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Abstract: Children’s Speech Recognition (CSR) is a challenging task due to the high variability in
children’s speech patterns and limited amount of available annotated children’s speech data. We aim
to improve CSR in the often-occurring scenario that no children’s speech data is available for training
the Automatic Speech Recognition (ASR) systems. Traditionally, Vocal Tract Length Normalization
(VTLN) has been widely used in hybrid ASR systems to address acoustic mismatch and variability in
children’s speech when training models on adults’ speech. Meanwhile, End-to-End (E2E) systems
often use data augmentation methods to create child-like speech from adults’ speech. For adult
speech-trained ASRs, we investigate the effectiveness of augmentation methods; speed perturbations
and spectral augmentation, along with VTLN, in an E2E framework for the CSR task, comparing
these across Dutch, German, and Mandarin. We applied VTLN at different stages (training/test) of
the ASR and conducted age and gender analyses. Our experiments showed highly similar patterns
across the languages: Speed Perturbations and Spectral Augmentation yield significant performance
improvements, while VTLN provided further improvements while maintaining recognition perfor-
mance on adults’ speech (depending on when it is applied). Additionally, VTLN showed performance
improvement for both male and female speakers and was particularly effective for younger children.

Keywords: children’s speech recognition; speed perturbations; spectral augmentation; vocal tract
length normalization; end-to-end automatic speech recognition

1. Introduction

Speech and Language Technology (SLT) solutions for children are useful for several
applications, e.g., conversational interfaces for various applications, technologies for di-
agnosis and the treatment of a variety of developmental disorders, and in education and
learning [1,2]. However, research and development on children’s speech-driven SLT ap-
plications are lagging behind those for adults’ speech. There are several reasons for this.
Children’s speech is known to be different from adults’ speech in many aspects, including
acoustic, prosodic, lexical, morphosyntactic, and pragmatic aspects, which are caused by
physiological differences (e.g., shorter vocal tract lengths), cognitive/developmental differ-
ences (e.g., different stages of language acquisition), and behavioral differences [3–5]. For
instance, children’s speech exhibits increased magnitude and variability of temporal and
spectral parameters in vowels, such as duration, fundamental frequency (F0), and formants
(F1–F3), compared to adults’ speech. When around 15 years of age, children’s speech starts
to resemble that of adults [6], which implies that over the course of the years children’s
speech changes and increasingly becomes more ‘adult-like’. Moreover, the vocal tract of a
child is not just a smaller version of an adult vocal tract [7]. Since acoustic features that are
used for speech processing, such as the Mel-frequency Cepstral Coefficients (MFCCs) [8],
are based on a model of the adult vocal tract, acoustic features might not capture the
underlying child vocal tract well. Another major reason for SLT applications and research
on children’s speech being less well developed than those for adults’ speech is the limited
availability of children’s speech datasets. This scarcity is partly due to stricter privacy
standards associated with collecting and sharing children’s data [9,10]. The shortage of
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annotated children’s speech data makes it a low-resource problem. These issues make the
research and development of Children’s Speech Recognition (CSR) systems challenging.

In this study, our main aim is to improve the performance of Automatic Speech
Recognition (ASR) systems for children’s speech in the absence of any children’s training
data (speech and text)—a situation occurring for many languages in the world and leading
to large performance gaps between adults’ and children’s speech recognition performance.
For instance, the authors of [11] showed that an End-to-End (E2E) transformer-based ASR
System (without a Language Model (LM)) trained on English adults’ speech of Librispeech
achieved a 2.89% Word Error Rate (WER) for adults, but the WER increased to 38.8% on
the MyST corpus and reached 87.2% on the OGI Kids Corpus. These high error rates
are dependent on different factors, including age and speech types, and are likely to be
similar for other languages. We aim to improve children’s speech recognition performance
by tackling the two biggest problems outlined above: the mismatch between adults’ and
children’s speech, i.e., the variability in children’s speech on one hand, and data scarcity on
the other hand.

The mismatch between adults’ and children’s speech and variability in children’s
speech is often addressed by capturing the acoustic variability in children’s speech through
improved acoustic features (see also Section 2.2). For example, Vocal Tract Length Nor-
malization (VTLN) [12] has been widely used to reduce the acoustic feature mismatch
between adults’ and children’s speech due to vocal tract length variations [13,14]. Children
typically have a shorter vocal tract length, resulting in higher-frequency sounds; the VTLN
technique normalizes speech features based on the estimated warping factors, which ac-
count for the variations in vocal tract length. To tackle the data scarcity issue, typically,
adults’ speech training data are acoustically modified to resemble children’s speech (see
also Section 2.2), for instance, through pitch modification [15], spectral modification [16],
voice conversion [17], and speed perturbations (SP) [18], and the additional, modified
speech is used as (additional) training material. The chosen scenario, that no child data are
available, also means that no LM will be used. Note that although LM integration could
enhance performance, especially in cases of read speech by adult speakers [19], it might
not effectively model the unique patterns found in children’s speech as the grammar and
structure of children’s speech is different from that of adults. This was also observed in [11],
where it was observed that an E2E transformer-based ASR trained on the adults’ speech
from Librispeech, without an LM, outperformed an E2E ASR with an LM incorporated
when tested on children’s speech from the MyST corpus and OGI Kids corpus.

In this study, we focus on E2E models for the recognition performance advantages they
provide over hybrid models [20] and investigate well-known approaches in hybrid model-
ing for their potential in E2E children speech recognition. We compare the effectiveness
of VTLN and two specifically chosen data augmentation techniques: Speed Perturbations
(SP) [21] and Spectral Augmentation (SpecAug) [22]. Speed perturbation is chosen as it
allows for mimicking a child’s higher pitch and slower speaking rate compared to adults:
increasing the speed rate of adults’ speech increases the pitch and lowering the speed
mimics the slower speaking style of children. Speed perturbation might thus mimic parts
of children’s speech. Spectral augmentation was chosen as it has often been found to make
the ASR system more robust to non-read speech [23]. Research has shown that not all data
augmentation techniques work for all types of diverse speech [23]; we therefore, use these
commonly used augmentation approach in E2E systems, such as SP, rather than any specific
pitch or frequency modification to investigate the effect of a common augmentation ap-
proach on diverse speech to further understand the limitations and possibilities of existing
data augmentation techniques on diverse speech. We study the effect of augmentations (SP
and SpecAug) and normalization (VTLN) separately and together. The augmentation and
normalization techniques are evaluated on both children’s and adults’ speech, with the goal
of improving children’s speech recognition performance while maintaining performance
on adults’ speech when adapting the model to children’s speech.
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Summarizing, in this work our contributions are: (1) We assess the effectiveness
and language independence of the data augmentation and VTLN approaches within E2E
systems for three distinct languages: Dutch and German, two closely related Germanic
languages, and Mandarin, an unrelated Asian tone language. (2) We analyze the effects
of data augmentation and VTLN for different child age groups and gender categories.
(3) Previous work on E2E models of adults’ speech recognition showed that a VTLN
filter-bank front-end provides better performance than the original filter-bank features [24].
VTLN’s potential benefits in the context of E2E children’s speech recognition are explored
here for the first time. (4) Where typically VTLN models are trained on the same adult or
children’s speech data as the ASR model is trained on, we explore various types of training
data for VTLN model training. Moreover, we assess the warping factors and effectiveness
of using adult and/or children’s speech as VTLN training data, as well as monolingual
versus multilingual, multi-speaker speech data for VTLN training. (5) VTLN can be applied
during training and testing or during testing alone, with potentially different results [25].
We investigate the effect of applying VTLN during training and testing and only during
testing for E2E children’s speech recognition across different languages and different speech
styles. Our work can thus be considered a baseline or benchmark in E2E modeling using
VTLN for children speech recognition in the absence of children’s speech data for acoustic
model and language model training as it provides comprehensive results and comparisons
across different languages and age groups.

2. Background on Children’s Speech Recognition (CSR)
2.1. Children’s Speech Databases

The development of children SLT is crucially dependent on the availability of children’s
speech databases. Table 1 is a list of commonly used children’s speech databases. A foremost
difference amongst the databases is the speaker age covered. Article 1 of the UN Convention
on the Rights of the Child “Definition of a child” [26] defines the “child as a human being
who is below the age of 18 years”. However, children’s speech recognition performance is
heavily influenced by the speaker’s age due to the large differences in pronunciation and
language use between different developmental stages in language and speech acquisition,
with speech of younger children typically recognized as much worse by an ASR than that
of older children and with speech from teenagers being recognized only as slightly worse
than that of adults [6,27]. Age-related development stages can be broadly categorized
as: newborn (ages 0–4 weeks); infant (ages 4 weeks–1 year); toddler (ages 12–36 months);
preschooler (ages 3–5 years); school-aged child (ages 6–12 years); and adolescent (ages
13–19) [28]. As newborns, infants, and toddlers are beyond the scope of this work, they
are not further addressed nor discussed. Most children’s speech databases contain English
speech [3,29–32], with only a few datasets available in other languages [33–38]. For the
English language, the earlier databases (first few rows in Table 1) consisted primarily of
read speech consisting of isolated words, commands, and phrases [3,29,39]. Current data
collection efforts are more focused on spontaneous and conversational speech, which is
however not easily obtained with children [40]. Moreover, where earlier databases consist
of speech of only a small number of child speakers, current efforts focus on obtaining
speech from many different speakers, which makes these databases more useful for the
development of children’s speech technology. Recognizing native children’s speech thus
already presents inherent challenges. These challenges increase when recognizing non-
native children’s speech. This is due to the non-native accents in the speech, which is caused
by the influence of the native language on the pronunciation of the words in the non-native
language, mispronounced words, ungrammatical utterances, disfluencies (false starts,
partial words, and filled pauses), and code-switched words. Several databases containing
non-native accented (children’s) speech have been created that can be used to develop
speech technology for non-native (child) speaker groups [34,41]. The availability of these
databases in the public domain along with the organization of several challenges [42–44]
has sped up the much-needed development and improvement of CSR systems. In this
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work, we use the SLT CSR Mandarin speech data [37], kidsTALC German speech data [38],
and a part of the Jasmin Dutch [36] corpus. All these corpora are available on request from
the respective sources for research purposes, which allows for easy benchmarking and
comparisons of the approaches and systems.

Table 1. Common children’s speech databases with details of the language, type of speech, age range,
and number of speakers (#Spk).

