictive, meaning annotators could still select values from outside of the suggestions provided.
This gave a good balance between indicative and free-form design. The template used to capture
annotation data from crowd workers is shown in Figure 3.3

Once the concepts are collected they were checked for spelling violations and consequently cor-
rected; spaces and other special characters were removed the cases were lowered. The rest of the
pre-processing was done manually. Specifically, colours were made more general i.e. if the colour
was annotated as light green, it was replaced with green. This was done to ensure that the concepts
that needed to be explained had a higher level of abstractness aligning our work with the hypothesis
presented in the work of (Buijsman, 2022). Note that there still exist cases where certain colours such
as the colour olive - which is a combination of yellow and green were left untouched as the current
version of the framework does not have the capabilities to detect and resolve such conflicts heuris-
tically. However, the colours were annotated as “yellowgreen” were replaced with “yellow” based on
the precedence of yellow over green, similarly “greenyellow” were replaced by the colour green. Apart
from this the pre-processing step also removed noisy and meaningless annotation. For example, some
of the annotations that considered “background” as a shape were removed. For a small number of in-
stances, the annotations were wordy. For example, in one instance one annotation for colour read
‘transparent, but having a reflection’, these instances were manually verified and fixed. While these
could also have been removed but as the captured data was already limited, we aimed at keeping as
many instances as we can. Some examples of annotations after pre-processing for different models
are shown in Figure 3.2.

While we present a very specific design based on our hypothesis, in practice any form of crowd-
sourcing task design can be implemented depending upon the hypothesis of the stakeholder.

Image count
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Figure 3.3: Crowdsourcing task design

3.1.3. Concept Aggregation

Acquired concepts in the previous steps are local i.e. they belong specifically to individual image in-
stances. TO arrive at a global picture we need to aggregate the annotations. Now, in our background
reading, we mentioned that aggregating local interpretations can be incorrect, however, in this sce-
nario, we have a constraint in the form of the dataset i.e. our framework limits its explainability prowess
to the dataset provided as input. With this limiting scope, this aggregation step can be an effective tool
for translating the local scope into a global one. We aggregate the individual concepts on a class level
i.e. we combine all the annotated instances belonging to the same class. However, the observational
datais still correlative in nature. We have collected data points which we believe can be correlated with
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model prediction. And as already established in previous sections interpretability does not come only
from fitting data to a simpler model but rather it is a combination of understanding the structure of the
data(causal graph) and then building a model based on it. Thus we need a way to formulate and then
validate the observational data collected - this is where we introduce the causal discovery component
of our framework.

3.2. C3: Causal Discovery

To understand the underlying structure of the annotations we collected we build causal graphs for each
class. This also helps us to exhume the presence of confounders. We construct our causal graph in
two ways - 1) Template-based - Causal graph generated by this method requires manual intervention
and is primarily based on a stakeholder’s initial hypothesis or domain knowledge. This initial hypothesis
can be formulated in several ways - from an XAl practitioner aiming to uncover a specific trait of a model
(e.g. effect of a particular colour on model prediction) to a model creator debugging their creation for
bugs (checking if the model prediction is sensitive to out of domain concepts to prevent adversarial
attacks). 2) Automated - This way of generating causal graphs requires no prior knowledge but they
require the usage of causal discovery techniques that generate causal graphs from observational data.
As part of this thesis, we employ a pairwise causal discovery algorithm called Conditional Distribution
Similarity Statistic (CDS). But again, it can be left at the hands of the stakeholder who can select their
preferred automated causal discovery algorithm and use it as a plug-and-play component with our
framework.

Template-based Causal Graph Creation Building causal graphs is not trivial and may require domain-
specific knowledge to be effective. Despite this, a template-based causal discovery can allow a practi-
tioner to construct and validate their hypothesis about certain behaviour of the model. We have touched
upon this briefly while discussing the crowdsourcing task design. Based on the requirements of stake-
holders one can alter the design of this template to incorporate their hypothesis. We hypothesised that
perhaps the model is not looking at the object itself but rather part of the object or its colour or perhaps
its shape. Thus we similarly constructed our causal graph template - we considered the primary object
as estimand and its colour or shape as the mediator. The model prediction is considered to be the
outcome variable. The collected data for each of these 3 nodes were filled in their respective place e.g.
Bed (primary object) was placed as the estimand, black (colour) was considered to be the mediator
and bedroom (class label) was input as the outcome variable. Table 3.1 shows the templates that were
considered.

Templates
object/part-of object — colour colour — label
object/part-of object —» shape shape — label
object — label

Table 3.1: Templates from template-based causal discovery

The rationale behind this is fairly straightforward: the presence of an object may directly affect the
prediction label, but at the same time, it causes the presence of a certain colour in the image, and
objects define shapes, both of which can affect the model outcome as well. This kind of simplistic
reasoning avoids the caveats of Occam’s razor succinctness principle (Fonollosa, 2016). Figure 3.4
depicts a simplified example of a causal graph generated using a template-based discovery method.

But due to the modular nature of this framework, one can just as well inject their design and validate
their hypothesis about the model’s behaviour. This however establishes a tight coupling between the
template-based causal discovery and crowdsourcing task design.

Pairwise Causal Discovery As previously discussed in the Background section, causal discovery
can alleviate the process of building a causal graph by discovering causal structures from observational
data. The template-based causal graph generation requires prior knowledge and an initial hypothesis,
in that sense it is dependent on an input given to the framework. However, this type of supervision may
not always be available. When a stakeholder has limited knowledge about the domain or perhaps the
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Figure 3.4: Template-based causal graph example, including primary (green) and mediating (yellow) concepts, and the model
outcome (blue) for the “Dinner Cutlery” class.

domain itself consists of many estimands that have intricate relationships amongst them than creating
a template may be time consuming and complicated task. This is where automated causal discovery
methods are useful. In our scenario, we utilise the Conditional Distribution Similarity Statistic (CDS)
algorithm by (Fonollosa, 2016), given the discrete nature of the crowd-powered annotations. The CDS
method works on a very simple assumption - “the shape of the conditional distribution P(Y|X = x)
tends to be very similar for different values of x if the random variable X is the cause of Y”. In the
original paper, there exists different features measuring these distributional differences and were then
input into a Gradient Boosting Classifier to predict the direction of causality. For our implementation,
we considered the Causal Discovery Toolbox implementation of this algorithm (Kalainathan & Goudet,
2019) that implements only one of the features mentioned in the paper. Specifically, it focuses on the
standard deviation of the conditional distribution.

Since it is a pairwise method it returns the direction between two variables. Thus all collected
concepts and their corresponding colour, and shapes were considered to be nodes in a non-directional
complete graph. Then the CDS method was applied to each pair of nodes in the graph to determine
their direction of causality. Mathematically, for all pair of nodes (X,, X;,) where i = j If X, is a cause of
X, then for all values x4, x,, .., x, € X; the standard deviation of the conditional probability distribution
P(X,|Xp) will be lower than that of the reverse relation i.e. P(X,|X,). Before calculating the standard
deviation both distributions are standardized to have a mean of 0.

EDS(KarX) = D(Xp, Xa) = D(Xas Xp) 3.1)
where,
1 M-1
DY) = |3 ). var, (Pa(IX0) (3.2)

i=0

In Equation 3.2 P, represents the normalized conditional probability and vary, represents variance over
X;. The CDS score returns a value of 1 or -1 specifying whether the causal direction is between X, — X,
or X, —» X, respectively. If no causal direction can be defined then it returns 0.

Based on requirements one can plug in any form of causal discovery algorithm or supervised tem-
plate based on expert knowledge. This increases the versatility of our framework and allows stake-
holders to experiment with different techniques to achieve their desired goals.

3.3. C4: Performing Interventions to Determine Causal Effects

By generating the causal graph, we have an overview of the hypothetical model behaviour. However,
by itself, the graph does not provide any information regarding the causal strengths of individual con-
cepts with respect to the model outcome. These causal effects can be estimated through intervening
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on the estimand. The causal effect values enable us to rank concepts based on the magnitude of
their effects on the model outcome. Practically, we conduct linear regression on the crowd-sourced
concepts and then observe the changes in the output based on carefully performed perturbations (i.e.,
interventions) to its inputs. As already mentioned interventions can be formulated as P(Y|do(X), Z),
where X represents a single concept, do(X) is the action of setting the variable X to a particular value,
and Z is the set of confounders on which the estimates are conditioned on, to not obtain distorted as-
sociations with the model output. We perform interventions on causal graphs by removing all incoming
edges to a particular node, thereby removing their influence on the intervened variable, allowing us
to capture the direct effect a single variable X has on the outcome Y. For our use case, we define
treatment values as 1 and control values as 0 representing the presence or absence of the concept
respectively. While we intervene on every available node except the outcome node certain criteria are
considered while selecting the set of conditioning variables (Z). This is done to ensure no unwarranted
association flows into our underlying estimand (X) and the outcome variable (Y) failure to do this may
result in erroneous. To tackle this we need to establish that Z is a part of a sufficient adjustment set.
A set of variables is considered to be in sufficient adjustment set if it satisfies the backdoor criterion
(Neal, 2020). Once a variable is identified to belong to the sufficient adjustment set then only we can
control/condition on it to estimate the causal effect. We utilise a process called Conditional Outcome
Modelling (COM) to calculate the average causal effect (ACE). The formula for ACE is -

ACE = E4[E[Y|X = 1,Z] — E[Y|X = 0,Z]] (3.3)

Where Y is the outcome variable, E, represents the expected value of all values of Zand Z is a variable
in a sufficient adjustment set, and as mentioned earlier setting the value of X to 1 and 0 signifies the
presence or absence of that concept. To get the conditional distribution one can utilise any machine
learning model. But utilising complex black box modelling techniques may add an extra overhead of
having to explain the behaviour of that model also. Thus for our project, we utilise linear regression, as
it is a simple and interpretable model. It can also be proven that the regression co-efficient represents
causal strength if there exists no backdoor path between the estimand and the outcome (Neal, 2020).

Aside from the mathematical formulation, logically this amounts to validating our hypothesis. 1) By
satisfying the backdoor criterion we ensure that the flow of information between the estimand and the
outcome is unadulterated. 2) Upon intervening upon the estimand we then ensure that our estimand
is free of any effect by other unobserved variables and then validate if the absence or presence of the
estimand makes a difference in the outcome.

3.4. C5: Answering what-if questions

Thus far, we have achieved the second level using (Pearl & Mackenzie, 2018) i.e. by intervening on the
estimands we have managed to establish a causal association between our intended concepts and the
model’s outcome. This allowed us to paint a causal picture with regards to what the model has learnt.
Not only that but by quantifying the causal strengths we can also see which concepts have a stronger
causal relationship as compared to the other. However, there is one more step in the causal hierarchy
that is missing. The counterfactual level allows us to generate answers to what-if questions. Generally
in social sciences, the differences between counterfactuals and interventions are well defined. Take
for example a hypothetical study to establish whether smoking causes cancer or not. We can source
participants and divide them into two groups, participants from one group are asked to smoke cigarettes
(treatment group) and participants in the other group were asked to do the opposite (control group).
Smoking here is the intervention we perform to gauge smoking’s effect on cancer. Now we let the study
pan out and after some years we capture our results. If during that time, the group that smoked had
more cases of cancer compared to the control group then we can conclude that smoking is a cause
of cancer. However, at this stage one might enquire “what-if’ the group that smoked cigarettes did not
smoke cigarettes, would that have reduced their chances of cancer? Note the subtle difference, during
step 2 of the causal ladder (intervention), we had a world where none of the participants had cancer and
we intervened to establish whether smoking causes cancer. Now, as for step 3 of the causal ladder,
we know that a group of people have already smoked cigarettes but we wonder what if they hadn’t and
thereby creating a counterfactual reality. While the distinction is clear in a real-world scenario from the
perspective of an image and intervention by itself can be corroborated in a counterfactual scenario. For
example, when we intervene in a concept that is present in an image we already go back in time to a
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state when the image was being taken and change an aspect of it. This is because a digital image is
an event that has already taken place any form of intervention results in contradicting that reality that
took place.

3.5. Toy Example

To further clarify this let us consider a toy example that explains how each component in the framework
works. Let’s consider the case of binary scene classification - using an underlying deep learning model
we classify whether an image is “bedroom”, or “not bedroom”. First, we present the trained model and
the entire dataset to the framework. Upon presenting it with n randomly sampled images from a dataset
we extract the salient pixels (C1) and then annotate them using crowd workers(H2). Upon aggregating
the annotations we notice that the Primary Concepts are {bed, table}, and the Mediating Concepts are
{black, red}.

The findings reported from the annotation stage are reported in Table 3.2.

Image Primary Concept Mediating Concept Model Prediction
1 Bed Blue Bedroom
2 Table Red - Bedroom

Table 3.2: Toy example: Captured annotations

For simplicity, We apply template-based causal discovery for this toy example and hypothesise that
both primary concepts are causally related to the model outcome under the influence of the mediating
concepts. Based on this we formulate as many as

Given that knowledge, we build linear models with the following structure:

y=a-PC+b-MC+¢&

4
MC=c-PC+§, (34)

where PC and MC represent a primary concept and a mediating concept respectively; & and &, are
the noises associated with the underlying linear models. To estimate the values of the coefficients
a and b, we construct two separate linear regression models, one to compute the causal strength of
object —» bedroom, and another for colour —» bedroom, where the object is a confounder. In both cases,
interventions are performed on the estimand (bed, table, red, blue) to ensure that it is not influenced
by any observed or unobserved confounder. When estimating the causal effect of object - bedroom,
we do not consider colour as a confounder. This is primarily due to the colour being a descendent of
the treatment variable which might induce collider biases (Cinelli et al., 2021).

In both cases, the outcome variable is the model prediction. To further simplify the process we
consider binary interventions, i.e., the presence and absence of the said object. Employing interven-
tions, we calculate the causal strengths of those concepts, i.e., the coefficients of the linear model. The
higher the coefficient, the higher the causal strength.

The benefits of identifying such a coefficient are two-fold. Firstly, it helps us identify the causal
strength and helps us answer counterfactual questions. Secondly, they help us calculate the remaining
unknowns of the equation - the errors (§). This allows us to construct a parametric model based on
which we can answer questions like “What if the images had a red bed? or a black table?” when trying
to understand the behaviour of the toy model. Note that this is a direct consequence of our framework’s
capabilities, however, it is not implemented as part of this project.






Experiment Set up

Evaluating an XAl framework can be complex as there exist no well-established benchmark standards
that can be used for comparisons (Yalcin et al., 2021). This issue generally stems from different XAl
frameworks catering to different system goals (Mohseni et al., 2018). To further complicate the matter
there exists no gold standard i.e. we can only hypothesise what the model has learnt or make it overfit
or sensitive to certain features but even then it is not guaranteed that the model behaves in the way
we expect it to. However, there exists metrics that are commonly used in the existing XAl domain. We
take motivations from such work and design our experimental setup in such a way that the framework
is evaluated both from the XAl and the causal perspectives.

4.1. Fidelity

Amongst standard XAl metrics, Fidelity is considered one of the most important properties of an expla-
nation (Molnar, 2022) as it represents the ability of an XAl framework to approximate model behaviour.
However, Fidelity is interpreted differently across literature and implemented differently based on the
suitability of the framework (Balayn, Lofi, et al., 2021). Z. Yang, 2019 defined fidelity as the model’s abil-
ity to generate outcomes that closely match that of population distribution. The population distribution
is the known distribution. Mathematically he defined Fidelity as

F(x,y;H)= 1_IPmodel(ylx)_Ppop(ylx)l (41)

where F(x,y; H) is the fidelity of model H given an input sample x and outcome y. P,,,(y|x) is the
known probability distribution of y given x and B,,,4.:(¥|x) is the model’s prediction distribution. In our
experiment, we take motivation from this definition and present the fidelity in such a way that it is more
interpretable and demonstrative in nature rather than quantitative. Firstly to establish the known prob-
ability distribution by injecting biases and fine-tuning the models for a sufficient number of epochs so
that their behaviour is skewed toward those biases. Specifically, we inject Sampling bias and Negative
Set bias and then utilise our framework to identify those biases in the generated explanations.

Sampling Bias or Selection bias or Collider bias is introduced when the dataset is sampled in such
a way that it introduces a spurious correlation. Consider the PASCAL VOC dataset (Everingham et al.,
2010) bird and sheep class. Since most pictures of sheep are most likely to be taken with a background
containing grasslands and similarly for birds it will be the sky. Despite the original idea to extract features
of birds and sheep the model will now focus on the background features as a cue to classify the images
into birds and sheep. Deep learning models are known to utilise these spurious correlations to make
predictions (Y.-Y. Yang et al., 2022). In our case, we intentionally introduce this bias to make the model
behaviour more predictable.

Negative Set Bias This is a very intriguing and also common form of bias that is present in datasets
used for image classification. As defined by (Torralba & Efros, 2011), negative set bias in datasets
occurs when apart from the positive instances - the instances or concepts that the label represents,
there exist many instances of other concepts, called negative instances thereby referred to as the

19
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negative set bias. Every image represents a piece of specific information, and it is rarely the case
that a single image will contain only one object corresponding to the label or class it belongs to within
a dataset. Take the dog class in imagenet (Deng et al., 2009) for example - apart from the positive
instance of a dog it has grass, trees, roads, goldfish, people, snow etc. which all can be categorised
as a negative set. Now any computer vision model aiming to classify an image as a dog will take all
these visual clues, however, if there are other competing classes (e.g. grass, trees, people) within
the same dataset which considers the negative set of dog class then there is a possibility that the
model will misclassify. While the positive sets are well defined within a dataset, negative sets are never
documented. However, they are important to uncover as they can assist in segregating the intended
classification object from other visual phenomena. A detailed description of how these biases were
injected will be discussed in Section 4.6.2.

