
Delft Center for Systems and Control

Development of a Detection and
Tracking of Moving Vehicles sys-
tem for 2D LIDAR sensors

Konstantinos Konstantinidis

M
as

te
ro

fS
cie

nc
e

Th
es

is

Development of a Detection and
Tracking of Moving Vehicles system

for 2D LIDAR sensors

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Konstantinos Konstantinidis

February 7, 2020

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

The main objective of this thesis was the development and evaluation of a Detection and
Tracking of Moving Objects (DATMO) system, that is capable of reliably tracking nearby
vehicles from a moving car. The developed system takes in raw 2D LIght Detection And
Ranging (LIDAR) measurements as input and detects objects of interest by clustering them
with the Adaptive Breakpoint Detector algorithm. The resulting clusters are fitted with
oriented bounding boxes, by incorporating the Search-Based Rectangle Fitting algorithm.

The tracking part of the system receives, extracted from the rectangles, L-shapes and as-
sociates them with already tracked vehicles, using the Global Nearest Neighbor algorithm.
However, since LIDAR measures only the distance to surfaces that face the sensor, vehicle
appearances change over time. In order to counteract tracking errors that originate from
these changes, an L-shape switching algorithm is implemented. The kinematic poses of the
tracked vehicles are estimated with two different tracking filters, a Kalman Filter (KF), with
a constant velocity model and an Unscented Kalman Filter (UKF), with a Coordinated Turn
kinematic model. The dimensions of the detected vehicles are estimated with a constant
shape Kalman Filter.

The proposed system was evaluated using both simulation and real-world experiments. The
real-world experiments were made on the Delft Scaled Vehicle (DSV), an experimental car
platform in the form of a 1/10 scale radio controlled car, and the ground truth data were
provided by a Motion Capture (MoCap) system. The simulation experiments were made in
a highway environment, which was created specifically for the development and testing of
this system. Evaluating the experiment results reveals that the developed system can reli-
ably estimate the position, speed, heading angle and dimensions of surrounding vehicles and
therefore it can be used in similar research platforms to expand their environment perception
capabilities.

In addition, during the course of my thesis it became important to develop a localization
system for the DSV aimed at demonstration purposes. The resulting localization system is
presented in the first appendix.

Master of Science Thesis Konstantinos Konstantinidis

ii

Konstantinos Konstantinidis Master of Science Thesis

Table of Contents

1 Introduction 1
1-1 Problem Statement: Detection and Tracking of Moving Objects (DATMO) . . . 2
1-2 Categories of Approaches to the DATMO problem 3

1-2-1 Traditional Approach . 4
1-2-2 Model Approach . 4
1-2-3 Grid Approach . 5

1-3 Experimental Platform . 6
1-4 Research Question . 7
1-5 Report Outline . 8

2 Detection of Moving Objects 9
2-1 Data Acquisition by a 2D LIDAR sensor . 10
2-2 Segmentation . 11

2-2-1 Breakpoint Detector Algorithm . 12
2-2-2 Adaptive Breakpoint Detector Algorithm 13

2-3 Feature Extraction . 14
2-3-1 Line Extraction . 15
2-3-2 Rectangle Extraction . 16

2-4 L-shape Extraction . 19

3 Tracking of Moving Vehicles 21
3-1 Data Association and Track Management . 22

3-1-1 Data Association . 22
3-1-2 Track Management . 24

3-2 State Estimation . 25
3-2-1 Kalman Filter . 25

Master of Science Thesis Konstantinos Konstantinidis

iv Table of Contents

3-2-2 Extended Kalman Filter (EKF) . 26
3-2-3 Unscented Kalman Filter (UKF) . 27

3-3 L-shape Tracker . 31
3-3-1 Kalman Filter Kinematic Tracker . 32
3-3-2 UKF Kinematic Tracker with Coordinated Turn Model 33
3-3-3 Alternative kinematic models . 34
3-3-4 Shape Tracker . 35

3-4 Corner Point Switching . 36
3-5 L-shape to Box Model Conversion . 38

4 Experimental Evaluation 41
4-1 Simulation Experiments . 41

4-1-1 Overtakes Experiment . 42
4-1-2 Opposite Lane Tracking . 47

4-2 Scaled Cars Experiments . 50
4-2-1 Racing experiment . 50
4-2-2 Road Intersection . 53

4-3 Evaluation of system speed . 56

5 Conclusion and Future Work 57
5-1 Conclusion . 57
5-2 Future Work . 58

A Localization 59
A-1 Localization by Fusion of Odometry and IMU 60

A-1-1 Velocities calculation via Odometry measurements 60
A-1-2 Fusion of Odometry and IMU measurements 60

A-2 Self Localization and Mapping (SLAM) . 62
A-3 Fusion of Odometry, IMU and SLAM . 65

A-3-1 Transformation between different coordinate frames 66

B Paper 69

Bibliography 81

Glossary 85
List of Acronyms . 85
List of Symbols . 85

Konstantinos Konstantinidis Master of Science Thesis

List of Figures

1-1 General architecture of an autonomous driving system. Source [1]. 1
1-2 Visualization of the input and output of an environment perception system; (a)

image of the actual scene; (b) raw measurements from a LIDAR sensor mounted
on the test vehicle; (c) output of a DATMO system, overlayed on the LIDAR
measusements. Source [1]. 2

1-3 The eight states that are estimated for every detected vehicle; (a) the states
xcenter,ycenter, vx, vy; (b) the states ψ, ω, Length and Width. 3

1-4 The three general classes of approaches to the DATMO problem. Source [2]. . . 4
1-5 Problems in the traditional approach that get mitigated by model based methods.

(a) LIDAR measurements of an approaching car. (b) Phantom motion due to
geometric mean shift of cluster model. (c) Enhanced motion estimation using box
model. (d) (e) Problems due to occlusions and sensor limitations. (f) Mitigation
of those problems with box models. Source [3]. 5

1-6 Output of the Bayesian Occupancy Filter (BOF) algorithm, the probability of occu-
pancy is represented with shades of blue and the velocity estimation is represented
by a histogram assigned to each individual cell. Source [4]. 5

1-7 The DSV with it’s sensors: 1: Arduino Mega, 2: LIDAR Rplidar-A2, 3: Odroid-xu4
computer, 4: Inertial Measurement Unit (IMU), 5: Router, 6: Battery, 7: Servo,
8: Motor Controller, 9: Motor, 10: Wheel Encoders. 6

2-1 Flowchart of the vehicle detection stage of the developed system. 9
2-2 Visualization of the principles of operation of a LIDAR sensor. Adapted from [5]. 10
2-3 Example of LIDAR data acquisition. On (a) there is an image of the developed

simulation environment, in which a LIDAR sensor is mounted on the middle of the
three cars at the bottom left. On (b) there is visual depiction of the LIDAR data
acquired by the sensor at the same time instance. 10

2-4 Output of the Adaptive Breakpoint Detector algorithm. 11
2-5 Visualization of the Breakpoint Detector Algorithm. 12
2-6 Visualization of the Adaptive Breakpoint Detector Algorithm. Adapted from [6]. 13

Master of Science Thesis Konstantinos Konstantinidis

vi List of Figures

2-7 Output of the two implemented Feature Extraction algorithms. 14
2-8 Visualization of the operation of the Iterative End-Point Fit Algorithm, on LIDAR

points reflected from a vehicle. Source [7] . 15
2-9 Principle of operation of the Search-Based Rectangle Fitting Algorithm. 16
2-10 Visualization of rectangle fitting with the two implemented selection criteria. . . 17
2-11 L-shape extraction. 19
2-12 Conversion of a bounding rectangle to an L-shape feature. 19

3-1 Flowchart of the vehicle tracking stage of the developed system. 21
3-2 Visualization of the data association process. Left: A set of observations, where

every circle is a detected object and the numbers are the timesteps. Right: Output
of a data association module composed of three object tracks (gray, yellow, blue). 22

3-3 Data association in the developed system. 23
3-4 Comparison of the EKF and UKF in predicting the mean and covariance of a non

linear system. Adapted from [8][9]. 28
3-5 Every L-shape consists of the xcorner,ycorner, L1, L2, θ values. The corner of the

bounding box that is closest to the LIDAR sensor is selected as the L-shape corner. 31
3-6 The kinematic model models the motion of the corner point. 32
3-7 The shape filter estimates the yaw, yaw rate and size of the L-shape. 35
3-8 Visualization of all the corner points of a vehicle (C1-C4) and of the clockwise and

counter clockwise changes between them (black arrows). 36
3-9 Clockwise change of closest corner point, from corner C3 to corner C4. 37
3-10 Comparison between the output of the rectangle fitting algorithm and the boxes

calculated from the L-shapes. 39

4-1 Image of the developed simulation environment, during the overtakes experiment. 42
4-2 Estimated states by the developed system against the simulation ground truth, for

the car at the right of the ego-vehicle. 43
4-3 Statistics of the errors of the estimated states by the developed system against the

simulation ground truth, for the car at the right of the ego-vehicle. 44
4-4 Estimated states by the developed system against the simulation ground truth, for

the over passing car at the left of the ego-vehicle. 45
4-5 Statistics of the errors of the estimated states by the developed system against the

simulation ground truth, for the over passing car at the right of the ego-vehicle. . 46
4-6 Image of the developed simulation environment, during the overtakes experiment. 47
4-7 Estimated states by the developed system against the simulation ground truth, for

the car at the opposite lane. 48
4-8 Statistics of the errors of the estimated states by the developed system against the

simulation ground truth, for the car at the opposite lane. 49
4-9 Photograph of the racing experiment during an overtaking maneuver by the DSV. 50
4-10 Estimated states by the developed system against the MoCap ground truth. . . . 51
4-11 Statistical analysis of the absolute error of the two methods for each state. . . . 52
4-12 Photograph of the racing experiment during an overtaking maneuver by the DSV. 53
4-13 Estimated states by the developed system against the MoCap ground truth. . . . 54

Konstantinos Konstantinidis Master of Science Thesis

List of Figures vii

4-14 Statistical analysis of the absolute error of the two methods for each state. . . . 55
4-15 Execution time of the proposed system in the DSV during the racing experiment. 56

A-1 Localization results by fusing wheel encoder and IMU data. 62
A-2 Image of the localization experiment and map of the DCSC lab built by the SLAM

algorithm. 63
A-3 Localization output of the SLAM algorithm. 64
A-4 Localization results by fusing odometry and SLAM. 65

Master of Science Thesis Konstantinos Konstantinidis

viii List of Figures

Konstantinos Konstantinidis Master of Science Thesis

List of Tables

1-1 Overview of sensor output frequencies and actuator input frequencies. 6

A-1 Comparison of the accuracy of the proposed localization methods. 66

Master of Science Thesis Konstantinos Konstantinidis

x List of Tables

Konstantinos Konstantinidis Master of Science Thesis

Chapter 1

Introduction

In this chapter, the general software architecture of a self-driving vehicle is presented, followed
by a quick introduction to the specific task that the work of this thesis seeks to fulfill. Next,
the three main approaches towards it are summarized and a choice is made. Lastly, a brief
overview of the whole MSc thesis is given.

In recent years, a lot of researchers have focused their efforts on providing solutions to the
various problems that need to be addressed before self-driving vehicles become a reality.
Generally, three different components need to work in cooperation for a vehicle to be self-
driving (Figure 1-1). The first component, is environment perception, which takes as input
the various sensor measurements and makes a representation of the surrounding environment.
This representation of the surrounding environment is used by the Reasoning and Decision
system to produce a set of actions that best correspond to the given situation, which are then
given to the Action component, that produces instructions for the vehicle actuators. This
MSc thesis will focus on the development of a sub-component of environment perception.

Figure 1-1: General architecture of an autonomous driving system. Source [1].

Environment perception can additionally be subdivided in three distinct but codependent
tasks [10]. The first task is localization, in which the vehicle localizes itself in the environment
by establishing the spatial relationships between itself and stationary objects. The second one
is mapping, in which a map of the environment is built by establishing the spatial relationships

Master of Science Thesis Konstantinos Konstantinidis

2 Introduction

between surrounding static objects. The last task and the one that this MSc thesis will focus
on, is Detection and Tracking of Moving Objects (DATMO), which establishes the spatial
and temporal relationships between the vehicle and moving objects.

1-1 Problem Statement: Detection and Tracking of Moving Ob-
jects (DATMO)

Given a set of sensor measurements (LIDAR, Radar, Camera), a DATMO system is responsi-
ble for detecting the various moving objects in the vehicle’s environment and estimating their
position, speed and orientation. While, some DATMO systems are capable of additionally
estimating the object’s dimensions and classifying them in predetermined classes (pedestrian,
bicycle, car).

Figure 1-2: Visualization of the input and output of an environment perception system; (a)
image of the actual scene; (b) raw measurements from a LIDAR sensor mounted on the test
vehicle; (c) output of a DATMO system, overlayed on the LIDAR measusements. Source [1].

In Figure 1-2 the input and output of a DATMO system are visualized. On the left there is
an image from a camera sensor mounted on the vehicle and in the middle is the measurements
from the 2D LIDAR sensor that is also mounted on the vehicle. On the right, the output of a
DATMO system is visualized, in which the LIDAR measuremnts are divided in groups, which
correspond to objects from the actual scene and are classified in classes by fusing information
from the camera.

In the developed system, the 2D LIDAR measurements will be used to estimate the position
(x, y), velocity (vx, vy), orientation (ψ), turn rate (ω) and dimensions (Length, Width) of
every detected vehicle. The resulting state vectors (x1, . . . ,xn) that needs to be estimated
are the following:

Konstantinos Konstantinidis Master of Science Thesis

1-2 Categories of Approaches to the DATMO problem 3

x1 =
[
xcenter ycenter vx vy ψ ω Length Width

]T
x2 =

[
xcenter ycenter vx vy ψ ω Length Width

]T
...

xn =
[
xcenter ycenter vx vy ψ ω Length Width

]T
,where n is the number of detected vehicles, which usually changes frequently between time
instances. In Figure 1-3 the eight states that need be estimated are visualized.

(a) (b)

Figure 1-3: The eight states that are estimated for every detected vehicle; (a) the states
xcenter,ycenter, vx, vy; (b) the states ψ, ω, Length and Width.

1-2 Categories of Approaches to the DATMO problem

In this section, the different approaches for designing a DATMO system will be divided into
three categories, the traditional one, the model based and the grid based one (Figure 1-4).
All three approaches have as input sensor data and in case that multiple sensors are used a
virtual sensor (blue line in Figure 1-4) is constructed, which contains all measurements in a
common frame.

The first method is the traditional approach, in which the sensor data is initially divided into
clusters and then associated with already tracked objects from previous time instances. In
more advanced systems, the clusters are fitted with geometric shapes whose center is then
tracked with a parametric Bayesian filter [11], otherwise the geometric mean of each cluster
is tracked [12].

The model based approach fits the sensor data directly onto geometric shape models by
utilizing particle filters, which also handle data association [13],[14],[15].

Master of Science Thesis Konstantinos Konstantinidis

4 Introduction

Figure 1-4: The three general classes of approaches to the DATMO problem. Source [2].

Lastly, the grid based approach [16] is based around the construction and use of an occupancy
grid, which models the space around the vehicle. The grid cells are then tracked using a
Bayesian filter and in some systems, additional object level representations are fitted on top
of the occupied grid cells[17].

1-2-1 Traditional Approach

This approach corresponds to the top row in Figure 1-4 and is usually used in combination
with LIDAR sensors. It’s main characteristic is the data pre-processing that is required before
the application of an object tracking filter. The first pre-processing step is to segment the
sensor data into clusters that correspond to objects of the real world. This step is followed
by the data association step, which pairs clusters with previously tracked objects. Those two
steps are highly coupled and erroneous output of the clustering step can negatively impact
the performance of data association. After data association, either the geometric mean of the
cluster or the center of an extracted geometric shape are tracked by a parametric filter.

1-2-2 Model Approach

Model based methods are represented by the middle row of Figure 1-4. These methods are
characterized by the use of geometric models in conjunction with particle filters. Model based
methods, do not have separate clustering and data association steps, as was the case in the
traditional approach, because those steps are handled by the filter itself. Figure 1-5 explains
the advantages of model based methods over the traditional ones. Although, at first it seems
that the problem is simplified, a new challenge arises. Making the particle filter computations
fast enough so they can meet the high update frequency required by autonomous driving
applications.

Konstantinos Konstantinidis Master of Science Thesis

1-2 Categories of Approaches to the DATMO problem 5

Figure 1-5: Problems in the traditional approach that get mitigated by model based methods.
(a) LIDAR measurements of an approaching car. (b) Phantom motion due to geometric mean
shift of cluster model. (c) Enhanced motion estimation using box model. (d) (e) Problems due to
occlusions and sensor limitations. (f) Mitigation of those problems with box models. Source [3].

1-2-3 Grid Approach

Grid based methods (bottom row in Figure 1-4) use occupancy grids to represent the sur-
rounding area of a vehicle. Occupancy grids [18] partition a planar surface in a grid of cells,
that usually are uniform in size. Each of these cells c = 1, . . . , n is assigned a probability
of occupancy P (Oc). P (Oc) = 0 represents the case where the cell is surely unoccupied and
P (Oc) = 1 the case in which the cell is surely occupied. When there is no information about
the occupancy status of a cell, it is given the value P (Oc) = 0.5. The grid size is defined by
two parameters, the number of cells (n) and the size of those cells. Those two values in combi-
nation, define both the size of the area around the car that is mapped and also the resolution
of this mapping. Theoretically, covering a large area with high resolution is the optimal goal,
however this requires a lot of computational resources for calculating and updating the grid.

Figure 1-6: Output of the BOF algorithm, the probability of occupancy is represented with shades
of blue and the velocity estimation is represented by a histogram assigned to each individual cell.
Source [4].

Master of Science Thesis Konstantinos Konstantinidis

6 Introduction

This occupancy grid map can be immediately used for low-level navigation purposes (obstacle
avoidance), since it maps the areas that are free of obstacles and the occupied ones. Better
estimates of occupancy, alongside velocity information (Figure 1-6), can be inferred by using
a Bayesian Occupancy Filter (BOF) [19], which is an adaptation of Bayesian filtering for
occupancy grids. In case that, object level representations are required, the Fast Clustering
and Tracking Algorithm (FCTA) [20] can be used to track and detect moving objects.

1-3 Experimental Platform

The developed system was implemented and tested on the Delft Scaled Vehicle (DSV), which
is shown in Figure 1-7. The DSV is based on the Berkeley Autonomous Race Car (BARC)1

project, which is a open source project for the construction of scaled testing platforms for
autonomous driving.

(a) The Delft Scaled Vehicle (DSV) (b) Schematic of the DSV

Figure 1-7: The DSV with it’s sensors: 1: Arduino Mega, 2: LIDAR Rplidar-A2, 3: Odroid-xu4
computer, 4: IMU, 5: Router, 6: Battery, 7: Servo, 8: Motor Controller, 9: Motor, 10: Wheel
Encoders.

Table 1-1: Overview of sensor output frequencies and actuator input frequencies.

