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Preface

Originally conceived to be the final volume of a trilogy on Analysis in Banach
spaces, containing the applications of the infrastructure of Volumes I-II to
Harmonic and Stochastic Analysis, it was eventually evident that the body of
work that we wanted to discuss would never fit into one volume of compara-
ble size. Thus it was decided to divide the topics over two volumes, of which
the present one, subtitled Harmonic Analysis and Spectral Theory, will of-
fer a systematic treatment of Banach space-valued singular integrals, Fourier
transform, and function spaces; further develop and ramify the theory of func-
tional calculus from Volume II; and culminate in applications of these notions
and tools in the problem of maximal regularity of evolution equations. The
subsequent Volume IV will then be dedicated to the stochastic counterparts
of some of these topics.

Like the previous Volume II, the present Volume III has its time-wise
centre of gravity firmly in the present century. At the same time, we always
cover the necessary prerequisites from earlier developments, presenting a self-
contained picture rather than just a modern uppermost layer. As one might
expect, Banach spaces with the unconditional martingale differences (UMD)
property, will again manifest themselves as the most useful class of spaces
for our analysis, but many of the other Banach space properties discussed in
Volumes I-1I will also feature prominently.

Our discussion of singular integrals is thoroughly influenced by the recent
notion of sparse domination, and we use this technology to prove the A,
theorem on sharp weighted norm inequalities, only obtained in 2010/2012 and
unforeseen at the time of starting our book project back in 2008. Our approach
to this theorem is still more recent, a result of a sequence of simplifications and
abstractions of the original argument achieved over the past decade. Another
main result on singular integrals is the characterisation of their boundedness
given by the T'(1) theorem, which goes back to the 1980’s even in the vector-
valued setting, but was only proved in the full operator-valued generality in
2006. Once again, several subsequent extensions of the argument have taken
place, and we have tried to present a proof, while still non-trivial probably
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vi Preface

by necessity, that combines elements from several of the existing approaches,
also highlighting intermediate results of independent interest.

The main theorem that we prove about the Fourier transform is the vector-
valued Hausdorff-~Young inequality due to Bourgain, again from the 1980’s,
but we have followed a more recent framework of the argument by Hinrichs,
Pietsch and Wenzel from the late 1990’s. Equipped with this tool, we can iden-
tify the operator-valued Fourier multipliers discussed in the first two volumes
with some singular integrals treated in the present one, and thereby obtain
results like weighted norm inequalities for these operators. Many of these
corollaries are relatively recent in the literature. In the previous volumes, we
have also seen that the UMD property is characterised by the boundedness
of a few distinguished Fourier multipliers; we now extend such results to a
much broader class covered by a 2010 result of Geiss, Montgomery-Smith and
Saksman, which also allows us to complete some characterisations of UMD in
terms of the equivalence of different function spaces.

The theory of vector-valued function spaces, already hinted at in several
occasions in the previous volumes, is finally taken up here in a systematic
way. With the complete scale of the relevant function spaces at hand, we can
provide the final form with sharp end-point assumptions of several embedding
theorems that were discussed in weaker or incomplete forms in the previous
volumes. Some of these function spaces will also play an important role later
in this volume, when we treat the maximal regularity problem of evolution
equations.

The notion of functional calculus of sectorial operators was already de-
veloped at length in Volume II, but there is a lot more to add to this vast
topic, both for intrinsic and applied interest. While the necessary background
material on fractional powers dates back as far as the 1960’s, we have followed
a more modern approach of viewing these powers in the framework of the so-
called extended calculus. Of special interest is the class of operators admitting
bounded imaginary powers.

The theory of sums of operators and the operator-valued functional calcu-
lus offer significant extensions of the “vanilla” functional calculus that pave
the way for the treatment of the maximal regularity problem. We also de-
velop the perturbation theory of sectorial operators, which expands the list of
examples of concrete operators for which we can check and hence apply the
H*-calculus.

The penultimate chapter presents a treatment of the maximal regularity
problem for evolution equations. The main characterisation result is from the
turn of the millennium, and so are the related counterexamples by Kalton—
Lancien, but for the latter we will follow a much simplified recent approach
by Fackler from 2014—2016. In the final chapter we present a recent theory of
parabolic nonlinear evolution equations in critical spaces based on maximal LP
and continuous regularity. This theory was developed during the last decade
by LeCrone, Priiss, Simonett, and Wilke, and it has already turned out to lead
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to far-reaching improvements for several classes of parabolic partial differential
equations.
*

The main stylistic conventions of the previous volumes are adopted in the
present volume as well: Most of the time, we are quite explicit with the con-
stants appearing in our estimates, and we especially try to keep track of the
dependence on the main parameters involved. Some of these explicit quan-
titative formulations appear here for the first time. Where relevant, we also
pay more attention than many texts to the impact of the underlying scalar
field (real or complex) on the results under consideration, although a need
for this perhaps appears slightly less in this volume than in the previous two.
A notable instance is the distinction between the real and complex UMD
constants, and their relation to various multiplier norms.
*

While the previous Volumes I and II of this series were written largely in
parallel over the years 2008-2017, the major work on this Volume III only
took place after the completion of the first two books. Critical to the progress
of this endeavour was the possibility of intensive joint workshops that we held
in the rural serenity of Stiftsgut Keysermiihle in Klingenmiinster (June 2018,
March 2019) but also, due to other professional and personal commitments
of some of us, in the urban beat of Delft (October 2018, January 2020) and
Helsinki (January 2020). Shortly after the last two meetings, and with the
completion of this volume already on the horizon, the global pandemic broke
out. This changed our plans like so much else, and our progress on this work
was essentially halted for two years. Only at the beginning of 2023 we were
able to resume our ‘live’ writing sessions to finally bring it to completion.

Preliminary versions of parts of the material were presented in advanced
courses and lecture series at various international venues and in seminars at
our departments, and we would like to thank the students and colleagues
who attended these events for feedback that shaped and improved the fi-
nal form of the text. Special thanks go to Antonio Agresti, Sebastian Bech-
tel, Chenxi Deng, Emiel Lorist, Floris Roodenburg, Max Sauerbrey, Esmée
Theewis, Joshua Willems, and Joris van Winden, who read in detail portions
of this book. Needless to say, we take full responsibility for any remaining
errors. Lists with errata for each of the three volumes are maintained on our
personal websites.

During the writing of this book, we have benefited from external funding
by the Academy of Finland / Research Council of Finland (grants 314829 and
346314 to T.H., and the Finnish Centre of Excellence in Randomness and
Structures “FiRST”, of which T.H. is a member), the Netherlands Organisa-
tion for Scientific research (NWO) (VIDI grant 639.032.427 and VICI grant
639.212.027 to M.V.), and the Deutsche Forschungsgemeinschaft (Project-ID
258734477 — SFB 1173 to L.W.).

Delft, Helsinki, and Karlsruhe, September 15, 2023
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Symbols and notations

Sets

N={0,1,2,...} - non-negative integers
Z - integers

@Q - rational numbers

R - real numbers

C - complex numbers

K - scalar field (R or C)

Z = Z U {—00,00} - extended integers
R4 = (0,00) - positive real line

Bx - open unit ball

Sx - unit sphere

B(z,r) - open ball centred at = with radius r
D - open unit disc

S={z€C: 0< Sz < 1} - unit strip
X, = open sector of angle w

X = open bisector of angle w
T={z€C: |z| =1} - unit circle

Vector spaces

B, , - Besov space

co - space of null sequences

C - space of continuous functions

Cy - space of continuous functions vanishing at infinity
C® - space of Holder continuous functions

C}, - space of bounded continuous functions

C. - space of continuous functions with compact support
C2° - space of test functions with compact support

@P - Schatten class

~v(H, X) - space of y-radonifying operators

XV



xvi Symbols and notations

v(S; X) - shorthand for v(L?(S), X)

Yoo (H, X)) - space of almost summing operators
Yoo (S5 X) - shorthand for o, (L%(S), X)

E - space of primary functions

H - Hilbert space

H*P - Bessel potential space

HP - Hardy space

£P - space of p-summable sequences

% - space of p-summable finite sequences
HP - Hardy spaces on a sector or strip

LP - Lebesgue space

LP9 - Lorentz space

LP>° - weak-L?

LP (I; X) - weighted LP

L' - space of inverse Fourier transforms

Lip - space of Lipschitz continuous functions
Z(X,Y) - space of bounded linear operators
INLP - space of Fourier multipliers

O - Mihlin class

& - space of Schwartz functions

. - space of tempered distributions

F; , - Triebel-Lizorkin space

WP - Sobolev space

W#P - Sobolev-Slobodetskii space
X.,Y,...- Banach spaces

X¢ - complexification

XP - Gaussian complexification

X*,Y*, ...- dual Banach spaces

X©®, YO, .. .- strongly continuous semigroup dual spaces
X ®Y - tensor product

[Xo, X1]p - complex interpolation space
(Xo,X1)o,p, (Xo,X1)0,po,p, - real interpolation spaces

Measure theory and probability

o/ - o-algebra

dfn, = fn — fn—1 - nth martingale difference

€n - signs in K| i.e., scalars in K of modulus one

€n - Rademacher variables with values in K

E - expectation

F,9, ...- o-algebras

Fy - collection of sets in % on which f is integrable
E(-]-) - conditional expectation

v - Gaussian variables

hr - Haar function



Symbols and notations

[ - easure
||14]] - variation of a measure

(2,47, P) - probability space

P - probability measure

r, - real Rademacher variables

(S, 97, 1) - measure space

o(f,g,...) - o-algebra generated by the functions f,g,...
o(%€) - o-algebra generated by the collection &

T - stopping time

we - Walsh function

Norms and pairings

| - | - modulus, Euclidean norm

|1l =1"llx - norm in a Banach space X
I llp = Il v - LP-norm

(-,-) - duality

(+|") - inner product in a Hilbert space

a - b - inner product of a,b € R?

Operators

A - closed linear operator

A* - adjoint operator

A® - part of A* in X©

D(A) - domain of A

V - gradient

A - Laplace operator

v(7) - v-bound of the operator family 7

vp(7) - v-bound of J with respect to the LP-norm
2 - dyadic system

0; = 0/0x; - partial derivative with respect to x;
0% - partial derivative with multi-index «

E(-]-) - conditional expectation

% - Fourier transform

Z 1 - inverse Fourier transform

H - Hilbert transform

H - periodic Hilbert transform

Js - Bessel potential operator

(?(7) - £2-bound of the operator family .7
Z(X,Y) - space of bounded operators from X to Y
M, 4 - sectoriality constant of A at angle o

N(A) - null space of A

(7)) - R-bound of the operator family 7

#,(T) - R-bound of 7 with respect to the LP-norm
R(A) - range of A
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xviii Symbols and notations

R; - jth Riesz transform

R(\, A) = (A — A)~L - resolvent of A at A
0(A) - resolvent set of A

o(A) - spectrum of A

S, T, ...- bounded linear operators

S(t), T(t), ...- semigroup operators

S*(t), T*(t), ...- adjoint semigroup operators on the dual space X*
SO(t), TO(t), .. .- their parts in the strongly continuous dual X©

T* - adjoint of the operator T’

T* - Hilbert space (hermitian) adjoint of Hilbert space operator T'
T, - Fourier multiplier operator associated with multiplier m

T ® Ix - tensor extension of T

w(A) - angle of sectoriality of A

wr(A), wy(A) - angles of R- and 7-sectoriality of A

wprp(A) - angle of bounded imaginary powers of A

wre(A) - angle of the H>-calculus of A

wPi(A) - angle of bisectoriality of A

Constants and inequalities

oy, x - Pisier contraction property constant
@, x - upper and lower Pisier contraction property constant
Bp,x - UMD constant
EX - UMD constant with signs +1
;f, « - upper and lower randomised UMD constant
Cq,x - cotype g constant
cg’ x - Gaussian cotype g constant
A, x - triangular contraction property constant
hp,x - norm of the Hilbert transform on LP(R; X)
K, x - K-convexity constant
K x - Gaussian K-convexity constant
Kp,q - Kahane-Khintchine constant
H;Eq - idem, for real Rademacher variables
Ky 4 - idem, for Gaussian sums
Kp,qx - idem, for a fixed Banach space X
Tp,x - type p constant

7, x - Gaussian type p constant
©p.x (RY) - norm of the Fourier transform .7 : LP(R?%; X) — L? (R%; X).

Miscellaneous

< - continuous embedding

14 - indicator function

a < b-3C such that a < Cb

a Sp.p b-3C, depending on p and P, such that a < Cb



Symbols and notations

C - generic constant
C - complement
d(z,y) - distance

f* - maximal function

L - reflected function
f - Fourier transform

f - inverse Fourier transform

f * g - convolution

S - imaginary part

M f - Hardy-Littlewood maximal function
p  =p/(p—1) - conjugate exponent

p* = max{p,p’}

p - good set-bound

R - real part

s At =min{s,t}

sVt =max{s,t}

x - generic element of X

¥ - generic element of X*

T ® y - elementary tensor

¥, x7, |x| - positive part, negative part, and modulus of x
w - weight

Wq - power weight ¢ — t*
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Standing assumptions

Throughout this book, two conventions will be in force.

1. Unless stated otherwise, the scalar field K can be real or complex. Results
which do not explicitly specify the scalar field to be real or complex are
true over both the real and complex scalars.

2. In the context of randomisation, a Rademacher variable is a uniformly
distributed random variable taking values in the set {z € K : |z] = 1}.
Such variables are denoted by the letter €. Thus, whenever we work over
R it is understood that ¢ is a real Rademacher variable, i.e.,

and whenever we work over C it is understood that ¢ is a complex
Rademacher variable (also called a Steinhaus variable), i.e.,

P(a < arg(e) < b) = %(b —a).

Occasionally we need to use real Rademacher variables when working over
the complex scalars. In those instances we will always denote these with
the letter r. Similar conventions are in force with respect to Gaussian
random variables: a Gaussian random variable is a standard normal real-
valued variable when working over R and a standard normal complex-
valued variable when working over C.

XXi
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Singular integral operators

Various operators of Analysis, many of them already encountered in these
volumes, take the generic form

i) = [ K0/ de (11.1)

The mapping properties of T" will of course heavily depend on the assumptions
made on the kernel K that we will discuss in more detail in this chapter. A
general feature of the different conditions is that the kernel is allowed to blow
up on the ‘diagonal’ {(x,z) : z € R%}, so that its natural domain of definition
is the set

R? .= {(s,t) € R x R? : 5 # t}.

This blow-up is one of the reasons for referring to (11.1) as a singular inte-
gral; in general this formula requires a careful interpretation and will only be
meaningful under restrictions on f and s.

In the prominent special case of a convolution kernel K(s,t) = R(s —t),
the operator (11.1) takes (at least formally, and under reasonable assumptions
also rigorously) a simple representation “on the Fourier transform side”:

— ~ -~ o~

TF(€) = & f(€) = R(E)F(€) = m(&) F(€);

thus T' = T, can be identified with a Fourier multiplier; they have been
studied extensively in Chapter 5 and Section 8.3.

The motivations to investigate singular integral operators in the non-
transformed representation (11.1) are at least threefold. First, it allows for
a wider class of examples beyond those of the convolution form. Second, even
when the alternative Fourier multiplier representation is available in principle,
an operator may naturally arise in the form (11.1), and identifying or estimat-
ing the corresponding multiplier explicitly may not be feasible in practise, as
the Fourier transform is not isomorphic between the natural function spaces
for the kernel & and the multiplier m. Finally, and perhaps most importantly,
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2 11 Singular integral operators

even for multiplier operators, the point-of-view of singular integrals gives us
access to new methods and conclusions.

An overarching theme is of this chapter is extrapolation: As soon as an
operator (11.1), with natural assumptions on the kernel K, is bounded on
a single space LP°(R%; X), it will be automatically bounded on several more
spaces, including LP(R?; X) for other exponents p € (1,00) (with certain sub-
stitute results at the end-points p € {1, 00}), and even their weighted versions
LP(w; X), where w is an arbitrary weight in the Muckenhoupt class A, (see
Appendix J). These results will be used to deduce analogous extrapolation re-
sults for mazimal L?-regularity of the abstract Cauchy problem in Chapter 17.

In terms of Banach spaces, this chapter deals with relatively general re-
sults, most of which are valid without restrictions of the class of admissible
spaces. Such restrictions, and notably the ubiquitous UMD condition, will
reappear in the subsequent chapters, when searching for conditions to verify
the boundedness of (11.1) on just one LP°(R%; X), to serve as an input to the
extrapolation results that we develop in the chapter at hand.

11.1 Local oscillations of functions

A characteristic feature of singular integrals, the main topic of this chapter, is
that their boundedness properties depend not only naive size estimates but on
rather delicate cancellations between different oscillatory components. Before
we dwell into a deeper study of there operators, we dedicate this section to a
general treatment of oscillations of functions per se; this will streamline the
subsequent discussion, where the results of this section will be put into action
in the context of operator norm estimates.

Given f € L°(R%; X) and A > 0, we define the following measure of oscil-
lation of f on a cube @,

: = inf inf —0c)1 .
osca(f; Q) cng|E\1<nA|Q|H(f )1g\Elleo

Here, and in many occasions below where we will use the same notation, it is
understood that the supremum is taken over all measurable subsets E of @)
satisfying the stated requirement that |E| < A|@Q|. The idea is to quantify how
much f deviates from a constant, if we ignore its (possibly wild) behaviour
on an exceptional set of controlled proportion. The above way of measuring
oscillations is essentially ‘minimal’ in that it can be controlled by average L
oscillations for any g > 0:

Lemma 11.1.1. For any q € (0,00), we have

. . H(f - C)lQHme
oscx(f;Q) < plél)f( Qe
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Proof. For a fixed ¢, let g := (f — ¢)1¢q. If we choose t := ||g||La.=/(A|Q])*/9,
then

191170,
Bl = Klgll > 8} < =5 = Q)

But then it is clear that

1 <t
\E\<)\|Q| l9le\elles < llglo\e.lle <1,

which is precisely the claimed bound. O

Given a real-valued f € L°(R%; R), any m € R such that

QN{f<m} =31Ql, 1QN{f=m} >1Q|

is called a median of f on the cube (or more general set of finite positive
measure) @ C R?. One routinely checks that a median always exists but may
fail to be unique.

Lemma 11.1.2. If A € (0,1) and my € R is a median of f € L°(Q;R) on

Q, then
[(f =mp)lgelle < 20sex(f; Q).

\E|<>\\Q\

Proof. Let ¢ € R be arbitrary. Then f —mys = f — ¢ — (my — ¢) and hence

[(f —mp)lgele < inf |I(f —c)lg\elle +ms —d.

|E|<>\\Q\ |EI<AIQ

Note that my — ¢ is a median of g := f — c on . Hence it suffices to check
that the median m, always satisfies

Img| < llglo\ell
whenever |E| < A|Q| and A < 3. If my > 0, then
QN {lgl = Imgl} \ E| > Q0 {g > mg} \ E| > 3|QI - |E| > (3 = M)|Q| >0

and thus ||g1l\glle = |my|. If my < 0, the argument is the same, just replac-
ing the second step above by |@Q N {g < my} \ E|. O

The previous lemma motivates the following;:

Definition 11.1.3. Let X be a Banach space and f € L°(Q;X). A wvector
m € X is called a A-pseudomedian of f on Q if

|E|<)‘\Q\ ||(f m)lQ\E”oo QOSC)\(f;Q),

Indeed, Lemma 11.1.2 says that the usual median is a A-pseudomedian for
every A € (0, 1). Concerning existence in the general case, we have:
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Lemma 11.1.4. Let X be a Banach space, f € L°(Q;X) and \ € (0, %)
Then f has a A-pseudomedian on Q).

Proof. If oscy(f; @) > 0, this is obvious, since we can always come within any
positive distance from the infimum. So only the case oscy(f; Q) = 0 needs
attention. In this case, there we can find a sequence of vectors ¢, € X and
sets B, C Q with |E,| < A|Q| such that ||(f — c.)1g\E, .o — 0. Since
|E, UEn,| <2XMQ| < |Q|, any @\ (E, U Ey,) has positive measure, and thus

llen — cm” = |l(cn — Cm)lQ\(EnUEm) 00

<N = en)lgue, llo + I(f = em)1Q B, lo = 0.

Thus (¢n)n>1 is a Cauchy sequence and hence convergent to some ¢ € X. But
then

inf —c)1 0o < liminf — o)1 -
piofio IF — leavsllee < Hminf(I(f = c)lovs, i

<timinf (JI(f = ea) 1o\, oo + llew — el ) =

n— oo

and thus this limit ¢ is a A-pseudomedian. O

Lemma 11.1.5. Let X be a Banach space, let f € L°(R% X) and X € (0, 3),
and let m(Q) be a A-pseudomedian of f on Q. Then

=QN{|lf —ms(Q)] > 20sex(f;Q)}
satisfies | E°] < Q).
Proof. Suppose for contradiction that |EY| > A|@|. Denoting
= QN{llf —=ms(Q)[l > 20sca(f; Q) + €}

we have EY = Uo— El/ ™ so that by continuity of measure, we also have
|E<| > A|Q| for some e=1/n>0.
Let |E| < A|Q|. Then

1(f =mp(@)1g\Elle = (20ser(f; Q) + ) 1pa\Elloo = 208cA(f; Q) + ¢,
since |E€\ E| > |E°| — |E| > A\|Q| — A\|Q| = 0. Taking the infimum over all
|E| < A|Q|, we contradict the definition of a A-pseudomedian. O
11.1.a Sparse collections and Lerner’s formula

Let us recall and expand the terminology related to dyadic cubes that we
introduced in Chapter 3.

Definition 11.1.6. A dyadic system of cubes on R? is a collection 9 =
Ujez Zj, where
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(i) each Z; is a partition of R of the form
9, = {Sj +279(m+[0,1)%) :m e Zd},

(ii) each P;y1 refines the previous ;.

When s; = 0 for all j € Z, we refer to the corresponding & as the standard
dyadic system, and denote it by 2°.

Remark 11.1.7. One might like to replace (i) in Definition 11.1.6 by the “more

intrinsic”

(iii) each Z; is a partition of R? consisting of left-closed, right-open cubes of
side-length 277.

When d = 1, one can check that (i) and (iii) are equivalent. But, for d > 1,
condition (iii) is strictly more general. For instance

Z; = {277 (m+[0,1)*) + (0,al[,00)(m1)) : m € ZQ}, a € R,

where all cubes in the right half-plane are shifted in the y-direction by a fixed
amount « € R relative to the standard dyadic cubes, would qualify for (iii) but
not for (i). The preference over one or the other definition may be a question
of taste; we choose to work with Definition 11.1.6 as stated.

We will work be working with an arbitrary dyadic system as in Definition
11.1.6. For many purposes, the reader who so wishes may think of the standard
dyadic system.

2°:=]92), 2)={7(0,1)"+k) ke, jeL,
JEZL

but here and there we will also make use of other systems, which makes it
convenient to deal with a generic system from the beginning. For any given
cube, we may speak of its dyadic subcubes, by which we understand all cubes
obtained by repeatedly bisecting the edges of Q). We will use the notation
2(Q) for the collection of all dyadic subcubes of a cube Q. If @ belongs to a
dyadic system &, then

72@Q)=1{Q' €7: Q' cQ}.

Definition 11.1.8. A quadrant of a dyadic system 2 of R¢ is the union of
any strictly increasing sequence Q1 C Q2 C Q3 C ... of cubes Q; € 2.

Remark 11.1.9. The standard dyadic system 2° has 2¢ quadrants of the form
S1 X -+ x Sg, where S; € {(—0,0),[0,infty)} for each i € {1,...,d}. It is
also easy to construct dyadic systems, where R? is the only quadrant.
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The dyadic Hardy-Littlewood mazimal function is defined by
1
Mof@) = sw (o (o=f =g [ £
QED:xzeQ Q |Q‘ Q

where the supremum is taken over all dyadic cubes containing x. Here, and
throughout this chapter, unless indicated otherwise, integrals are taken with
respect to Lebesgue measure and are abbreviated in the above way to unbur-
den notation. Thus, when ¢ is an integrable function, fQ g is shorthand for

fQ g(z) dz. When integrating over all of R? we will even write [ g for [, g.