4.2. Accuracy

Accuracy is a widely used metric in XAl-related fields. This is generally due to its quantitative simplicity
and fairly transparent conclusive prowess. A different definition is defined for a different context and is
often correlated with Fidelity (Molnar, 2022) but since for our framework, we define fidelity demonstra-
tively we present accuracy as a separate quantitative measure. Accuracy in XAl literature is defined
as the underlying framework’s ability to correctly estimate model prediction with the generated expla-
nation, especially on unseen data. For generating an explanation the model’s prediction is the input
to the XAl framework but for calculating accuracy the order is reversed. We first source the top 5
concepts ordered by their causal strength to a particular class. While any number of concepts can be
considered we empirically choose the number 5 to make the outcomes more compact and the results
more presentable. These concepts are then put into the Google image search engine using a python
framework '. For colours and shapes the prefix "colour” and "shape was used respectively to ensure
the images contain the underlying colour and shape as without these prefixes majority of the results
were erroneous. For primary concepts, no alteration was done. In total 10 images were collected for
each concept resulting in a total of 50 images per class. These images were then input into the model
and the corresponding top 2 predictions were captured. If the model's top most predicted outcome
matches the class for which causal concepts were used to generate the input images then the Accu-
racy@1 score inflates and similarly if the class belongs in the top 2 highest predicted outcomes then
the Accuracy@2 score inflated.

Number of Target label in top 1 predicted outcome
Total Number of images

1lAccuracy@1 = (4.2)

Number of Target label in top 2 predicted outcome
Total number of images

Accuracy@?2 = (4.3)

4.3. Causal Verification

Since our framework relies on discovering causal concepts we need to ensure that the established
concepts are in fact causal in nature. Inspired by the idea presented in (Xu et al., 2020), we check
if top causal concepts are relevant for a particular class as compared to the weak causal elements
(concepts with the bottom-most causal effect score). Like calculating accuracy, for each class, the
concepts were ordered based on their causal strength. Then we hypothesise that the top 5 and bottom
5 causal concepts from the ordered list represent strong causal concepts and weak causal concepts
respectively w.r.t the underlying class. While other concepts may also be useful in terms of generating
explanation and a case can be made to perform a 50-50 split, e.g. if there are 20 total concepts
for a class, the top 10 can be considered into the strong causal category and the bottom 10 can be
considered as the weak causal category, we choose to go with top 5 and bottom 5 concepts as it makes
the metrics more specific. Once the strong and weak causal concepts are identified we perform causal
verification by evaluating the following inequality.

P (effect|strong cause) > P(effect|weak cause) (4.4)

"https://github.com/hardikvasa/google-images-download
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where considering images with the top-5 causes
correct predictions

P(effect|strong cause) = # of images with top-5 causality (4-5)
and, similarly, considering images with the bottom-5 causes
correct predictions
P(effect|weak cause) = (4.6)

# of images with bottom-5 causality

We hypothesise that the model’s top prediction should favour the underlying class for the top causal
concepts rather than the bottom ones.

4.4. Coherence

A human-centric framework should focus on explanatory metrics that are important from a human’s
perspective. With that regard, (Thagard, 1989) in his Theory for Explanatory Coherence stated that
an “explanatory hypothesis is accepted if it coheres better overall than its competitor”. This has later
been correlated with how a human makes judgements on explanation (Ranney & Thagard, 1988).
While the caveat of utilising coherence as a metric in XAl is that it may not always concur with prior
beliefs of a human thereby may lead to an explanation being rejected (Miller, 2019). Nevertheless,
assuming that the explanations generated by an XAl framework are independent of a stakeholder’s
biases regarding perceptual similarity, one can define coherence as the framework’s ability to generate
similar explanations for similar data instances (Molnar, 2022). Note that the term “similar instances”
can refer to many things. For example, it can be considered at a class level, but doing so will require
us to summarize a diverse set of complex information. Which can be a complex process itself not to
mention lossy conversion. Thus, while other metrics are considered at a global level aligning with our
framework’s attribute, for coherence we take a different route and focus on local instances. This also
showcases the flexibility of our framework.

4.4.1. Finding Similar Instances for Coherence

The first step to establishing coherence we need to establish a way to discover similar instances.
We do this by considering the HSV colour model given its strong relation with human perception of
colours (Paschos, 2001). Once HSV features are extracted, we apply Isomap to obtain a 2-dimensional
representation (embedding) of those features allowing us to visualize and manually validate them. Then
we construct a similarity matrix using these 2D embeddings. Finally, the top 10 most similar images
are paired using the Manhattan distance.

This is an automated procedure that is based on empirical evidence, and thus not fully accurate.
To alleviate this the authors manually validated the similarity of the generated pair by subjectively in-
specting 45 subsets of image pairs. Subjective similarity has been used as ground truth for automated
similarity techniques (Li et al., 2020).

The similarity evaluation was done on two metrics - 1) based on colour similarity and 2) based
on object similarity. In terms of colour similarity 34/45 = 75% accuracy was achieved but 16/45 = 35%
accuracy was achieved on object similarity?. After it was identified that the method was fairly accurate in
terms of colour, we then focus on calculating our coherence metric. For each image pair, we first identify
the raw annotations given to the image as part of H2 (Figure 3.1) and establish their Jaccard Similarity
(between two sets of annotations). Then, consider the compute similarities for different classes, as
shown in e.g. 4.7 to measure coherence for a single model M.

I = Z[i/(n. ] 4.7
C ij

However, this in itself may not be representative of Coherence, as different concepts bear different
causal strengths for different classes. Thus, we also consider the sum of causal effects for concepts
that appear in both images in the pair to inspect the sparsity of the explanations per model.

Su = Z[Z OCE;,;] (4.8)
C ij

2The author of this thesis performed this evaluation based on his subjective view
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where OCEy; represents the effects of overlapping causal concepts within images I; and I;.

4.5. Mediation Analysis

As part of our toy example in Section 3, we have already touched upon the mediation analysis briefly.
This is an important step to uncovering the effects mediating concepts have on the outcome as com-
pared to their primary concept counterparts. This provides clarity about each concept’s effects. The
estimation of mediating effects is inspired from (Baron & Kenny, 1986), where two different calculations
are performed. The first is the Direct Effect (DE), that is, the effect the primary concept alone has on
the model’s outcome (e.g., the effect of the bed on the label bedroom). Secondly, the Indirect Effect
(IE), that is, the effect of the primary concept, when a mediating concept is present, on the model’s
outcome. To quantify the mediating effect we compute the Mediation Proportion (VanderWeele, 2015).

IE

Mediation Proportion = DETIE

(4.9)
The higher the value of mediation proportion the larger the effect of mediation by a mediator (e.g. colour
black) on the primary concept (e.g. object bed).

4.6. Setup

4.6.1. Causal Discovery Configurations

In our experiments, we apply and compare both Template-based and Pairwise Causal Discovery strate-
gies. We consider two scenarios: one where objects are considered as a whole, and a second one
where Part-Of relations, if present, are accounted for. Including Part-Of to perform a comparative
study was done to validate how the addition of an extra layer of granularity affects the causal strengths.
Thereby giving users more insights into the efficacy of the framework. We further divide the scenarios
into two more scenarios based on the inclusion of the mediating concept - in one scenario only colour
is considered and in another both colour and shape are considered. Colour is a very well-established
concept, however the same cannot be said for shape. For example, it is easier to state the colour of
the spoon, but deducting the shape of a spoon might require advanced knowledge of different shapes
that are used in geometry even then it is difficult to annotate the shape of a spoon in a single word.
Due to this ambiguity around the shape, we hypothesise that the annotations gathered from crowd
workers maybe not be as accurate as their colour counterparts. The same is true when considering
part-of relations. The total number of scenarios adds up to 4 per causal discovery set up (template
based and pairwise CDS) - We name these scenarios as- O - C,0 - C - S,PO - C,PO - C - S where the
letters represent initials of the features we include. O - Primary Objects, C - Colour, S - Shape and PO
- Part-of primary objects.

4.6.2. Models & Datasets

Datasets \We consider two datasets: the Edinburgh Kitchen Utensil Database® (referred to as “Uten-
sils” hereafter), and ImageNet-A (Hendrycks et al., 2021) for our evaluation. The Utensils dataset
contains images of single objects, on solid backgrounds (e.g., completely green). This allows us to
sample them in such a way that it introduces a colour bias - a distorted association between the class
and the background colours. Similarly by binarizing the images (the creators of the dataset already
provide binarized versions) one can remove all other visual information except the shape of that object,
thereby allowing us to consider a distorted association between the class and the shape of the object.
There is a total of 20 classes of images but to simplify the process we focus on the “Dinner Cutlery”,
“Fish Slice”, and “Tea Spoon” classes. The dinner fork and the dinner knife class were combined to
ensure the data distribution across the classes is similar even after sampling. The full list of injected
biases is summarised in Table 4.1. To add a layer of realistic biases that build upon the theory that
neural networks are sensitive to noises (L. Zhang et al., 2019). The noises mentioned are introduced
To implement this, we simply insert a few images that are strikingly different (e.g. blue background in
a class that is only associated with green background, a large silver bread knife in a class filled with
a small bronze knife etc.). This also contributed to preventing class imbalance. For shape bias, the

Shttps://homepages.inf.ed.ac.uk/rbf/lUTENSILS/
4We created “Dinner Cutlery” class by combining “Dinner Fork” and “Dinner Knife”
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Figure 4.1: Example images from the Kitchen Utensils dataset colour Bias (first row), shape Bias (second row), and ImageNet-A
(third row).
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dataset contained a total of 297 images - Dinner Cutlery (110), Fish Slice (82) and Tea Spoon (105).
For colour bias, the dataset contained 173 images - Dinner Cutlery (23), Fish Slice (57) and Tea Spoon
(93). Apart from these biases we also consider the original dataset and mark it as No Bias. The no-bias
dataset contains the same number of instances and class distribution as the shape-biased dataset.

The other dataset - ImageNet-A contains naturally occurring adversarial images. These images
from Imagenet-A are found to be instances where many existing deep learning models perform poorly,
we hypothesise that this is due to the main element (positive set) being dominated by other concepts
(negative set). For this reason, ImageNet-A lends itself to evaluating the Negative Set bias. In our
study, we focus on the classes “Bee”, “Ant”, and “Mantis”. As the positive set is overcrowded concepts
by concepts that are much bigger and can cause even humans to miss them out. For this dataset,
there were a total of 266 images - 69 ants, 97 bees and 100 mantes.

Figure 4.1 depicts some example images from the three datasets.

Class Colour Bias Shape Bias Noise

Dinner  Black Background, Rectangle Silver Bread
Cutlery Bronze Cutlery Knife

Fish Olive Background, Blue and White
Slice  Silver and glack Fish Slice  ectangle (handle), Square (head) g 4 oroung
Tea Yellow Background, Rectangle (handle), Black

Spoon  Silver Tea Spoon Circle(head) Background

Table 4.1: Sampling biases and added noise for the Utensils dataset.

Models We validate our framework on two separate models: Squeezenet (landola et al., 2016), and
Inception V3 (Szegedy et al., 2015). Squeezenet and Inception V3 are very contrastive in their architec-
ture design, whereas the former relies on a lightweight architecture to achieve computational efficiency,
and the latter favours a deeper architecture to achieve state-of-the-art performance. This allows us to
not only show the versatility of our framework to work with any type of deep learning model but also
exhume their behaviour, especially when presented with biased datasets. We fine-tune these models
on biased data so that we control the differentiating factors for particular classes, and push the models
to pick up the biases discussed earlier in this section, i.e., colour and shape. Pytorch ° framework was
used for training the models. RandomResizedCrop ¢ and RandomHorizontalFlip 7 with default setting
were applied as data augmentation technique. The datasets were split into 90-10 train-val splits. We
decided not to go for a test split as our main aim was to overfit the models and not evaluate their accu-
racy on unseen data. Subsequently, in these datasets we let the training process go in till the accuracy
reached 95% - the only exception being the inception model trained on Imagenet-A. We were only able
to achieve 74% accuracy even after training it for the 3600 epoch. The batch size was set to 20 and
the configurations were kept constant across all runs. The only difference is the input size for inception
v3 (299 as opposed to 224 for squeeze net).

4.6.3. Crowd Computing Task Setup

We resort to crowdsourcing to obtain human-understandable representations for salient patches. Each
task consists of 5 images to be annotated, with a single image possibly having multiple annotations.
As mentioned in Section 3.1.2 participants can either annotate entire objects (specifying properties like
name, colour, and shape) or break objects down by specifying part of relations among components
and their properties. In specifying the properties, we provide some suggestions from which to pick,
but workers are free to input any other value. Each image is annotated by only one worker since we
aim to provide causal explanations on a per-class basis. Practical instructions are provided within the
web application we deployed for annotators. We recruited annotators through Prolific® who are fluent
English speakers and have an approval rate of over 90%. After running a small pilot with 3 people, we
got confirmation about the average duration of the task being 10 minutes. Workers were paid £9/hour,

Shttps://pytorch.org/
Shttps://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html
"https://pytorch.org/vision/main/generated/torchvision.transforms.RandomHorizontalFlip.html
8https://www.prolific.co/
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i.e., £1.5/task with 2 of them being paid 15% of the agreed wage (£0.23) because of technical issues
on our end which prevented them from performing the task. Overall, we recruited 60 people (58 of
whom completed the task successfully), who produced a total of 565 annotations across 275 different
images.






Results and Discussion

In the previous chapter, we have defined different metrics for our evaluation and presented setups for
the same. In this section, we present the results and discuss their implications and how it defines
our framework’s performance. The chapter is divided into 7 sections. The First 6 discuss results
from different perspectives and different metrics. Then we discuss the limitations of the approach
which includes discussion around different biases that have the potential to impact the outcome of our
research work.

5.1. Fidelity - Uncovering Injected Biases

To evaluate fidelity demonstratively we have artificially injected biases into the datasets used to train
the deep computer vision model. Tables 5.1 to 5.4 depict the results of fidelity of both Inception V3 and
Squeezenet for the O-C-S (object-colour-shape) causal discovery setup for both template based and
CDS based causal discovery configurations. The remaining configurations are placed in Appendix B
to not clutter the original report. We also present only top-5 concepts in terms of their causal strengths
for similar reasons.

Bias Type Class Concepts (Effects)
Tea teaspoon (0.62), colour_green (0.46), colour_yellow (0.43),
Spoon  spoon (0.39), colour_bronze (0.22)

§ Fish spatula (0.48), colour_blue (0.47), guitar keychain (0.4),
g Slice colour_gold (0.3), fish_knife (0.22)
Dinner colour_bronze (0.74), colour_black (0.32), knife (0.22),
Cutlery butter knife (0.2), colour_brown (0.18
Tea colour_grey (0.25), colour_khaki (0.2), shape_rectangular (0.17),
o Spoon tablespoon (0.15), colour_olive (0.15)
S Fish colour_steel (0.53), colour_khaki (0.3), shape_square (0.29),
5 Slice butter_knife(0.22), colour_beige (0.18)
Dinner  colour_darkgoldenrod (0.51), colour_red (0.27),
Cutlery  colour_white (0.25), colour_blue (0.18), knife (0.16)
5 Ants plastic_box (0.62), notebook (0.62), leaf (0.62), wheel (0.1),
%) bottle_cap (0.47)
é) Bees colour_beige (0.74), camera (0.7), bicycle (0.67), bee (0.64), seal (0.6)
®©
(o)
2 Mantis dog (1.27), tree (0.6), mantis (0.54), storage_box (0.52), clock (0.49)

Table 5.1: Top-5 causal concepts, and effects, from template-based discovery (object, colour, and shape) for Inception V3.
Concepts in bold overlap with the injected biases.

For template-based O-C-S set up for Inception V3 model(Table 5.1) we notice that the underlying
class concepts (teaspoon, spatula/fish slice, knife/butter knife) and the bias injected colour background

27
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is in the top 5 causal concepts for the colour bias injected model. For the teaspoon class, since the
injected colour was olive, it makes sense that both colour_green and colour_yellow are picked up as
causal concepts. Although for the fish slice the colour green is missing we notice that it has picked up
colours from noisy backgrounds which may suggest that the inception v3 model maybe be susceptible
to noisy contrastive elements within a dataset. For the shape biased model of the same configuration
injected shapes were picked up for teaspoon and fish slice. For dinner cutlery, the shape_rectangle
was also picked up but its causal strength (0.09) did not feature in the top 5 causal strengths.

Bias Type Class Concepts (Effects)
Tea teaspoon (0.63), fork (0.58), spoon (0.58),
Spoon colour_green (0.55), knife (0.48)

§ Fish colour_grey (0.53), colour_blue (0.45), colour_blue (0.45)
S Slice colour_gold (0.16), guitar_keychain(0.15)
Dinner colour_black (0.41), colour_bronze (0.31),
Cutlery colour_silver (0.2), background (0.18), colour_brown (0.08)
Tea colour_grey (0.22), shape_rectangular (0.14), tablespoon (0.11),
Spoon  colour_khaki (0.1), colour_olive (0.07)
% Fish colour_steel (0.29), colour_khaki (0.21), shape_square (0.21),
5 Slice colour_beige (0.18), fork (0.11)
Dinner  colour_red (0.35), colour_blue (0.17), knife (0.16),
Cutlery background (0.11), colour_green (0.16)
5 Ants wheel (0.27), shape_oval (0.15), colour_chocolate (0.14),
n pump (0.1), colour_orange (0.08)
o B camera (0.69), bee (0.49), shape_triangle (0.48), finger (0.47),
= ees .
® furniture(0.47)
§ Mantis dog (0.70), colour_grey (0.63), shape_rectangular (0.37),

colour_white (0.09), colour_gold (0.09)

Table 5.2: Top-5 causal concepts, and effects, from CDS-based discovery (object, colour, and shape) for Inception V3. Concepts
in bold overlap with the injected biases.