Databases Language Type of Speech Age Range #Spk

CID, 1996 [39] en Read speech 5–18 years 436
SAIL-Inhouse, 1997 [3] en Digit, commands and phrases 5–18 years+ Adult -
CMU Kids Corpus, 1997 [29] en Read speech 6–11 years 76
CHIMP, 1998 [45] en Read speech 6–14 years 97
OGI Kids Corpus, 2000 [30] en Spontaneous speech KG to 10th Grade 1100
TBALL, 2005 [46] en, es Read speech 5–8 years 256
PF STAR, 2005 [34] en, de, sv, it Read and spontaneous (native + non-native) 4–15 years 158
FBK ChildIt, 2005 [35] it Read speech 7–13 years 170
CU Read, 2006 [31] en Isolated words and sentences 6–11 years (1–5 Grade) 663
CU Story, 2006 [32] en Read and summarized stories 8–11 years (3–5 Grade) 106
CGN-Jasmin, 2006 [36] nl Read and machine interaction speech (native+non-native) 6–18 years 190
My Science Tutor (MyST), 2011 [40] en Children and virtual tutor conversations 7–11 years (3–4 Grade) 1370
TLT-school, 2020 [41] en, de Spontaneous speech: Non-native 9–16 years 10k
SLT CSR Challenge, 2021 [37] zh Read and conversational 4–11 years + Adult 980
kidsTALC, 2022 [38] de Continuous speech 3.5–11 years 47

KG = Kindergarten, Languages: ISO 639-1 language codes: English = en, Spanish = es, German = de, Swedish = sv,
Italian = it, Chinese = zh, and Dutch = nl.

2.2. Brief Overview of Research on Children’s Speech Recognition Using Adult-Speech-Based ASRs

Given the limited availability of children’s speech data, many studies employ ASR
models trained on and for adults’ speech to recognize children’s speech, as illustrated in
Figure 1 (where solid lines indicate training and dashed lines indicate testing). Although
using ASR models trained on adults’ speech for the recognition of adults’ speech in many
cases leads to reasonably good results, using these for children’s speech recognition results
in sub-optimal recognition performance due to the acoustic and linguistic differences in
adults’ and children’s speech (Figure 1a).

Figure 1. (a) ASR model trained on adults’ speech and tested on adults’ and children’s speech;
(b) modification of adults’ speech or features during the training phase to make the adults’ speech
more children’s speech-like (solid orange lines); (c) modification of the children’s speech or features
during the test phase to make the children’s speech more adults’ speech-like (green dashed block).
Solid lines indicate training and dashed lines indicate testing. Approach (b,c) can also be combined,
like in this paper.
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To improve children’s speech recognition, various approaches have been explored to
adapt adult speech-based systems. These approaches can be categorized into two main
strategies, indicated in Figure 1b,c. Firstly, Figure 1b: Adaptation of adult training data:
adults’ speech is perturbed, e.g., its speed, duration, or pitch is acoustically modified
to resemble children’s speech, or the spectral features are perturbed through spectral
feature modifications [16], adaptation techniques [4], speaker adaptive training [13], or
normalization techniques [12]. The modified adult data is then added to the pre-existing
adults’ speech, and the ASR system is retrained and used for testing of the adults’ and
children’s speech (green, dashed lines). Secondly, Figure 1c: Modification of children’s
speech or acoustic features during test: The ASR is only trained on adults’ speech, as
in Figure 1a. However, the children’s speech is modified prior to testing to match the
characteristics of the adults’ speech or features used in training.

Until recently, hybrid Acoustic Model and Language Model (AM-LM) systems domi-
nated CSR applications and focused on capturing the acoustic variability in children’s
speech through improved acoustic features [15,47]. More recently, E2E models have
been proposed for CSR applications in which, typically, adults’ speech training data is
acoustically modified to resemble children’s speech using augmentation or conversion
techniques [17,48]. In the remainder of this section, we present a brief (non-exhaustive)
overview of research on CSR covering the commonly used approaches where perturbed
adults’ speech is used for training, first for hybrid systems and then for E2E systems. Note
that some of the techniques included in this overview assume the availability of children’s
speech for training/fine-tuning (unlike the scenario in our research). We describe the
databases and languages used; the models and techniques used, along with the training
and test details; and the improvements obtained with the applied technique, focusing on
the choice of training speaker groups (adult and/or child). This analysis helps us identify
gaps and informs our approach to enhance children’s speech recognition. An overview of
the papers that use hybrid models is presented in Tables 2 and 3 for the E2E models.

Table 2. Summary of CSR research using hybrid ASR systems: databases details, techniques, and
models used.

Literature Corpus:Lang. Techniques Training|Test Details Model Metric: Improvement

Potamianos et al., 2003 [4] SAIL-own: en Frequency warping, model adaptation
Adult|Children GMM WER: 15.9% to 8.7%
Adult + Children Children GMM WER: 7.6% to 5.6%

Ghai et al., 2009 [14] TIDIGITS: en VTLN and spectral smoothing Adult |Children GMM WER: 11.3% to 2.15%

Cosi 2009 [49] FBK ChildIt: it SMAPLR and VTLN
Adult Female |Children GMM PER: 28.7% to 18.0%
Adult + Children |Children GMM PER: 17.4% to 12.3%

Shahnawazuddin 2016 [47] PF-STAR: en Adaptive-liftering + VTLN Adult WSJCAM0|PF_STAR DNN WER: 24.2% to 21.4%

Kathania et al., 2018 [15] PF-STAR: en
Loudness, voice-intensity, and voice-probability Adult WSJCAM0| PF_STAR DNN WER: 19.6% to 12.7%

Adult + Children |Children DNN WER: 11.4% to 8.82%

Shivakumar et al., 2020 [50] Multiple: en Transfer learning (based on TEDLIUM) Adult TEDLIUM—CU Kid’s, OGI, CHIMP|CID TDNN WER: 39.3% to 7.8%

Kathania et al., 2022 [51] PF-STAR: en Formant modification, VTLN, and SAR Adult WSJCAM0 |PF_STAR TDNN WER: 14.1% to 8.69%

Table 3. Summary of CSR research using E2E ASR systems: databases details, techniques, and
models used.

Literature Corpus:Lang. Techniques Training|Test Details Model Metric: Improvement

Chen at al. 2020 [18] SLT Challenge: zh Pitch, speech, tempo, volume, and reverberation Adult + Children|Children E2E CER: 16.2% to 13.6%

Ng et al., 2020 [52] SLT Challenge: zh
Transfer Learning (base on Adult) Adult|Child E2E CER: 38.5% to 23.6%
SpecAugment, RIR, and volume perturbation Adult|Child E2E-LM CER: 23.6% to 20.1%

Gelin et al., 2021 [53] Lailo: fr Simulating reading mistakes Adult Common Voice|Lailo E2E PER: 22.9% to 19.9%

Shivakumar et al., 2022 [11] MyST,OGI Kids: en Fine-tune on MyST|greedy decoding Librispeech + librivox|MyST E2E-LM WER: 25.46% to 16.01%

Singh et al., 2022 [16] Internal:en Spectral warping, formant perturbation, and VTLP Librispeech Adult|Child E2E WER:36.1% to 32.2%

Zhao et al., 2023 [33] Samromur: Icelandic Formant, pitch, and vowel stretching
Adult|Child E2E WER: 51.3% to 36.3%
Adult + Child|Child E2E WER: 28.7% to 26.5%
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Hybrid systems generally use Gaussian Mixture Models (GMM) or Deep Neural
Network (DNN)-based AM-LM and are typically evaluated using Word Error Rate (WER)
as the evaluation metric (see also Table 2). Typically, in hybrid systems trained with adults’
speech, research focuses on developing acoustic features that capture or reduce acoustic
variability in children’s speech or make the adult acoustic features more like the features of
children’s speech, often using feature normalization that normalizes vocal tract differences
(i.e.,vocal-tract-related features) or that normalizes source differences (i.e., source-level
features). The following are examples of vocal-tract-related features: Work in [4] introduced
front-end frequency warping and filtering techniques on digit recognition tasks; others
used VTLN-based normalization to reduce acoustic variability in features used for the CSR
task [13,14,47]. The VTLN features were found to work for both English and Italian [25,49]
(see Table 2, second column for the codes of the languages). At the source-level, pitch
modifications change adults’ speech pitch frequency (source) to that of children’s speech
(target) [15,54], and formant modification approaches, which aim to reduce the difference
in vocal tract resonances (formant frequencies) between adult and child speakers [51], have
been found to enhance CSR systems. A second approach that is investigated to improve
CSR is to add children’s speech data to the training data for training from scratch or fine-
tuning, which adapts the adult ASR to the children’s speech [50]. However, children’s
speech data are not always available, making this approach not always feasible.

Next, we discuss several approaches used in E2E systems for CSR, as detailed in
Table 3. The E2E systems require a substantial amount of children’s speech training data for
CSR. Hence, the commonly used approach is to acoustically modify adults’ speech such that
is sounds more like children’s speech. For instance, in [18], the authors used various data
augmentation techniques, including pitch, speed, tempo, volume perturbation, spectral
augmentation, and reverberation, resulting in nearly tenfold more training data. In [53],
data augmentation is carried out by synthesizing reading mistakes (simulating word-
level repetitions and substitutions) to improve recognition performance of E2E models.
In [16], segmental spectrum warping and perturbations in formant energy are introduced
to generate a children-like speech spectrum from that of an adult’s speech spectrum. Voice
conversion by changing the spectral characteristics of adults’ speech is also explored to
generate child-like speech from adults’ speech as in [17,33]. Secondly, in situations where
some children’s speech data are available, transfer learning approaches could be used [52]
or the acoustic and language models are adapted to the children’s speech and text [11].
Moreover, recently, a common trend has been to enhance recognition performance by
fine-tuning large self-supervised speech models with target data, e.g., recent work in [55]
demonstrated that fine-tuning Whisper on children’s speech significantly improved CSR
performance for several English language databases, compared to non-fine-tuned Whisper
models. However, similar to transfer learning, this approach involves using children’s
speech, which differs from our scenario where only adults’ speech is used.

