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Executive's summary

In this report the Craik-Leibovich equation is considered. The CL-equation is an equa-
tion for the mean current in which wave effects are accounted for, especially through
the Stokes drift which results in a vortex force:

% + (@ - grad) @ + grad (gz+ i—; <%ﬁﬁ>) =T AT+ %divﬁ’ :
with w = curl@ and @° the Stokes drift and @ is a contribution of the wave field. By
means of an instability mechanism, this equation can describe the formation of Lang-
muir circulation cells. The spatial extent of these circulation cells is, in the direction
perpendicular to the axis of the rolls, much smaller that the spatial scales of the current
part itself, meaning that for a numerical solution a small mesh is needed in order to
describe those cells. Radder (1998) devised a method to account for the effect of these
cells on the current part, so that normal meshes for the flow computations can be used.

The purpose of this report is to check the algebra and the assumptions of Radder’s
approach. To that end the whole analysis is done anew and is written out in more
detail than provided in Radder (1998). Our conclusion is that the analysis of Radder
is correct.

First, the Craik-Leibovich model is considered and the principal assumptions are stated
in Chapter 2. Because of an incorrect treatment in Van Kester et al. (1996), the Stokes
drift itself is reconsidered in §2.2. It is shown that the part of the Stokes drift due to
the current, is insignificant for both prototype and laboratory situations compared to
the contribution due to the waves.

In Chapter 3 the instability mechanism is investigated. The mean current @ which
figures in the CL-equation is written as the sum of a basic current U plus a perturbation
#. The same is done for the pressure. Radder (1998) used a constant eddy viscosity
coefficient in his analysis. Because the eddy viscosity coefficient is a function of the
velocity (it is certainly a function of the friction velocity), we also perturbed the eddy
viscosity coefficient and wrote it as the sum of a mean part Uy and a perturbation .
We supposed that Zp is a function of the slow spatial and temporal scales, while i is
a function of the normal scale, i.e., the scales belonging to the circulation cells.

The CL-equation is subsequently split into a momentum equation for the basic state
and one for the perturbed quantities. The equation for U is simplified by assuming
that U has no vertical component, which essentially also means that the bottom has
to be (nearly) horizontal. The momentum equation for the perturbation velocity is
linearised in the perturbation.

In Chapter 4 the linear instability analysis is tackled and solutions of the perturbed
momentum equations are found by expansion to a small parameter ¢ which is related
to the Biot number. In these solutions still an unknown amplitude Ay figures. A
further simplification was introduced in that terms with or9,U were neglected from
the horizontal and vertical first-order momentum equations. This was argued to be

wL|delft hydraulics 1
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permitted because the CL-equation itself is only valid for small shear of the current
profile.

By considering the change in mean kinetic energy for the perturbation velocities and
using the solutions found in Chapter 4, a Landau-Stuart equation for the amplitude
Ao follows in Chapter 5:
2
% = 2aA3 — (A]

where £ > 0. For a different type of expansion of @ such an equation was already found
in §3.3. The coefficients of this equation depend on the solutions for the perturbed
velocities, the basic velocities and the Stokes drift. For & > 0 an equilibrium solution
A, for Ay is possible: A2 = 2a/¢, and secondary circulation cells are possible, i.e.,
Langmuir circulation cells are generated. For the case that a < 0, we have Ag — 0 for
t — oo, and no Langmuir circulation cells can be generated.

With the equilibrium solution A, the full solution for the perturbation velocities is
known and the Reynolds stress terms (wi) and (wd) can be exprerssed in known
quantities. The consequence is that the CL-equation in U, Eq. (3.13), can be solved
numerically with a mesh which belongs to the current; it is not anymore necessary to
use a fine mesh in order that the circulation cells are covered.

In Chapter 6 the discussion and recommendation follow. Radder’s (1998) note is added
to this report as Appendix D.
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1 Introduction

By letter RIKZ/OS 987231 Rijkswaterstaat RIKZ asked WL|Delft Hydraulics to per-
form a study as part of project K2000*KOP. This study comprises a check on the
secondary-circulation model of Radder (1998). The work consist of three parts:

1. Checking the note of Radder (1998), viz. Pattern formation in a 3D wave-
current interaction system; a subgrid model, on correctness.

2. An assessment of the suppositions and the restrictions of the model.

3. A study concerning the application of the model in practical situations.

The problem is set by the so-called CL-equation, an equation for the mean current,
which reads (i.e., Radder, 1994, Dingemans et al., 1996):

%—?-{-(ﬁ-grad)'ﬁ+gradﬁ=’z'is/\curlﬁ”, (1.1)

1 ) .
where the pressure term 7 is given by T = z + gz + <§'ﬁ. . u> , u is the (Eulerian)
p

mean velocity, @° is the Stokes drift and @ is the wave part of the velocity.

Instability of the Craik-Leibovich equation may lead to secondary circulations, which
can sometimes be identified as being Langmuir circulations. A first numerical approach
has been described in Van Kester et al. (1996), see also Dingemans et al. (1996).
This numerical approach was by necessity a rather approximate one, because a correct
approach is one like large eddy simulation (LES) approaches, needing considerable
numerical effort. The real effort lies in the fact that the numerics should be taylored
to the need of resolving the perturbations of the instability of the CL equation. To
resolve these Reynolds-like terms, Radder (1998) suggested an analytic model.

Radder now assumes the mean current @ to be composed of two quantities, a primary
current U and a secondary one, @, where the latter one is related to the vortex rolls
which are formed by instability mechanism contained in the CL-equation:

a=U+a. (1.2)

By adopting a number of simplifying assumptions, and supposing that the secondary
current component obeys a WKBJ-type of expansion with amplitude a product of a
time-dependent and a vertical coordinate dependent function, respectively A(t) and
v(z), Radder is able to derive for the time-dependent part of the amplitude a Landau-
Stuart equation for A2%(t):

dA? 2 2 4

5 = PAT - AT~ BAT (1.3)
The problem is now to determine the constants 3; in the Landau-Stuart equation.
Thse constants were determined by considering a linear theory of instability for the
secondary current 4 and adopting a long-wave expansion.
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The Report is composed as follows. First, in Chapter 2, the CL-equation is discussed
and estimates for the Stokes drift in waves and currents are given. This latter subject is
addressed because of some errors appearing in Van Kester et al. (1996). It is observed
that the part of the Stokes drift due to the current is insignificant compared to the
contributions due to the waves.

The instability mechanism is described in Chapter 3 and simplification to the momen-
tum equations for the basic state and the perturbed state are discussed. The energy
equation is also looked into; this energy equation is used to obtain a description for
the Reynolds-like terms in the perturbed velocities. This equation turns out to be a
Landau-Stuart type of equation. A first derivation of this equation is given in Chapter
3.

In Chapter 4, a linear instability analysis of the momentum equation is given. By
using expansions for the perturbed quantities, solutions up to these orders can be
generated. These solutions are used in Chapter 5 to determine the coefficients of the
Landau-Stuart equation. Using the equilibrium solution of this equation, it is possible
to express the Reynolds stresses (w#) and (wo) in terms of the coefficients of the
Landau-Stuart equation and the soltions of the perturbed quantities. These stresses
do not depend on the size of the vortex cells and can therefore be used immediately in
the mean-current equations.

The summary, discussion and recomendations follow in Chapter 6. Radder’s (1998)
note has been included in this report as Appendix D.

This research was funded in part by the Commission of the European Communities
Directorate General for Science, Research and Development (contract no. MAS3-CT95-

0011), MAST-project Kinematics and Dynamics of Wave-Current Interactions.

This study has been performed by M.W. Dingemans, who also drew up this report.
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2  The Craik-Leibovich model

2.1 The basic model

When deriving the mean-current equations in so-called Generalised Lagrangian Mean
(GLM) coordinates, the following equation is obtained (see Andrews and McIntyre,
1978a, Eq. (3.8), or Dingemans, 1997, Eq. (2.596)):

D" (a) + ;)1; ‘;l; - z_zg,. ~ D" (P) + ai (% (M)) + P ZZ'E (21

where ?f' is the pseudo-momentum and (_-jL is the Generalised Lagrangian mean, i.e.
the mean over the perturbed position E(z,t) =  + &(x,t), with £ = 0. Notice that

((-)) or (-) denotes the Eulerian mean. Summation over repeated indices is used, i.e.,
the Einstein convention is applied.

Leibovich (1980) has shown that under mild conditions, Eq. (2.1) reduces to the so-
called Craik-Leibovich equation in Eulerian coordinates, which can be written as (see
also Radder, 1994 and Dingemans et al., 1996):

% + (u-grad) @ + grad 7@ = @’ Acurlw y (2.2)

1
where the pressure term 7 is given by 7 = % + gz + <-2—t1 . ﬁ> , U is the (Eulerian) mean

velocity, @ is the Stokes drift and 4 is the wave part of the velocity. This CL-equation
differs in two terms of the commonly used current equations, viz., in the terms (%ﬁ . 11)
and the vortex force @5 A curl@. The Stokes velocity @5 is defined as the difference
between the Lagrangian and the Eulerian mean velocity, i.e., (u(z, t))s = (u(z,t))’ -

o
(u(,t)). Notice that with @* = (a5,7%, 0), @ = (7,7,m)" and @ = curl@ we have

T = s°Aw=
(R 8B 5) (-5 - (-5
=\ \ozr ") " \or "oy ) 9z 0z dy 9z
on _gom\T _
. —S0U _gOU\" _
o2 (O,u By’u 6z) =Ty, (2.3)

The so-called mild conditions for which the approximations are valid, amount to the
condition that the waves are primarily dominated by their irrotational part. This
implies that either the mean shear or the mean current is relatively weak and we thus
have to impose the condition that the current is small with respect to the phase velocity.
Above approximation T is valid for the case that the waves and the current are nearly
aligned, as is the case in a wave flume. The vortex force in the form of Ty has been
used in Dingemans et al. (1996). The near-alignment approximation will not be used
in the present work.

wL|delft hydraulics 5
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Of course, we also have the continuity equation:
diva =0. (2.4)

In order to be able to ascertain the validity of the CL-approximation, the simplification
of the GLM formulation into the CL-equation has to be considered in some detail. This
is not carried out in this report.

2.2  Stokes drift

We investigate the Stokes drift in this section because the estimate of the Stokes drift
as given in Van Kester et al. (1996), page 5-3, is wrong.

The Stokes drift is defined as
(u(z,1))° = (u(z,1))" - (u(z,1)) . (2.5)

A Taylor expansion of the Lagrangian mean of u, (u)L , yields (Andrews and McIntyre,
1978a, Eq. (2.27) or Dingemans, 1997, Eq. (2.617a)):

ou!, 1—r 8%y,
oy (@,1) = T, — T = <ajai> +5E&) 5,0 +0() (2.6)

Zj 1

where u’ is defined through u = @ + u'. Notice that, for this expression to be valid,
the perturbation £ should be of order a, i.e., |§| = O(a).

To estimate the magnitude of the Stokes drift, we introduce a number of simplifications.
Suppose that we consider the case of a relatively narrow wave flume, with the axis in
the z; = z direction. Because we also consider a flume with a horizontal bottom, the
variation of the velocity in the z9 = y direction can be neglected as the current and
waves are aligned in the z;—direction. We thus suppose that the Stokes drift in this
case can be approximated by:

du! ou 1 0%u 1 0,
—S ~ —m -m - 2 m - 2 m
Um = <51 Bz ) * <§3 Bz > +3() T +3(8) T

e
k) i +0 () - (27)

From linear theory we have (e.g., Dingemans, 1997, Eqs. (2.14))

. _ g , cosh k(h+ 2)
@ (@,2,1) = ok — g cos (2.8a)
inhk(h + z) .
w'(z, z,t) wak —osh kR SRX (2.8b)
with
x = k-z—uwt. (2.8¢c)

wi|delft hydraulics 6
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where now z = (z, zg)T and a is the amplitude of the free-surface elevation. Without
variation in the zo—direction, we have k1 = k = |k| and x = kz — wt.