Definition 11.1.10. A collection . of sets S C R? of finite measure is called
~-sparse, if each S € .7 has a measurable subset E(S) C S of size |[E(S)| >
~|S| such that the sets E(S) are pairwise disjoint.

While the definition can be made for general measurable sets, we will be
mostly concerned with the case when . C & is a subcollection of the dyadic
cubes of R?.

A disjoint collection is obviously 1-sparse with E(S) = S. The usefulness of
general ~y-sparse collections comes from the fact that, on the one hand, they
are easier to create than genuinely disjoint collections while, on the other
hand, for the purposes of LP estimates they are essentially as good as disjoint
ones. This is quantified by the following:

Proposition 11.1.11. Let ¥ C Z be a y-sparse collection of dyadic cubes S
with disjoint subsets |E(S)| = ~|S|.

(1) If as = 0, then for all p € (0,0),

v p, pel o0),
v HP pe(0,1).

H Z aSlSH < CP»’YH Z aSlE(S)’ , where cpy = {
Ses P Ses P

(2) If f >0, then for allp € (1,00),

/
(S wzis) " <a ol

Ses

Proof of Proposition 11.1.11. If p € [1,00), we dualise the left side of (1)
against ¢ € LP :

/(Z asls)¢= Z as|5|]£¢ < % Z as|E(S)|ir§fM9¢

Ses Ses Ses
1 1
< - /( > ale(S))M@¢ < *H > ale(S)H M2y,
TS Nsew Tsesr b

where | Mg¢|, < pl|l¢ll,y by Doob’s maximal inequality (Theorem 3.2.2; cf.
the explanations preceding Theorem 3.2.27).
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If p € (0,1), then the left side of (1) can be estimated by

/( > asts)’ </Z afls = > akls| <$ > a5lE(S)]

Ses Ses Ses Ses
1 1 p
= —/ Z aglE(S) = 7/( Z ale(S)> 5
v Ses v Ses

and taking the pth root completes the proof of (1).
For (2), we use (f)s < inf.cs Mo f(2) and |S| < y71|E(9)| to find that

1 1 1
(fslsl< = / (Mg f)P do < — Mo £y < -l
S;y Y s%:y E(S) Y Py b
again by Doob’s inequality in the last step. O

The different notions introduced above come together in the following useful
estimate, which is the main result of this section:

Theorem 11.1.12 (Lerner’s formula). Let X be a Banach space, Q° C R?
be a cube and f € L°(Q%; X). Then there is a %—sparse subcollection ¥ C
2(Q°) such that, almost everywhere,

Lool[f =mp(Q) €4 osea(f;S)1s,  A=277"1,
Ses

where m¢(Q) is any A\-pseudomedian of f on Q°.
By Lemma 11.1.2, if X = R, we can take m;(Q°) to be a usual median of f.

Proof. We begin with a preliminary observation. For any collection of disjoint
sets Q; € 2(Q), we have the identity

Loo(f = myp(Q) = 1oy, @, (f —ms(Q"))

+;1Q_7. (ms(Q) —my(Q")) (11.2)

+ ) 1q,(f = ms(Q).
J
Turning to the actual proof, let

B = Q" {IIf = mp(Q)]| > 20sex(£;Q") |

so that |EY| < A\|Q°| by Lemma 11.1.5.

For a € (0,1) to be chosen, let Q] be the maximal cubes in 2(Q°) such
that [Q} N E°| > a|Qj|. Since any two dyadic cubes are either disjoint, or
one is contained in the other, dyadic cubes that are maximal with respect
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to some property are necessarily disjoint; hence our preliminary observation
applies to Q; = Q;. Moreover, by definition of the dyadic maximal operator,
we have Mglgo(z) > «, if and only if z is contained in some dyadic ) with
(1go)g > «, if and only if it is contained in a maximal dyadic cube with this
property. Hence

Ule = {M@lEo > Oz}7
J
so that by Doob’s inequality
1 A
D IQ) < = [1poll < Z1Q°).
r e} @

By Lebesgue’s differentiation theorem, almost every point of E is contained
in some Q}, and hence

Lony, ot llf = my(Q°)| < Looy, Q;2OSCA(f;QO)

almost everywhere. R
By the maximality of the Q}, their parent cubes Q]l satisfy the opposite

bound |CT2\]1 NE|< a@} |. Hence in particular
Q) N E° < |Q) NE°| < a|Q}| =2%|Q]).

Let also
B = Q3 {If —ms (@) > 20ser(£:Q)))

so that |E}| < A|Qj| by Lemma 11.1.5. Tt follows that
1 0 1 d 1
|Qjm(E UEj)|<(2 0‘+>‘)|Qj|‘

If 2%a + X < 1, then Q} \ (E°U Ejl) has positive measure, and for any z in
this set, we have both

1 (@) = mp Q) < 2osea(£: Q%) [If(x) —mp(Q))] < 20sex(f;Qj)-

Since such points z exist, it follows in particular that
I (Q7) —myp(Q°)]| < 208ex(f;Q°) + 2osex(f; Q))-

Substituting this to (11.2), we have
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Lgollf —ms(Q) < Loy, Q;QOSCA(f;QO)
+ Z 1le (QOSC)\(f; Q%) + 20sc(f; Qj))
J

— 1
+;1Qj||f ms(@QY)] iy

= 1go2o0scx(f; Q°) + Z ]-Q;QOSCA(f; le)
J

3 10— ms (@D,
J

where each term in the last sum has exactly the same form as the left hand
side and allows to iterate the same consideration.
Assuming that we have proved

Lol f —ms(Q°)]| 4221@@08% f:Qp +2Z].QNOSCA £:QN)

n=0 j

N
+ 2 Loyl = ms @D,
j
where each @7 is contained in some Q?_l and

A
> Ies< e, (11.4)

JQrCQr!

applying (11.3) to each Qév in place of Q° yields the analogue of the previous
display with N 4 1 in place of N.
The support of the final error term has measure at most > ; |Q§V | <

(Aa)N|QC], so if A\/a < 1, this error term tends to zero pointwise almost
everywhere. Hence, in the limit, we have

Loollf =mp(@QO)] <4 1gnosea(f; QF).
n=0 j

Choosing a = 2, (11.4) shows that the collection {Q] }, ; is 1_sparse, and
with A = 27274 we also have 2%a + A = (24F + DA =271 + 27174 < 1 as
required. This concludes the proof. O

11.1.b Almost orthogonality in LP

In a Hilbert space H such as H = L?(R%), orthogonality of elements h; implies
the fundamental Pythagorean identity
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1/2
[ >on = (D)
i i

As we have seen in the previous Volumes, L? analogues of this identity tend to
either take the form of a one-sided estimate only, or, insisting in a two-sided
equivalence, require the introduction of some randomised norm. In contrast to
this, it may come as a surprise that sparse collections lead to relatively simple
constructions that allow almost complete LP analogues of the Pythagorean
identity in certain situations.

We introduce some additional notation. The following definition is mean-
ingful for any subcollection . C & of the dyadic cubes, but it will prove itself
particularly useful when . is sparse.

Definition 11.1.13. For any subcollection . C 2 of dyadic cubes, we have
the following notions:

(1) For each S € &, let che(S) C &7 (the #-children of S) denote the
collection of all mazimal S" € .7 such that S" C S.

(2) For each S € .7, let E#(S) := S\ Ugeen,(s) 9

(3) For each Q € 2, let m.%(Q) denote the minimal S € 7 such that S 2 Q.

When . = 2, we reproduce the familiar notion chg = ch of dyadic children.
The other two notions above are uninteresting in this special case, as we simply
have F5(Q) = @ and 74 (Q) = Q for all Q € 2.

We begin with a one-sided estimate:

Proposition 11.1.14. Let X be a Banach space and p € [1,00). Let . C 2
be a y-sparse collection of dyadic cubes. For each S € .7, let fs € LP(R%; X)
be a function supported on S and constant on each S’ € ch»(S). Then

| 2 5]
Ses

Proof. We assume that the right-hand side is finite, for otherwise there is
nothing to prove. We then assume without loss of generality that . is finite.
In fact, once we have proved the result for finite families, in the infinite case
it follows easily that the partial sums of the series ) ¢ ., fs (with arbitrary
enumeration) form a Cauchy sequence in LP(R%; X), from which we deduce
the (unconditional) convergence of this series and the asserted norm bound.

Concentrating on the finite case, by dualising with g € L' (R%; X*), it is
equivalent to the estimate

i 1/p
/Z<f5,g> dr < (1 + 1/p p)(z HfSHip(Rd;X)) HgHLP/(]Rd;X*)'
S S

, 1/p
<A+ (3 y )
Le (R4:X) ( +7 p) SEnySHLP(Rd;X)

Since fg is supported on S and constant on each S’ € ch»(S), and since S is
partitioned by ch e (S) U{E»(S)}, we have
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[ Susaar= Y [ s

Se Ser
=Y > <<fs>5/’<9>3'>|5/|+/ > 1p,s)(fs g)da.
SE §'echy (S) Ses

We can estimate the second term by Holder’s inequality and the pairwise
disjointness of the sets E.»(S5),

’/ > oo sovde| < | Y 1o, fs| 90 @
Ses Ses (R%X)

» 1/p
- ( Z H]-Ey(s)fS”Lp(Rd;X)) ”g”LP’(]Rd;X*)'
Ses

For the first term we argue as follows.

‘Z Y {fs)s (9)s)]S]

Se S'echy(S)

1/ / /v’
(T X ussle) (S Y wslis)
Se.# 8'echy (S) Se# §'echy(S)
/ / /'
< (X Wshugan) (X dsllorzls)
Ses S'es

where in the second factor we rearranged the double sum into a single sum,
observing that every S’ € . is counted at most once as a child of a unique
S € .. The second factor is bounded by 7_1/p/p||g||p/ thanks to Proposi-
tion 11.1.11(2). Summing up the bounds, we complete the proof of the direct
estimate. O

The following lemma describes useful projections and also provides prominent
examples of the functions fg featuring in Proposition 11.1.14.

Lemma 11.1.15. For S € . C 2 and f € L (R%; X), let

loc

Psfi= Y Esf+1g,s/f (11.5)
S’ech.(S)

Then (f)g = (Psf)q for all Q € 2 such that 1 (Q) = S.

Proof. From definition, we have

(Psfla= Y. (Ns

S’ech.s

s'nal 1

fdax.
Q| 1Ql JonE.,(s)

Since 7 (Q) = S, we have @ C S and it is not possible that Q@ C S’ € ch.»(5).
Hence ' NQ € {@,S5'} for all S" € ch.»(S) and Q is exactly partitioned by
QN E(S) and those S’ € ch»(S) with S" C Q. Thus
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'nQl _ 1 e L N
> st X nssl=g ¥ | tan

S'echy S'echy,S'CQ S’'echy,S'CQ
and
1 1 1
(Psfla=15r D fdo+ o fdo= o | fda,
Qoo s @ o) 1l Jo
confirming the lemma. O

A typical way in which a sparse collection arises is via the following basic
construction:

Definition 11.1.16 (Principal cubes). Let Qy € Z and f € L*(Qo; X).
The collection of principal cubes of f in D(Qq) with parameter A > 1 is the
family & = Uy Z% constructed as follows:

(1) o == {Qo}-
(2) If S is already defined for some k € N, then
(a) for each S € S we let

chy(S) == {s' € 2(S) mazimal with (| f||x)s > A<\|f||X>S},

(b) and then

S = J cho(9).
SeSk

The first instance of the interplay of a function and its principal cubes is the
following:

Lemma 11.1.17. Let f € L' (Qo; X) and .7 be the principal cubes of f with
parameter A > 1. Then . is (1 — A~)-sparse, and in fact

1
|Ez(S)] 2 (1= 2)IS]. (11.6)

If Psf is defined by (11.5), then ||Ps f| g ®e;x) < 29 A1 fllx)s-

Note that (11.6) is slightly more than the mere (1 — A~!)-sparseness of .7
it says that the disjoint subsets E(S) C S in the definition of sparseness may
be chosen as E(S) = E»(S), which is not always the case for an arbitrary
sparse family. For instance, .7 = {[0,1), [0, 3), [3,1)} is 3-sparse, and one can
take for instance E([0,1)) = [, 2), E([0,3)) = [0,1) and E([3,1)) = [3,1),
but E~([0,1)) = @ in this case.

Proof. By maximality, the cubes S” € ch(S) are pairwise disjoint. From the
defining condition it follows that
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, o lflxde  [olflxde |8
S < < —
2 SIS 2 CAiTs S Alflxs A

S’EChly(S) S’ECh/

and hence

Ea®l =15~ 3 191> 0S|

S'€chy (S)

If € Eo(S), then x is not contained in any S’ € ch»(S), and hence
fllx)o < A{lfllx)s for all @ € 2(S) with x € Q. As £(Q) — 0, it fol-
lows from Lebesgue’s Differentiation Theorem that ||Psf(x)|x = || f(2)|lx <
A{||fllx)s for almost every x € E»(S). If x € S" € che(S), then fg(x) =
(f)s/. By the maximality of S’, its dyadic parent S satisfies the opposite
inequality (||fl|x)g < A{||lfllx)s, and hence

1P @)l < (1Flx)s |S,| 57 [ Il da

/ 171 de < 2* A 7).
|5'
These two cases confirm the upper bound [|Ps f|| e ra;x) < 27A(|| ] x)s-

11.1.c Maximal oscillatory norms for LP spaces

Based on the oscillations studied above, we introduce the related John—
Strémberg mazimal operator

M, f(z) := sup osea(f; Q),

Q>3z

where the supremum is taken over all cubes containing « € R%; a dyadic ver-
sion M0 )\ is obtained by restricting the supremum to dyadic cubes @ € 2
only. Via this maximal operator we can obtain a useful oscillatory character-
isation of LP(R%; X), which we will prove in the rest of this section:

Theorem 11.1.18. Let X be a Banach space, p € (0,00), A\ = 27279 and
f € L°(R%; X). Then there is a constant ¢ € X such that f — c € LP(R%; X)
if and only if Mg%)\f € LP(R?), and in this case

—1
2P IME Fl ey < N = elloasx) < ol M Flloays

where ¢, = 8p for p € [1,00) and ¢, = 22FY/P for p € (0,1).

The result is also valid with R? replaced by a cube Qo C R? or a quadrant
S C RY, and with the supremum in the mazximal operator Mgﬁ restricted to
cubes Q C Qg or Q C S, respectively.
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Remark 11.1.19. If we now a priori require that f € LP>°(R%; X) for some
po € (0,00) (unrelated to the exponent p), then the constant ¢ € X guaranteed
by Theorem 11.1.18 is necessarily 0, and thus in fact f € LP(R%; X).

Namely, if f € LPo>°(R% X) and f — ¢ € LP(RY; X), it follows that ¢ =
f—(f —¢) € LPo-*(R%; X)) + LP(RY; X), thus

Hllell > e < KA > 8723+ [{If = ell > 8/2}] < o0
for all t > 0, which would lead to a contradiction for ¢ € (0, ||c||).

By Lemma 11.1.1 for any ¢ € (0, 00), we have

WU Otgllun Wl v f )
G < aigyre =X (1)

osex(f; @) <

Taking the supremum over all cubes ) containing a given point, it follows
that
- 1
MEF <NV f, M, f = (M) (1L.7)

where M is the Hardy—Littlewood maximal operator. The LP boundedness of
M, is an easy combination of some estimates collected from Chapter 3:

Lemma 11.1.20. For all 0 < ¢ < p < 0o, we have
p 1/q
max (”MqHLT’%L:‘H ||MqHLp,oo*>proo) < 3d/q+d/p (pfq) .

Proof. The dyadic (in fact more general martingale) bounds for Mq@ on LP

and LP> for p € (g,0), with norm bound (p/(p — ¢))*/9 in each case, have
been treated in Lemma 3.5.17. On the other hand, we recall from (3.36) that

Mf<3t sup M,
aef0,1,2}4

thus y
p
Mof <370 swp  Mpp<aie( 3 )
ae{0,3,2}d aef0,1,2}4
Hence
1/p
1M flp <3%e( 32 Ivplp) st (2 q) 11,

ac{0,5,5}4

and, for every A > 0,
1) —d/ Up_
MM, > M <A (e f > 300y) < 3 Q(Z g i)

after which the last step is exactly as in the strong-type case, now using the
weak-type boundedness of the dyadic M,* instead. O
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Proposition 11.1.21. The operator MS%)\ is bounded from LP(R% X) to

LP(RY) and from LP>°(R%; X) to LP>*(R?), with norm at most cil/f, where
cd,x s a constant depending only on d and X.

The first half of Theorem 11.1.18 is immediate from this proposition (with the
choice A = 27274 g0 that Cd,x = ¢q), combined with the trivial observation

that Mg’i\f = M(f/\(f — ¢) for any constant ¢ € X.

Proof. Let Y € {LP, LP->°}. By (11.7) and Lemma 11.1.20, we have

_ _ p \1/a
IV Fly < ATVM, flly < Aot (2 ) gl

With, say, ¢ = 1p, the right hand side takes the form (A233422)1/P||f||y,. O
Towards the deduction of a global LP estimate from local ones, we record:

Lemma 11.1.22. Let X be a Banach space and p € (0,00). Suppose that
f e Lt (R X) satisfies

Mo(f —co)lly < K

for some constants cqg € X and all cubes Q@ C R?. Then there is a constant
c € X such that f —c € LP(R% X) and

I =elly < K.

Proof. Consider an increasing sequence of cubes Q1 C @2 C ... such that
Ure, Qn = R If m < n, then
e, = cq.ll = 1@m|™ "1, (ca,. — ca.)llp
<1Qul ™7 (110, (f = ca.)llp + 11, (f = q,)

< |Qm|71/”2K —0 as  m — 00.

)

Hence (cq, )n>1 is a Cauchy sequence and thus convergent to some ¢ € X.
Now Fatou’s lemma shows that

—cllP = 1 — P < 1limi — P <
LU elr = [ Jim 0,17 o " < imant [ 1F o < K

Rd "
which completes the proof. O

We can now prove the remaining half of Theorem 11.1.18, which we restate
as:
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Proposition 11.1.23. Let f € L°(R% X), A = 27274 and suppose that
Mgéf € LP(RY) for some p € (0,00). Then there is a constant ¢ € X such
that f —c € LP(R%; X) and

) 8p, p € [1,00),
If— C”LP(Rd X)X Cp||Mo ,\f||Lp (R4)s Cp = {22+1/p’ pe(0,1).

The result also holds with R? replaced by a cube Qo C R? or a quadrant
S C RY, and with the supremum in the mazximal operator Mé’ﬁ)\ restricted to
cubes contained in Qg or S, respectively.

Proof. Consider a ﬁxed cube Q° C R By Lerner’s formula (Theorem
11.1.12), there is a 3-sparse subcollection .7 C 2(Q°) such that
Loollf = mp(Q)] <4 ) Lgoser(f:S),
Ses
whenever m(Q°) is a A\ pseudomedian of f on Q°. Taking L? norms and

using Proposition 11.1.11 (with v = 3), we get

Ig0(f = mp (@)l < 4H > 1s0ser(f:S)|

Ses

o X tes osea:9) | < ey IS
Ses

This estimate is uniform with respect to the choice of Q° C R%: hence we can
apply Lemma 11.1.22 with c¢g = m;(Q) to complete the proof.

The variant in the case of a cube or a quadrant in place of R? is immediate
by inspection of the argument. O

We conclude this section with an end-point analogue of Theorem 11.1.18 for
the space BMO(RR?; X) in place of L?(R?; X). Recall that we have previously
defined the space BMO(R?; X) of functions of bounded mean oscillation as
the class of functions f € LL (R X) such that

X)) = inf — .
I llnogeesn) = sup inf f I el < o0

Proposition 11.1.24. Let X be a Banach space, )\ = 27274 gnd f €
L°(R%; X). Then f € BMO(RY; X) if and only if M, /\f € L*(R%), and

MM Fll ey < IFllpaora;x) < 8lIME s flloo-

Proof. From Lemma 11.1.1 it is immediate that

osex(f;Q) < < 1nf][ IIf =,

A ceX
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from which the first claimed inequality follows by taking the supremum over
all cubes Q C R%.

In the other direction, given a cube @ C R? Lerner’s formula (Theorem
11.1.12) guarantees that

4
éﬂﬂﬂw@W<Km§:ﬂ%mﬁﬁ)

Ses
4
< @] > 2ABS) MG flloo < 8lIM flloos
Ses
and taking the supremum over all cubes @ proves the second bound. O

11.1.d The dyadic Hardy space and BMO

Often an efficient way of capturing the relevant local oscillations of a function
is in terms of the following notion:

Definition 11.1.25 (Atom). A function a : R? — X is called a (normalised)
HZ -atom if

(i) suppa C Q for some Q € P;
(ii) a € L%(R% X) (and |lalls < 1/|Q));
(iii) fa = 0.
It is immediate that a normalised atom satisfies ||a|l; < 1. If @ # 0 is an atom

supported on @ € Z, then -
Q]|

we can then construct a useful subspace of L!(R%; X):

is a normalised atom. Out of these atoms

Definition 11.1.26 (Atomic Hardy space). The atomic Hardy space
H%Q,at (Rd; X)

consists of all f € LY(R?; X) that admit a representation
f= Zak( = Z)\kak>a
k=1 k=1

absolutely convergent in L'(R?; X), where each oy is an Hij-atom supported
in some Qx € D (or each ay, is a normalised ng—atom and A\, € K) with

> llallelQul <50 (DAl < o0).
k=1 k=1

The norm in this space is defined as

1l o= inE > o lloe @el( = inf 37 IA])
k=1 k=1

where the infimum is taken over all such representations.
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It is immediate that the two versions of the definition are equivalent via the
correspondence A, = ||k |0 |Qk| and aj = A 'y

A disadvantage of this definition is the difficulty of checking the mem-
bership of a given function in H é)at (R%; X), as doing this via the definition
would require one to construct the atomic decomposition, which might not be
an easy task. The following notion is much more amenable to this:

Definition 11.1.27 (Maximal Hardy space). The maximal Hardy space
Hg nax (R X)

consists of all f € L*(R%; X) for which also the (cancellative) dyadic mazimal
function

Mg f(z) == sup 1g(2)[[(f)ellx
Qe
satisfies Mg f € LY(R?). The norm in this space is defined as
1fllay, = (1Mo fll L ga)-
Theorem 11.1.28. Let X be a Banach space. The spaces H}%at(Rd;X) and

H émax(Rd;X ) are equal with equivalent norms; in fact

17| 122

2,max

®x) < [Pllay, | @axy < 6027 (|l

2,max

(R%X) -

Proof. Suppose first that a € L>(R?; X) satisfies supp a C Q for some dyadic
cube and [a = 0. Then (a)r # 0 only if R C @, and hence supp Mga C Q
as well. It follows that

[Mgaly < 1Q[[Mzallee <[Qlllalloo-

If h =32, a; is a series of such function on cubes Q;, then by sublinearity

o0 o0
Mol . wasmy = IMhll < Y IIMgaill < Y 1Qillaillo,
i=1 i=1

and taking the infimum over all such representations of h shows that

1] 22

2,max

®x) < Pllay | @ax)-

In the other direction, suppose that h € H} _(R?; X). Given A > 0, let 2,
be the collection of maximal dyadic cubes @ such that ||(h)g|/x > A. Then

1 1
Z 1Ql = [{Mgh > A} < X”M@h”Ll(Rd) = XHhHH_}ZmaX(Rd;X)-
QEZ

Let QA,\ be the collection of maximal dyadic cubes that have a child in 2.
Thus these cubes do not belong to 2, themselves. Hence ||(h)g||lr < A for

Qe QAA, and also
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SRl< Y 1@l= 3 2901 = 244Mh > A},

QEQ\)\ Qe QEL
Let then
o= lguanht D lathae, b= Y lolh—(h)q).
QGQ\)\ QGQ\A

By definition of Mg, we have |[(h)g||lx < Mgh(z) whenever z € Q € 2.
As (@) — 0, this gives || f(z)||lx < Mgh(x) at a.e. x by the Lebesgue Differ-
entiation Theorem. Thus || gx(z)||<Mgh(x) almost everywhere. On the other

hand, we have ||(h)q|lx < A for Q € 2y, and Myh(z) < A for z € B(J 2);
thus in fact ||ga||x < min(\, Mgh) almost everywhere, where Mgh € L'(R?).
Moreover, gy = h on {Mgh < A} — R% as A — oo, and hence

o h, A— oo,
A 0, A—0,

pointwise, and by dominated convergence also in L!(R%; X). Thus

h = 2(92k+1 — gor) = Z(ka — bor+1)

keZ keZ
(X el - Y 1wt ()
kEZ Qegzk R€§2k+1
=Y Y (tguae, - W)+ Y 1aha (1)
keZ Q€§2k R€§2k+1
RCQ
:;Z Z ak.Q-
kEZQ€§2k

Here suppag C @, [ag =0 and [jagloo < 28! + 2% =3 - 2%, Hence

IRl <D0 D [@llarelle <D 3-28 > Q)

keL Qe d,, kEZ Qe

< 3-28 29 {Mgh > 27}
kezZ
2k
<Z3.2.2d/ {Mgh > t}|dt
ke 2kt
= 62| Mgh| 11 ga) = 6 - 27||h|

HY o (REX)

2 ,max

O

Corollary 11.1.29. The space ng,at(Rd§ X) = Héjvmax(]Rd;X) is complete.
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Proof. Tt in enough to prove this for H . (R%X). Since |f(z)|lx <
Mg f(z) at a.e. z € RY, we have | fllp1ga,x) <

(fn)5o, is a Cauchy sequence in H} 2.max (R4 X), it is also a Cauchy sequence

in LY(R% X) and thus ||f, — f|l1 — O for some f € L*(R% X). Since ( )q is
continuous from L!(R?; X) to X, we have for all € Q € Z we have, for each
h e Hj max(Rd;X),

16 = Bhallx = lim [[(fa — Ballx < liminf Mo (fy — h)(x);

(rd;x)- Hence, if

_J max

hence Mg (f—h)(z) < liminf,, o Mo(f,—h)(z), and thus by Fatou’s lemma
Mo (f —h)l|L1ray < linrgicgf Mo (frn —h)|lL1 (may-
With h = 0, this shows that f € Hé’max(]Rd; X). With h = f,,,, we find that
i Mo (f ~ fu)llpr ey < lim limind Mo (f — f)ll o1 ey = O,
and hence f,, — f in H}, . (R% X). O

Theorem 11.1.30. Let X be a Banach space. The duality

. _ N
(b, := Jim [ (b, ) Z/b ), by = mln{l,m}b

between b € BMOg(R%; X*) and h € H}?z,at(Rd; X) is well defined, and realises
BMOg(R?; X*) with the norm

[0l BMO (Ra:x) = Sup mf][ 16— c|lx

*

as an isometric subspace of (Héyat(Rd;X)) .