Summarizing Tables 2 and 3 shows that in the scenario that no children’s speech
data are available for training, for hybrid systems, most research is carried out on English
and read speech data, while the more recent research using E2E models focus on a larger
variety of languages. Feature adaptation techniques such as VTLN for children’s speech
are restricted to GMM-HMM and DNN-HMM systems, which give the best performances
on (English) read speech in the range of 10–20% WER. Recognition performances with
E2E systems on several other languages reach similar performances on read speech and
more than 30% WER on spontaneous speech. Current trends in E2E models employ data
creation/generation techniques to improve CSR. However, the feasibility and effect on
the recognition performance of using normalization or adaptation in E2E based models,
especially for children’s speech recognition, is unexplored and is the topic of this paper.

3. Methodology

This section provides an overview of the datasets (see Table 4), the augmentation and
normalization techniques, the training configurations, and the experimental set-up used.
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Table 4. Details of the Dutch, German, Mandarin adults’ and children’s speech datasets used in
this study.

Language
Datasets Speaking Style Age Range #Speakers #Utterances|#Hours

Training Validation Test-Read Test-CTS/HMI

Dutch CGN Read|CTS 18–65 2897 704,293|433 70,498|43 409|0.45 3884|1.80
Jasmin-DC Read|HMI 06–13 71 - - 13,104|6.55 3955|1.55
Jasmin-DT Read|HMI 12–18 63 - - 9061|4.90 2723|0.94

Jasmin-NnT Read|HMI 11–18 53 - - 11,545|6.03 3093|1.16

German CommonVoice Read - 3413 330,454 |452.8 55,050|75.23 55,102|75.5 -
kidsTALC Read 3–11 47 9187|9.18 1676|1.68 2413|2.2 -

Mandarin SLT-SetA Read 18–60 1999 196,616|276.7 22,764|31.52 23,950|33.41 -
SLT-SetC1 Read 7–11 927 24,109|23.38 2701|2.48 3042|2.79 -
SLT-SetC2 Conversational 4–11 166 25,245|23.49 2955|2.85 - 3303|3.14

3.1. Databases

The Dutch Corpora: Corpus Gesproken Nederlands (CGN) [56]: The CGN is a corpus
containing Dutch speech spoken by native speakers from the Netherlands and Flanders.
In this study, we only used the data recorded in the Netherlands. The corpus consists of
monologue and multilogue speech spoken by speakers within the 18–65 age range. It has
15 different speech types, which include read speech, lecture recordings, broadcast data,
spontaneous conversations, and telephonic speech. The unprocessed training data consist
of the speech from all components summing to around 480 h spoken by 1187 female and
1710 male speakers. Two test sets were used: broadcast news (BN) and conversational
telephone speech (CTS). The pre-processing procedures and test partitions are the same
as in [57]. The Dutch models used in this study are trained on the adults’ speech from the
CGN corpus.

Jasmin-CGN corpus [36]: Jasmin-CGN corpus is an extension of the CGN corpus. It con-
sists of read speech and Human–Machine Interaction (HMI) speech spoken by Dutch chil-
dren, teenagers and older adults, and teenagers and adult non-native speakers of Dutch.
Here, all native and non-native children’s and teenager’s speech (Dutch Native Children:
DC; Dutch Native Teenagers: DT; and Dutch Non-Native Teenagers: NnT) are used for
testing only.

The German Corpora: Mozilla’s Common Voice (CV): The German adults’ speech
dataset used in this study is obtained from Mozilla’s Common Voice (CV) project [58]. It is
a large open-source dataset consisting of read speech where speakers contribute speech by
reading words from a screen. The dataset contains metadata, including the gender, age, and
accent region of the speaker. In this work, around 600 h of standard-accented German from
adult speakers is used. The training, validation, and test splits are those as used in [59].
The German models are trained on the adults’ speech from the CV corpus.

kidsTALC dataset: The German children’s speech dataset used in this study is the
kidsTALC dataset [38]. The kidsTALC dataset is specifically designed to support the
development of speech-based technological solutions and contains 25 h of continuous
speech from children aged 31/2–11 years. In this study, all children’s speech from the
kidsTALC validation set is used for testing our models (as the kidsTALC test set does not
contain transcripts).

The Mandarin Corpus: This dataset was released as part of the Children Speech
Recognition Challenge (CSRC) organized as an event of the IEEE Spoken Language Tech-
nology 2021 workshop [37]. It consists of 3 sets of Mandarin speech data, i.e., Set A contains
341 h of adult read speech, Set C1 consists of 29 h of child read speech, and Set C2 of 30 h of
child conversational speech. In this paper, we follow the data splits for training, validation,
and test from [52]. For the Mandarin experiments, we train the Mandarin ASR with Set A
of adults’ speech and test on the test sets of Set A, Set C1, and Set C2.
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3.2. Augmentation and Normalization Techniques

Speed Perturbation (SP): SP involves resampling the original raw speech signal,
which results in a warped time signal. Given an audio speech signal s(t), time warping by
a factor β gives the signal s(βt). The Fourier transform of s(βt) is S(ω/β)/β. As a result of
the changes in the time domain, which affect the number of frames in the utterance, the
time warping produces shifts in the frequency components (shift of the speech spectrum);
thus, speed perturbation affects both tempo and pitch [21]. The adults’ speech training
data was perturbed at 90% and 110% of the original rate, creating a 3-fold training set.

Spectral Augmentation (SpecAug): SpecAug squeezes and stretches the spectrogram
locally and has been found to improve recognition performance in conversational and
non-read speech type scenarios [22]. It is applied to the log mel spectrogram of the input
audio rather than the raw audio itself. It consists of three augmentation policies: (1) time
masking; (2) frequency masking (that masks a block of consecutive time steps or mel
frequency channels); and (3) time-warping, which randomly warps the spectrogram along
the time axis. SpecAug was applied with its default settings, i.e., the maximum width of
each frequency mask F = 30, the maximum width of each time mask T = 40, the number
of frequency and time masks = 2, and the masked parts are filled with the mean.

Vocal Tract Length Normalization (VTLN): The vocal tract length varies from person
to person and is quite different for children and adults. The differences in vocal tract length
lead to differences in the spectrum, i.e., the formant frequencies shift in frequency. The
process of compensating spectral variation due to the length of the vocal tract is known
as VTLN. It is a normalization technique that is often used for speaker recognition and
related tasks [60]. Basic normalization techniques linearly scale the center frequencies of the
filter bank in the front-end feature extractor to approximate formant frequency scaling [61].
More recent approaches include calculating a linear feature transform for each VTLN warp
factor, i.e., [12].

xα = Aαx + Bα = WαX; (1)

where Wα = [Aα; Bα] is the affine transformation matrix, x is the feature vector, α is the
warping factor (chosen using grid search), xα is the transformed feature vector for warp
factor α, Aα is the linear transformation matrix and Bα is the linear bias for warp factor α,
and X is the extended feature set [62]. Once the warping factors are estimated, a piece-wise
linear warping function is implemented that maps the frequency range in three segments.
Let the warping function be W( f ), where f is the frequency. The central segment maps f
to f /α, where α is the VTLN warp factor (typically in the range 0.8 to 1.2). The process of
VTLN warps the features to that of an ideal or reference speaker (αre f = 1). In adult male
speakers, the energy in the speech spectrum tends to be concentrated towards the lower
frequencies, whereas in adult female speakers, it is generally higher; hence, their estimated
warping factors are around αmale ≥ αr and α f emale ≤ αr, respectively. For children, since
their spectrum energies are typically even higher than those for female speakers, it is
expected that αchild < αr compresses the frequency axis closer to the reference. Feature
normalization with VTLN is a two-step process, i.e.,

1. Train a VTLN model on a given speech dataset.
2. Estimate the warping factor α for an utterance and normalize its features with the

factor α.

3.3. Experimental Setup

Baseline CSR System: For our experiments, we use the conformer architecture, which
combines convolution neural networks and transformers to model both local and global de-
pendencies, respectively [63,64]. We use the ESPnet toolkit [19] to run the experiments [65].
We train separate E2E systems for each of the three languages, i.e., Dutch, German, and
Mandarin, using the adults’ speech of the respective languages, and test the systems on
their respective adults’ and children’s speech test sets. All of the audio files are single-
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channel and recorded at a 16 kHz sampling rate. The training configuration of the baseline
E2E model uses 80 dimensional log-mel filterbank features with 3-dimensional pitch fea-
tures. The experiments were carried out till 20 epochs. For training the Dutch and German
ASR systems, we use byte pair models with 5000 and 1000 unigram tokens, respectively.
Since Mandarin is not an alphabetic language, the Mandarin ASR system instead uses a
dictionary with ∼6 k characters. The non-language symbols (speaker filler, laugh, and
unknown) are only available for the Dutch language and are thus only used in the Dutch
experiments. The Mandarin and German databases mostly consist of read speech and are
likely not to contain fillers (which are also not annotated). To evaluate the performance of
our models, we compare them to a state-of-the-art pre-trained models, the Open-AI Whis-
per models [66]. Detailed results are provided in Appendix A. In short, for adults’ speech,
our model outperformed Whisper small, medium, and large despite not using a language
model, for all three languages, except for German, where Whisper large outperformed our
model, and Mandarin where Whisper medium outperformed our model. Hence, we carry
out our experiments with the conformer model.

Augmentation and Normalization Experiments: To study the effect of augmentation
and normalization, three experiments were carried out:

Experiment 1: Augmentation—First, the adults’ speech of each of the three languages
was perturbed using SP. For each language, the perturbed adults’ speech, combined with
the original adults’ speech, was then used to retrain the respective baseline models, after
which these “SP-augmented” models were retrained with SpecAug applied during training
(SP + SpecAug). The SP and SP + SpecAug models were tested on the children’s speech of
the respective languages; note that no changes were made to the audio signal of the test
sets. This scenario is depicted in Figure 1b.

Experiment 2: Normalization—The Effect of VTLN: For each language, we train a VTLN
model on only the adults’ speech. VTLN training does not require any transcriptions
of the speech data. Since children’s speech data without transcriptions is (more) often
readily available (than with transcriptions that are often challenging to obtain), we add
an experiment where the VTLN models are trained on (untranscribed) children’s speech.
Table 5 provides an overview of the trained VTLN models and the type of data they were
trained on. VTLN is implemented during the feature extraction process as follows: during
the training process of the ASR, the adults’ speech training set features are normalized
using the estimated VTLN factors obtained with the VTLN model trained on adults’ speech
or the VTLN model trained on children’s speech, as indicated in Table 5. ASR models
(following the baseline set-up) are then trained with these normalized features, one new
ASR model for each VTLN model (i.e., three for Dutch and two for both German and
Mandarin). This training scenario is depicted in Figure 1b. During test, the features of the
adults’ and children’s speech test sets are extracted and normalized to avoid any mismatch
between the training and testing acoustic features and subsequently passed through the
ASR system for decoding. This testing scenario is depicted in Figure 1c.