Device Frequency Latency

Steering Input 30 Hz <0.05s
Throttle input 30 Hz <0.05s
Wheel Encoders 30 Hz 0.05s
IMU 120 Hz <0.05s
LIDAR 12 Hz 0.15s
MoCap 30 - 240 Hz <0.05s

In Table 1-1 the sensor frequencies of all the sensors on the DSV are listed. The first four
sensors are not used by the developed system, but are used by the localization system, which
will be presented in the first Appendix. Since the LIDAR sensor has a frequency of 12 Hz,
a goal is set for the developed system to operate always at a faster speed, so that it can
incorporate all LIDAR measurements in its predictions.

1http://www.barc-project.com/

Konstantinos Konstantinidis Master of Science Thesis

http://www.barc-project.com/

1-4 Research Question 7

1-4 Research Question

In recent years a lot of experimental autonomous platforms have been developed for research in
autonomous ground vehicles that use a 2D LIDAR sensor for environment perception. These
platforms are mainly used to facilitate the testing and development of required systems for
autonomous vehicles, such as navigation and path planning, platooning, collision avoidance,
etc. For those systems to be tested on the experimental platforms, there is a need for a robust
and lightweight DATMO system that will provide a description of the dynamic environment
the tested system should react to. To address this need, the main objective of my thesis will
be to achieve the following:

Main Research Objective

Design, implement and evaluate a detection and tracking of moving objects system,
tailored for experimental autonomous platforms equipped with a 2D LIDAR sensor;
the developed system will take raw, 2D LIDAR measurements as input and provide
the kinematic state and dimensions of the detected objects as end output in a robust,
causal, and real time manner.

This general objective can be broken down to several sub-objectives, whose fulfillment will
reflect the contributions of my thesis:

1. Identify the requirements of object detection and tracking in terms of target motion
uncertainties and 2D LIDAR sensor limitations.

2. Select and use algorithms which fulfill the identified requirements to accurately achieve
both the tasks of detection and tracking.

3. Design a modular system architecture, so the proposed system can be easily expanded
in the future to incorporate new algorithms and potentially measurements from other
sensors.

4. Perform real world experiments using the Delft Scaled Vehicle to evaluate the perfor-
mance of the proposed system.

5. Design and develop a simulation platform in which the capabilities and robustness of
the proposed system could be accurately tested in various scenarios.

6. Build the proposed system on top of the Robot Operating System (ROS) framework,
which facilitates software and hardware exchangeability.

7. Keep the computational requirements at a minimum, since experimental platforms are
generally equipped with single board computers that are required to run many applica-
tions concurrently and in real time.

Master of Science Thesis Konstantinos Konstantinidis

8 Introduction

1-5 Report Outline

This thesis report is structured in the following way: in this chapter, an introductory overview
of the general problem was given, as well as an outline of the approach to its solution.

In Chapter 2 the detection part of the proposed system is presented.

In Chapter 3 the tracking part of the system in presented.

In Chapter 4 the experimental methods used for evaluating the system are described and the
results are presented and analyzed.

In Chapter 5 the general results of the thesis are summarized and conclusions are drawn. In
addition, proposals for future work in areas that are not sufficiently covered by this thesis are
given.

In Chapter A the development of a localization system for the DSV is presented.

In Chapter B a part of this MSc thesis is presented in a IEEE double column format paper.

Konstantinos Konstantinidis Master of Science Thesis

Chapter 2

Detection of Moving Objects

In this chapter, the detection stage of the developed DATMO system will be presented and
analyzed. The main goal of the detection stage is to differentiate moving objects from the
measurements provided by the LIght Detection And Ranging (LIDAR) sensor. In Figure 2-
1 a flowchart of the general steps of the implemented detection stage is given, which also
corresponds to the organization of this chapter.

Figure 2-1: Flowchart of the vehicle detection stage of the developed system.

The first step of the detection stage is a segmentation algorithm, which extracts clusters of
LIDAR points from the raw LIDAR data.

These clusters are then passed to a feature extraction algorithm, which extracts geometric
shapes from the clusters. Common extracted geometric shapes are lines/rectangles for vehi-
cles, circles for pedestrians and ellipses for bicycles/bikes [21]. Since the focus of the developed
system is vehicle tracking, rectangles are extracted from the clusters.

Lastly, L-shapes are extracted from the closest corner of every rectangle and those are passed
to the tracking stage of the system, which will be presented in the next chapter.

Master of Science Thesis Konstantinos Konstantinidis

10 Detection of Moving Objects

2-1 Data Acquisition by a 2D LIDAR sensor

In their most basic form, LIDAR sensors calculate distance to objects by emitting a laser
beam, capturing its reflection and calculating the distance to the object that caused the
reflection by measuring the time of flight. Typically, it is desirable to cover an area as wide
as possible with a single sensor and therefore the laser emitter is placed behind a rotating
mirror or on top of a rotating base (Figure 2-2a).

(a) Workings of a LIDAR sensor. (b) Reference variables of a LIDAR sensor.

Figure 2-2: Visualization of the principles of operation of a LIDAR sensor. Adapted from [5].

In Figure 2-2b there is a graphical representation of the most important features of a LIDAR
sensor. Given that the emitted laser beam moves in a circular motion, the produced mea-
surements are naturally derived in polar coordinates (r, φ). Their field of view (φmin, φmax),
is usually bigger than 180◦, and it is common for LIDARs to cover 360◦. Typical values for
their angular resolution (α) are between 0.25◦ − 1◦, while their measurement frequency is
usually between 10 and 20 Hz for a complete scan [2]. Their maximum range (rmax), ranges
from about 8 meters for small sensors, to 80 meters for top of the line sensors.

(a) Image of the simulation environment. (b) LIDAR raw measurements.

Figure 2-3: Example of LIDAR data acquisition. On (a) there is an image of the developed
simulation environment, in which a LIDAR sensor is mounted on the middle of the three cars at
the bottom left. On (b) there is visual depiction of the LIDAR data acquired by the sensor at the
same time instance.

Konstantinos Konstantinidis Master of Science Thesis

2-2 Segmentation 11

The measurements of a LIDAR sensor can be better understood by examining Figure 2-3,
in which there is both a screenshot of the simulated environment and the resulting LIDAR
measurements from the same time instance. The ego vehicle and the one that the LIDAR
sensor is mounted on top, is the middle one of the three cars at the left (red dot). In Figure 2-
3b the ego vehicle is represented by the car with the red dot and the LIDAR measurements
are depicted as red points. This specific time instance will be used throughout this chapter
to explain and visualize the operation of the detection stage.
The Delft Scaled Vehicle (DSV) is equipped with a LIDAR sensor (RPLIDAR-A2) that has a
field of view of 360◦, angular resolution of 1◦ and range of 8 meters. The virtual sensor used
in the simulation environment has similar characteristics, with the only difference being the
maximum range. Since the vehicles in the simulation environment are bigger than the scaled
vehicles, the 8 meters range of the real sensor is quite limiting and therefore the range of the
simulated sensor was chosen equal to 50 meters.

2-2 Segmentation

The segmentation process (Figure 2-1) is responsible for separating the raw LIDAR mea-
surements (Figure 2-4a) in groups that correspond to moving objects of the real world that
need to be tracked. In Figure 2-4b the LIDAR points after the application of this algorithm
are visualized and are drawn with a different color for every segmented cluster. We can ob-
serve that the system created four different clusters which correspond accurately to the four
surrounding vehicles of the simulation.

(a) LIDAR raw measurements. (b) Output of the Adaptive Breakpoint Detector.

Figure 2-4: Output of the Adaptive Breakpoint Detector algorithm.

In this section there will be two algorithms that accomplish this task presented, however it
should be kept in mind that there are multiple algorithms for data clustering (k-means, k-d
tree). The methods presented here and implemented in the proposed system, are especially
designed for 2D LIDAR sensors and therefore have some advantages over generic algorithms.
One such advantage originates from the knowledge that LIDAR measurements are captured in
a sequential manner, this information is exploited in the operation of the algorithm and points
are checked if they belong to the same cluster sequentially. In this way, the computational
requirements are considerably reduced.

Master of Science Thesis Konstantinos Konstantinidis

12 Detection of Moving Objects

2-2-1 Breakpoint Detector Algorithm

The Breakpoint Detector Algorithm [22] clusters the 2D LIDAR point cloud of n points,
X ∈ Rn×2, based on the euclidean distance between consecutive points.

Consecutive points pn and pn−1 are clustered together if their euclidean distance is lower than
a predefined threshold distance Dmax. In case that the breakpoint Equation 2-1 holds, a new
cluster is started whose first point is pn.

‖pn − pn−1‖ > Dmax (2-1)

The operation principle of this algorithm is visualized in Figure 2-5. The points in the yellow
eclipse are the first cluster and the points in the green eclipse are the points of the second
cluster. This cluster separation is based on the detection of a breakpoint between points pn
and pn−1.

Figure 2-5: Visualization of the Breakpoint Detector Algorithm.

The fixed threshold distance Dmax that this algorithm operates on, does not account for the
fact that the point cloud that the LIDAR sensor produces becomes sparser as the distance from
the sensor increases. This can be observed in Figure 2-4a, where the LIDAR measurements
from the truck, which is the furthest away from the sensor are considerably sparser than the
point clouds from the two neighboring vehicles. This has as a result, that objects that are
far away from the sensor can have measurements that are distant enough that are separated
in different clusters. A way to overcome this limitation is by adapting the threshold distance
(Dmax) depending on the range of the measurement.

Konstantinos Konstantinidis Master of Science Thesis

2-2 Segmentation 13

2-2-2 Adaptive Breakpoint Detector Algorithm

A way to adapt the threshold breakpoint distance Dmax, according to the range distance rn
of the examined point, was first presented in [23] and will be explained below.
First, a line is drawn through the range point pn−1, which represents the worst case for an
incidence angle of a real world object that can be detected by the sensor. This line creates an
angle λ with respect to the scanning angle φn−1. The maximum range distance rhn, for pn−1,
is calculated in the following way:

rn−1 · sin(λ) = rhn · sin(λ−∆φ) (2-2)

By reworking the equation above,
∥∥∥phn − pn−1

∥∥∥ is calculated, which can be used as a threshold
distance (Dmax) in the breakpoint detection algorithm.∥∥∥phn − pn−1

∥∥∥ = rn−1 ·
sin(∆φ)

sin(λ−∆φ) (2-3)

However, because the sensor noise is not taken into account, problems can arise when the
range distance is small. Therefore, the sensor error variance σr is added to the max distance
.

Dmax =
∥∥∥phn − pn−1

∥∥∥+ σr (2-4)

In Figure 2-6, we can see the threshold circle, which gets drawn around pn−1, with a radius
that equals to Dmax. In case that, the next point pn is within the circle the two points are
clustered together, otherwise a breakpoint is detected and a new cluster gets initialized, in
exactly the same way as in the Adaptive Breakpoint Detector algorithm.

Figure 2-6: Visualization of the Adaptive Breakpoint Detector Algorithm. Adapted from [6].

Algorithm 1 is the pseudocode implementation of the Adaptive Breakpoint Detector. The
general structure of the algorithm is the same for the Breakpoint Detector, with the only
difference being the calculation of the Dmax value, which in that case is a predefined constant
value.

Master of Science Thesis Konstantinos Konstantinidis

14 Detection of Moving Objects

Algorithm 1 Adaptive Breakpoint Detector Segmentation Algorithm
Input: range data points X ∈ Rn×2

Output: set of point clusters S
1: n = 1
2: while n < length(X) do
3: Dmax ← rn−1 · sin(∆φ)

sin(λ−∆φ) + σr
4: if ‖pn − pn−1‖ < Dmax then
5: C push pn
6: i = i+ 1
7: else
8: S push C
9: i = i+ 1

10: end if
11: end while

2-3 Feature Extraction

The purpose of the Feature Extraction process (Figure 2-1) is to extract geometric shapes
from the clustered points. Since the main goal of the developed system is vehicle tracking
the chosen geometric shapes to be extracted from the clusters were lines (Figures 2-7a) and
rectangles (Figures 2-7b).

(a) Line extraction. (b) Rectangle extraction.

Figure 2-7: Output of the two implemented Feature Extraction algorithms.

Initially, line extraction was chosen since it was simpler to implement and computationally
less intensive. Even though, it produces good results when the measurements follow precisely
the shape of the detected vehicle, it fails to correctly estimate the vehicle’s shape when the
measurements are less precise. This can be observed in Figure 2-7a, where the line extraction
algorithm draws the lines representing the sides of the vehicles in a non optimal way. For the
case of the pickup truck at the right of the image, both algorithms fail to extract correctly
its orientation since the measurements are sparse at that distance.

Konstantinos Konstantinidis Master of Science Thesis

2-3 Feature Extraction 15

2-3-1 Line Extraction

The algorithm that was chosen and implemented for line extraction is the Iterative End-Point
Fit algorithm, otherwise known as the Ramer-Douglas-Peucker algorithm. The main function
of this algorithm is to simplify a curve composed of multiple line segments to a similar one
with fewer segments. It should be noted, that the simplified line consists of a subset of the
points that defined the original curve and no new points are created.

Figure 2-8: Visualization of the operation of the Iterative End-Point Fit Algorithm, on LIDAR
points reflected from a vehicle. Source [7]

Algorithm

The input to the algorithm is the ordered set of LIDAR points of a cluster X ∈ Rn×2 and
the predefined constant Dsplit, which defines the accepted dissimilarity between the original
and resulting lines.
At the beginning, the algorithm marks the first and last points of the initial point set to be
kept (blue circles in Figure 2-8). The next step of the algorithm, is to find the point that is
farthest from the line segment (Dmax) with the first and last points as end points (Figure 2-
8a). In the case that, Dmax > Dsplit, then the algorithm recursively calls itself with the first
point and the farthest point and then with the farthest point and the last point (Figure 2-8b).
In the other case that, Dmax 6 Dsplit, then any points not currently marked to be kept can
be discarded without the simplified curve being worse than Dsplit. When the recursion is
completed a new output curve is created consisting of all and only those points that have
been marked as kept. In Figure 2-8c the kept points are the ones marked in blue and red
circles.
Although this algorithm is computationally more efficient than the rectangle fitting one that
was used in the final version of the system, it has some disadvantages that significantly reduce
the robustness of the system as a whole. The most evident problem being the algorithms de-
pendence on the correct tuning of the Dsplit parameter, since a wrong value for this parameter
can lead to problems similar to the ones depicted in Figure 2-7a. In addition, the number
of line segments to be extracted can not be predetermined and therefore there are cases in
which, more than two line segments are extracted from a given cluster.

Master of Science Thesis Konstantinos Konstantinidis

16 Detection of Moving Objects

2-3-2 Rectangle Extraction

For each segmented cluster of LIDAR points, a rectangle needs to be found that best fits
around them. The algorithm that was chosen and implemented for rectangle fitting is the
Search-Based Rectangle Fitting algorithm [24], whose basic idea is to iterate through all the
possible directions and at each iteration find a rectangle that contains all the LIDAR scan
points. Afterwards, a performance score is calculated for each rectangle and the one with the
highest score is chosen.

Figure 2-9: Principle of operation of the Search-Based Rectangle Fitting Algorithm.

In Figure 2-9 the search-based operation of the algorithm is visualized. It can be seen that the
algorithm fits, as an example, two rectangles on the LIDAR range points that differ between
them by an angle δ. Although, both rectangles contain all the measurement points, one
rectangle is better than the other at representing the vehicle that the points originated from.
The rectangle selection is done at a later stage, through the calculation of some criterion,
which represents the prior belief about the characteristics of the best fitting rectangle.

The implementation of the Search-Based Rectangle Fitting algorithm that was used in the
system is presented in pseudocode as Algorithm 2. The input of the algorithm is the n points
of the examined cluster, X ∈ Rn×2. The output of the algorithm are the line representations
of the four edges of the fitted rectangle. The search space for θ ranges from 0◦ to 90◦,
because the two sides of a rectangle are orthogonal, and therefore only one edge needs to be
calculated, since the other is θ + π/2. The criterion that is used in Algorithm 2 line 7, is the
performance score that represents how closely the rectangle fits over the given LIDAR points.
This criterion can be defined in three different ways, each one with distinct advantages and
disadvantages.

Konstantinos Konstantinidis Master of Science Thesis

2-3 Feature Extraction 17

Algorithm 2 Search-Based Rectangle Fitting
Input: range data points X ∈ Rn×2

Output: rectangle edges {aix+ bix = ci|i = 1, 2, 3, 4}
1: Q← ∅
2: for θ = 0 to π/2− δ step δ do
3: ê1 ← (cos θ, sin θ) . rectangle edge direction vector
4: ê2 ← (− sin θ, cos θ)
5: C1 ← X · êT1 . projection on to the edge
6: C2 ← X · êT2
7: q ← CalculateCriterion(C1, C2)
8: insert q into Q with key (θ)
9: end for

10: select key (θ∗) from Q with (θ)
11: C∗1 ← X · (cos θ∗, sin θ∗)T , C∗2 ← X · (− sin θ∗, cos θ∗)T
12: a1 ← cos θ∗, b1 ← sin θ∗, c1 ← min {C∗1}
13: a2 ← − sin θ∗, b2 ← cos θ∗, c2 ← min {C∗2}
14: a3 ← cos θ∗, b3 ← sin θ∗, c3 ← max {C∗1}
15: a4 ← − sin θ∗, b4 ← cos θ∗, c4 ← max {C∗2}

Selection Criteria

In [24], they are presenting three different selection criteria, namely: rectangle area mini-
mization (Algorithm. 3), point-to-edges closeness maximization (Algorithm. 4), and points-
to-edges squared error minimization. And each of one of the three can be used to substitute
the CalculateCriterion(C1, C2) function.

In the developed system only the first two criteria were implemented, since the second one pro-
vided satisfactory results and according to the original authors the third criterion, more than
doubles the required computational time from 4.00 (ms) to 8.37 (ms), while only decreasing
the Absolute Error by 0.92◦. Because the application at hand is real time and computational
efficiency is of high importance the third algorithm was not implemented.

(a) Area minimization criterion. (b) Point-to-edges closeness maximization criterion.

Figure 2-10: Visualization of rectangle fitting with the two implemented selection criteria.

Master of Science Thesis Konstantinos Konstantinidis

18 Detection of Moving Objects

The area minimization criterion (Algorithm 3), gives the highest score to the rectangle that
covers the smallest area. The output of the rectangle fitting algorithm, when this criterion is
selected can be seen in Figure 2-10a. It is evident that the chosen rectangles do not correspond
accurately to the vehicles orientations and therefore the area criterion was not used in the
final system.

Algorithm 3 Area Criterion
1: function CalculateArea(C1, C2)
2: cmax

1 ← max {C1} , cmin
1 ← min {C1}

3: cmax
2 ← max {C2} , cmin

2 ← min {C2}
4: α← −

(
cmax

1 − cmin
1
)
·
(
cmax

2 − cmin
2
)

5: return α
6: end function

The points-to-edges closeness maximization criterion, shown in Algorithm 4, gives the highest
score to the rectangle that has its edges closer to the LIDAR points. The output of the
rectangle fitting algorithm when this criterion is selected, can be seen in Figure 2-10b and it
is evident that the selected rectangles are more accurate than the ones selected by the area
criterion.