Estimates for the horizontal particle path £; and the vertical one, &3, follow from

L = [dt (z+ &1,y + &2, 2+ &3, 1) /dtﬂ (z,y,2,t) =

__gakicoshk(h+2) .~ coshk(h+2) .
= T &% coshkh X T 70 gmhkn X0 (2.9)

and

& = fdt (z+ &1,y + €2,2 + &3, 1) /dt’ a2, 1) =

gak sinhk(h + z) . _sinhk(h +2)

w2 coshkh X = % gnhkh 2.10)

We see that (£,£3) = 0 because cos y and siny are in quadrature. For the current, we
may neglect drivatives in the z; direction,while that is not permitted for the waves.
The expression for the Stokes drift thus is given by:

ax() () H@ o) o

We only need an expression for Hf . With

du gak? cosh k(h + z) ouy _ gak? sinh k(h + z)

= — ] d =
oz w =y T = w cosh kh
we obtain:
dui\ _ 1 5 cosh’k(h +2) . < 6u1> 1 5, sinh®k(h+ 2)
kv——— —a‘kw————=, (2.12
<§1 > 2% ™ sinh?kh = gt et P9
where the factors 1/2 are due to (cos® x) and (sin® x). Similarly we obtain:
<E3> —a %sinh? k(h + z) sinh® kh . (2.13)
Close to the bed (i.e., for z + h = 0) a Taylor expansion of £3 gives:
kh+z) 1 {k(h+2)}?
i e Ll 2.14
kel ®alitn 8% smbia (244)

2.2.1 The mean current

For the mean current we assume that the eddy-viscosity concept may be used, resulting
n (e.g., see Dingemans (1997, pp. 307-308):

3"' b2
bz —_h<z2< 2.15
pura Th ; h<z<0, ( )

wL|delft hydraulics 7
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where 7% is the bottom shear stress belonging to the part of the current. We choose a
function for v which is quadratic over the depth:

_n(z + h) 2o

r , —h+8,<2<0, (2.16)

[)I" —
with £ = 0.40 Von Karman’s constant, d,, the thickness of the boundary layer due
to the wave motion and @* the friction velocity for the mean current, also defined by
78 = p(@*)®. Integration of (2.15) to z then gives

Fred

#= % log(z+h) + 1 (2.17)

with log being the natural logarithm and ¢; an integration constant. This constant
has to be determined experimentally (see Fredsge and Deigaard, 1992, p. 21). For the
case of a rough wall (the situation for which the thickness of the viscous sublayer is
smaller than the Nikuradse roughness ky), Nikuradse’s method leads to a constant

1
c; =85- < log (kn) , (2.18)
and thus,
T = g*—lo (-—-——z+ s )
= % %8\ ky/30
= u—log(z-l-h) with zn=—N for —-h+6,<2<0. (2.19)
K 2y 30

We note that the logarithmic velocity profile is only valid outside the bottom-boundary
layer, whose thickness may be estimated by (see Dingemans, 1997, Eq. (3.168c)):

§ = 0.072 (A%N)” v (2.20)

where A is the length of the semi-axis of the bottom excursion and ky is the Nikuradse
length scale. The bottom velocity u® (valid just outside the bottom boundary layer)
follows from (2.8) and x = kz — wt as

» __ agk - aw _
U = e Y = cosy = Awcosy , (2.21)
so that
a
A= sinhkh (%:42)
We now have:
ou} gak? sinhk(h+z) . duy
tuioes 5 S — | =wak . ;
0z w cosh kh i —}zngiféo 0z wa ai338)
Oy Uy
9z | k(h+2) (e
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8%,
022

Us

2.2.2 Estimate of the Stokes drift

We can now estimate the terms in the right-hand member of Eq. (2.7). Using the
expressions (2.10) and (2.23), we obtain:

o} o 20T
=5 ouy 1 1
® = (ag)r(65)+ <§332>‘
1 o2 cosh? cosh®k(h + 2) z) 1 2 sinh? k(h + z)
a2 ST R o T2
2 sinh® kh +3e sinh® kh
a®w*  sinh®k(h + 2)

4 k(h+2z)? sinh®kh
Close to the bed we have k + h = 0. In the limit for z —+ —h, a Taylor expansion in
(h + z) of (2.24) yields

(2.24)

1 a%kw 1 a%kw
- o~ I s A 1 k2 2 . = 2 2 e
o2 o (LR )+ g (R () + }+
1 (ak)’@* { 15 . }
ol B RS ey 2.25
g ol Ll UL L (2.25)
and thus,
s 1 (ak)? [w 'ﬁ”"]
S
= = N S S 2.2
s ™ = 3 Skl & [k o (2:20)
The friction velocity T* can be estimated from
b 2 2
7. =p(T") = ut= ;“ (2.27a)

where the bottom shear stress for the current is estimated by (see Soulsby et al., 1993):

2
% = pCpa® with Cp = (ﬁ)_l) . (2.27b)
og (<) —

It should be recognised that the bottom shear stress due to the current, 72, is modified
by the presence of the waves. In Soulsby et al. (1993) parametrisations are given for
| a number of models for shear stress due to waves and currents acting simultaneously.
Optimised parametrisations have been presented by Soulsby (1995), see also Soulsby
‘ (1997, pp. 68-70). The maximum shear stress is usually different from |-rg + T?U|, as
‘ is also found from the two examples furtheron. However, for an estimate of the Stokes
drift due to the presence of a current, the estimate (2.27) will suffice.

We consider two numerical examples, with parameters as given in Table 2.1. We
consider a so-called sea situation. We suppose a dso distribution of sand of measure

wi|delft hydraulics 9
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| 250 pm and compute the ripple height of the sand bed by a method of Nielsen (1979),

| see Dingemans (1997, p. 304). The Nikuradse roughness parameter ky is taken equal

| to the ripple height and z; subsequently follows by zy = kn/30. This ripple height is
usually larger than the grain size diameter dsg. The usual Nikuradse number is taken
to be 2.5d50.

For the laboratory measurement is taken the situation as measured by Klopman (1994).
In this case the bottom roughness parameter zy was estimated as 0.04 mm (see Klop-
man, 1994, p. 31).

The bottom shear stress due to the waves, 75, is estimated by the usual quadratic
friction law

1 2
p _ 1 b
o = 30fu (v)" (2:28)
where the friction parameter f,, is estimated from a formula due to Soulsby (1995) (see
also Dingemans, 1997, Eq. (3.174)):

- ) o (2.29)

for=1.39 (—
20
The total and mean bottom shear stresses are estimated from the parametrisation of
Soulsby et al. (1993) while using the parametrisation for Fredsge’s model. The mean
current in these models is the current averaged over the vertical. Because we already
had a mean current averaged over horizontal space, the further average over vertical
space is denoted by double bar.

example | a ‘ T h l a 20 k u* ub A
[m] | [s] | [m] | [m/s] [m] [m~'] | [cm/s] | [m/s] | [m]
sea (1) 2.00 | 7.00 | 10 0.50 | 7.93 x 10~° || .1050 1.86 1.43 | 1.59
lab (2) 0.06 | 1.44 | 0.5 | 0.16 4 %1075 2.350 .759 179 | .041
| Table 2.1: Parameters for the numerical examples
example 'rg TL’J Tf’ot <‘rb> fuw Cp
[N/m?] | [N/m?] | [N/m?] | [N/m?] | - -
sea (1) 0.3559 8.236 10.007 1.036 0.0080 | 0.00139
lab (2) 0.0576 .6041 0.0355 .6041 0.0378 | 0.00225

Table 2.2: Further parameters for the numerical examples

We plot the contribution from the waves and the mean current separately, together
with the sum of these contributions.

It is clear from these examples that the contribution of % to the Stokes drift is very
small and may well be neglected in comparison to the contribution due to the waves.
For the sea condition, with T = 0.50 m/s, the contribution to the Stokes drift from
the current is 0.046 cm/s at the free surface and 0.033 cm/s at the bottom. It can
be argued that a current of 0.50 m/s is not very large in coastal areas, but in the

wL|delft hydraulics 10
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Figure 2.1: @° as function of z, sea situation.
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Figure 2.2: %° as function of z, the laboratory situation.

North sea currents are typically not much larger than 1 m/s. Redoing the analysis
with @ = 2 m/s results in a friction velocity @* = 7.45 cm/s, roughly 4 times larger
than was obtained for @ = 0.50 m/s, which was to be expected. The contribution of
the current to the Stokes drift is now 0.19 cm/s at z = 0 and 0.13 cm/s at z = —h.
Compared with a maximum contribution of 50 cm/s contribution from the waves, the
current contribution to the Stokes drift remains insignificant.

wL|delft hydraulics 11
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3 Instability mechanism

3.1 Investigation of the momentum equations

One of the explanations of Langmuir circulations rests upon the supposition that an
instability mechanism in the CL equation is responsible. Radder (1998) now supposes
that the mean current % is disturbed. We then have the situation that @ can be written
as

where 4 is the disturbance which is responsible for the formation of the vortex rolls
and U is the velocity of the basic state. In many instability problems it is common
to suppose that the perturbations have some periodic nature. For many problems
this is a natural choice because the (linearised) perturbation equations permit periodic
solutions. The choice of Radder (1998) that @ obeys a WKBJ-type of behaviour is
therefore natural, also in view of the resulting (periodic) vortex-roll motions.

Consider first the CL equation again. Using the notation of (2.3) the CL equation (2.2)
reads

ou

5 + (w-grad) T+ gradm=u° A @, (3.2)

Although no viscosity is taken into account in the usual CL-equation-formulations, it
is advantageous to do so. This has to do with the so-called Large Eddy Simulation
(LES) programs. Viscosity in these equations is needed for obtaining shear in the
mean-current equations, which, in its turn, is needed to generate the vorticity force
term. Equation (3.2) then is extended to

ou P 1 s

— + (w - grad) @ + grad (gz+ £ 4 <—ﬁ-ﬁ>) =w A+ -dive, (3.3)
ot p 2 p

where dive’ = 977, /0zr. We take the (eddy) viscosity coefficient to be isotropic be-
cause of the scales on which the flow occurs here. Applying the Boussinesg-hypothesis,
the stresses @;, are approximated as!

_ ou;  Ouy

while the eddy viscosity v has still to be determined.

For the other quantities 7 and @ in the CL equation the same kind of perturbations
are assumed to exist, viz. a basic state (denoted with captitals) and a perturbed state
(denoted by hatted variables). Because the eddy viscosity is a function of the velocity

'We write ¢!, with the prime, denoting that this is the part of the stress tensor without the
pressure, see also Landau and Lifchitz (1989, Eq. (15.2)) or Dingemans (1997, Eq. (1.14)).

wL|delft hydraulics 12
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@ and the depth z, a perturbation of v is also necessary. An independent perturbation
is not envisaged, only a perturbation through the velocity. There are several ways in
which we can proceed with the splitting of the eddy viscosity. The first is one in which
a formal way is followed where Taylor expansion is used. In the second one, use is made
of the fact that the eddy viscosity is in fact a direct function of the friction velocity.

| The relation with the velocity itself comes only through the relation between friction
velocity and velocity. The third way is one in which the eddy viscosity is first related
to the flow properties and splitted afterwards. Here the relation with channel flow is
used.

¢ First, formal, method

From a Taylor expansion we have:

ovrlU,2) . .

o (3.5)

vr(U +4,z) =vr(U,z) + 4

| We now define the basic state and the perturbation of the eddy viscosity as:

vr = VT(U!Z) (363')
a o WT(U, Z)
b = 4 —pr— - (3.6b)

We remark that the basic state eddy viscosity is only a function of the basic
velocity U, but the perturbed eddy viscosity depends on both the basic velocity
and the perturbed velocity.

e Second, formal, method

The definition of eddy viscosity rests, in fact, on the friction velocity. Therefore,
supposing vr to be a direct function of @*, a Taylor expansion would give:

w(uwa*,z)=w(U*,z)+ﬂ'%+---- (3.7)

e Third method, related to channel flow

In channel flow, the eddy viscosity is sometimes defined by (e.g., Rodi, 1980,
Eq. (2.21)):

vr = Cu’h, (3.8)

where C is a constant depending on the channel geometry, having the value
0.135 for wide channels and h is the water depth?. This formula is valid when
the turbulence is mainly bed-generated. For this situation it is particularly
simple to split the eddy viscosity into a basic and perturbed quantity:

vr =CUh+Ci*h=vr+10. (3.9)

?For problems involving heat, C' has to be divided by the Prandtl number, and for problems
involving mass transport division by the Schmidt number is required.

wL|delft hydraulics 13
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Note that the z-dependence in (3.9) is lost. This is not really bothersome
because the z-dependence is usually invented afterwards; in situations with
waves and currents, a quadratic form in z is taken for the current, over the
total water depth, while the influence of the waves is restricted to the boundary
layers only. Examples can be found in Dingemans (1997, pp. 312-313) and in
the references mentioned there. Important to note is that these chosen eddy
viscosity coefficients are all linear in the friction velocity.

The dependence of the eddy viscosity on the current is still undefined in (3.6) and (3.7).
When also here a linear dependence on the current is taken, then the representations
(3.6) and (3.7) do not differ much with the representation (3.8), except the dependence
on the friction velocity in the last ones. We therefore will take a representation of the
form (3.8), equipped with some vertical distribution in z, possibly constant. We thus
take for the eddy viscosity the representation

vr (@,2) =or (U*,2) + ir (4%, 2) = a1 (2)U" + ca(2)0” (3.10)
where the friction velocity @* is periodic with the same period as that of 4.

For the other quantities we obtain:

5 ) )
T o= II+:r"r=gz+—+<-1—f:,~:1>+2 = f=2 (3.11a)
p 2 p p
T = Q40 (3.11b)
T = U+a (3.11c)
7 = T44é, (3.11d)
where oU, U o4, . o
Y o= 7 ( i k) ‘ (ﬁ ﬂ) 1
e oU; aU, oa;
i i AT
Gy = pbr (Bmk B 3:52-) + pUT (Bmk + Bxf) ; (3.11f)

We also note that, due to the supposition of the existence of periodic perturbations,
we have that the mean of the perturbations is zero, e.g., () = 0, or, otherwise stated,
(@) = U and similarly for the other quantities.

Notice that the wave-related quanties @ and %> are not perturbed, only the current-
type quantities. In the sequel we write:

w=U"%. (3.11g)

The quantities (3.11) are to be inserted in the CL-equation (3.3). The result, without
imposing any approximation at this stage, is

%(U+'&.)+[(U+ﬁ)-grad](U+ﬁ)+grad(H+1‘r) =

=UA(Q+&)+ :-Jdiv (='+é') . (3.12)

wkL|delft hydraulics 14
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This equation should be split into an equation for the basic state (i.e. the current) and
one for the perturbation. It is here that the supposition that the perturbations are of
a periodic nature is used a first time. We take the mean of Eq. (3.12), where the mean
is taken over a period and length which are large compared to the characteristic period
and wave length of the perturbations, but short compared to those of the basic state.
Terms linear in the perturbation then average out and the equation for the basic state
reads:
ou

5 + (U - grad) U + ((4 - grad) @) + grad 1 = US A Q + %divE' ; (3.13)

Notice that ((@ - grad) i) are the Reynolds stresses. We furthermore remark that to
obtain this result it is necessary to suppose that © is periodic; this is a reasonable
assumption due to the relation (3.6b) which can be viewed as a definition of 2.