Figure 5.1: Example images from the Fish Slice class of Utensils dataset that resemble guitar key chains

This can be attributed to a knife and fork having a very difficult shape to uncover as compared to a
teaspoon and a spatula. For ateaspoon there is a very clear distinction between its handle (rectangular)
and the head (oval/circular), same for the spatula object (rectangular handle with square/rectangular
head), however, for a knife and fork, the shape features are ambiguous - while one may assume the
handles of both to be rectangular but the head part is difficult to uncover. This is in line with our
expectations about shape bias and has already been discussed in Section 4.6.1. For the Imagenet-A
dataset, we notice that the framework can uncover the negative sets. However, it is interesting to note
that for the bees and mantis class the positive set is also uncovered. This can be due to the fact that
in images of bees and mantis the positive set concepts were much more contrastive and thereby was
easier for a model to uncover them. However, this requires further investigation before any concrete
conclusion can be drawn. For the CDS based discovery element (Table 5.2) we see some similar
pattern appearing. For example, again we see that for fish slice class contrasting noises are picked



5.2. Template-based vs. Pairwise Causal Discovery 29

up. In both CDS and template-based discovery configuration the surprising element appears to be the
guitar keychain, however, upon close examination of the dataset, it was found that there were a few
examples of fish slices that resembled a guitar keychain (Figure 5.1).

Bias Type Class Concepts (Effects)
Tea colour_beige (1.18), shape_long (0.81), spoon (0.77),
Spoon  colour_yellow (0.66), teaspoon (0.47)

§ Fish spatula (0.51), colour_aqua (0.44), colour_red (0.41),
S Slice scrapper (0.39), colour_white (0.37)
Dinner  butter_knife (0.60), colour_red (0.4), shape_square (0.36),
Cutlery  knife (0.34), colour_bronze(0.31)
Tea teaspoon (0.68), spoon (0.66), colour_olive (0.55),
Spoon  colour_red (0.34), colour_bollywood (0.33)
:%. Fish guitar (0.83), kitchen_spoon (0.48), spatula (0.47),
5 Slice utensil(0.44), colour_yellow (0.26)
Dinner  fork (0.41), colour_grey (0.37),
Cutlery colour_red (0.31), shape_curve (0.29), colour_black (0.28)
= Ants grass (0.88), petri_dish (0.83), trash_can (0.75),
%) keyboard (0.71), ant (0.71)
_g Bees water_bottle (0.68), backpack (0.67), drinking_fountain (0.65),
® glass_jar (0.64), bee (0.6)
§ Mantis  Pasket (1.0), photo (0.75), colour_skin (0.7),

ant_statue (0.62), pruners (0.61)

Table 5.3: Top-5 causal concepts, and effects, from template-based discovery (object, colour, and shape) for SqueezeNet.
Concepts in bold overlap with the injected biases.

For the squeezenet models a different pattern appears. For both the template-based (Table 5.3)
and CDS-based (Table 5.4) setting we can see that the colour beige is picked up as part of the teaspoon
class which may seem out of place but the beige colour has a yellowish component. This again brings
up the discussion of abstractness introduced by Buijsman, 2022. As already stated in Section 2.2
he hypotheses that perhaps red is a better concept while giving explanations as it is a more generic
version than scarlet. Similar cases can be made for the beige vs yellow discussion. For fish slice class
we notice that it is still susceptible to the noise we introduced, only here instead of the colour blue, the
colour aqua appears which is related to the colour blue. As for the dinner cutlery class, we notice that the
template-based discovery method does not pick up the black background colour but for CDS discovery
method does. This perhaps opens the discussion for a causal discovery method that combines an
automated method such as CDS and a template-based method that requires human supervision. For
shape-biased models for both the causal discovery setups it does not pick up on shapes however,
the results of negative set bias are accurate. We notice that for both the scenarios element from two
positive sets - ants and bees appear for their respective classes, this is different from the inception
models’ behaviour where we observed the appearance of the positive set for bees and mantis. This
leads us to believe that squeezenet can perhaps uncover finer details than its inception counterpart,
especially when it comes to dealing with datasets that are very small in size. This is understandable as
the inception v3 model being a very deep network requires more data to train and uncover fine-grained
visual clues.

Overall despite seeing some inconsistencies we notice that many of the injected biases are picked
up by our XAl framework. But we also admit that these outcomes are susceptible to crowdsourcing
biases and sampling biases.

5.2. Template-based vs. Pairwise Causal Discovery

Observing certain inconsistencies within and between different models and their corresponding causal
discovery configurations we decided to investigate our framework’s sensitivity to different configura-
tions. We consider the 5 concepts having the strongest effects, and compute the Kendall’s Tau coef-
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Bias Type Class Concepts (Effects)
Tea colour_beige (0.89), shape_long (0.71), spoon (0.66),
Spoon  colour_olive (0.42),shape_rectangular (0.4)

E Fish colour_blue (0.41), scrapper (0.27), colour_aqua (0.27),

8 Slice spatula (0.26), shape_line(0.21)
Dinner  colour_palegoldenred (0.36), shape_square (0.36), knife (0.33),
Cutlery colour_grey (0.30), colour_black (0.3)
Tea spoon (0.54), colour_green (0.33), teaspoon (0.30),

o Spoon  colour_red (0.29), colour_bollywood (0.23)

S Fish spatula (0.62), kitchen_spoon (0.61), utensil (0.49),

5 Slice guitar (0.47), colour_yellow (0.37)
Dinner  knife (0.32), colour_grey (0.29), colour_black (0.25), fork (0.24),
Cutlery background (0.22)

= Ants shape_splotches (0.66), grass (0.62), gravel_road (0.62),

»n ant (0.62), shape_round (0.08)

_g Bees colour_transparent (0.84), shape_rectangle (0.84),

® backpack (0.83), fingers (0.83), bee(0.79)

§ Mantis basket (0.50), colour_skin (0.5), shape_crescent (0.5),

ant_statue (0.49), shape_circus (0.09)

Table 5.4: Top-5 causal concepts, and effects, from CDS-based discovery (object, colour, and shape) for SqueezeNet. Concepts
in bold overlap with the injected biases.

ficient between those, ordered depending on their effects, with Template-based and Pairwise Causal
Discovery methods, in the presence of different biased models. Results are shown in Figure 5.2. We
found that on “Utensils”, SqueezeNet has a more consistent behaviour regardless of whether the Colour
or the Shape bias is introduced. On the other hand, with the inception model, the behaviour is less sta-
ble and different injected bias configurations cause the causal concepts to be fairly different. For the
“Dinner Cutlery” for example, the biasing on Colour led to relatively similar concepts but in the opposite
order, hence the negative value for Kendall’'s Tau. In other instances, we see low or no correlation
between the extracted concepts.

Despite the simplicity of the images in “Utensils”, we can attribute these differences to the archi-
tectural design of the networks i.e. Squeezenet being a lightweight model requires fewer data to be
effective and more suitable for our simplistic datasets with very limited samples/ This directly reflects
upon the saliency map outputs thereby affecting the crowdsourcing component of our framework. As
one can imagine if the model is focusing on different sections of the image even within a single class it
may lead to very different concepts being annotated, one that is possible for a very deep architecture
containing 21 million parameters as compared to 421K for squeezenet.

5.3. Accuracy

While Accuracy@1 is generally low, we see a significant jump when considering Accuracy@?2 (Ta-
ble 5.5). Overall, accuracy is consistent across different data selection strategies, and causal discovery
methods, suggesting that on average the framework is not sensitive to the choice of data or discovery
algorithm. On average we see that the template-based discovery outperforms CDS based counter-
part. We also notice how the more simplistic data selection strategy (O-C), reaches an Accuracy@?2
of 74% for Template-based, and 71% for Pairwise discovery, outperforming other more fine-grained
configurations. This leads us to believe that the models are relatively more perceptive about the colour
and objects rather than their shapes or parts. As already explained this is understandable due to the
ambiguity that is associated with shapes and parts. It is also important to note that the template-based
object-colour data selection strategy is also the most cost-effective - 1) Due to less ambiguity crowd
workers can complete their task faster resulting in less cost for crowdsourcing, furthermore, once the
primary object is identified the colour detection process can be automated 2) pre-processing is much
faster as data is not sparse leading to very few edge cases 3) template based discovery methods are
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Figure 5.2: Kendall's Tau correlation between Top-5 causal concepts obtained with Template-based and Pairwise discovery.
Classes marked with * account for Part-Of relations.

much faster to execute as it is just a fill in the problem of the blank for the underlying code. Given all the
benefits and compounded with the fact it provides higher accuracy we conclude that for this set up the
O-C data selection strategy and template-based causal discovery are the best method. However, for
other setups, there are still benefits and perhaps the task design needs to be fine-tuned to tackle the
ambiguities that are brought forward by other data selection strategies. Also, we use a fairly simple au-
tomated alternative causal discovery strategy in the form of CDS. This can be changed and much more
complicated paradigms can be incorporated to fully realise the true capabilities of automated causal
discovery.

Data Selection Template-based Pairwise
Acc@1 Acc@?2 Acc@1 Acc@?2
O-C 0.41+0.08 0.74+0.05 0.35+0.06 0.71+0.06
PO-C 0.39+0.08 0.71+0.05 0.39+0.06 0.70+0.05
O-C-S 0.39+0.08 0.73+0.07 0.35+0.07 0.69+0.04
PO-C-S 0.38+0.09 0.72+0.05 0.34+0.08 0.68+0.05
Average 0.38+0.08 0.72+0.05 0.35+0.06 0.69+0.05

Table 5.5: Accuracy@1 and Accuracy @2 for different combinations of concepts: O) Objects, C) Colours, S) Shapes, and PO)
Part-Of Objects.

In Table 5.6 we present another point of view for the accuracy metrics. We now aggregate over
different types of biased models. This allows us to compare performances of different bias injected
models and see our framework’s sensitivity to model choices for the accuracy metric. We notice that
the results are fairly similar to the previous accuracy results. While the negatively biased inception
v3 model performs the best amongst the configurations, on average both models showcase the same
accuracy, leading to the conclusion that our model is not sensitive to the choice of models or biases
and can be applied generally while maintaining satisfactory levels of accuracy.

5.4. Causality Verification

In Table 5.7 we report the percentage of images that satisfy Equation 4.4. We did not find consistent
patterns across the combinations. For example, while SqueezeNet on the original “Utensils” dataset
shows a high percentage (83%) for Object-Colour concepts (O-C), it drops to considerably (67%) when
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Models Inception Squeezenet
Acc@1 Acc@?2 Acc@1 Acc@?2
Utensil-No Bias 0.34+0.09 0.67+0.07 0.36+0.08 0.69+0.1
Utensil-Colour Bias 0.33+0.12 0.73+0.08 0.32+0.1 0.72+0.08
Utensil-Shape Bias 0.34+0.11 0.69+0.08 0.48+0.09 0.71+0.08
ImagenetA-Negative Set Bias 0.46+0.09 0.74+0.07 0.36+0.08 0.72+0.07
Average 0.37+0.1 0.71+£0.08 0.384+0.09 0.71+0.08

Table 5.6: Accuracy@1 and Accuracy @2 for different combinations of biased models

GOOgle colour green

EEEEEN
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Figure 5.3: Examples of google image search containing noisy results (highlighted in red dotted lines) that had an impact on
accuracy and causality verification metrics
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adding shape (O-C-S). However, we found the opposite behaviour when accounting for part-of rela-
tions (PO-C, PO-C-S). Another interesting observation that stands out is the result from colour-biased
models. For this case, results suggest that the causal verification metric was invalidated for the majority
of the case. however, this is partly expected as searching for colours in google search engine often
results in colour maps containing that colour under question and other colours. For example, searching
for the keyword “colour green” (Figure 5.3) will result in multiple images containing different shades of
green along with the presence of other colours which may have an impact on the results. Achieving
pictures containing one solid colour for all or majority of the results is infeasible. Having said that certain
instances like shape biased squeezenet model for pairwise (PO-C) and template-based (PO-C-S) set
up satisfying the inequality 4.4 for causal verification 100% of the time, it is not consistent enough to
conclude.

Values in table 5.7 while giving specific insights into different configurations did not provide us with
any premise to conclude. Thus we decided to aggregate the values on different data selection strate-
gies for two different causal discovery setups across inception and squeezenet models. The result of
this aggregation is presented in Table 5.8. Even though the overall percentages of cases for which
the causal verification inequality(Equation 4.4) is satisfied is low, we notice that the template-based
squeezenet outperforms for both template-based and pairwise configurations, the exception being the
O-C data selection strategy with pairwise causal discovery method on inception model, even there the
averages are comparable. This is consistent with other results.

Dataset Template-based Pairwise
o-c 0-C-S PO-C PO-C-S 0O-C O-C-S PO-C PO-C-S

No Bias 83 67 50 80 29 50 71 43

> Utensils Colour 43 50 0 14 20 50 40 40
2 Shape 71 75 78 100 33 43 100 67
ImageNet-A  Neg. Set 44 50 57 50 78 25 57 50

S No Bias 50 50 33 57 75 0 50 40
= Utensils Colour 40 0 0 0 0 0 25 0
] Shape 50 60 33 50 33 20 50 20
£ ImageNet-A Neg. Set 70 60 67 67 86 50 89 62

Table 5.7: Percentage of images that satisfy the inequality for Causality Verification for different combinations of concepts: O)
Objects, C) Colours, S) Shapes, and PO) Part-Of Objects. Values are reported for both SqueezeNet (SN) and Inception V3.

Data Selection Template-based Pairwise
Inception SqueezeNet Inception SqueezeNet
O-C 52.5+6.29 60.25+9.98 48.5+19.8 40+12.95
PO-C 33.25+13.67 46.25+16.52 53.5+13.22 67+12.69
O-C-S 42.5+14.36 60.5+6.28 17.5+11.81 42+5.9
PO-C-S 43.5+14.91 61+18.73 30.5+13.3 50+6.04
Average 42.9343.93 57+3.58 37.5+8.29 49.75+6.14

Table 5.8: Aggregated values for Percentage of images that satisfy the inequality for Causality Verification for different combi-
nations of concepts: O) Objects, C) Colours, S) Shapes, and PO) Part-Of Objects. Comparison between template-based and
pairwise discovery method for both Inception and Squeezenet model

5.5. Coherence

In Figure 5.4, we found low similarity in terms of concepts across experimental configurations. Jaccard
similarity values for different configurations are very low and average around 0.2. While some for some
instances there is high coherence e.g. Squeezenet no bias set up overall it fails to achieve sufficient
levels. This also reflects on the complimentary metric 4.8 as most of the values are around 0. For
both the negative bias models coherence is 0 which can be attributed to the way negative sets are
constructed thereby it is an expected behaviour however for the rest, lower coherence values can be
attributed to the automated similarity mechanism we implemented to pair of images (especially from
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the object detection point of view). The lack of Coherence can be further explained by CHIME primarily
being tailored towards global explanations, whereas Coherence concerns individual data instances.
While we attempted to translate the framework’s global (class level) descriptions to the local (individual
inputs) level by considering the causal effects of concepts specifically tied to single images, the results
suggest that localising global explanations is not trivial. On the other hand, by considering the total
effect of overlapping concepts within image pairs, we notice that the strengths of the identified concepts
have low dispersion, and thus highlight their importance to the model’s outcome.
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Figure 5.4: Left: Results from Equation 4.7, Right: Results from Equation 4.8. The x-axis labels represent different configurations
used for evaluating Coherence; (1) Inception V3, and (S) SqueezeNet; Biases: (1) Negative Set Bias, (2) No Bias (Utensils), (3)
Colour (Utensils), (4) Shape (Utensils).

5.6. Mediation Analysis

We present 4 mediation analyses to give an overview of the effect of mediator concepts like shape and
colour on the primary concepts. The results were derived from the template-based causal discovery
configuration with the O-C-S (object-colour-shape) data selection strategy for the dinner cutlery class
of the utensil dataset and the mantis class from the imagenet-A dataset. For the selection of model,
we select the colour-biased version of both the inception and squeezenet model. The circle radius in
the figures represents the total effect (sum of direct and indirect effects) and the colour map highlights
the indirect effect the mediator has on the primary concept. A bigger circle corresponds to that primary
effect having a higher impact on model prediction and correspondingly a darker colour represents the
effect of mediating concept impacting the effect of primary concept. While a smaller circle and a darker
colour may also have high values of mediating proportion since the total effect is low its impact on
models outcome is lower as well thus generally a bigger circle with darker colour represents more
impactful mediating proportions.

Figure 5.5 depicts the mediation analysis from the inception model’s perception of the dinner cutlery
class. The mediator “shape of a teaspoon” has the strongest mediation effect among the rest, medi-
ating the primary concept of a teaspoon. The colour silver also has a moderate mediation effect on
knife/butter knife. The silver knife was introduced as noise to dinner cutlery class while curating the
colour bias dataset (Table 4.1). While concepts like spoon and spatula may seem out of place for a
dinner cutlery class, we have to remember that these are based on the model’s prediction and not how
a human will perceive. But it is also good to highlight that the total effect and corresponding mediation
effect for these unnatural scenarios are fairly low.