Proof. Since all norms BMO norms appearing in this proof are dyadic, we
drop the subscript Z for the benefit of slightly lighter notation.

Part 1: Estimating the dual norm by the BMO norm

If suppa; € Q; € Z and [ a; = 0, we have

| [0 =|/Qi<b—c7az->

for all ¢ € E*. Taking the infimum over ¢ € E* it follows that

‘/bal

<f o= clx-lQillal
Qi

1bllBMmoQilllailoo
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and hence > 2, [(b,a;) converges for b € BMO(R% E*) and Y ;2 a; €
Hy (R E).
One checks that ||bxy — en||x+ < 2||b— ¢||x~, whence

inf*][ by <2 inf*][ b= ¢l -,
ceEE Q celE Q

so that by € (BMONL™>)(R?; X*) and

‘/ bN, az
Thus

EOO /(b,az EOO A}E}l /bN;az = hm E /bN;a/z = hm /bN>
o0
i=1 i=1

where the first two identities use dominated convergence in L'(Q;) and in ¢,
respectively, and the last one follows from the convergence of the series h =
Yoo a; in LY(R% E), and the fact that by € L>®(R% E*) C (LY(R%; E))*.
This shows in particular that the pairing of (b, h) is independent of the par-
ticular series representation of h, and hence well defined. Taking the infimum
over all representations in the estimate

g <
ceE*

< |[onlBymolQillaille < 2[[bllBMolQilll @il oo

o0
h)| < Z ll6]lBMo Q4[| as || oo
=1
we find that
101l 222, (me;x))+ < [[llBMO (R X+ - (11.8)

Part 2: Estimating the BMO norm by the dual norm

For the converse estimate, consider a cube @) and suppose first that s €
L'(Q; X*) is a simple function, thus measurable with respect to a finite o-
algebra % of ). The advantage of this setting is that, for a finite o-algebra,
we have the duality (L?(.Z; X))* = L¥' (#; X*) for an arbitrary Banach space
X and for every p € [1, 00], including in particular p = co. Now inf.cp« ||s —
¢|[r1(;x~) is the norm of the equivalence class [s] € L'(#; X*)/X*, where
L7 X7) = (L% (F; X))".

We claim that the quotient space above is the dual of the subspace
LE(F;X) C L™(Z;X) of functions with mean zero. In fact, recall from
Proposition B.1.4 that for any subspace Y C Z, we have the identification
Y* = Z*/Y*, the quotient of Z* with the annihilator Y+ of Y in Z*. Now
Z = L>=(Z; X) for a finite o-algebra .#, in which case Z* = L'(F; X*). To
identify Y+ for Y = L3°(F; X), it is easy to check that the only functions
[ € LY(ZF;X*) for which [(f,g) =0 for all g € L(.#; X) are the constant
functions. Thus indeed L'(.7; X*)/X* = (L§(#; X))*, and hence
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inf s — el = lsllusex = sw | [
Jnf, (@:x*) (Fixny/xe = S
llglleo <1

Now, given b € BMO(R?; X*) and a cube @, we choose a simple s €
LY(Q; X*) such that [|b— s||1(g,x+) < &. Then

inf b~ clloiguer) < inf |15 — ell 1 @ux-
Jnf 16— elli@ix) < inf s C”Ll(Q,X)”

sup ’/ s g sup ‘/(b,g)‘ + 2¢.
g€L°°(Q X) g€L8°(Q;X)

llgllo<1 llgllo<1

But each g € L§°(Q; X) is an H) -atom, and hence

| [0.9)] < bl

Dividing by |@] and letting e — 0, we obtain

L eax) < [0l

inf. ]{g b= ellx- < I8l -

and hence the estimate converse to (11.8). O

11.2 Singular integrals and extrapolation of LP° bounds

In this section we study a fairly broad class of kernels satisfying a relatively
general integrability condition first introduced by Hoérmander. Nevertheless,
this condition turns out to be strong enough to yield a fundamental extrapo-
lation property of singular integral operators: once bounded on one LP° space,
they remain bounded on the full scale of L? spaces for p € (1,00), together
with appropriate end-point estimates for p = 1 and p = occ.

The precise classes of kernels relevant are described in the following defi-
nition. We recall that R?? = R2%\ {(t,t) : t € R%}.

Definition 11.2.1. Let X andY be Banach spaces, py € [1, 00|, and consider
K:R¥ 5 2(X,Y), TeZL(L"REX), LPo=(REY)).

(1) We say that T has kernel K, or that K is the kernel of T, if for ev-
ery f € LPO(R% X) and almost every s at a positive distance from
supp f the following holds: for every functional y* € Y™, the function
t— (K(s,t)f(t),y*) is integrable, and

(Tf(s),y") = /<K(s,t)f(t),y*> dt.
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(2) We say that K is a Hormander (resp. operator-Hérmander) kernel, or
satisfies the Hormander (resp. operator-Hormander) condition, if the fol-
lowing estimate holds for all x € X and t,t' € R* with a fized constant ¢
independent of these quantities:

/ I (s, t) = K (s, t)]]ly ds < cl|lz]x

[s—t|>2|t—t| (11 9)

(resn [ 1K (s,6) ~ K (5,1) | x.v) da < ).
|s—t|>2|t—t|

The smallest admissible c is denoted by ||K ||us: (resp. || K|/ ner.,)-

(3) We say that K is a dual Hormander (resp. dual operator-Hérmander)
kernel, or satisfies the dual Hérmander (resp. dual operator-Hormander)
condition, if the following estimate holds for every y* € Y* and s, s’ € R?
with a fized constant ¢’ independent of these quantities:

/ K (s.2)* — (0"l [ x- e < €1y -

[t—s|>2|s—s’| (1110)

(resn. | 1K (s.1) = K (s 0)| ey i <
|[t—s|>2|s—s'|

The smallest admissible ¢’ is denoted by || K||us (resp. || K [lusrz,)-

(4) If Q@ C R? is a cube or a quadrant, we make analogous definitions with
each occurrence of R? replaced by Q; in particular, with R24 by {(s,t) €
Q X Q : s #£t}, and the integrals extended over QQ only, while keeping the
other integrations conditions in force. In this situation, we say that K is
a (dual/operator) Hormander kernel on Q, respectively.

Remark 11.2.2. If K is a (dual/operator) Hormander kernel, then its restric-
tion to {(s,t) € @ X Q : s # t} is a (dual/operator) Hormander kernel on Q.

Ezample 11.2.3. A kernel K(z,y) that only depends on the difference z — y,
ie., K(z —y) = k(z — y) for some function k, is called a convolution kernel.
For such kernels, after simple changes of variables, the Hormander and dual
Hormander conditions take the forms

/|>2t k(s —t) — k(s)]z|ly ds < c|lz|| x,

/ I[k(s = )" = k(s)"Jy"llx~ ds < [ly"[ly,
s|>2[¢]

and similar reformulations of the operator Hormander conditions are obvious.

The role of these conditions in the extrapolation of LP-boundedness is sum-
marised in the next theorem. Before stating the result, we make a remark
concerning the extension of the action of operators from LPo(R% X) to
L>(R% X). An inherent obstacle here is that the intersection LPo(R?; X) N
L>®(R%; X) is not dense in L>=(R%; X). As a substitute we have:
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Lemma 11.2.4. Let X be a Banach space. The closure of LP(R?; X) N
L>®(R% X) in L2 (R%; X) is independent of p € (0,00), and it coincides with

= —————L¥R%4X
LE (RY X) := LE (R4 X) ( ), where

L RE X) = {f € L®(R%: X) « [{f # 0}] < oo}
Proof. 1t is clear that L (R% X) C LP(R?%; X) N L>°(R% X), and taking the
closures of both sides proves one side of the claim.

Conversely, let p € (0,00), a function f € LP(R% X) N L>(R% X), and
€ > 0 be given. Now

F. = {”f()HX >E} _p”fHLp R%; X) < 00,
and hence f. := 1p_f € L (R% X). On the other hand, it is clear that
Ilf = fellLoeme:xy = [lgp. fllLoe me;x) < €.

Since this can be done for any £ > 0, we find that f belongs to the L>(R%; X)-
closure of L (R%; X). Since f € LP(R%; X) N L°>°(R%; X), this whole intersec-
tion belongs to the said closure, and then so does the closure of this intersec-
tion. This completes the proof. O

Theorem 11.2.5 (Calderén—Zygmund). Let X and Y be Banach spaces
and po € [1,00]. Let

T € L(LP°(R% X), LPo°(R%Y))

(where Lo 1= L*°) with norm Ao := || T|| ¢ (Lro (rd;x),Lr0-> (RA;v)) -

(1) If T has a Hormander kernel K, then
(a) T extends uniquely to T € L (LP(R%; X), LP(R%;Y)) for all p € (1, po),
and

po—1 1/p
T (R4 X),LP(R1;Y)) S C (—) Ao + | K ||mse);
1Tl 2 (Lr (R, x), Lo (R YY) < Cd o —p)(p=1) (Ao + 1K || 15)

(b) T extends uniquely to T € L (LY(R%; X), LY>°(R%;Y)) and

1T 2Lt (e x), 0000 (R vY) < ca(Ao + [ K][msr)-
(2) If T has a dual Hormander kernel K, then
(a) T extends uniquely to T € ZL(LP(R%X),LP(R%4:Y)) for all p €
(pOaOO)7 and

Po 1/1’
) (Ao + 1K lnere):
Po

||T||$(LP(Rd;X),LP(Rd;Y)) Cdp(p
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(b) T extends uniquely to T € £ (L (R% X),BMO(R%Y)), where the
space L (R X) is as in Lemma 11.2.4, and

1Tl (e (ra;x), BMO®RE YY) < Ca(Ao + (| K [aee) [ | e ga: x)

for all f in this space.
(3) If T has a kernel K that satisfies both the Hérmander and the dual
Hormander conditions, then for all p € (1,00), T extends uniquely to
T € L(LP(R%: X), LP(R%;Y)), and

TNl 2 e (rasx),Loayy) < ca-pp' - (Ao + | K [luor + 1K ||mar-)-

(4) All claims remain valid when R? is replaced either by a cube or a quad-
rant throughout. In this case, it suffices to relax the Hormander conditions
accordingly, as in Definition 11.2.1(4).

The rest of this section is dedicated to a case-by-case proof of the different as-
sertions of Theorem 11.2.5. For the proof of (1), we introduce the fundamental
Calderéon—Zygmund decomposition in Proposition 11.2.6. The proof of (2), in
turn, depends on the notion of local oscillations developed in Section 11.1. The
result of (2b) does not directly allow the extension of T to all of L>°(R%; X)
since LPo(R%; X) N L>°(R%; X) is not dense in this space; see Theorem 11.2.9
for results in this direction. The proof of (3) is essentially a combination of
(1) and (2), but note that this case provides additional information about
p = po (bootstrapping the initial weak-type bound into a strong-type one)
and improves the quantitative estimates for p close to pg, where the bounds
provided by (1) and (2) blow up as p — po. Finally, the claims (4) will be dealt
with by indicating the relevant modifications in the proofs of (1) through (3).
As it turns out, these modifications are fairly minor, although in the case of
(1) they might not be entirely obvious.

11.2.a Calderén—Zygmund decomposition and case p € (1, po)

The key to extrapolating in this range is the following classical result:

Proposition 11.2.6 (Calder6n—Zygmund decomposition). Let X be a
Banach space. Given f € L*(R%;, X) and A > 0, there exists a decomposition
f=g+0b, where

lglle <2%%, gl < [IfIh,
and b=, b;, where

1
suppti € Qiv [ b=0. 31Qi < {17l Y sl < 20l

for some disjoint dyadic cubes Q;. If [ is simple, then all b; are also simple.
If f € LY(Qo; X) for some cube Qo C R? and \ > 2’de0 £, then the
cubes Q; can be chosen as dyadic subcubes of the initial Qqy, and the function
g to be supported on Q.
If f € LY(S; X) for some quadrant of R?, then we have Q; C S.
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Proof. Let Q; € 2 be the maximal dyadic cubes such that f, [|f[| > A. Then
they are pairwise disjoint, and

1@ = [{Maf > A} < {11/l

%

We define b; := 1¢g,(f — (f)q.) (which is clearly simple if f is), whence the
first two properties of b; are clear, and it remains to estimate

Sl < 3¢ <Xz [ <21l

i
by the disjointness of the cubes. To ensure that f = g+0b, we must then define

9:=1g, QS+ Z 1. () q:

where the terms are disjointly supported. If z € C({J, Q;), then all dyadic
cubes Q > z satisfy JCQ |f] < A, and thus

lg(@)[l = [1f ()] ZQIg; ]gllfl <
(@)—0

at almost every such z by the Lebesgue Differentiation Theorem 2.3.4 (or in
fact just the scalar-valued version, since we apply it to the function ||f(-)]]
rather than f itself). On the other hand, the maximality of @); implies that

its dyadic parent @1 satisfies the opposite inequality, f@v |f] < A. Thus

1
< L 1< |QA/ I£11x <

for x € Q;, and we see that ||g(x)|| < 29X in both cases. Moreover,

lglls = /E w01 @Il < /E RRLLED> /Q A= 171

i

lg(@)llx = {fe.

by the disjointness of the cubes.
If f € L'Y(Qp;X) and X > JCQO |l f]], then the maximal dyadic subcubes

Q; of Qo with va 7]l > A, are necessarily strict subcubes of Qg, and the

same proof produces a decomposition with the claimed additional properties.

If A e 279 1)f, |If]l, then we let the family {Q;}; consist of the initial cube
Qo

Qo only, so that g := (f)g,1g, and b = (f — (f)g,)1q,- Then ||gllcc =
1)l < 29X and 3, |Qi| = |Qol < A7Y|f|l1 by the two assumed bounds

on \. The last claim of the theorem is obvious. O

We can now give:
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Proof of Theorem 11.2.5(1). Our plan is to first prove the weak-type result
(1b), and then obtain the strong-type bound (1a) via the Marcinkiewicz In-
terpolation Theorem 2.2.3.
For f € LP(R% X) N LY (R X) and A > 0, we estimate A|{||Tf|| > A}/
Let f = g + b the Calderén—Zygmund decomposition of f at level a\
(instead of A), where « is to be determined. Then

lgllno < llgll&™ gl < @taX) /78|17,
so in particular g € LP°(R% X), and thus b = f — g € LP°(R% X). Since b =
>, b; and the b; are disjointly supported, it follows that each b; also belongs to
LPo(R%; X) and the identity b = Y, b; also holds in the sense of convergence
in LPo(R%; X). The assumption that T € Z(LP°(R%; X), LP>*(R%;Y)) then
implies that

Tf=T(g+b)=Tg+Tb, Thb=T» b=>» Tbh.

If Q; are the corresponding cubes, let B; be the concentric ball of twice
the diameter and O* := |J, B;. Then

IS > A< KITgl > A2} + {170l > A2} \ 0% +10°],  (1L11)

where the last term satisfies
Cd
071 < S IBi = 3 calid < L))
i i

For the middle term, we have

e > vepo [ Bl < IS [ <33 [

In order to estimate the i¢th term here, we denote by z; the common centre
of the cube @; and the ball B;. Now the integral representation of T;(s) is
available at s € 0B;. Explicitly, for each y* € Y*,

<R$Mﬁ=/W@Wﬁ“ﬁﬁ=/%$ﬁ—K@mM@MMm

where the last step follows from the fact that [ b;(¢) dt = 0. Thus

1Ti(s)|ly </ I (s, t) = K (s, 2:)]bi(t) ||y dt

i

and hence

A&HNM$Mds<A;A&HW@JM—KGJMMQMYMdt
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< / 1 e (8] x

i

since |s — z;| > 2diam(Q;) > 2|t — z]| for s € CB; and t € Q,. Substituting
back, it follows that

2 2 2 4
Z Thi|| < || K || o bill = 21K lusel|blly < < 1K el £l
A%z/c&.” < S 1K s %:/Q,;” | = S el < S e

It remains to estimate |[{||Tg|| > A/2}|. If po < 0o, we have
Abe
(A/2)Po

Do

2
lolzs < 5

{lITgll > A/2}| < AR - a7 f 1,

so that altogether

s > ap < (A2 g, + ) L,
where we are still free to choose a@ > 0. Taking
a=2"9"1/4, (11.12)
leads to
HITAI > M1 < (eado -+ A1 o) 21 (11.13)

If pg = oo, we observe that ||Tg]lec < Aollgllec < Ao2%a), so that the
same choice of « guarantees that [{||Tg|| > A/2}| = 0. Thus, in this case, we
only need to estimate the last two terms in (11.11), and these have exactly
the same bounds in the case py < co that was already handled.

We have hence confirmed (11.13) for all f € LP°(R% X) N LY(RY; X)
and A > 0, and this proves the existence of a unique bounded extension
T € L(LY(R% X), LY°(R%; X)) by the density of LPo(R%; X) N LY (RY; X) in
L'(R%; X). This completes the proof of (1b).

(1b) in case (4): Let then R? be replaced by a cube Q. Note that
1Tl 1o (Qosyy = sup A|Qo N{ITf| > A}].
A>0
If A < 240f, [, then
NQO(ITT> M <240f IS xIQl =240lsl (1114)
0

If A > 240f, |If] and o is as in (11.12), then

ax> 24 ||
Qo
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is in the admissible range to have Calderén—Zygmund decomposition at level
a fully localised within the cube Qo (Proposition 11.2.6). Thus, the earlier
argument for the full space R localises to Qg to produce the same conclusion
(11.13), but with the integral defining || K ||ps, restricted to Qg only. A com-
bination with (11.14) shows that this estimate holds for all A > 0, and hence
we have the desired weak-type bound on Q.

The case of a quadrant S is an immediate variant of the case of R?, since
Proposition 11.2.6 guarantees that the Calderén—Zygmund decomposition is
localised to this quadrant for all values of the level parameter.

(1a): A direct application of Marcinkiewicz Interpolation Theorem 2.2.3 (with
1 in place of pg, and pg in place of p;) shows that

ca(Ao + [| K |lmsr) \ 19 f Ao\ ¢
IITllz(Lp(Rd;X),LwRd;Y)<C(9,1,po)< ( 01_”9” )) (70) ;

where 6 € (0,1) is such that 1/p = (1—6)/1+ 6/po,

=L pp—p b
c(0,1, =49p)°
.10 = {0 T =T )

if py € (1,00), and ¢(6,1,00) = (p— 1)_%. By the arithmetic-geometric mean
inequality, we have

(%9)1_0(%)9 <1- eﬁ ¥ 0% —9, (11.15)

1
and by elementary calculus one verifies that p°~" < e for py € (1,00). Sub-
stituting these estimates, we obtain

1

Po—DP P
Tl (1o (. " <2e-cd~{—} Ao + || K ||use),
|| H (LP(R4;X),LP(REGY) X (pO 7p)(p7 1) ( || || Or)
which coincides with the claim after redefining c4. Since the Marcinkiewicz
Interpolation Theorem 2.2.3 is valid for general measure spaces, the same
argument applies equally well in the case of a cube or a quadrant as the
underlying domain. d

11.2.b Local oscillations of T'f and case p € (po, 00)

We next turn to the study of extrapolation of the boundedness to p > pg,
which will involve the dual Hérmander condition. A reader familiar with
the scalar-valued counterpart of the theory might expect a duality argu-
ment at this point. While this might not be strictly out of question here,
either, one should note that at least some number of technicalities would
have to be tackled by such an approach. To begin with, the adjoint of
T € Z(LP(R% X), LP(R%Y)) would be an operator
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T € Z(LP(R%Y)*, LP(R% X)),

where each LP(R%; Z)* is in general a larger space than L (R4; Z*), unless
additional assumptions are imposed on Z* (see Section 1.3). Rather than
dwelling into such issues, we prefer a direct approach within the original spaces
of X and Y valued functions that we are interested in.

We still need to settle a technical issue about the validity of the integral
representation of T'f(z) for certain non-compactly supported functions f:

Lemma 11.2.7. Let X and Y be Banach spaces and py € [1,00]. Let T €
ZL(LP (R X), LPo>° (R4 Y)) be an operator with dual Hérmander kernel K.
If BC R? is a ball and f € LP°(R% X) N L>(R?; X) is supported in CB, then
for almost all s,s" € %B, we have

(Tf(s)=Tf(s),y") = /GBGK(SJ) —K(s 0)f(),y")dt Wy ey

Proof. Consider an increasing sequence of balls By C By C ... such that
U2, B, =R and let f,, := 13, f. Since f, = 1ggf» is compactly supported

n=1
away from B, for almost every s € %B we have

(Tfuls) ) = /C K(s.0R007) ey

Thus, for almost every s,s’ € %B, the following holds for every y* € Y*:
(Tfa(s) = Tfals)),y") = /E a0, [K (5,8) = K(s',0)"]y") dt. (11.16)
B

Now consider the limit n — oo. Since f, — f in LPo(R% X) and T €
L(LPo (R X), LPo>*(R4;Y)), we have Tf, — Tf in LPo->*(R%Y). Hence
a subsequence, which we keep denoting simply by f,, also satisfies T'f,,(s) —
Tf(s) at almost every s € B. This means that

LHS(11.16) — (T'f(s) —=Tf(s'),y*).