The equation for the perturbation is obtained by subtraction of (3.13) from (3.12).
The result is

~

%_1; + (@ - grad) U + (U - grad) @ + (4 - grad) &« — ((@ - grad) @) 4 grad 7 =

1
=USANG+ ;div & . (3.14)

We remark that Egs. (3.13) and (3.14) correspond with Eqgs. (3) and (11) of Rad-
der (1998). The current equation (3.13) can be solved in principle once the Reynolds
stresses are known. A complication is the dependence of £’ on the perturbation ve-
locities 1, see (3.11e). That means that the perturbation velocities & have to be de-
termined. Because a direct determination of these Reynolds stresses has to be carried
out on a smaller scale than the computational mesh which is needed for the current-
computations, a sub-grid model is advantageous®. The method in which Radder (1998)
develops such a sub-grid model is addressed in the next section.

The continuity equation (2.4) splits in one for the basic flow U and one for the per-
turbed flow %:

divU = 0 (3.15a)

and
diva = 0. (3.15b)

3Such a sub-grid model should not be confused with sub-grid models used in turbulence re-
search, in which case sub-grid modelling means that the processes occurring on scales which
are smaller than the smallest computational mesh are accounted for in some way.
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3.2 The simplification of the mean-momentum equations (3.13)

The following approximations are introduced by Radder (1998):
1. The mean current component U is uniform in the horizontal directions: U =
U (z,t) and, moreover, no vertical component exists:

U = (U(z,1),V(z1),0T . (3.16)

This means that (nearly) horizontal nearly-uniform shear flows are considered.
As pointed out in Dingemans (1997, pp. 193 and 201), the vertical component of
the mean current can only be neglected when the bottom is (nearly) horizontal.
It is therefore also supposed that the bottom is horizontal, i.e.*

Vh(z,y)=0. (3.17)

2. The wave-induced perturbation 4 is supposed to be single-periodic in one spe-
cific direction #. With 6 the angle between the positive z—axis and the path of
propagation s, one has £ = scosf —nsiné, y = ssinf + ncos 8 and thus, (e.g.,
Dingemans, 1997, §2.3.3)

0 drd 09y ad d . .0
5;—58—2+53—y—0059%+81n96—y (3].87:1)
9 dxzd o _ . 0 0
%_%E_Fa_nay = sxn96x+c036‘ay. (3.18b)
3. It is supposed now that
a .
—a(z,y,2,t) =0. (3.19)

on

Remark

In our opinion the condition @ /dn = 0 is much stronger than the condition
that the perturbations are single-periodic in a specific direction. A WKBJ-type
expression of the wave-induced perturbation can be written as

ﬁ(mayaz:t) = f(Z,h)ﬂ’(:r,y,t): -
= RE{f(z,h)a(X,Y,T)exp [%x(X,T)]}, (3.20)

where y is the phase function, k = (k1, k2)? = 9x/0X, w = —9x/3T, X =
(X, Y)Y = (6z,6y)T is the slow spatial scale, T = 4t is the slow time, and

4For two-dimensional cases, when x = (z1,z2)7 = (z,y)”, we write the gradient operator as
V, while for the three-dimensional case we use grad, see also the footnote 2 on page 2 in
Dingemans (1997).
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f(z,h) denotes the vertical structure, which reads for linear waves:

_ cosh [k (h+ 2)]

f(z,h) b kh (3.21)

as is also the case for the mild-slope approximation.

The condition da/dn = 0 in fact means that a ray-approximation for the propa-
gation of the perturbations is taken. Only variations along the ray are accounted
for. Note that the ray need not be straight in (z,y) space. This approximation
can be compared with the usual approximations of the parabolic approxima-
tion and the mild-slope one. In the parabolic approximation some variation
perpendicular to the wave propagation direction is permitted and in the mild-
slope approximation the variation on all directions is supposed to be of the
same order of magnitude. Notice moreover that the propagation direction of
the perturbations need not to coincide with the wave direction.

The eddy viscosity vy and the Stokes drift U?® are supposed to be only a
function of the depth, i.e.,

vr=vr(z) 20 and US =US(z) = (US(2), VS(z),O)T L (3.22)
Remark

We have several comments on this proposition. We first comment on the situa-
tion that the eddy viscosity is not perturbed, which is the situation considered
by Radder (1998). This leads to the following comment.

e In view of the supposition of a horizontal depth, the fact that v7 and
U?S are independent of z and y is justified. The supposition that they
also do not depend on time seems not to be defendable so easily. In the
first place, it has been shown by for exampe Trowbridge and Madsen
(1984a,b) that a time-varying eddy viscosity makes much difference in
the resulting dynamics of the flow. Secondly, the supposition that the
Stokes drift is independent of time (otherwise put: it is stationary) can
only be true when the waves themselves are also stationary (in a fixed
frame, which is the frame we use here). The time-variation of the Stokes
drift can be taken to be slower than that of the waves proper, but it
seems not to be justified without further analysis to neglect all time-
variation in the Stokes drift. For the moment we will only suppose that
vr and U S are functions of the slow time T = ét:

vr = vr(zT) >0 and (3.23a)
US = US(z,T)=(Us(z,T),VS(z,T),O)T. (3.23b)

e As discussed before, we are of the opinion that it is necessary to also
perturb the eddy viscosity and the form (3.10) has been proposed. Via
the friction velocities @* and U* also the dependence on & and ¢ is
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present. In view of the horizontal bottom, it seems to be an acceptable
approximation to suppose that U* is only a function of the slow space
and time, i.e., U* = U*(X,T) with X = éz and T = 6t and § <« 1.
Because © has been supposed to be periodic on the same scale as is i,
the dependence is here on the normal scales, not on the slow scales,
but it may be supposed that ir < Ur, or, which amounts to the same,
u* &« U*. We thus have

vr =vp (U (X,T),z) and or=ir(d*(z,t),2) . (3.24)

We will use the representation (3.24) in the following and it is supposed
that both 7y and Dp are strictly positive.

3.2.1 Analysis of the stress terms

We will now analyse the terms div ¥’ = 9%/, /07, and divé’ which occur in the mo-
mentum equations for the basic state, Eq. (3.13) and that for the perturbed velocities,
Eq. (3.14). We have

az;k _ 15) _ [oU; 0OUg i o1 3ﬁk)
By . O {” (B:r: b Bzri) tovr (axk + B } : ia)

With the simplifications

U = (U(zt),V(zt),0T =U" (3.26a)
vr = vr (U (6z,0t,2)) = c1(z)U” (3.26b)
br = bp(z,t,z) = coz)u” (3.26¢)
we obtain
1 Bzgk _ a (_ [(ou; oUg . . o1 Buk)} _
p Oz Oz {VT (E i dz; 613) (3 z * or; )|
- O (o8 T Wy D [ (0 O]
T 0z (VT 0z ) o Oz Oz; bia + Oz {UT (33:;5 B &ni) ! 14:27)

with d;; being Kronecker’s delta (6;x = 1 when ¢ = k and §;x = 0 when i # k). The
magnitude of the three terms in the right-hand member of (3.27) is now considered.
Because (3.26b) shows that 7 is a function of the slow coordinate X and z, the second
term is of O(8). The third term consists of a product of o7 and the perturbed velocities.
Because we have ir < Pr and 4; < U; we can estimate oy /D as being of O(u), with
p < 1 some ordering parameter and similarly for |4/U|. To be specific we make the
order of each term explicit by introducing scaled variables:

dvr _ dvr Ot 3’&’ e,
7s; —Jan . #6m and Dp = pbp . (3.28)

Then we have

102, 0 (_ 0y v U, 9 0 {A (6u Bﬂﬁc)}
p Oz Oz (VTB )+68Xk oz ,6’34—“ oz g Oz * O0zx; « 8id0)
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We notice that the second, O(4), term only features in the vertical mean-momentum
equation, which is not considered further. The third term of (3.28) is then of O (u?).
It will appear later (in §4.3) that the solutions 4}, j = 1,2, depend on the slow scale
X and not on z, whereas 1 is of still higher order. For the expansions used in this
Report this third O((x?) term is not used. The first term is thus the leading term and
we have

og, & (_ U ,
o =" ( T8z ) +0(8,4%) - (3.30)

For the perturbed stress term divé’ we obtain:

196y _ @ { (3U,-+3Uk)+y (aﬁi+aﬂ)}_
pasck - B:I:k Yr 3:Ek 3.’12;‘ 4 B:ck B:L',' N

_ 2(~ %)Jri(n a_Uig.)+i{y (%+3ﬁk)}_
= 92\"T0z) " 0z; \T 0z, %) " 0z \"" Oz " 0z /S

C 2 (o) (P (g @ (P O
T 0z (uraz)+(6‘mj)(3$lal3)+VT3k aask+3xi *

avr (3’&1’ & Oy,
oz  Oz;

), with 4,k=1,2,3 and j=12. (3.31)
Oz},

Making the magnitudes of the terms explicit by introducing the scalings (3.28), we
have:

106}, _ a(",aU)+ v, (3U36)+ a[F (Bu a_m')]+
p Oy Pz \"T a2 # dz; az; 3] TP "7\ a2 dz;

_ 9 (ou o ovr (Ou; , 04
+#VT6—3:JT (8:1:,- + EB-:) + Jpa—}(; 6Ij e 3_123 . (3.32)

It is clear that the leading-order terms are of O(u). The first four terms in the right-
hand member of (3.31) are O(u) and the fifth term is O(dy). In leading order, we then
obtain

1%— E(Q’B_U’;)_}. % (6U35)+ 0 77 (8u+61ﬁ’)]+
poz, Moz \"Taz)"# am,- oz; 2) "oz |""\ 8z T ba

_ 0 (ow o

with i,k=1,2,3 and j=1,2. (3.33)

3.2.2 The simplified mean-momentum equations

With the simplification (3.16) the vortex force T of (2.3) simplifies further to

ou™ au av\T
o~ 5 S g2r . 34
T, (oou Bz) (oov v az) (3.34)

wL|delft hydraulics 19




3D wave-current modelling 22612 June 1999

Application of the simplifications

U = (U(zt),V(zt),0 = Uh (3.35a)
US = ( US(2,T),VS(2,T),0)" (3.35b)
vr = vp(U*(0z,6t),2) =c1(2)U* (3.35¢)
o = bp(a*(z,t), 2) = ca(2)d* (3.35d)
oz, 0 [_ c‘)Uz 9
l@&_;k _ i (u’ BU,,) + i (BU_,J )+ d [ﬁ (Bu 31?1’)]
ooz,  Foz\Ta:)TH az,- az; 2) THaz "T 8z T B
_d (04 6&3
+u VTGTJ- (—;; o+ —= 7 + O(dp) . (3.35f)
and (3.34) for the vortex force, the simplified horizontal momentum equation (3.13)
becomes
gt . . ok 9 (_ oUun
'S + ((@ - grad) @)" + VIIp = E (VT % ) (3.36)

where Ily = P/p + 1 (@ - @). We note that in the present approximation the vortex
force has only a vertical component and therefore plays no role in the horizontal mean
momentum equations. We have

ﬁ.i ﬁzi(ﬁﬁ.)_ﬂ_aﬂj :i(ﬂ.ﬂ.)
Yoz; )] " Oz; 7" ‘0r; Oz '

because of the continuity equation for the perturbed velocities 4. Equation (3.36) can
therefore also wittten in the equivalent form

U™ 8 . _\* o (_ ouh
== +<am,( u)> +VH0—5(VT = ) . (3.37)

Notice that Radder (1998, Egs. (7)) writes this as

aut o ... a (_ oUu*

which implies that he neglects the contributions 9; (44) and Jd, (9%), which seems not
to be in line with the simplifications (3.35). The reason for the neglect of the z and y
dependence of the mean of the perturbation velocities (44) and (94) is that these are
supposed to be single-periodic in one direction. The consequence is that the averages
give zero. For the moment, we will not apply this approximation but keep the z and
y dependence in consideration.
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3.3 The energy equation and its simplification

To obtain an estimate of the Reynolds stresses in 4, we need solutions of the perturbed
velocities. To this end an energy equation for the perturbed velocities is needed. An
energy equation is obtained from the momentum equation by scalar multiplication with
the velocity vector. The energy equation for the perturbed velocities % then results
from (3.14) by scalar multiplication with #@. At this stage, it is advantageous to work
in the component notation and therefore we write (3.14) as®:

o, . U dig 1 9 1 aakm
ot * um@mm ¥ U’“axm P OLm (#0m) = fzij £ p Oy

(3.39)

with 6, Kronecker’s delta. Multiplication of this equation with 7 then leads to the
energy balance equation:

Oy . oUg 6111; 1, @
Uk ot +ukum6mm +dUn Bmm p 0T,
aay.,.,

Oy,

= ukekaU wj + uk (3.40)

Introducing the mean kinetic energy by

K= [/f dzdydz%ﬁ.-'& = [_Oh dz<%1}.-'&> (3.41)

it follows from (3.40) (see Joseph, 1976, pp. 11-12) that the total change in mean
kinetic energy is given by

2
1 (ou; o\  _ (& 4
= f/ dm( “”(aj“Lam,-)“L”T(amj) +U -[u/\(ﬂ+w)]).