Figure 5.6 showcases the mediation effect for the same class but this time from the perception of the
colour-biased squeezenet model. We notice the outcomes are much more in line with what we expect
for the dinner cutlery class - for example, the butter knife is highly mediated by the colour bronze, and
the knife which is a more general version of the butter knife is mediated by a rectangle with the shape
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Figure 5.5: Colour map representing the effects mediating concepts have on primary ones for the Inception V3 model trained on
colour biased utensil dataset (Dinner Cutlery Class). The size of the circles represents the sum of Direct and Indirect effects.
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Figure 5.6: Colour map representing the effects mediating concepts have on primary ones for the SqueezeNet Model trained on
colour biased utensil dataset (Dinner Cutlery Class). The size of the circles represents the sum of Direct and Indirect effects.
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of “rectangle with a curved edge”. While it is also being shown to be mediated by the colour blue, the
total effect is negligible.
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Figure 5.7: Colour map representing the effects mediating concepts have on primary ones for the Inception V3 model trained on
Imagenet-A (Mantis Class). The size of the circles represents the sum of Direct and Indirect effects.

We now focus on Table 5.7 to showcase the mediation effects in the imagenet-A dataset, specifically,
in this table, we present the outcomes of the mantis class from the perspective of the inception model.
Due to the presence of a lot of concepts and corresponding in the mediation in the negative set we only
consider the top 8 records with the highest mediation proportion. This result not only demonstrates well
the ability of our framework to generate human interpretable explanations of high clarity. For example,
we notice that the primary concept of mantis is highly mediated by the mediator “shape of mantis”;
while responding to an explanation prompt - "What does the model look at while predicting mantis” the
XAl framework can respond by stating that the model looks at the shape of the mantis. The mention of
shape provides an extra level of granularity and clarity to generated explanations. This can also help
practitioners to prepare well against adversarial attacks, as anything resembling the shape of a mantis
(which may not be a mantis in itself) can draw out the mantis prediction from the model. A similar
conclusion can be drawn from the colour mediators.

The mediation analysis for the colour-based squeezenet model’s prediction for the mantis class is
presented in Table 5.8. Like its inception counterpart, it also presents us with interesting insights into
the model’s decision-making elements. We notice that the primary concept “fingers” is mediated by
the colour of skin, and ant status and pruner are both mediated by the colour silver. These outcomes
from both the squeezenet and inception model may appear out of place, especially in the context of
predicting mantis. If we look at Figure 5.9 we notice that indeed these concepts are present in the
images. Furthermore, all of these images when presented to the model to make a prediction, predict
the class Mantis with very high confidence. This also corroborates the high fidelity of our framework.

5.7. Limitations

So far we presented the outcomes of different evaluation metrics for our framework. While we notice
positive outcomes for many of the metrics, some of them fail to meet our expectations. The causes of
this are primarily due to some of the inherent limitations our framework suffers from. Furthermore, some
inherent biases also impact the credibility of the outcomes that we present. In this section, we discuss
them and acknowledge the limitations of CHIME stemming from the application of crowd computing, the
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Figure 5.8: Colour map representing the effects mediating concepts have on primary ones for the SqueezeNet Model trained on
Imagenet-A (Mantis Class). The size of the circles represents the sum of Direct and Indirect effects.
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Figure 5.9: Examples of images from the Imagenet-A dataset which explain the outcomes of mediation analysis
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hurdles of applying Causal Inference techniques to XAl and performing interventions to verify causal
relations and in general performing a multi-disciplinary study that aimed at translating learning from
social sciences to computer science methodology.

5.7.1. Impact of Biases

As with any empirical study, it comes with a fair share of biases, specifically in the interpretation and
use of findings of the presented research work Maccoun, 1998. This effect is confounded by our usage
of crowdsourcing. Crowdsourcing is a fundamental part of CHIME as we use it to give meaning to
salient patches in images. As such, it introduces the cognitive biases of workers’ who annotated our
images. To assess the degree to which such biases might have impacted our study, we turn to the
checklist proposed by Draws et al., 2021. We use it post-hoc, after performing the data collection, to
highlight potential limitations of the collected annotations. We only report the ones we think affected
our experiments.

1. Salience Bias: this type of bias is intentionally present as we want workers to know which patches
in images the model is looking at while performing the task.

2. Anchoring Effect: this bias might be more accentuated for the Kitchen Utensils dataset, given
the simplicity of images therein. However, we do not expect exceedingly complex annotations for
it.

3. Halo Effect: similarly to Salience Bias, we intentionally want this in the form of the Negative Set
Bias. We ask annotators to point out distracting objects as well.

4. Disaster Neglect: while we haven’t made explicitly clear the consequences of them providing
low-quality annotations, we took precautions, and reconciled annotations before running causal
algorithms.

Apart from the biases introduced by the crowdsourcing application of our framework, we also have
the aspect of confirmation bias. In general, there is no gold standard when it comes to validating
XAl frameworks i.e. there is no way to ratify what the model has learned. Thus when we present the
outcome of our XAl framework and contemplate whether the outcomes of the fidelity metric are good
or bad based upon how we perceive the world we introduce confirmation bias. It is possible that in
certain cases what the model has learnt is completely illogical to a human. Figure 5.10 is an excerpt of
the causal graph generated by the CDS algorithm for the fish slice class of the utensil dataset based
on the prediction made by the shape-biased inception v3 model. As we can see that the automated
discovery algorithm has concluded that the shapes rectangular, round and oval cause the colour green.
Considering the context of an image this might be a difficult thing to interpret. The presence of an
object might cause the presence of the shape or its colour. The presence of colour may also cause the
presence of another colour (e.g. the presence of a blue sky may cause the presence of white clouds)
however, the presence of a shape causing the presence of colour can be very difficult to interpret.

5.7.2. Limitations of our implementation of Causal Inference

A successful well theoretically grounded implementation of causal inference relies upon satisfying many
assumptions. At the heart of which is the Stable Unit Treatment Value Assumption (SUTVA) Rubin,
2005. There are two primary aspects of SUTVA - 1) No interference - This states that the potential
outcomes of treatment for any individual (in our case a concept) are unaffected by the treatment of
others (other concepts). This is a highly challenging assumption to maintain especially in images as
removing or adding certain features in an image may change its entire dynamics. For example, when
we intervene on the shape_rectangular, we hypothetically remove the presence of rectangular shape,
however, in doing so we risk changing primary concepts too which may also change the model outcome.
2) Consistency - This assumption specifies that the treatments are specific. When we state that we are
intervening by removing the presence of the colour green, we need to ensure that we are talking about
a very specific shade of green. This may not be always guaranteed as the concepts we collect are
dependent upon the crowd worker’s knowledge and different workers may annotate the same shade
of colour differently (e.g. light-green, green, olive green etc.) While most of our interventions are not
implemented i.e. we do not actually change the content of the image and observe the outcomes but
rather hypothesise the interventions and thereby hypothetically ensuring the assumptions hold, the
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Background

Figure 5.10: Causal Graph excerpt from CDS algorithm, including primary (green), mediating colour(yellow) and mediating shape
(blue) concepts for the “Fish Slice” class.
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real implications may be different. As an alternative strategy, we can utilise a technique presented by
Hudgens and Halloran, 2008 which allows us to apply causal inference with interference.

Furthermore, we utilise Average Treatment Effect (ATE) as a metric to calculate causal effect. It may
happen that within a class, certain concepts are more causally relevant for specific images but upon
aggregation, their values are less significant. This can be alleviated by consideration for Conditional
Average Treatment Effect (CATE) presented by Abrevaya et al., 2015 which captures the heterogeneity
of a treatment effect (effect of different concepts for different images)across sub-population.

We utilise linear models for our framework but Al models tend to be highly non-linear, with many
factors playing a role in determining the outcome, and by trying to capture model behaviour in a linear
format we don’t have guarantees that the finite amount of human concepts we collected are (1) enough
given the complexity of such models, and (2) the actual ones model use. In doing so we also de-
fine our causal boundary by considering only the annotations captured. This leads to a phenomenon
called causal profligacy or causal promiscuity Barros, 2013. Which takes place when there are too
many causes for a particular event (in this case model explanation) but the boundary of causation (the
boundary is defined by the number of annotation we capture) are circumscribed. This problem can
be alleviated by generating contrastive explanations as mentioned by Barros, 2013 and discussed by
Miller, 2019.



Conclusions

Having already presented our methods, experiments, results and method limitations, in this chapter we
finally conclude our work and also present future research direction on this topic.

6.1. Conclusions

While the problem of an XAl is not an easy task it is an important challenge to undertake. especially
given our current world state where many critical real-world applications rely upon Al for automation.
We set out on such tasks. While there has been a plethora of approaches to solving this problem,
many seem to ignore the most fundamental aspect of XAl - defining explanation. Furthermore, attribut-
ing to the fact that correlation is not causation, seemingly linear and transparent models are termed
interpretable but in reality, it is not so. To tackle all these challenges we presented CHIME, a Human-
In-the-Loop framework to provide explanations to model behaviour by incorporating techniques from
Causal Inference. Through collecting human-interpretable annotations for images, we create Causal
Graphs and perform interventions to produce sets of causal concepts, together with their effects, to
highlight the elements that contributed to a model prediction, and enable the formulation of what-if,
counterfactual scenarios. While the choice of the Causal Discovery algorithm can create discrepan-
cies in terms of retrieved concepts, we found low variability in terms of causal strengths across different
experimental configurations in the presence of known biases. As part of this empirical study, we also
exhibited the strengths of utilising a causal approach in a human-in-the-loop set-up - its ability to tackle
the effect of confounding factors overcomes many caveats of human-in-the-loop processes. We also
explored different aspects of the causal inference paradigm that can augment the explanatory prowess
of any XAl framework. While Al models represent highly non-linear spaces which can not be easily
reduced to linear formulation, nor described by a finite amount of human concepts, bridging the gap
between the fields of Causal Inference and XAl is crucial to progress towards better and unconfounded
explanations for a model’s behaviour.

6.2. Future Work

Throughout this work, we have indicated some pitfalls of our framework and consequently indicated a
future direction that can alleviate them. We summarise them in this section and expand upon those
ideas.

6.2.1. Usage of abstract concepts

As defined by Buijsman, 2022 an explanation with a more abstract variable is preferred to push for
more generality in explanations. This results in a multitude of benefits from reducing the number of
variables to improving performance to reducing the cognitive load of the users to read and interpret the
explanation. In this project we apply very basic abstraction techniques(transforming certain colours to
one level higher granularity) and it is not applied through all concepts (we only it for certain colours not
for shapes or other primary concepts) but going forward applying certain heuristics to define a generic
method to minimise the number of variables/concepts to be used in the framework.

41
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6.2.2. Constrative Explanations

One of the major findings while exploring the efficacy of causal inference in XAl is the total number of
causal concepts one can uncover, this is an expected outcome as deep learning networks have many
learnable parameters. A way to offset it is obviously to reduce the number of concepts at inception
by using abstract concepts. However, this can be further reduced by using a contrastive element
within our framework. As highlighted by Miller, 2019, explanation seekers generally request contrastive
explanations as it is more intuitive. Having an element in the framework that can determine contrastive
elements can also alleviate the process of generating a full causal attribution - discovering all causal
elements that determine model prediction (Lipton, 1990) and also counter the phenomenon of causal
promiscuity (Barros, 2013) as mentioned before.

6.2.3. Implementing Randomised Control Trials in XAl

Randomised control trials are considered the gold standard in causal studies especially in social sci-
ences to determine the causal effect of an estimand on the outcome variable (Hariton & Locascio,
2018). This is generally done by randomly selecting people two be part of two separate groups - 1)
a Treatment group - where for all its members a specific treatment is applied (intervention) and 2) a
control group where placebo treatments are provided. This way the study continues for a certain time
before gauging the average treatment effect. This concept can be applied to the XAl framework as
well, by defining two groups of randomly selected images - in one interjecting a particular concept we
are interested in estimating its effect on the model’s outcome and in another keeping everything as it
is. Interjecting objects in static images have depicted by M. Yang and Kim, 2019 - similar interventions
can be performed to specifically gauge the effect of any concepts (treatment) on the While it is a difficult
task to intervene in existing digital images while satisfying all the fundamental assumptions of causal
inference, there exist techniques within causal inference literature that can alleviate it Hudgens and
Halloran, 2008. By combining these techniques we can realise our goal of estimating the causal effect
of concepts on the model outcome using a randomised control trial.
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Abstract

Explaining the behaviour of Artificial Intelligence models has
become a necessity. Their opaqueness and fragility are not
tolerable in high-stakes domains especially. Although con-
siderable progress is being made in the field of Explain-
able Artificial Intelligence, scholars have demonstrated limits
and flaws of existing approaches: explanations requiring fur-
ther interpretation, non-standardised explanatory format, and
overall fragility. In light of this fragmentation, we turn to the
field of philosophy of science to understand what constitutes
a good explanation, that is, a generalisation that covers both
the actual outcome and, possibly multiple, counterfactual out-
comes. Inspired by this, we propose CHIME: a human-in-
the-loop, post-hoc approach focused on creating such expla-
nations by establishing the causal features in the input. We
first elicit people’s cognitive abilities to understand what parts
of the input the model might be attending to. Then, through
Causal Discovery we uncover the underlying causal graph
relating the different concepts. Finally, with such a causal
structure, we compute the causal effects different concepts
have towards a model’s outcome. We evaluate the Fidelity,
Coherence, and Accuracy of the explanations obtained with
CHIME with respect to two state-of-the-art Computer Vision
models trained on real-world image data sets. We found ev-
idence that the explanations reflect the causal concepts tied
to a model’s prediction, both from the perspective of causal
strength and accuracy.

Introduction

Artificial Intelligence (AI) has seen rapid adoption in diverse
fields. Together with increased interest in such techniques
came increased scrutiny due to their brittleness. This is es-
pecially true for black-box models (e.g., deep neural net-
works), which trade their transparency for higher and higher
performance on standard benchmarks (Freitas 2014). It has
been shown that real-world scenarios contain high variabil-
ity and the efficacy of those models significantly worsens.
For example, state-of-the-art object recognition models fall
short of correctly identifying objects after slight pose pertur-
bations (e.g., tilting an object) (Alcorn et al. 2018).

As a result, explaining the behaviours of the current gen-
eration of Al models has become a necessity. While views
differ on what explainability entails (Miller 2019), there are

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Intuition behind CHIME: to better describe model
behaviour, explanations should cover both the factual out-
come (i.e., why something occurred) and the hypothetical
counterfactual outcome (i.e., why not something different).

some explanatory properties that should not be ignored in
order to provide a good explanation (Buijsman 2022). From
the philosophy of science literature, it is possible to de-
rive that a satisfactory explanation should have two com-
ponents such that it provides answers to contrastive why-
questions (Woodward 2003). Such answers (i.e. explana-
tions) are, in this theory, always of the same form: specif-
ically, they should consist of a generalisation that covers
(1) the factual output of the model, and (2) a counterfac-
tual outcome. Due to the statistical nature of the machine
learning mechanism, many different factors can contribute
to a model’s prediction. In images, for instance, the colour
of objects can lead a model to be over-reliant on it, and thus
not behave as we would like to. So, a model trained on im-
ages of a bathroom similar to the one in Figure 1, might
associate the label “Kitchen” with the presence of a large
white object (e.g., the sink), thus failing to correctly identify
bathrooms with different furniture. Having explanations that
cover both actual and counterfactual cases allows us to ex-
plain a model’s behaviour more faithfully, possibly uncov-
ering cases in which it has learnt spurious correlations by
finding shortcuts during training.

Several explanation methods have already been proposed
but they only focus on one of the two aspects argued by



Woodward (2003) and Buijsman (2022). Approaches like
LIME (Ribeiro, Singh, and Guestrin 2016) and Grad-CAM
(Selvaraju et al. 2020), aim to answer the why aspect of
explanations by finding which regions within images a
model regards as more important. However, further studies
have also shown additional limitations of such approaches.
Slack et al. (2020) demonstrated how LIME (Ribeiro, Singh,
and Guestrin 2016) and SHAP (Lundberg and Lee 2017)
are inconsistent and susceptible to adversarial attacks by
devising a procedure that hides a model’s biases to the
aforementioned XAI methods. Additionally, Krishna et al.
(2022) highlighted disagreements between different XAI
techniques (Ribeiro, Singh, and Guestrin 2016; Lundberg
and Lee 2017; Shrikumar, Greenside, and Kundaje 2017; Si-
monyan, Vedaldi, and Zisserman 2013; Smilkov et al. 2017;
Sundararajan, Taly, and Yan 2017), making it cumbersome
to compare between outputted explanations. From the user’s
perspective, the produced explanations often require further
interpretation or prior knowledge to be fully understood. A
later approach by Balayn et al. (2021) concentrates on con-
solidating answers as to why a certain outcome occurred
by introducing a human-in-the-loop approach to annotate
and reconcile salient patches meeting model interpretabil-
ity needs and making explanations more accessible. How-
ever, none of the aforementioned approaches deal with con-
trastive explanations, nor do they cover both counterfactual
cases and the actual output with a single explanation. As
such, they fail to show how the output would change when
alterations are made to the highlighted features or pixels.

On the other hand, there are plenty of methods that deal
with counterfactual explanations, (Wachter, Mittelstadt, and
Russell 2017; Dandl et al. 2020; Brughmans, Leyman, and
Martens 2021; van der Waa et al. 2018) to mention a few.
Counterfactual explanations are meant to illustrate what
changes need to be made to the inputs to change the outcome
of the AI model. From optimisation strategies to searching
for counterfactual instances in datasets, current methods pri-
oritise certain properties over others (e.g., number of coun-
terfactuals returned vs. validity). However, Guidotti (2022)
denotes how counterfactual explainers generally do not deal
with causality despite them being supposed to account for
causal relations between features.