Algorithm 4 Closeness Criterion
Parameter: d0

1: function CalculateCloseness(C1, C2)
2: cmax

1 ← max {C1} , cmin
1 ← min {C1}

3: cmax
2 ← max {C2} , cmin

2 ← min {C2}
4: D1 ← arg minv∈{cmax

1 −C1,C1−cmin
1 } ||v||l2

5: D2 ← arg minv∈{cmax
2 −C2,C2−cmin

2 } ||v||l2
6: β ← 0
7: for i = 1 to π/2− δ step 1 do
8: d← max

{
min

{
D1(i), D2(i)

}
, d0
}

9: β ← β + 1/d
10: end for
11: return β
12: end function

On the projected 2-D plane, cmax1 and cmin2 represent the boundaries for all the points on axis
ê1. The vectors cmax1 − C1 and C1 − cmin1 contain the distances of all the points to the two
boundaries. From the two boundaries, the one that is closer to the range points is chosen and
denoted as distance vector 1 (D1). Distance vector D2, is chosen the same way for projection
axis ê2. Finally, the closeness score is calculated as,

∑
i=1,...,m 1/di, where di is the i-th point’s

distance to the closest edge. This way the score is increased both by reducing the distance
and increasing the number of points.

In addition, a minimum distance threshold is introduced, to counteract possible divisions by
zero, in case that the LIDAR points are close to the boundary, and also to reduce the score
influence of points that are very close to the edges.

Konstantinos Konstantinidis Master of Science Thesis

2-4 L-shape Extraction 19

2-4 L-shape Extraction

After every cluster of LIDAR points is fitted with a bounding rectangle, an L-shape feature is
extracted from every rectangle (Figure 2-11), mainly for two reasons. First, the information
about the closest corner of surrounding vehicle is highly valuable for collision avoidance sys-
tems and secondly by extracting L-shapes of the closest sides of surrounding vehicles, their
appearance changes can be mitigated in later stages of the developed system.

(a) Rectangle Fitting. (b) L-shapes (red) - Closest corners (black).

Figure 2-11: L-shape extraction.

L-shapes are extracted from the bounding rectangles by choosing as L-shape corner point, the
corner point that is closest to the sensor. The two bounding box edges that connect to the
corner point are named L1 and L2, by following a clockwise assignment convention, shown in
Figure 2-12. The orientation angle (θ) of the L-shape is always defined as the orientation of
L1.

Figure 2-12: Conversion of a bounding rectangle to an L-shape feature.

Summarizing the above, the L-shape feature contains five values that are extracted from the
bounding box and which will be used in later stages for vehicle tracking. The position of the
corner point (xcorner, ycorner), the lengths L1, L2 and the orientation angle θ.

Master of Science Thesis Konstantinos Konstantinidis

20 Detection of Moving Objects

Konstantinos Konstantinidis Master of Science Thesis

Chapter 3

Tracking of Moving Vehicles

In this chapter, the tracking stage of the developed DATMO system will be presented and
analyzed. The objective of the vehicle tracking stage is to estimate as accurately as possible
the position, speed and dimensions of all detected vehicles. A flowchart of this stage is given
in Figure 3-1 and a brief explanation of its operation will be given below.

Figure 3-1: Flowchart of the vehicle tracking stage of the developed system.

At the left side of the flowchart is the input into the tracking stage, which are the extracted
by the detection subsystem L-shapes. The first component of the tracking stage is the Data
Association, in which the newly received L-shapes are associated with tracked vehicles from
previous time instances. After the L-shapes are associated with vehicles, it is investigated
if the observed corner of the vehicles changed and with it the direction of the associated L-
shape. If this is true, the three trackers are updated to reflect the change. Lastly, the position
of the L-shape is used to update the two L-shape kinematic trackers and its dimensions and
orientation are used for updating the shape tracker. The Kalman Filter (KF) kinematic
tracker uses a linear vehicle motion model and its aimed at systems with low computational
capabilities, while the Unscented Kalman Filter (UKF) tracker uses a nonlinear motion model
and it is geared towards system with higher capabilities.

Master of Science Thesis Konstantinos Konstantinidis

22 Tracking of Moving Vehicles

3-1 Data Association and Track Management

Data association is the process of associating detection results with already tracked objects
by working out which observations were generated by which targets.
The data association problem in multiple vehicle tracking is complicated because of the inher-
ent uncertainty of sensor measurements and the fact that the number of observations does not
necessarily correspond to the number of surrounding objects. Additionally, the true number of
objects is difficult to estimate since one object might be temporarily occluded or unobserved
and because objects can enter or go out of range of the vehicle’s sensors.
Track management for multiple object tracking consists of deducing the number of true objects
and identifying if each observation corresponds to an already known object being tracked, to a
false measurement or to a new object in the scene that needs to be tracked. The complexity of
track management and data association grows in correspondence with the number of objects
that need to be tracked.

Figure 3-2: Visualization of the data association process. Left: A set of observations, where
every circle is a detected object and the numbers are the timesteps. Right: Output of a data
association module composed of three object tracks (gray, yellow, blue).

Figure 3-2 shows an example of successful data association and track management given
observations over three time steps (t − 2, t − 1, t). At t − 2 two tracks are created (the
gray and yellow ones) and at t− 1, t they are correctly associated with the respective vehicle
observations. At t− 1, the blue object track is created to track the new vehicle that entered
the scene, but it is deleted at the next time step, since there is no new observation.

3-1-1 Data Association

There are two main classes of data association filters: deterministic filters and probabilistic
filters. The most commonly used deterministic filters are the Nearest Neighbor (NN) and the
Global Nearest Neighbor (GNN). Probabilistic filters are used in case that there are ambigui-
ties and clutter in the observations, and deterministic assignments of measurements to targets
are hard to make. Two of the most common probabilistic filters are the Multiple Hypothesis
Tracking (MHT) filter and the Joint Probabilistic Data Association Filter (JPDAF).

Konstantinos Konstantinidis Master of Science Thesis

3-1 Data Association and Track Management 23

Nearest Neighbor - Global Nearest Neighbor

The simplest method of data association is the Nearest Neighbor (NN), which associates
objects with tracks based on eucliden distance. This method can only be applied successfully
when the sensor update rate is sufficiently higher than the velocities of the moving objects
and as a consequence objects remain in the same area between consecutive measurements.
A more sophisticated method and the one used in the proposed system is the Global Nearest
Neighbor (GNN), which additionally ensures that each piece of data is assigned to at most
one object.

Figure 3-3: Data association in the developed system.

Fig. 3-3 visualizes several consecutive time instances (t, t− 1, . . . , t−n) from the simulation
and the correct association of new measurements to already tracked vehicles can be observed.
The operation of data association and track management is visualized through assigning a
unique color to every object at its creation. Therefore, in case that there was an error, not
all four object would have retained the same color throughout the time window, but there
would be a color change at the time of the association error.

Multiple Hypothesis Tracking (MHT)

Multiple Hypothesis Tracking (MHT) [25] maintains multiple association hypotheses, where
each hypothesis corresponds to a specific probable assignment of detected objects with tracks.
For each of the hypotheses, a hypothesis score is computed by summing the track existence
scores of all the targets within it. The probability of each hypothesis can then be computed
from it’s hypothesis score. In conflict situations, instead of taking an immediate decision
(NN, GNN) or combining hypotheses (JPDAF), hypotheses are propagated into the future in
anticipation that the association ambiguities will be resolved [16].

Master of Science Thesis Konstantinos Konstantinidis

24 Tracking of Moving Vehicles

Although, the MHT framework can handle situations where the measurements arise from a
varying number of targets or from background clutter, in practical applications, several issues
arise. The most serious one is the combinatorial increase in the number of generated tracks
and hypotheses, which results in a high computation load [2].

Joint Probabilistic Data Association Filter (JPDAF)

The Joint Probabilistic Data Association Filter (JPDAF) was originally proposed by Fort-
mann et al. in 1983 [26]. Unlike NN and GNN, JPDAF does not make a hard assignment of
measurements to targets. Instead, it makes a soft assignment by considering the probability
of each measurement being assigned to each target. The JPDAF method permits to assign
several detected objects to one track by a weighted probabilistic sum, but it differs from MHT,
in the regard that a single association hypothesis is maintained.

Unlike the MHT algorithm, JPDAF does not suffer from the combinatorial increase of gen-
erated tracks and hypotheses.

3-1-2 Track Management

Tracks is the name given to objects that are tracked by a Detection and Tracking of Moving
Objects (DATMO) system and track management is the process of managing the list of
tracks. The main goal of track management is to reduce the amount of tracked objects, both
for reducing the amount of computations performed at each timestep but also for preventing
false data associations. Generally, there are no dominant designs for track management and
the implementation of track management differs between applications, because it depends on
the rest of the components of the DATMO system, especially data association.

In this thesis, the track management that is used is relatively simple in its design and function,
mainly originating from the choice of GNN as the data association method. The implemented
track management system operates in the following way. After every measurement update
and clustering step, the clusters not associated with any already tracked object are used to
initiate new tracks. The tracks that are associated with newly detected clusters are unaffected,
while the not associated tracks are immediately deleted. Once the track management phase
is completed, all the newly created and associated tracks are propagated to the next time
step.

Konstantinos Konstantinidis Master of Science Thesis

3-2 State Estimation 25

3-2 State Estimation

In each time step, for every tracked vehicle, we want to estimate its longitudinal and lateral
position, heading angle, velocity and dimensions (width and length). For estimating those
values from the available measurements, the use of the Kalman Filter (KF), Extended Kalman
Filter (EKF) and Unscented Kalman Filter (UKF) were considered. The Kalman Filter is
the optimal estimator for linear systems, while the EKF and the UKF are extensions of
the Kalman filter so that nonlinear functions can be used as the dynamic and measurement
functions.

Although the Kalman Filter and its extensions can be written in a single step, they are
usually divided in two distinct steps: Prediction and Correction. The prediction step uses
the state estimate from the previous timestep to produce an estimate of the state at the
current timestep. This predicted state estimate is also known as the a priori state estimate
because, although it is an estimate of the state at the current timestep, it does not yet
include measurements from the current timestep. In the correction step, the current a priori
prediction is combined with current measurements to calculate the a posteriori state estimate.

Typically, the two steps alternate, with the prediction step advancing the state until the
next measurement becomes available, and the update step incorporates it. However, this
is not necessary; if the measurement is unavailable at some time step, the update may be
skipped and multiple prediction steps can be performed in a row. In a DATMO system
this can occur if a tracked vehicle is unobserved due to occlusion, or getting out of range of
the vehicles sensors. Likewise, if multiple independent observations are available at the same
time, numerous update steps can be performed before the next prediction step (typically with
different measurement models). In a DATMO system this is useful in cases that measurements
from multiple sensors need to be fused.

3-2-1 Kalman Filter

In the standard Kalman filter formulation, both the dynamics and measurement models are
represented by linear functions with added Gaussian noise. Under these assumptions, the
tracking procedure can be modeled via the following equations:

xk = Akxk−1 + wk

zk = Hkxk + vk
(3-1)

where Ak is the dynamics model, Hk is the measurement model, wk is the zero mean Gaussian
distributed process noise and vk is the zero mean Gaussian distributed measurement noise.
Thus, the Kalman filter produces a belief about the true state, which is fully described by a
vector of mean values and a covariance matrix.

Prediction Step

Given a state vector estimate x̂k−1, at previous time step k − 1, the a priori state estimate
x̂−k is calculated by using the dynamics model matrix A

x̂−k = Akx̂k−1 (3-2)

Master of Science Thesis Konstantinos Konstantinidis

26 Tracking of Moving Vehicles

the a priori estimate of the error covariance matrix is calculated by

P−k = AkPk−1A
T
k +Qk, (3-3)

where Qk is the process noise covariance and Pk−1 is the a posteriori estimate of the error
covariance.

Correction Step

In the correction step, the a posteriori state estimate is calculated using

x̂k = x̂−k +Kk

(
zk −Hkx̂

−
k

)
, (3-4)

where Kk is the Kalman gain, computed by

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1
, (3-5)

where Rk is the measurement noise covariance.

Finally, the a posteriori estimate of the error covariance is given by

Pk = (I −KkHk)P−k . (3-6)

Because of the assumptions that it is being built upon, the Kalman filter is the most compu-
tationally efficient of all the filters that are presented here. However, object motion can be
nonlinear and therefore many researchers use the EKF and UKF filters which are capable of
handling nonlinear dynamics and measurement models.

3-2-2 Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) [27], extends the Kalman filter so that nonlinear functions
can be used as the system’s dynamic and measurement models (Equation 3-7). The system
is then modeled as:

xk = f (xk−1) + wk

zk = h (xk) + vk
(3-7)

where f is the nonlinear dynamics model, h is the nonlinear measurement model, wk is the
Gaussian distributed process noise and vk is the Gaussian distributed measurement noise.
The basic principle of the EKF is based around linearizing the models with a first order
Taylor series expansion and then applying the regular Kalman filter equations.

In cases that the functions f and h are relatively linear and the posterior distribution does not
have local maximum values (is unimodal), then the EKF can produce good approximations
of the true belief. However, if the assumption of local linearity is violated, it can result in
highly unstable filters.

The EKF, like the Kalman Filter, uses a predictor-corrector mechanism and therefore its
operation can be broken down into prediction and correction steps.

Konstantinos Konstantinidis Master of Science Thesis

3-2 State Estimation 27

Prediction Step

Given a state vector estimate x̂k−1, calculated at time step k− 1, the a priori state estimate
x̂−k is calculated by using the dynamics model f

x̂−k = f (x̂k−1) (3-8)

and the a priori estimate of the error covariance matrix is calculated by

P−k = FkPk−1F
T
k +Qk (3-9)

where Qk is the process noise covariance, Pk−1 is the a posteriori estimate of the error
covariance and Fk is Jacobian matrix which linearizes the dynamics function f

Fk,[i,j] =
∂f(i)
∂x(j)

(x̂k−1) (3-10)

Correction Step

In the correction step, first the a posteriori state estimate is calculated using

x̂k = x̂−k +Kk

(
zk −Hkx̂

−
k

)
, (3-11)

where Kk is the Kalman gain and Hk is a Jacobian matrix which linearizes the measurement
function h used to combine the measurement vector zk. Hk is calculated in the following way:

Hk,[i,j] =
∂h(i)
∂x(j)

(
x̂−k

)
, (3-12)

while the Kalman gain is computed by

Kk = P−k H
T
k

(
HkP

−
k H

T
k +Rk

)−1
(3-13)

where Rk is the measurement noise covariance.

Finally, the a posteriori estimate of the error covariance is given by

Pk = (I −KkHk)P−k (3-14)

3-2-3 Unscented Kalman Filter (UKF)

The UKF [28] uses another method to linearize the transformation of a Gaussian, when it
is passed through a nonlinear function. Specifically, it performs a stochastic linearization
through the use of a weighted statistical linear regression process [29], called the unscented
transform. This transform deterministically picks a sample set of points, referred to as sigma
points, and passes them through the nonlinear function. Usually, the chosen points are picked
equal to the mean and at symmetric locations of the covariance.

Using the principle that a set of discretely sampled points can be used to parameterise mean
and covariance, this estimator yields performance equivalent to the KF for linear systems yet

Master of Science Thesis Konstantinos Konstantinidis

28 Tracking of Moving Vehicles

generalizes effectively to non linear systems without the linearization steps required by the
EKF. The asymptotic complexity of the UKF algorithm is the same as for the EKF and for
linear systems it can be shown that the estimates generated by the UKF are identical to those
generated by the Kalman filter, as is the case also for the EKF.

Figure 3-4: Comparison of the EKF and UKF in predicting the mean and covariance of a non
linear system. Adapted from [8][9].

However, for nonlinear systems the UKF produces similar or better results than the EKF,
where the improvement over the EKF depends on the amount of nonlinearities and the spread
of the prior state uncertainty. Another advantage of the UKF over the EKF is the fact, that
it is not necessary to derive the Jacobian matrices, which results in easier implementation.
The implementation of the UKF in the proposed system, which is presented below, is based
on the presentation on [30].

Prediction step

Given a state vector estimate x̂k−1, at time step k−1, a collection of sigma points is calculated
which is stored in the columns of a n× (2n+1) sigma point matrix Xk−1, where n is the state

Konstantinos Konstantinidis Master of Science Thesis

3-2 State Estimation 29

vector dimension. The columns of Xk−1 are computed by

(Xk−1)0 = x̂k−1

(Xk−1)i = x̂k−1 +
(√

(n+ λ)Pk−1
)
i
, i = 1 . . . n

(Xk−1)i = x̂k−1 −
(√

(n+ λ)Pk−1
)
i−n

, i = n+ 1 . . . 2n,
(3-15)

where
(√

(n+ λ)Pk−1
)
i
is the ith column of the matrix square root and λ is defined by

λ = α2(n+ κ)− n, (3-16)

where α is a scaling parameter which determines the spread of the sigma points and κ is a
secondary scaling parameter. Note that it is assumed that

(√
(n+ λ)Pk−1

)
i
is symmetric

and positive definite, which enables the calculation of the square root using a Cholesky de-
composition. After the calcualation of Xk−1, the prediction step is performed by propagating
each column of Xk−1 through time by ∆t using

(Xk)i = f ((Xk−1)i) , i = 0 . . . 2n (3-17)

where f is the differential transition function of the system model. The a priori state estimate
is then calculated

x̂−k =
2L∑
i=0

W
(m)
i (Xk)i (3-18)

where W (m)
i are weights defined by

W
(m)
0 = λ

(n+ λ)

W
(m)
i = 1

2(n+ λ) , i = 1 . . . 2n.
(3-19)

As the last part of the prediction step, the a priori error covariance is calculated

P−k =
2n∑
i=0

W
(c)
i

[
(Xk)i − x̂

−
k

] [
(Xk)i − x̂

−
k

]T
+Qk (3-20)

where Qki is the process error covariance matrix, whose weights are defined by

W
(c)
0 = λ

(n+ λ) +
(
1− α2 + β

)
W

(c)
i = 1

2(n+ λ) , i = 1 . . . 2n
(3-21)

Note that β is a parameter used to incorporate any prior knowledge about the distribution
of x.

Master of Science Thesis Konstantinos Konstantinidis

30 Tracking of Moving Vehicles

Correction step

During the correction step, the columns of Xk−1 are first transformed through the measure-
ment function. Therefore, let

(Zk)i = h ((Xk)i) , i = 0 . . . 2n (3-22)

ẑ−k =
2n∑
i=0

W
(m)
i (Yk)i (3-23)

where h represents the measurement model of the system. With the transformed state vector
ẑ−k , the a posteriori state estimated is calculated using

x̂k = x̂−k +Kk

(
zk − ẑ−k

)
, (3-24)

where Kk is the Kalman gain, which in the UKF formulation is defined by

Kk = Px̂k ẑk
P−1
ẑk ẑk

(3-25)

where

Pẑk ẑk
=

2n∑
i=0

W
(c)
i

[
(Zk)i − ẑ

−
k

] [
(Zk)i − ẑ

−
k

]T
+Rk (3-26)

Px̂k ẑk
=

2n∑
i=0

W
(c)
i

[
(Xk)i − x̂

−
k

] [
(Zk)i − ẑ

−
k

]T
(3-27)

where Rk is the measurement noise covariance matrix. The last part of the correction step is
to compute the a posteriori estimate of the error covariance defined by

Pk = P−k −KkPẑk ẑk
KT
k . (3-28)

Konstantinos Konstantinidis Master of Science Thesis

3-3 L-shape Tracker 31

3-3 L-shape Tracker

In this section, the different ways that the system tracks vehicle motion and dimensions will
be presented. In the previous chapter, we have explained that in order to simplify the LIDAR
measurements L-shapes are extracted from every cluster at every time step. Those L-shapes
are used as representations of the vehicles and therefore their motion and dimensions are
tracked. However, the L-shapes represent only two sides of a given vehicle and therefore at a
later stage a box model for every vehicle is calculated.