(3.42)

Application of the simplifications (3.35) results in a change of kinetic energy of the
perturbed velocities:

A\ 2
% _ _[_"h dz{(wﬁ,-) 3% (U + UJ.S)} _ ]_Oh dz {vr<(%) >} (3.43)

Radder (1998, Eq. (8)) now considers solutions for @ of the following form:
e, y.2.8 = Re {A(t)v(z) exp [ix(z,y,t)]} + HOT, (3.44a)
= —A(t () exp [ix(z,y,t)] + CC (3.44b)
with

SIntroduction of the antisymmetrical tensor €;x permits us to write the cross product a A b as
eijraib;. Notice that e;j; equals 1 for all different indices and even numbers of permutations
of the indices; it equals -1 for all different indices and uneven permutations of the indices;
it equals 0 if two arbitrary indices are equal, see Hinze (1975, p. 775). The values can be
memorized by: €123 = €231 = €312 = +1 and €321 = €213 = €132 = —1. In component notation
the term U® A w then becomes ;U7 @;.
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X(@,y,t) = k-z+¢(t) = (kaz + kay) + $(2) (3.44c)

where A(t) and ¢(t) are real and v(z) is complex. Radder now applies Stuart’s (1958)
method, which consists of the following suppositions:

1.

wLL|delft hydraulics

The flow is near a local equilibrium.
This means that in a first approximation, the mean flow is independent of time.
The simplified mean-flow equation (3.37) then simplifies further to

" o, .. 0 (_ oup o
<37j(”1uz)+£(wuz)>+VHo—a(VT az) i,7=1,2. (3.45)

Notice that we have the terms 0y (4;14), 1,7 = 1,2, extra compared to Radder
(1998, Egs. (7).

An integration over depth, from z = —h to the arbitrary level z of equations
(3.45) yields

z o . . i 1 & _ 3Ulh
./_h e <3_-'-’7J (uJu,,)> + (D) |y + j;h 42/ VIl = (VTW)

Z

zl=—h
(3.46)

To evaluate these results, boundary conditions have to be specified at the bot-
tom. In Dingemans (1997, Eq. (1.44)) the kinematic bottom condition is given
by

dh

77 |grad B| = O’;k% + oh k=1,2,3 at =z=—hi{z), (3.47)
J

where B = z + h(z), ¢ = (z1,22)", grad B = (8h/dz, dh/dy, 1)7 and 7° is the
bottom shear stress, of which the sign is chosen in such a way that the action
of the fluid on the bed is considered to be positive. For a horizontal bottom we
have |grad B| = 1 and the bottom shear stress is defined by

=0l , k=123 at z=-h. (3.48a)

It follows from (3.11) that the mean and perturbed part of the bottom shear
stress are given by:

Aemh = por (04 2 o (20, O
Tk Sak = ””T(axk“L 52 ) TP \om v B ) T
= pVTEJFO(p.) at z=—h (3.48b)
au, ow o
sb _ ot — ~ OVk 77, - Uk = — 4
© = O3 piT—- + por (3$k+ Bz) at z h, (3.48c)

where (3.48b) and (3.48¢) follow from the assumption that the mean velocities
are (near)-horizontal and therefore W = 0.
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The dynamic bottom conditions, in presence of viscosity, demand that the
velocities at the bottom are zero:

=0 , i=1,2 and w=0. (3.49)

Because use is made of reversing the order of differentiation and integration,
the general expression for some function F(z, z) is given below:

a Bz B(z) § da
o = g F i
pe /a(x) F(z,z)dz /Q(I) amF(:t: z)dz + F(z, ﬁ) (:c,a)am

(3.50)

We then have for a horizontal bottom

f dz' <af:, (@ 11,-)> _ a%jfh d2' (i) . (3.51a)

Using the representation (3.44) for 4, results in

(ihy] = %Az(t) ( (€ o7 ) (s ¥ 40 ) )
_ iA?‘(t) [ + CC] = —;-AQ(t) Re {viv;} (3.51b)

We notice now that all dependence on the horizontal coordinates z and y has
disappeared in the expression for (i;i;). The result only depends on A(t) and
v(z). Subsequent differentiation to z; then gives zero contribution. We stress
that this is only true for the representation (3 44). Were the representation
(3.20) chosen, then the contribution (35,,.). < >) [Z, f3(2")d2" would also be
part of 7; in (3.52). In that case, the term w1th the uJ and 4} is extra compared
to the expression given by Radder (1998, Egs. (9)). However, with the condition
of uni-periodicity in one direction, this extra term disappears.

Using (3.51a) and (3.48) in Eq. (3.46) then results in:

aUh
T8,

z
= (i) +7 +/hdz’VHg
= (i) +T; - (3.52)

The dominant interaction is that between the mean flow and the first harmonic
of the disturbance velocity, i.e., the higher-order terms in (3.44) are neglected.
This approximation implies that only the effects on the first harmonic are in-
vestigated. A possible generation of higher harmonics is not accounted for.

The shape assumption is involved. This implies that the disturbance 4 is similar
in shape to the solution of linear theory. In our view this condition is already
implied in the previous one.
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We now use expressions (3.44) and (3.52) in the expression for the change of simplified
kinetic energy equation (3.43). It is supposed now that an equilibrium flow exists and
that U can be distorted by the perturbations @ such that dX/dt = 0 (Stuart, 1958, p.
8).

First we compute (wi;). We have
Wi = % (A'Ug X 4 Av} e"ix) s % (Avj e'x +Av; e_ix) -
= iA? (vjos €2 +uy03) + CC.. (3.53a)
leading to®
(i = %Az Re{uirl} - (3.53b)

The term 8,U" is given by Eq. (3.52), while U 39 is taken to be known. Rest us to find
an expression for <(3ﬁ1~ 7| awj)2> . Substitution of expression (3.44), shows that

3’&, _ 1 31],: ix
5. = Al eX+0C (3.53¢)
% _ L ytu(oikex®d o0 |, j=1,2. (3.53d)
Oz 2
This leads to
o1;\ 2 1 ,0v;0vF 1 ,|0u?
<(a) > = %6 "' |5 5
and 5
3’&1‘ __122 :_122_2 .
<(6xj) > = §A kjviv; = 2A kil , ji=12. (3.53f)
The left-hand side of (3.43) reads [ dz} ((ik)). We have
l. . 1,2, 12
“a-0)= A2 . 53
<2'u. u> 4A 3] (3.53g)

Substitution of expressions (3.53) in the equation for the change of kinetic energy, Eq.
(3.43), yields:

d % 1,2 2
a-/;hdZZA |'U;| =
0 .15 L 0US 1 (1, .
=—£hdZ§A Re{'u,-vs} W-I'% —A Re{'l}i'l}3}+7—i'

2
0 1
--f dzﬁT—A2
—h 2

SBecause the average implies integration over horizontal space and the shape functions v; are
only functions of z, we have (v;) = v; and averages over the shape functions need not to be
taken.

Ov;
dz

2
+k |u,-|2) : (3.54)

wL|delft hydraulics 24




3D wave-current modelling 22612 June 1999

Because A is a function of ¢ only and v = v(z), this equation can be written as

dA?

T ~1A? - At - A? - 1A%, (3.55)
where the coefficients v, are given by the integrals

0

n = f dz > [uif? (3.56a)
- 4
0 BUS

= f dz Re {viv3} > - (3.56b)
~h
0 2

Y3 = 4/—h dzﬁ |'Uz"U3| (3.560)
0 1

v = [ oo Re {vivj} + (3.56d)

o;
dz

oo fer (e

Introducing new coefficients 3, by

2 2
+ k5 |vil ) 3 (3.56€)

B = _Jatm (3.57a)
™
g, = Bso (3.57b)
M
By = 20, (3.57¢)
"

Notice that the sign of 3; is not clear at this stage. The coefficient y; denotes the effect
of the mean flow and the Stokes drift, while «4 represents the effect of the mean flow
and the Reynolds stresses. The coefficient 5 gives the dissipation of the mean flow.

Introducing the coefficients (3.57), the amplitude equation then reads

dA?

5 = p1A? — B, A? — B3 A (3.58)

which is the form given by Stuart (1958) and Radder (1998, Eq. (10)). The coefficient
3 is the so-called Landau coefficient. This equation is known as Landau-Stuart equa-
tion. A similar equation is found in Landau and Lifchitz (1989, Eq. (26.7)); it is then
written as

d 2
lil =20 |AP? - ¢|A)*, (3.59)

which is also given in Drazin and Reid (1981, Eq. (49.3)). We take A to be positive.

3.4 Some solutions of the Landau-Stuart equation

We investigate the Landau-Stuart equation in the form (3.59) so as to be as close as
possible to the analysis of Landau and Lifchitz (1989, §26) and Drazin and Reid (1981,
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§49). Rewriting Eq. (3.59) for A? in terms of a linear differential equation for A=2:

dA~?
dt

+20A72=¢ (3.60)
which has the general solution

4
A% = 55+ e 20t (3.61)

with C; some integration constant. With the initial condition A(0) = Ap we have
(Drazin and Reid, 1981, p. 371)

. £ 1 / i
A™? = % == (A—% = %) et (3.62a)

and therefore {
A2 = . (3.62b)

¢ 1 ¢ —20t
20 e (A% 20) ¢

The limiting behaviour for ¢ — oo depends on the sign of 0. For ¢ > 0 we have
A? — (20/¢) = A?, independent of the initial condition. A, is an equilibrium solution
and the flow is stable for o > 0. For ¢ < 0 we obtain A% — 0.

Notice that the coefficients in the Landau-Stuart equation still depend on the vertical
shape functions v(z), which are part of the description of the perturbation velocities
.. These shape functions v(z) are determined from the momentum equation for the
perturbation velocities, Eq. (3.14). We therefore consider this equation first.

3.5 Simplification and analysis of the perturbed velocity momentum
equations (3.14)

We suppose that the perturbation velocity i is so small that linearisation of (3.14) is
permitted. Eq. (3.14) then simplifies to:

du

1
5% + (- grad) U + (U - grad) @v + grad v = US A + “—}divé'lr , (3.63)

where p~! divé’ is given by (3.33).

We now also use the simplification that the basic flow U and the Stokes drift U B
are (nearly) horizontal, i.e., conditions (3.35) apply. The momentum equation for the
perturbation velocities then further simplify into:
aﬂh
ot

ho1
+ (@ - grad) U + (U* - V)t + Vi = (US h @) +  (div &) (3.64)
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where the superscript h denotes two-dimensional (horizontal) vectors, i.e., @" = (i, #)”.
Using also the fact that the basic current does not depend on the horizontal coordinates,
see conditions (3.35), Eq. (3.64) simplifies further to

il ovt

h
W T,

+ (Ur-V) @t +vi = (US ho)" + % divé)",  (3.65a)

where

.]L(d' “’)h = 1_3&_;k_£(a .aﬂ).'_g(p‘ (%.}.gﬂ))
p v T pozy 0Oz arr 9z \ "\ 9z " o

_ 0 (ou; 04
g ( 52, + a:s,-) (3.65b)
with k=1,2,3 and 4,j=12.

The vertical momentum equation becomes:

0 h N+ 28 = (U0, — VSar) +22 (v (22

6t+(U V)w+az = (U wy le)-l—zaz(UT(az))'i'
dor UL 9 (0w 0y
z; 0z T Toz; \ox; T Oz \6.65¢)

with j=1,2.

Notice that the vortex force for the perturbation, '.i‘, becomes, in the present approxi-
mation of near-horizontal basic flow:

. T
T, = (Vscbg,—USuD;;,USGJg—VSGJI) (3.65d)
with 17} o ow 0 au\T
5 o Bhiial ot (D2 DL 02008 00N
w = (w,ws,ws) =curla (By %' 92 92’0z B , (3.65€)
and thus,
naf (v (2 )0 (- ) o
(U r o) _(v (6::: %) (G- 3)) - (3.65¢)

wL|delft hydraulics 27




3D wave-current modelling 22612 June 1999

4 Linear instability analysis

4.1 Introduction

The solution of Eqs. (3.65) is the subject of this Chapter. Following Cox (1997),
Radder (1998) assumes that these equations can be solved asymptotically by applying
a long-wave expansion. This expansion is based on the observation that Langmuir
circulations have a much larger horizontal extent (in the direction perpendicular to
the circulation) than the extent of the circulation cells. The small parameter is a Biot
number which arises in the boundary conditions on the horizontal components of the
stress. The boundary conditions for the perturbed velocities in this case become:

ol ov

5 =g, = w=0 at =0 telal
md

(7 ()

It is noted that the conditions (4.1b) do not comply with the no-slip conditions, which
should apply for viscous flow as is considered here. It seems reasonable to limit this
stability analysis to the bulk of the fluid, just outside the bottom boundary layer.

Cox (1997) introduces the small parameter £ by
€= (204 + Otlv,)l'/4 (4.2a)

where the Biot numbers ay and oy are defined by

{7
S

0<ar= <1 (4.2b)

where S is the wind velocity and u, is the friction velocity, defined by pyu? = CprnpaS?
and R, is a Reynold number based on the friction velocity: R, = u.h/vp. The Biot
number oy is defined by

hw,

0<ay= &1, (4.2¢)
vr

where w, is a small speed of entrainment of abyssal fluid into the mixed layer.