Consequently, by either lacking on some explanation as-
pects or by being fragile, existing XAI methods do not faith-
fully represent a model’s decision process with respect to the
highlighted features. In short, none of the current XAI meth-
ods produce explanations that simultaneously deal with the
actual and counterfactual outcome discussed before. And so,
in an effort to move towards good explanations for a model’s
behaviour, we propose CHIME, a post-hoc explainability
approach grounded in the explanatory principles from the
philosophy of science focused on the counterfactual part of
explanations. Specifically, in this study, we focus on com-
puter vision (CV) models and how different objects and
properties like shape and colour cause a certain model out-
come rather than another one. First, we leverage people’s
cognitive abilities through crowd computing to formulate
hypotheses about what a model is paying attention to in im-
ages. To reduce the cognitive load of such a task, we em-

ploy state-of-the-art saliency maps feature attribution tech-
niques so that the crowdsourced, human-intelligible annota-
tions are directed towards the most important sub-areas of
the input. Whilst crowdsourcing greatly alleviates the con-
cept labelling task, it is important to note that its application
is non-trivial due to the ambiguity of the highlighted image
patches and the subjectiveness of the interpretation affected
by individual worker factors. In this sense, we analyse those
human-annotated concepts through a causal framework in
order to determine their role with respect to a model’s out-
come. We leverage causal discovery to build a causal graph
describing the relations between labelled concepts and a
model’s prediction. Inspired by the interventionist approach
to explanation (Woodward 2003), we operate on the causal
relations to estimate the causal effects the different concepts
have on a model’s outcome. We validate our framework by
characterising the causal behaviour of two computer vision
models - Inception V3 (Szegedy et al. 2015) and SqueezeNet
(Iandola et al. 2016) - when fine-tuned on biased data, e.g.,
a given class having a consistent background colour while
others do not. We evaluate our framework in terms of expla-
nation Fidelity, Coherence, and Accuracy while providing
results for individual concepts through Causality Verifica-
tion, and Mediation Analysis. The codebase and datasets are
released openly'.

From here onward the paper is divided into five sections.
We first provide a brief overview of the existing XAl meth-
ods for computer vision. Then, we give background knowl-
edge on causal inference related to our proposal. The pro-
posed framework, and its underlying motivations, are intro-
duced in the following section. Finally, we present the ex-
perimental design, analysis, and discuss the results.

Related Work
Explanations in Philosophy

On the topic of explanations in the field of XAI, Miller’s
survey (Miller 2019) was one of the first studies mentioning
causality as a possible means to implement XAl frameworks
and tackle the limitations of existing methodologies. Partic-
ularly, Miller points to the Ladder of Causation by Pearl
and Mackenzie (2018) in which explanatory questions are
grouped in three classes: what-questions (e.g., “What event
happened?”), how-questions (e.g., “How did that event hap-
pen?”), and why-questions (e.g., “Why did event that hap-
pen?”). Along those lines, Buijsman (2022) reports the prop-
erties a good explanation should have: first, a rule answering
why we got a specific output, and second a counterfactual
component aimed at answering why X occurred rather than
Y. Furthermore, Buijsman also conceptualised the depth of
an explanation in terms of abstractness of variables and gen-
erality. Having a more abstract explanation allows us to an-
swer more why-questions, but this needs to be balanced
with the specificity of the explanation (i.e., the information
should be relevant to model outcomes). On the other hand,
generality is related to the number of inputs covered (i.e.,
breadth), balanced against the correctness of the explanation
on those inputs (i.e., accuracy).

"https://sites.google.com/view/hcomp22-chime/home-page



Furthermore, they also highlighted the relevant aspect and
structure of an explanation. For the most part, past works
in philosophy of science and social sciences are critical to-
wards XAl given the large number of definitions, their spar-
sity, and lack of clarity across the literature. We take inspira-
tion from these discussions and ground our proposed method
on the results from these works. Differently from existing
approaches, in our work we specifically take an interven-
tionist account (Grimsley, Mayfield, and R.S. Bursten 2020)
for generating explanations by leveraging causal inference
methods on top of crowd-generated concepts (discussed in
the remainder of this section).

Causality in Explainable Al

There have been various attempts at implementing the con-
cept of causality into the field of XAI, by drawing inspira-
tion from the Causal Inference field, especially via gener-
ating counterfactual-based explanations. Works specifically
related to Causal Inference will be presented in more detail
later on, in the Background section. As a reference point,
counterfactual examples differ from adversarial ones as the
former aim to define changes in the input so that alternative
outcomes happen instead of the original one (Brughmans,
Leyman, and Martens 2021), the adversarial examples are
meant to fool the attacked model and make it fail in its task
(Freiesleben 2021). Counterfactual explanations can be ob-
tained by altering the values assumed by the different vari-
ables governing the given phenomenon through interven-
tions. Interventions are not new in XAl frameworks but, to
produce meaningful results, they must be designed carefully
(Woodward 2003) so that they precisely target variables of
interest. Several approaches have been proposed to generate
counterfactuals through heuristic searches, instance-based
strategies, decision trees, or by framing optimisation prob-
lems. Guidotti (2022) provides a thorough review of these
approaches. Two examples are the ones by Wachter, Mittel-
stadt, and Russell (2017) and Dandl et al. (2020), both of
which are based on minimising loss functions that constrain
certain desired properties (e.g., high similarity between the
actual instance and the counterfactual). More specific to
computer vision, Goyal et al. (2019) proposed an approach
that, given two images, identifies the key discriminative re-
gions in them such that swapping those regions leads to the
model changing its prediction. The approach is specific to
convolutional neural networks as the authors focus on the
feature extracted in the earlier layers of the network.

Besides the plethora of approaches proposed to generate
counterfactual generation, Guidotti (2022) raises an impor-
tant point by uncovering, based on existing counterfactual
explainers, how researchers have mostly overlooked causal-
ity thus far. To the best of our knowledge, ours is the first
approach focusing on this dimension of counterfactual ex-
planations in the field of XAl

Explainability of Computer Vision models

In the context of computer vision explainability, saliency is
the most widely applied approach. Saliency is a local, post-
hoc interpretability method that highlights the most impor-
tant pixels in a single image with respect to the model pre-

diction (Simonyan, Vedaldi, and Zisserman 2013). Saliency
can be computed by computing the gradient of the activa-
tion functions (Selvaraju et al. 2019) (Simonyan, Vedaldi,
and Zisserman 2013), by backtracking the features to the in-
puts (Shrikumar, Greenside, and Kundaje 2017) (Bach et al.
2015), or with more sophisticated approaches like Smooth-
GRAD (Smilkov et al. 2017). On a different angle, Kim
et al. (2017) provide a concept-based approach to explain-
ing CV models by introducing the notion of Testing with
Concept Activation Vector (TCAV) and using it to perform
translations between the internal states of a model to human-
friendly concepts. Ghorbani et al. (2019) later expanded on
TCAV by identifying concept-level information across dif-
ferent images, clustering them, and testing their importance.
The main disadvantage of these approaches is that the high-
lighted regions still need interpretation. Finally, two more re-
cent approaches by (Balayn et al. 2021) and (Sharifi Noorian
et al. 2022) use crowdsourcing to address two XAI prob-
lems: concept extraction for global model interpretability
and unknown unknowns characterisation respectively.
Considering the existing contributions in establishing pro-
cedures to answer the why aspect of explanations, our study
complements those by adding a counterfactual analysis. We
do so by eliciting people’s cognitive abilities to collect
human-understandable concepts as hypotheses to be further
validated through causal inference. We focus on analysing
the causal effects different concepts in images have on the
final model prediction. By taking a causal stance in explain-
ing model behaviour, we are enabled to consider confound-
ing factors as well as perform interventions on individual
concepts to provide explanations of a model’s output.

Background

In this section, we briefly introduce Causal Inference, Causal
Discovery, their motivations, and the terminology used in the
remainder of the paper.

Causal Inference

Causal inference is the “discipline that considers the as-
sumptions, study designs, and estimation strategies that al-
low researchers to draw causal conclusions based on data”
(Hill and Stuart 2015). As causal relations are complex to
isolate, Randomised Control Trials (RCT) are a common
way to evaluate the possible effects a treatment may have
on the outcome of an experiment. In this setting, two groups
are observed under the ceteris paribus (“‘all other things be-
ing equal”) principle but are given different treatments. Un-
fortunately, RCTs can be expensive or infeasible to run in
some scenarios, and for XAI this is no different. We will
later describe methods for Causal Discovery, other than Ran-
domised Control Trials, that can be used in the XAl setting.

Causal Graphs

The application of Causal Inference is not trivial, many dif-
ferent factors can play a role in obtaining a certain outcome.
In this regard, Causal Graphs (Pearl 1995) are a powerful
tool to model phenomena and show the relations such factors
(i.e., independent variables) may have on the final outcome



Y (i.e., the dependant variable) through a directed acyclic
graph (DAG). Causal Graphs are especially useful to under-
stand the consequence of interventions, i.e., the treatments
one may want to test. These models allow researchers to
study the possible effects of treatments without performing
them in a real trial. Generally, this is left in the hands of
experts and considered as prior information or the initial hy-
pothesis of an experiment. This first step is fundamental to
arriving at a stronger relation than statistical correlation. For
example, a barometer reading can be statistically correlated
with chances of rain but the reading itself does not cause the
rain to fall directly. Other confounding mechanisms like air
pressure causes rain to fall which in turn also affects barome-
ter reading. Thus, only looking at the barometer reading may
give us an indication of rain but to understand fully why it
rains we need to identify these confounding factors and only
then are we fully able to explain the cause of rain. A similar
process can be applied to explaining neural networks. It is
also worth knowing that factors have different roles depend-
ing on the causal relations they are part of, namely: Con-
founders, Mediators, and Colliders.

A Confounder, e.g., Z, is a factor which has an effect on
other variables, e.g., X and Y, such that X and Y show corre-
lation despite not being causally related. A Confounder can
be visualised as X < Z — Y. Confounders need to be ac-
counted for when studying the relationship between X and
Y. On the other hand, a Mediator is an additional variable
M, causally related to an independent variable X causing an
indirect effect on the outcome Y. A Mediator can be visu-
alised as X — M — Y. Finally, Colliders are factors that
are influenced by two or more variables X and Y. A Collider
C can be represented as X — C' < Y.

In dealing with such factors, what we are ultimately in-
terested in are the Average Treatment Effects (ATE), that is
the average difference between if the (binary) treatment had
been administered and if it had not across the entire popu-
lation (classes of images). In our scenario, we consider the
removal of graph edges to isolate the effects of individual
concepts on the output of a model.

Causal Discovery

Structuring a causal graph is usually done by experts: mod-
elling the relevant factors, mediators, confounders, collid-
ers, and how these are related is not a trivial task. How-
ever, causal discovery can help ease building causal graphs
by inferring the causal structure from observational data.
There exist multiple algorithms implementing such a dis-
covery process, each with different assumptions regarding
both causal and sampling processes underlying observa-
tional data. Glymour, Zhang, and Spirtes (2019) provided
a categorisation for graphical methods for causal discovery;
here we report only the main ones. Constraint-based causal
discovery algorithms, like Peter-Clark (PC) and Fast Causal
Inference (FCI) (Spirtes et al. 2000), are based on a complete
and undirected graph including all the variables involved and
use statistical (conditional) independence tests to prune the
edges. On the other hand, score-based models like Greedy
Equivalence Score (GES) (Chickering 2002) start with an
empty graph and add edges as long as the scoring function

(e.g., Bayesian Information Criterion) increases. Edges are
then queried to understand if any removal would further in-
crease the score. Besides graphical approaches to causal dis-
covery, there exist many pairwise approaches that aim to de-
fine causal relations between any two variables by means of
evaluating the fitness of the data to an additive noise model
(Hoyer et al. 2008), by bidirectionally comparing the stan-
dard deviation of the rescaled values of one variable with
respect to the other one in the pair (Fonollosa 2016), or by
leveraging asymmetries (Daniusis et al. 2012).

Causal discovery is a powerful tool as traditional ways
(i.e., randomised control trials) of uncovering causal rela-
tions may be expensive, time-consuming, or impossible. De-
spite this, their application is not simple and there are several
challenges: they might not lead to unique solutions, causal
directions might be missing, and faithfulness (i.e., variables
connected in the causal graph are probabilistically depen-
dent (Weinberger 2018)) is sometimes assumed. If not, ad-
ditional assumptions need to be included (Hyvérinen and Pa-
junen 1999; Zhang et al. 2015).

Framework

In this section, we discuss the CHIME framework and the
underlying motivations. Besides the philosophical ground-
ing of our work, we follow the logical structure of causa-
tion proposed by Pearl et al. (Pearl and Mackenzie 2018),
and the subsequent interpretation by Miller (Miller 2019).
CHIME is an ensemble of different methods applied to-
ward the common goal of identifying and explaining the
behaviour of Deep Learning models for Computer Vision,
given their predictions on a set of images. We start by look-
ing for salient patches in images, and query participants
hired through crowdsourcing platforms to annotate human-
interpretable concepts in those images. Such concepts are
used to build a causal graph through causal discovery. As
previously discussed, we use Causal Graphs to perform in-
terventions and estimate the causal effects of the differ-
ent annotated concepts. Intuitively, when explaining the be-
haviour of a black-box model one may want to first discover
the underlying concepts it has learned. Using those concepts,
create hypotheses of which concepts influence model be-
haviour, and then intervene on those concepts to determine
the degree to which they do so. Finally, by combining these
hypotheses, one can discover the relationships that govern
model behaviour, thereby postulating a framework for ask-
ing what-if questions (e.g., would the model still predict
kitchen had there not been any chair in the original image?),
to eventually estimate the effect of different concepts have
with respect to a given model output.

Given this high-level overview of the framework, fully
visualised in Figure 2, we will explain each component in
more detail in the remainder of this section.

C1: Saliency Map Extraction To obtain human-
interpretable concepts, we start by identifying the salient
patches, i.e., groups of pixels in images, that contribute to-
ward a particular model prediction. In practice, we achieve
this by utilising SmoothGrad (Smilkov et al. 2017), an
architecture agnostic method for computing saliency. This
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Figure 2: Overview of the CHIME workflow.

algorithm fits well within our framework as it works on the
premise of intervening on data by means of perturbations
(i.e., adding noise) to compute saliency.

H2: Human Annotation Salient patches, by themselves,
can refer to different concepts: an object, its shape, or its
colour. There is no straightforward way to distinguish these
individual concepts. Automatic methods for object detec-
tion models are limited by the supervised labels they were
trained on. Furthermore, doing so would introduce another
opaque component that needs to be explained. Considering
these pitfalls, we involve crowd workers and elicit their cog-
nitive abilities to annotate salient patches, as previously done
by Balayn et al. (2021). Our approach differs from theirs
as the annotations are collected with the Causal Inference
paradigm in mind. Annotations about objects consists of pri-
mary concepts (i.e., the object itself, and its parts), and medi-
ating concepts (i.e., its colour, and its shape). We account for
the effects mediating concepts have on the primary concepts
in the later stages of our framework. Since annotations de-
pend on workers’ vocabulary, we provide suggestions from
which to pick concepts through auto-completion, while re-
taining the ability to input new ones.

C3: Causal Discovery In the previous step, we obtained
associations between salient pixels and human-interpretable
concepts. However, those annotations were captured by
crowd workers who were exposed to a very small subset
of images. If we consider the resulting annotations in iso-
lation, each one is not sufficient to draw causal relations.
We thus resort to aggregating these collected annotations per
class to uncover confounding effects on a more global level.
However, merely aggregating concepts and building a white-
box model, e.g., decision trees, is not enough. Interpretabil-
ity does not come from fitting data to a simpler model. In-
stead, it is the combination of understanding the structure of
the data and building a model around it (Pearl 2016). If all
the identified concepts were used to fit a single model, this
would lead to misleading outcomes as the effects of some
concepts may be confounded by other concepts used to build
the model. This phenomenon is also referred to as “Table 2
fallacy ” (Westreich and Greenland 2013), or confounding
bias. To understand the underlying structure of the annota-
tions we collected, and introduce the concept of causality
in our explanations, we build Causal Graphs for each class
to represent the different Confounders and Colliders. We
employ two strategies: template-based, and pairwise Causal
Discovery algorithms. Based on the requirements, one may
utilise any of the above to search for causal structure with re-
spect to the collected observational data. In our experiments,
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Figure 3: Causal Graph example, including primary (green)
and mediating (yellow) concepts, and the model outcome
(blue) for the “Dinner Cutlery” class.

we showcase and discuss both techniques in the context of
explaining model behaviour.

Template-based Causal Discovery Building causal
graphs is not trivial and may require domain-specific knowl-
edge to be effective for complex phenomena. In our setting,
we create templates that include commonsense knowledge
about the world to establish causal relations:

Templates
object — colour colour — label
object — shape  shape — label
object — label

The rationale behind this is fairly straightforward: the
presence of an object may directly affect the prediction la-
bel, but at the same time, it causes the presence of a cer-
tain colour in the image, and objects define shapes, both of
which can affect the model outcome as well. Figure 3 de-
picts a simplified example from the generated causal graphs
without considering shapes.

Pairwise Causal Discovery As previously discussed
in the Background section, causal discovery can allevi-
ate the process of building a causal graph by discovering
causal structures from observational data. In our scenario,
we utilise the Conditional Distribution Similarity Statistic
(CDS) algorithm by Fonollosa (2016), given the discrete na-
ture of the crowd-powered annotations.