It is also clear that f, (t) — f(t) pointwise. On the other hand, the integrand
in (11.16) is pointwise dominated by

(K (s, )" = Kz, ) W Iy + 1K (5", )" = K (28, 8) ]y [ly=)[[f ]l

which is integrable over t € CB (thus |t—z5| > 75 > 2max{|s—zg/|,|s'—25|})
by the dual Hérmander condition. Hence

RHS(11.16) — /CB<f(t), [K(s,t)* — K(s',t)"]y*) dt

by dominated convergence. The equality of the limits is what we claimed. [



11.2 Singular integrals and extrapolation of L bounds 31

Recall the John—Stromberg maximal function and the local oscillations

Mg%)\f(x) =suposca(f;Q), oscxa(f;Q):= inf inf |[(f —c)lo\Elloo-

Q3 ceX |E|<A|Q]
The following lemma contains the technical core of the upper extrapolation:

Lemma 11.2.8. Under the assumptions of Theorem 11.2.5(2), for all f €
LPo(R%: X) N L™(R% X) we have

1
IMFET oo < (e 2 Ao + 20| K |16+

If RY is replaced by a cube Qo C RY or a quadrant S C R, the conclusion
remains valid with the following modifications:

(a) in the mazimal operator M0 \» the supremum is restricted to cubes @ con-
tained in the initial cube Qo or the quadrant S;

(b) in the Hormander norm || K ||uer, the variables and the integrals are again
restricted to Qqy or S.

Proof. Let f € LP°(R%; X) N L>®(R%; X) and let Q C R? be a cube. Let B be
a ball with the same centre and three time the diameter. We decompose

Tf=TApf)+[T(epf) —T(Agpf)(2)] + ¢,

where ¢ = T'(1gpf)(2), and z € Q is fixed as one of the (almost all) points of
@ where the conclusion of Lemma 11.2.7 is valid for the function 1gz f. Thus

(T = )lgelle < 1T )1g\Elle + [[T(Aepf) = T(1epf)(2)]1qlleo-

For the first term, we observe that

ITAsS)lzro~ < Aoll1sfllpe < Aol BIYP | fllo,
and hence
AO f 0
Eal = 1T s ) > 41 < ea( 200=2)" g1 < N
if we choose A := (cq/A\)'/P° Ag||f|lso- We conclude that

IT(15f)1q\m4llse < (ca/ AP Aollf |l oc-

For the other term, we estimate pointwise at almost every s € () where
the conclusion of Lemma 11.2.7 is valid. Recalling that z € @ was also chosen
in this way and dualising against y* € Y*, we get

o )(s) = Tep ) = | [ (701K (5.0 = Ky a
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N

/ 1K (s, 8)" = K(2,8)"]y" || x- ]| flloo
2
Flloo-

< 2| Kmae ||y llx+

Taking the supremum over y* in the unit ball of Y* and the essential supre-
mum over s € (), we arrive at

1T (1gpf) = T(Agpf)(2)llee < 2/ K |-

Flloe-

Hence altogether
0seA(Tf;Q) < T f = Ly, lloo < (ca/ )7 Aol f lloo + 201 K lrse [/ lloo

and taking the supremum over all Q C R? proves the lemma.

The modifications in the case of a cube @y or a quadrant S in place of
R? are immediate by inspection. We note that the balls B featuring in the
argument may extend beyond )y or S; one simply thinks of BN @y or BNS
in this case, while the complement CB will be replaced by Qo \ B or S\ B,
respectively. O

Proof of Theorem 11.2.5(2a). Let us first consider the mapping properties of
the sub-linear operator Mf)\ oT, where A = 2724,

By assumption, 7" : LP°(R%; X) — LPo>°*(R? Y is bounded (with norm
Ap), and Proposition 11.1.21 gives the boundedness of Mf/\ : LPO’W(Rd; Y)—
LPO"X’(Rd) (with norm bounded by c;/ f ® < ¢q, since A depends only on d, and
1/po < 1); thus the composition MO#)\ oT : LPo(R%; X) — LPo->°(R?) is also
bounded (with norm at most c4Ayp).

On the other hand, the previous Lemma 11.2.8 says that M(f:\ oT :
LPo(RY; X)NL*®(RY; X) — L°°(RY) is bounded (with norm at most clli/fvo—l—
| K |lgse < caAo + || K||msr ), where the subspace LPo(R%; X) N L>(R?; X) C
L>(R% X) is equipped with the norm of L>(R%; X).

This is essentially a setting to apply the Marcinkiewicz Interpolation The-
orem 2.2.3: by inspection, one checks that the relaxed assumption

M, oT : L(R%; X) N L™ (R%; X) — L>(R)

(in place of Mé’f}\ oT : L™®(R% X) — L>(R%)) allows us to deduce the relaxed
conclusion

M, oT : L™ (R X) N LP(RY X) — LP(RY),  p€ (po,00), (11.17)

where LP°(R% X) N LP(R% X) C LP(R% X) is equipped with the norm of
LP(R%; X). In fact, the proof of the Marcinkiewicz Interpolation Theorem
2.2.3 is based on decomposing a function f in the domain space into the two
truncations, at varying level ¢,
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fr=(f- t|§”) STEY

_ f
o= 1 Lasise + - Lusi-ay

and it is immediate to verify that, if f € LPo(R? X), these remain in the
space LPo (Rd; X), in addition to the other function space memberships used
in the proof of Theorem 2.2.3.

If @ € (0,1) is such that 1/p = (1 — 0)/po + 0/00 = (1 — 0)/po, the
Marcinkiewicz Interpolation Theorem 2.2.3 shows that the norm of the oper-
ator in (11.17) is at most

||MO#,£)\ o T”LPO (R4; X )— LP0-° (R4) ) 1-6
X
1-6
% (Mtfx OT||(LPOHL°C)(Rd;X)_>Loo(]Rd))9
0
A 1-6 A K - 0
< C(pro,OO)Gd Z) (cd 0+g i )

< C(G,po, OO) -2 (CdAO + ||K||Hijr*)

(0, po,00)

by the arithmetic—geometric mean inequality (11.15) in the last step. More-
over, still from Theorem 2.2.3 and the identity I'(z + 1) = 2I'(x),

I'(p —po)I'(po + 1)
I'(p)

(0, po, o) :{ }Up = {poB(p — po,po) }'/?,

where the beta function is

T'(p—p) I r -
B(p—po,po):(plf)((z)(m:/o wP~Po= (1 — )P0t dy
! 1
</ Up_po_ldu: ,
0 P —Po

since py > 1 here. Substituting back (and redefining c¢4), we find that the
norm of the operator in (11.17) is at most

1/p
(=22 ) (eadto + 201K ).
pP—="Po

Now Theorem 11.1.18, together with Remark 11.1.19 and the a priori
condition that T'f € LPo->°(R?; X), show that

1T £l L ra;y)y < Sp”M(iE)\(Tf)HLP(Rd)

<p(2
P —Do

1/p
) (cado + 1611 K s Lo o x)
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for all f € LP(R% X) N LP°(R% X) and p € (po,00). Since this is a dense
subspace of LP(R?; X), the operator T has a unique extension to this space,
with the same norm estimate above.

The case of a cube or a quadrant in place of R? follows by the same
argument, since all results quoted are also valid in these settings. O

It is also immediate from Lemma 11.2.8 and Proposition 11.1.24 that

IT f lBnoasx) < BIMFA(Tf)ll o may < (cado + 8] K rse-)

| Fll o rasy)

for all f € LP°(RY; X) N L>(R% X). Since this is not a dense subspace of
L>(R% X), extending this estimate, and indeed the very meaning of “T'f”,
toall f € L>=(R%; X) requires an additional effort, to which we turn in Section
11.2.c below.

Proof of Theorem 11.2.5(3). We now assume that K satisfies both Hérmander
and dual-Hérmander conditions, and hence we have access to both cases (1)
and (2) that we already proved. By Theorem 11.2.5(1b), we have

1Tl 22 et ), 2 sy < cal Ao + | K ).

We now use this estimate (rather than the original assumption) as input
to Theorem 11.2.5(2a), i.e., we apply the latter with 1 in place of py and
ci(Ap + || K|lusr) in place of Ag. This gives, for all p € (1,00), the estimate

1

1/p
Tl w e ey < cap(=7) " (calAo+ 1K lse) + 1K - )

< capp’ (Ao + | K |msr + | K [l ),

where we estimated

(L)l/p < (L)l/p _ (p’)l/p ép'.
p—1 p—1
The conclusion agrees with the claim, after redefining cg.

The case of a cube or a quadrant in place of R? is immediate, since both
(1) and (2) of the theorem, which we used above, were already proved in these
cases as well. g

11.2.c The action of singular integrals on L

The goal of this section is to establish the following theorem, in which indistin-
guishability of BMO(R?; X) functions only differing by an additive constant
manifests itself.

Theorem 11.2.9. Let X and Y be Banach spaces, py € (1,00), and T €
L(LPo(R%; X), LPo (R, Y)) be an operator with a dual Hérmander kernel K.
Suppose, moreover, at least one of the following:
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(1) Y does not contain a copy of co, or
(2) K is a dual operator-Hormander kernel.

Then there is an operator T € £(L>®(R%; X), BMOP(R%Y)/Y) of norm at
most (cqlo + || K|laer=) such that

(a) for all f € Lo (R% X) N L>®(RY; X), we have Tf = Tf modulo constants,
(b) for all f € L*(R%: X) and g € L (R%Y™) (compactly supported with
vanishing integral), we have

(Tf,9) = lim (T(1p, f),9) (11.18)

for any bounded measurable sets E, C R? such that dist(CE,,,0) — occ.

Remark 11.2.10.

(1) By the John-Nirenberg inequality, the target space BMO?(R%;Y)/Y of T
is independent of the value of p € [1,00); however, the estimate for the
operator norm need not be, and we specifically state it with p = pyg.

(2) The left-hand side of (11.18) could be more pedantically written as “(h, g),
where h € [T f] is arbitrary”: the vanishing integral of g guarantees that
this expression is independent of the choice of h.

(3) The boundedness requirement on 7" in Theorem 11.2.9 may seem stronger

than in Theorem 11.2.5(2) (where it was only assumed that T' maps bound-
edly into the larger space LPo->°(R?; Y") and for some py in the larger range
[1,00]), but this is only superficial, as we can always arrange ourselves to
be in the situation of Theorem 11.2.9 even under the apparently weaker
boundedness hypothesis:
First, if pg = oo, there is nothing to prove, as we can simply take
T = T, which already maps into L*(R%Y) C BMO(R%Y). If, on
the other hand, py € [1,00), Theorem 11.2.5(2a) guarantees that T €
ZL(LP(RY X), LP(R%Y)) for all p € (pg,o0) C (1,00), and choosing one
such p as a new pg, we are in the situation assumed in Theorem 11.2.9.

To deal with the equivalence classes modulo additive constants, it is convenient
to make the following preliminary observation:

Lemma 11.2.11. Let S be a set and X be a Banach spaces. There is a bijec-
tive linear correspondence between the following two classes of objects:

(1) equivalence classes [b] of functions b: S — X, where
Bl ={f:5 = X;s+— f(s) —b(s) is constant on S},
(2) functions A: S x S — X with the property

A(s,t) + A(t,u) = A(s,u) Vs, t,u€sS. (11.19)
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This correspondence is realised by
[s — b(s)] “ (s,t) = A(s,t) = b(s) — b(t).

Proof. To every [b], we associate A(s,t) := b(s) —b(t), and it is clear that this
is independent of the chosen representative of the equivalence class.

For the other direction, it is convenient to first record some additional
algebraic relations automatically satisfied by A. Taking s = t = u, we have
2A(s,s) = A(s,s), and hence A(s,s) = 0 for all s € S. Then taking u = s,
we have A(s,t) + A(t,s) = A(s,s) = 0, and hence A(s,t) = —A(t, s) for all
s,t € S. Now, to every A, we associate [A(-, )], where each ¢ € S defines the
same equivalence class. Indeed,

A(s,t) — A(s,u) = A(u, s) + A(s, t) = A(u, t),

which is constant as a function of s € S. It is immediate to verify that these
operations sending [b] to A, and A to [b], are inverses of each other. O

For S C R? (where we are mainly interested in the case that S = R? or one
of its dyadic quadrants), we define

B/1\7I_6P(S;X) = {A € L (S x S; X) with property (11.19),

1/p
A0 = sup (f A dsar) " < oo}
QCS QxQ

cube
and §_1\7[6p@(5; X) by replacing “Q C S cube” by “Q € 2(5)”.

Lemma 11.2.12. Under the correspondence [b] < A of functions as in
Lemma 11.2.11, we have the correspondence of spaces:

BMOP(R%; X)/X ~ BMOP(R?; X),
with the equivalence of norms
1bllBvor reix) < [[Allvp < 2[[0llByMOr (RY:X)- (11.20)

The similar correspondence is valid with any of the dyadic quadrants S in
place of RY and the dyadic BMOY, (both with and without tilde) in place of
BMOP.

Proof. For each cube Q C R?, we have

(- = (f o~ s 0
<(f £ o) =0 asar) ™

_ (b(s) — &) — () — )" asat)"” < 2(f lbes) — el ds) "
QJ/Q X Q
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and taking the infimum over ¢ € X on the right, and then the supremum
over all cubes @ C R? of the whole chain, we derive (11.20). The dyadic case
follows by taking the supremum over @ € Z(S) instead. O

In view of Lemma 11.2.12, the construction of an extension
T € Z(L=(R% X), BMO(R% Y))

of T € L (LP° (R4 X), LPo(R%Y)) is reduced to the construction of Ap €
Z(L>=(R% X), BMO(R?; X)) such that

Arf(s,u) =Tf(s)—Tf(u) VY feLP®R:X)NLRYX).
It is convenient to define this as a priori mapping into Y **-valued functions:
Lemma 11.2.13. For f € L®(R%; X), y* € Y* and s,u € R?, the expression
(", Arf(s,u)) == (T(Apf)(s) = T(1pf)(w),y")

+ / <[K(3,t) — K(u, t)]f(t),y*> dt, (1121)
CB

is independent of the auxiliary ball B with s,u € %B,

Proof. With f,y*, s, u fixed, let us temporarily denote the expression of inter-
est by 6(B). If B and B’ are two such balls, we can choose a third such ball B”
that contains both of them. So it is enough to prove the equality §(B) = §(B’)
for balls B C B, hence B’ C CB. Note that (CB) \ ((B’) = B\ B. Then

5(B') = 6(B) = (T(Lpnpf)(s) = T(1pnpf)(u),y")
+ (/CB/ - /CB)QK(SJ) — K(u, 1)) f(t),y*) dt,

where the difference of the integrals is
[ B0~ K (5,010, dt = (L)) = Ty )(3).57)

which exactly cancels out the first term in the formula of 6(B’) — 6(B). O

Let us then check how Ar compares with the original 7" on the intersection
of their domains of definition:

Lemma 11.2.14. If f € LP°(R% X) N L*>®°(R%; X), then

Arf(s,u) =Tf(s) = Tf(u).
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Proof. Under the stated assumptions, Lemma 11.2.7 guarantees that
/[:B<[K(Svt) - K(“at)]f(t)7y*> dt = <T(1BBf)(8) - T(]'BBf)(u)vy*>
for almost all s,u € %B and all y* € Y*, and hence
(W Arf(s,u)) =(T(1pf)(s) - T(Ap[f)(u),y")
+ (T(Agpf)(s) = T(gpf)(w),y*) = (Tf(s) = Tf(u),y")
Since this is true for all y* € Y*, the claimed identity follows. O

To justify that the a priori Y**-valued function Arf actually takes values
in Y, we invoke the following corollary of the Bessaga—Pelczyniski Theorem
1.2.40. This is where the condition ¢y € Y comes to use:

Proposition 11.2.15. Let Y be a Banach space that does not contain an
isomorphic copy of co. If y; € Y satisfy

Z\ (3 y")| <00 Wy ev, (11.22)
j=1

then the series S oo,y converges in norm in Y.
j=17

Proof. Let us first note that the condition (11.22) says that y* — ((y;,¥%))52,
defines a linear operator from Y* into ¢!, which is easily seen to be closed,

and therefore bounded. Thus the closed graph theorem improves (11.22) to

> i)l <
j=1

If ZJO; y; does not converge, then the partial sums Z?=1 y; fail the Cauchy
criterion, and hence we can find m; < ny < mo < ... and § > 0 such that

Yy* e Y™

ng
[vklly =6 >0, Vg 1= Z Yj- (11.23)

Jj=my
On the other hand, for any €, = +1 and any y* € Y*, we also have

K
‘<Zewﬁ >‘ Zlvk,y Zlyj,y
j=1

k=1

hence
K
HZekka <C. (11.24)
k=1 Y

But the two conditions (11.23) and (11.24) are precisely those of the Bessaga—
Pelczyniski Theorem 1.2.40 that guarantee the containment of an isomorphic
copy of ¢g in span(vg )32, C Y. This contradicts the assumption on Y. O
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After this interlude, we return to the main topic of this section:

Lemma 11.2.16. Under the assumptions of Theorem 11.2.9, for every f €
L>®(R%; X)), the function Arf in (11.21) is well defined, takes values in' Y C
Y**  is strongly measurable, and satisfies

|Flloo|QI?/7°

A7 fllLro(@x@iv) < (cado + || K ||ms)
for every cube Q@ C R¢.

Proof. Let B be the ball concentric with ) and with twice the diameter of @;
hence @ C $B. From the assumption that T € £ (L (R% X), LP*(R%Y))
and f € L™(R% X), it is immediate that T(15f) € LP°(R%;Y) and

IT(15)lpe < AollLsfllpo < AolBIMP | fllso,
so that

(s, u) = T(Apf)(s) = T(Af)(u)lLro(@xqiv)
<20Q1P T (X5 Lo @y < cadol Q17| flloo,

The more delicate matter is the integral in (11.21). Certainly this inte-
gral exists, since the dual Hormander condition guarantees that [K(s,t)* —
K (u,t)*]y* is jointly measurable and belongs to L'(CB, dt; Y*) uniformly in
(s,u) € Q, while f € L>®(R%Y) by assumption. An immediate estimate
with the dual Hérmander condition shows that this integral is bounded by
1K |mse= || f oo |y * Iy, uniformly in « € @, and hence defines a Y**-valued
function h(s,u) with the pointwise bound

[[P(s, w)lly =+ < [ [|sr

fllso- (11.25)

What remains is to justify the Y-valuedness and the strong measurability
of this weakly defined function. To this end, we write f, = lanp\on-1pf,
so that 1lpgf = Zn>1 fn, say pointwise. Since each f, € LP°(R% X) N
L>®(R%; X), we can apply Lemma 11.2.7 to see that

0t = K0 0. a
- <Tfn(s) - Tfn(u)7y*> = <hn(5au)7y*>

is the pairing of y* with a Y-valued, strongly measurable function h,, (s, u).
If we denote by h the a priori Y**-valued function defined by

(Y, his,u)) := ]€B<[K(8,t) — K(u, )] f(t),y") dt,

then
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o0
(y*, h(s,u)) = Z(hn(s,u),y*> Yy* e Y™, (11.26)
n=1
If K satisfies the dual operator-Hormander condition, then
D k(s u) < /EB 1K (s,t) = K (u, )| 1/ lloo dt < 2[| K |11, [ f [0
n=1

so the series Y7 | hy(s,u) converges absolutely, and hence in norm. Un-
der the mere dual Hormander condition, but with the assumption that Y
does not contain an isomorphic copy of ¢g, the needed norm convergence of
> | hu(s,u) follows by Proposition 11.2.15 and the bound

n=1
D {hnls,u),y7)] < /GB [(F(y), [K(s,8)" — K(u,t)"]y")| dt
n=1
<2 K[gee [y ly =1 flloo <00 Vy* €Y.

In both cases, by (11.26), the limit of > | h,(s,u) must be h(s,u). Thus, as
a pointwise limit of Y-valued strongly measurable functions, h itself must be
both Y-valued and strongly measurable. Once these qualitative properties are
verified, the quantitative L°(Q x Q;Y") estimate is immediate by integrating
over ) X @ the already observed pointwise bound (11.25). O

Now we are prepared to complete:

Proof of Theorem 11.2.9. The operator A : L®(R% X) — L (R4 Y) is
well defined by Lemma 11.2.16 and satisfies

| Flloo

for the norm defined in Lemma 11.2.12. By Lemma 11.2.12, we obtain a
bounded linear operator T € £ (L*(R% X), BMOP(R%;Y)/Y), with the
same norm bound, by setting

||ATf||*,po < (chO + HKHHor*)

Tf :=[Arf(-,u)] (the equivalence class modulo constants), (11.27)

where the choice of u € R? is irrelevant. By Lemma 11.2.14, we have
Arf(s,u) = Tf(s) — Tf(u) for f € LPo(R% X) N L>®°(R% X), and hence
Tf= [T f] in this case. This completes the proof of Claim (a) of the theorem.

As for Claim (b), we note that pairing a g € Lg% (R%; Y™*) with an element
of BMO™ (R%;Y)/Y is well defined, and independent of the representative of
the equivalence class, since the integral of g against any constant ¢ € Y will
vanish. By the assumptions on FE,, we can choose balls B, := B(0,r,) :=
B(0,dist(CE,,0)) C E, with 7, — co. Let n be so large that supp g C %Bn.
Since T is linear, we have

(Tf.9)=(T(Lp,f),9) + (T(Lep, [):9) = Lo+ IL..
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By Claim (a), which we already proved, we have
In=(T(1g,f),9).

For I1,,, recalling the construction of T from (11.27) with v = 0, and then the
definition of Apf(s,u) from (11.21) with B = B,,, we have

11, = (Ar(1gs, £)(-0).9)
= [ (Ar(tos, £)(s.0).9() ds

= [ (510, 1)) = T(1s, 101, H)(0).9(s)) ds

" / /CB” (K (s,8) = K (0,6)](1gp, (1), g(s)) dt ds
=1L, + 1V, =0+1V,,

since B,, C F,,. Finally,
IVl < oy [ [ 1K Gs.0) = KO.00 (- deds.
) B,

For every fixed s € suppg C %Bn, the inner integral is bounded by
1K |mse= |lg(s) ||y =, and, as n — oo, it converges to 0 by dominated conver-
gence; the same is also true for s ¢ suppg, since both the integral and the
upper bound vanish in this case. Thus also the double integral converges to 0
by another application of dominated convergence.

Altogether, we have seen that

(Tf,g)— (T(lg, f),g) =1L, =1V, -0 as n— oo,

which concludes the proof of the remaining Claim (b) of Theorem 11.2.9. O

11.3 Calderén—Zygmund operators and sparse bounds

The goal of this section is to derive a powerful pointwise domination of
Calderon—Zygmund operators by simple averaging operators over sparse fam-
ilies of dyadic cubes; from this domination, norm estimates for Calderén—
Zygmund operators in various different spaces follow almost instantly.

The assumptions that we have to make on the kernel of the operator in
order to carry out this programme are somewhat stronger than those needed
for the LP extrapolation of the previous section:

Definition 11.3.1 (Calder6n—Zygmund kernel). Let Z be a Banach
space, and K : R*? — Z. We define the quantities
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exc = sup{|s — t|* - [|K (s, )] = (s,) € R*},

and, for u € [0, %],

S

whe(u) = sup {Js = 1 K (s,6) = K (', )]| : |s = '] < uls — 1]},
() i=sup {|s = || K (5,8) = K (s, )] + £ = ¢ < uls — 1],

wr (1) := max wi (u).

For K € Cl(RQd; 7)), let further

ke = supfls — LV, K (5, 1)+ 5 # 1},
2 = sup{|s — t|"TY|V, K (s,)|| : s # t}.