Table 5. Overview of the different VTLN models trained on the three languages; the age ranges of
the speakers; and the types of speech.

Language VTLN Model VTLN Training Dataset Age Range Speech Type

Dutch
VTLNCGN CGN-train 18–65 Read

VTLNJas-DCDT Jasmin-{DC, DT} 6–18 Read + HMI
VTLNJas-DCDTNnT Jasmin-{DC, DT, and NnT} 6–18 Read + HMI

German VTLNCV CV-train - Read
VTLNkidsTALC kidsTALC-train 3–11 Read + Conversational

Mandarin VTLNSetA SetA-train 18–60 Read
VTLNSetC1C2 SetC1C2-train,dev 4–11 Read + Conversational

Multiple VTLNMultiV1
Randomly selected ∼5 h of data from different 3–65+ Read + HMI + Conversationalspeaker groups in Dutch, German, and Mandarin
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Experiment 3: The Combined Effect of Augmentation and Normalization: To study the effect
of augmentation and normalization combined (i.e., the combination of the scenarios in
Figure 1b,c), we combine the set-ups of Experiment 1 (the ASR models are trained with
SP + SpecAug) and Experiment 2, with the difference that VTLN is applied to the ASR
models in two ways:

• During training and testing: Each of the VTLN models for each language is applied
during training to adult training data as in Figure 1b and also applied during testing
to the adults’ and children’s speech test sets as in Figure 1c, yielding three ASR models
for Dutch and two ASR models for both German and Mandarin.

• During testing only: Each of the VTLN models for each language is only applied during
the test stage to the adults’ and children’s speech test sets as in Figure 1c.

Moreover, in addition to the language-specific adults’ and children’s speech-based
VTLN models, we also trained a VTLN model (VTLNMultiV1) with speech data from diverse
speaker groups from all three languages. Specifically, we randomly selected around 5 h of
speech from the Dutch, German, and Mandarin adults’ and children’s speech databases,
selecting from the three available speaking styles (read, HMI, and conversational speech).
The motivation for training a VTLN model on such diverse speech is that preliminary
findings have shown that VTLN models can be applied cross-lingually [67]. We therefore
explore the feasibility of using a common VTLN model that could work across languages.

Evaluation: Recognition performance for the Dutch and German experiments is
reported in WER and for Mandarin in Character Error Rate (CER). WER and CER are
calculated as the ratio of word/character insertion, substitution, and deletion errors in
the recognized transcription and the total number of spoken words/characters in the
ground truth transcription [68]. We conduct an analysis of the estimated warping factors
for each speaker group in the adults’ and children’s test sets to investigate the link between
the estimated warping factors and the recognition performance. To further understand
the possibilities and limitations of VTLN, we analyzed the WER results with respect
to age and gender for Dutch (as this information is only available in the Dutch-Jasmin
children’s speech database). To assess the statistical significance of the results, we employ
the procedure outlined in [69], which utilizes matched pairs sentence-segment word error
(MAPSSWE) [70] to determine whether the observed differences in WER are statistically
significant. We report p-values (provided in Appendix B) to indicate significant differences
at the levels of p = 0.001 (*), p = 0.01 (“‡”), or p = 0.05 (“†”).

4. Results and Analyses
4.1. Baseline Model Performance

Dutch: The results of the Dutch experiments are presented in Table 6 split out for
Dutch adults’ speech (CGN), Dutch Children (DC), Dutch Teenagers (DT) and Dutch Non-
Native Teenagers (NnT), for read and HMI speech, separately. Moreover, the averages
over the three children/teenager speaker groups for both speaking styles are reported. The
system trained on Dutch adults’ speech without any augmentation or normalization, i.e.,
the baseline model in Table 6 (row a), achieves a 9.6% WER and 23.9% WER on read and
CTS adults’ speech on the CGN test sets, respectively. These results compare well to those
reported in the literature on the CGN datasets, where [71] obtained a WER of 6.6% and
21.6% on CGN read and CTS speech, respectively, with a TDNNF and RNNLM model,
(i.e., with the use of an LM, which we do not use in E2E models). To further evaluate our
baseline model, we also trained a TDNN-BiLSTM model with SP and a tri-gram LM, which
achieved WERs of 7.0% and 26.4% on CGN read and CTS speech, respectively, which are
similar to those of [71] while not using an RNNLM. This indicates that our Dutch conformer
E2E model is a strong baseline model. On children’s speech, the baseline model shows, as
expected, much worse results: an average of almost 40% WER for read speech and 50% for
HMI speech, with the best results for DT and the worst for the NnT. On the same database,
but with the use of an RNNLM, the authors of [27,71] reported somewhat better results: an
average of 27.3% WER for read speech and 31.7% for HMI speech. Our TDNN-BiLSTM
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model obtained a WER of 40.2% for read speech and 47.7% for HMI speech, which is a bit
worse than the results by [71]. The difference can be attributed to the lack of an RNNLM
for our TDNN-BiLSTM model, which improved the performance of the teenagers speech
in [71].

Table 6. Results in %WER, with significance levels, for the Dutch ASR when trained on CGN adults’
speech and tested on CGN adult and the native and non-native children’s and teenager’s speech from
Jasmin-CGN, split for read speech and conversational speech. The lowest WERs for each speaker
group across all systems are highlighted in bold.

CGN Jasmin: Read Jasmin: HMI Jasmin: Avg

Training Augmentation Normalization Rd CTS DC DT NnT DC DT NnT Read HMI

(a) None None 9.6 23.9 42.9 22.1 54.0 50.2 40.1 59.9 39.7 50.1

(b) SP None 7.0 * 22.0 * 36.7 * 20.5 * 55.6 43.8 * 35.4 * 60.3 † 37.6 46.5
(c) SP + SpecAug None 7.0 * 20.2 * 36.1 * 18.8 * 51.1 * 40.1 * 27.8 * 52.6 * 35.3 40.2

(d) None VTLNCGN 9.3 23.6 38.8 * 21.2 * 53.4 45.9 * 34.9 * 59.0 37.8 46.6

C
G

N
:A

du
lt

(e) None VTLNJas-DCDT 9.3 24.1 36.3 * 21.8 54.1 42.0 * 35.5 * 58.6 † 37.4 45.4
(f) None VTLNJas-DCDTNnT 9.5 24.2 35.0 * 21.2 ‡ 53.0 ‡ 41.1 * 32.8 * 57.5 * 36.4 43.8

† p < 0.05, ‡ p < 0.01, and * p < 0.001.

German: The results of the German experiments are presented in Table 7. The results
are reported for adults’ speech from the CV dataset and for children’s speech from the
kidsTALC dataset. The baseline model, in Table 7 (row a), achieves a WER < 10% on
German adults’ speech, showing that this is a fairly strong baseline, similar to prior work
using the same dataset, which achieved a WER of 5.8% using a Conformer-RNN-T model
with SpecAug augmentation [59]. However, the baseline model performs drastically worse
on children’s speech. The performance on the kidsTALC dataset is close to 78% WER. The
only available results on the kidsTALC dataset used models trained on both kidsTALC
and CV [38,72]. The work in [38] reported a 32.5% PER (WER not reported) when trained
with kidsTALC and CV, while [72] reported a 21.5% PER (47.8% WER) with Wav2Vec
fine-tuned on kidsTALC and CV. To further evaluate our baseline model, we trained our
conformer model (without LM) on the kidsTALC and CV databases, with SP and SpecAug,
which achieved a 5.1% WER on the adult CV speech and 40.6% WER on the kidsTALC
development set. Thus, our conformer baseline is a good enough baseline. The performance
drop from adult to children’s speech can be attributed to the high acoustic variability in
children’s speech and partly to the difference in the recording conditions of the datasets.

Table 7. Results in %WER, with significance levels, for the German ASR when trained on CV adult
database and tested on CV adults’ and children’s speech from the kidsTALC dataset. The lowest
WERs for each speaker group across all systems are highlighted in bold.

Training Augmentation Normalization CV kidsTALC

(a) None None 9.6 77.9

(b) SP None 6.7 * 71.1 *
(c) SP + SpecAug None 5.1 * 67.2 *

(d) None VTLNCV 9.7 76.4 ‡C
V

:A
du

lt

(e) None VTLNkidsTALC 9.8 * 72.3 *
† p < 0.05, ‡ p < 0.01 and * p < 0.001.

Mandarin: The results of the Mandarin experiments are shown in Table 8. The results
are reported on the adults’ speech of Set A, and the two children’s speech datasets Set
C1 (read) and Set C2 (conversational) and average over both children’s speech sets. The
baseline model, in Table 8 (row a), obtains a CER of 16% on the read adults’ speech and
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an average CER of 33.5% on the children’s speech test sets, which is better than the best
reported results so far of 38.5% averaged over Set C1 and Set C2 [52], indicating that we
have a strong baseline. Interestingly, for the read children’s speech, the results are highly
similar to those for the adult read speech; however, the performance drops dramatically for
the conversational children’s speech to a CER of 50.8%. A possible reason for the degraded
performance of Set C2 is two-fold: first, the difference between read and conversational
speech where conversational speech is always harder to recognize than read speech; second,
Set C2 contains speech from younger children than those in Set C1.

Table 8. Results in %CER, with significance levels, for the Mandarin ASR when trained on SLT adult
database and tested on adults’ and children’s speech of the SLT database. The lowest CERs for each
speaker group across all systems are highlighted in bold.

Training Augmentation Normalization SetA SetC1 SetC2 Average

(a) None None 16.4 16.1 50.8 33.5

(b) SP None 11.0 11.2 43.6 27.4
(c) SP + SpecAug None 9.9 * 10.0 * 38.8 * 24.4

(d) None VTLNSetA 16.3 * 15.5 * 46.4 * 31.0Se
tA

:A
du

lt

(e) None VTLNSetC1C2 16.7 * 15.7 * 46.3 * 31.0
† p < 0.05, ‡ p < 0.01, and * p < 0.001.