C4: Determining Causal Effects Once the causal graph is
constructed, we have an overview of the hypothetical model
behaviour. However, by itself, the graph does not provide
any information regarding the causal strengths of individual
concepts with respect to the model outcome. These causal
effects can be estimated by means of interventions.
Interventions can be formulated as P(Y|do(X), Z),
where X represents a single concept, do(X) is the action of



setting the variable X to a particular value, and Z is the set
of confounders on which the estimates are conditioned on,
to not obtain distorted associations with the model output.
We perform interventions on causal graphs by removing all
incoming edges to a particular node, thereby removing their
influence on the intervened variable, and allowing us to cap-
ture the direct effect a single variable X has on the outcome
Y. Furthermore, this enables us to rank concepts based on
the magnitude of their effects on the model outcome. Prac-
tically, we conduct linear regression on the crowd-sourced
concepts and then observe the changes in the output based
on carefully performed perturbations (i.e., interventions) to
its inputs.

C5: Answering what-if questions Thus far, we have
obtained explanations in the form of concepts, and their
strengths, which caused a certain model outcome. Based on
these, we can now provide answers to what-if questions.
This step allows us to define counterfactual scenarios to bet-
ter explain model behaviour. Let’s consider the case of bi-
nary scene classification, “bedroom”, or “not bedroom”, as
a toy example. Through our framework, we find the Primary
Concepts {bed, table}, and the Mediating Concepts {blue,
red}. We apply template-based causal discovery and hypoth-
esise that both primary concepts are causally related to the
model outcome under the influence of the mediating con-
cepts. Given that knowledge, we build a linear model with
the following structure:

y=a-PC+b-MC+&
MC =c-PC+&

where PC and M C represent a primary concept and a me-
diating concept respectively; £; and &, are the noises associ-
ated with the underlying linear model. To estimate the values
of the coefficients a and b, we construct two separate lin-
ear regression models, one to compute the causal strength of
“object — bedroom”, and another for “colour — bedroom”,
where the object is a confounder, i.e., “object — colour”
and “object — bedroom”. In both cases, interventions are
performed on the estimand (bed, table, red, blue) to ensure
that it is not influenced by any observed or unobserved con-
founder. When estimating the causal effect of “object —
bedroom”, we do not consider colour as a confounder. This
is primarily due to the colour being a descendent of the treat-
ment variable which might induce collider biases (Cinelli,
Forney, and Pearl 2021). In both cases, the outcome variable
is the model prediction. To further simplify the process we
consider binary interventions, i.e., the presence and absence
of an object. By means of interventions, we calculate the
causal strengths of those concepts, i.e., the coefficients of
the linear model. The higher the coefficient, the higher the
causal strength. The benefits of identifying such coefficients
are two-fold. First, it helps us identify the causal concepts.
Secondly, by estimating the error &, it allows us to formu-
late our counterfactual model as these errors account for the
remaining unknowns in Eq. 1. Once we have identified all
the coefficients and corresponding errors, we can utilise this
model to answer questions like “What if the images had a
red bed? or a black table?” when trying to understand the
behaviour of the toy model.
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We can extend the explanations by including the effects
that mediators have on primary concepts. This can be done
by building two separate models: the first to estimate the
effect of “object — bedroom”, and the second one with both
object and colour, i.e. “object, colour — bedroom”.

Experimental Setup

Evaluating an XAl framework can be complex as there exist
no well-established benchmark standards that can be used
for comparisons (Yalcin, Fan, and Liu 2021). This issue
generally stems from different XAl frameworks catering to
different system goals (Mohseni, Zarei, and Ragan 2018).
Nevertheless, we design our experimental setup such that
CHIME is evaluated both from the XAI and the causal per-
spectives. Amongst standard XAI metrics, Fidelity is con-
sidered one of the most important properties of an expla-
nation (Molnar 2022) as it represents the ability of an XAI
framework to approximate model behaviour. However, Fi-
delity is interpreted differently across literature and imple-
mented differently based on the suitability of the framework
(Balayn, Lofi, and Houben 2021). In our experiments, we es-
timate Fidelity by means of injecting biases and fine-tuning
the models for a sufficient number of epochs so that their
behaviour is skewed toward those biases. Specifically, we
inject Sampling bias and Negative Set bias and then utilise
our framework to identify those biases in the generated ex-
planations. In order to further assess the Fidelity of the gen-
erated explanations, we take a causal stance and carry out
Causality Verification and Mediation Analysis to (1) ver-
ify that the extracted concepts are indeed the causes for a
model’s prediction, and (2) to quantify the impact of medi-
ating concepts respectively. Apart from Fidelity, there is Co-
herence. As Miller (2019) argues, the notion of Coherence
brought forward by Thagard (1989) represents how a person
would accept, or build trust around, an explanation. How-
ever, this has its own caveats as coherence can be attributed
to people’s prior beliefs which may differ from a model’s ac-
tual behaviour. Nevertheless, assuming that the explanations
generated by an XAI framework are independent of a stake-
holder’s biases regarding perceptual similarity, one can de-
fine coherence as the framework’s ability to generate similar
explanations for similar data instances (Molnar 2022). The
final property we evaluate is explanation Accuracy, which
concerns how well an explanation predicts unseen data. To
measure it, we assume the model predictions as ground truth
to compute Accuracy @1 and Accuracy @2 on unseen data.
That is, the expected class label should be either the first
or second model prediction. New images are collected from
the web by looking at the 5 most causally strong concepts
for each class and fetching 10 images for each concept (50
images per class).

Bias Injection

Sampling Bias (Sackett 1979), also known as collider bias?,
can be injected into models by building ad-hoc datasets such
that certain classes are associated with specific, controlled
features (e.g., the background of an image). For example,

Zhttps://catalogofbias.org/biases/collider-bias/



when considered in a vacuum, the object “knife”” has no re-
lation to the colour “black” but, if sampling bias were to be
introduced, we can create a distorted association between the
object and the colour. This behaviour has also been show-
cased in (Balayn et al. 2021).

Negative Set Bias, on the other hand, concerns those data
instances that are not attributed by supervised labels in a
given dataset. Take a picture of a bee as an example: be-
sides the bee itself, the photo may contain other concepts
like “flower” or “leaf”” which are not attributes by the super-
vised label bee. Overall, the bee may be depicted in a small
portion of the image, and the rest constitutes negative infor-
mation. By fine-tuning a model on such convoluted data, we
create the conditions for the model to predict correctly bee
but for the wrong reasons (i.e., the distracting concepts in
the image).

Causality Verification

Inspired by the idea presented in (Xu et al. 2020), we check
if top causal concepts are indeed causally relevant for a par-
ticular class as compared to the non-causal elements (con-
cepts with low effect score). We do so by evaluating the fol-
lowing inequality

P(effect|cause) > P(effect|~cause) (2)

where, considering images with the top-5 causes

correct predictions
# of images with top-5

P(effect|cause) = 3)

and, similarly, considering images with the bottom-5 causes

correct predictions
# of images with bottom-5

P(effect|—cause) =

C))

Mediation Analysis

We have previously touched upon mediation analysis when
describing the proposed framework. Such an analysis is very
important to understand whether or not the discovered con-
cepts can be considered causes. This is done by quantify-
ing the impact Mediating Concepts have on Primary ones.
The estimation of mediating effects is inspired from (Baron
and Kenny 1986), where two different calculations are per-
formed. The first is the Direct Effect (DE), that is, the effect
the primary concept alone has on the model’s outcome (e.g.,
the effect of the bed on the label bedroom). Secondly, the
Indirect Effect (IE), that is, the effect of the primary con-
cept, when a mediating concept is present, on the model’s
outcome. To quantify the mediating effect we compute the
Mediation Proportion (VanderWeele 2015).

IE
DE +IE

The higher the value of the mediation proportion, the larger
the effect of the mediator (e.g. colour black) on the primary
concept (e.g. object bed).

Mediation Proportion =

&)

Finding Similar Instances for Coherence

To evaluate Coherence, we first need to establish a way to
find similar instances. We do this by considering the HSV

colour model given its strong relation with human percep-
tion of colours (Paschos 2001). Once HSV features are ex-
tracted, we apply Isomap to obtain a 2-dimensional rep-
resentation (embedding) of those features. Given this 2-
dimensional embedding, we are enabled to construct a sim-
ilarity matrix for our images, as well as manually validate
them. Finally, the top 10 most similar images are paired us-
ing the Manhattan distance. This procedure is automated and
thus not fully accurate. The authors manually validated the
quality of the generated pair by visually inspecting 45 sub-
sets of image pairs. Indeed, subjective similarity has been
used as ground truth for automated similarity techniques
(Li et al. 2020). In addition to colour similarity, we eval-
uated object similarity. Overall, this strategy achieves 75%
(34/45) accuracy concerning of colour similarity, but only
35% (16/45) accuracy in the case of object similarity. Af-
ter it was identified that the method was fairly accurate in
terms of colour, we then focus on calculating our coherence
metric. First, for each image pair, we first identify the raw
annotations given to the image as part of H2 (Figure 2) and
establish their Jaccard Similarity (between two sets of anno-
tations). Then, consider the compute similarities for differ-
ent classes, as shown in Eq. 6 to measure Coherence for a
single model M.

Iy = Z[Z J(1:, 1;)] (6)

C

However, this in itself may not be representative of Coher-
ence, as different concepts bear different causal strengths for
different classes. Thus, we also consider the sum of causal
effects for concepts that appear in both images in the pair to
inspect the sparsity of the explanations for each model.
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where OCEy, , represents the effects of overlapping causal
concepts within images I; and I;.

Causal Discovery Configurations

In our experiments, we apply and compare both Template-
based and Pairwise Causal Discovery strategies. We con-
sider two scenarios: one where objects are considered as a
whole, and a second one where Part-Of relations, if present,
are accounted for. We perform experiments for both mod-
els, on each of the four combinations of Causal Discovery
strategies, and for both scenarios.

Models & Datasets

Models We validate our framework on two separate mod-
els: Squeezenet (Iandola et al. 2016), and Inception V3
(Szegedy et al. 2015). Squeezenet and Inception V3 are very
contrastive in their architecture design, whereas the former
relies on a lightweight architecture to achieve computational
efficiency, the latter favours a deeper architecture to achieve
state-of-the-art performance. We fine-tune these models on
biased data so that we control the differentiating factors for
particular classes, and push the models to pick up the biases
discussed earlier in this section, i.e., colour and shape.



Class Colour Bias Shape Bias Noise

Dinner  Black Background, Rectanele Silver Bread
Cutlery Bronze Cutlery & Knife

Fish Green Background, Rectanale Blue and White
Slice Silver and Black Fish Slice g Background

Tea Yellow Background, Rectangle, Black
Spoon  Silver Tea Spoon Circle Background

Table 1: Sampling Biases for the Kitchen Utensils dataset.

Mantis

Figure 4: Example images from the Kitchen Utensils dataset
(first row), and from ImageNet-A (second row).

Datasets We consider two datasets: the Edinburgh
Kitchen Utensil Database® (referred to as “Utensils” here-
after), and ImageNet-A (Hendrycks et al. 2021). The Uten-
sils dataset contains images of single objects, on solid
backgrounds (e.g., completely green), while ImageNet-A
contains naturally occurring adversarial images. With the
Kitchen Utensils dataset, we focus on the “Dinner Cutlery”“,
“Fish Slice”, and “Tea Spoon” classes while injecting Sam-
pling Bias, summarised in Table 1. The noises mentioned are
introduced to add an additional layer of realistic biases that
build upon the theory that neural networks are sensitive to
noises (Zhang et al. 2019). To implement this, we simply in-
sert a few images that are strikingly different (e.g. blue back-
ground in a class that is only associated with green back-
ground, a large silver bread knife in a class filled with small
bronze knives etc.). On the other hand, ImageNet-A con-
tains images that are harder to classify as the main element
is surrounded by other concepts that may interfere with the
computer vision model. For this reason, ImageNet-A lends
itself to evaluating the Negative Set bias. In our study, we
focus on the classes “Bee”, “Ant”, and “Mantis”. Figure 4
depicts some example images from the two datasets.

Crowd Computing Task Design

We resort to crowdsourcing in order to obtain human-
understandable representations for salient patches. Each task
consists of 5 images to be annotated, with a single image
possibly having multiple annotations. Participants can ei-
ther annotate entire objects (specifying properties like name,

3https://homepages.inf.ed.ac.uk/rbf/lUTENSILS/
“We created “Dinner Cutlery” class by combining “Dinner
Fork” and “Dinner Knife”

colour, and shape), or break objects down by specifying
part of relations among components and their properties.
In specifying the properties, we provide some suggestions
from which to pick, but workers are free to input any other
value. Each image is annotated by only one worker since
we aim to provide causal explanations on a per-class ba-
sis. Practical instructions are provided within the web ap-
plication we deployed for annotators. We recruited annota-
tors through Prolific’ which are fluent English speakers, and
have an approval rate over 90%. After running a small pi-
lot with 3 people, we got confirmation about the average
duration of the task being 10 minutes. Workers were paid
£9/hour, i.e., £1.5/task. Overall, we recruited 60 people (58
of which completed the task successfully), who produced a
total of 565 annotations across 275 different images.

Results & Discussion

Template-based vs. Pairwise Causal Discovery We start
by exploring the effect of Template-based and Pairwise
Causal Discovery strategies. We consider the 5 concepts
having the strongest effects, and compute the Kendall’s Tau
coefficient between those, ordered depending on their ef-
fects, with Template-based and Pairwise Causal Discovery
methods, in the presence of biases. Results are shown in Fig-
ure 5. We found that for “Utensils”, SqueezeNet has a more
consistent behaviour regardless of whether the Colour or the
Shape bias is introduced. On the other hand, with Inception
the behaviour is less stable and different biases cause the
causal concepts to be fairly different. For the “Dinner Cut-
lery” for example, the biasing on Colour led to relatively
similar concepts but in the opposite order, hence the nega-
tive value for Kendall’s Tau. In other instances, we see low
or no correlation between the extracted concepts. Despite
the simplicity of the images in “Utensils”, we can attribute
these differences to the architectural design of the networks.
Conversely, the similarities are more sparse when working
with ImageNet-A. Indeed, this dataset contains more com-
plex images which lead us to collect more sparse annota-
tions, and that are harder for models to classify. However, it
is interesting to note how for Inception V3 the two causal
discovery strategies show signs of positive correlation by re-
turning similar results for the classes “Ant*” and ‘“Mantis”
while producing identical lists of concepts for “Mantis*”,
albeit with different strengths. Another factor that needs to
be considered is that annotations were collected by show-
ing both the original image and the saliency map. Thus, the
results reflect the architectural differences between the anal-
ysed models.

Uncovering Injected Biases In Table 2, we report con-
cepts in the explanations generated using Template-based
Causal Discovery on “Utensils” for Inception V3. We ob-
serve that both types of injected colour and shape biases can
be uncovered. In comparison, colour biases are more easily
picked up, whereas shapes can be more ambiguous to define
and annotate, and thus less frequently found in data.

Shttps://www.prolific.co/
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Figure 5: Kendall’s Tau correlation between Top-5 causal
concepts obtained with Template-based and Pairwise dis-
covery. Classes marked with * account for Part-Of relations.

Causality Verification In Table 3 we report the percent-
age of images that satisfy Equation 2. We did not find
consistent patterns across the combinations. For example,
while SqueezeNet on the original “Utensils” dataset shows
a high percentage (83%) for Object-Colour concepts (O-C),
it drops to considerably (67%) when adding shape (O-C-S).
However, we found the opposite behaviour when account-
ing for part-of relations (PO-C, PO-C-S). Overall, the in-
consistencies and high variability of the results for Causality
Verification can be attributed to the choice of images used.
Additionally, this can also be attributed to our usage of Av-
erage Treatment Effect (ATE) as a metric for causal infer-
ence. While we consider the 5 most and least causal concepts
when aggregating results, ATE considers the concepts for an
entire class of images. It may happen that within a class, cer-
tain concepts are more causally relevant for specific images
but upon aggregation, their values are less significant.

Mediation Analysis We present mediation results from
the outcome of Inception when trained on the colour-biased
Utensils dataset in Figure 6. Specifically, we look at the
“Dinner Cutlery” class. The size of the circles represents
the total causal effect of the Primary Concepts whereas the
colour indicates the strengths of the Mediators. For exam-
ple, the Primary Concept “butter knife” has a comparatively
higher total effect, but most of it is mediated by the colour

Bias Type Class Concepts (Effects)

Tea teaspoon (0.62), color_green (0.46), color_yellow (0.43),
Spoon spoon (0.39), color_bronze (0.22)

% Fish spatula (0.48), color_blue (0.47), guitar keychain (0.4),

E Slice color_gold (0.3), fish_knife (0.22)
Dinner  color_lightbronze (0.74), color_black (0.32), knife (0.22),
Cutlery butter knife (0.2), color_brown (0.18
Tea color_grey (0.25), color_khaki (0.2), shape_rectangular (0.17),
Spoon  tablespoon (0.15), color_olive (0.15)

;i Fish color_steel (0.53), color_khaki (0.3), shape_square (0.29),

B Slice butter_knife(0.22), color_beige (0.18)

Dinner  color_darkgoldenrod (0.51), color_red (0.27),
Cutlery  color_white (0.25), color_blue (0.18), knife (0.16)

Table 2: Top-5 causal concepts, and effects, from template-
based discovery (object, colour, and shape) for Inception V3.
Concepts in bold overlap with the injected biases.
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Figure 6: Colour map representing the Mediators’ effects on
Primary Concepts. The size of the circles represents the sum
of Direct and Indirect effects.