We say that a kernel K with cx < 0o is

(i) a standard kernel if wg (u) < csu’ for some 6 € (0,1],
(ii) a Dini kernel if wi satisfies the Dini condition

1/2 du
loorclpims = / wre () 2 < oo,
0 u

(iii) a C1'-Calderén—Zygmund kernel if K € Cl(RQd; Z) and ¢ < 00,i = 1,2,
(iv) an w-Calderén—Zygmund kernel if wx < w,
(v) an (w1, ws)-Calderén-Zygmund kernel if wh < w;, i =1,2.

We also apply these notions to kernels K defined on {(s,t) : s,t € S,s # t},
where S is either a cube or a quadrant of RY; in this case, each supremum
above is taken only over the respective domain of definition.

It is immediate that a standard kernel is a Dini kernel with ||w||pin; < 6 *cs.
Remark 11.3.2. For a convolution kernel K (x,y) = k(x — y), we have
ci = sup{|s|?||k(s)]| : s # 0},
ci = sup{|s| | VE(s)|| : s £ 0}, i=1,2,
wi (u) = Wig(u) = sup{[s|’|k(s) — k(s =) - [t] <wls]},  i=1,2,

with no difference between ¢ = 1 and 7 = 2 in the last two formulas.

Lemma 11.3.3.

1

i 1 d — i ok ;
WK(&) < (1 +2%ck, ];WK(Z ) < @HWK”DHH'
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Proof. If [t —t'| < 3|s—t|, then [s —¢| < [s — /| + [t — /| < |s — | + [s — ¢,
and hence |s — t| < 2|s — t/|. Thus

|5 =t/ K (s, 8) = K(s,t)]| < ex +2%s = ¢/| K (s,)]| < (1+2%)ex,
and hence w¥ (1) < (1 + 2%)ck. The proof for wi is entirely similar.
If w is increasing, which is obviously the case with w = wj, it follows that

w2 Cwlu), we (@7F27h),

hence
27 du
w(2™" NHlog2 < / w(u)—,

2—k—1 u
and thus

oo [ee] 1/2 u
dwe ) =) w@ ) < 10;2/0 w(u)%.

k=2 k=1

Lemma 11.3.4. For K : R*? — Z = Z(X,Y), we have:

(1) If ||wk ||lpini < 00, then K is a dual operator-Hérmander kernel, and

K [[srs. < 0a—1|wk || Dini-

op
(2) If [|w% ||pini < 00, then K is an operator-Hormander kernel, and
1K [ t5r,, < 0a—1llwik||Dini.

(3) Fvery standard kernel is a Dini kernel with

CK Cs
[wllpini < 2d+17 (1 +log W)

(4) Every C'-Calderén—Zygmund kernel is a standard kernel with
whe(u) <291t u

and a Dini kernel with
) o
||w}{”Dini < 2d+1CK (1 + 10g+ i) .

Here 04_1 is the (d — 1)-dimensional measure of the unit sphere in R, The
same conclusions hold with R24 replaced by S? = {(s,t) : s,t € S,s # t},
where S is either a cube or a quadrant of RY, and both the Dini and the
Hérmander conditions are modified by restricting the variables to the respective
domain of definition.
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Note that, in concrete situations, the constants cs or ¢l are often much larger
than cx. The point of the bounds in parts (3) and (4) is that these larger
constants contribute to the Dini bounds only logarithmically.

Proof. We will first prove (2); the proof of (1) is analogous.

/ 1K (2,) — K (2,9 da
|lz—y|>2|y—vy'|

!
— 1
S/ w%('y Y |) S dz
lz—y|>2|y—y’| ‘(E - y‘ ‘(E - y|

oo / z
y—vy' |\ dr 2 dt
= Udfl/ w%(' ‘)7 = Ud*l/ Wi (t)d— = oaa|wi i
2 0

ly—y’] r

and this is the required bound.
For the remaining claims, we begin with the following observation. For
|z —2'| < ulz —y| and v € [0, 1], we have

1
o +v(@ —a) =yl 2z -yl - |o' — 2] > (1 - w)le —y| > Sl - yl.

This implies the crude bound

d+1
CK CK d CK 2 CK
K y)— K < <@2%+1
G )~ Kol < 25 = < @t

2 —yld ~ |o—y|d

This shows that w (u) < 2% ck for all u € [0, 3] and i = 1, and the proof
for i = 2 is similar.

(3): By the previous observation, denoting cy := 29*'ck, the standard
estimate w(u) < csu® bootstraps to w(u) < min{co, csu’}. If co < c¢s, then

(co/cs)'/® s du 1 du
l|lw || Dini </ csu’ — +/ co—
0 (

co/cs)t/® u
1/8
:C—éc—o—l—colog(c—é) :c—o(l+logc—6).
cs Co ) co

. . 1
If ¢g > cs, we simply estimate ||w||pini < fo csu®~tdu = ¢5/8 < ¢ /5. Hence,
in each case, we have

C Cs
lllpm < 9 (14108, ).

We will prove (4) in the case i = 1, the case of i = 2 is analogous. Hence
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1K) - Kl = ||/ K+ ot~ )0

— H /Ol(x' —2) Vo K(z + vz —z),y)dv

C
< I K d
<=l =) !

2d+lcl
< ulx — dv = u—K
| y|/ yI (3] -yt |z —y|d

This is the claimed standard estimate, and the Dini estimate follows from part
(3) with 6 = 1 and ¢ = 2¢+1ct,.

The version with a cube or a quadrant follows with the same argument by
simply restricting all the variables and the integrals to the relevant domain of
definition. O

In particular, Dini kernels satisfy both Hérmander and dual Hérmander con-
ditions, and hence all the results of the previous section apply to them:

Corollary 11.3.5 (Calderén—Zygmund). Let X and Y be Banach spaces
and po € [1,00]. Let T € L (LP°(R%; X), LPo->°(R%;Y)) be an operator with
a Calderon—Zygmund kernel K. Then all conclusions of Theorem 11.2.5 hold
with || K ||lus: replaced by |w% ||pini and || K ||ase by |wik |pini @0 the estimates.

Proof. This follows at once from Theorem 11.2.5, where the same conclusions
are deduced for Hérmander and/or dual Hérmander kernels K, and Lemma
11.3.4, where these assumptions are verified for under the Dini conditions. [

11.3.a An abstract domination theorem

We will first present an abstract form of the domination theorem, i.e., we
postulate the relevant properties of the operator needed to carry out the
proof, and only then return to the question of checking these properties in the
concrete case of Calderén-Zygmund operators.

We will formulate the theorem for positive sub-linear operators mapping
a linear space of X-valued functions into L°(R% R, ). By this we mean that
for all functions f and g we have that Tf > 0 is a non-negative function,
T(af) = |a|Tf for constants «, and T'(f +¢g) < Tf + Tg for all f, g in the
domain of T'. Note that if 7" is a linear operator mapping into L°(R%;Y"), then
the operator f — ||Tf(:)||y is a positive sub-linear one, and this is the way
that such operators will be naturally covered by the theory.

Theorem 11.3.6 (Abstract sparse domination). Let X be a Banach
space, let T be a positive sub-linear operator from L*(RY; X) into L°(R% R, ),
and consider the associated maximal operator

ME f(z) = sup sup [T(loea) /)W) - Teea L (1128
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Suppose that both T and M# are bounded from L'(R%; X) to LY'>°(R?). Then
for every boundedly supported f € L*(RY) and ¢ € (0,1), there is a (1 — ¢)-
sparse family .7 of dyadic cubes such that, almost everywhere,

< 310 CTzls][ 111,
Ses

where
or = [T 1o1,00 + MF [151,00- (11.29)

The heart of Theorem 11.3.6 is contained in the following lemma:

Lemma 11.3.7. Under the assumptions of Theorem 11.3.6, for any f €
LE (R% X)), any cube Qo and £ € (0,1), there are disjoint subcubes Q; €

loc

2(Qo) such that
Z Q1 < €lQol (11.30)

and, almost everywhere,
4-10%p
10T (0, f) < T (o IAEY 10 f W)+ 10,750, )
5Qo ; 5Q; ;

where cp was defined in (11.29).

Proof. Given a cube @, consider any disjoint family of its subcubes @Q; €
2(Qop)- Then we have

10,T(15q,f) = 1oo\u, @, T )+ 2162]
(11.31)
<1y, @, T(Ls0ef) + Y 10, T( 15Qo\5Q_,»f + 10,T(1sq, /).
J J
and
10, T(150,\50, f) < 1o, linf M (15, f) + inf (150050, f)]
Qj Qj (11.32)

< 1o, linf M (Lsquf) + WH{T (150, f) + T (Lo, /)]

where we used sublinearity and the definition of M# to get the estimates.
Note that no convergence issues arise when viewing the above lines in the
pointwise sense.

The last term in (11.31) already has the correct form, and it remains to
choose the cubes @); in such a way that we have (11.30) as well as

Cdqcrt
Lonu, @, T(1sof) + D 10, T(1sg,\s0,f) < 1qo 5 ]éQ (halE
] 0



11.3 Calder6n—Zygmund operators and sparse bounds 47

For a A > 0 to be chosen and every Q € 2(Qo), we define F(Q) C @ by

F(Q) = QN {T(Lsof) > MIf)se} U{MF (1sf) > A{If )50 }]-
Thus, by the assumed L!'(R%; X) to L*°(R) bounds,

IF@Q) < HT(Lsqf) > M fIDsqb + HME (Lsq.f) > M fll)se}

1150 f]I1 5d (11.33)
< (ITN1-1,00 + ”MTHHI’OO))\(II?TW =er- Q.

Let then Q; € 2(Qo) be the maximal dyadic subcubes such that

|Q; N F(Qo)] g—d—1
Q] ~ .

The cubes @; are disjoint, so that

F( 2. 10
Z‘QJ Z |Qj2ﬂd IQO <2 F(Qo)| < 3 er - |Qo| = €[Qol,

which is (11.30), if we choose

2104
I3

A=

cr.

Substituting back to (11.33), this choice gives in particular that
@] <271Q.

Since 1p@,) < Mo (1pg,)) almost everywhere, we see that F(Qo) is
contained in Uj Q; ={Mz(1rq,)) > 27411 except perhaps for a subset of
measure zero. In particular, we have (a.e.)

1Q0\U_7» QjT(15QOf) < 1Q0\U_j Qj)\<||fH>5QO' (11'34)

On the other hand, the maximality of ¢); implies that its dyadic parent @j
satisfies the opposite inequality, and hence

|Q; N F(Qo)| |Qg NF(Q) 277" 1
|Q]| < - d|Q]| < o—d 5"

But also |[F(Q;)| < 27%71Q;| < $|Q;l, and hence

0\ [F(Q0) UF@)]l > (1~ 3 — DIyl > 0

With any z; in the non-empty set Q; \ [F(Qo)UF(Q;)], we can now complete
the estimation of (11.32) as follows:
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19, T(1s00\50, f) < 1o, [ME (150, /) (2)) + T(Lsqy f)(2;) + T(Lsq, £)(2:)]
< 10, M50 + M1 IDsq0 + A FI1s0,],

where we used the bounds for Mf(lg)Qof) and T(150,f) on CF(Qo) that
follow directly from the definition of these sets, and the analogous bound for
T(150, f) on CF(Q;). Hence

D 10, T(Lsgos0, /) <1y, @, 2MIfDse0 + D 1o, M f )50,
j

J
and together with (11.31), (11.34) and the choice of A, this completes the
proof of the lemma. O

Iterating the previous lemma, we obtain:

Lemma 11.3.8. Under the assumptions of Theorem 11.3.6, for any cube Qg
and f € LL (R4 X) and ¢ € (0,1), there is a (1 — ¢)-sparse subcollection
7 (Qo) C 2(Qo) such that, almost everywhere,

10, T(1s0,f) < — 0T Wer 13][ 171

S€7(Qo)

Proof. By Lemma 11.3.7, almost everywhere we have
CqcCr
10,7500 < “ (10,f 171+ Y10, f 111)+ Y 1070501 )
5Qo j 5Q; j
for disjoint subcubes Q} € Z(Qo) such that

Z|Q | <elQol,

and cq = 4 - 10¢ Applying the same estimate to each le- in place of @)y, and
continuing by induction, almost everywhere we obtain

N-1
CqCr
10,T(Ls0,f) < (1@,][ 191 +2 3 Ytarf Il
n=1 j 5Q7
+21ng@ 171) + Y 10y (1 ).
k 5Qy k

where the Q7 are dyadic subcubes of some Q?fl in such that

o<

FQrCQy!

(11.35)

In particular,
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DRyl <ed QI < ... <@l
j i

so that the support of the last term in (11.35) becomes negligible in the limit
N — o0. Thus, almost everywhere, we have

€ n=0 j 5

(oo}
CqCr
10,7 (0,f) <20 Y S 10 11 (11.36)
J

where the pairwise disjoint subsets
. +1
B} =i\ J@k
k

have measure |E7| > (1—¢)|Q7|. In other words, the cubes Q7 form a (1 —¢)-
sparse subcollection .#(Qo) C 2(Qo), and (11.36) is precisely the estimate
asserted in the lemma. O

In order to pass from the local Lemma 11.3.8 to the global Theorem 11.3.6,
we use:

Lemma 11.3.9. Let E C R? satisfy 0 < diam(E) < oo. Then there is a
partition 2 of R by dyadic cubes Q such that E C 5Q for every Q € 2.

Proof. Consider all dyadic cubes Q € Z with the property that £ ¢ 2Q.
Clearly all cubes with diam(Q) < 1diam(E) will satisfy this condition. On the
other hand, every cube Q) € Z is contained in some @ € 2 such that £ C 2@:
if we fix some x € @ and then r > 0 large enough so that £ C B(xz,r), then
it suffices to take @ O @ with Z(@) > 2r, since then 2@ 2 B(x, %E(@)) D F.

Let 2 be the collection of mazimal dyadic cubes with the property that
E ¢ 2@Q. Maximality implies disjointness, and from what we just checked, it
follows that every = € R? is contained in some Q € 2, so these cubes form a
partition of R?. R R

Since @ is maximal, its dyadic parent @) satisfies E' C 2Q). It remains to
observe that 2Q) C 5@Q) to complete the proof. d

We now return to:

Proof of Theorem 11.3.6. If f = 0, there is nothing to prove, so fix a non-
zero, compactly supported f € L!(R? X). Thus E = supp f satisfies 0 <
diam(E) < oo as required to apply Lemma 11.3.9. This lemma produces a
partition 2 C 2 of R? such that supp f C 5Q, and thus 150 f = f, for every
Q € 2. This means that

Tf=3 1oTf =Y 1oT(1sqf).

Qe2 Qe2
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Now Lemma 11.3.8 applies to each term on the right, producing (1 —€)-sparse
subcollections .7(Q) C 2(Q) for each Q € 2, and

cqcr _ c4cer
> 10T < 30 L S asf =S S0 asf a1,

Qe2 QRe2 SeZ(Q) Ses

where . == {Jpe o7 (Q) and ¢4 = 8 - 104. Tt is immediate that this union of
disjointly supported sparse collections remains sparse, as the same pairwise
disjoint subsets F(S) C S remain pairwise disjoint also among all § € .. O

11.3.b Sparse operators and domination

With Theorem 11.3.6 at our disposal, the following notion should not appear
too alien to the reader:

Definition 11.3.10 (Sparse operator). Given a sparse collection of sets
& C D, the associated sparse operator is

Agpf=> 1sf f.

sey 7S

More generally, with a dilation factor o > 1, we define

ALf = 1g Sf.

Ses @

In contrast to most other operators that we encounter, the boundedness prop-
erties of the sparse operators tend to be extremely easy. As a first illustration,
we check the LP boundedness of A& by dualising against g € LP :

[arfa- Z][Sf-]ég-ISK Zing@f'i%fM%"E(ww

Ses Ses

1 1 1
<z /M@f Mag < 1Mo fllp - [Maglly < ;p’llfllp Pllglly-

This shows that ||As|/,—, < v 'pp, where v is the sparseness parameter;
since A & is manifestly positive, it suffices to consider positive functions above,
and the same bound persists for vector-valued functions.

Looking back at the statement of Theorem 11.3.6, it almost says that
Tf < c-Agp|f| under the assumptions of the theorem, but the presence of
the expanded cubes 55 prevents this from being strictly true in the stated
form. While the variant of a sparse operator implicitly appearing in Theorem
11.3.6 would be almost as good as A for many purposes, the use of the more
symmetric (indeed, self-dual) operators A as in Definition 11.3.10 is often
preferred.
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A trivial way to achieve this in Theorem 11.3.6 is to dominate 1g <
155, after which the same cube 55 will appear in both the indicator and the
integral. These cubes will still be sparse, if only with a smaller parameter v =
5~4(1 — ¢), since the disjoint major subsets E(S) C S C 55 satisfy |E(S)| >
(1—¢)|S| = (1—¢)5-%|55]| and hence also qualify for the disjoint major subsets
of the expanded cubes 55. An apparent loss in this construction is the fact
that these 55 are no longer dyadic cubes. Even this problem, however, can be
fixed, by a variant of the shifted dyadic cubes that we introduced in Definition
3.2.25. Recall that the standard dyadic system is

2" =20, 2):={27(01)"+m): mez}.
JEL
We will need the case N = 5 of the following statement, but we record the gen-

eral formulation for convenience of reference, as the case N = 3 also features
in various applications.

Proposition 11.3.11 (Dilated dyadic cubes). Let N € Zy be odd. Then
the collection of N-fold concentric dilations {NQ : Q € P(R%)} can be par-
titioned into N¢ subcollections 9™V, n € Z?{,, each of which has the same
covering and nestedness properties as &, namely,

N n;N
A UL/
jEL
where for each j € Z:
(1) 2™ is a partition of R% consisting cubes of side-length N - 279, and

j
(2) QJ”JA, is a refinement of .@;”N.

Proof. Since 2;(RY) = {I; x --- x Iy : I; € 2;(R)} and N(I; X -+ x I;) =
NI; x -+ x NI, it suffices to verify the case d = 1. In the calculation that
follows, we will need to dilate an interval I = [¢c — r,¢ + r) both by the
algebraic multiplication a - I = {a-¢ : t € I} = [ac — ar,ac + ar) and by
the concentric dilation, for which we temporarily adopt the heavier notation
a® I =[c—ar,c+ ar) for the sake of distinction.

With these notations fixed, we have

(NOI:1€2;}={N®279([0,1)+m):meZ}
={279([-N,N'"+1)+m) :meZ} (N:=2N'+1)
={279([0,N) + m — N') : m € Z}
={279([0,N) +m) : m € Z}
={v27i (0, + %) :mez}.

The sought-after partition of this collection is now achieved as follows: For
eachn € Zy ={0,1,...,N — 1} and j € Z, we define
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n; —7 a(n,j)
PN = {NQ i ([o, 1)+ k+ T) ke Z} (11.37)

for appropriate a(n,j) € Zy to be shortly determined. It is clear that each
@;“N satisfies (1) from the statement of the Proposition, no matter how we
choose «(n, j). To ensure (2), it suffices to check that the left (or equivalently

right) half of any I € 7} N belongs to @;ﬂg For a generic I as written above,
the left half will be

N2 (10,3) + & + %) = N2 ([0,1) + 2k + 2“%"”).

For this to be in ‘@J"ﬂ[, it is necessary and sufficient that

2a(n,j) =a(n,j+1) mod N (11.38)

If we specify a(n,0) := n, all other a(n,j), j € Z \ {0} will be uniquely
determined by (11.38), since 2 has a multiplicative inverse in Zy for odd N.
Indeed, the solution is given by

a(n,j) =2'n mod N, (11.39)

where the negative powers are interpreted in the sense of the multiplicative
inverse mod N.
For each j € Z, the map n + 2/n mod N is a bijection on Zy, and thus

Cj.@;“N: {N2‘j<[0,1)+k+%> :keZ,anN}

n=0

- {N2*J'([0,1)+%) :mez} —(NoI:Iec,
so indeed {N ® I : I € 2} is a disjoint union of the collections 2™V n € Zy,
and we already checked that each 2™ has the properties (1) and (2). O

Remark 11.8.12 (Shifted dyadic cubes). The cube families 2™ constructed
above are close relatives of the shifted dyadic cubes of Definition 3.2.25, and
they satisfy a variant of the Covering Lemma 3.2.26:

Given an odd N € Z,, for every cube @Q C R?, there exist a vector
n € Z4 and a cube D € ™! such that

N 2N

Q) < D) <

In fact, let R € 2 be a cube of side-length £(R) € (£(Q)/(2N"),£(Q)/N’] that

contains the centre zg of @, where N = 2N’ 41 as before. Then D = NR €

9™ for some n € Z4,, and D contains the cube of side-length 2N/(R) >

2(Q) centred at zg; thus D D @, and ¢(D) = N{(R) lies exactly in the range
asserted in (11.40).

Q) and QCD. (11.40)
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Also note that both the partition and refinement properties (1) and (2) of
Proposition 11.3.11 of each 2™, as well as the covering property of every
cube Q C R? by a cube in some 2™ | remain invariant if we drop the algebraic
dilation factor N in (11.37), so as to be back to cubes of side-length 277.
When N = 3, this reproduces precisely the shifted dyadic cubes of Definition
3.2.25; since 2 = —1 mod 3, (11.39) reduces in this case to the simpler form
a(n, j) = (—=1)/n, where reference to modular arithmetic can be avoided.

It is now easy to show that the sparse operators with a dilation, A%, may
always be dominated by a finite number of the simple sparse operators A on.
It is technically convenient to take an odd integer IV for the dilation factor.
This causes little loss of generality since, choosing N > p, we can always

dominate Nnd
JiQ r<(5) ]{v J

and hence A%, f < (N/g)? AL f for f > 0.

Lemma 11.3.13. Let .7 C & be e-sparse for some € € (0,1), and N € Z,
be odd. Then there are N~%-sparse collections /™ C 9™ for each n € 7,
such that, for every non-negative f € Li (R%),

loc

ANF< Y Agnf

d
neLy;

Proof. We note that the collection {5Q : Q € .} is N~ %e-sparse, with
the same disjoint subsets E(Q) C @ C NQ that satisfy |E(Q)| > €|Q| =
eN~YNQ|. By Proposition 11.3.11, we have a decomposition {NQ : Q €
7} = Uneza, 2™ into dyadic systems 2. We then define . := {NQ :
Q € L} N 2™, Thus

AN f = 1][ < 1 ][ = 1
2 Q%; QNQf\Q%:y NQ NQf nezzj?v Q%:y NQ NQf
NQeg™N
=> 1Q,][ f=> At
nezg Q' eI @ neZy

We can now reformulate Theorem 11.3.6 in terms of sparse operators:

Theorem 11.3.14 (Abstract sparse domination II). Let X be a Ba-
nach space, and let T be a positive sub-linear operator from L'(R%; X) into
L°(R%: R, ), and consider the associated Lerner’s maximal operator

MY f(z) = Sup sup IT(1g50)f) (W) — T(1gi0)f)(2)].
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Suppose that both T and My are bounded from L*(R%; X) to L (R%). Then
for every boundedly supported f € L'(R?), there is a 5~ -sparse collection
S C 9 and, for every n € Z¢, a 5~ L-sparse collection /™ C D™ of the
dyadic systems as in Proposition 11.3.11, such that almost everywhere

fl

Tf <10 er A% ||f]| < 10" er Y Agn

nezd

where er = | Tllio1,00 + 17 151,00

Proof. Choosing ¢ = 4/5 in Theorem 11.3.6, we find a %—sparse collection
< C & such that

8-10%. ¢
TS < Ty 15][ 1]l = 107 er A5 £

/ Ses

This is the first claim, and the second one follows from Lemma 11.3.13. [

11.3.c Sparse domination of Calder6n—Zygmund operators

The goal of this section is to specialise the abstract Theorem 11.3.14 to the
case of Calderéon—Zygmund operators in the following form:

Theorem 11.3.15 (Sparse domination of singular integrals). Let X
and'Y be Banach spaces, pg € [1,00], and let

T € Z(LP(R%: X), L= (RY;Y))

be an operator with a Dini kernel K. Then for every boundedly supported
f € LY(RY), there is a 5~ L-sparse collection . C 9 and, for every n € Z¢,
a 59 L sparse collection ™ C P™° of the dyadic systems as in Proposition
11.8.11, such that almost everywhere

ITflly < carA% | fllx < car Y Asnllfl,

nezd

where
Cd,T X Cd(”T”LPO(Rd :X)—Lro-(Rd;y) T CK + HwHDlnl)

with cx and w as in Definition 11.5.1.