4.2. Experiment 1: Augmentation

Dutch: For Dutch, adding speed-perturbed native adults’ speech data to the train-
ing data Table 6 (row b; see Appendix B, Table A2 for the p-values) led to a significant
performance improvement for native children’s and teenager’s speech, with absolute
improvements ranging from 1.6% (DT-Read) to 6.4% (DC-HMI). However, adding speed-
perturbed adults’ speech to the training data led to a significant performance degradation
for the non-native teenagers for HMI speech. Apparently, adding more native-accented
data to the training data increases the bias against non-native accented speech. This can
potentially be attributed to the fact that the SP applied to CGN increases the native speech
variability but not the non-native variability. Adding SpecAug (row c) led to a significant
further reduction in WER for all native speaker groups, and is (as expected) particularly
effective in the case of HMI speech, which showed the largest improvements. Unlike the
SP-condition, the SP + SpecAug condition led to recognition results for the non-native
speakers that significantly outperformed the baseline. Overall, the combined effect of
SP + SpecAug gave an absolute average improvement of 7.2% over the children’s speech
baseline. This improvement for children’s speech did not come at the cost of a deterioration
for adults’ speech. Rather, adding SP + SPecAug to the training data also led to a significant
WER improvement of 2.6% on read adults’ speech and 3.7% on continuous adults’ speech.

German: For German, the effects of adding SP data and SpecAug are similar to
those obtained for Dutch. Focusing on the children’s speech, Table 7 (rows b, c; see
Appendix B Table A3 for the p-values) shows that adding SP leads to a significant 6.8%
absolute improvement for children’s speech, while additionally adding SpecAug further
increases performance with 3.9% WER. Adding perturbed adults’ speech data (SP) along
with SpecAug during training also led to an improvement on the adults’ speech, with an
overall significant improvement of 4.5% WER.

Mandarin: For Mandarin, adding SP as shown in Table 8 (row b; see Appendix B
Table A4) improves children’s speech recognition for both read (Set C1) and spontaneous
(Set C2) speech, with an average improvement of 6.1% CER, although this improvement
is not significant. The best performance is again obtained for the combination of SP and
SpecAug, leading to an average improvement over the baseline of 9.1%, which significantly
outperforms the baseline model for all datasets. The largest absolute improvement for both
SP and SP + SpecAug (Table 8, row c) was found for the spontaneous speech in Set C2 (12%
vs. 6.1% for Set C1) as compared to the baseline. This is in line with the findings for Dutch,
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where SpecAug is particularly effective in the case of non-read speech compared to read.
Also, we observe that adding adult perturbed data with SpecAug results in a significant
performance improvement for the adults’ speech (Set A) of 6.5% compared to the baseline.

4.3. Experiment 2: Normalization—The Effect of VTLN

To study the impact of VTLN, we first calculated and analyzed the warping factors
for the children’s speech test sets in each language. These factors were estimated using
the VTLN models in Table 5. The distribution of the warping factors for each test set is
visually represented in the box plots in Figure 2. In each plot, the lower and upper ends
of the whiskers correspond to the minimum and maximum values of the warping factors.
The straight solid orange horizontal line inside the box represents the median, while the
green triangular marker indicates the mean of the warping factors. The dotted red line in
each plot is the average value of the warping factors for adults’ speech in that language.

Dutch: The warping factor plots are shown for the VTLNCGN and the VTLNJas-DCDTNnT
models (note that the VTLNJas-DCDT model gave almost the same warping factors as the
VTLNJas-DCDTNnT model). In both Dutch plots, the left three warping factors in each plot
correspond to read speech (non-shaded boxes), while the right three warping factors corre-
spond to HMI speech (shaded boxes). With the VTLNCGN model, i.e., VTLN trained on
only CGN adults’ speech, all speaker groups have almost the same warping factors, α < 0.9
(Figure 2a), which indicates that the warping factors have not been estimated well. This
may be due to the fact that the model is trained with only adults’ speech from CGN rather
than also with children’s speech whose warping factors we aimed to estimate. However,
when the VTLN model is trained with children’s speech, VTLNJas-DCDTNnT, the warping
factors are estimated well (children’s speech α < 1 and adults’ speech α ≈ 1) (Figure 2b).
These warping factors are similar to those reported for other studies in English [73]. The
warping factors for read and HMI speech from both Dutch VTLN models are highly similar,
only slightly higher for HMI speech than for read speech.

Figure 2. Box plots of the warping factors estimated across different child speaker groups us-
ing different VTLN models. Dutch: (a) VTLNCGN, (b) VTLNJas-DCDTNnT; German: (c) VTLNCV,
(d) VTLNkidsTALC; and Mandarin: (e) VTLNSetA, (f) VTLNSetC1C2. For each children’s speech test set,
the orange horizontal line within the box is the median. The triangular marker indicates the mean
of the warping factors (also indicated in text at the top of the Figure). The top and bottom range
represent the minimum and maximum values of the warping factors. Red dotted line: warping factor
for adult speakers.

The effect of VTLN on ASR system performance without any augmentations is shown
in Table 6 (rows d–f). With VTLNCGN, despite the not-so-great estimation of the warping
factors, the WER is lower than the baseline (row a) for almost all speaker groups but only
significantly so for the native child speaker and teenager speaker groups. This is probably
due to the warping factors having α < 0.9, which means that the children’s speech frequen-
cies are lowered, making them more similar to adults’ speech, hence leading to a smaller
mismatch with the adult training speech and improved recognition performance. The better
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estimated warping factors of VTLNJas-DCDT (not shown in Figure 2) and VTLNJas-DCDTNnT
(see Figure 2b) led to a further improvement for children’s speech (rows e, f), with the
best results for the VTLN model trained on speech data that also included the non-native
children’s speech, yielding a significant improvement over baseline for all speaker groups.
For DC-Read, the performance is even better than when SP and SpecAug are applied
(compare Table 6 rows (c) and (f)). On average, the performance with VTLNJas-DCDTNnT is
better than VTLNCGN. Nevertheless, even the VTLN model trained with adults’ speech
only provided a significant improvement over the baseline. For the adult test sets, results
for the different VTLN models are not significantly different from baseline.

German: The estimated warping factors in Figure 2c,d show that VTLNCV led to rela-
tively constant warping factors (indicated by the very short whiskers), whereas VTLNkidsTALC
exhibited more varied warping factors for children’s speech (much longer whisker), similar
to what we observed for Dutch for VTLNJas-DCDTNnT: a VTLN training set with more
diverse children’s speech led to more diverse warping factors. The results in Table 7 (row
d, e) show that the performance of the VTLN-based models significantly outperform the
baseline model (Table 7, row a) for children’s speech; however, they do not outperform the
augmentation-based models. Similar to the Dutch findings, the use of the VTLN model
trained on adults’ speech only (VTLNCV) resulted in a modest though significant improve-
ment (1.5% absolute WER), while VTLNkidsTALC showed a larger improvement of 5.6%
absolute WER as compared to baseline. Possibly, the varying warping factors estimated
for the kidsTALC test set resulted in better normalization and performance improvement.
Applying VTLN to adults’ speech did not lead to improvements compared to the baseline
when the VTLN model was trained on adults’ speech, and in fact it significantly degraded
performance when the VLTN model trained on children’s speech was used.

Mandarin: Unlike what was observed for Dutch and German, the estimated warping
factors in Figure 2e,f show that both VTLNSetA, trained on adults’ speech, and VTLNSetC1C2,
trained on children’s speech, exhibit varying warping factors. The warping factors esti-
mated for Set C2 (spontaneous speech) are in a lower range than Set C1 (read speech).
This difference can likely be attributed to Set C2 containing speech of children younger,
with shorter vocal tract length, than those in Set C1. The shorter vocal tract lengths re-
sult in higher frequencies in the speech spectrum, which require more frequency scaling
(normalization) and thus lower warping factors.

Table 8 (rows d, e) shows the results of the model trained only with VTLN. Both VTLN
models significantly outperform the baseline model (row a) on children’s speech. The
VTLN models trained on adults’ speech (VTLNSetA) and children’s speech (VTLNSetC1C2)
perform similarly (row d, e), giving around 4% absolute improvement on Set C2 and
approximately 0.5% absolute CER improvement on Set C1 compared to the baseline. We
hypothesize that the larger improvement on Set C2 is due to the presence of speech from
younger children, where we expect the normalization to be more effective based on the size
of the warping factors rather than due to the conversational nature of the speech. Applying
the VTLN models to the adults’ speech of Set A decreased performance significantly when
the VTLN model trained on children’s speech was applied, though a small but significant
improvement was found when the VTLN model trained on adults’ speech was used.

4.4. Experiment 3: The Combined Effect of Augmentation and Normalization

Until now, we have discussed the effects of augmentation and normalization separately.
The results show that overall all approaches outperform the baseline systems on children’s
speech, where the combination of SP and SpecAug gave the best results (except for Dutch
children, DC-Read, where using normalization alone by the VTLNJas-DCDTNnT model gave
the best results). For Experiment 3, all of the approaches (augmentation and normalization)
are combined, and we investigate different data sets for training and applying VTLN.

Dutch: In Table 9 (see Appendix B Table A5 for the p-values), we present the results of
combining SP and SpecAug with different VTLN models when VTLN was applied during
training and testing and only during testing. The results are again split for adult read (Rd)
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and continuous (CTS) speech and for DC, DT, and NnT split for Read and HMI speech. The
averages over the three speaker groups are also provided. For easy reference, the system
trained on adults’ speech with augmentations (SP and SpecAug) but without normalization
is provided again (same as Table 6, row c). When applying VTLN during training and
testing, we observe that all of the models significantly outperform the no-VTLN model for
all three speaker groups for read speech, with VTLNMultiV1 giving the best result for DC
and DT, with improvements of 5.5% and 1.1%, respectively, and VTLNJas-DCDTNnT giving
the best results for the non-native teenagers, with an improvement of 1.0% WER absolute.
VTLNMultiV1 gives almost the same results on the non-native teenagers (a difference of only
0.1% absolute). Both these models are also trained on non-native accented speech, which
is likely the reason for their improved results on non-native accented teenager speech.
For HMI speech, applying VTLN only led to significant improvements for the native DC.
No significant differences compared to baseline were found for the DT and NnT speaker
groups. Applying VTLN during training and testing does not improve adults’ speech.