The most unstable rolls have wave lengths O (¢7!). Cox (1997) further notices that for
oy and oy equal to zero, rolls of infinite width are predicted. For small, but positive
values of ay and a; circulation cells are predicted with much larger width than depth,
contrary to the case we look for. However, previous numerical experiments of Cox and
Leibovich (1993) have shown that nevertheless rolls with comparable horizontal and
vertical dimensions are found.
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4.2 The expansions

We now assume a slow growth rate o and the expansions of @ and 7 are:

@ = (ig(z)+etuy(z)+---)exp lick -z +¢€ (01 + 20y + - ) t] (4.3a)

= (#o(z) +efri(z) +---)exp [z'el:: ‘T +E (crl + %09 + -+ ) t] (4.3b)

. v o \T 5 &
with k = (kl,kz) the scaled wave number vector: k = ek with Ikl = O(1). In this

way one focusses attention to the most unstable wave numbers k, which are O(e).
Comparison with (3.44) shows that for A(t) is written now exp (ot).

In view of next analysis, we also write expansions (4.3) in the following short-hand

notation:

a(z,z,t) = u'(z)e’ (4.4a)
#(x,z,t) = n'(2)e’ (4.4b)

with ~
d(z,t) = iek-x+eot (4.4c)
o = oy1+é€og+--- (4.4d)
u(z) = dip(2)+ ety (2) + ha(z) + - - (4.4e)
w'(z) = #o(2) + efty(z) + e27a(z) + - - (4.4f)

Substitution of the expansions (4.4) in the linearised momentum equations for the
perturbed velocities (3.65) gives for each power of ¢ a set of equations:

A i B _ . S
eou’ + ' aatiy + i€ (k ’ Uh) wi ek (klv' a kw’) ( —[‘J/’S )
IR APEN O ekl (rw)
22\"792z) T 9z \"" o2 oz T
- (2 . -
—e2p (|k| o' + (k- ) k) : 5
and
B on' ou' i
7 . h ! _ ‘S ¥ s - S f
eaw+as(k-U)w+§;—U 92 zE(‘ku)w-*'
o (_ow\ . oU* o 0w 2
425, (Prgy) + Vor- T +ievnk- o ol . (ash)
Remark

In the expansion used to obtain Eqs. (4.5) no provision was made for the ordering of
the mean and perturbed eddy viscosity. As stated earlier, we have or /Uy = O(p) and
to make this explicit we can write

br = udp with op =0(1). (4.6)
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Because we have
br = calz)i" (4.7)

and 4* is linked to 4, also an expansion of the friction velocity 4* and therefore also
of op should be envisaged. Then we would have
pp=pdy = plvo+en +---e?
= plea(z)uy + eca(2)uf + -+, (4.8)
with u$ and u} constants. Applying the principle of least simplification, we suppose p

and ¢ to be of the same order of magnitude, u ~ . We will be writing ¢ and ¢ in the
sequel for easy recognition. We then have

h » . 5 . s
eou' + w’ai + i (k . Uh) u' +ickn’ = ie (kw’ - kgu') ( v )

dz ~Us
+£(v @—’)-l- d x}’@ +z‘k—a—(v w')
9z \ T 0z u(?z T 5, ¢ 9z T
-2 = "
—%vr (|k| ' + (k- k) , (4.9a)
and
- on' ou’ -
! . h ! S e S .US f
saw+1£(k-U)w+az—U 5% ze(k U)w+
a (_ o' L, ouh . od o 1212 4
+2§ (VTa—z) +P‘VVT . W +'£EUTk' g — ETVT ‘k‘ w . (49b)

We also still have the continuity equation for the perturbed velocities. Inserting the
expansions (4.4) in Eq. (3.15b) yields:

!

et (fclu' + Egv') + %—t =1 (4.9¢)

4.3  The various order equations

4.3.1 The zeroth-order equations

In zeroth order (i.e., for the €° terms) Eqgs. (4.9) yield

wed,U = 0, (VTBZUO) (4.103)
wod,V = 8, (Urd,v) (4.10b)
a,mg = USdup+ V38,up + 20, (Trd,w) - (4.10c)

From the continuity equation (4.9c) we obtain

d,wg=0 = wp = constant . (4.10d)
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From the boundary conditions (4.1) it follows that wy = 0 at the boundary, and
therefore, with (4.10d) wg = 0 everywhere. The zeroth-order equations (4.10a) and
(4.10b) then simplify to:

vrd,uy = Urd,vy = constant . (4.11)
Because the boundary conditions (4.1) show that d,up = d,vp = 0 at z = —h and

z = 0, it follows that ug and vy are constant in the fluid domain. It now also follows
that 0,79 = 0 and thus, mg is also constant.

4.3.2 First-order equations

At first order we obtain from (4.9) the following momentum equations:

orug + w10, U + 1 (E . U) ug + tkymg =14 (;‘.71”0 - fs':g’u.o) V5 4
+0, (40,U) + 8, (vrd.u}) , (4.12a)

ayvg +und,V +1i (fé . U) vg + tkamg =

= —i (uvo — kauo) US +20; (7rd,u1) , (4.12b)

and

a,m = US8,uy + V59,01 + 8, (Fro,w) + Vi - _('iaU_zh . (4.12¢)
Fom the continuity equation we obtain

i (kyuo + kpvo) + 9,w1 = 0. (4.12d)
The boundary conditions at this order are

O,uy =0,y =w; =0 at z=-h and 2=0. (4.13)
Integration of the continuity equation (4.12d) shows that

w = (fcluo + fcgvo) z+c3, (4.14a)

with c3 some integration constant. Because w; = 0 at z = 0, we have c¢3 = 0. The
bottom condition yields

krug + kavo =0, (4.14b)
and, consequently,
w = 0. (4.14(,‘-)

Notice that relation (4.14b) gives a condition beteen the unknown constants ug and vo.
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The horizontal momentum equations (4.12a) and (4.12b) are integrated over depth
between the bottom (z = —h) and the free surface (z = 0). In this integration we note
that
0
[ 0. (From) dz = prd.n |’y =0

because of the boundary conditions (4.13). We also have
¢ 0
f 0. (070.0) dz = 40.U[°,, - (4.15)

Although the quantity above is definitely not equal to zero, it can be argued that
it will not be large. It has to be rembered that the CL-approximation is valid only
for situations in which the shear of the mean current is not very large. We therefore
neglect this contribution for the moment. For the same reason then also the last term
in (4.12c¢) can be neglected, which we will do.

Using also w; = 0, the first vertically integrated horizontal momentum equation be-

comes:
” - 1 /0 - 1 0
o1ug +ikimg = —i {kl (—f Udz) + ko (—/ de)}UQ+
hJ-n hJ-h
e (1[0
+i (yvo — Fauo) (E f_ ) Vsdz)

We now introduce the vertically-averaged quantities, denoted by a double overbar:

<l
I
—_
<l
3
=
I

HICE (4.16a)

1 0
; f_ US(2)dz. (4.16b)

The vertically-integrated horizontal momentum quations then lead to
o1ug + ’iii':li'ro = —1 (Elﬁ + J}zﬁ) ug + 1 (E:l'Uo = ?&21&0) ﬁ (4.178.)
o1 + iiéz?fg = —i (Elﬁ + Egﬁ) vy — 1 (E:l'b‘o - E:g‘u,o) Eu_g (4.17b)

It is not immediately clear whether o, is real or imaginary. Suppose it is real. It then
follows immediately that oyug = 0 and because ug # 0 and v # 0, o1 has to be zero.
We therefore suppose that o) is imaginary, and we write for that purpose o1 = icrg")

with a{i) real. Solving Eqgs. (4.17) for agi) and o, it is found that

Ty = uoﬁ + voﬁ =uo-US (4.18a)

otV —k (ﬁ+ﬁ — ks (?+V=S_) =—k- (ﬁ+?) . (4.18b)

We note that the solution for o} is the same as given in Radder (1998, Appendix), but
the solution for 7g is seemingly different. The solution given in (4.18a) resembles the
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one given by Cox (1997, p. 157); the difference with Cox is that Cox did not consider
the velocity V5. The solution for o, _also complies with the one given by Cox (1997,

Eq. (15)), apart from the term with VS. Radder gave for g the solution:

Using the relation kiug + kovg = 0, it is readily shown that (4.18c) can be written in
the form (4.18a).

szS fclﬁ) (Iz:gug - fcwo) : (4.18c)

4.3.3 Second-order equations

In second order we obtain from (4.9a) the horizontal momentum equations
oUu
i(o +k-U)u + (02+VT|k| )u0+w26—+zkw1
e - VS -
=1 (klvl - k‘zu]_) ( _ys ) + 8, (Trd,uq) . (4.19a)

The vertical momentum equation (4.9b) yields, using the findings that wy = wy = 0:

811'2 _ S B’UQ 0 ( ng)

T U T + — 72 = - (4.19Db)
From the continuity equation follows:

ik - uy + % 0. (4.19¢)
The boundary conditions are:

Oup =0y =ws =0 at z=—-h and z=0. (4.194d)

Consider Egs. (4.19c) and the first order horizontal momentum equations (4.12a) and
(4.12b). By differentiation we obtain from the second-order continuity equation (4.19c):

ik10; (Frdsu) + iksd: (Frd.v1) + 0 (Profws) = 0. (4.20a)

From (4.12a) and (4.12b) we obtain the expressions for 9, (v78;u;) to be substituted
n (4.20a). In first instance we obtain:

= (O’Ei) 1 fc . U) (i::;uo + ]:72'!)0) — |l;|2 o +
+ (k1vo — kauo) (kaV* - koU*) + 0 (vTaf;‘wz) =0. (4.20b)
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Because we already found in (4.14b) that kyug + kavg = 0, we obtain after substituting
the solution mg = wug - US:

ad (_ 82w,

9z T 5.2

)=|:;|2uuﬁ+(zzwo_;}2uo) (RUS—kve) . (a21a)

This differential equation seems different from the one given in Radder (1998, Ap-
pendix). Using Radder’s solution for my in Eq. (4.20b), it is found that

a;az (VT%) = {iﬁz @-—- US) — ]::1 (ﬁ— VS)} (l::guo — ]El'vo) . (4.21b)

which is the same equation is found as given in Radder (1998). The difference in
appearance is therefore wholly attributable to different solutions for m.

Eq. (4.21a) can also be written differently. Using the property that krug + kovg = 0,
we can also write:

2 (o 22) = (82 o (F-0%) +ow (P

|ié|2 - (ﬁ - US) . (4.21¢)

The right-hand side is thus zero when no shear is present (i.e., when U? is constant
over the depth).

By working out the right-hand side of (4.21b) and using the property kyug + kyvg = 0,
it can be readily shown that Eqgs. (4.21c) and (4.21b) are in fact equivalent.
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5  The Landau-Stuart equation

5.1 Determination of the coefficients in the Landau-Stuart equation

The results of last section should be used in the coefficients of the Landau-Stuart
equation. In deriving the Landau-Stuart equation (3.58) we used the expansion (3.44),
which is repeated below:

i(x,z,t) = Re {A(t)v(z)eix(m)} with x(z,t) =k -z + ¢(t) . (5.1)

In the linear instability analysis, the expansions (4.3) have been used. Of these expan-
sions, only the leading-order terms are used and we have

Uo

1 .
W(@,z,t) = 3 g e’ +CC with 9 =ick -z + eoit
ezwg(z)
uQ
—] Yo Re {eﬂ} (5.23)
2wy (2)
and, for the pressure,
1
# = zme’ +CC = mRe {#}- (5.2b)

We already have k = ek. The following relations were found in the instability analysis:

’EIUD 2 E!gvo =0 (5.3a)
Mo =ug - U (5.3b)
oy = —ik - (ﬁ+ﬁ) (5.3¢)
and for wy the following differential equation was obtained:
d (_ d*w; - (2 = 8

These expansions are equivalent under the following conditions:

Alt)n(z) = wu (5.4a)
A(t)va(z) = wo (5.4b)
Altys(z) = e*wa(2) (5.4¢)

From these equations it follows that the shape functions v; and vy are necessarily
independent of z, and are therefore constants. Radder (1998, p. 6) introduces a new
amplitude, Ag, by means of

Ao = \Jud + 1§ . (5.5)
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We thus have
AS = A% (v} +43) . (5.6)

Using (5.3a), it follows from (5.5) that

Uy = %Ao and wvg = —%Ao . (5.7)
where k = |.€:| = \/k? + k3. We also write!

2wy = 2k ma(2) = k*ma(2) , (5.8)
and mo satisfies:

An% (ET%) = ug- (ﬁ— US) , (5.9)
with boundary conditions?

ma(z) = 0?ma(2) =0 at z=-h and z=0. (5.10)

Instead of the expansion (5.2a) we now have the expansion

[ k2
k
Ml = % b |Ace+ce. (5.11)
k
\ £2k%mgy(z) /
with } .
¥ = iak-m+ieagl)t.

It should be recognised that in (5.9) the quantity mg also encompasses the phase
function ¥, as does ug. When only the amplitude Agms is considered, together with
the amplitudes (k2/k)Ag for ug and —(k;/k)Aq for v, the differential equation for
ma(z) reads

— .
4 7 (z)d2m2 — ]—“_2 _é v-u
dz TV 42 | T\E Tk —s

Vv —y

1We write m to stress the fact that is stands for a second-order solution; Radder (1998) writes
mo.