Summarizing the previous chapter, every L-shape feature contains five values that are ex-
tracted from the bounding boxes. Those values are, the position of the corner point (xcorner,
ycorner), the lengths L1, L2 and the orientation angle (θ) of L1 (Figure 3-5). Those five mea-
surements are divided in two groups, the xcorner and the ycorner, are used as measurements for
updating the filter that tracks the motion of the L-shape and L1, L2, θ are used for updating
the filter that tracks its shape.

Figure 3-5: Every L-shape consists of the xcorner,ycorner, L1, L2, θ values. The corner of the
bounding box that is closest to the LIDAR sensor is selected as the L-shape corner.

In order to track the position of the L-shape corner, the proposed system implements two
solutions. The first one uses a Kalman Filter for tracking the corner of the L-shape, while
the second one uses a UKF. The first approach is based on the work presented in [7], while
the second one is novel.

The system implements two solutions for two main reasons: the first being for comparing the
accuracy of the Kalman Filter and the UKF in this particular application. And the second
one is, providing the users of the system with options, so they can make a choice depending
on the accuracy demanded by their application and the available computational resources of
their platform.

The dimensions (L1, L2), orientation (θ) and turn rate (ω) of the L-shape are tracked by a
separate Kalman Filter.

Master of Science Thesis Konstantinos Konstantinidis

32 Tracking of Moving Vehicles

3-3-1 Kalman Filter Kinematic Tracker

The Kalman Filter used for tracking the motion of the corner point uses a Constant Veloc-
ity (CV) model which estimates position and velocities (visualized in Figure 3-6), with the
following state vector xCV .

xCV =
[
xcorner ycorner vx vy

]T
(3-29)

Figure 3-6: The kinematic model models the motion of the corner point.

The kinematic model ACV that is used to track the position (xcorner, ycorner) and velocities
vx, vy of the corner point, as show in Fig. 3-6, is the following:

ACV =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 (3-30)

where T is the sampling time. Given that only the position of the corner point is measured,
the measurement vector and model are the following:

zCV =
[
xcorner ycorner

]T
HCV =

[
1 0 0 0
0 1 0 0

] (3-31)

The process noise covariance matrix QCV was configured initially based on [31], in the fol-
lowing way:

QCV =


σ2
xT

4/4 σ2
xT

3/2 0 0
σ2
xT

3/2 σ2
xT

2 0 0
0 0 σ2

yT
4 σ2

yT
3/2

0 0 σ2
yT

3/2 σ2
yT

2

 (3-32)

where σ2
x = σ2

y = 150, which according to [31] is for medium sensor noise scenarios.

Konstantinos Konstantinidis Master of Science Thesis

3-3 L-shape Tracker 33

However, the above tuning of the QCV matrix resulted in sub optimal estimations, compared
to the final tuning of the QCV and RCV matrices presented below:

QCV =


T 0 0 0
0 T 0 0
0 0 10T 0
0 0 0 10T

 RCV =
[
σx 0
0 σy

]
(3-33)

where σx, σy where tuned depending on the scale of the experiment.

3-3-2 UKF Kinematic Tracker with Coordinated Turn Model

Higher tracking accuracy of vehicles during turns can be achieved by utilizing a Coordinated
Turn Model with Cartesian Velocity [32], which cannot be used with a standard Kalman
filter since it is nonlinear. This model in addition to the four states that are tracked by the
Constant Velocity model, tracks also the turn rate of the vehicle (ω). Therefore, the state
vector xCTM is: [

x y vx vy ω
]T

(3-34)

And its kinematic function fCTM is the following:

fCTM (x) =


x+ vx

ω sin(ωT)− vy

ω (1− cos(ωT))
y + vx

ω (1− cos(ωT)) + vy

ω sin(ωT)
vx cos(ωT)− vy sin(ωT)
vx sin(ωT) + vy cos(ωT)

ω

 (3-35)

The measurement vector and model are similar to the ones used in the Kalman Filter, since
the available measurements are the same.

zCTM =
[
xcorner ycorner

]T
HCTM =

[
1 0 0 0 0
0 1 0 0 0

]
.

(3-36)

The process and measurement noise covariance matrices that were used for this model are
the following:

QCTM =


T 0 0 0 0
0 T 0 0 0
0 0 10T 0 0
0 0 0 10T 0
0 0 0 0 0.5T

 RCTM =
[

0.1σx 0
0 0.1σy

]
(3-37)

The α paremeter of the UKF was chosen equal to 0.0025, β was chosen equal to 2 and κ was
chosen as 0.

Master of Science Thesis Konstantinos Konstantinidis

34 Tracking of Moving Vehicles

3-3-3 Alternative kinematic models

In addition to the kinematic model presented above, two other kinematic models were imple-
mented and tested. Those are the Omnidirectional kinematic model [33] and the Constant
Turn-Rate Velocity (CTRV) model [31]. However, their estimations are not presented in the
evaluation chapter, because they are considerably less reliable than the ones from the CTM
model.

Omnidirectional Model

This model uses as kinematic function f an omnidirectional 2D discrete time kinematic
model [33], which in addition to the position and speed tracks also, the yaw (ψ) and turn rate
(ω). Therefore, the state vector xOMNI is:

xOMNI =
[
x y ψ vx vy ω

]T
(3-38)

and the kinematic function is the following:

fOMNI =



x+ (vx cosψ − vy sinψ)T
y + (vx sinψ + vy cosψ)T

ψ + ωT
vx
vy
ω


. (3-39)

Constant Turn-Rate Velocity (CRTV) Model

This model makes an assumption that the velocity and the turn rate of the tracked vehicle
are constant, while it is also tracking the position (x, y) and the orientation (ψ).

Therefore, the state vector xCTRV is:

xCTRV =
[
x y ψ v ω

]T
(3-40)

and the kinematic function used is the following:

fCTRV =


x+ v

ω (− sin (ψ) + sin (Tψ + ψ))
y + v

ω (cos (ψ)− cos (Tω + ψ))
Tψ + ψ

v
ω

 . (3-41)

Konstantinos Konstantinidis Master of Science Thesis

3-3 L-shape Tracker 35

3-3-4 Shape Tracker

The shape of the target vehicle is tracked using a Kalman Filter and a state vector composed
of line lengths (L1, L2), the orientation of L1(θ) and the yaw rate (ω). Those states are
visualized in Figure 3-7 and are contained in vector xs.

xS =
[
L1 L2 θ ω

]T
(3-42)

Figure 3-7: The shape filter estimates the yaw, yaw rate and size of the L-shape.

For estimating the vehicle’s shape, a static model is applied to the line lengths (L1, L2) based
on the assumption that the vehicle size does not change over time. For estimating the L-
shape’s yaw and, since the yaw rate does not change particularly fast, a constant turn rate
model is chosen. The two above models are combined in a single process matrix:

AS =


1 0 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , (3-43)

where T the sampling time and AS is the process matrix containing the static model for the
line lengths and the constant turn rate model for the orientation and the yaw rate.

Among the states of the shape model, only the yaw rate is not contained in the L-shape and
therefore the measurement vector and model are the following:

zS =
[
L1 L2 θ

]T
HS =

 1 0 0 0
0 1 0 0
0 0 1 0

 . (3-44)

The process and measurement noise covariance matrices that were used for this model are

Master of Science Thesis Konstantinos Konstantinidis

36 Tracking of Moving Vehicles

the following:

QS =


T 0 0 0
0 T 0 0
0 0 T T 2

2
0 0 0 T

 (3-45)

RS =
[

1
10L1 0
0 1

10L2

]
, (3-46)

where the measurement noise of the length states is inversely proportional to their measure-
ment to represent the uncertainty of measurement when a side of the vehicle is occluded.

At this point it should be mentioned that the shape model could be augmented with two
additional states that track the length and width difference between time steps [11]. Those
additional states can be used to detect occlusion events and reduce the change applied to the
estimated line lengths, during those periods.

3-4 Corner Point Switching

The designed system is tracking L-shapes, which represent the closest corner of observed
vehicles. However, while the ego vehicle and the observed ones are moving, it is expected
that the closest corners of the other vehicles will be periodically changing and therefore the
extracted L-shapes should also be changing.

Figure 3-8: Visualization of all the corner points of a vehicle (C1-C4) and of the clockwise and
counter clockwise changes between them (black arrows).

All the possible extracted L-shapes from a vehicle are drawn in Figure 3-8 and are marked
by values C1 to C4.

Konstantinos Konstantinidis Master of Science Thesis

3-4 Corner Point Switching 37

An example of a corner change occurrence can be observed in Figure 3-9, in which two
instances from the simulation are given side by side. In the first time instance (t), the
overtaking vehicle at the left of the ego-vehicle is tracked by its front-right corner (C3). As
it moves ahead in the second time instance (t + 1), the closest corner changes to the one at
the vehicle’s rear-right corner (C4).

(a) First time instance. (b) Second time instance.

Figure 3-9: Clockwise change of closest corner point, from corner C3 to corner C4.

In the proposed system, corner point changes were detected based on the Mahalanobis dis-
tances of the new measurement to the already tracked corner point and the two neighboring
ones. If for example, the already tracked corner point is C3, with state vector (c3), then the
state vectors of corner points C2 (c2) and C4 (c4) are calculated and their values are compared
with the state vector of the new L-shape measurement (m), via the Mahalanobis distance.
The Mahalanobis distance (DM), which is a multivariate distance metric, is calculated based
on the following formula:

D2
M = (c−m)T · P−1 · (c−m)
c = [xcorner, ycorner, θ, L1, L2,]T

m = [xcorner, ycorner, θ, L1, L2,]T
(3-47)

where P is the covariance matrix of the already tracked corner point.

If the shortest Mahalanobis distance is between the measurement vector m and the previously
tracked corner vector, for example c3, then no corner switch took place. However, if the
shortest distance is with c4, a clockwise switch took place and if it is with c2, a counter
clockwise switch took place. In the example of Figure 3-9, we can observe that a clockwise
corner switch between corners C3 and C4 occurred. In such cases, the filters that track the
L-shape cannot be immediately updated because the new L-shape measurement corresponds
to another corner than the one that the filter states are tracking. Therefore, the filter states
should be altered, so that the represent the same corner with the new measurement.

Master of Science Thesis Konstantinos Konstantinidis

38 Tracking of Moving Vehicles

In case that a clockwise switch is detected, the filter states are changed in the following way:

xCjcorner =xCicorner + LCi1 cos θCi

yCjcorner =yCicorner + LCi1 sin θCi

vCjx =vCix + LCi1 ω sin θCi

vCjy =vCiy + LCi1 ω cos θCi

θCj =θCi − π/2

LCj1 =LCi2

LCj2 =LCi1

where
{
j = i+ 1, i < 4
j = 1, i = 4

(3-48)

where the superscripts Ci and Cj represents the corner number before and after the model
change.

In case that a counter clockwise switch is detected the kinematic and shape states are changed
in the following way:

xCjcorner =xCicorner + LCi2 sin θCi

yCjcorner =yCicorner + LCi2 cos θCi

vCjx =vCix + LCi2 ω cos θCi

vCjy =vCiy + LCi2 ω sin θCi

θCj =θCi + π/2

LCj1 =LCi2

LCj2 =LCi1

where
{
j = i− 1, i > 1
j = 4, i = 1

(3-49)

An enhancement of this corner model switching scheme is presented in [34], in which the
transitions between the corner points are used for characterizing the motion of the observed
vehicles (overtaking, lane keeping, U-turn).

3-5 L-shape to Box Model Conversion

In the L-shape to box model conversion stage the kinematic state is changed from corner point
motion to vehicle motion. The position of the center of the box model can be calculated by
using the geometric information of the shape model

xcenter = xcorner + εx, where εx = (L1 cos θ + L2 sin θ) /2
ycenter = ycorner + εy, where εy = (L1 sin θ − L2 cos θ) /2. (3-50)

Since the velocity of the corner point is the sum of the target velocity and the tangential
velocity, the rotational motion of the corner point includes both translational velocity and

Konstantinos Konstantinidis Master of Science Thesis

3-5 L-shape to Box Model Conversion 39

rotational velocity. The rotational motion is assumed as a uniform circular motion, since
a constant turn rate model for the shape model has already been assumed. Therefore, an
equation for tangential velocity can be derived by using the distance from the center as the
radius (r) of the circular motion.

vx,center =vx,corner − rω cosα
vy,center =vy,corner − rω sinα

where α = tan−1 (εy/εx)− π/2.
(3-51)

A vehicle’s yaw (ψ) is typically difficult to estimate from an L-shape because of the ambigui-
ties, since it is hard to judge which is the front part and which is the rear part of the vehicle.
Therefore, it would be reasonable to keep the following four hypotheses:

ψi = θ + i
π

2 , i ∈ {0, 1, 2, 3} (3-52)

where ψi represents the yaw angle of the vehicle [35]. Next, for calculating the actual yaw of
the vehicle, these four angles are compared with the angle of the vehicle’s speed and the one
with the least absolute difference from the speed’s orientation is chosen as the vehicle yaw.
The turn rate of the box model is taken equal to the turn rate (ω) of the tracked L-shape.

In Figure 3-10 a comparison is made between the output of the rectangle fitting algorithm and
the output of the box model conversion stage. In Figure 3-10b arrows are used to represent
the estimated velocities of the surrounding vehicles, while the starting point of the arrows are
the estimated center of the surrounding vehicles.

(a) Output of rectangle extraction. (b) Output after L-shape to box model conversion.

Figure 3-10: Comparison between the output of the rectangle fitting algorithm and the boxes
calculated from the L-shapes.

It can additionally be observed, that the dimensions of the box models are bigger than the
extracted rectangles, since they are based on the estimations of the shape filter and that the
estimated orientation of the truck at the top right corner is closer to the true value, than the
one estimated by the rectangle fitting algorithm (Fig. 2-7b).

Master of Science Thesis Konstantinos Konstantinidis

40 Tracking of Moving Vehicles

Konstantinos Konstantinidis Master of Science Thesis

Chapter 4

Experimental Evaluation

In this chapter, the experiments used to test and evaluate the proposed system will be pre-
sented and the evaluation results will be explained. The developed system was tested with
two different methods, the first method was in a simulation environment, and the second
one were experiments with robotic cars. The simulation environment provided a reliable and
accurate way to test the proposed system at every step of its development. While the experi-
ments with the robotic cars, proved the usefulness of the proposed system as a tool for other
researchers, with similar robotic platforms.

4-1 Simulation Experiments

The simulation environment1 was developed with the goal of providing a fast, repeatable and
accurate way to test the developed system in multiple scenarios. It was created in the Gazebo
simulator and is based around the complete mechanical model of a Toyota Prius car, which
is used both as the ego vehicle and the two tracked ones. For all experiments, the three
Prius cars were controlled by joystick inputs, since the added randomness of human input
was perceived as an advantage over predetermined path following.
During this simulation experiment the output of the system and the reference measurements
are both recorded and they are later analyzed to assess the accuracy of the proposed sys-
tem. The reference measurements provided by the simulation environment are very accurate
and with sufficiently higher frequency (100 Hz) than the estimations of the system (12 Hz)
and therefore are used as ground truth data. For evaluating the tracking performance, the
system’s estimates for the position (x, y), velocities (vx, vy), orientation (ψ), turn rate (ω)
and dimensions (Length, Width)of the box models are plotted against the ground truth data,
which also refer to the center of the vehicles.
Although, at this point only LIDAR data were used, the simulated Prius cars are additionally
equipped with camera and radar sensors, which can be used for sensor fusion experimentation
in the future.

1The highway simulator can be found at: https://github.com/kostaskonkk/highway_driving_simulator

Master of Science Thesis Konstantinos Konstantinidis

https://github.com/kostaskonkk/highway_driving_simulator

42 Experimental Evaluation

4-1-1 Overtakes Experiment

The overtakes experiment2 was one of the most challenging simulation experiments for the
developed system. In Figure 4-1 which is a snapshot of the simulation environment during
this experiment, we can observe that there a total of five vehicles, from which the three at
the bottom lanes are controlled via joystick input, while the bus and truck at the top lanes
are following straight paths. The ego vehicle is the Prius in the middle lane and during this
experiment it overtakes the car that drives on the emergency lane. At the same time, the third
car which also starts in the middle lane, changes to the left lane, overtakes the ego-vehicle
and then merges back in the middle lane in front of it.

Figure 4-1: Image of the developed simulation environment, during the overtakes experiment.

The estimations of the system are plotted against the ground truth data on Fig. 4-2 for the
car at the emergency lane and at Fig. 4-4 for the car at the left lane, while the statistics of
the estimation errors are plotted in Figure 4-3 and 4-5, respectively.
In Fig. 4-2, we can observe that both filters produce identical estimates for the position (x,
y) of the car in the emergency lane. However, the velocities estimated by the two filters are
different, with the KF overshooting the reference and the UKF undershooting it. This can
be explained, by the different process models that the filters employ. The orientation of the
vehicle is estimated with high accuracy by the shape filter, after the vehicle starts moving.
The turn rate however is not estimated accurately since its abrupt changes were not tracked
correctly by the filter. Lastly, it is evident that the accuracy of length and width estimation,
depends on which side the incoming measurements represent. Therefore, when the length is
measured the length estimation is accurate and when the width is measured its estimation is
more accurate. The two spikes at the beginning of those diagrams can be explained by the
fact that, the orientation of the vehicle can not be estimated when the vehicles are stationary.
The results for the overtaking car are drawn in Fig. 4-4, where it can be observed that the
system has generally similar performance. However, in the (vy) graph, a spike can be seen,
which is attributed to two rapid corner switches that occur while the vehicles are almost
stationary. In both cases, it is evident that the UKF offers no significant benefits to the KF,
and that is probably due to the motion of the two vehicles, which is generally straight, while
the model of the UKF estimates the kinematics of constant turns.

2A video of the experiment can be found at: https://youtu.be/JrbJjmIv730

Konstantinos Konstantinidis Master of Science Thesis

https://youtu.be/JrbJjmIv730

4-1 Simulation Experiments 43

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

−20

0

x
(m

)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

−12

−11

−10

y
(m

)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

0

2

4

6

v x
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

0

1

v y
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

0

50

100

150

ψ
(d
eg
re
es
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

−20

0

20

ω
(d
eg
re
es
/s
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1

2

3

Le
ng

th
(m

)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1.0

1.5

2.0

2.5

3.0

W
id
th

(m
)

KF UKF Shape KF Reference

Figure 4-2: Estimated states by the developed system against the simulation ground truth, for
the car at the right of the ego-vehicle.