Several general observations can be made about the results when VTLN is applied
only during testing. Only for native children speech did applying VTLN lead to significant
improvements over baseline for read and HMI speech, while for the native teenagers and
non-native teenagers applying VTLN only during testing led to significant performance
degradation compared to the baseline. For the native children, the largest improvement
for read speech was 1.4% with VTLNMultiV1, and for HMI speech 2.2% with VTLNCGN.
For adults’ speech, applying VTLN during testing led to significant performance degrada-
tions for all of the models except VTLNCGN. This shows that in scenarios where the ASR
system cannot be retrained, normalizing the test data alone using VTLN warping factors
can reduce the acoustic mismatch between features of adults’ and children’s speech and
improve children’s speech recognition; however, it may degrade performance for older
children and adults.

Table 9. Results in %WER, with significance levels, for the Dutch ASR system trained with SP and
SpecAug when VTLN was applied (1) during training and testing or (2) only during test. The lowest
WERs for each speaker group are highlighted in bold for the two normalization approaches separately.
Underline indicates the best result for the specific speaker group over all conditions.

CGN Jasmin: Read Jasmin: HMI Jasmin: Avg

Training VTLN VTLNmodel Rd CTS DC DT NnT DC DT NnT Read HMI

CGN
adults’ speech
SP + SpecAug

None None 7.0 20.2 36.1 18.8 51.1 40.1 27.8 52.6 35.3 40.2

Train|Test

VTLNCGN 7.3 20.2 34.0 * 17.9 * 50.5 * 37.5 * 27.4 52.2 34.1 39.0
VTLNJas-DCDT 7.6 ‡ 20.2 ‡ 31.7 * 17.9 * 50.7 ‡ 38.2 * 29.2 54.7 33.4 40.7
VTLNJas-DCDTNnT 7.2 20.4 32.4 * 18.1 * 50.1 * 39.0 * 29.7 54.0 33.5 40.9
VTLNMultiV1 7.3 20.6 31.6 * 17.7 * 50.2 * 38.0 * 29.2 52.7 33.2 39.9

VTLNCGN 7.0 20.4 35.0 * 19.2 † 51.8 * 37.9 * 29.1 ‡ 52.7 35.3 39.9
Test VTLNJas-DCDT 7.9 * 21.5 * 35.3 * 19.5 * 52.7 * 39.0 ‡ 28.8 ‡ 55.1 * 35.8 40.9

VTLNJas-DCDTNnT 7.9 * 21.6 * 35.2 * 19.4 * 52.6 * 38.9 * 28.9 ‡ 54.8 * 35.7 40.8
VTLNMultiV1 7.7 * 20.6 † 34.7 * 19.1 † 52.0 * 38.2 * 28.2 53.2 35.3 39.8

† p < 0.05, ‡ p < 0.01, and * p < 0.001.

German: As shown in Table 10 (see Appendix B Table A6 for the p-values), when
VTLN is applied during both training and testing, the two VTLN models for which their
training data included children’s speech significantly improved over baseline. The largest
improvement of 2.0% is observed for the VTLNkidsTALC model. Slight though significant
performance degradations were found when applying VTLN models to test adults’ speech.

When VTLN is used only during testing, all of the models show a significant per-
formance improvement for children’s speech compared to the no-VTLN condition, with
the largest improvement of 2.8% for the VTLNCV model. The VTLNMultiV1 model also
performed similarly to the VTLNCV model. Perhaps surprisingly, for children’s speech,
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applying VTLN only during testing outperforms the condition where VTLN is applied
during training and testing for all of the models (further discussion on this is provided in
Section 5). Again, slight but significant degradations were observed when applying VTLN
for adults’ speech.

Table 10. Results in %WER, with significance level, for the German ASR system trained with SP
and SpecAug when VTLN was applied (1) during training and testing or (2) only during test. The
lowest WERs for each speaker group are highlighted in bold for the two normalization approaches
separately. Underline indicates the best result for the specific speaker group over all conditions.

Training VTLN VTLNmodel CV KidsTALC

CV
adults’ speech
SP + SpecAug

None None 5.1 67.2

VTLNCV 5.1 66.5
Train|Test VTLNKTalc 5.2 * 65.2 *

VTLNMultiV1 5.1 ‡ 65.9 ‡

VTLNCV 5.2 * 64.4 *
Test VTLNkidsTALC 5.5 * 65.0 *

VTLNMultiV1 5.2 * 64.5 *
† p < 0.05, ‡ p < 0.01, and * p < 0.001.

Mandarin: As shown in Table 11 (see Appendix B Table A7 for the p-values), when
VTLN is applied during both training and testing, no significant changes were observed for
the children’s speech of Set C1, while for Set C2, all three models significantly improved
the recognition of the spontaneous children’s speech compared to the no-VTLN condi-
tion. Similar to Dutch, the best performing VTLN model is VTLNMultiV1, which gave a
significant 0.9% improvement over the no-VTLN condition for Set C2. Using VTLN during
training and testing did not further improve the results for Set C1, potentially because the
recognition results for Set C1 were already quite good, i.e., at the same level as those for
the adults’ speech in Set A, leaving very little room for additional gain by applying VTLN.
Recognition performance did not change much for adults’ speech when applying VTLN in
addition to SP and SpecAug during training and testing.

Table 11. Results in %CER, with significance levels, for the Mandarin ASR system trained with SP
and SpecAug when VTLN was applied (1) during training and testing or (2) only during test. The
lowest CERs for each speaker group are highlighted in bold for the two normalization approaches
separately. Underline indicates the best result for the specific speaker group over all conditions.

Training VTLN VTLNmodel SetA SetC1 SetC2 Average

SetA
Adults’ Speech
SP + SpecAug

None None 9.9 10.0 38.8 24.4

VTLNSetA 9.8 10.2 38.1 ‡ 24.2
Train|Test VTLNSetC1C2 9.8 10.2 38.2 ‡ 24.2

VTLNMultiV1 9.8 10.1 37.9 * 24.0

VTLNSetA 9.9 * 10.0 37.2 * 23.6
Test VTLNSetC1C2 10.2 * 10.2 37.8 * 24.0

VTLNMultiV1 10.0 * 10.0 37.1 * 23.5
† p < 0.05, ‡ p < 0.01, and * p < 0.001.

When VTLN was used only during testing, similar to German, further significant
improvements were observed for spontaneous speech in Set C2, with again the best model
being VTLNMultiV1 which gave a 1.7% improvement over the no-VTLN condition (further
discussion on this is provided in Section 5). However, again no performance differences
were observed for the read speech of Set C1, while for Set A a small though significant
degradation compared to baseline for the adults’ speech was observed.
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4.5. The Effect of VTLN: Analysis by Age

Experiment 3 showed that applying VTLN in addition to SP and SpecAug gave the
best recognition performance on children’s speech for all three languages; however, we
also observed differences regarding these improvements based on the age groups of the
child speakers for Dutch. We also saw differences for Set C1 and Set C2 for Mandarin, but
we cannot disentangle the effects of younger age in Set C2 compared to Set C1 and the
use of spontaneous speech in Set C2 compared to read speech in Set C1. Here, we further
investigate the relationship between the effect of VTLN and the child’s age for Dutch as
this dataset has the largest age range and provides speaker age for most speakers, i.e.,
approximately 95% of the DC speaker group, 64% of the DT speaker group, and 100% of
the NnT group. We use these data in our analyses. Given the overall better performance
of the VTLNMultiV1 model for all languages, we used this model for our analysis. Figure 3
shows the WER by speaker’s age (in years) for the model trained with SP and SpecAug
and no VTLN (blue); the model trained with SP, SpecAug, and VTLNMultiV1 applied during
training and testing (orange); and the model SP, SpecAug, and VTLNMultiV1 only applied
during testing (red), for the different speaker groups (DC, DT, and NnT) for read and HMI
speech separately. From Figure 3, the following observations can be made:

Figure 3. Age-wise average WERs for the Dutch Jasmin test sets for different speaker groups
(DC, DT, and NnT) and different speech types (Read, HMI). Models: ASR model with SP and
SpecAug and without any normalization (blue), ASR with VTLNMultiV1 normalization both while
training and testing (orange), and ASR with VTLNMultiV1 normalization only while testing (red).

• Dutch native children (DC; ages 6 to 13 years): For both read and HMI speech, WERs
are highest for the youngest children and progressively decrease with increasing age.
This pattern is observed for all three models. Table 9 already showed that for DC,
using the VTLNMultiV1 model during training and testing gave better results than
when only applying the model during testing. From Figure 3, we can see that this
improvement when applying VTLNMultiV1 is largest for the younger children for read
speech, while the improvement when applying VTLNMultiV1 is more or less the same
across the different ages for HMI.

• Dutch native teenagers (DT; ages 12 to 18 years): For both read and HMI speech,
similar to the DC age group, the youngest speakers have the highest WER, which
progressively decreases with increasing age, although this decrease in WER is less
pronounced compared to the DC speaker group. Interestingly, the pattern and WERs
over the ages is highly similar for the three models. The only small effect of using
VTLN during training and testing compared to the no-VTLN conditions is possibly
due to the fact that as children grow, their vocal tract characteristics (especially length)
are closer to those of adults and their speech spectrum has a similar frequency range
to that of adults so normalization is not really needed.

• Dutch non-native teenagers (NnT; ages 12 to 18 years): The pattern observed for Dutch
non-native teenagers is different from that for the Dutch native children and native
teenagers. For read speech, there is no improvement in WER with increasing age
but rather a small deterioration. This deterioration with increasing age is even more
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pronounced for HMI speech. This is potentially explained by the fact that the older a
child/person is when learning a non-native language the less likely it is to achieve
native proficiency [74], so the older speakers are likely to have stronger accents. The
effect of VTLN seems to be highly similar for the different ages, which is similar to the
findings for the Dutch teenagers: no particular age particularly benefits more from the
application of VTLN.

In summary, for native Dutch speakers, WERs decrease with age, especially in the
younger age groups. Applying VTLN improves performance but is more effective for
younger children, which can be explained by their higher-pitched voices, which could ben-
efit more from vocal tract length normalization than the relatively less high-pitched voices
of older children and teenagers. For non-native speakers, WERs are consistently higher and
do not show a decrease but rather an increase with increasing age, with VTLN exhibiting
no impact across ages. These results highlight the interplay of language proficiency and the
effectiveness of different approaches at improving diverse children’s speech recognition.