The result remains true if R% is systematically replaced by a cube or a quad-
rant of R, both in the function spaces where the boundedness is considered,
and in the definition of the kernel bounds cx and ||wk||Dini-

Proof By Theorem 11.3.14, applied to the positive sub-linear operator U :
= |ITf()|ly, the result follows if we can estimate ||U| 11 and
HMU||L1_)L1,<X> by the bound for c4r given above. For the former, this is
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immediate from the Calderén—Zygmund Theorem 11.2.5 and Lemma 11.3.4,
which show that
NU L1 (resx)— L1oo Ry = |1 Tl L1 (R )= L1 (R Y)Y
< Cd(”T”LPO(]R'i;X)—>LP0=°°(]Rd;Y) + HKHHar)
< ca(IT Ml Lro (v )= Lro- (a3v) + 1K | Dini) -

For My, we first observe that, by the triangle inequality,

U(Lesf)(y) = Ulesg /(2] = 1T (es@ N W)y = 1T (Lesq f)(2)llv |
<IT (s /)W) = T(Lgsg f) (2l

Hence, taking the supremum over y,z € @) and then over cubes @ > z, it
follows that

My f(z) < M f(x) == sup sup [T (1gq)f) () — T(1geo)f)(2)ly-
Q>3 y,ze€Q

The norm estimate of the latter is the content of the following lemma. O

Lemma 11.3.16. Let X and Y be Banach spaces, po € [1,00], and let T be an
operator with a Dini kernel K : R?* — £(X,Y). Then the mazximal operator

MY f(z) = sup sup, IT(Legs0) ) (W) — T(Lgso) f)(2)ly

satisfies
M f(x) < calek + |lw D) M f(z)

and
M| 22 s x) s 1oo (me) < Caler + |lwre | Dini)-

The result remains true if R? is systematically replaced by a cube Qo C R?
or a quadrant S C R%, both in the function spaces where the boundedness is
considered, and in the definition of the kernel bounds cx and |wk || Dini-

Proof. For x,x9,x1 € QQ, we have
T(1gi0)f)(w0) — T(gsg) f) (1)

(_1)j [T(lﬁ(sQ)f)(xj) - T(10(5Q)f)($)]

I
<.
= M»—A
o

(~1) / K (25,9) — K (2, 9)] () dy,
j=0 C(5Q)

where
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H /[3(5Q)[K(f”j7y) - K(a,9)lf(y) dyH

< / 1K (25, 9) — K (2, 9] )] dy
CB(z,4Vde(Q))

+f [ () — Kl f @)l dy = T+ 11
B(z,4Vde(Q))\(5Q)

where, observing that |z; — z| < Vdl(Q) < iz — y| for z,2; € Q and
y € CB(z, 4Vdl(Q)),

zj — x|

1
I< / ol 17 ()] dy
CB(z,4Vde(Q)) K( |z — vy ) |z =yl

d Vdl(Q) If(y)ll dy
s Z/kfz (Q)<ly—z|<2k+1/de(Q) WK(Qk\/Ef(QQ (25Vde(Q))?
< w;{(z—%][ 1£(»)]l dy
P B(z,2*+1Vde(Q))
<cgM f(z Zw ) < caM f(2)|lwi | Dini»
=2

by Lemma 11.3.3 in the last step. On the other hand, since |z; —yl, |z —y| >
20(Q) for z,z; € Q and y ¢ 5Q), we obtain

n</ 1£(w)]l dy
B(;c,2\/3€(Q))\(5Q) (25( 20Q))?

< K][ 1)l dy < exceadl f(z).
(z,2Vde(Q))

These bounds give the pointwise estimate for Mf f(z), and the norm estimate
is then immediate from the corresponding bound for the Hardy—Littlewood
maximal operator M.

The case of a cube or a quadrant in place of R? follows by inspection of
the same argument: if all variables under consideration are restricted like this,
it is evident that only the corresponding restrictions of the kernel conditions
will be needed to make the estimates. 0

11.3.d Weighted norm inequalities and the A5 theorem

We are now ready to provide the main application of the sparse domination
of Calderén—Zygmund operators: their weighted norm inequalities with an
optimal dependence of the weight. A function w € Lloc(Rd) is called a weight
if w(z) € (0, 00) almost everywhere. We recall from Appendix J the following
definition, which we now extend to the local situation as well:
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Definition 11.3.17. For p € (1,00) the Muckenhoupt A, characteristic of a
weight w s defined by

[w]a, = sgp (]é w(x) dx) (]é w' " (z) dm)p_l,

where the supremum is over all (azes-parallel) cubes Q C R, We say that w
is an Ay, weight if [w]a, < oo.

For a cube or quadrant Qo C R?, we define the local weight characteristic
[W]a,(Q) and the weight class Ap(Qo) in a similar way, but restricting the
supremum to cubes Q@ C Qg only.

For the treatment of weighted norm inequalities, it is useful to introduce the
following simple but far-reaching idea:

Remark 11.5.18 (Dual weight trick). Given an operator T, a weight w and an
exponent p € (1,00), consider an inequality of the form

1T oy < Cllbllecy Vb € LP(w). (11.41)

If o is another weight, we observe that h = fo is in LP(w) if and only if
f € LP(oPw). With this substitution, the previous estimate becomes

IT(fo)llzew) < CllfollLrw) = ClfllLrorwy VI € LP(0"w).

Equating the weights inside the operator and on the right hand side, we want
to arrange that o = oPw, i.e., that ¢ = w=/(P=1); this is called the (LP-)dual
weight of w. With this choice, the previous display reduces to

||T<fU)||Lp(w) < C||fHLp(o-) Vf e Lp(O'), o= ’w_l/(p_l). (11.42)

Applying duality in L?(w), yet another equivalent condition is given by the
conveniently symmetric formulation

/T(fU) g0 < Ol flpriollgll oy VF € LP(0),9 € L (w).  (11.43)

Thus all three formulations (11.41), (11.42) and (11.43) are equivalent.

We now give the As theorem for the sparse operators As. The simplicity
of this argument is a manifestation of the usefulness of dominating other
operators by the sparse ones.

Theorem 11.3.19 (Cruz-Uribe—Martell-Pérez). Let e € (0,1) and .¥¥ C
2 be e-sparse. Let N € Zy be odd. If w € As, then the sparse operator Af; is
bounded on L*(w), and

4
|AD N 2 (r2(w)) < ENM[UJ]Az-
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Proof. By the dual weight trick (Remark 11.3.18), with o := w™! we need to
prove that

[ 430001 a0

Since A is a positive operator, both g and h may be taken to be positive,
and there are no subtle convergence issues in the computation that follows.
We first observe that

oa IQ\/f IQI /f (1%

where o(Q) = fQ o and (f)f is the average of f with respect to the measure
induced by the weight 0. We denote the corresponding dyadic maximal op-
erator by Mg f = supgeq 1g(f)%; this operator is bounded on L?(0) with
norm 2 according to Doob’s maximal inequality (Theorem 3.2.2, cf. explana-
tions preceding Theorem 3.2.27) with p = p' = 2.

We can then estimate, using that [w]a, = supg(w)q(o)q by definition,

[ a2 qu= 3 (foine [ 10w

Qe

= Y (fo)nelgw)olQ|

Qes

= 3 (0)volwa N kol@blal,

Qes

4
< o N[wlalflzollglzzw)  Vf € L¥(0),g € L2 (w).

where
(o) vo(w)q < (o) N (w) NN < [w]a, N7

Hence

[ 420 g0 < Nlula, Y (a0l E@I

3
Qe

where
s < inf MZ
<9>Q 229 29(2)

by definition of the dyadic maximal operator. As for ( f)ﬁ’VQ, we observe by
Proposition 11.3.11 that the dilated cube NQ belongs to one of the N¢ dyadic
system 2™V where n € Z$;, and the average over N is then something that
appears in the corresponding maximal operator Mgn;~. Hence

> <f>‘z’vqg<g>2’3M (11.44)

€
Qe

=Y T (Pkolas P

nezd, Qe
NQeg™N
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[E@)I
e

N

YooY inf Mg f-inf MYg-
nGZ% Qes @ @
NQe@mN

1 o e oaquw
cX S Mg Mg

nezd, QeS

N

NQGQH;N
1
<IY [ Mzaas g ot
nezd, Re
1 e w
Sz > MG fllz2 ) IME g 2w
nEZ%
1
Sz > 20 f 2o - 2l9ll2(w)
n€ez

4
- gJ\f‘jlllflle(a)||g||L2(w)-

Substituting back, this gives the claimed bound for [|A. || (12 (w))- O

Corollary 11.3.20. Let € € (0,1) and ¥ C D be e-sparse, and let Qo € D.
If N € Zy is odd, p € (1,00), and w € Ay, then the sparse operator ALY, is
bounded on LP(w), and

2d
max(l,p%)
1A Lo () < cap—[wla, '

Proof. This is an immediate consequence of Theorem 11.3.19 and Rubio de
Francia’s Extrapolation Theorem J.2.1. (In the latter, ¢,, and cp, should be
replaced by ¢gpr and cgpr; the omission of dependence on d is a systematic
typo in Theorem J.2.1 and its proof. This explains a need a constant cq,
rather than just ¢, in the statement of the corollary.) O

It is also useful to record the following localised version:

Proposition 11.3.21. Lete € (0,1) and .¥ C P be e-sparse, and let Qo € D.
If N € Zy is odd and w € A3(Qo), then the sparse operator ALY, is bounded
on L*(Qo,w), and

4
IS 222 Qo) < (N +1) 0] as(u-

The same result is true if the cube Qq is replaced by a quadrant of RY.
We start with a simple:

Lemma 11.3.22. For every Q € 2(Qu), there exists a cube Q such that
NQNQoCQCQp and ¢(Q) =min{N{(Q),4(Qo)}.
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Proof. If NQ C Qo, we take Q := NQ, and if N{(Q) > £(Qy), we define
Q = Qo.

Let us finally consider @ € 2(Qo) such that NQ Z Qo but N4(Q) < ¢(Qo).
Let first d = 1, so that both Qo = [a,b) and Q are intervals. If NQ extends to
the left of a, then é :=|a,a + N€(Q)) satisfies the desired properties. If NQ
extends to the right of b, then é := [b — N(Q),b) works. For general d > 1
with @ = I x---x I and Qg :J1><-~><Jd,wetake©::I~1><-~-><.7d,where
each I; is built relative to the respective interval J; as in the one-dimensional
construction just given. This completes the proof. (]

Proof of Proposition 11.3.21. The norm on the left is the L?(w)-norm of the
operator f — 1g,A¥(1g,f), i.e., both the domain and the range of the
operator is restricted to functions supported on (y. Since Qo € 2, each
Q € 2 C .7 that contributes to 1g,A»(1g, f) satisfies either Q C Qo or
Q 2 Qo. Letting 7" :={Q € & : Q C Qo}, we hence have

A;(IQOJCU) Cgw
Qo

< AN, (19, fo) - gw + Z (1o fing -gw=:1+1I.
Qo QOQDQ

By the dual weight trick with o = w™1!, estimating the left-hand side uniformly
over f € L?(Qo,0) and g € L?(Qo,w) of unit norm is equivalent to bounding

1A ]| 2 (12(ow))-
Term I7 is dominated by

|Qo (1 o—kd (1
0 — vaYl 0 of)’
QZC;][ 1aof Q§U|Q|NUQ Z ]{VOQ

where Y27 27 <Y 27F = 1. Thus

I< H1Q0<1Qof>NQo N [ 0%
where
w(Qo)*/?
H1Qo<1Qof>NQO o) :W ; Fw'/201/?
0

(Qo)1 /2

< 1F1122 (@0 )0 (Q0) "/
Qo

< [ o0 1 1l2@o ) < [ 4200 1 F1l (@0

We then turn to the main part I involving .#":={Q € ¥ : Q C Qo}. We
can largely follow the proof of Theorem 11.3.19, but some care is needed to
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ensure that we only apply the As condition to cubes contained in @, which
need not be the case with the dilated cubes N@Q. We start with

I= > <1QofU>NQ/Q 1o - gw

Qe
PR wal NQOQOf"'/ng
N
- 3 A e, - @I

NQ[ Q)

Qe

By Lemma 11.3.22, for every @ € S C 2(Qo), there is a cube @ such that
QCNQNQyCQC Qo and Z(Q) N{(Q). Thus

d(NQN Qo) <a(Q), w(@) <w@), |Q<INQ|=NYQ|

Hence

a(NQN Qo) w(Q) _ a(Q)w(Q) 4 d
NO| 0 < ol 0 N < [w]ay )N,

since @ is a cube contained in Q. Substituting back, and using sparseness, it
follows that

/ AN (1g,fo) - gw < N wlayqe) Y. (Hianos (98 |E(€Q)|.

0 Qey/

As in the proof of Theorem 11.3.19, we have (g>5 <inf,eq M%(Qo)g' Also, us-
ing Proposition 11.3.11, each N belongs to one of the dilated dyadic systems
9™N | where n € Z% . A key observation is that then also

"N = {(NQNQo:Q € 2,NQ € 2™V}

is a nested family with set-theoretic (if not geometric) properties matching
those of Z(Qo): Each of the subfamilies

&N = {NQN Qo € €™ 1 £(Q) = 277(Qo)}

is a partition of Qp, and each ‘KIZFJY refines the previous %' N Thus, the
corresponding maximal operators

M%n;Nf = sup 1R<f>j'%
Recgn;N

are still instances of the Doob maximal operator with respect on abstract
filtered spaces. Repeating the computation (11.44) mutatis mutandis, we then
obtain
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S Nrgnan (o) 2!

€
Qe

1 o w
< z Z |MGnin fll2(o) 1M 5 gl L2 ()

n€z
1 4
<z > 20 flleao) - 2lgllza(w) = gNdHflle(o)IIQIILQ(U,).
nGZ%

Hence A
I < Nw)ayq) - gNdHf||L2(a)||g||L2(w)-

In combination with the bound

1T < [w]ay Qo lf 122 (o) 91l 22 (w) -
Recalling that

/ AY (10, fo) - gw < / AY (1, fo) - gu + / S (1g, /e - gu
0 0 Qo Q2Qo

and the dual weight trick, we conclude the proof in the case of a cube.

If Qo is replaced by a quadrant S, we note by density that it suffices to
consider the integrals above compactly supported f and g. But then, if Qg is a
sufficiently large cube contained in the quadrant and having one corner at the
corner of the quadrant, then such f and g will be supported in @Qg. Thus the
previous considerations apply and give a bound in terms of [w]4,(q,), Which
is clearly dominated by [w] 4, (s)-

An extension of Proposition 11.3.21 to p # 2 follows, in principle, by Rubio de
Francia’s Extrapolation Theorem J.2.1 just like Corollary 11.3.20 from The-
orem 11.3.19. Since Theorem J.2.1 was formulated for global A,(R?) weights
only, we include some remarks about its local version. As a rule, all dyadic
considerations carry over without any change. However, one needs to play a
little attention to the interplay of dyadic and non-dyadic cubes in the local
setting. The following is a local variant of the Covering Lemma 3.2.26:

Lemma 11.3.23. For cubes Q C Qo C R?, there exist a vector o € {0, %, %}d
and a dyadic cube

D e 2%(Qo) == {P + a(~1)%2 7@ ¢(P) : P € 2(Qy)} (11.45)
(the shifted dyadic cubes from Definition 3.2.25) such that
UD)<3Q) and QCDCQ
In (11.45), the point of the factor (—1)10g2 a0 is simply to alternate between

41 with each consecutive generation of the dyadic cubes. We refer the reader
to the discussion preceding Lemma 3.2.26 for why such a factor is needed.
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Proof. If 30(Q) = £(Qo), then clearly D := Qg € 2(Qo) = 2°(Qy) satisfies
the required properties.

Let then 34(Q) < £(Qo). By Lemma 3.2.26 (a global version of the lemma
that we are proving), there exists a cube D as asserted, expect that we do
not know whether D C Q¢ or not. If yes, then we are done, so suppose that
D Z Qp. We will check that an appropriate shift of D will be a cube that we
are looking for.

Let first d = 1 so that Qo = [a,b) as well as  and D are just intervals. If
D extends to the left of a, then we can take D' := [a,a+¢(D)) € 2(Qy), and
if D extends to the right of b, then we can take D’ := [b — £(D),b) € 2(Qy).

Let then d > 1 be arbitrary, Q = Iy x---xI; C D = Jy x---xJg € 2%(R?),
and Qo := K; X --- x K4. For each i € {1,...,d}, we run the previous
construction: If J; C K;, we let J := J; € 2% (R). If J; £ K;, we let J! be
the interval of lengths ¢(J;) that meets the same end-point of K; as J;. Then
J! € 9(K;). Defining D' := Jj x --- x Ji, we have D' € 2%, where o, = a;
if J; C K; and o = 0 otherwise. This D’ in place of D satisfies the claimed
properties, and the proof of the lemma is complete. O

As in (3.36), we can now easily dominate the local maximal operator

Mauf@) = swp 1a(@)f 15wl dy

cube

by the local dyadic maximal operators

Mg @)= swp 1@ If)]d o€ {043
Peo“ Qo)
beos
with
Mg, f<3% max M3 f<3* > M f. (11.46)

12
ae{{0,37,5}¢
{{ 3 3} ae{{()’%)%}d

Proposition 11.3.24. Let p,r € (1,00) and cube Qo C R? be a cube. Then

(1) 1Mo fler(@osw) < ca' [0l FllLr (@)
(2) if a pair of functions (f,h) satzsﬁes

12127 (Qo,w) < Er([w]a, @) If11Lr(@ow)
for all w € A,.(Qo), where ¢, is a non-negative increasing function, then

1Al e (Qow) < Bapr([W]a,) I fllLr(Qow)

for allw € Ay(Qo), where each ¢gpy is a non-negative increasing function.
In particular, if ¢,(t) = c,t”, then ¢apr(t) < cappt” ™ 5=1 11}
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Proof. (1) follows by repeating the proof of Theorem J.1.1: the dyadic con-
siderations are unchanged, and in the last step of the proof, one replaces an
application of (3.36) by its localised version (11.46).

The proof of (2) is the same as the proof of Theorem J.2.1, except that the
all references to the maximal operator M are replaced by the local version
Mg, and, accordingly, all applications of Theorem J.1.1 by case (1) of the
proposition that we already proved. (We note that the ¢,, and c,, should
be replaced by ¢gpr and cgpr already in Theorem J.2.1; the omission of the
dependence on d is a systematic typo in Theorem J.2.1 and its proof.) O

Corollary 11.3.25. Let € € (0,1) and ¥ C P be e-sparse, and let Qp € Z.
If N € Zy is odd, p € (1,00), and w € A,(Qo), then the sparse operator AY,
is bounded on LP(Qo,w), and

max(l,ﬁ)

4
IS Lo @oan) < aw (TN +1) iy

The same result is true if Qo is replaced by a quadrant of RY.

Proof. The case of a cube is immediate from case p = 2 established in Propo-
sition 11.3.21 and extrapolation established in Proposition 11.3.24(2). The
case of a quadrant follows from this by the same considerations as in the last
paragraph of the proof of Proposition 11.3.21. O

Thanks to sparse domination, we also obtain the corresponding results for
Calderon—Zygmund operators:

Theorem 11.3.26 (A; theorem). Let X and Y be Banach spaces, py €
[1,00], and let
T € £(L"(R% X), LP>(R%:Y))

with norm No be an operator with a Dini kernel K. Then for every p € (1, 00)
and every w € Ay, the operator T' extends uniquely to

T e Z(LP(w; X), LP(w;Y))

with norm estimate

max(l,ﬁ)

17|l 2(Lr (wix), Lo (wiY)) < Cdyp (No +cx + ||WKHDini) [w]Ap

where cx,wg are as in Definition 11.3.1.

The result remain true if R? is systematically replaced by a cube Qo C R
or a quadrant S C RY, as the domain of the function spaces, in the definition of
the Calderdn—Zygmund constants cx and ||wk||pini, as well as in the definition
of the weight class Ap.
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Proof. Let us first consider the global case. Let f € LP(w; X) be supported
on a compact set F. Denoting by o = w™/®~1 the dual weight, we have

JUs1= [ 181020 < o () < o

so that f € LL{(R% X) as well, and T'f is well defined by the Calderén—
Zygmund theorem 11.2.5. Then Theorem 11.3.15 guarantees the existence of

a é-sparse collection . C & such that, pointwise almost everywhere,

ITf(@)lly < cacr(AZ | fllx)(@),  er = No+ck + ||l
Thus, by Corollary 11.3.20, we have

Iﬁﬂwhmmq<%wwﬁmﬂkmmw
11|

max(1

< cagcrcapwly e

L) (11.47)

max(l,f)
:Cd,pCT['w]Ap v I Il e s x) -

Recalling the definition of ¢p, this is the required norm estimate for T' re-
stricted to LP(w; X); since this subspace is dense in LP(w; X), it allows to
uniquely extend T to the whole space with the same norm.

The proof in the case of a cube or a quadrant in place of R¢ remains the
same, just using the local Corollary 11.3.25 in place of Corollary 11.3.20 to
replace (11.47) by

ITf (@) e (Qosuiy) < CdCTHA?Sﬁ(HfHX)HLP(QO w)

max( ,p 1

< cacriaplw]y oq) ‘||f||x’ .
max(1, )
= CvaCT[w]Ap(QO o I fIle (Qo,wsx) -

O

Corollary 11.3.27 (A; theorem for the Hilbert transform). Let X be
a UMD space, p € (1,00) and w € A,(R). Then the Hilbert transform

1 f(t)
H = lim — —dt
f(S) /|s t|>e

el0 s—1t

extends uniquely to H € L (LP(w; X)) with

max(l,ﬁ)

[H || 2L w;x)) < cplw] 4, hox,  hex = ||H| 22 ®:x))-

Proof. Recall that the Hilbert transform is bounded on L*(R; X) when X is
a UMD space (Theorem 5.1.13). In particular, taking 7' = H and py = 2
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in Theorem 11.3.26, we have Ny < hg x < o0, using the notation from the
statement of that theorem. The kernel of the Hilbert transform is K(s,t) =

ﬁ, so that cx = 1 qualifies for the constant in Definition 11.3.1. Moreover,

1 1 ‘_‘ s —s <2|s’—t|
s—t s —tl l(s—=t)(s—t)] = T|s—t?

1
Vs —s'| < §|s —

so that we can take the modulus of continuity wq (u) = 2u in Definition 11.3.1.
Checking that we(u) = 2u also works in entirely similar. Thus |Jw||pini =
fol 2’(1,% = 2. Finally, it is easy to check that the norm hy x = ||H |2 (r2(®;x))
is at least 1, say by Proposition 5.2.2, which says that H acts as multiplication
by —¢ on functions with Fourier transform supported on R . Thus Ny +cx +
lwllpini < fiz,x + 14 2 < 42 x. Substituting this into the result of Theorem
11.3.26 gives the claimed bound for ||H || & (Lr(w;x))- O

11.3.e Sharpness of the A; theorem

Already in the scalar-valued case X = K, Corollary 11.3.27, and hence The-
orem 11.3.26, is sharp in its dependence on the weight characteristic [w]a,.
In order to see this, we need to know about the behaviour of [w]4, for some
concrete examples of weights, for which we can also estimate the weighted
norm of the Hilbert transform. The following important power weights will
serve this purpose:

Ezample 11.3.28 (Power weights). Let o« € R, p € (1,00), w(z) = |x|* for
r € R4 and o(x) = w(z)~ Y=Y = |7/~ Then

weA,RY) & woell R & —d<a<dp-1),

and if these equivalent conditions holds, then

o 1 1 p_1<C’
caslola, < 7om (Gog=s) < Caslols,.