Master of Science Thesis Konstantinos Konstantinidis

44 Experimental Evaluation

0.0 0.1 0.2 0.3 0.4 0.5
Relative error x

Max

Min

STD

RMSE

Median

Mean

0.0 0.1 0.2 0.3 0.4
Relative error y

Max

Min

STD

RMSE

Median

Mean

0.0 0.5 1.0 1.5 2.0
Absolute error vx (m/s)

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8
Absolute error vy (m/s)

Max

Min

STD

RMSE

Median

Mean

0 50 100 150
Absolute error ψ (degrees)

Max

Min

STD

RMSE

Median

Mean

0 10 20 30
Absolute error ω (degrees/s)

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8
Relative error Length

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6
Relative error Width

Max

Min

STD

RMSE

Median

Mean

KF UKF Shape KF Reference

Figure 4-3: Statistics of the errors of the estimated states by the developed system against the
simulation ground truth, for the car at the right of the ego-vehicle.

Konstantinos Konstantinidis Master of Science Thesis

4-1 Simulation Experiments 45

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

−50

−25

0

25

50

x
(m

)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

−9

−8

−7

−6

y
(m

)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

0

5

10

v x
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

−2

0

2

v y
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

−100

0

100

ψ
(d
eg
re
es
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

−20

0

20

ω
(d
eg
re
es
/s
)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

1

2

3

Le
ng

th
(m

)

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

0.75

1.00

1.25

1.50

1.75

W
id
th

(m
)

KF UKF Shape KF Reference

Figure 4-4: Estimated states by the developed system against the simulation ground truth, for
the over passing car at the left of the ego-vehicle.

Master of Science Thesis Konstantinos Konstantinidis

46 Experimental Evaluation

0.0 0.2 0.4 0.6
Relative error x

Max

Min

STD

RMSE

Median

Mean

0.0 0.1 0.2 0.3 0.4
Relative error y

Max

Min

STD

RMSE

Median

Mean

0.0 0.5 1.0 1.5 2.0
Absolute error vx (m/s)

Max

Min

STD

RMSE

Median

Mean

0.0 0.5 1.0 1.5 2.0
Absolute error vy (m/s)

Max

Min

STD

RMSE

Median

Mean

0 50 100 150
Absolute error ψ (degrees)

Max

Min

STD

RMSE

Median

Mean

0 10 20 30
Absolute error ω (degrees/s)

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8
Relative error Length

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6
Relative error Width

Max

Min

STD

RMSE

Median

Mean

KF UKF Shape KF Reference

Figure 4-5: Statistics of the errors of the estimated states by the developed system against the
simulation ground truth, for the over passing car at the right of the ego-vehicle.

Konstantinos Konstantinidis Master of Science Thesis

4-1 Simulation Experiments 47

4-1-2 Opposite Lane Tracking

The opposite lane tracking experiment3 presented a different challenge to the developed sys-
tem, since it measured the error in the case that the target vehicle moves in the opposite
direction of the ego vehicle.

In Figure 4-6 which is a snapshot of the simulation environment taken during this experiment,
we can observe that there a total of three Prius vehicles, with the one in the middle being the
ego vehicle and the one at its opposite lane being the one whose tracking will be evaluated.
Although, the car at the right of the ego vehicle is also tracked, the acquired results are not
presented, since it follows a similar motion to the previous experiment.

Figure 4-6: Image of the developed simulation environment, during the overtakes experiment.

The estimations of the system and the reference measurements given by the simulation envi-
ronment are plotted on Figure 4-7, while the statistics of the errors are plotted on Figure 4-8.

In Figure 4-7, we can observe that in this experiment, the tracked car is not visible from the
beginning since it is far away from the ego vehicle and therefore it starts being tracked after
the third second of the experiment. The x position of the car in the opposite lane is tracked
accurately by both filters, and even though it seems that the y position estimates are not
very accurate, this is due to fact that the car moves less than a meter in this direction during
the whole experiment. This can also be seen in Figure 4-8 where the relative error for y has
half the RMSE than that of x.

The velocity estimation is comparable for the two filters, however the UKF converges faster
to the true value of vx than the KF, but it is also more sensitive to noise and therefore
produces worse estimates for the vy orientation. The estimated orientation is accurate when
the vehicle comes in close range of the LIDAR sensor, however the turn rate estimation makes
a big error because of an undetected corner point switch. Lastly, the estimation of the vehicle’s
dimensions is accurate, when the vehicles are close and measurements from both sides of the
tracked vehicle are available.

3A video of the experiment can be found at: https://youtu.be/AkO3fpvwXCg

Master of Science Thesis Konstantinos Konstantinidis

https://youtu.be/AkO3fpvwXCg

48 Experimental Evaluation

0 2 4 6 8 10
Time (s)

−40

−20

0

20

x
(m

)

0 2 4 6 8 10
Time (s)

2.75

3.00

3.25

3.50

y
(m

)

0 2 4 6 8 10
Time (s)

−10

−5

0

v x
(m

/s
)

0 2 4 6 8 10
Time (s)

−2

−1

0

1

2

v y
(m

/s
)

0 2 4 6 8 10
Time (s)

−100

0

100

ψ
(d
eg
re
es
)

0 2 4 6 8 10
Time (s)

0

20

40

ω
(d
eg
re
es
/s
)

0 2 4 6 8 10
Time (s)

0

1

2

3

Le
ng

th
(m

)

0 2 4 6 8 10
Time (s)

1.0

1.5

W
id
th

(m
)

KF UKF Shape KF Reference

Figure 4-7: Estimated states by the developed system against the simulation ground truth, for
the car at the opposite lane.

Konstantinos Konstantinidis Master of Science Thesis

4-1 Simulation Experiments 49

0.0 0.2 0.4 0.6 0.8
Relative error x

Max

Min

STD

RMSE

Median

Mean

0.0 0.1 0.2 0.3 0.4
Relative error y

Max

Min

STD

RMSE

Median

Mean

0.0 2.5 5.0 7.5 10.0
Absolute error vx (m/s)

Max

Min

STD

RMSE

Median

Mean

0.0 0.5 1.0 1.5 2.0
Absolute error vy (m/s)

Max

Min

STD

RMSE

Median

Mean

0 50 100 150
Absolute error ψ (degrees)

Max

Min

STD

RMSE

Median

Mean

0 10 20 30 40 50
Absolute error ω (degrees/s)

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8 1.0
Relative error Length

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6
Relative error Width

Max

Min

STD

RMSE

Median

Mean

KF UKF Shape KF Reference

Figure 4-8: Statistics of the errors of the estimated states by the developed system against the
simulation ground truth, for the car at the opposite lane.

Master of Science Thesis Konstantinos Konstantinidis

50 Experimental Evaluation

4-2 Scaled Cars Experiments

The proposed system was additionally tested and evaluated in a experiments with scaled RC
driven cars. The reference measurements provided by the Motion Capture (MoCap) system
have high accuracy (2mm) and sufficiently higher frequency (120 Hz) than the estimations of
the system (12 Hz). It should also be mentioned that the system produces estimates in the
coordinate frame of the MoCap system, which is possible because localization measurements
are provided to the ego-vehicle by the MoCap system.

4-2-1 Racing experiment

The racing experiment4 provides a plethora of driving maneuvers in a short time frame and
therefore can be used to evaluate the overall performance of the system. During this ex-
periment the cars drove around the four cones two times, while overtaking each other. In
Figure 4-12, we can observe the ego-vehicle (black car), while it is overtakes the red car.

Figure 4-9: Photograph of the racing experiment during an overtaking maneuver by the DSV.

In Figure 4-10 and 4-11, we can observe that both filters produce almost indistinguishable
estimates for the position of the car center. In velocities estimation the two filters have
different performance, and by looking at the statistics it can be seen that the estimates of
the UKF are more accurate. Orientation estimation is accurate for the most part, except at
the beginning, the middle and the end of the experiment, in which time points the tracked
vehicle has zero velocity. In this experiment, the yaw rates are significant since the vehicles
follow an elliptical trajectory and therefore it is the first experiment in which the turn rate
tracking capabilities of the system are displayed.

Lastly, it can be observed that all state estimates are abruptly stopped before the 15 second
mark and this results from the red vehicle coming closer than the minimum range of the
LIDAR sensor. Since no new observations of the red car are made, it is deleted by the system
and no estimates about its motion are given, until it is detected again.

4A video of the experiment can be found at: https://youtu.be/BDvzPGi3hjg

Konstantinos Konstantinidis Master of Science Thesis

https://youtu.be/BDvzPGi3hjg

4-2 Scaled Cars Experiments 51

0 5 10 15 20 25
Time (s)

−2

0

2

x
(m

)

0 5 10 15 20 25
Time (s)

−0.5

0.0

0.5

y
(m

)

0 5 10 15 20 25
Time (s)

−1

0

1

v x
(m

/s
)

0 5 10 15 20 25
Time (s)

−1

0

1

v y
(m

/s
)

0 5 10 15 20 25
Time (s)

−100

0

100

ψ
(d
eg
re
es
)

0 5 10 15 20 25
Time (s)

0

50

100

ω
(d
eg
re
es
/s
)

0 5 10 15 20 25
Time (s)

0.0

0.1

0.2

0.3

0.4

Le
ng

th
(m

)

0 5 10 15 20 25
Time (s)

0.0

0.1

0.2

0.3

W
id
th

(m
)

KF UKF Shape KF Reference

Figure 4-10: Estimated states by the developed system against the MoCap ground truth.

Master of Science Thesis Konstantinos Konstantinidis

52 Experimental Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Relative error x

Max

Min

STD

RMSE

Median

Mean

0.00 0.05 0.10 0.15 0.20
Relative error y

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8 1.0
Absolute error vx (m/s)

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8
Absolute error vy (m/s)

Max

Min

STD

RMSE

Median

Mean

0 50 100 150
Absolute error ψ (degrees)

Max

Min

STD

RMSE

Median

Mean

0 20 40 60 80 100
Absolute error ω (degrees/s)

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8 1.0
Relative error Length

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8 1.0
Relative error Width

Max

Min

STD

RMSE

Median

Mean

KF UKF Shape KF Reference

Figure 4-11: Statistical analysis of the absolute error of the two methods for each state.

Konstantinos Konstantinidis Master of Science Thesis

4-2 Scaled Cars Experiments 53

4-2-2 Road Intersection

The intersection experiment5 was the most challenging experiment for the developed system,
since the target vehicle moves in a perpendicular direction and at a high speed. This ex-
periment tries to simulate the scenario in which another car runs through a red traffic light
and comes toward the ego vehicle at a high speed. In Figure 4-12, which is a photo of this
experiment, we can observe the ego-vehicle moving slowly forward, while the red car moves
with a high speed.

Figure 4-12: Photograph of the racing experiment during an overtaking maneuver by the DSV.

The motion of the red car is parallel to the x axis and therefore we are most interested in the
estimations of x and vx. While both filters produce the same estimates for x (Figure 4-13),
the estimate of vx by the UKF converges faster to the reference value which is very important
in such scenarios. However, it is expected that this performance can be replicated in the KF
by tuning the R matrix. In the orientation (ψ) and turn rate (ω) plots we can observe that
the system makes a false corner point switching decision around the 3 second mark, which
causes the turn rate estimate to severely diverge. The false corner point switch can also be
observed in the width estimate which has a peak at the same time instance.

In summary, this is an experiment that brings the developed system to its limit and therefore
it is not advised to rely on this system for similar scenarios.

5A video of the experiment can be found at: https://youtu.be/Xh4Uryju0Tk

Master of Science Thesis Konstantinos Konstantinidis

https://youtu.be/Xh4Uryju0Tk

54 Experimental Evaluation

0 1 2 3 4
Time (s)

−2

−1

0

1

2
x
(m

)

0 1 2 3 4
Time (s)

−0.10

−0.05

0.00

0.05

0.10

y
(m

)

0 1 2 3 4
Time (s)

−2

−1

0

v x
(m

/s
)

0 1 2 3 4
Time (s)

−0.1

0.0

0.1

0.2

v y
(m

/s
)

0 1 2 3 4
Time (s)

−100

0

100

ψ
(d
eg
re
es
)

0 1 2 3 4
Time (s)

0

20

40

ω
(d
eg
re
es
/s
)

0 1 2 3 4
Time (s)

0.1

0.2

0.3

0.4

Le
ng

th
(m

)

0 1 2 3 4
Time (s)

0.00

0.05

0.10

0.15

0.20

W
id
th

(m
)

KF UKF Shape KF Reference

Figure 4-13: Estimated states by the developed system against the MoCap ground truth.

Konstantinos Konstantinidis Master of Science Thesis

4-2 Scaled Cars Experiments 55

0.0 0.2 0.4 0.6 0.8
Relative error x

Max

Min

STD

RMSE

Median

Mean

0.000 0.025 0.050 0.075 0.100 0.125
Relative error y

Max

Min

STD

RMSE

Median

Mean

0.0 0.5 1.0 1.5 2.0
Absolute error vx (m/s)

Max

Min

STD

RMSE

Median

Mean

0.00 0.05 0.10 0.15 0.20
Absolute error vy (m/s)

Max

Min

STD

RMSE

Median

Mean

0 50 100 150
Absolute error ψ (degrees)

Max

Min

STD

RMSE

Median

Mean

0 10 20 30 40 50
Absolute error ω (degrees/s)

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8
Relative error Length

Max

Min

STD

RMSE

Median

Mean

0.0 0.2 0.4 0.6 0.8 1.0
Relative error Width

Max

Min

STD

RMSE

Median

Mean

KF UKF Shape KF Reference

Figure 4-14: Statistical analysis of the absolute error of the two methods for each state.

Master of Science Thesis Konstantinos Konstantinidis

56 Experimental Evaluation

4-3 Evaluation of system speed

The operating frequency of the system should be higher than the sampling frequency of the
LIDAR sensor, which in our case is 12 Hz both in the simulation and the experiment. For
this reason, the proposed system should be able to perform all necessary calculations with a
higher frequency than 12 Hz and in a period smaller than 83 milliseconds.

Since, there are time restrictions, it was necessary for the system to be computationally ef-
ficient and therefore it was decided to develop it in C++, which has fewer computational
overheads than other programming languages. However, while the computational require-
ments of the system grew, and especially after the inclusion of the UKF, there were instances
where the system exceeded the 83 millisecond limit. A solution to this problem was given
by computing all the filter calculations in parallel. This proved especially useful for the mi-
crocomputer on the DSV, which has 8 CPU cores and therefore achieved a major boost in
performance.

Figure 4-15 is a graph of the execution time of the program, during the racing experiment. It
can be observed that the execution time stayed below the 83 millisecond limit throughout the
duration of the experiment. It should be further mentioned, that this use case is the hardest
one, because both the Kalman Filter and the UKF were used.

0 50 100 150 200 250 300 350
Iteration

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Ex
ec
ut
io
n
Ti
m
e
[m

s]

Figure 4-15: Execution time of the proposed system in the DSV during the racing experiment.

Lastly, it is worth noting that this system is developed as part of the Robot Operating System
(ROS) ecosystem6. Therefore, it accepts LIDAR measurements with the standardized format
of ROS measurements and provides estimates of the target locations also in standardized
format. This communication standardization enables the system’s easy exchangeability with
similar ROS programs who perform the same function.

6The complete system code can be found at:https://github.com/kostaskonkk/datmo

Konstantinos Konstantinidis Master of Science Thesis

https://github.com/kostaskonkk/datmo

Chapter 5

Conclusion and Future Work

In this chapter, the steps of the proposed solution and the algorithms used are summarized
alongside the contributions of this thesis. Additionally, in the future work section, some ideas
about potential additions and improvements to the system are provided.

5-1 Conclusion

The increasing effort of developing robust systems for autonomous vehicles has created a
need for low cost test and experimental platforms, in which new and prototype algorithms
can be fast and safely evaluated and tested. Algorithms, for platooning, collision avoidance
and path planning, are crucially dependent on an accurate representation of the surrounding
environment and especially the moving vehicles inside it. Therefore, an efficient and modular
software system was developed, which can be used in experimental platforms with 2D LIDAR
sensors for detection and tracking of multiple moving vehicles.

The developed system encompasses the complete process of multi-object tracking; it receives
2D LIDAR measurements as input and estimates the kinematic state and dimensions of
surrounding vehicles. The detection part of the system differentiates objects in the LIDAR
measurements using the Adaptive Breakpoint Detector algorithm and calculates rectangles
around the detected objects with the Search Based Rectangle Fitting algorithm. The tracking
part of the system receives L-shapes and associates them with already tracked vehicles, using
the Global Nearest Neighbour algorithm. It estimates kinematic poses with two different
tracking filters, a Kalman filter, with a constant velocity model and a UKF, with a nonlinear
constant turn kinematic model, while the dimensions of neighboring vehicles are estimated
using a constant shape Kalman filter.

The proposed system was evaluated using both simulation and real-world experiments. Ana-
lyzing the experiment results reveals that the system can reliably estimate the position, speed,
orientation and dimensions of surrounding vehicles in normal driving conditions. Since it is
able to run in a real-time manner in a single board computer, it is expected to be applicable
for a variety of algorithm development projects using low-cost platforms.

Master of Science Thesis Konstantinos Konstantinidis

58 Conclusion and Future Work

5-2 Future Work

There are several improvements and additions to the proposed system that can be imple-
mented to increase its performance and robustness. The ones whose application is expected
to be the most significant are presented below:

1. The system can be expanded to incorporate measurements from camera and radar
sensors. Camera images can be used in conjuction with object recognition algorithms,
so that an estimation about the class of every detected object can be made. Furthermore,
radar sensors can be used to improve the kinematic pose estimation, since they provide
accurate velocity measurements, which can be fused with the LIDAR measurements.

2. The data association capabilities of the system can be expanded by implementing
the JPDAF algorithm which is proven to perform better in highly cluttered environ-
ments [26].

3. The computational requirements of the existing system can be reduced by implementing
a potentially more computationally efficient L-shape fitting algorithm, such as the one
presented in [35].

4. The L-shape model used, assumes that the vehicle shape is a rectangle, however ac-
tual vehicle corners are typically smoothly curved. Therefore, it can be researched if
a U-shape extraction algorithm [36] and consequently U-shape model achieve higher
accuracy tracking results.

5. In addition to vehicle detection via rectangle extraction, the system can be expanded
to detect pedestrians and bikes with the inclusion of a circle extraction algorithm.

6. The accuracy of the existing system can be potentially improved by calculating the
propagation of covariance matrices during corner point switching and box model esti-
mation.

7. The state estimation error can be potentially reduced by employing an Interactive Mul-
tiple Model (IMM) approach. In this way, multiple filters with different models can be
used to estimate the motion of the target at the same time.

8. Another possible expansion of the system would be the inclusion of an Autocovariance
Least-Squares (ALS) implementation to estimate the noise covariance matrixes Q and
R, in case that reliable ground truth data are available.