2We use the short-hand notation 8 for 8/8z or d/dz as is the case here; thus d.m2 stands for
dmz/dz and 8?m, = d*m./d2?.
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and thus,

R s R

We now consider the simplified energy equation (3.43). Following Stuart (1958), we now
suppose the amplitude Ay to be a function of time, Ag = Ag(t). Using the representation
(3.53g), this equation becomes:

%2%{/_}&(%&'&)} = —f_ohdZ{(‘iﬁf*ﬂ%(U;”fUJS)}

Lelu((@E))) e
)C:f_0h<%ﬁ-'&>dz=/;0hd2{%/[4d$dy (%““)}

and 4,7 = 1,2,3 have been used; A is the horizontal space over which the average is
taken. The representation (5.11) has to be substituted in this equation. Information
regarding the terms 0, U Jh is obtained from (3.52). A Landau-Stuart-type equation of
the following form results (see Appendix A):

where

dA?
’Y1Etl = —72A] — 13A5 — 1A — 15A% (5.14)

with the coefficients +; given by:

_ 148 474, 2
n = dz (1 + %k mg(z)) (5.15a)
4 ) p
. 0 " -
vy = %ezk f dz (20.U5(2) = k18:V5(2)) ma(2) (5.15b)
_o Lo 0 ma(2) ;-
% = 5e% [_ L4220 (koTi - kaT2) (5.15¢)
1 925 [ 272 (dma i 474, 2
Y4 = =€k ] dzvp(z) |1+ €%k (——— + e*k*m3(z) (5.15d)
2 —h dz
- X gz 0 m%(z)
15 = ek [_hdsz(z). (5.15¢)

Some simplification of the coefficients seems possible. Notwithstanding the fact that it
is difficult now to carry out order arguments in a strictly organised way, we conclude
that the integrands in y; and -4 are of the form (1+ O (¢*) and (1+ O (¢?) respectively.
For the numerical accuracy of the coefficients these O (¢2,£*) terms are of minor im-
portance and it therefore seems justified to ignore them. Instead of ; and 4 we then

have:
. 1
v = Zh (5.16a)
1 -~ 0
ho= e f dz7r(2). (5.16b)
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It should be recognised that O (¢*) terms cannot be totally ignored, otherwise coef-
ficient 5 would be zero and an equation of totally different properties would result.
We do take into account the leading order of each coefficient. The same procedure has
been followed with the solutions of #: here also the leading-order solutions have been
considered, that is, O(1) solutions for % and % and O (£2) solution for 10 because that
was the first term unequal to zero.

Introducing coefficients 3; by:

+
= BB (5.17a)
N
,},I
B = = >0 (5.17b)
i
B = Lo, (5.17¢)
M

the Landau-Stuart equation (5.14) can be written in the form:

d_A?l— v A2_ A4
7 = P1AG — 2AG — 3Ag - (5.18)

The coefficients 3; are given by:

B = —2s—f dzma(z [kg(aUS T) e (éws 75)] (5.19a)

vr vr
B = 252—/ dzTp(z) >0 (5.19b)

4
Bz = 4k >0. (5.19¢)

To compare these coefficients with the ones given by Radder (1998), his equations
(21), we notice that we write e2my(z) for the function mg(z) and k for k as used by
Radder. It is then immediately clear that (8, and (3 from (5.19) correspond with the
corresponding coefficients of Radder. To be sure about ; some more effort is needed.
Thereto we first introduce the shorthand notation (as did Radder):

7 = (BZUS + T—l-) and Zy= (azvs 75) . (5.20)
vt vr

The coefficient 3 is then given as:
k o " &
ﬁ]_ = —262—[ dz mao [ngl == klzz] : (5.21&)
h J_n

We start now with the expression for ) as given by Radder (1998) and write it it in

our variables; we denote it as A\":

3 o
(r) _ 2k f Z1 —qZy k1

= —2e“— dz mo———— with - 5.21b
1 Bt 2 1ma At a2 g 1 q= kz ( )
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Because
1 1 ];‘2
A+E Bl k
k3
and

Zy —qZy = ]}1—2 (E‘zzl —k Zz)

we have for A"):
() _ g2k [° 2
1= —&t T dzm2 (kgzl —klzg) . (5.21(:)
hJ-h

Our conclusion therefore is that also the coefficient o in Eq. (21a) of Radder (1998) is
correct.

5.2 Analysis of the Landau-Stuart equation

Introducing the coefficients 2a = 3 — 2 and ¢ = f33, the Landau-Stuart equation
(5.18) is written as:

dA}

— =2 A2 — A} . (5.22)

We have £ > 0 and 2 > 0, but the sign of 8; and thus also the sign of « is not clear
beforehand. As shown in §3.4 an exact solution is given by

A2 = b : (5.23)

f 1 E —2at
%t (A—g - %) %

When a > 0, the solution (5.23) approaches the equilibrium solution, AZ — A2 = 2a/¢
for t = 0co. When a < 0, Ag — 0 for £ = oo.

5.3 Solution of my(2)

We have for my the differential equation (5.12), which is repeated below for ease of

exposition:
d [_ d2m2 1~ (/=S g ~ [=8 g
E (VT(Z)EE—) = z l:kz (U — U ) '—'kl (V —V )] . (524)
Integrating once to z results in
d?
S _i de'= [kg (U - US) ~k (V —VS)] (5.25)
dz? Ur
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As boundary condition is given in (5.10) 8?mg =0 for z =0 and z = —h. For z = —h
we indeed have 9?m, be zero because the mtegratmn interval in (5.25) equals zero.

That 82my = 0 also for z = 0 is seen as follows. [°, dz (U U(z)) = hU —hU =0
and similarly for the V —terms.

A further integration of (5.25) to z gives

- ol L4t (- - (7o) e
= F (z, 1—62) +cy, (5.26)

with ¢4 an integration constant, to be determined by the boundary condition.

A final integration to z yields
z »
ma(z) = / di F (ﬁ,kg) + ¢4z + cs5 .
0

Application of the boundary condition my(0) = 0 yields ¢s = 0 and the boundary
condition mgy(—h) = 0 yields
1
a=y ) di F (2,ks) .

The solution for ms(z) can finally be written as:

mo (z;l?:z) =/Ozd2F(2,§:2) + -

where has been written mo (Z;]‘(-Q) to stress the fact that meo still depends on the

i F (8.k) | (5.27)

parameter ]"cg.

Radder (1998) chooses instead of k1 or kp the parameter q = k) /ky. With k; = kcos ¢
and ko = ksing we have ¢ = 1/tan ¢ where ¢ is the direction of the alignment of
the vortex rolls. To see the difference in the various representations, we consider the
function G given in the right-hand member of the differential equation for ms, Eq.
(5.12):

i Flé [fc? (ﬁs - US) ¥ (?S = VS)] . (5.28)
G can be written as

o - B[ ) (v

‘ - \/11qu [(ﬁS—US) —q(?j—vs)] , (5.29)

and F(z; ky) can also be written as

¥ oy 1 % " ",
f(zq) = [0 & / d'G() (5.30)
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Radder (1998) uses the function f(z;q).
To make the dependence of my on g explicit, we write G as

G(zq) = ﬁ (Gi(2) — 4Ga(2)) (5.31a)

Giz) = T —US(z) and Ga(2) =V —VS(z). (5.31b)

Then the function f(z;q) is written as

with

) = 11(2) —af2(2)
f(z;9) = g (5.31c)

Introducing furthermore the notation
z —h
Mi(z) = / dGfi () +5 [ difi(2) (5.31d)
0 0

z -h
My(z) = /0 difr () + % ACACK (5.31¢)

the solution of ms(z; ) can be written short as

Mi(2) - aMa(z)

m2(Z;Q) = m

(5.32)

5.4 The alignment of the vortex rolls
5.4.1 The principle of exchange of stability

To obtain the direction of the axis of the vortex rolls, Radder (1998) suggests that
the principle of ezchange of stability (PES) may be used. A few remarks on PES
are collected in Appendix B. We have investigated perturbations of the form (4.4a),
i(z,zt) = u'e?@t) and the stability of these perturbations was subject of investi-
gation. Here is 9 = ick - & + eot, indicating that in horizontal space the solution is
periodic and in time growth or decay of solutions may occur. The question of stability
is only occurring in the dimension of time. It was found that the exponent o has
zero real part. When the imaginary part is unequal to zero, just periodic (neutrally
stable) perturbations result. When the imaginary part is also zero for one or more of
the eigenvalues (i.e., solutions o), then a bifurcation of the basic flow into a secondary
motion may result. This secondary motion may be stable or unstable, depending on
the prevailing conditions. Because we look for the generation of secondary currents
due to intability of the basic current, this principle may well be valid in our case. It is
not a simple matter to prove its validity in case the waves and current are not aligned
(or, otherwise stated, when U and U® have different directions). PES has not been
applied much for unbounded flows (see Herron, 1985,1996), most applications are for
confined flows. It follows from (4.18b) that o = ig} = 0 occurs for:

of =ik, - (ﬁ+ ?) =0 (5.33)
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where k. is the solution of k for which this condition is true. The condition (5.33) can
also be written as

de (ﬁ 3 ﬁs) = (ﬁ £ ?S) =0. (5.34)

It is seen from (5.33) that the direction of k is perpendicular to the combined direction

= =5
of the vertically averaged current U and ditto Stokes drift U . This of course also
follows from (5.34) by noting that g. = tanyp. (see above Eq. (5.28)) and writing

—— —t =S
U = |U|(cospu,sin )" and ditto for U with the direction ¢,. Condition (5.34)
then can be written in the following form:

|ﬁ| oS Yy + ﬁs COS Py

tan g, = — ; (5.35)

U sin gy, + ﬁs sin g,
[Dsineu+,

Suppose that ¢, and g are in the first quadrant (i.e. are between 0 and 7/2 radians).
Because then tan ¢ < 0, ¢ lies either in the second or fourth quadrant.

Interpretation of the k vector

The vector k was introduced in the expansion (4.3) as a kind of wave number vector, but
then to indicate the periodicity of the vortex cells. The extent of the periodic structure
is inversely proportional to the component of k. The vector k points in the direction
with the smallest periodicity of the periodic structure. In the perpendicular direction,
the component is zero (or, at least, very small), signifying that the extent of the
periodicity is very large. The axis of the vortex rolls is thus in a direction perpendicular

to that of k. Above result that k is perpendicular to the vector (U +U ) thus means

that the alignment of the vortex rolls is in the combined direction of these two current
vectors. When the directions of these vertically averaged current contributions are the
same, so is the direction of the axis of the vortex cells. This is a situation which is
encountered in not too-wide flumes.

— =S &
For the special case that U and U are in the z—direction so that k; = 0, we have
k1 = 0, signifying infinitely long rolls in the z—direction.

5.4.2 Maximal growth of the perturbations

A different method to find the critical direction given by ¢, is by determining the
maximum growth rate of the amplitude Ag of the perturbations. This is carried out for
infinitesimal perturbations so that it is sufficient to consider only part of the Landau-
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Stuart equation®:

Maximum growth is obtained for

2
Z—Z =0  together with j—qg- <0. (5.37)
We have o = 3; — 32 and the coefficients 3; have been given in Egs. (5.19). We suppose
that o > 0 because in that case the equilibrium solution of the Landau-Stuart equation
can be reached; for a < 0 we have Ag — 0 for t — co. Because 2 does not depend on
q, Oqa¢ = 3¢5 and, using the representation (5.32) for mg, and also taking k fixed, we
then have

0 0 [(My(z) — gMa(2)) (Z1(2) — qZ2(2))] _
_/_hdza_q[ 1+¢? ] =0. (5.38a)

0
e fh dz [(M1 22 + M22,) (¢ — 1) +2(MaZy — M Z1) g] =0 (5.38D)

Introducing the notation

0 0
Q= d0nz-m2z), Q= dMzm+M2), Q= g—; ,
(5.38¢c)
we obtain the condition
Qe +2¢—-Q=0, (5.38d)

with the solutions

_-1-vi+@° vVi+@Q? . (5.38e)

Which one of these two solutions we should choose depends on the value of the second
derivative of 3; evaluated at these solutions. We obtain

Pa _3(Q1q2+2Qoq—Q1 __ Q(Qq2+2q—Q) (5.39)
d¢*  Oq (1+¢2)° o\ (1+er? ) |

Substituting the two solutions ¢; and g2, we find:

L@ (+@) ((1+VITE)

= --Q (5.40a)

w4 (@-1evIF@)

and

3The part 2aA2 in the Landau-Stuart equation gives the initial linear growth of the amplitude
Ao of the instabilities, while the term A% set a bound to the growth of the amplitudes, which
bounding effect becomes effective after some growth has been taken place. Here we only
consider maximum initial growth.
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Pa 1 Q1+Q) (1+vIF Q)

i = =@ . (5.40b)
|, ~ T (@1t viT Q)

The fractions with @ are positive and the sign of the second derivatives depends solely
on the sign of Qp. The solution for g, is either g; or g2, depending on the sign of Qq.
The solution for g. can now be written as

o= -1- sign(gg)\/l +Q? _ (5.41)

This result is the same as Radder’s (1998) result (27), when is recognised that our

(r)

definition of )y and Radders one, QE,T), relate like Qp = —Q -

5.5 The Reynolds stresses

We can now compute the Reynolds stresses (i) and (@9). From the solutions (5:11),
with ks /k and ki /k replaced by 1/1/1 + ¢* and ¢/+/1 + ¢ respectively we obtain, when
200 =3 — 32 > 0:

qma

I+ @

(i) = 152.%2 g 1

2 " V1+¢?