To verify the claims of this example, we make use of the following:

Lemma 11.3.29. If Q C R? is any cube, and Q is a cube of the same size
centred at the origin, then

-
|z|Ydz <  |2]77 dz =g 1Q) ) v €1[0,d),
5 d
Q Q -7

][ 7 de 2]( @[ dz mar 6Q),  ye[0,I], >0
Q Q

Proof. Let Q = H?Zl I; and Q = H?Zl I,;. Then Q is the disjoint union of the
sets Q7 = [Lic,(Li N L;) X [[;ce.0 (I \ I;), where .# ranges over all subsets
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of {1,...,d}, and 0.7 := {1,...,d} \ Z. Of course Q is a similar union over
Q.#, defined by interchanging the roles of I ; and I ;in Q.

Since £(I;) = £(I;) is the common side-length of Q and @, it follows that
also |I; \ I;| = |I; \ I;|. Since I; is centred at the origin, if x; € I; \ I; and
ij € I; \ I, then || < |z;].

Now all z = (ch)d 1 € Q. are in measure-preserving correspondence with
i = (7)), € Q, such that |z;| = || for all i € ., and |z;| > |#;] for all
j € 0.#; hence altogether |z| > |Z|.

This implies inequalities like the first ones on each line of the lemma, for
Q. and Qs in place of Q and (,:2, and thus also these inequalities as claimed,
by summing over all .# C {1,...,d}.

To estimate the integrals over Q, we note that B(0, 2£(Q)) C Q C

B(0, 3v/d¢(Q)), where, for a > —d,

/ |z|* dz = /Cde(Q) rerd=log 1 dr = Wadq
B(0,cal(Q)) 0 d+a

thus

—d- Q)" ][ - Q)"
) d—a B < aq < (2 1 d d+a _ )
od Yd+a Q|x| z< | f) od Yd+a

For a = —v € (—d, 0], the quantities multiplying £(Q)*/(d+a) = £(Q)~7/(d—
«v) are clearly uniformly bounded from above and away from zero, with bounds
depending on d only. Similarly, for « = v € [0, '], the quantities multiplying
2(Q)™ = ¢(Q)” have this property, with bounds depending on d and I" only.
O

Proof of Example 11.3.28. The second < in the claim is immediate.

Note that at least one of w and o is |z| to a non-negative exponent, and
therefore locally integrable with a strictly positive integral over every cube Q.
Thus, in order that [w],4, is finite, it is necessary that the other of the two
functions is locally integrable as well, showing the first = in the claim.

It remains to check that —d < a < d(p — 1) implies that w € A,(R%),
together with the claimed estimate for [w]a,.

Let first @ > 0, and denote d¢ := dist(Q 0)/4(Q). For z € @, we have
lz| < (6g + Vd)(Q), and thus fow < (9 + Va)*(Q)*. If 6g > 0, we also
have |z[~! < 6,'4(Q)~", and hence ( JCQ P <05 (Q) . Thus

sup ]{2111(]{2 J)p_l < sup (dg +\f)0‘5_ (1+ g)a

Q:6g>6 Q:60>6
On the other hand, for any cube @, it follows from Lemma 11.3.29 that

e /Qw(]{?"ylg sup (3 + V) u(@)° 2d e(Q)*ﬁ)H

Q:00<s Q:00<s d—3%5

- <6+\/&)“(d2ddgl)pl



68 11 Singular integral operators
Fixing some 0 = dgq,p, it is then immediate that

Cd,p Cdp
< =
[w]Ap ~X (d _ ﬁ)p—l [d(p _ 1) _ a]p—l

For a matching lower bound, it is enough to consider just the unit cube @, in
which case the estimates of Lemma 11.3.29 apply with I" = d(p — 1) to give
that

[w]a, 2][Qw<]{g U)”*l ~ap 1 (dlpfl)Pl s (m)pﬂ-

This completes the proof for a € [0,d(p — 1)), noting that 1_%& ~d,p 1 in this
case.
For a = —v < 0, we note that

o1 La, = 1125 = { (=) )

(
o p—1_ 1
Cd—~y P g
by applying the previous case to pvfl > 0 and p’ in place of o and p, and
noting that (p — 1)(p' — 1) = 1. O

We are now fully equipped to confirm the sharpness of Corollary 11.3.27.

Proposition 11.3.30 (Buckley). Fiz p € (1,00), and suppose that ¢ :
[1,00) — [1,00) 4s an increasing function such that

IH || 2(Lrw)) < ¢([w]a,) Yw € A,

or even just for all power weights in A,. Then

1

o(t) = ¢, -t 5=1) > 1.
Proof. Let o = w=/P=1) denote the dual weight. Using the dualised formu-
lation (11.43) of the LP(w)-boundedness of T = H, and choosing f and g

with positively separated compact supports, so that the kernel representation
is available, we have

L[] IO 414y < ol Wil (1149

for all such f and g. If these functions are non-negative with supp f C R_
and suppg C R, then the integrand is non-negative, and by monotone con-
vergence (11.48) persists even if the supports of f and g meet at the origin.

The crucial point in bounding the Hilbert transform form below is the
following observation: if h(y) = |y|=*1(—1,0)(y), then for x € (0,1),
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A T 1 [*y™ 1 @
Hh(z) = — dy > — —dy=— , 11.49
(z) 71'/0 Tty L 0o 2z YT m1-a ( )

which is essentially h again, but with a factor ﬁ that blows up as a — 1—.

We now “test” (11.48) with two choices of (f, g, 0, w), so that (fo, gw) is
either (Jy[~*1(-1,0),10,1)) or (1(~1,0),|y|"*1(0,1)), With a € [0,1). In either
case (11.49) shows that

1 [t e 11
LHS(11.48) > — de = ———
( ) 271'/0 1—a“’ 27 (1 — a)?

where we have accumulated a quadratic blow-up.

To estimate the right hand side of (11.48), we need to specify the in-
dividual functions, not just the products fo and gw. In the first case, let
f =110 and o(y) = wly) VY = Jy|=; thus w(y) = |y|**~ and

9(y) = Lo nWw(y) ™t = 1(071)(y)|y|7o‘(p71)~ Then

’

1 1/p 1 , 1/p
.= —a a(p—1)(1-p’)
ol = ([ o aa) ([ s ) i)
—1/(1-a).

noting that (p — 1)(p’ — 1) = 1, and Example 11.3.28 shows that [w]s, <
¢p/(1 — a)P~1. Thus, altogether, we have

%ﬁ < (1148) < (7= ) 1 = (11.51)

Denoting ¢ = ¢,/(1 — )P, this reduces to
B(t) = et/ PV >, (11.52)

Since H* = —I, it is clear that |H||¢(1rw)) = 1, and hence ¢(t) > 1 >
c;tl/(p_l) for t € [1,¢p) as well.

In the second case, we take g = 1(91) and w(z) = o(z)* P = [z[~*; thus
o(z) = |z|*/®=1) = |¢]*® =1 and f(z) = 1(,1’0)(33)|x|_“(p/_1). A computa-
tion like (11.50) gives exactly the same final result, only with a slightly differ-
ent intermediate step, and Example 11.3.28 shows that [w]a, < ¢,/(1 — ).
With this quantity inside ¢ in (11.51), the substitution ¢t = ¢, /(1 — @) then
gives

o) =6t Yty (11.53)

and the same bound for ¢ € [1,¢,) follows from H? = —I as before. The two
lower bounds (11.52) and (11.53) together prove the proposition. O
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11.4 Notes

Given the emphasis of these volumes in analysis of functions having their
range in a Banach space, we have chosen to keep the consideration related to
the domain of the functions relatively simple, concentrating on the canonical
case of the Euclidean space R? and, with specific applications in the later
chapters in mind, its rather special subdomains—cubes and quadrants—only.
However, much of this theory could be developed on far more general do-
mains, notably on spaces of homogeneous type (espaces de nature homogene)
introduced by Coifman and Weiss [1971] and extensively studied ever since.
Since our treatment is heavily based on the dyadic cubes on R?, we recall
that analogous constructions are also available in the mentioned generality.
The construction of a fixed family of sets, sharing the essential properties of
the standard dyadic cubes of R%, is due to Christ [1990]. We also make use
of “adjacent” and “random” families of dyadic cubes; a reasonably compre-
hensive account of their analogues in spaces of homogeneous type is provided
by Hytonen and Kairema [2012] with several variants and elaborations due to
Auscher and Hytonen [2013], Hytonen and Martikainen [2012], Hyténen and
Tapiola [2014], and Nazarov, Reznikov, and Volberg [2013].

Section 11.1

This section deals with relatively classical topics but with some modern
flavour. In particular, the local oscillation decomposition of Theorem 11.1.12
dates essentially back to Lerner [2010] in the scalar-valued case. The vector-
valued generalisation, introducing the notion of A-pseudomedian, was first
found by Hénninen and Hytonen [2014]. Our present proof streamlines the
original one.

Proposition 11.1.14 was proved by Katz and Pereyra [1999] in the scalar-
valued case via a multilinear estimate, and by Hénninen and Hyt6nen [2016]
as stated.

Theorem 11.1.30 on the vector-valued H!'-BMO duality is essentially from
Bourgain [1986], although the present proof is different. In this circle of ideas,
we have only covered the relatively elementary part of the theory that does
not require any assumptions on the underlying Banach space. Note that The-
orem 11.1.30 says that BMOg(R%; X*) can be identified with an isometric
subspace of (H é’at (R%; X))*. The same proof works in the non-dyadic case,
where arbitrary cubes are allowed both in the definition of BMO and of the
Hardy space atoms. To describe the full dual (HZ (R%; X))*, Blasco [1988] de-
fines a class of Banach space Y-valued measures .4 ' (R%;Y'). Among other
things, he shows that (HL (R%; X))* = #.4 0(R%; X*) for every Banach space
X, whereas B.4 0(R%;Y) = BMO(R?;Y), if and only if Y has the Radon—
Nikodym property. A recent account with more information on the Banach
space valued H! and BMO can be found in Chapter 7 of Pisier [2016].
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Section 11.2

The material of this section is predominantly classical, and most of the results
would have been available in essentially the present form by the 1980’s, if not
earlier, even in the Banach space valued setting. The scalar-valued origins, of
course, date much further back.

The essence of Theorem 11.2.5 comes from Calderén and Zygmund [1952],
who consider the scalar-valued case (X =Y = Z(X,Y) = C) and Dini kernels
of the special form K(x,y) = K(z —y) = |z — y|_d!2( I;:Z\)’ where moreover
fS"71 2do = 0. In contrast to Theorem 11.2.5, which extrapolates other LP-
bounds from an assumed a priori LP°-bound, Calderén and Zygmund [1952]
obtained their LP-boundedness conclusions unconditionally, i.e., they also de-
duce the initial LP°-bound for pg = 2 from their special assumptions on the
kernel. Once this is achieved, the extrapolation to other LP-bounds is carried
out in much the same way as in the present treatment, particularly in the case
p < po. The fact that the extrapolation part of Calderén and Zygmund [1952]
argument remains valid under more general assumptions on the kernel was
observed by Hoérmander [1960], who introduced the conditions, now bearing
his name, in Definition 11.2.1 in the case of scalar-valued convolution kernels
K(z,y) = R(z — y). What we have called the (operator-)Hérmander class
Hér was designated as K1 by Hormander [1960], who also defines a family of
related conditions K with a parameter a € [1,00]. Just like Hor = K is rel-
evant for the extrapolation of LP-boundedness, the condition K permits the
extrapolation of LP-to-L? boundedness from one pair (p, ¢) with % — % =1- %
to other such pairs.

The first Banach space-valued generalisations, which used the operator-
Hormander conditions, were found by Schwartz [1961] and, apparently inde-
pendently, by Benedek, Calderén, and Panzone [1962]. According to Garcia-
Cuerva and Rubio de Francia [1985], the fact that the mere Hérmander con-
dition (involving integrals of ||K(s,t)z — K(s',t)z||y rather than ||K(s,t) —
K (s',t)]| #(x,y)) is sufficient for results like Theorem 11.2.5 “should have been
observed by anyone trying to adapt the proof of [the Calderén-Zygmund the-
orem] to the vector valued case”, yet they “do not emphasize very much the
interest of this weaker condition since, in most of the applications of vec-
tor valued singular integrals, [the operator Hormander condition] does hold.”
Rubio de Francia, Ruiz, and Torrea [1986] provided, in their own words, an
“updated review” of Benedek et al. [1962], incorporating several new devel-
opments in singular integrals into the vector-valued theory, and in particular
explicitly dealing with two-variable kernels K (s, t), as we have done here. Our
considerations related to ¢y in Theorem 11.2.9 were inspired by Girardi and
Weis [2004].

A version of Theorem 11.2.5 for convolution kernels K(s,t) = K(s —t) is
also presented by Grafakos [2008], where (in contrast to our approach) the
upper extrapolation is achieved by a duality argument, and the interested
reader is referred to this work for details of that approach. Grafakos [2008] is
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also explicit about the norm estimate in Theorem 11.2.5(3); this is certainly
well known, but often not spelled out in many references.

Section 11.3

The main body of this section consists of results from the 2010’s. Since the dis-
covery of the original forms of many of these results, there has been significant
activity in generalising and streamlining their proofs, as well as developing en-
tirely new approaches. As a result, our order of presentation deviates from the
historical timeline in favour of a smoother mathematical story. A main result
of this section is certainly the As Theorem 11.3.26, but the various Sparse
Domination Theorems 11.3.6, 11.3.14, and 11.3.15, originally developed as
tools for proving the A, Theorem 11.3.26, have by now established them-
selves as results of intrinsic value and models for desirable type of domination
to search for in other situations.

Prehistory of the Ay theorem

In its scalar-valued and qualitative form (i.e., saying that T is bounded on
LP(w), but without tracking the estimate for the operator norm), the result
goes back to Hunt, Muckenhoupt, and Wheeden [1973] in the special case
that T is the Hilbert transform (as in Corollary 11.3.27) and to Coifman and
Fefferman [1974] for all standard Calderén—Zygmund operators of convolu-
tion type. The question of sharp dependence of the weighted operator norms
|17l (r(w)) on the weights constant [w]a, was raised by Buckley [1993],
who settled the case of the Hardy-Littlewood maximal operator (Theorem
J.1.1) and obtained non-matching upper and lower bounds for Calderén—

Zygmund operators. In particular, Proposition 11.3.30 saying that an esti-
x(1,717) . .
mate for ||T|| ¢ (r(w)) can be no better than [w]rj: ( p—1)7 is essentially from

Buckley [1993]. In many papers, results of this type a stated in a slightly
weaker form along the lines that “the power of [w]4, can be no better than
max(1, p%l)”. However, in some related questions, the sharp estimate is known
to exhibit behaviour different from a pure power law.

The question of Buckley [1993] gained new interest through the work of
Astala, Iwaniec, and Saksman [2001], who considered the following problem:
Let O C C be a domain and k € (0,1). What is the minimal ¢ such that all
functions f € W,29(0) with |9f| < k|0f]| (referred to as weakly quasiregular)
must in fact belong to f € VVﬁ)f (O) (and then be called simply quasiregular)?
By results of Astala [1994], ¢ > 1 + k suffices; by examples due to Iwaniec
and Martin [1993], ¢ < 1 + k does not, leaving ¢ = 1 + k as the critical case.
Astala, Iwaniec, and Saksman [2001] proved that ¢ = 1+k is still sufficient for
the said self-improvement, under their conjecture that the Beurling—Ahlfors
transform

Bf(2) = — lim f(y) dA(y)

me0 Jopee (2—y)? D(z,e):={yeC:ly—z[<e}
Z,E
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satisfies the upper bound
| Bll2Le ) < cplw]a,, p € [2,00). (11.54)
Special cases of the Ay theorem

Shortly after being posed, the conjecture of Astala et al. [2001] was verified by
Petermichl and Volberg [2002], and another proof was found by Dragicevié and
Volberg [2003]. Already Petermichl and Volberg [2002] observed that (11.54)
as stated may be derived from its special case p = 2 by keeping track of
the constants in the proof of Rubio de Francia’s extrapolation theorem as
presented, e.g., by Garcia-Cuerva and Rubio de Francia [1985]. This idea was
systematised by Dragicevi¢, Grafakos, Pereyra, and Petermichl [2005], whose
results were treated in Appendix J and applied in the section under discussion.

The positive results for the Beurling—Ahlfors transform inspired the ques-
tion of sharp weighted bounds for other operators, and the special role of the
exponent p = 2 as the critical case for extrapolation gave rise to the name
“Ay conjecture”, several further cases of which were settled over the next few
years. In particular, the Hilbert transform (the scalar-valued case of Corollary
11.3.27) and the Riesz transforms were handled by Petermichl [2007, 2008], a
general class of sufficiently smooth odd kernels on R by Vagharshakyan [2010],
and powers of the Beurling—Ahlfors operator by Dragicevi¢ [2011]. All these
results relied on

(A) ad hoc representation formulas of special singular integrals in terms of
simple “dyadic shifts” as in the representation of Petermichl [2000] for
the Hilbert transform (see Theorem 5.1.13 and (5.20)), and

(B) Bellman function techniques for sharp weighted bounds of these shifts.

The component (B) behind these results was first challenged by Lacey, Peter-
michl, and Reguera [2010], who replaced it with

(C) “corona decompositions” to verify the “testing conditions” in a
(D) dyadic two-weight T'(1) theorem of Nazarov, Treil, and Volberg [2008].

Shortly after, a much simpler alternative to either (B) or (C)—(D) was found
by Cruz-Uribe, Martell, and Pérez [2010], who in turn replaced it by methods
largely similar to the ones that we have used here:

(E) domination of dyadic shifts from (A) (not yet of singular integrals di-
rectly) by the sparse operators A, and

(F) estimating ||A.#|| #(r2(w)) as in Theorem 11.3.19, whose proof follows
closely the original one from Cruz-Uribe et al. [2010],

However, component (A) of the original proofs remained unchallenged and,
being somewhat ad hoc for the specific singular integrals considered thus far,
restricted their extension to wider classes of operators.
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The general As theorem

These limitations of (A) were overcome by Hytoénen [2012], who found

(G) a general dyadic representation formula (a variant of which will be pre-
sented in Theorem 12.4.27) of all standard Calderén—Zygmund operators
in terms of a series of dyadic shifts of increasing complexity.

Moreover, (C) and (D) had to be replaced by

(C") refinements of (C) to control the general shifts produced by (G), and
(D’) a difficult two-weight T'(1) theorem of Pérez, Treil, and Volberg [2010]
about the singular integral itself, rather than the dyadic shifts as in (D).

A combination of (G), (C’), and (D’) gave the first proof of the A; Theorem
11.3.26 for all standard Calderén—Zygmund operators in the scalar case.

In a matter of months since the announcement of Hytonen [2012] in 7,/2010,
several variants and extensions were found. Streamlined versions and certain
improvements of the original approach were obtained in Hytonen, Pérez, Treil,
and Volberg [2014], Hytonen and Pérez [2013], and Hytoénen [2017], which
appeared in arXiv in 10/2010, 3/2011, and 8/2011, respectively. At the same
time, alternatives to (C’) and (D’) by

(B’) elaborations of (B) with good control on the shift complexity

were obtained by Nazarov and Volberg [2013] (arXiv 4/2011) and Treil [2013]
(arXiv 5/2011), and these were used by Nazarov, Reznikov, and Volberg [2013]
(arXiv 6/2011) to give an extension of the As theorem to doubling metric
space domains in place of R%. (Thus, the versions with a cube or a quadrant
that we have stated in Theorem 11.3.26 are but very particular instances of
the general domains in which the result may be formulated.)

Still over the same hectic months, Hyténen, Lacey, Martikainen, Orponen,
Reguera, Sawyer, and Uriarte-Tuero [2012] (arXiv 3/2011) combined the ap-
proach of Hytonen [2012] with input from the time—frequency techniques of
Lacey and Thiele [2000] to extend the Az theorem to mazimally truncated
Calderén—Zygmund operators

Tof) =splLf@), Tf@= [ Keyfwd. 015)

However, these results were shortly superseded by Hytonen and Lacey [2012]
(arXiv 6/2011) by a new approach combining (G) with elaborations of (E)
and (F) from the approach of Cruz-Uribe et al. [2010]:

(E’) domination of the general dyadic shifts from (G) by operators (essentially
like) A%, where arbitrarily large N appear, and

(F') estimating ||A% || #(12(w)) with bounds polynomial in log N (which re-
quires much more delicate analysis than Theorem 11.3.19).
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As a curiosity, the term “sparse” in its present usage seems to have been
introduced by Hytonen and Lacey [2012] (line below (%) on page 2042). This
was pointed out by Andrei Lerner in his survey talk at the “AIM Workshop on
sparse domination of singular integrals” in San José, California, in 10/2017.

Simpler proofs

The difficulties with arbitrarily high shift complexity N, which seemed un-
avoidable in the general A, theorem until this point, were finally eliminated
by Lerner [2013a,b] (arXiv 2/2012). These papers provide two different proofs
of the same main result, stating that

T4 fllF < carsup [|[AsfllF, (11.56)

s

where T is the maximal truncation (11.55) of a standard Calderén-Zygmund
operator, F is any Banach function space of R%, and the supremum is taken
over all dyadic systems & and their sparse subcollections .. With T in place
of Ty, this is slightly weaker than the pointwise estimate of Theorem 11.3.15
but, taking F' = LP(w), quite sufficient for bounding T" (or Ty%) on LP(w).

The first proof of (11.56) by Lerner [2013a] still started with (G) and (E'),
but then proceeded with the key new idea of

(H) domination of the adjoints (A%.)* by the simple operators A = A%,.

(The fact that the argument passes through the adjoint is where the Banach
function space F' is needed, while everything else can be estimated pointwise.)
The As estimate can then be completed by the simple step (F).

At the same time, Hytonen, Lacey, and Pérez [2013] found a way of re-
placing the initial steps (G) and (E’) by

(I) direct domination of the singular integral by an infinite series of operators
(essentially like) A%, with arbitrarily large N.

Thus, a self-contained proof of the A theorem is obtained by concatenating
the steps (I), (H), and (F), and these constitute the simple proof of the As
conjecture presented by Lerner [2013b]. As soon as things started falling into
the right place, the progress was very fast, and the preprints of the just dis-
cussed papers appeared in the arXiv essentially over a weekend in February
2012: Lerner [2013a] on Thursday 9th, Hytonen et al. [2013] on Friday 10th,
and Lerner [2013b] on Monday 13th.

The simple proof of Lerner [2013b] also admitted the first extension of
the Ay theorem to the weighted Bochner space LP(w; X) by Hénninen and
Hytonen [2014]. At the time, the main difficulty with this Banach space valued
extension was the dependence of the sparse domination (I), via its use of
Lerner’s local oscillation formula (Theorem 11.1.12), on the notion of median.
Thus, a workable vector-valued version of this concept had to be developed;
it is reproduced in Section 11.1.
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Pointwise sparse domination

Although not a necessity for proving the A theorem, the possibility of replac-
ing (11.56) by pointwise domination presented itself as a natural question,
which attracted some interest. This was independently achieved by Conde-
Alonso and Rey [2016] (arXiv 9/2014) and Lerner and Nazarov [2019] (also
announced and circulated around the same time in 2014, although in arXiv
only in 8/2015). These results still slightly deviated from Theorem 11.3.15 by
requiring a stronger form of the Dini condition,

dt

1/2 1
/ w(t) log, (E)T < 00
0

All Dini kernels were first covered by the “elementary” (but not so easy)
proof of Lacey [2017] (arXiv 1/2015), which was further quantified (in terms
of dependence on ||w||pini) by Hyténen, Roncal, and Tapiola [2017] (arXiv
10/2015) and remarkably simplified again by Lerner [2016] (arXiv 12/2015).
In proving Theorem 11.3.15, we have followed the further simplification due
to Lerner and Ombrosi [2020]. One advantage of their approach is a reduc-
tion of the prerequisites from classical Calderén—Zygmund theory necessary
to run their argument. On the technical level, this is achieved by replacing
the maximal operator

Mrf(z) = ng Slelg T(1gsqf)(y)

of Lerner [2016] by its “sharp” version M7 defined in (11.28). While M#
can be estimated relatively directly, bounding the larger My f originally re-
quired non-trivial classical results about the maximal truncations (11.55).
However, it was later observed by Almeida, Betancor, Farina, and Rodriguez-
Mesa [2022] that the bounds for the two operators are actually equivalent
under general assumptions only involving the bounds for T that are used in
the theory anyway. Although not explicitly discussed by Lerner and Ombrosi
[2020], the present vector-valued extensions of their results, leading to Theo-
rems 11.3.15 and 11.3.26, involved little additional effort; this is in contrast to
the first vector-valued Ay theorem by Hanninen and Hytonen [2014]. Further
abstractions are due to Lorist [2021] and Lerner, Lorist, and Ombrosi [2022];
the latter work also explicitly addresses the vector-valued case.