9. Lastly, the system can be expanded to use a map of the surrounding environment,
generated for example by a SLAM algorithm, to reduce the search area for new moving
objects.

Konstantinos Konstantinidis Master of Science Thesis

Appendix A

Localization

During my thesis work there was a possibility that the students working on the DSV would
showcase their work in a research institution. This work of the other students included parking
assist, planning of lane change maneuvers and vehicle platooning. The last two of which were
depended on the work of my thesis, for estimating the position and speed of vehicles in
the other lanes and in the platoon respectively. The only obstacle was that everybody had
developed their systems to depend on accurate localization information. In lab experiments,
localization was provided by the Motion Capture (MoCap) system which is not transportable
and therefore, a need arose for the development of a localization system for the Delft Scaled
Vehicle (DSV), that is not dependent on external sensors.

The problem of vehicle localization, is the problem of estimating vehicle position and orienta-
tion relative to the environment. A common method of obtaining localization information is
through the use of GPS sensors. However, in this case it would not be a fitting solution, since
the DSV is mainly used indoors, where there is no GPS signal and in addition, the accuracy
of GPS, which has a reported variance of more than one meter, is inadequate for the size of
our vehicle, which is about 30 centimeters long. Since, GPS was out of the picture a different
method had to be found.

Available information that can be used for localization, are the sensor measurements (wheel
encoders, IMU, LIDAR) and the control inputs given to the vehicle. It was chosen to only use
sensor information and not the available control inputs, so that the developed localization sys-
tem could be used easily by all the students without having to modify the localization system
to interpret their control signals. Since, all sensors are imperfect, and their measurements are
prone to errors, better overall position estimation was obtained by fusing the measurements
from all the available sensors.

Finally, the developed localization system was evaluated, during an experiment, in which the
DSV and two other vehicles were moving inside the area surveyed by the MoCap. In this
way, the location estimation produced by the proposed localization system could be compared
with the high precision localization information of the MoCap system and subsequently the
accuracy of the system could be evaluated.

Master of Science Thesis Konstantinos Konstantinidis

60 Localization

A-1 Localization by Fusion of Odometry and IMU

It was previously stated that for localizing a vehicle its position and orientation has to be
estimated. In state vector this is translated to the estimation of the following states.

xlocalization =
[
x y ψ vx vy ω

]T
, (A-1)

where x and y represent the position of the vehicle in the x and y axis respectively and ψ
is the orientation/yaw of the vehicle. The other three states are the derivatives of the first
three states, so vx, vy are the velocities on the x and y axis and ω is the angular velocity of
the vehicle.

The wheel encoders installed on all four wheels of the DSV count the rotations of the wheels
and produce measurements of the wheels angular velocities. The wheel angular velocities can
be in turn used to calculate the speed of the vehicle (v) and if the angle of the steering wheel
(δ) is also known then the velocities in the x and y direction can be calculated.

The IMU sensor measures the orientation of the DSV (ψ) using a magnetometer and estimates
the angular velocity (ω) by integrating the rotational acceleration.

Therefore, an estimate of the state vector can be calculated by fusing the above discussed
sensor measurements and integrating the velocities.

A-1-1 Velocities calculation via Odometry measurements

The velocities (vx, vy) of the vehicle are estimated by using the wheel speed measurements
and the steering angle (δ).

The speed of the DSV was calculated via the angular velocity (ω) of the front left (ωfl) and
right wheel (ωfr). The angular velocities of the back wheels were discarded, because the DSV
is real wheel driven and thus the rear wheels are prone to slippage.

v = Re
ωfl + ωfr

2 , (A-2)

(A-3)

where Re is the effective wheel radius, which was measured equal to 0.0313m.

The longitudinal (vx) and lateral (vy) velocities were calculated in the following way:

vx = v cos δ (A-4)
vy = v sin δ (A-5)

A-1-2 Fusion of Odometry and IMU measurements

The measurements produced by the odometry sensors and the measurements of the IMU,
were fused using an EKF with an omnidirectional motion model to produce an estimate of
the localization state vector.

Konstantinos Konstantinidis Master of Science Thesis

A-1 Localization by Fusion of Odometry and IMU 61

The Inertial Measurement Unit (IMU) measurements have a data frequency of 100 Hz and the
wheel encoders 30Hz. The Extended Kalman Filter (EKF) formulation and algorithm were
presented in Section 3-2-2 and therefore now only the kinematic and measurement function
will be presented. For our application, the kinematic function f is an omnidirectional 2D
kinematic model derived from Newtonian mechanics.

f(xlocalization) =



x+ (vx cosψ − vy sinψ) dt
y + (vx sinψ + vy cosψ) dt

ψ + ωdt
vx
vy
ω


(A-6)

The standard EKF formulation specifies that H should be the Jacobian matrix of the mea-
surement model function h. Since different sensors are simultaneously used, the developed
localization system should be capable of partial updates of the state vector. Specifically, when
measuring only m variables, Z becomes an m by 6 matrix of rank m, with its only nonzero
values existing in the columns of the measured variables. This is important for using sensor
measurements that does not always measure the same states of the state vector. The EKF
presented in [33], which provides the above functionality, was used for fusing the data. Ad-
ditionally, given the assumption that each sensor produces direct measurements of the state
variables, the nonzero values in H are ones.

Consequently, the odometry sensors produce measurements of the form:

zodometry =
[
vx vy

]T
(A-7)

and the IMU produces measurements of the form:

zIMU =
[
ψ ω

]T
(A-8)

The results of fusing the odometry (30 Hz) and IMU (100 Hz) measurements using the
previously described model in an EKF, are plotted in Figure A-1, with a red line. In the
same Figure, the measurement of the MoCap system are plotted with a gray line, so a direct
comparison between the two can be made.

The experiment that was used to test the accuracy of the localization system, and the one
that the plotted data comes from, was a scenario in which the DSV and two other vehicles
were moving in circles under the MoCap system.

It should be noted, that the data could not be directly plotted, since they are in different
coordinate frames. The procedure used for calculating the translation and rotation between
the two coordinate frames, will be explained in Section A-3-1.

Master of Science Thesis Konstantinos Konstantinidis

62 Localization

0 10 20 30
Time [s]

−2

0

2

x
[m

]

0 10 20 30
Time [s]

−1

0

1

y
[m

]

−2 0 2
x [m]

−1

0

1

y
[m

]

0 10 20 30
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

ψ
[ra

d]

Estimation MoCap Ground Truth

Figure A-1: Localization results by fusing wheel encoder and IMU data.

Although the results are adequately accurate for short experiments, like the 30 second one
presented, the dead reckoning process that is used, is subject to cumulative errors because of
the velocity integration that is used to calculate the position states. This problem can only
be solved by fusing measurements of the x and y states.

A-2 Self Localization and Mapping (SLAM)

One method for acquiring measurements of the vehicle pose (x, y, ψ) is through the use of
a SLAM algorithm for 2D LIDAR sensors. Since SLAM is a deeply researched subject in
the robotics community, there are multiple approaches to the problem, with many of them
implemented as ROS packages. An up to date summary of the available methods can be
found in [37] and through this summary a few of them were selected to be tested on the DSV.

The main criterion considered in the selection process, was the ability to perform frequent
loop closures, which is required because of the restricted spaces that the DSV is usually used
in. Additionally, the computational resources used by all the tested systems were monitored
and the ones with low computational requirements were heavily favored. After the testing
of three different packages (Cartographer, GMapping, Hector SLAM), it was found that

Konstantinos Konstantinidis Master of Science Thesis

A-2 SLAM 63

Hector SLAM [38] was the best suited one for the application at hand. Although GMapping
has the lowest computational requirements, it does not take advantage of any prior location
information and therefore it is very susceptible to errors when few LIDAR measurements are
available. Cartographer, was the most computationally expensive of the three and in addition
it was incapable of detecting the very frequent loop closures resulting from the DSV moving
in the same area. As the name suggests, it is especially designed for building maps.

Although, the Hector SLAM algorithm can work without previous location estimations, higher
accuracy can be achieved when an estimation of the movement of vehicle between two LIDAR
measurement instances is also provided. In the developed system, the SLAM algorithm was
given the localization estimation of the previously presented EKF as additional input. The
output of the SLAM algorithm is a map of the environment and an estimation of the position
and orientation states of the vehicle.

(a) Image of the experiment. (b) Map built by the SLAM algorithm.

Figure A-2: Image of the localization experiment and map of the DCSC lab built by the SLAM
algorithm.

In Figure A-2a, we can see the DSV and the two other vehicles, which are covered with
carton boxes to facilitate their detection by the LIDAR sensor. All three vehicles, were
moving around the three carton boxes in the center, while keeping their in between distances
and order unchanged.

In Figure A-2b, the map built by the SLAM algorithm after a complete rotation around
the carton boxes is visualized. In this picture, the DSV by the red-green-blue axes, and the
LIDAR data at the instance when the picture is taken are represented as red dots. It is
interesting to observe that there are cases in which the two vehicles covered by cartboxes
became erroneously part of the map and therefore there are black dots in unoccoupied areas.
This error is the reason, that there moving objects in the localization experiment, to test for
the robustness of the system in moving objects. Additionally, it is interesting to observe that
since the laser rays emitted by the LIDAR are not reflected by the glass on the left side of
the lab, the map is not properly built for that area.

In addition to the map of the environment, the SLAM algorithm produces a localization
estimations for the position and orientation of the ego-vehicle.

Master of Science Thesis Konstantinos Konstantinidis

64 Localization

0 10 20 30
Time [s]

−2

0

2

x
[m

]

0 10 20 30
Time [s]

−1

0

1

y
[m

]

−2 0 2
x [m]

−1

0

1

y
[m

]

0 10 20 30
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

ψ
[ra

d]

Estimation MoCap Ground Truth

Figure A-3: Localization output of the SLAM algorithm.

In Figure A-3 the localization output of the SLAM algorithm is compared with the reference
measurements of the MoCap system. The output of the algorithm is visualized with points
to emphasize the fact that the SLAM algorithm provides localization estimations with a
frequency equal to the frequency that data is provided by the LIght Detection And Ranging
(LIDAR) sensor (' 12 Hz).

Observing the top left plot in Figure A-3 we can find two instances, one after the 20 second
mark and another before the 30 second mark, in which the SLAM algorithm fails to make
an accurate estimation of the position of the vehicle. Therefore, it was concluded that the
SLAM algorithm alone, is not capable of providing the required localization accuracy, since
estimation jumps like these ones can negative influence the operation of the algorithms that
depend on it. However, it should be noted, that the SLAM algorithm not only provides the
measurements of the states but also a covariance matrix that describes the accuracy of its
output.

The solution that was given to the SLAM algorithm failures will be explored in the next
Section.

Konstantinos Konstantinidis Master of Science Thesis

A-3 Fusion of Odometry, IMU and SLAM 65

A-3 Fusion of Odometry, IMU and SLAM

A solution to the problem of SLAM algorithm failures, was given by fusing the output of
the SLAM algorithm with the odometry and IMU measurements. Since the SLAM package
provides not only positions but also uncertainty, by fusing the output of the SLAM algo-
rithm with the odometry and IMU measurements, it is possible to achieve higher localization
accuracy.
In addition to the map of the environment the SLAM algorithm produces localization es-
timations for the pose and orientation of the ego-vehicle. These estimations are given as
measurements to another EKF as measurements of the form:

zOdometry =
[
vx vy

]T
zIMU =

[
ψ ω

]T
zSLAM =

[
x y ψ

]T (A-9)

In Figure A-4 the output of the EKF (30 Hz) is compared with the reference values provided
by the MoCap.

0 10 20 30
Time [s]

−2

−1

0

1

2

3

x
[m

]

0 10 20 30
Time [s]

−1

0

1

y
[m

]

−2 −1 0 1 2 3
x [m]

−1

0

1

y
[m

]

0 10 20 30
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

ψ
[ra

d]

Estimation MoCap Ground Truth

Figure A-4: Localization results by fusing odometry and SLAM.

Master of Science Thesis Konstantinos Konstantinidis

66 Localization

Method RMSE Mean Median STD Min Max SSE

Odometry+IMU 0.435 0.384 0.429 0.203 0.0 0.723 181.277
SLAM 0.33 0.261 0.201 0.202 0.0 1.396 42.114
Fusion 0.403 0.345 0.345 0.209 0.0 0.768 156.054

Table A-1: Comparison of the accuracy of the proposed localization methods.

In Table A-1 the three different methods for estimating the position of the DSV are compared
by calculating statistics for the errors that they produce. Comparing the Odometry-IMU and
the Fusion rows, it is evident that the performance of the localization system improved by
fusing the SLAM measurements, since the Root Mean Squared Error (RMSE) is lower when
all measurements are fused. Although, the RMSE is the lowest for the SLAM algorithm, we
cannot directy use its output since its Max error value is almost double than the other two
methods.

A-3-1 Transformation between different coordinate frames

The transformation parameters between the trajectories of the MoCap system and the esti-
mated one of my system were calculated with the least-squares estimation of transformation
parameters between two point patterns [39].

The trajectories based on the MoCap system and the one produced by the proposed system
were first cropped so both of them contain values in the same range.

Given two point patterns (set of points) {xi} and {yi} ; i = 1, 2, . . . , n inm-dimensional space,
and we want to find the similarity transformation parameters (R: rotation, t: translation)
giving the minimum value of the mean squared error e2(R, t) of these two point patterns. The
dimensionality m is equal to 2 for pose and equal to 1 for the orientation.

e2(R, t) = 1
n

n∑
i=1
‖yi − (Rxi + t)‖2 (A-10)

Theorem: Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be corresponding point pat-
terns in m-dimensional space. The minimum value ε2 of the mean squared error

e2(R, t) = 1
n

n∑
i=1
‖yi − (Rxi + t)‖2 (A-11)

of these two point patterns with respect to the similarity transformation parameters (R:
rotation, t: translation) is given as follows:

ε2 = σ2
y −

tr(DS)2

σ2
x

(A-12)

Konstantinos Konstantinidis Master of Science Thesis

A-3 Fusion of Odometry, IMU and SLAM 67

where
µx = 1

n

n∑
i=1

xi

µy = 1
n

n∑
i=1

yi

σ2
x = 1

n

n∑
i=1
‖xi − µx‖2

σ2
y = 1

n

n∑
i=1
‖yi − µy‖2

Σxy = 1
n

n∑
i=1

(yi − µy) (xi − µx)T

(A-13)

and let a singular value decomposition of Σxy be UDV T (D = diag (di) , d1 ≥ d2 ≥ · · · ≥ dm ≥ 0),
and

S =
{
I if det (Σxy) ≥ 0
diag(1, 1, . . . , 1,−1) if det (Σxy) < 0 (A-14)

where (rank (Σxy) = m− 1).

Master of Science Thesis Konstantinos Konstantinidis

68 Localization

Konstantinos Konstantinidis Master of Science Thesis

Appendix B

Paper

Master of Science Thesis Konstantinos Konstantinidis

Development of a Detection and Tracking of
Moving Vehicles system for 2D LIDAR sensors

Konstantinos Konstantinidis, Mohsen Alirezaei, Sergio Grammatico

Abstract—This paper presents the development and evaluation
of a Detection and Tracking of Moving Objects (DATMO)
system, used for tracking nearby vehicles from a moving car.
The developed system takes in raw 2D LIght Detection And
Ranging (LIDAR) measurements as input and detects objects
of interest by clustering them with the Adaptive Breakpoint
Detector algorithm. The resulting clusters are fitted with oriented
bounding boxes, by incorporating the Search-Based Rectangle
Fitting algorithm. The tracking part of the system receives,
extracted from the rectangles, L-shapes and associates them
with already tracked vehicles using the Global Nearest Neighbor
(GNN) algorithm. However, since LIDAR measures only the
distance to surfaces that face the sensor, vehicle appearances
change over time. In order to counteract tracking errors that
originate from these changes, an L-shape switching algorithm is
implemented. The kinematic poses of the tracked vehicles are
estimated with two different tracking filters, a Kalman Filter,
with a constant velocity model and an Unscented Kalman Filter
(KF), with a Coordinated Turn model. The proposed system was
evaluated in a simulation environment and the tests revealed that
it can reliably estimate the position, speed, heading angle and
dimensions of surrounding vehicles. Therefore, it can be reliably
used in other research platforms to expand their environment
perception capabilities.

Index Terms—Detection, Tracking, DATMO, 2D LIDAR, ROS,
Autonomous Vehicles.

I. INTRODUCTION

In recent years, a lot of researchers have focused their efforts
on providing solutions to the various problems that need to be
addressed before vehicles can reliably perceive their surround-
ing environment and have divided environmental perception
in three different tasks [1]. The first is localization, in which
the vehicle localizes itself in the environment by establishing
the spatial relationships between itself and stationary objects.
The second one is mapping, which builds a map of the
environment by establishing the spatial relationships between
surrounding static objects. And the last task and the one that
the developed system focuses on, is Detection and Tracking
of Moving Objects (DATMO), which establishes the spatial
and temporal relationships between the vehicle and moving
objects. Therefore the aim of the proposed system is, given as
input LIght Detection And Ranging (LIDAR) measurements
to detect the surrounding moving vehicles and estimate their
position (x, y), velocity (vx, vy), orientation (ψ), turn rate (ω)
and dimensions (Length, Width).

DATMO systems for LIDAR sensors are designed based
on three main approaches, the traditional, the model based
and the grid based one [2]. The traditional approach, first
divides the incoming sensor measurements into clusters and

then associates them with objects from previous time in-
stances. In more advanced systems, the clusters are fitted
with geometric shapes whose center is then tracked with a
parametric Bayesian filter [3], otherwise the geometric mean
of each cluster is tracked [4]. The model based approach
fits the sensor data directly onto geometric shape models by
utilizing particle filters, which also handle data association [5],
[6], [7]. Lastly, the grid based approach [8] is based around
the construction and use of an occupancy grid, which models
the space around the vehicle. The grid cells are then tracked
using a Bayesian filter and in some systems, additional object
level representations are fitted on top of the grid cells [9].
The development of the proposed system is based on the
traditional approach, since it is the most modular and less
computationally demanding of the three.

Fig. 1. The five measurements in an L-shape.

The operation of the developed system is based around
extracting and tracking L-shapes, which are used to represent
the surrounding vehicles (Fig. 1). L-shapes are defined based
on five values, the position of their corner (xcorner, ycorner),
their orientation (θ) and the lengths of their sides (L1, L2).

II. DETECTION OF MOVING OBJECTS

The main goal of the detection stage is to differentiate mov-
ing objects from the LIDAR sensor measurements. LIDAR
sensors calculate distance to neighboring objects by emitting a
laser beam, capturing its reflection and calculating the distance
by measuring the time of flight. The measurements of a
LIDAR sensor can be better understood by examining Fig. 2.
On the left, there is a screenshot from a simulation and on
the right the resulting LIDAR measurements from a sensor on
top of the ego vehicle. It should be noted, that this specific
time instance will be used throughout this paper to explain
and visualize the operation of the developed system.

(a) (b)

Fig. 2. Example of LIDAR data acquisition; (a) image of the simulation
environment, (b) visual representation of the LIDAR data acquired at the
same time instance.