When a < 0, the Reynolds stresses are zero.

and (o) = %521}2!\3 (5.42)

For the amplitude Ag, we now use the equilibrium solution of the Landau-Stuart equa-
tions, A, given by:

__boh (5.43)

From (5.19b) and (5.19c) for 32 and B3 and (5.21b) for 5, it follows that we can write:

k* 0 Z —qZ
B = —2€2E31 with B; = j;h dz ma(z; q)l—(z\}l—%q;ﬁ (5.44a)
72 0
B = 2B, with By~ f dzr(2) (5.44b)
—h
.4 0 2 ars
5 = g, with Bj = / PR G (5.44c)
h —h vp(z)
The equilibrium amplitude then is
A2 = _2Big+ B (5.45)

4 k2 Bs(g)
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where for g the critical solution g, is to be used. Using this equilibrium solution in the
expressions for the Reynolds stresses, the latter ones become:

.ov __ 2(Bilge) + Ba) malzqc)
(wd) = -—e¢ Ba(a.) Ve (5.46a)
nd
% (p) = a2 (Bi1(g.) + B2) ) qemaz(z; qc) (5.46b)

Bs(qc) m

from which it is clear that the Reynolds stresses do not depend on k, but only on the
direction of k, expressed by g.. This finding means that the Reynolds stresses do not
depend on the extent of the circulation cells (the size being proportional to 1/(ek)).
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6 Discussion and recommendations

The present report is concerned with the question of modelling the Reynolds-type
stresses of the perturbed velocities which occur due to an instability mechanism of the
Craik-Leibovich (CL) equation. The CL-equation is an equation for the mean current
in which some wave effects are accounted for, the most important one being the Stokes
drift, resulting in the vortex force, which can be related to the pseudomomentum term
in the GLM description. These instabilities are held responsible for the occurrence of
so-called Langmuir circulation cells. The present report addresses a method for the
analytic modelling of these stresses, proposed by Radder (1998).

The primary purpose of the present report is to check the derivations of Radder (1998).
Secondly, his simplifications should be assessed. Thirdly, the applicability of these
approximations should be assessed. It should be mentioned that the results presented
by Radder (1998) are all found to be correct.

Because instabilities of the (mean) current in the CL-equation generate vortex cells of
Langmuir type, it is a logical step to start at the outset with a description in which
this mean current is perturbed to some basic flow plus perturbations. A solution for
these perturbed velocities is sought for by a linear instability analysis of the momentum
equations. For the solution only the leading-order terms are considered, which is an
appropriate approximation at this stage. Using these solutions in the energy equation
for the perturbations, a Landau-Stuart-type of equation can be derived. This equation
predicts the growth of the perturbations and its final level because of the non-linear
term in the equation. An exact solution can be found from which it follows that either
the amplitudes of the perturbed velocities tend to an equilibrium value or go to zero
as time passes. Which behaviour prevails depends on one of the coefficients in the
equation (@ = B; — [32) being positive. It cannot be stated generally when this occurs,
but some examples considered in Radder (1998) suggest that the shear of the Stokes
drift has to be large enough, or, otherwise stated, the waves should be large enough.
This corresponds with the finding in the literature (see, e.g., the discussion in Appendix
A of Van Kester et al., 1996) that the wind velocity should be large enough in order
that Langmuir circulations can be generated.

One of the important approximations used in developing the theory is that the basic
flow has no vertical component and, therefore, one has strictly only the case of a
horizontal bottom. It is known from other applications at sea that neglect of bottom-
slope terms often lead to quite acceptable results. One of the examples is given by
the mean-flow equations, which are usually in a form as is for example given given by
Dingemans (1997, Egs. (2.470)). These equations are repeated below:

ud BN fﬁ-] % ~ ety — () , (6.1)

o(h+0Q) |5 +Uigs, + 955 | * Ba

where S;; is the radiation stress. Here all bottom-slope terms are neglected, but these

equations are nevertheless used for many phenomena occurring in the near-shore region,
inclusive surf beat.
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Considering above examples, it seems to be not unduly optimistic to suppose that the
present horizontal-bottom theory also will perform well in the nearshore region where
(albeit small) bottom slopes different from zero occur.

One of the important features of the present results is that the modelled Reynolds
stresses do not depend on the size of the circulation cells, meaning that these ex-
pressions can easily be introduced in the momentum equation for the basic state, Eq.
(3.13), or its simplified form, Eq. (3.38). Numerical experiments have to be carried out
to check the applicability of the present theory. Care should be excercised in the defini-
tion of the experiments in order that indeed the generation of Langmuir cells would be
predicted. That is, care should be taken that indeed the coefficient « is positive and,
to have some success with the numerical experiments, it seems a necessity to consider
only cases in which the shear of U® is large enough to be able to generate the vortex
cells numerically. A short discussion of some numerical properties is in order now.

6.1 Numerical properties

In Appendix A of Van Kester et al. (1996) it is mentioned (p. 3) that a model of
Mobley (1976) designed to test the generation of Langmuir circulations through the
CL1 instability mechanism, did not work despite the fact that the circumstances which
these computations simulated were favourable for the generation of these cells. That
was attributed to the fact that the large eddy simulation code used treated the upward
boundary as a fixed horizontal boundary, not as a free boundary. We conclude from
this that the upward boundary should indeed be a free boundary.

In Van Kester et al. (1996), The CL equation (3.3) was solved numerically in the (y, z)
plane, leaving out possible variations in the wave propagation direction z. It was found
that one pair of circulation cells developed not because of instabilities in the flow field,
but due to side-wall effects. This was shown by doing not only the computation to
compare with measurememnts of Klopman (1994), but performing also computations
for a very wide flume with the same vertical dimensions. Due to the way in which
the boundary conditions with respect to the Stokes drift were handled, (by means of a
constant Stokes drift @° over the cross-section, while to obtain the vortex force in the
CL equation it was multiplied with the mean vorticity that increased strongly towards
the sidewall boundary layers), this resulted in an overestimation of the vortex force
near the side walls, leading to a possible overestimation of the strength of the vortex
pair. This overestimation was later confirmed by further experiments of Klopman
(1997) for the same wave and current conditions, in which not only was measured in
the centre-line as in the 1994 measurements, but now also over half the cross-section
(by symmetry, the other half could be inferred). We expect that possible instability
effects are more or less drowned in the (too strong) generation of vortex cells due to
the sidewall effects.

It is not clear beforehand that the method of Van Kester et al. (1996) would also
be unsuccessful when the numerics are based on Egs. (3.13) in which the Reynolds
stresses of the perturbed velocities are made explicit and when the analytic model
for these stresses is implemented. The difference between the CL-equations (3.3) and
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(3.13) is in effect only the term with the Reynolds stresses in (3.13). It could be that
the analytic model forces the effects of the instability enough, even when the numerics
involved in itself is not good enough to handle the instabilities themselves. Because it
is an easy excercise, we recommend a few computations with van Kester’s model with
the analytic model for the Reynolds stresses included. A short study would involve
two computions based on the flume dimensions (following an opposing current) and
two for a very wide flume.

It is our feeling that with a correct modelling of the side-wall boundaries it should also
be possible to obtain circulation cell growth due to instability of the CL-equation. To
make this happen in a numerical model, stringent conditions on the numerical pro-
cedure should be exercised; the numerical method should be of high-enough accuracy
and the numerical dissipation should be very low so that the effects of the instability
mechanism are not dissipated immediately. The numerical method used by Van Kester
et al. (1996) is a low-order one with also too much dissipation and is therefore not
suitable to use for a check on the present theory. Some code should be used which is
both accurate and which treats the free surface in an accurate way. In this respect
the method coined semi-Poisson method in Appendix A, p. 12 of Van Kester et al.
(1996) could be a useful one. Casulli and Stelling (1998) have shown that tests with
this quasi-hydrostatic method gave accurate results.

6.2 Recommendations

The recommendations will be summarised below.

1. The effect of the model of the Reynolds stresses of the perturbation velocities
can be tested in the old code of Van Kester et al. (1996). The following steps
are envisaged:

a. Better side-wall conditions have to be built in. This can be restricted
at this stage at a more accurate representation of the Stokes drift near
the boundary, e.g., in the way as is done by Groeneweg (1999, §5.2).

. Redoing the wide-flume computations with the thus changed code.

c. Adding the analytic model for the Reynolds stresses in the (new) Van
Kester code. Now the CL-type equation (3.13) is modelled. Tests for
the validity of the approach should be built in the code. For example,
it is necessary to check the sign of @ = 8 — 3, in the Landau-Stuart
equation; only for & > 0 the analytic model should be used, in other
situations no equilibrium solution of the Landau equation exists.

d. Both a computation for the wide-flume case with a fine and a coarse
mesh is to be performed. The coarse mesh should give the same results
as the fine-mesh computation because of the sub-grid modelling of the
effect of the Reynolds stresses.

2. A real test of the behaviour of the new model is obtained by performing a
numerical test with an accurate numerical model.

a. One of the candidates for using is the semi-Poisson approach as used
by Casulli and Stelling (1998).

b. Other methods, requiring much more numerical effort, may be some
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large eddy-simulation, in which the free surface should be treated ac-
curately or a direct numerical solution of the Navier-Stokes equations.
Care should be taken that computations are carried out for situations
in the correct parameter regime so that generation of Langmuir circu-
lation cells is possible. The other methods can possibly carried out at
the Burgers Centre for Fluid Dynamics.
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A Derivation of Landau-Stuart equation

The change in kinetic energy is given by
Kk d 1. _ 0 R s
o &E{[ dz(iu-u>} = —/_hdz{(wu_,)-a;(Uj -f-Uj)}
0 oi; |
st dz {7 X
Lolm(G))) o

The solutions for the perturbed velocities i; are given by (5.11), repeated below:

(%)

a(z,z,t) = % k Age’ +CC . (A.2a)
k
\ e2i?my(2) /
with ) '
9 = ick-z+icot=ix. (A.2b)

The z-derivative of the basic current U”" is given by (3.52), repeated below:

h
36Uz = (D) +7 +f d7 VI = (bits) + T
gy 1 ... -
5, = ;}_";(wuz)'f‘%?:- (A.3)

Because 17 and 1, are independent of z, we now have
o)) () (3 (2
oz - oz dy oz oy
@) G @)
oz dy 0z '
It follows from (A.2) that

4 leeklkh (ix—z'e‘ix)

dr 2
and, noting that

({i(#x-ie)}") =2 (A4)

we have

8a\?\ _ 1 ,,,k}k}
<(6:r,) >=§E A =g 52
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and similarly for ((31,11)2), <(6zﬁ)2> and ((Byﬁ)2>. We then have:

au\%? raa\? (06\% [00\?\ 1 5.5,
<(a—$) = (5&) + (5&;) + (a—y) > = 55 k AO . (A.5a.)
In a similar way is obtained
oy 2 N 2
<(g—:) +(g—’;) > = %sﬁkﬁmgAﬁ (A.5b)
and ) )
e _ 1 gz (dma\*

In a similar way we have

(wii;) O,U7 = -;-zekAomz( ) (iczazus - fclazvs) (A.6a)
and
o 1
(i) 0.U7 = = ((wu;) + (qu)T)
= 51—[ Ad + azkmgAg (koTi - kﬂ})] . (A.6b)
Lastly we have
1. . 1 474, 2\ A2
FU-t =Z(1+skm2)A0. (A.6c)

Substitution of relations (A.5) and (A.6) in Eq. (A.1) leads to the following Landau-
Stuart equation:

dA2
71-&—{ = —1A§ — 13A8 — 14A] — 1A (A7)

with the coefficients +; given by:

— 1 0 474, 2
n = Z/_h dz (1+s k mg(z)) (A.8a)
1 27. ’ 1. ] T 5
1 = ek / dz (E20,U5 (2) — 10,V (2)) ma(2) (A.8b)
g - o Se’k f dz "”(z) (FaTi — i T3) (A.8¢)
W s f deTrl(2) (1+52k2(dm2) +e41}4mg(z)) (A.84)
dz
_ 1 474 m3(2)
T6. = 48 k ./;h dz VT(Z) . (A'Se)
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B A few remarks on the principle of exchange of stability

The principle of exchange of stability (PES) is used by Radder (1998) as a possible
method to find the direction of the critical rolls. A few illuminating remarks on the
nature of the PES are found in Joseph (1976) and are cited below. It should be noted
that exponential solutions of the form

v(z,t) = f(z)e ™ , p(z,t) =p(z)e™" .
exist provided that there exist numbers o for which the spectral problem
—of + LIU,v]f +gradp=0 , divf=0 , flg=0

has nontrivial solutions. The special numbers o are the eigenvalues of above set of
equations and the non-trivial solutions (v, p) are the eigenfunctions belonging to o.

e From Joseph (1976, p. 26 and 27):
" A system of stability concepts is customarily defined relative to the spectral
problem. Here, a flow is called stable if there are no eigenvalues such that
Re(o) < 0; marginally or neutrally stable if there is one eigenvalue with Re(o) =
0 and Re(o) > 0 for the other eigenvalues; and unstable if at least one eigenvalue
has Re(o) < 0.