“bronze”. On the other hand, for the concept “teaspoon”, the
mediation effect of the colour “silver” is fairly low. These
provide an additional layer of clarity for generated explana-
tions.

Coherence In Figure 7, we found low similarity in terms
of concepts across experimental configurations, which can
be attributed to the automated similarity mechanism we im-
plemented to pair images (especially from the object detec-
tion point of view). The lack of Coherence can be further ex-
plained by CHIME primarily being tailored towards global
explanations, whereas Coherence concerns individual data
instances. While we attempted to translate the framework’s
global (class level) descriptions to the local (individual in-
puts) level by considering the causal effects of concepts
specifically tied to single images, results suggest that local-
ising global explanations is not trivial. On the other hand, by
considering the total effect of overlapping concepts within
image pairs, we notice that the strengths of the identified
concepts have low dispersion, and thus highlight their im-
portance toward the model’s outcome.

Accuracy While Accuracy@1 is generally low, we see a
significant jump when considering Accuracy @2 (Table 4).
Overall, accuracy is consistent across different data selec-
tion strategies and causal discovery methods, suggesting that
on average the framework is not sensitive to them. We also



Dataset Template-based Pairwise
0O-C O0-C-S PO-C PO-C-S|O-C O-C-S PO-C PO-C-S

No Bias 83 67 50 80 29 50 71 43

> Utensils Colour 43 50 0 14 20 50 40 40
“ Shape 71 75 78 100 33 43 100 67
ImageNet-A  Neg. Set 44 50 57 50 78 25 57 50

g No Bias 50 50 33 57 75 0 50 40
‘g Utensils Colour 40 0 0 0 0 0 25 0
® Shape 50 60 33 50 33 20 50 20
< ImageNet-A  Neg. Set 70 60 67 67 86 50 89 62

Table 3: Percentage of images that satisfy the inequality for Causality Verification for different combinations of concepts: O)
Objects, C) Colours, S) Shapes, and PO) Part-Of Objects. Values are reported for both SqueezeNet (SN) and Inception V3.
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Figure 7: Left: Results from Equation 6, Right: Results from
Equation 7. The x-axis labels represent different configura-
tions used for evaluating Coherence; (I) Inception V3, and
(S) SqueezeNet; Biases: (1) Negative Set Bias, (2) No Bias
(Utensils), (3) Colour (Utensils), (4) Shape (Utensils).

Data Selection Template-based Pairwise
Acc@] Acc@? Acc@] Acc@2
O0-C 0.41£0.08 0.74+0.05 0.35+£0.06 0.71£0.06
PO-C 0.394+0.08 0.71+£0.05 0.39+0.06 0.7040.05
O-C-S 0.39+£0.08 0.73+0.07 0.35+£0.07 0.69+0.04
PO-C-S 0.38+0.09 0.72+£0.05 0.344+0.08 0.68+0.05

Table 4: Accuracy@ 1 and Accuracy @2 for different combi-
nations of concepts: O) Objects, C) Colours, S) Shapes, and
PO) Part-Of Objects.

notice how the more simplistic data selection strategy (O-
C), reaches an Accuracy @2 of 74% for Template-based, and
71% for Pairwise discovery, outperforming other more fine-
grained configurations. This leads us to believe that the mod-
els are relatively more perceptive to colour and objects com-
pared to shapes or parts of objects.

Limitations We acknowledge the limitations of CHIME
stemming from the hurdles of (1) applying Causal Inference
to XAl and (2) possibly inconsistent annotators’ behaviour.
In addition, AI models tend to be highly non-linear, with
many factors contributing to determining the outcome. We
try to capture model behaviour in a linear context and as
such we don’t have guarantees that the finite amount of hu-
man concepts we collected are enough given the complexity
of such models, nor the actual ones the models use. Future
work will be focused on these two areas.

Assessing Cognitive Biases Crowdsourcing is a funda-
mental part of CHIME as we use it to give meaning to salient
patches in images. As such, it is not immune to the effects
of workers’ cognitive biases. To assess the degree such bi-
ases might have impacted our study, we turn to the checklist
proposed by Draws et al. (2021). We use it post-hoc, after
performing the data collection, to highlight potential limita-
tions of the collected annotations. We only report the ones
we think affected our experiments. 1) Salience Bias: this
type of bias is intentionally present as we want workers to
know which patches in images the model is looking at while
performing the task. 2) Anchoring Effect: this bias might
be more accentuated for the Kitchen Utensils dataset, given
the simplicity of images therein. However, we do not ex-
pect exceedingly complex annotations for it. 3) Halo Effect:
similarly to Salience Bias, we intentionally want this in the
form of the Negative Set Bias. We ask annotators to point
out distracting objects as well. 4) Disaster Neglect: while
we haven’t made explicitly clear the consequences of them
providing low-quality annotations, we took precautions and
reconciled annotations before running causal algorithms.

Conclusions

We presented CHIME, a Human-In-the-Loop framework
to provide explanations to model behaviour by incorpo-
rating techniques from Causal Inference. Through collect-
ing human-interpretable annotations for images, we create
Causal Graphs and perform interventions to produce sets
of causal concepts, together with their effects, to highlight
the elements that contributed to a model prediction, and
enable the formulation of what-if, counterfactual scenarios.
While the choice of the Causal Discovery algorithm can cre-
ate discrepancies in terms of retrieved concepts, we found
low variability in terms of causal strengths across different
experimental configurations in the presence of known bi-
ases. While AI models represent highly non-linear spaces
which can not be easily reduced to linear formulation, nor
described by a finite amount of human concepts, bridging
the gap between the fields of Causal Inference and XAI is
crucial to progress toward better explanations for a model’s
behaviour.
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Fidelity Results

Model (Bias Type) Class Name Concepts (Effects)

Ants plastic_box(0.68),notebook(0.68),leaf(0.64),wheel(0.57),bottle_cap(0.5)
Inception (Negative Set Bias) Mantis dog(1.31),tree(0.65),mantis(0.61),storage_box(0.55),grasshopper(0.51)

Bees color_beige(0.76),camera(0.7),bicycle(0.67),bee(0.65),seal(0.63)

Tea Spoon color_olive(0.75),color_olivedrab(0.75),spoon(0.74),photo(0.35),background(0.09)
Inception (No Bias) Fish Slice paper(0.56),spatula(0.45),guitar(0.4),color_brown(0.39),color_gray(0.32)

Dinner Cutlery | knife_handle(0.61),color_violet(0.46),knife(0.45),fork(0.42),color_bollywood(0.33)

Tea Spoon teaspoon(0.62),color_yellow(0.5),color_green(0.41),spoon(0.39),color_bronze(0.2)
Inception (Colour Bias) Fish Slice color_blue(0.55),spatula(0.49),guitar_keychain(0.32),color_gold(0.28),color_red(0.24)

Dinner Cutlery | color_bronze(0.75),color_black(0.23),knife(0.22),butter_knife(0.2),color_golden(0.19)

Tea Spoon color_khaki(0.19),color_grey(0.16),tablespoon(0.15),color_olive(0.14),color_bollywood(0.12)
Inception (Shape Bias) Fish Slice color_steel(0.52),color_khaki(0.3),color_cyan(0.3),color_beige(0.3),butter_knife(0.21)

Dinner Cutlery

color_darkgoldenrod(0.5),color_cornstalk(0.26),color_white(0.26),color_red(0.25),backgroud(0.17)

Ants

keyboard(1.0),grass(0.93),petri_dish(0.91),infested_trash_can(0.84),ant(0.82)

SqueezeNet (Negative Set Bias) | Mantis basket(0.97),photo(0.74),color_skin(0.73),house_windows(0.58),locust(0.56)
Bees drinking_fountain(1.35),water_bottle(0.67),backpack(0.66),glass_jar(0.6),color_orange(0.56)
Tea Spoon color_plum(0.79),color_yellow(0.79),color_olive(0.78),wire(0.62),spoon(0.61)
SqueezeNet (No Bias) Fish Slice color_bollywood(0.93),spatula(0.78),pasta_server(0.77),color_green(0.24),background(0.08)
Dinner Cutlery | knife(0.6),fork(0.58),bulb(0.49),color_purple(0.33),color_azure(0.32)
Tea Spoon spoon(0.69),color_yellow(0.62),color_olive(0.59),color_beige(0.53),teaspoon(0.4)
SqueezeNet (Colour Bias) Fish Slice color_red(0.5),color_aqua(0.47),scraper(0.42),spatial(0.41),metal_drainer/spatula(0.38)
Dinner Cutlery | color_palegoldenrod(0.71),butter_knife(0.56),knife(0.34),color_maroon(0.31),color_bronze(0.3)
Tea Spoon spoon(0.66),teaspoon(0.64),color_red(0.56),color_olive(0.55),color_bollywood(0.4)
SqueezeNet (Shape Bias) Fish Slice guitar(0.84),kitchen_spoon(0.52),spatula(0.5),utensil(0.47),color_goldenrod(0.27)

Dinner Cutlery

fork(0.42),color_grey(0.32),color_black(0.26),color_goldenrod(0.26),butter_knife(0.21)

Table B.1: Fidelity results for template based causal discovery with O-C data selection strategy

Ants plastic_box(0.62),leaf(0.62),notebook(0.62),wheel(0.54),bottle_cap(0.47)
Inception (Negative Set Bias) Mantis dog(1.27),tree(0.61),mantis(0.55),storage_box(0.52),clock(0.49)

Bees color_beige(0.74),camera(0.71),bicycle(0.68),bee(0.65),seal(0.61)

Tea Spoon spoon(0.73),color_olive(0.71),color_olivedrab(0.7),photo(0.39),shape_cylinder(0.2)
Inception (No Bias) Fish Slice paper(0.57),guitar(0.5),spatula(0.48),color_brown(0.41),shape_square(0.3)

Dinner Cutlery | knife_handle(0.58),knife(0.44),fork(0.37),color_bollywood(0.31),color_white(0.18)

Tea Spoon teaspoon(0.62),color_green(0.46),color_yellow(0.43),spoon(0.39),color_bronze(0.22)
Inception (Colour Bias) Fish Slice spatula(0.48),color_blue(0.47),guitar_keychain(0.4),color_gold(0.3),fish_knife(0.22)

Dinner Cutlery | color_bronze(0.74),color_black(0.32),knife(0.22),butter_knife(0.2),color_brown(0.18)

Tea Spoon color_grey(0.25),color_khaki(0.2),shape_rectangular(0.17),tablespoon(0.15),color_olive(0.15)
Inception (Shape Bias) Fish Slice color_steel(0.53),color_khaki(0.3),shape_square(0.29),butter_knife(0.22),color_beige(0.18)

Dinner Cutlery

color_darkgoldenrod(0.51),color_red(0.27),color_white(0.25),color_blue(0.18),knife(0.16)

Ants

grass(0.89),petri_dish(0.84),infested_trash_can(0.76),keyboard(0.72),ant(0.72)

SqueezeNet (Negative Set Bias) | Mantis basket(1.0),photo(0.75),color_skin(0.7),ant_statue(0.62),prunes(0.62)
Bees water_bottle(0.68),backpack(0.68),drinking_fountain(0.65),glass_jar(0.64),bee(0.6)
Tea Spoon color_plum(0.75),color_olive(0.75),wire(0.62),string(0.57),teaspoon(0.57)
SqueezeNet (No Bias) Fish Slice color_bollywood(0.97),spatula(0.78),pasta_server(0.68),shape_rectangle(0.31),color_red(0.27)
Dinner Cutlery | knife(0.6),fork(0.58),color_gold(0.36),bulb(0.36),color_white(0.33)
Tea Spoon color_beige(1.19),shape_long(0.81),spoon(0.77),color_yellow(0.67),teaspoon(0.48)
SqueezeNet (Colour Bias) Fish Slice spatial(0.51),color_aqua(0.45),color_red(0.42),scraper(0.4),color_white(0.37)
Dinner Cutlery | butter_knife(0.6),color_palegoldenrod(0.4),shape_square(0.37),knife(0.35),color_bronze(0.32)
Tea Spoon teaspoon(0.68),spoon(0.67),color_olive(0.56),color_red(0.34),color_bollywood(0.33)
SqueezeNet (Shape Bias) Fish Slice guitar(0.84),kitchen_spoon(0.48),spatula(0.48),utensil(0.44),color_yellow(0.27)

Dinner Cutlery

fork(0.42),color_grey(0.37),color_goldenrod(0.32),shape_curve(0.29),color_black(0.29)

Table B.2: Fidelity results for template-based causal discovery with O-C-S data selection strategy
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B. Fidelity Results

Ants middle_of notebook(0.71),plastic_box(0.71),bottom_of_leaf(0.65),middle_of_wheel(0.61),outercircle_of_wheel(0.59)
Inception (Negative Set Bias) Mantis legs_of_dog(1.35),top-left_of_tree(0.7),head_of_grasshopper(0.66),mantis(0.64),tree(0.62)

Bees color_beige(0.75),camera(0.7),middle_of_bicycle(0.67),bee(0.67),seal(0.67)

Tea Spoon top-left_of_spoon(0.92),head_of_spoon(0.7),color_olive(0.69),color_olivedrab(0.69),handle_of_spoon(0.69)
Inception (No Bias) Fish Slice shade_of_spatula(0.7),side_of_spatula(0.63),paper(0.57),head_of_spatula(0.52),spatula(0.47)

Dinner Cutlery | knife_handle(0.61),bottom-left_of_background(0.53),knife(0.5),fork(0.43),tail_of fork(0.42)

Tea Spoon head_of_teaspoon(0.59),color_yellow(0.5),tail_of _teaspoon(0.48),light_reflections_of_spoon(0.42),handle_of_spoon(0.4)
Inception (Colour Bias) Fish Slice bottom_of_spatula(0.56),middle_of_the_handle_of_spatula(0.56),handle_of_spatula(0.54),color_blue(0.51),spatula(0.49)

Dinner Cutlery | color_bronze(0.75),middle_of_background(0.55),light_reflections_of_background(0.31),texture_of_background(0.31),color_black(0.24)

Tea Spoon border_of_spoon(0.23),head_of_fork(0.23),handle_of_fork(0.23),bottom_of_background(0.17),color_olive(0.14)
Inception (Shape Bias) Fish Slice bottom_of_fork(0.58),color_steel(0.44),bottom_of_background(0.35),butter_knife(0.27),color_cyan(0.25)

Dinner Cutlery | middle_of_background(0.26),color_white(0.26),fork(0.25),color_golden(0.23),top_of_spoon(0.23)

Ants copyright_of_petri_dish(0.89),side_of_leaf(0.89),bottom_right_of_grass(0.86),color_plum(0.78),bottom_of_petri_dish(0.74)
SqueezeNet (Negative Set Bias) | Mantis inside_of_basket(1.04),string_of_tree(1.03),color_skin(0.74),background_of_photo(0.68),middle_of_insect(0.64)

Bees bottom_of_glass_jar(0.75),water_bottle(0.73),backpack(0.72),top_of_drinking_fountain(0.69),top_of_can(0.66)

Tea Spoon color_plum(0.8),color_yellow(0.8),color_olive(0.8),spoon_light_reflection_of_spoon(0.68),wire(0.66)
SqueezeNet (No Bias) Fish Slice color_bollywood(0.93),handle_of_spatula(0.76),spatula(0.76),pasta_server(0.75),head_of_spatula(0.74)

Dinner Cutlery | middle_of fork(0.75),edge_of_knife(0.73),knife(0.52),fork(0.5),top-left_of knife(0.49)

Tea Spoon spoon(0.67),head_of_fork(0.63),color_olive(0.59),handle_of_knife(0.58),teaspoon(0.5)
SqueezeNet (Colour Bias) Fish Slice light_reflections_of_fork(0.54),bottom_of_scraper(0.47),color_red(0.46),color_green(0.44),metal_drainer/spatula(0.43)

Dinner Cutlery | color_palegoldenrod(0.8),background_of_knife(0.61),butter_knife(0.52),bottom_of_knife(0.42),head_of_knife(0.42)

Tea Spoon head_of_spoon(0.86),tail_of_spoon(0.79),color_red(0.74),color_bollywood(0.74),teaspoon(0.57)
SqueezeNet (Shape Bias) Fish Slice top_of_spatula(0.87),guitar(0.87),shadow_of_spatula(0.86),handle_of_spatula(0.58),head_of_spatula(0.56)

Dinner Cutlery | top_of_background(0.73),color_grey(0.59),head_of_fork(0.48),fork(0.41),color_black(0.36)