The first step of the detection stage (Fig. 3) is a segmenta-
tion algorithm, which extracts clusters of LIDAR points from
the raw LIDAR measurements. These clusters are then passed
to a feature extraction algorithm, which extracts geometric
shapes from the clusters. Common extracted geometric shapes
are lines or rectangles for vehicles, circles for pedestrians
and ellipses for bicycles and bikes [10]. Since the focus of
the developed system is vehicle tracking, rectangles are fitted
onto the clusters. Lastly, L-shapes are derived from the closest
corner of every rectangle and those are passed to the tracking
stage of the system, which will be presented in the next
section.

Fig. 3. Flowchart of the vehicle detection stage of the developed system.

A. Segmentation

The segmentation process is responsible for separating the
raw LIDAR measurements (Fig. 2b) in groups that correspond
to moving objects of the real world that need to be tracked.
The algorithm used is the Adaptive Breakpoint Detector
Algorithm [11], which clusters the 2D LIDAR point cloud
of n points, X ∈ Rn×2, based on the euclidean distance
between consecutive points. Consecutive points pn and pn−1

are clustered together if their euclidean distance is lower than
a predefined threshold distance Dmax.

‖pn − pn−1‖ > Dmax (1)

Otherwise, in case that (1) holds, a new cluster is started
whose first point is pn. In Fig. 4, we can see the threshold
circle, which gets drawn around pn−1, with a radius that equals
to Dmax. In this diagram, the next point (pn) is within the
circle and the two points are clustered together. However, if
the threshold distance Dmax is fixed, the algorithm does not
account for the fact that LIDAR point clouds become sparser

Fig. 4. Visualization of the Adaptive Breakpoint Detector Algorithm [12].

as the distance from the sensor increases. A way to overcome
this limitation is by adapting the threshold distance (Dmax),
according to the range distance rn of the examined point. This
is accomplished by drawing a line through the range point
pn−1, which represents the worst case for an incidence angle
of a real world object that can be detected by the sensor. This
line creates an angle λ with respect to the scanning angle
φn−1. The maximum range distance rhn, for pn−1, is calculated
in the following way:

rn−1 · sin(λ) = rhn · sin(λ−∆φ) (2)

By reworking the equation above,
∥∥phn − pn−1

∥∥ is calculated,
which can be used as a threshold distance (Dmax) in (1).

∥∥phn − pn−1

∥∥ = rn−1 ·
sin(∆φ)

sin(λ−∆φ)
(3)

Lastly, because the sensor noise is not taken into account,
problems can arise when the range distance is small. There-
fore, the sensor error variance σr is added to the max distance

Dmax =
∥∥phn − pn−1

∥∥+ σr. (4)

Fig. 5. Cluster segmentation with the Adaptive Breakpoint Detector algorithm.

In Fig. 5 the LIDAR points after the application of this
algorithm are visualized and are drawn with a different color
for every segmented cluster. We can observe that the algorithm
created four different clusters which correspond accurately to
the four surrounding vehicles of the simulation.

B. Feature Extraction
The purpose of the Feature Extraction process is to extract

geometric shapes from the clustered points, which in this case
are rectangles. The algorithm that was chosen and imple-
mented for rectangle extraction is the Search-Based Rectangle
Fitting algorithm [13], whose basic idea is to iterate through
all possible directions and at each one; find a rectangle that
contains all the LIDAR scan points. Afterwards, a performance
score is calculated for each rectangle and the rectangle with
the highest score is chosen as the best fitting rectangle.

The input of the algorithm is the n points of the examined
cluster, X ∈ Rn×2, while its output are the line representations
of the four edges of the fitted rectangle. The search space
for θ ranges from 0◦ to 90◦, because the two sides of a
rectangle are orthogonal, and therefore only one edge needs to
be calculated, since the other is θ+π/2. In Fig. 6 an example

Fig. 6. Operation of the Search-Based Rectangle Fitting Algorithm.

of the algorithm’s iterative nature is visualized, in which two
rectangles that differ between them by an angle δ are fitted on
the LIDAR range points. Although, both rectangles contain
all the measurement points, one rectangle is better than the
other at representing the vehicle that the points originated
from and this is calculated by the performance score. The
performance score used in this implementation is the point-to-
edges closeness maximization criterion, which calculates how
close the rectangle edges are to the LIDAR points.

Fig. 7. Rectangle fitting with the Search-Based Rectangle Fitting algorithm.

In Fig. 7 the results of rectangle fitting in the developed
system are visualized. It can be seen that the algorithm

estimates the shape of the vehicles close to the sensor with
high accuracy, but produces some error in the orientation
estimation of the truck (orange rectangle).

C. L-shape Extraction

After every cluster of LIDAR points is fitted with a rect-
angle, an L-shape feature is extracted from every rectangle,
mainly for two reasons. First, the information about the closest
corner of a neighboring vehicle is important for collision
avoidance systems and secondly by extracting L-shapes of the
closest sides of neighboring vehicles, their appearance changes
can be mitigated in later stages of the developed system.

L-shapes are extracted from the bounding rectangles by
choosing as L-shape corner point, the corner point that is
closest to the sensor. The two bounding box edges that connect
to the corner point are named L1 and L2, by following a clock-
wise assignment convention, shown in Fig. 8. The orientation
angle (θ) of the L-shape is defined as the orientation of L1.

Fig. 8. Conversion of a fitted rectangle to an L-shape feature.

Summarizing the above, the L-shape feature contains five
values that are extracted from the bounding box and which
will be used in later stages for vehicle tracking. The position
of the corner point (xcorner, ycorner), the lengths L1, L2 and
the orientation angle θ.

III. TRACKING OF MOVING VEHICLES

The objective of the vehicle tracking stage is to estimate
as accurately as possible the position, speed and dimensions
of all detected vehicles. A flowchart of this stage is given in
Fig. 9 and a brief explanation of its operation will be given
below.

Fig. 9. Flowchart of the vehicle tracking stage of the developed system.

At the left side of the flowchart is the input into the tracking
stage, which are the extracted by the detection subsystem L-
shapes. The first process of the tracking stage is Data Associ-
ation, in which the newly received L-shapes are associated

with tracked vehicles from previous time instances. After
the L-shapes are associated with vehicles, it is investigated
if the observed corner of the vehicles changed and with it
the direction of the associated L-shape. If this is true, the
three trackers are updated to reflect the change. Lastly, the
position of the L-shape is used to update the two L-shape
kinematic trackers and its dimensions and orientation are
used for updating the shape tracker. The Kalman Filter (KF)
kinematic tracker uses a linear vehicle motion model and its
aimed at systems with low computational capabilities, while
the Unscented Kalman Filter (UKF) tracker uses a nonlinear
motion model and it is geared towards system with higher
capabilities.

A. Data Association and Track Management

Data association is the process of associating detection
results with already tracked objects by working out which
observations were generated by which targets. Data association
in multiple vehicle tracking is complicated because of the
inherent uncertainty of sensor measurements and the fact that
the number of observations does not necessarily correspond
to the number of neighboring objects. Furthermore, the true
number of surrounding vehicles is difficult to estimate since
some vehicles might be temporarily occluded or unobserved.

Track management for multiple object tracking consists of
deducing the number of surrounding objects and identifying
if each observation corresponds to an already known object,
to a new object in the scene or to a false measurement.

1) Data Association: In the proposed system the data as-
sociation method used is the Global Nearest Neighbor (GNN)
filter, which associates clusters with objects based on euclidean
distance, while ensuring that each cluster is assigned to at most
one object.

Fig. 10. Data association in the developed system.

Fig. 10 visualizes several consecutive time instances (t, t−
1, . . . , t− n) from the simulation and the correct association
of new measurements to already tracked vehicles can be
observed. In case that there was an error, not all four object
would have retained the same color throughout the time
window, but there would be a color change at the time of
the association error.

2) Track Management: Tracks is the name given to objects
that are tracked by a DATMO system and track management

is the process of managing the list of tracks. The main goal of
track management is to reduce the amount of tracked objects,
both for reducing the amount of computations performed at
each timestep but also for preventing false data associations.
The track management system that is used is simple in
its design and operates in the following way. After every
measurement update and clustering step, all the clusters not
associated with any already tracked object are used to initiate
new tracks. The tracks that are associated with newly detected
clusters are unaffected, while the not associated tracks are
immediately deleted.

B. L-shape Tracker

In order to track the position of the L-shape corner, the
proposed system implements two solutions. The first one uses
a Kalman Filter for tracking the corner of the L-shape, while
the second one uses an Unscented Kalman Filter (UKF). The
first approach is based on the work presented in [14], while the
second one is novel. The system implements two solutions for
two main reasons: the first being for comparing the accuracy
of the Kalman Filter and the UKF in this particular application.
And the second one is, providing the users of the system
with options, so they can make a choice depending on the
accuracy demanded by their application and the available
computational resources of their platform. The dimensions
(L1, L2), orientation (θ) and turn rate (ω) of the L-shape
are tracked by a separate Kalman Filter.

1) Kalman Filter Kinematic Tracker: The Kalman Filter
used for tracking the motion of the corner point uses a Con-
stant Velocity (CV) model to estimate position and velocities,
with the following state vector xCV .

xCV =
[
xcorner ycorner vx vy

]T
(5)

The kinematic model ACV that is used to track the position

Fig. 11. The kinematic model models the motion of the corner point.

(xcorner, ycorner) and velocities vx, vy of the corner point, as
show in Fig. 11, is the following:

ACV =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 (6)

where T is the sampling time. Given that only the position of
the corner point is measured, the measurement vector is:

zCV =
[
xcorner ycorner

]T
(7)

and consequently the measurement model is the following:

HCV =

[
1 0 0 0
0 1 0 0

]
. (8)

2) UKF Kinematic Tracker: The kinematic tracker that
uses a UKF has one main advantage over the one presented
before and that is that nonlinear motion models can be used.
The implemented one uses as kinematic function fCTM , a
Coordinated Turn Model (CTM) [15], which in addition to the
position and speed tracks also the turn rate (ω). Therefore, the
state vector xCTM is:

xCTM =
[
x y vx vy ω

]T
(9)

And its kinematic function fCTM is the following:

fCTM =




x+ vx

ω sin(ωT)− vy
ω (1− cos(ωT))

y + vx
ω (1− cos(ωT)) +

vy
ω sin(ωT)

vx cos(ωT)− vy sin(ωT)
vx sin(ωT) + vy cos(ωT)

ω



. (10)

The measurement vector and model are similar to the ones
used in the Kalman Filter, since the available measurements
are the same.

zCTM =
[
xcorner ycorner

]T

HCTM =

[
1 0 0 0 0
0 1 0 0 0

]
.

(11)

3) Shape Tracker: The shape of the target vehicle is tracked
using a Kalman Filter and a state vector composed of line
lengths (L1, L2), the orientation of L1(θ) and the turn rate
(ω). Those states are visualized in Fig. 12 and are contained
in vector xs.

xS =
[
L1 L2 θ ω

]T
(12)

Fig. 12. The shape filter estimates the orientation, turn rate and size of the
L-shape.

For estimating the vehicle’s shape, a static model is applied
to the line lengths (L1, L2) based on the assumption that

the vehicle size does not change over time. For estimating
the L-shape’s yaw, and since the yaw rate does not change
particularly fast, a constant turn rate model is chosen. The
two above models are combined in a single process matrix:

AS =




1 0 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 , (13)

where T the sampling time and AS is the process matrix
containing the static model for the line lengths and the constant
turn rate model for the orientation and the yaw rate.

Among the states of the shape model, only the yaw rate is
not contained in the L-shape and therefore the measurement
vector and model are the following:

zS =
[
L1 L2 θ

]T

HS =




1 0 0 0
0 1 0 0
0 0 1 0


 .

(14)

4) Corner Point Switching: The designed system is tracking
L-shapes, which represent the closest corner of observed
vehicles. However, while the ego vehicle and the observed
ones are moving, it is expected that the closest corners of the
other vehicles will be periodically changing and therefore the
extracted L-shapes should also be changing. All the possible
extracted L-shapes from a vehicle are drawn in Figure 13 and
are marked by values C1 to C4.

Fig. 13. Visualization of all the corner points of a vehicle (C1-C4) and of
the clockwise and counter clockwise changes between them (black arrows).

An example of a corner change occurrence can be observed
in Figure 14, in which two instances from the simulation are
given side by side. In the first time instance (t), the overtaking
vehicle at the left of the ego-vehicle is tracked by its front-right
corner (C3). As it moves ahead in the second time instance
(t+ 1), the closest corner changes to the one at the vehicle’s
rear-right corner (C4).

In the proposed system, corner point changes were detected
based on the Mahalanobis distances of the new measurement
to the already tracked corner point and the two neighboring
ones. If for example, the already tracked corner point is C3,
with state vector (c3), then the state vectors of corner points
C2 (c2) and C4 (c4) are calculated and their values are com-
pared with the state vector of the new L-shape measurement
(m), via the Mahalanobis distance. The Mahalanobis distance

(a) (b)

Fig. 14. Clockwise change of closest corner point, from corner C3 to corner
C4.

(DM), which is a multivariate distance metric, is calculated
based on the following formula:

D2
M = (c−m)T · P−1 · (c−m)

c = [xcorner, ycorner, θ, L1, L2,]
T

m = [xcorner, ycorner, θ, L1, L2,]
T

(15)

where P is the covariance matrix of the already tracked corner
point.

If the shortest Mahalanobis distance is between the measure-
ment vector m and the previously tracked corner vector, for
example c3, then no corner switch took place. However, if the
shortest distance is with c4, a clockwise switch took place and
if it is with c2, a counter clockwise switch took place. In the
example of Figure 14, we can observe that a clockwise corner
switch between corners C3 and C4 occurred. In such cases, the
filters that track the L-shape cannot be immediately updated
because the new L-shape measurement corresponds to another
corner than the one that the filter states are tracking. Therefore,
the filter states should be altered, so that the represent the same
corner with the new measurement.

In case that a clockwise switch is detected, the filter states
are changed in the following way:

xCj
corner =xCi

corner + LCi
1 cos θCi

yCj
corner =yCi

corner + LCi
1 sin θCi

vCj
x =vCi

x + LCi
1 ω sin θCi

vCj
y =vCi

y + LCi
1 ω cos θCi

θCj =θCi − π/2
LCj
1 =LCi

2

LCj
2 =LCi

1

where
{
j = i+ 1, i < 4
j = 1, i = 4

(16)

where the superscripts Ci and Cj represents the corner
number before and after the model change.

In case that a counter clockwise switch is detected the

kinematic and shape states are changed in the following way:

xCj
corner =xCi

corner + LCi
2 sin θCi

yCj
corner =yCi

corner + LCi
2 cos θCi

vCj
x =vCi

x + LCi
2 ω cos θCi

vCj
y =vCi

y + LCi
2 ω sin θCi

θCj =θCi + π/2

LCj
1 =LCi

2

LCj
2 =LCi

1

where
{
j = i− 1, i > 1
j = 4, i = 1

(17)

5) L-shape to Box Model Conversion: In the L-shape to
box model conversion stage the kinematic state is changed
from corner point motion to vehicle motion. The position of
the center of the box model can be calculated by using the
geometric information of the shape model

xcenter = xcorner + εx, where εx = (L1 cos θ + L2 sin θ) /2
ycenter = ycorner + εy, where εy = (L1 sin θ − L2 cos θ) /2.

(18)
Since the velocity of the corner point is the sum of the
target velocity and the tangential velocity, the rotational motion
of the corner point includes both translational velocity and
rotational velocity. The rotational motion is assumed as a
uniform circular motion, since a constant turn rate model
for the shape model has already been assumed. Therefore,
an equation for tangential velocity can be derived by using
the distance from the center as the radius (r) of the circular
motion.

vx,center =vx,corner − rω cosα

vy,center =vy,corner − rω sinα

where α = tan−1 (εy/εx)− π/2.
(19)

A vehicle’s yaw (ψ) is typically difficult to estimate from an
L-shape because of the ambiguities, since it is hard to judge
which is the front part and which is the rear part of the vehicle.
Therefore, it would be reasonable to keep the following four
hypotheses:

ψi = θ + i
π

2
, i ∈ {0, 1, 2, 3} (20)

where ψi represents the yaw angle of the vehicle [16]. Next,
for calculating the actual yaw of the vehicle, these four angles
are compared with the angle of the vehicle’s speed and the one
with the least absolute difference from the speed’s orientation
is chosen as the vehicle yaw. The turn rate of the box model
is taken equal to the turn rate (ω) of the tracked L-shape.

In Fig. 15 the box models calculated by the system are
visualized, while arrows are used to represent the estimated
velocities of the surrounding vehicles. The starting point of
those arrows are the estimated centers of the surrounding
vehicles.

It can additionally be observed, that the dimensions of the
box models are bigger than the extracted rectangles, since they
are based on the estimations of the shape filter and that the

Fig. 15. Visualization of the estimated box models.

estimated orientation of the truck at the top right corner is
closer to the true value, than the one estimated by the rectangle
fitting algorithm (Fig. 7).

IV. EXPERIMENTAL EVALUATION

In this section, a simulation experiment1 that was used to
test and evaluate the proposed system will be presented and
the evaluation results will be explained. During this simula-
tion experiment the output of the system and the reference
measurements are both recorded and they are later analyzed
to assess the accuracy of the proposed system. The reference
measurements provided by the simulation environment are
very accurate and with sufficiently higher frequency (100 Hz)
than the estimations of the system (12 Hz) and therefore they
are used as ground truth data. For evaluating the tracking
performance, the system’s estimates for the position (x, y),
velocities (vx, vy), orientation (ψ), turn rate (ω) and dimen-
sions (Length, Width) of the box models are plotted against
the ground truth data, which also refer to the center of the
vehicles.

In Fig. 2a, which is a snapshot of the simulation environ-
ment during this experiment, we can observe that there a total
of five vehicles, from which the three at the bottom lanes are
controlled via joystick input, while the bus and truck at the top
lanes are following straight paths. The ego vehicle is the Prius
in the middle lane and during this experiment it overtakes the
car that drives on the emergency lane. At the same time, the
third car which also starts in the middle lane, changes to the
left lane, overtakes the ego-vehicle and then merges back in
the middle lane in front of it.

The estimations of the system are plotted against the ground
truth data on Fig. 16 for the car at the emergency lane and at
Fig. 17 for the car at the left lane. At the first two rows of the
figures there are graphs for the position (x, y) and velocities
(vx, vy) of the tracked cars center, which are estimated by
the kinematic filters. At the bottom two rows there are graphs
of the orientation (ψ), turn rate (ω) and dimensions of the
vehicles, which are estimated by the shape Kalman Filter.

In Fig. 16, we can observe that both filters produce identical
estimates for the position (x, y) of the car in the emergency
lane. However, the velocities estimated by the two filters are

1A video of the experiment can be found at: https://youtu.be/JrbJjmIv730

different, with the KF overshooting the reference and the
UKF undershooting it. This can be explained, by the different
process models that the filters employ. The orientation of the
vehicle is estimated with high accuracy by the shape filter,
after the vehicle starts moving. The turn rate however is not
estimated accurately since its abrupt changes were not tracked
correctly by the filter. Lastly, it is evident that the accuracy
of length and width estimation, depends on which side the
incoming measurements represent. Therefore, when the length
is measured the length estimation is accurate and when the
width is measured its estimation is more accurate. The two
spikes at the beginning of those diagrams can be explained by
the fact that, the orientation of the vehicle can not estimated
when the vehicles are stationary.