Neutral disturbances are of two kinds. If, when Re(o) = 0 one also has Im(o) =
0, then the neutral solution is steady and a principle of exchange of stability is
said to hold. The neutral solution is time-periodic if Im(c) # 0 when Re(o) =
0.”

e From Joseph (1976, p. 55):
"Loss of stability of the basic flow when o = 0 portends the bifurcation of
the basic flow into a secondary steady motion which may itself be stable or
unstable, depending on conditions.”

e From Joseph (1976, p. 55):
"Finally, we note that the energy method of Stuart (1958) is also connected with
the linear stability theory. This is an approximate method which assumes that
the spatial form (shape) of the nonlinear disturbance is the same as the shape
of marginal disturbances of the linearised theory, but with unknown amplitude
A. This energy method yields interesting nonlinear results but does not yield
sufficient conditions for stability of the form of the disturbance which increases
initially at the largest viscosity.”

In Herron (1985, 1996) PES is defined to be the first unstable eigenvalue has imaginary
part equal to zero.
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PATTERN FORMATION IN A 3D WAVE-CURRENT INTERACTION SYSTEM.
A SUBGRID MODEL

1. Introduction. The CL-theory

The interaction of sea waves and currents in the nearshore zone is relevant to the study of mixing processes
and sediment-transport properties (see e.g. the review by Peregrine and Jonsson 1983; Klopman 1992). The
influence of surface waves propagating on a (tidal-, or wind-generated) current in coastal seas (c.q. waves
on a current in a wave flume) is threefold:

(i) the mean-velocity profile U(z) can be strongly affected by the presence of waves;

(ii) the mean bed shear stress T, increases specifically;

(iii) coherent circulations, in the form of roll patterns, may appear, in the field (Langmuir circulations, cf.
Leibovich 1983) as well as in the laboratory (secondary circulations, ¢f. van Kester, Uittenbogaard and
Dingemans 1996; Klopman 1997; Melville, Shear and Veron 1998).

On the other hand, any velocity shear 8U/0z at the surface has effect on the wave propagation, e.g. via the
dispersion relation (cf. Nepf and Monismith 1994); besides, apart from Doppler-shift effects, wind-drift currents

induce scattering of the wave spectrum through nonlinear interactions (Shrira 1998).

The generalized Lagrangian mean (GLM)- theory is the appropriate method to describe the interaction between
waves and mean flows (e.g. Dingemans 1997, § 2.10.6). This formulation was used lately by Groeneweg and
Klopman (1998) to describe nonlinear changes in the vertical distribution of the mean velocity due to the
presence of waves, in a wave-current channel problem. Whereas good agreement between GLM-results and
experimental results of Klopman (1994) was found, the approach lacks a clear physical interpretation, and
velocity variations in cross-direction of the channel are neglected.

Recently, the Craik-Leibovich (CL) equation, originally derived by Craik and Leibovich (1976), has been used
as a model equation to describe wave-induced mean-flow variations in a wave flume (van Kester ef al. 1996;
Dingemans et al. 1996). Under rather mild conditions, the CL-theory can be derived simply from the GLM-
theory (e.g. Leibovich 1983; Craik 1985; Radder 1994); for a further discussion on its limitations, in particular
when applied in a wave flume, see van Kester ef al. 1996, §5.3. In the present work, the theory is applied to the
case where surface waves and shear flow have different directions, in a laterally unbounded domain in shallow
water; under suitable circumstances, roll-patterns appear through an instability mechanism ( these patterns are
similar to wind-driven Langmuir circulations in the ocean; as a universal phenomenon, patterns in diverse forms
occur in a wide variety of physical systems in the laboratory as well as in the field; see the review by Bowman
and Newell 1998). Assuming the wave field to be known in advance, this leads to a fairly simple parametrization

of the wave-induced stresses in the momentum equations for the mean flow.



3. The disturbance-amplitude equation

In order to develop a subgrid model, further assumptions must be made:

let (x,,z) be a local coordinate system, then

(i) the mean velocity is a function of the vertical coordinate z and time f only (i.e. nearly horizontal flow on a
horizontal bottom at z = k), U= {U(z,1),V(z,0),0};

(ii) the wave-induced disturbance is single-periodic in some direction and does not depend on the perpendicular
direction 0, u = {u(x,y,z,0),v(x,y,z.0),m(x.y.z.0}, with Vo u = 0;

(iii) the eddy viscosity and Stokes-drift velocity are functions of z only, v; = v; (2)>0 and Us = {Us (2),V5(2),0}.

The vortex force now becomes

Us x (Q+0) = {0V ,~0,Us ,Us (0U/0z+0 )+ Vs (0V/0z-0,)} , 4)
with
©, = dw/dy — Bv/dz; ©, = Ou/dz — Ow/dx; ,= Ov/Ox — Ou/dy,

while the mean vortex force is given by
<Us x (Q+w)> = Us x Q = {0,0,Us.0U/0z}. (5)
The energy-balance equation (2) reduces to
dK/dt = - |0 dz {<wu> HU+Ug)lez + <wv> d(V+V)dz) = [0 dz vi {<u> +..4 <w?>}).  (6)
The mean horizontal velocities U, V obey the equations

oU/ot + D<wu>/0z + O11/0x = H(v, 0U/Gz)0z (7a)
oV/ot + d<wv>/0z + Ol1,/Qy = A(v, OV/Bz)/0z , (7b)

with TI,=P/p + Y <f.4>. The equations (6) and (7) will be used in the following to simulate the growth of
the disturbance u and the formation of a pattern of helical vortices; to this end, a (linear) stability analysis is
needed. The theory of wave-driven longitudinal-vortex instability is analogous, under certain conditions, to the
theory of thermal-convection instability, and to the theory of instability of flow between rotating cylinders (cf.
Craik 1977; 1985, §13.2). Here, we follow the simple treatment of the supercritical instability problem by Stuart
(1958): due to the inherent nonlinearity an equilibrium state dK/dr = 0 is possible with a definite finite amplitude
of the disturbance.

Accordingly, the disturbance velocity is written in the form:

u(xy,z,f) = R{ A(f) v(z) &*N*EOY + HOT., (8)




When the disturbance is sufficiently small, linearization is permitted, and for a nearly horizontal flow this yields:

ou/ot + Udu/Bx + Vouwdy + wol/oz + 1/p op/ox =V.(viVu) + Vs 0, , (12a)
/ot + Udwox + Vov/ay + woV/oz + Vip dp/oy = V.(viVv) - Us o, , (12b)
ow/ot + Udw/ox + Vow/dy + 1lp op/oz =V.(viVw) + Uso, - Vs 0, , (12¢)

with continuity equation
Ow/ox + Ov/0y + ow/oz =0 . (13)

The linear stability problem can be analysed using a long-wave asymptotic expansion (cf. Cox 1997); the

boundary conditions on the velocities u, v, w are chosen correspondingly:
ouw/oz=w/oz=w=0, (14)

at the mean free surface z = 0 and at the bed z = —h (note that the proposed long-wave expansion is not
consistent with a ‘no-slip’ boundary condition at the rigid bottom z = —A).
Following Cox (1997), we introduce a small parameter € such that the most unstable rolls have wavelength

0 (1/g); assuming a slow growth rate o, we set A(f) = exp(ot) in equ. (8) and consider the expansion
(u; p/p) = (ugteu +...; potep +...) explie(ke+ly)+e(o,+eo,+.. )t} ,  (15)

with u(z) and p(z) functions of z alone, and &, / scaled cell wavenumbers, O(1) .

Upon substituting (15) into (12)-(13) we are able to solve the equations that result at successive orders in g,
taking into account the boundary conditions (14) at each order in the expansion. Leaving the details to appendix
A, we obtain the following results: u,, v, (and p, ) are constants, generally # 0 and yet to be determined,

satisfying the relation
kuy+ lvg=0, (16)
wy=w, =0, and w, is given by the solution of:

D(v; D* wy) = [ Us— Us) = k( ¥ = V)] (g~ kvo) , amn

with D=0d/0z and Us, Vs denotes an average over depth.

For the growth rate o, we find
o =-i{l( U+ Us)+ (¥ + Vs)} . (18)

The growth rate o, is real, while u, , v, and p, are purely imaginary (cf. Cox 1997); however, these expressions

are not needed for the present purpose: only the leading order terms, significant in the limit k = VEZ+P)—>0,




of the stability spectrum: the most unstable mode has an eigenvalue with vanishing imaginary part, when P.E.S.

holds. In the present case, this amounts to o, = 0 for the orientation g, of the critical rolls, and from (18):
g (U+Us)+ (K +¥)=0 . (25)

This simple result means that the axes of the critical rolls must be oriented between the direction of the shear
flow and the direction of the Stokes drift (¢f. Gnanadesikan and Weller 1995; Cox 1997; Polonichko 1997).
However, it has to be proved that P.E.S. will apply when mean flow and waves are rot aligned; moreover, in
this case, the supposition o, = 0 is not compatible with the observed lateral drift of windrows (cf. Cox 1997 for
further details).

- given the size of the cells (i.e. given the value of ), we may calculate for infinitesimal values of the
amplitude 4, the maximum growth rate: max., dd,”/dt ; this implies that g, must satisfy the relations:
d(a—B)ydg =0 and d*(a—B)dg* <0.

Define the ratio
0=0/0y=1,0dz(M,Z,+M,Z)/],,°dz (M, Z,- M, Z), (26)

then the orientation g, is given by
g.=[1+8V(1+ 071/ Q, (27)
with & = sign(Q,).
In the special case that mean flow and waves are aligned, i.e. V5/Us=T,/T,=r, with constant proportion r, we
have M,/M,=Z,/Z,=r, Q=2r/1-r %) and g, = -r; the same result would follow from (25). In more general

cases, the results of (25) and (26), (27) for g, differ.
5, Equilibrium solution. The wave-induced eddy diffusivity
The Landau-Stuart equation (10) has a non-trivial equilibrium solution

Al=B-B)/Bs , (28)
whenever B, > B,>0, as B, >0 (cf. the expressions for the coefficients in (21a,b,c)).
[The resulting coherent cell pattern, in the form of two-dimensional rolls, may undergo secondary instabilities
due to effects of higher harmonics (Eckhaus instabilities, cf. Eckhaus 1965, Ch.8); this phenomenon will not be
considered here, see e.g. Cox and Leibovich 1997, who extend the analysis to three-dimensional circulations] .
The wave-induced Reynolds stresses now follow from (19), (21) and (28), incase of > :

<wi> = ¥ [(a-B)y] mDN(1+Y),  <wv> == "% [(a-B)y] ¢ mo()N(1+47) , (29a,b)

where m(z) is given by (22), (23) and g =g, ; otherwise, when a < B, <wu>=<w>=0.




The coefficients y, B and a can be evaluated successively as:

y=%[%—-In2] hpllvy = hp /(36 v;), where In 2 =~ 0-6931 is approximated by 25/36 = 0-6944 ;

B =2 hv,; whereas v;(0) =0, we infer from (9): T, = | dz’ dI1/0x , with 8I1/dx = P, /p assumed to be
constant; using the shallow-water approximation dUs/dz = (1+ z/h) {dU;/dz} .., , we obtain:

o = 1/6 hy, [{dUs/dz}o—7/6 hP, /(pyy) ] .

Since P, < 0, the coefficient o is definitely positive, and consequently o > B when the Stokes-drift shear is
sufficiently large, compared with the mean-flow shear, at the surface.

The wave-induced stress (29a) becomes, in the present approximation,
<wu> = pg z/h (1+ z/h) . (35)

where pg =% p, max{0,(a-p)y} =2 0.

A wave-induced eddy diffusivity v, can now be defined according to
<wu>=-v, dU/dz , (36)
and from (32) and (35), we obtain
v (z) =- Y ps 1{dU/dz}, z/h (1+ z/h)? (2+ z/h) . 37

with {dU/dz},= U, /12h > 0.
The v, -profile, with maximum value at 2/ = —1+1/v2 = 0293 , is outlined in figure 2.
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The physical meaning of the expressions (36) and (37) becomes clear after substitution in the momentum
equation (7a) : the effect of the waves consists of the additional shear stress exerted on the mean flow, while

outside the bottom boundary layer the velocity shear dU/dz is reduced (see figure 3).



Appendix A. Order equations in the long-wave asymptotic expansion

At zeroth order, we have
Dw,=0,
D(v;Dug) =D(v;Dv)) =0,
Dp, = Us Dug + Vs Dv, .
Together with the boundary conditions (14), we obtain: wo=0; ,, v and p, constants, generally # 0.

At first order:
i(kuy + lvy) +Dw, =0,
o, Uy + i(kU + IV) uy + w,DU+ ik py = D(v; Du,) V5 i(lu, — kv) ,
O, Vo + (kU + IV) vy + w\DV+ il py = D(vy Dv,) +Us i(luy — kvo)
Dp, = D(v; Dw,) + Us Du, + Vs Dv, .
Integrating the continuity equation gives: w, = —i (ku, + Iv)) z + ¢, , and subsequently, in view of the boundary

conditions (14), ¢, =0, ku,+ lv,=0,and so w, =0. Averaging the momentum equations over depth, it is
found that
Ppo=(Us = k¥Vs) (lug = kvo)/x?,
o= i U+Us)+ I Y+ Y5},
where k = V(K + P).
At second order:
i(ku, + Iv)) + Dwy;=0.
Elimination of u, , v, from this equation and the first-order momentum equations yields:
D(vyD? wy) = [ i Us— Us) = k( ¥s— V)l (lug = kv) ,

with boundary conditions: w,(z) =0 and D’wy(z)=0, at z=0 and z=-h.
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