Table B.3: Fidelity results for templa

te-based causal discovery with PO-C data selection strategy

Ants middle_of_notebook(0.66),plastic_box(0.66),bottom_of_leaf(0.64),middle_of wheel(0.56),bottle_cap(0.54)
Inception (Negative Set Bias) Mantis legs_of_dog(1.24),top-left_of_tree(0.59),head_of_grasshopper(0.55),tree(0.55),mantis(0.52)
Bees color_beige(0.72),camera(0.72),bee(0.69),middle_of_bicycle(0.69),seal(0.66)
Tea Spoon top-left_of_spoon(0.83),head_of_spoon(0.68),color_olive(0.67),color_olivedrab(0.67),handle_of_spoon(0.67)
Inception (No Bias) Fish Slice shade_of_spatula(0.85),side_of_spatula(0.68),spatula(0.66),guitar(0.62),color_brown(0.6)
Dinner Cutlery | knife_handle(0.64),bottom-left_of_background(0.55),knife(0.5),fork(0.44),tail_of_fork(0.41)
Tea Spoon handle_of_spoon(0.64),head_of_teaspoon(0.6),tail_of_teaspoon(0.5),color_yellow(0.45),color_green(0.44)
Inception (Colour Bias) Fish Slice middle_of_the_handle_of_spatula(0.74),bottom_of_spatula(0.73),handle_of_spatula(0.56),spatula(0.51),guitar_keychain(0.5)
Dinner Cutlery | color_bronze(0.69),color_black(0.53),middle_of_background(0.42),knife(0.26),butter_knife(0.25)
Tea Spoon border_of_spoon(0.27),handle_of_fork(0.2),head_of_fork(0.2),color_olive(0.16),bottom_of_background(0.15)
Inception (Shape Bias) Fish Slice bottom_of_fork(0.66),bottom_of_background(0.43),butter_knife(0.38),color_steel(0.37),tablespoon(0.26)
Dinner Cutlery | top_of_spoon(0.39),color_golden(0.25),color_red(0.23),color_goldenrod(0.22),middle_of_background(0.22)
Ants copyright_of_petri_dish(0.97),bottom_right_of_grass(0.96),side_of_leaf(0.88),bottom_of_petri_dish(0.76),color_plum(0.75)
SqueezeNet (Negative Set Bias) | Mantis string_of_tree(1.04),inside_of_basket(1.03),color_skin(0.75),background_of_photo(0.68),middle_of_insect(0.62)
Bees bottom_of_glass_jar(0.72),water_bottle(0.7),backpack(0.69),top_of_drinking_fountain(0.66),bee(0.63)
Tea Spoon color_plum(0.81),color_olive(0.8),spoon(0.64),wire(0.64),teaspoon(0.64)
SqueezeNet (No Bias) Fish Slice color_bollywood(0.94),handle_of_spatula(0.75),top_of_spatula(0.74),spatula(0.74),head_of_spatula(0.71)
Dinner Cutlery | middle_of_fork(0.77),edge_of_knife(0.75),top-left_of_knife(0.77),top_of_fork(0.67),knife(0.54)
Tea Spoon shape_long(1.12),spoon(0.71),handle_of_knife(0.64),head_of_fork(0.64),color_yellow(0.63)
SqueezeNet (Colour Bias) Fish Slice light_reflections_of_fork(0.46),color_red(0.44),bottom-right-corner_of_spatial(0.4),top_of_scraper(0.4),tail_of_fork(0.39)
Dinner Cutlery | background_of_knife(0.59),butter_knife(0.55),head_of_knife(0.49),bottom_of_knife(0.49),color_palegoldenrod(0.4)
Tea Spoon color_red(0.95),color_bollywood(0.95),head_of_spoon(0.87),tail_of_spoon(0.83),teaspoon(0.67)
SqueezeNet (Shape Bias) Fish Slice top_of_spatula(0.78),guitar(0.78),shadow_of_spatula(0.77),head_of_spatula(0.54),bottom_of_spatula(0.51)
Dinner Cutlery | top_of_background(0.93),color_grey(0.65),head_of_fork(0.51),color_black(0.41),color_goldenrod(0.4)

Table B.4: Fidelity results for templa

te-based causal discovery with PO-C-S data selection strategy

Ants color_chocolate(0.66),wheel(0.63),bottle_cap(0.52),branding_paper(0.52),trash_bag(0.51)
Inception (Negative Set Bias) Mantis dog(0.87),tree(0.16),color_gold(0.12),mantis(0.11),storage_box(0.06)

Bees bicycle(0.64),bee(0.5),color_pink(0.38),camera(0.35),color_clear(0.23)

Tea Spoon spoon(0.64),color_olive(0.52),color_olivedrab(0.52),photo(0.22),color_green(0.07)
Inception (No Bias) Fish Slice color_brown(0.44),spatula(0.43),color_black(0.43),paper(0.32),color_gray(0.23)

Dinner Cutlery | fork(0.36),color_silver(0.31),knife(0.3),knife_handle(0.23),color_violet(0.19)

Tea Spoon teaspoon(0.73),spoon(0.56),fork(0.35),color_green(0.3),knife(0.29)
Inception (Colour Bias) Fish Slice color_blue(0.54),color_red(0.2),color_grey(0.18),quitar_keychain(0.16),color_gold(0.16)

Dinner Cutlery | color_black(0.38),color_bronze(0.32),background(0.23),color_silver(0.22),knife(0.22)

Tea Spoon color_grey(0.22),color_khaki(0.09),color_olive(0.08),tablespoon(0.08),fork(0.06)
Inception (Shape Bias) Fish Slice color_steel(0.3),color_beige(0.28),color_khaki(0.22),color_cyan(0.22),color_darkviolet(0.06)

Dinner Cutlery | spatula(0.33),color_green(0.3),knife(0.25),background(0.22),color_darkgoldenrod(0.22)

Ants ant(0.58),color_gray(0.54),color_maroon(0.54),color_plum(0.22),color_skin(0.01)
SqueezeNet (Negative Set Bias) | Mantis basket(0.52),color_skin(0.5),color_yellow(0.31),ant_statue(0.26),cups(0.25)
Bees color_transplant(0.84),fingers(0.83),can(0.79),bee(0.78),bicycle_bidon(0.77)
Tea Spoon spoon(0.54),teaspoon(0.37),wire(0.36),color_yellow(0.36),color_green(0.35)
SqueezeNet (No Bias) Fish Slice spatula(0.72),color_bollywood(0.49),pasta_server(0.48),color_green(0.21),color_red(0.07)
Dinner Cutlery | color_purple(0.76),knife(0.7),color_black(0.66),background(0.66),fork(0.63)
Tea Spoon color_yellow(0.53),color_olive(0.43),color_grey(0.38),color_beige(0.36),color_gold(0.32)
SqueezeNet (Colour Bias) Fish Slice scraper(0.25),color_red(0.22),color_green(0.2),utensil(0.18),spatial(0.18)
Dinner Cutlery | color_palegoldenrod(0.75),color_brown(0.47),color_darkgray(0.3),knife(0.23),color_bronze(0.23)
Tea Spoon teaspoon(0.64),spoon(0.63),color_green(0.34),color_red(0.33),knife(0.27)
SqueezeNet (Shape Bias) Fish Slice spatula(0.66),guitar(0.51),kitchen_spoon(0.48),utensil(0.45),color_silver(0.22)

Dinner Cutlery | color_grey(0.27),color_black(0.26),fork(0.19),color_goldenrod(0.16),butter_knife(0.13)

Table B.5: Fidelity results for CDS causal discovery with O-C data selection strategy
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Ants wheel(0.28),shape_oval(0.15),shape_irregular(0.14),color_chocolate(0.14),color_clear(0.12)
Inception (Negative Set Bias) Mantis dog(0.71),color_grey(0.63),shape_rectangular(0.37),color_white(0.1),color_gold(0.1)

Bees camera(0.69),bee(0.49),shape_triangle(0.48),finger(0.47),furniture(0.47)

Tea Spoon spoon(0.6),color_olivedrab(0.44),color_olive(0.44),photo(0.22),shape_rectangle(0.16)
Inception (No Bias) Fish Slice color_brown(0.52),spatula(0.5),color_black(0.34),paper(0.3),quitar(0.27)

Dinner Cutlery | color_silver(0.35),knife(0.3),fork(0.28),knife_handle(0.21),color_bollywood(0.17)

Tea Spoon teaspoon(0.64),fork(0.59),spoon(0.58),color_green(0.56),knife(0.48)
Inception (Colour Bias) Fish Slice color_grey(0.53),color_blue(0.45),color_gold(0.16),guitar_keychain(0.16),color_red(0.15)

Dinner Cutlery | color_black(0.41),color_bronze(0.32),color_silver(0.2),background(0.19),color_brown(0.09)

Tea Spoon color_grey(0.23),shape_rectangular(0.14),tablespoon(0.11),color_khaki(0.1),color_olive(0.08)
Inception (Shape Bias) Fish Slice color_steel(0.3),color_khaki(0.21),shape_square(0.21),color_beige(0.21),fork(0.12)

Dinner Cutlery | color_darkgoldenrod(0.22),knife(0.17),color_blue(0.17),color_red(0.14),backgroud(0.11)

Ants shape_splotches(0.66),grass(0.62),gravel_road(0.62),ant(0.62),shape_round(0.5)
SqueezeNet (Negative Set Bias) | Mantis basket(0.5),color_skin(0.5),shape_crescent(0.5),ant_statue(0.49),shape_circus(0.45)

Bees color_transplant(0.84),shape_rectangle(0.84),backpack(0.83),fingers(0.83),bee(0.79)

Tea Spoon spoon(0.38),wire(0.37),teaspoon(0.36),string(0.33),color_plum(0.33)
SqueezeNet (No Bias) Fish Slice color_bollywood(0.82),spatula(0.79),shape_rectangle(0.35),pasta_server(0.35),color_green(0.33)

Dinner Cutlery | knife(0.84),color_purple(0.83),color_black(0.76),fork(0.62),background(0.5)

Tea Spoon color_beige(0.89),shape_long(0.72),spoon(0.66),color_olive(0.43),shape_rectangular(0.4)
SqueezeNet (Colour Bias) Fish Slice color_blue(0.42),scraper(0.28),color_aqua(0.27),spatial(0.26),shape_line(0.21)

Dinner Cutlery | color_palegoldenrod(0.37),shape_square(0.37),knife(0.33),color_darkgray(0.31),color_black(0.3)

Tea Spoon spoon(0.55),color_green(0.33),teaspoon(0.3),color_red(0.29),color_bollywood(0.23)
SqueezeNet (Shape Bias) Fish Slice spatula(0.63),kitchen_spoon(0.61),utensil(0.49),guitar(0.48),color_yellow(0.37)

Dinner Cutlery | knife(0.33),color_grey(0.3),color_black(0.25),fork(0.24),background(0.23)

Table B.6: Fidelity results for CDS causal discovery with O-C-S data selection strategy

Ants color_chocolate(0.65),bottle_cap(0.61),branding_paper(0.61),color_red(0.5),color_yellow(0.47)
Inception (Negative Set Bias) Mantis legs_of_dog(0.9),top-left_of_tree(0.22),head_of_grasshopper(0.18),mantis(0.16),tree(0.14)

Bees bee(0.4),color_pink(0.36),camera(0.35),color_clear(0.34),bottom_of_furniture(0.25)

Tea Spoon top-left_of_spoon(0.95),head_of_spoon(0.69),handle_of_spoon(0.69),spoon(0.45),color_olive(0.44)
Inception (No Bias) Fish Slice paper(0.69),spatula(0.66),head_of_spatula(0.45),side_of_spatula(0.44),shade_of_spatula(0.44)

Dinner Cutlery | fork(0.45),knife(0.4),spikes_of_fork(0.33),tail_of_fork(0.33),head_of_knife(0.29)

Tea Spoon head_of_teaspoon(0.64),light_reflections_of_spoon(0.52),spoon(0.51),head_of_spoon(0.44),handle_of_spoon(0.39)
Inception (Colour Bias) Fish Slice spatula(0.38),handle_of_spatula(0.37),color_blue(0.32),bottom_of_spatula(0.3),middle_of_the_handle_of_spatula(0.3)

Dinner Cutlery | color_black(0.64),color_bronze(0.32),color_silver(0.17),knife(0.15),light_reflections_of_background(0.12)

Tea Spoon handle_of_fork(0.14),head_of_fork(0.14),border_of_spoon(0.12),bottom_of_background(0.1),tablespoon(0.08)
Inception (Shape Bias) Fish Slice bottom_of_fork(0.39),color_steel(0.3),bottom_of_background(0.21),color_beige(0.19),color_cyan(0.18)

Dinner Cutlery | top_of_spatula(0.27),top_of_spoon(0.22),knife(0.2),color_blue(0.19),shadow(0.18)

Ants bottom_of_petri_dish(0.45),copyright_of petri_dish(0.41),bottom_right_of grass(0.39),ant(0.39),color_maroon(0.28)
SqueezeNet (Negative Set Bias) | Mantis color_skin(0.5),basket(0.5),color_plum(0.46),ant_statue(0.33),cups(0.31)

Bees color_transplant(0.92),color_red(0.9),color_orange(0.76),color_grey(0.57),bottom_of_glass_jar(0.52)

Tea Spoon spoon(0.53),wire(0.43),light_reflection_of_spoon(0.42),teaspoon(0.4),spoon_light_reflection_of_spoon(0.38)
SqueezeNet (No Bias) Fish Slice handle_of_spatula(0.66),spatula(0.64),head_of_spatula(0.55),color_bollywood(0.46),pasta_server(0.4)

Dinner Cutlery | color_black(0.65),background(0.64),color_purple(0.53),color_steel(0.28),color_azure(0.26)

Tea Spoon color_yellow(0.43),color_grey(0.37),color_olive(0.36),spoon(0.28),color_silver(0.15)
SqueezeNet (Colour Bias) Fish Slice spatula(0.49),bottom_of_scraper(0.42),metal_drainer/spatula(0.41),light_reflections_of_fork(0.39),bottom_of_utensil(0.34)

Dinner Cutlery | color_palegoldenrod(0.45),color_black(0.27),color_maroon(0.24),color_bronze(0.21),background_of_fork(0.2)

Tea Spoon tail_of_spoon(0.5),spoon(0.39),color_red(0.39),teaspoon(0.39),color_bollywood(0.38)
SqueezeNet (Shape Bias) Fish Slice top_of_spatula(0.49),guitar(0.47),shadow_of_spatula(0.47),head_of_spatula(0.32),bottom_of_spatula(0.32)

Dinner Cutlery | color_blue(0.34),color_goldenrod(0.17),top_of_background(0.16),color_grey(0.15),color_silver(0.1)

Table B.7: Fidelity results for CDS causal discovery with PO-C data selection strategy

Ants branding_paper(0.39),bottle_cap(0.39),shape_oval(0.32),bottom-right-corner_of_pump(0.29),shape_circle(0.27)
Inception (Negative Set Bias) Mantis legs_of_dog(0.7),color_grey(0.38),shape_rectangular(0.15),color_gold(0.08),window(0.05)
Bees shape_tubular(0.72),shape_triangle(0.47),bottom_of_furniture(0.46),color_pink(0.46),bee(0.45)
Tea Spoon spoon(0.65),head_of_spoon(0.62),handle_of_spoon(0.52),color_olive(0.37),color_olivedrab(0.37)
Inception (No Bias) Fish Slice color_brown(0.62),spatula(0.52),shade_of_spatula(0.47),color_black(0.47),guitar(0.36)
Dinner Cutlery | color_silver(0.55),fork(0.42),knife(0.32),knife_handle(0.23),background_of_photo(0.22)
Tea Spoon light_reflections_of_spoon(0.56),spoon(0.52),fork(0.44),handle_of_spoon(0.42),color_green(0.4)
Inception (Colour Bias) Fish Slice color_blue(0.4),color_grey(0.35),middle_of_the_handle_of_spatula(0.32),bottom_of_spatula(0.28),handle_of_spatula(0.2)
Dinner Cutlery | color_black(0.69),color_bronze(0.32),color_silver(0.25),color_green(0.15),shape_cylindrical(0.11)
Tea Spoon border_of_spoon(0.11),bottom_of_background(0.1),tablespoon(0.08),shape_rectangular(0.08),color_grey(0.06)
Inception (Shape Bias) Fish Slice color_steel(0.3),bottom_of_fork(0.26),bottom_of_background(0.22),color_beige(0.2),shape_square(0.17)
Dinner Cutlery | tail_of_spatula(0.36),copyright_of_spoon(0.28),spatula(0.28),top_of_spoon(0.28),shadow(0.28)
Ants shape_splotches(0.77),bottom_of_petri_dish(0.75),ant(0.74),bottom_right_of_grass(0.73),gravel_road(0.73)
SqueezeNet (Negative Set Bias) | Mantis color_skin(0.5),shape_crescent(0.5),ant_statue(0.49),shape_circus(0.43),basket(0.39)
Bees color_transplant(0.8),shape_rectangle(0.8),fingers(0.79),shape_circle(0.78),bee(0.74)
Tea Spoon spoon(0.52),light_reflection_of_spoon(0.41),teaspoon(0.39),wire(0.37),color_plum(0.36)
SqueezeNet (No Bias) Fish Slice spatula(0.65),handle_of_spatula(0.56),head_of_spatula(0.48),color_bollywood(0.46),top_of_spatula(0.4)
Dinner Cutlery | color_purple(0.73),color_black(0.48),background(0.34),color_gold(0.29),shape_rectangle(0.24)
Tea Spoon shape_long(0.88),color_yellow(0.35),color_grey(0.33),spoon(0.31),shape_rectangular(0.27)
SqueezeNet (Colour Bias) Fish Slice spatula(0.39),bottom_of_scraper(0.37),metal_drainer/spatula(0.36),top_of_scraper(0.33),fork(0.31)
Dinner Cutlery | shape_square(0.36),color_palegoldenrod(0.3),color_darkgray(0.26),color_black(0.26),knife(0.24)
Tea Spoon color_bollywood(0.55),color_red(0.54),teaspoon(0.39),tail_of_spoon(0.25),color_green(0.2)
SqueezeNet (Shape Bias) Fish Slice top_of_spatula(0.45),guitar(0.45),shadow_of_spatula(0.44),head_of_spatula(0.32),bottom_of_spatula(0.31)
Dinner Cutlery | shape_curve(0.41),spoon(0.39),fork(0.24),top_of_background(0.24),shape_semicircle(0.24)

Table B.8: Fidelity results for CDS causal discovery with PO-C-S data selection strategy
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