The results for the overtaking car are drawn in Fig. 17,
where it can be observed that the system has generally similar
performance. However, in the (vy) graph, a spike can be
seen, which is attributed to two rapid corner switches that
occur while the vehicles are almost stationary. In both cases,
it is evident that the UKF offers no significant benefits to
the KF, and that is probably due to the motion of the two
vehicles, which is generally straight, while the model of the
UKF estimates the kinematics of constant turns.

V. CONCLUSION

The DATMO system presented in this paper2, encompasses
the complete process of multi-object tracking; it receives 2D
LIDAR measurements as input and estimates the kinematic
state and dimensions of surrounding vehicles. The detection
part of the system differentiates objects in the LIDAR mea-
surements using the Adaptive Breakpoint Detector algorithm
and calculates rectangles around the detected objects with the
Search-Based Rectangle Fitting algorithm. The tracking part of
the system receives L-shapes and associates them with already
tracked vehicles, using the Global Nearest Neighbor algorithm.
It estimates kinematic poses with two different tracking filters,
a Kalman filter, with a constant velocity model and a UKF,
with a nonlinear constant turn kinematic model.

The proposed system was evaluated in a simulation experi-
ment and it was shown that it can reliably estimate the position,
speed, heading angle, turn rate and dimensions of surrounding
vehicles, in normal driving conditions. Since the system is able
to run in a real-time manner, it is expected to be applicable
for a variety of algorithm development projects using low-cost
platforms.

REFERENCES

[1] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte,
“Simultaneous localization, mapping and moving object tracking,” The
International Journal of Robotics Research, vol. 26, no. 9, pp. 889–916,
2007.

[2] A. Petrovskaya, M. Perrollaz, L. Oliveira, L. Spinello, R. Triebel,
A. Makris, J.-D. Yoder, C. Laugier, U. Nunes, and P. Bessiere, “Aware-
ness of road scene participants for autonomous driving,” in Handbook
of Intelligent Vehicles. Springer, 2012, pp. 1383–1432.

2The complete system code can be found at:github.com/kostaskonkk/datmo

0 2 4 6 8 10 12

Time (s)

−30

−20

−10

0

10

x
(m

)

0 2 4 6 8 10 12

Time (s)

−12

−11

−10

y
(m

)

0 2 4 6 8 10 12

Time (s)

0

2

4

6

v x
(m

/s
)

0 2 4 6 8 10 12

Time (s)

−0.5

0.0

0.5

1.0

1.5

v y
(m

/s
)

0 2 4 6 8 10 12

Time (s)

0

50

100

150

ψ
(d

eg
re

es
)

0 2 4 6 8 10 12

Time (s)

−20

0

20

ω
(d

eg
re

es
/s

)

0 2 4 6 8 10 12

Time (s)

1

2

3

Le
ng

th
(m

)

0 2 4 6 8 10 12

Time (s)

1.0

1.5

2.0

2.5

3.0

W
id

th
(m

)

KF UKF Shape KF Reference

Fig. 16. Estimated states by the developed system against the simulation ground truth, for the car at the left of the ego-vehicle.

0 2 4 6 8 10 12

Time (s)

−40

−20

0

20

40

x
(m

)

0 2 4 6 8 10 12

Time (s)

−9

−8

−7

−6

y
(m

)

0 2 4 6 8 10 12

Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

v x
(m

/s
)

0 2 4 6 8 10 12

Time (s)

−3

−2

−1

0

1

2

v y
(m

/s
)

0 2 4 6 8 10 12

Time (s)

−150

−100

−50

0

50

100

ψ
(d

eg
re

es
)

0 2 4 6 8 10 12

Time (s)

−20

−10

0

10

20

ω
(d

eg
re

es
/s

)

0 2 4 6 8 10 12

Time (s)

1

2

3

Le
ng

th
(m

)

0 2 4 6 8 10 12

Time (s)

0.8

1.0

1.2

1.4

1.6

1.8

W
id

th
(m

)

KF UKF Shape KF Reference

Fig. 17. Estimated states by the developed system against the simulation ground truth, for the car at the left of the ego-vehicle.

[3] J. Choi, S. Ulbrich, B. Lichte, and M. Maurer, “Multi-target tracking
using a 3d-lidar sensor for autonomous vehicles,” in 16th International
IEEE Conference on Intelligent Transportation Systems (ITSC 2013).
IEEE, 2013, pp. 881–886.

[4] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman et al., “A perception-
driven autonomous urban vehicle,” Journal of Field Robotics, vol. 25,
no. 10, pp. 727–774, 2008.

[5] A. Petrovskaya and S. Thrun, “Model based vehicle tracking for
autonomous driving in urban environments,” Proceedings of Robotics:
Science and Systems IV, Zurich, Switzerland, vol. 34, 2008.

[6] T. Chen, R. Wang, B. Dai, D. Liu, and J. Song, “Likelihood-field-model-
based dynamic vehicle detection and tracking for self-driving,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 11, pp.
3142–3158, 2016.

[7] K. Granstrom, M. Baum, and S. Reuter, “Extended object tracking: Intro-
duction, overview and applications,” arXiv preprint arXiv:1604.00970,
2016.

[8] T.-D. Vu, J. Burlet, and O. Aycard, “Grid-based localization and lo-
cal mapping with moving object detection and tracking,” Information
Fusion, vol. 12, no. 1, pp. 58–69, 2011.

[9] R. Danescu, F. Oniga, and S. Nedevschi, “Modeling and tracking
the driving environment with a particle-based occupancy grid,” IEEE
Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp.
1331–1342, 2011.

[10] N. Kaempchen, M. Buehler, and K. Dietmayer, “Feature-level fusion for
free-form object tracking using laserscanner and video,” in Intelligent
vehicles symposium, 2005. Proceedings. IEEE. IEEE, 2005, pp. 453–
458.

[11] G. A. Borges and M.-J. Aldon, “Line extraction in 2d range images for
mobile robotics,” Journal of intelligent and Robotic Systems, vol. 40,
no. 3, pp. 267–297, 2004.

[12] T. Johansson and O. Wellenstam, “Lidar clustering and shape extraction
for automotive applications,” Master’s thesis, Chalmers University of
Technology, 2017.

[13] X. Zhang, W. Xu, C. Dong, and J. M. Dolan, “Efficient l-shape fitting
for vehicle detection using laser scanners,” in 2017 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2017, pp. 54–59.

[14] D. Kim, K. Jo, M. Lee, and M. Sunwoo, “L-shape model switching-
based precise motion tracking of moving vehicles using laser scanners,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 2,
pp. 598–612, 2018.

[15] M. Roth, G. Hendeby, and F. Gustafsson, “Ekf/ukf maneuvering target
tracking using coordinated turn models with polar/cartesian velocity,” in
17th International Conference on Information Fusion (FUSION). IEEE,
2014, pp. 1–8.

[16] X. Shen, S. Pendleton, and M. H. Ang, “Efficient l-shape fitting of laser
scanner data for vehicle pose estimation,” in 2015 IEEE 7th International
Conference on Cybernetics and Intelligent Systems (CIS) and IEEE
Conference on Robotics, Automation and Mechatronics (RAM). IEEE,
2015, pp. 173–178.

80 Paper

Konstantinos Konstantinidis Master of Science Thesis

Bibliography

[1] R. O. Chavez-Garcia and O. Aycard, “Multiple sensor fusion and classification for mov-
ing object detection and tracking,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 2, pp. 525–534, 2015.

[2] A. Petrovskaya, M. Perrollaz, L. Oliveira, L. Spinello, R. Triebel, A. Makris, J.-D. Yo-
der, C. Laugier, U. Nunes, and P. Bessiere, “Awareness of road scene participants for
autonomous driving,” in Handbook of Intelligent Vehicles, pp. 1383–1432, Springer, 2012.

[3] T.-D. Vu and O. Aycard, “Laser-based detection and tracking moving objects using data-
driven markov chain monte carlo,” in 2009 IEEE International Conference on Robotics
and Automation, pp. 3800–3806, IEEE, 2009.

[4] A. Nègre, L. Rummelhard, and C. Laugier, “Hybrid sampling bayesian occupancy filter,”
in 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 1307–1312, IEEE, 2014.

[5] B. Fortin, R. Lherbier, and J.-C. Noyer, “Feature extraction in scanning laser range data
using invariant parameters: Application to vehicle detection,” IEEE Transactions on
Vehicular Technology, vol. 61, no. 9, pp. 3838–3850, 2012.

[6] T. Johansson and O. Wellenstam, “Lidar clustering and shape extraction for automotive
applications,” Master’s thesis, Chalmers University of Technology, 2017.

[7] D. Kim, K. Jo, M. Lee, and M. Sunwoo, “L-shape model switching-based precise mo-
tion tracking of moving vehicles using laser scanners,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 2, pp. 598–612, 2018.

[8] A. Rachman, “3d-lidar multi object tracking for autonomous driving,” Master’s thesis,
Delft University of Technology, 2017.

[9] E. A. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear estima-
tion,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Commu-
nications, and Control Symposium (Cat. No. 00EX373), pp. 153–158, Ieee, 2000.

Master of Science Thesis Konstantinos Konstantinidis

82 Bibliography

[10] C.-C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte, “Simultaneous
localization, mapping and moving object tracking,” The International Journal of Robotics
Research, vol. 26, no. 9, pp. 889–916, 2007.

[11] J. Choi, S. Ulbrich, B. Lichte, and M. Maurer, “Multi-target tracking using a 3d-lidar
sensor for autonomous vehicles,” in 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013), pp. 881–886, IEEE, 2013.

[12] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E. Frazzoli,
A. Huang, S. Karaman, et al., “A perception-driven autonomous urban vehicle,” Journal
of Field Robotics, vol. 25, no. 10, pp. 727–774, 2008.

[13] A. Petrovskaya and S. Thrun, “Model based vehicle tracking for autonomous driving in
urban environments,” Proceedings of Robotics: Science and Systems IV, Zurich, Switzer-
land, vol. 34, 2008.

[14] T. Chen, R. Wang, B. Dai, D. Liu, and J. Song, “Likelihood-field-model-based dynamic
vehicle detection and tracking for self-driving,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 17, no. 11, pp. 3142–3158, 2016.

[15] K. Granstrom, M. Baum, and S. Reuter, “Extended object tracking: Introduction,
overview and applications,” arXiv preprint arXiv:1604.00970, 2016.

[16] T.-D. Vu, J. Burlet, and O. Aycard, “Grid-based localization and local mapping with
moving object detection and tracking,” Information Fusion, vol. 12, no. 1, pp. 58–69,
2011.

[17] R. Danescu, F. Oniga, and S. Nedevschi, “Modeling and tracking the driving environment
with a particle-based occupancy grid,” IEEE Transactions on Intelligent Transportation
Systems, vol. 12, no. 4, pp. 1331–1342, 2011.

[18] H. P. Moravec, “Sensor fusion in certainty grids for mobile robots,” in Sensor devices
and systems for robotics, pp. 253–276, Springer, 1989.

[19] P. Bessière, C. Laugier, and R. Siegwart, Probabilistic reasoning and decision making in
sensory-motor systems, vol. 46. springer, 2008.

[20] K. Mekhnacha, Y. Mao, D. Raulo, and C. Laugier, “Bayesian occupancy filter based"
fast clustering-tracking" algorithm,” 2008.

[21] N. Kaempchen, M. Buehler, and K. Dietmayer, “Feature-level fusion for free-form object
tracking using laserscanner and video,” in Intelligent vehicles symposium, 2005. Proceed-
ings. IEEE, pp. 453–458, IEEE, 2005.

[22] P. Skrzypczynski, “Building geometrical map of environment using ir range finder data,”
in Intelligent Autonomous Systems, pp. 408–412, 1995.

[23] G. A. Borges and M.-J. Aldon, “Line extraction in 2d range images for mobile robotics,”
Journal of intelligent and Robotic Systems, vol. 40, no. 3, pp. 267–297, 2004.

[24] X. Zhang, W. Xu, C. Dong, and J. M. Dolan, “Efficient l-shape fitting for vehicle detec-
tion using laser scanners,” in 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 54–59,
IEEE, 2017.

Konstantinos Konstantinidis Master of Science Thesis

83

[25] D. Reid, “An algorithm for tracking multiple targets,” IEEE transactions on Automatic
Control, vol. 24, no. 6, pp. 843–854, 1979.

[26] T. Fortmann, Y. Bar-Shalom, and M. Scheffe, “Sonar tracking of multiple targets using
joint probabilistic data association,” IEEE journal of Oceanic Engineering, vol. 8, no. 3,
pp. 173–184, 1983.

[27] B. Anderson and J. B. Moore, “Optimal filtering,” 1979.

[28] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear systems,”
in Signal processing, sensor fusion, and target recognition VI, vol. 3068, pp. 182–193,
International Society for Optics and Photonics, 1997.

[29] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[30] J. J. LaViola, “A comparison of unscented and extended kalman filtering for estimating
quaternion motion,” in Proceedings of the 2003 American Control Conference, 2003.,
vol. 3, pp. 2435–2440, IEEE, 2003.

[31] G. Zhai, H. Meng, and X. Wang, “A constant speed changing rate and constant turn rate
model for maneuvering target tracking,” Sensors, vol. 14, no. 3, pp. 5239–5253, 2014.

[32] M. Roth, G. Hendeby, and F. Gustafsson, “Ekf/ukf maneuvering target tracking using
coordinated turn models with polar/cartesian velocity,” in 17th International Conference
on Information Fusion (FUSION), pp. 1–8, IEEE, 2014.

[33] T. Moore and D. Stouch, “A generalized extended kalman filter implementation for the
robot operating system,” in Intelligent autonomous systems 13, pp. 335–348, Springer,
2016.

[34] H. Zhao, X. Shao, K. Katabira, and R. Shibasaki, “Joint tracking and classification of
moving objects at intersection using a single-row laser range scanner,” in 2006 IEEE
Intelligent Transportation Systems Conference, pp. 287–294, IEEE, 2006.

[35] X. Shen, S. Pendleton, and M. H. Ang, “Efficient l-shape fitting of laser scanner data
for vehicle pose estimation,” in 2015 IEEE 7th International Conference on Cybernet-
ics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and
Mechatronics (RAM), pp. 173–178, IEEE, 2015.

[36] J. Rieken, R. Matthaei, and M. Maurer, “Toward perception-driven urban environment
modeling for automated road vehicles,” in 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, pp. 731–738, IEEE, 2015.

[37] M. Filipenko and I. Afanasyev, “Comparison of various slam systems for mobile robot in
an indoor environment,” in 2018 International Conference on Intelligent Systems (IS),
pp. 400–407, IEEE, 2018.

[38] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable
slam system with full 3d motion estimation,” in 2011 IEEE International Symposium
on Safety, Security, and Rescue Robotics, pp. 155–160, IEEE, 2011.

Master of Science Thesis Konstantinos Konstantinidis

84 Bibliography

[39] S. Umeyama, “Least-squares estimation of transformation parameters between two point
patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13,
pp. 376–380, April 1991.

Konstantinos Konstantinidis Master of Science Thesis

Glossary

List of Acronyms

DCSC Delft Center for Systems and Control

DSV Delft Scaled Vehicle

BOF Bayesian Occupancy Filter

FCTA Fast Clustering and Tracking Algorithm

DATMO Detection and Tracking of Moving Objects

IMU Inertial Measurement Unit

SLAM Self Localization and Mapping

LIDAR LIght Detection And Ranging

ROS Robot Operating System

ALS Autocovariance Least-Squares

NN Nearest Neighbor

GNN Global Nearest Neighbor

BARC Berkeley Autonomous Race Car

JPDAF Joint Probabilistic Data Association Filter

MHT Multiple Hypothesis Tracking

MoCap Motion Capture

KF Kalman Filter

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

RMSE Root Mean Squared Error

Master of Science Thesis Konstantinos Konstantinidis

86 Glossary

List of Symbols

Latin Symbols
x̂ State vector estimate
ẑ Measument vector estimate
X Sigma point matrix
AK Linear kinematic model
AS Linear shape model
Dmax Maximum threshold distance
Dsplit Accepted disimilarity between two lines
f Nonlinear state-transition function
h Nonlinear measurement function
HK Linear measurement model
HS Linear measurement model
K Kalman gain
L Length of tracked object
P Estimate error covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
T Sampling time
vx Velocity of tracked object on global X axis
vy Velocity of tracked object on global Y axis
W Weights matrix
W Width of tracked object
x Position of tracked object on global X axis
xcenter Position of the center of tracked object on global X axis
xcorner Position of the corner of tracked object on global X axis
y Position of tracked object on global Y axis
ycenter Position of the center of tracked object on global Y axis
ycorner Position of the corner of tracked object on global Y axis
p Single LIDAR measurement
r Range of a LIDAR measurement

Greek Symbols
α Angular resolution of a LIDAR sensor
β Probability of measurement
δ Steering angle

Konstantinos Konstantinidis Master of Science Thesis

87

ψ̇ Turn rate of tracked object
η Normalization constant
κ Scaling parameter
λ Angle used by Adaptive Breakpoint Detector
ω Turn rate of tracked object
φ Scanning angle of a LIDAR measurement
ψ Heading angle of tracked object
σr Sensor noise of a LIDAR sensor
θ Heading angle of tracked object

Master of Science Thesis Konstantinos Konstantinidis

88 Glossary

Konstantinos Konstantinidis Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables

	Main Matter
	Introduction
	Problem Statement: Detection and Tracking of Moving Objects (DATMO)
	Categories of Approaches to the DATMO problem
	Traditional Approach
	Model Approach
	Grid Approach

	Experimental Platform
	Research Question
	Report Outline

	Detection of Moving Objects
	Data Acquisition by a 2D LIDAR sensor
	Segmentation
	Breakpoint Detector Algorithm
	Adaptive Breakpoint Detector Algorithm

	Feature Extraction
	Line Extraction
	Rectangle Extraction

	L-shape Extraction

	Tracking of Moving Vehicles
	Data Association and Track Management
	Data Association
	Track Management

	State Estimation
	Kalman Filter
	Extended Kalman Filter (EKF)
	Unscented Kalman Filter (UKF)

	L-shape Tracker
	Kalman Filter Kinematic Tracker
	UKF Kinematic Tracker with Coordinated Turn Model
	Alternative kinematic models
	Shape Tracker

	Corner Point Switching
	L-shape to Box Model Conversion

	Experimental Evaluation
	Simulation Experiments
	Overtakes Experiment
	Opposite Lane Tracking

	Scaled Cars Experiments
	Racing experiment
	Road Intersection

	Evaluation of system speed

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Localization
	Localization by Fusion of Odometry and IMU
	Velocities calculation via Odometry measurements
	Fusion of Odometry and IMU measurements

	SLAM
	Fusion of Odometry, IMU and SLAM
	Transformation between different coordinate frames

	Paper

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