4.6. The Effect of VTLN: Analysis by Gender

In this section, we split the results based on gender (only two genders, male and
female, are provided in the meta data, so we will use this binary split). Figure 4 displays
the WERs for the female speakers (red lines) and the male (blue lines) speakers (for whom
age information is available) across the different ages for the three different models and
the two speaking styles. Table 12 summarizes the average WERs for both genders (over all
speakers, including those for which no age information was available) per speaker group
and per speaking style for the three models. From Figure 4 and Table 12, we can observe:

• Dutch native children (DC; ages 6 to 13 years): For both read and HMI speech, the
earlier observed trend of decreasing WER with increasing age holds for both male and
female speakers. Without any normalization (solid lines), WER is higher for females
compared to males (see also Table 12). Applying VTLN has the largest effect on the
female speakers: for both VTLN conditions, the WER of the female speakers is lower
than that of the male speakers. The effect is largest when VTLN is applied during both
training and testing (dotted lines). These results are likely due to the higher-pitched
female voices compared to the male voices.

• Dutch native teenagers (DT; ages 12 to 18 years): For read speech, for all of the models
female speech is recognized better than male speech. Applying VTLN seems to have a
positive effect on both genders, except that the effect seems to be a bit larger for the
youngest female speakers, i.e., the 12 year old, which is in line with the findings for
the female child speakers in the DC group (see the left-most panel in Figure 4). For
HMI speech, the same picture holds except that the effect of applying VTLN results in
slightly degraded performance for the male speakers (see Table 12). In Figure 4, the
fluctuations in performance observed for the 15, 16, and 17 year old female speakers
are due to a small number of speakers per age (1, 6, and 1, respectively).

• Dutch non-native teenagers (NnT; ages 12 to 18 years): For the Dutch non-native
Teenagers, WERs were lower for the female speakers compared to the male speakers
for both read and HMI speech. This gender gap was particularly large for the more
spontaneous HMI speech. Overall, applying VTLN improved recognition performance
for both the female and male speakers for read speech, and approximately to the same
extent (Table 12). For HMI speech, no improvement was found when applying VTLN
for the male speakers, while a small improvement was found for the female speakers
for the model where VTLN was applied during testing. As shown in Figure 4, this
small improvement was driven by the younger female speakers, where the largest
improvement was found—in line with the earlier age results.

In summary, for all speaker groups and both speech types, the average WER over all of
the models was always lower for the female speakers than the male speakers (see Table 12,
bottom row), which is in line with earlier findings on this data set [27]. Overall, the use of
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VTLN was similar for both genders, except for the Dutch children speaker group, which
showed a larger improvement for the female speakers (5.3% for read and 3.2% for HMI
speech) compared to the male speakers (3.7% for read and 1.0% for HMI speech), which
was largely driven by the improvement for the youngest female speakers. This gender gap
can be explained by the higher-pitched voices of especially the younger female speakers,
which could then benefit most from the normalization step.

Figure 4. Age-wise average WER for female (red lines) and male (blue lines) speakers of the Dutch
Jasmin test sets for different speaker groups (DC, DT, and NnT) and different speech types (Read,
HMI). Models: ASR model with SP and SpecAug and without any normalization (solid), ASR with
VTLNMultiV1 normalization both while training and testing (dotted), and ASR with VTLNMultiV1

normalization only while testing (dashed).

Table 12. Average WER for male and female speakers of the Dutch Jasmin test sets for different
speaker groups (DC, DT, and NnT) and different speech types (Read, HMI) for the model with SP and
SpecAug without any normalization (None), with VTLNMultiV1 normalization both while training
and testing (Train|Test), and VTLNMultiV1 normalization only while testing (Test). The lowest WERs
for each speaker group are highlighted in bold.

DC-Read DT-Read NnT-Read DC-HMI DT-HMI NnT-HMI

Normalization Female Male Female Male Female Male Female Male Female Male Female Male

None 36.26 35.92 17.18 20.39 50.32 52.01 40.67 39.44 26.38 29.09 50.56 54.59
Train|Test 30.94 32.17 15.61 19.8 49.49 50.82 37.44 38.48 26.81 31.46 50.67 54.75

Test 33.77 35.59 16.95 21.18 50.94 53.14 37.71 38.73 26.69 29.95 50.42 56.06

Average 33.66 34.56 16.58 20.46 50.25 51.99 38.61 38.88 26.63 30.17 50.55 55.13

5. General Discussion and Conclusions

In this study, we investigated data augmentation (speed perturbations and spec-
tral augmentation) and feature normalization techniques (vocal tract length normalization)
for E2E children’s speech recognition in the scenario that there are no children’s speech and
text data available for (re)training the ASR system. We investigated the effect of these three
approaches in isolation and together across three different languages, different speaking
styles, and different children/teenager age groups and compared the results to those for
adults’ speech. For these languages, the baseline ASR models trained on adults’ speech
achieved a WER of <10% on adults’ speech and were found to be close to or even better
than state-of-the-art results for the respective data sets/languages, and they outperformed
the state-of-the-art OpenAI-Whisper small and medium models (and even the large models
for Dutch and Mandarin). However, performance deteriorated substantially when tested
on children’s speech. For Dutch, a drop of 30% absolute was observed for read speech and
of over 40% absolute for the more spontaneous human–machine interaction speech. For
German continuous speech, the deterioration was close to 70% absolute. For Mandarin, the
picture was slightly different. Here, there was no performance drop from adult read speech
to children’s read speech; however, a drop of around 16% absolute (around 50% relative)
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was observed for the children’s speech data set, which consisted of spontaneous speech,
including that of younger children than in the read speech set.

The lack of performance drop from adult to children’s read speech for Mandarin is
likely at least partially explained by the fact that for Mandarin, the adults’ and children’s
speech sets are part of the same corpus, with the same recording conditions, while for Dutch
and German the adults’ and children’s speech came from separate databases. To assess the
impact of database mismatch, we tested the SLT Mandarin SP + SpecAug model (without
LM) on three other Mandarin read speech databases: Magic data [75] (43 k utterances,
52 h, 78 speakers), Aishell [76] (7 k utterances, 10 h, 20 speakers), and THCHS-30 [77] (2 k
utterances, 6.3 h, 10 speakers), and we obtained 2.48%, 4.10%, and 14.25% CER, respectively.
The results for Magic data and Aishell are good despite database mismatch, suggesting
that the relatively easy recognition task of read speech may counterbalance the effect of
database mismatch, which is in line with the results for our adults’ and children’s Mandarin
read speech. However, THCHS-30, which consists of longer utterances, shows a drop in
performance. This shows that the impact of database mismatch (also) depends on the spe-
cific database characteristics. Given that for both Dutch and German the children’s speech
is partially or entirely non-read speech, the observed drop in recognition performance from
adult to children’s speech is only partially explained by the database mismatch and is thus
also due to the acoustic differences between adults’ and children’s speech.

Similar to what has been observed before in a Mandarin E2E system for children’s
speech in literature [18], applying speed perturbations reduced the WERs for children’s
speech recognition. Performance was further improved when SpecAug was added. The
beneficial effect of SpecAug is in line with findings for English children’s speech, which
showed an improvement when applying SpecAug over a condition without SpecAug [78].
Our results confirm and extend these earlier findings with a few observations: we observed
improvements when using speed-perturbed adults’ speech for children’s speech recogni-
tion. We attribute this to the pitch and speed changes caused by the speed perturbations,
which make the adults’ speech more similar to children’s speech. However, this positive
effect of adding perturbed adults’ speech was only observed for native speakers and was
absent for Dutch non-native speakers. Applying SpecAug led to performance improve-
ments for all speaker groups, with a more substantial impact on non-read speech types.
This emphasizes that augmentation techniques may not always and uniformly enhance
performance but rather depend on specific characteristics of the speaker group and speech
type, which is in line with findings from [23].

As far as we are aware, we are the first to apply VTLN to adults’ speech for the
improvement of children’s speech recognition in E2E models. Our results showed that the
application of VTLN improved children’s speech recognition across the board both when
applying models trained on adults’ speech only and when trained on children’s speech
(from the same database as the test data) only; however, the improvement was smaller
than for the combined SP and SpecAug data augmentation methods. The combination of
SP, SpecAug, and VTLN, however, gave the best children’s speech recognition results for
all three languages. Similar to what has been found for hybrid models [50], VTLN, even
when trained on adults’ speech only, thus also improves the recognition performance of
children’s speech in the absence of children’s speech training data in E2E models without
any language model. This result not only shows that VTLN provides a complementary
approach and improvement to data augmentation but also that the same approach can be
used across languages to improve children’s speech recognition. Moreover, since we tested
different types of speech (read, HMI, and spontaneous speech), these results show that the
combined approach also generalizes over speech styles. Importantly, the performance on
adults’ speech was maintained. Thus, reducing spectral variation resulting from vocal tract
length differences, which are particularly relevant to children’s speech, does not impact
performance on adults’ speech recognition.

In our experiments, we trained different VTLN models using adults’ speech and
children’s speech from native and non-native speakers (Dutch only) and from three different
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languages. Each VTLN model exhibited variations in estimated warping factors, impacting
ASR performance to varying degrees. Notably, when the VTLN model estimated warping
factors that were distinct for adults and children, this generally led to improved recognition
performance, particularly for younger children. In line with our no children’s speech
and text data scenario, we trained a VTLN model on adults’ speech only, which showed
significant improvements over baseline for all native children and teenager speaker groups
for all three languages when applied in isolation and in combination with SP and SpecAug.
Not surprisingly, training the VTLN model (also) on children’s speech further improved
performance. This is as expected as the VTLN model was trained on the same database
as the children’s speech database, thus reducing database mismatch and providing the
target speech to the VTLN model for training. This scenario is nevertheless realistic as,
although often both speech and transcribed text are not available for acoustic model and
language model training, children’s speech audio alone is more readily available. Using
VTLN trained with in-domain children’s speech is likely thus the best solution; however,
using the VTLN model trained with adults’ or any other children’s speech is a good
alternative solution. This is in line with our previous findings [67], which indicated that
VTLN models trained on Dutch improved the performance of Mandarin Chinese children’s
speech recognition, demonstrating the generalizability of the VTLN warp factors across
languages. Overall, the best results were obtained when the VTLN model was trained on
training data that consisted of speech from all three languages, all ages, and all speech
types. This shows that the more variable the training data are, the better the VTLN warping
factors are estimated, resulting in improved recognition performance of children’s speech.

The impact of VTLN varied depending on where VTLN was applied in the automatic
speech recognition process. We explored its effects when applied during both training and
testing and only during testing. The approach of using VTLN during training and testing
can only be applied when the model can be retrained, which is not always the case. The
results show that applying VTLN only during testing gave improvements for all languages
over the baseline results. Thus, even when a model cannot be retrained, applying VTLN
will help children’s speech recognition performance. For Dutch, applying VTLN both
during training and testing gave the best results, while for German and Mandarin this
condition gave slightly worse results than the test-only condition. The difference between
the languages is that for Dutch, the VTLN model was trained on adults’ speech with a
wide variety of speech styles (including read speech, lecture recordings, broadcast data,
and spontaneous conversations), while for German and Mandarin only read adults’ speech
was used. The results of Experiment 3 showed that the VTLN model trained on a variety of
languages, speech styles, and age groups outperformed the VTLN models that were trained
with less diverse data. Likewise, we hypothesize that the more diverse adult Dutch training
data for the VTLN model training yielded better warping factors than the less diverse adults’
speech data for German and Mandarin. This led to better normalized features, which could
be learned during training, while these same normalized features were available during
testing, leading to a matched train-test scenario and improved recognition performance.
Importantly, the performance for adults’ speech does not degrade when VTLN is applied.

The age and gender analyses on Dutch children’s and teenagers’ speech showed that
WERs are higher for younger children and then become gradually constant with age, as
shown in earlier studies that use hybrid ASR systems [6]. Although the use of VTLN
maintained this trend, it improved recognition performance for younger children for all
ages more compared to that of teenagers. For Dutch, the female speech was consistently
recognized better than the male speech, in line with previous findings for this database [27].
The application of VTLN gave very similar improvements for both genders in the database.

Both speed perturbations and spectral augmentation are often used as data augmen-
tation techniques in E2E and have shown their effectiveness in improving recognition
performance for adults’ speech [21,22] despite the fact that both methods can potentially
lead to artifacts in the generated speech signal and acoustic features, respectively. Speed
perturbation, for instance, alters the speech signal’s pitch and speed, which occasionally
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leads to unnatural or distorted sounds (as shown by a different experiments in our lab).
Spectral augmentation modifies spectral characteristics; however, we do not know which
spectral information is modified; thus, the model is possibly also learning artificial patterns.
In this work, we did not check for these artifacts nor did we try to optimize the parameter
settings of these two methods; we used the standard settings. The results shown in this
paper, however, indicate that the benefit of applying SP and SpecAug is larger than the
negative effect of potential artifacts. Future research could investigate whether further
performance benefits could be obtained when the parameter settings are tuned to the task
at hand and artifacts are removed. Regarding VTLN: While our study highlighted VTLN’s
impact across different languages, its applicability and integration in E2E models may
encounter challenges. For instance, because VTLN needs to be trained independently and
then used as a processing step after feature extraction to warp the features for training
the ASR network architecture, it may not be compatible with architectures that utilize
raw waveform data rather than features. As a result, integrating VTLN into such archi-
tectures requires further exploration. In the future, we intend to explore the performance
of existing pre-trained models, such as Whisper, in these languages as an alternative to
the baseline model without augmentations or as an alternative to the model trained us-
ing data augmentations. By doing so, we aim to investigate whether VTLN still offers
additional complementary information when employed with pre-trained models that are
already trained on a diverse type and even diverse speaker groups. While retraining
these pre-trained models is not always feasible or desirable for computational reasons,
using VTLN only during testing could potentially enhance the recognition performance
of pre-trained models without extensive retraining, with the ultimate aim to remove bias
against children’s speech in automatic speech recognition.

In conclusion, this research contributes to narrowing the performance gap between
children’s and adults’ speech recognition, especially when children’s speech and text data
are absent for training. By training our VTLN model on adults’ speech and using state-of-
the-art speed perturbations and spectral augmentation techniques applied to adults’ speech,
we improved recognition performance across diverse child speaker groups, speaking styles,
and languages, thus showing that these approaches generalize across age, speaking styles,
and languages. Performance was further improved when children’s speech and/or highly
variable speech was used to train the VTLN model. These findings highlight the potential
for enhancing the End-to-End children’s speech recognition performance by (1) applying
state-of-the-art techniques that have shown their effectiveness on adults’ speech ASR (the
data augmentation techniques) and in hybrid ASR models (VTLN) to adults’ speech, and
(2) strategically taking into account the availability of data and the feasibility of training
methods to improve children’s speech recognition results in the absence of children’s
speech and text data for training ASR models. This finding allows for the development of
more accessible and inclusive children’s speech technology applications.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Acoustic Model
ASR Automatic Speech Recognition
CER Character Error Rate
CGN Corpus Gesproken Nederlands
CSR Children’s Speech Recognition
CV Common Voice
DC Dutch Native Children
DT Dutch Native Teenagers
E2E End-to-End
HMI Human–Machine Interaction
LM Language Model
NnT Dutch Non-Native Teenagers
SLT Speech and Language Technology
SP Speed Perturbations
SpecAug Spectral Augmentation
VTLN Vocal Tract Length Normalization
WER Word Error Rate

Appendix A. Results of Open-AI-Whisper on Dutch, German, and Mandarin Adults’
and Children’s Speech

As seen in Table A1, we compared one of our best models (see, Table A1 last row)
with Whisper small, medium, and large on the adults’ and children’s speech for all three
languages. In short, for adults’ speech, our model outperformed Whisper small, medium,
and large despite not using a Language Model, for all three languages, except for German,
where Whisper large outperformed our model, and Mandarin where Whisper medium
outperformed our model. This shows that for adults’ speech, our models are state-of-the-art.
For children’s speech, the picture is different: almost all Whisper models outperformed our
model. However, it is unclear which speech data from which speaker groups were used to
train Whisper, which may thus well contain children’s speech. Since in this work, the aim
is to investigate CSR when exclusively relying on adults’ speech for training, we did not
use pre-trained models for our experiments. Training our own ASR models using known
data additionally offers greater flexibility in architecture and parameter tuning, allowing
for a more justifiable interpretation of the results

Table A1. Performance of the Open AI-Whisper small, medium, and large models on the Dutch,
German, and Mandarin adults’ and children’s speech test sets used in this study. For reference, row
SP + SpecAug shows the (average) results of the SP + SpecAug models for the respective languages.

Dutch (WER) German (WER) Mandarin (CER)

CGN-Read CGN-CTS Jas-Read Jas-HMI CV KidsTalc SetA SetC1 SetC2

Whisper-small 17.1 54.1 39.87 51.47 9.3 58.4 12.02 7.25 13.37
Whisper-medium 12.4 39.1 30.1 41.87 5.7 40.9 9.45 4.92 11.95
Whisper-large 10.1 40.6 28.57 39.67 4.4 49.1 10.32 5.57 11.00

SP + SpecAug 7 20.2 35.3 40.2 5.1 67.2 9.9 10.0 38.8
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Appendix B. Results of the Statistical Tests

Table A2. p-values of the performance difference between the various models in Experiments 1 and 2
and the baseline model for the Dutch adults’ and children’s speech.

CGN Jasmin: Read Jasmin: HMI

Augmentation Normalization Rd CTS DC DT NnT DC DT NnT

SP None <0.001 <0.001 <0.001 <0.001 0.089 <0.001 <0.001 0.020
SP + SpecAug None <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

None VTLNCGN 0.395 0.395 <0.001 <0.001 0.08 <0.001 <0.001 0.082
None VTLNJas-DCDT 0.631 0.342 <0.001 0.28 0.818 <0.001 <0.001 0.019
None VTLNJas-DCDTNnT 0.741 0.332 <0.001 0.001 0.001 <0.001 <0.001 <0.001

Table A3. p-values of the performance difference between the various models in Experiments 1 and 2
and the baseline model for the German adults’ and children’s speech.

Augmentation Normalization CV kidsTALC

SP None <0.001 <0.001
SP + SpecAug None <0.001 <0.001

None VTLNCV 0.332 0.002
None VTLNkidsTALC <0.001 <0.001

Table A4. p-values of the performance difference between the various models in Experiments 1 and 2
and the baseline model for the Mandarin adults’ and children’s speech.

Augmentation Normalization SetA SetC1 SetC2

SP None 1.000 1.000 1.000
SP + SpecAug None <0.001 <0.001 <0.001

None VTLNSetA <0.001 <0.001 <0.001
None VTLNSetC1C2 <0.001 <0.001 <0.001

Table A5. p-values of the performance difference between the various models in Experiment 3 and
the SP + SpecAug model for the Dutch adults’ and children’s speech.

CGN Jasmin: Read Jasmin: HMI

VTLN VTLNmodel test_stu test_tel DC DT NnT DC DT NnT

VTLNCGN 0.271 0.81 <0.001 <0.001 <0.001 <0.001 0.61 0.168

Train|Test VTLNJas-DCDT 0.006 0.007 <0.001 <0.001 0.003 <0.001 0.897 0.49
VTLNJas-DCDTNnT 0.472 0.453 <0.001 <0.001 <0.001 <0.001 0.011 0.107

VTLNMultiV1 0.15 0.091 <0.001 <0.001 <0.001 <0.001 0.889 0.063

Test

VTLNCGN 0.697 0.194 <0.001 0.012 <0.001 <0.001 0.002 0.294
VTLNJas-DCDT <0.001 <0.001 <0.001 <0.001 <0.001 0.002 0.006 <0.001

VTLNJas-DCDTNnT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 <0.001
VTLNMultiV1 <0.001 0.015 <0.001 0.018 <0.001 <0.001 0.121 0.064

Table A6. p-values of the performance difference between the various models in Experiment 3 and
the SP + SpecAug model for the German adults’ and children’s speech.

VTLN VTLNmodel CV KidsTALC

Train|Test
VTLNCV 0.39 0.126

VTLNkidsTALC <0.001 <0.001
VTLNMultiV1 0.003 0.01

VTLNCV <0.001 <0.001
Test VTLNkidsTALC <0.001 <0.001

VTLNMultiV1 <0.001 <0.001
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Table A7. p-values of the performance difference between the various models in Experiment 3 and
the SP + SpecAug model for the Mandarin adults’ and children’s speech.

VTLN VTLNmodel SetA SetC1 SetC2

Train|Test
VTLNSetA 0.912 0.28 0.001

VTLNSetC1C2 0.841 0.139 0.002
VTLNMultiV1 0.529 0.509 <0.001

VTLNSetA <0.001 0.711 <0.001
Test VTLNSetC1C2 <0.001 0.061 <0.001

VTLNMultiV1 <0.001 0.952 <0.001
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