Routes to sharpness in weighted estimates

There are some alternative routes to see the sharpness result of Proposition
11.3.30, which goes back to Buckley [1993] well before the matching upper
bounds were known. Luque, Pérez, and Rela [2015] made the curious observa-
tion that this can also be achieved without exhibiting any explicit examples
in the weighted situation, but studying instead the asymptotics of the un-
weighted norms || T||Lr—rr as p — 1 and p — oco. This depends on a variant
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of Rubio de Francia’s Extrapolation Theorem J.2.1, where one keeps track
of the p-dependence in the estimates for ||T'||»—r» given by extrapolating a
bound of the type

T[] Lro (w)—s Lro (w) < P([w]ay, ),

where qg can also be different from pg. Via contraposition, a lower bound
for ||T'||pp—r» imposes a lower bound for ¢. This quantitative weighted-to-
unweighted extrapolation was already used earlier by Fefferman and Pipher
[1997] in the “positive” direction to obtain sharp unweighted LP-norm asymp-
totics for some operators by studying their weighted behaviour. They also ob-
tained a certain predecessor of the Ay Theorem 11.3.26 with || T'|| »(12(w)) <
ca,r|w]a,, where

[w]a, = || Mw/w|ew = sup][ w(esssupwil)
QJQ Q

-1
> sup][ w(][ w*”“’*”)p = [wla, Vpe(1,00).
Q Q

Q

Further results

For a while, it might have seemed that the new sharp weighted technology
was essentially restricted to the class of Calderén—Zygmund operators. A cer-
tain discouragement against further extensions came from an observation of
Orponen [2013] that if an operator T has a dyadic representation (G) in the
sense of Hytonen [2012], then T must necessarily be a Calderén—Zygmund op-
erator. However, as soon as the role of (G) in the Ay theorem was challenged
by other methods, the door was also open for extensions beyond the standard
Calderon—Zygmund realm. Nevertheless, few could probably have expected
how far this theory could indeed be extended.

As an application of the sharp weighted estimates for Dini kernels discussed
above, Hytonen, Roncal, and Tapiola [2017] (arXiv 10/2015) showed that
rough homogeneous singular integrals

Tof(s) =p.v. /Rd Q(|i|/c|lt|)f(s —t)dt, e LF(S.

satisfy the weighted norm inequality

ITellzw2@w) < call2llood([w]a,)

with ¢(u) < u?. Although dealing with a class of operators outside the direct
scope of the sparse domination technology of the time, this result may never-
theless be seen as stretching those methods, rather than introducing genuinely
new ones, in that the operator T, was decomposed into a series of pieces in
the scope of the previously available tools by following a classical approach to
qualitative versions of similar results by Duoandikoetxea and Rubio de Francia
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[1986], and Watson [1990]. A more intrinsic approach has been subsequently
developed by Conde-Alonso, Culiuc, Di Plinio, and Ou [2017], but ¢(u) < u?
seems to remain the best available bound at the time of writing. In the other
direction, Honzik [2023] constructed examples of symbols 2 and weights w
to show that ¢(u) > u3/2; hence the quantitative behaviour of Ty, is defi-
nitely different from the linear Ay theorem for standard Calderén—Zygmund
operators, but their precise bounds remain open.

Already a few weeks before Hytonen, Roncal, and Tapiola [2017] (late
10/2015 in arXiv), a far-reaching approach to sparse domination of a wide class
of operators had been revealed by Bernicot, Frey, and Petermichl [2016] (early
10/2015 in arXiv). They observed that several operators that act boundedly
in LP? only in some range (pg, go) € (1,00) (and thus are definitely outside the
Calder6n—Zygmund class by Theorem 11.2.5) can be proved to possess sparse
form domination of the type

1/po N\ /40
wrat<c S iai(f, 1) (f o)

This in turn implies weighted norm inequalities of the form

ITfll Lo (wy < C([w]a,,,, [w]RH(qO/I,)/)a”f”LP(q)» P € (po,qo),

where [w]gry, is the best constant in the reverse Hélder inequality

(]é wt)l/t < C]£2 w,

and o = a(po, g0, p) is a certain explicit exponent depending on the indicated
quantities only.

Typical examples in the scope of the theory of Bernicot, Frey, and Peter-
michl [2016] are various “singular non-integral operators” arising in harmonic
analysis adapted to operators other than the classical Laplacian, e.g., gener-
alised Riesz transforms VL~/2, where L could be a second-order divergence-
form operator L = —div(AV) with bounded coefficient matrix A, or a
Schrodinger operator L = —A + V' with some potential V.

After the key observation that it is possible to go beyond Calderén—
Zygmund theory at all, sparse domination results and weighted norm inequal-
ities, as a corollary, for several different types of operators have been obtained:

e rough singular integrals (Conde-Alonso, Culiuc, Di Plinio, and Ou [2017],
Di Plinio, Hytonen, and Li [2020a]);

e Bochner-Riesz multipliers (Benea, Bernicot, and Luque [2017], Conde-
Alonso et al. [2017], Lacey, Mena, and Reguera [2019]);

e oscillatory integrals (Lacey and Spencer [2017], Krause, Lacey, and Wierdl
[2019]);

e bilinear Hilbert transforms and related phase-space objects (Culiuc, Di Plinio,

and Ou [2018a], Di Plinio, Do, and Uraltsev [2018]);
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e singular integrals along curves, Radon transforms (Cladek and Ou [2018],
Culiuc, Kesler, and Lacey [2019], Oberlin [2019], Anderson, Hu, and Roos
[2021]);

e spherical maximal operators both on R? (Lacey [2019], Beltran, Ober-
lin, Roncal, Seeger, and Stovall [2022a], Borges, Foster, Ou, Pipher, and
Zhou [2023]) and on the Heisenberg group (Bagchi, Hait, Roncal, and
Thangavelu [2021], Ganguly and Thangavelu [2021]);

o pseudo-differential operators (Beltran and Cladek [2020]).

A relatively general theory has been developed by Beltran, Roos, and Seeger
[2022b], who also explicitly discuss Banach space valued operators.

Product space theory

A related direction, in which a weighted theory of singular integrals is well
developed since the works of Fefferman and Stein [1982] and Fefferman [1987,
1988], yet the sparse domination technology has met obstacles, consists of
the theory of product space or multi-parameter singular integrals modelled
after the product Hilbert transform H; ® Hs (where H; denotes the Hilbert
transform in the ith variable of R?). Natural maximal operators in this theory
are the strong maximal operator

M.f(s):=  sup 1R<s>]{% 1F()]] .

R rectangle

and its dyadic version, where the rectangles are restricted to be dyadic (i.e.,
products of dyadic intervals). Barron, Conde-Alonso, Ou, and Rey [2019] have
shown that it is impossible to dominate the strong dyadic maximal operator
by sparse forms based on rectangles with sides parallel to the axes, which
presents an obstacle to sparse techniques in this setting. While the most obvi-
ous extension of sparse domination is thus excluded, it was shown by Barron
and Pipher [2017] that one can still obtain a workable substitute by replac-
ing the dominating averages f |f| of f with the averages {, Sf of its dyadic
square function Sf on the right-hand side.

On the other hand, the original dyadic representation (G), while largely su-
perseded by sparse technology in applications to standard Calderén—Zygmund
operators, remains available, after natural modifications, in the product space
theory, as first proved by Martikainen [2012b] in the two-parameter case and
extended to arbitrarily many parameters by Ou [2017]. A vector-valued ap-
proach to this theory has been developed by Hyténen, Martikainen, and Vuori-
nen [2019a].

Sparse domination versus causality

While the current mainstream in sparse domination, evidenced by the previ-
ous list, consists of proving and applying domination for ever wider classes
of operators, one may also pose a somewhat opposite question: Suppose that
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a given (say, standard Calderén—Zygmund) operator T' possesses some addi-
tional properties. Can this be reflected in the dominating sparse operator as
well? A concrete instance of such an additional property is causality. Suppose
for simplicity that d = 1, and that K(s,t) is non-zero only if s > r; thus T f(s)
depends only on the “past” values f(t) with ¢ < s. If T is a Calderén—Zygmund
operator, then it satisfies the sparse domination T'f(s) < erAS, f(s) by the
general theory. However, the dominating sparse operator A:} is no longer
causal. Is it possible to exploit the causality of T to obtain a sharper form
of sparse domination, where this causality is preserved also in the right-hand
side? Some partial (but far from complete) results in this direction have been
obtained by Hyténen and Rosén [2023].

Aimar, Forzani, and Martin-Reyes [1997] have shown that causal Calderén—
Zygmund operators remain bounded on the weighted space LP(w) for the
larger class of one-sided A, weights, defined by the finiteness of

w] L[ ) ([
w| - = sup 7< w)(/ w p—l) ,
Ap —oco<a<b<c<oo (C - a)p b a

but the optimal bound for the operator norm ||T'|| ¢ (rr(w)) in terms of [w}A;
remains open. In analogy with the As Theorem 11.3.26, it is natural to make:

Conjecture 11.4.1 (One-sided As conjecture of Chen, Han, and Lacey [2020]).
For all causal Calderén-Zygmund operators,

max(1,—1—
T 2 (Lrwy < er([w] - )2 E ),

p

Partial results for Haar multipliers (see Section 12.1.a) in place of Calderén—
Zygmund operators are obtained by Chen et al. [2020], but beyond that the
conjecture remains open.

Causal operators appear very naturally; e.g., the operator-valued kernel

K(s,t) = 1g, (s — t)Ae= (5794

of relevance to the maximal regularity problem studied in Chapter 17, has
this form. A theory of one-sided singular integrals applicable to this operator-
valued situation has been developed by Chill and Krél [2018].

Matriz weighted spaces and convex body domination

Let W : R? — RY*N be a matriz weight, i.e., measurable and positive definite
almost everywhere, and f : R — RY be measurable. The norm

ey == [ W OF0.50)ar

= [ W@ O dt = W2 ][}z gag),
Rd
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appears naturally from the prediction theory for multivariate stationary
stochastic processes n € Z + &, € L?(£2;RY) developed by Wiener and
Masani [1958], where stationarity means that I',_j = E&, & € RV*N de-
pends only on the difference of the discrete times n, k € Z. If W is the density
of the spectral measure of the process, i.e., I', = W (k) are the Fourier coef-
ficients of W € L'(T;RY*Y), the boundedness of the Hilbert transform on
L?(W) is equivalent to a positive angle between the past and the future of the
process. Even for N = 1, this problem was only solved 15 years later by Hunt,
Muckenhoupt, and Wheeden [1973], who characterised this boundedness in
terms of the As condition. For N > 1, it took over 20 more years before the
solution was obtained by Treil and Volberg [1997], who identified the correct
analogue of the A condition in the matrix-valued case:

1/2 —1\1/2
(W]a, = sgp|<W>Q/ whHy?P,

where | | is (say) the operator norm on .Z(R%) (but the choice of the norm
on RVY*N ig irrelevant, as they are all equivalent).
With the natural definition

[fllzeqwy = W7 fllLe @z,

one is led to inquire about the boundedness of the Hilbert transform on
LP(W). The characterising matrix-A, condition, identified via different ap-
proaches by Nazarov and Treil [1996] and Volberg [1997], is less intuitive for
p # 2. It is perhaps most easily formulated with the help of the classical the-
orem of John [1948], which guarantees that every norm on R¥ is equivalent
(with constants depending only on N) to a Euclidean norm, whose unit ball
is a linear transformation of the standard unit ball. If W is a matrix weight

and V := W%7 it is easy to see that
1/p
e € R — (][ |V(t)e|pdt>
Q

is a norm, and hence, by the theorem of John [1948], there is a positive definite
reducing operator [V]g , € RN*Y such that

1/p
WVlawel < (f 1Vl at) ™ < VA Vel
The matrix-A, condition may then be defined by the finiteness of the constant

(Wa, = Sgpl[v]Q,p[V*l}Q,p/\”, Vi=Ws.

P

1
The reader is invited to check that [V]g,, = (V?){ if N =1 or p = 2 (but not
in general otherwise), so that the different definitions of A, are consistent. It
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is possible to give an equivalent definition of the matrix A, condition with-
out reference to reducing operators, but one would still need them to prove
anything interesting, which is why we prefer to state the definition as above.

While the qualitative boundedness of the Hilbert transform, and in fact
of more general Calderén—Zygmund operators, on LP(W) was settled in the
mentioned papers, the proof of the scalar-valued As theorem raised the natural
question of its extension to the matrix-weighted case. This remains open, but
several related results have been achieved.

While sparse domination is perfectly applicable to vector-valued (even Ba-
nach space valued) functions, as we have seen in this chapter, it loses essential
directional information, which makes it ill-suited for matrix-weighted consid-
erations. To address this drawback, Nazarov, Petermichl, Treil, and Volberg
[2017] invented a refined notion of convex body domination, where the averages
(IIf)q are replaced by the related convex bodies

{61 18ll~@ <1} CRY, fe LYQRY).

Convex body domination of T' is most easily stated in its bilinear form, as an
elaboration of the sparse form domination

(Tf,9) < car Y 101 Fsallahse

Qe

hr Y //M $)llg(®)] dst.

Qe

(11.57)

Convex body domination of 7' can now be stated in the form

(Tfg)l < ) C"l'giT |¢S|up<1‘//Q y s) - (t)g(t)dsdt|, (11.58)
Qe B X

lPlleo<1

with the important difference that we take the dot product of f(s), g(t) € R™
first, and only then the absolute value of the result; this allows for critical
directional cancellation compared to (11.57).

The proof of Nazarov, Petermichl, Treil, and Volberg [2017] (arXiv 1/2017),
that standard Calderén—Zygmund operators satisfy (11.58), follows the same
lines as the proof of Theorem 11.3.15 but with important elaborations at a
few selected points, making again use of the ellipsoid theorem of John [1948].
On the other hand, with (11.58) available, Nazarov et al. [2017] can prove the
bound

1Tl 22wy < car WX
which remains the best available matrix-weighted estimate for Calderén—
Zygmund operators (or even just for the Hilbert transform) at the time of
writing. A variant of the same results was also obtained by Culiuc, Di Plinio,
and Ou [2018Db], seemingly earlier (arXiv 10/2016) but not independently; ac-
cording to their acknowledgment, the concept of domination by convex body
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averages was introduced to these authors by Sergei Treil during his seminar
talk at Brown University in the Spring of 2016.

Since then, further applications and extensions of convex body dom-
ination have been explored by Cruz-Uribe, Isralowitz, and Moen [2018],
Di Plinio, Hytonen, and Li [2020a], Isralowitz, Pott, and Rivera-Rios [2021],
Isralowitz, Pott, and Treil [2022], and Muller and Rivera-Rios [2022]. Impor-
tantly, Bownik and Cruz-Uribe [2022] extended the Rubio de Francia algo-
rithm (Proposition J.2.2), and its key application to weighted extrapolation
(Theorem J.2.1), to matrix-valued weights, by further development of the
convex body philosophy.

An abstract framework for convex body domination has been proposed by
Hytonen [2023], allowing also Banach space valued functions in the theory.
While genuinely operator-valued weights in infinite dimensions seem to be
out of reach, this framework allows the treatment of RV *N_valued weights
on spaces of X"-valued functions. In particular, the following simultaneous
extensions of the boundedness of the Hilbert transform on the Banach space
valued L?(R; X) by Burkholder [1983], and on the matrix-weighted L?(W) by
Treil and Volberg [1997], is obtained there.

Theorem 11.4.2. Let X be a UMD space, and W : R* — RY*N be g matric
Ao weight. Then the Hilbert transform H extends boundedly to

1
L2(W;XN) = {f R — X7V [fl2qwixwy = W2 fllre@xny < OO}

and satisfies ||H|| o 2wixny) < CNhg)X[W]i/f < CNB;X[W]?L‘/227 where

ho,x = ||H||L2(R;X) and P2, x is the UMD constant.

The stated quantitative formulation in terms of Ay x is not explicit in Hytonen
[2023], but can be tracked in the proof, in a similar way as in Corollary 11.3.27
in the text.

A summary of sharp weighted bounds for classical operators

Our discussion above has been focused on norms of Calderén-Zygmund singu-
lar integrals and their various extensions, viewed as operators on a weighted
LP(w) (or matrix-weighted LP(W)) space; these are referred to as strong-type
bounds. We will briefly summarise results in two closely related directions.
First, one may inquire about the corresponding weak-type bounds, i.e., op-
erator norms in Z(LP(w), LP*°(w)). These are obviously dominated by the
strong-type norms, but the point is that the optimal weak-type norms may
be significantly smaller in some cases, which gives these questions an indepen-
dent interest. Second, one may pose the same questions for various square-
functions, which could be viewed as part of the extended family of (vector-
valued, when suitably interpreted) Calderén—Zygmund operators; however, it
turns out that these operators are actually slightly “better” in terms of the
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dependence of their norms on the weight constant. A basic example is the
dyadic square function

~ (X mose) ",

Qe

(where the operators D¢ are defined in (12.1) and discussed extensively in

Chapter 12), but several other classical square functions satisfy the same

weighted bounds; we refer the reader to the papers quoted below for details.
A summary of the sharp bounds known for these operators is as follows:

Singular integrals:

For p € (1,00) and w € A, the sharp estimates in L?(w) are:

max(1

1

(1) the strong-type bound is [w], 51 (Hytonen [2012]);

(2) the weak-type bound is [w]4, (Hytonen, Lacey, Martikainen, Orponen,
Reguera, Sawyer, and Uriarte-Tuero [2012]);

(3) the weak-type L'(w) bound is [w] 4, (1 + log[w]4,) (the upper bound was
proved by Lerner, Ombrosi, and Pérez [2009], its sharpness is due to

Lerner, Nazarov, and Ombrosi [2020]).

A speculative linear-in-[w] 4, bound in (3) was known as the A; conjecture,
or the weak Muckenhoupt—Wheeden conjecture. The original conjecture, dis-
proved by Reguera [2011] and Reguera and Thiele [2012], was about the
boundedness of T : L'(Mw) — L'*°(w) for any weight w. This holds for
M in place of T' (Theorem 3.2.27), which motivated the conjecture.

Square functions:

For the range of p as specified and w € Ay, the sharp estimates in L?(w) are:

max(%,ﬁ)

(4) the strong-type bound is [w], for p € (1,00) (Lerner [2011]));
ax(%,

(5) the weak-type bound is [w}:p for p € [1,00) \ {2} (p = 1: Chanillo
and Wheeden [1987], Wilson [2007, 2008]; p € (1,2): Lacey and Scurry
[2012]; p > 2: Hytonen and Li [2018]);

(6) the weak-type L?(w) bound is at most [w ]1 (1 4 log[w]4,)? (Domingo-
Salazar, Lacey, and Rey [2016]), but its sharpness seems to remain open
(see Ivanisvili and Volberg [2018] for partial related results).

S =
-

In contrast to singular integrals, the bounds at p = 1 above are consequences of
the stronger statement that S : L'(Mw) — L%*°(w) is bounded for any weight
w, i.e., the Muckenhoupt—Wheeden conjecture holds for square functions. This
also explains the (implicit) appearance of sharp weighted bounds in Chanillo
and Wheeden [1987], long before this became a fashionable topic.
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For matrix-weights, the only known sharp estimates among these exam-

ples, at the time of writing, seem to be the square function bounds (4) for

€ (1,2]; this was proved by Hytonen, Petermichl, and Volberg [2019b] for
p = 2 and extended by Isralowitz [2020] to p € (1,2).
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Dyadic operators and the T'(1) theorem

In Chapter 11, we have mainly dealt with a situation, where a bounded linear
operator on some LP°(R%; X) space is given, and we have then explored its
bounded extensions to other spaces including LP(R%; X) for p # py. We now
turn to a somewhat different (and often more difficult) question of recognising
such bounded operators to begin with.

Before addressing this question for the Calderén-Zygmund type operators
of the kind studied in Chapter 11, we investigate a number of related objects
in a simpler dyadic model. Besides serving as an introduction to some of the
key techniques, it turns out that these dyadic operators can be, and will be,
also used as building blocks of the proper singular integral operators towards
the end of the chapter.

The dyadic operators will be of two essentially different types. The first
class, which we vaguely refer to as “dyadic singular integrals” in Section 12.1,
consist of a somewhat diverse family of relatives of the prototype dyadic shifts
encountered in Chapter 5, where they we used to represent the prototype sin-
gular integral given by the Hilbert transform. It is thus only natural that a
family of dyadic operators generalising this basic dyadic shift will serve as
building block of the Calderéon-Zygmund family of singular integrals gener-
alising the Hilbert transform. Martingale techniques vaguely reminiscent of
those in Section 5.1, but of somewhat higher complexity probably by neces-
sity, will feature in the argument to put the UMD property of the underlying
Banach space into action.

The second class of dyadic operators consists of so-called paraproducts,
which we discuss in Section 12.2. These are new creatures of the non-
convolution realm that we have entered and they will vanish (as we will see) as
soon as we occasionally specialise our considerations to singular integral of the
convolution form. However, for the representation the full class of Calderén—
Zygmund operators they will turn out be quite essential.

The chapter will culminate in a lengthy treatment of the so-called T'(1)
theorem, a general criterion for boundedness of singular integral operators.
We will first discuss a version for abstract bilinear form in Section 12.3, and
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only then, in the final Section 12.4, turn to the task of checking the assump-
tions of the abstract result for singular integral operators with a Calderén—
Zygmund kernel, of the kind that we met Chapter 11. However, in order to
establish boundedness on LP(R%; X) from scratch, rather than extrapolating
it from another LPo(R?; X) space where it was already known (as in Chapter
11), somewhat stronger versions of the Calderén—Zygmund conditions will be
needed, and the notion of R-boundedness from Chapter 8 will, once again,
play a prominent role. While the results of this chapter will generically be
established in arbitrary UMD spaces, it turns out that additional information
about type and cotype, as studied in Chapter 7 can be traded against the pre-
cise kernel conditions, so that slightly larger classes of kernels are admissible
under conditions of type and cotype of the underlying space.

12.1 Dyadic singular integral operators

In this section, we introduce and study a family of dyadic models of singular
integrals, starting from the simplest case of Haar multipliers and proceeding
to their more complicated relatives. All these operators will eventual come
together as parts of a decomposition of general singular integral operators
towards the end of the chapter.

Since our aim is not to assume, but to prove, the LP-boundedness of the
relevant operators, we will first define their action on appropriate spaces of
test functions only.

Definition 12.1.1 (Classes of simple functions). For a collection € of
bounded Borel subsets of R%, let

S(€; X) ::span{lc<§§>:10:06‘K,JJEX}7

su(@:X) = {res@:x): [ ar=o),
St0e(€; X) = {f € L,c(R: X) : 1o f € (6 X) for all C € €},
Seo(€; X) 1= Sioc(€; X) N L®(R% X).
It is easy to see that S(¢; X) C LP(R%; X) for all p € [1, 0], and that
S0(%: X) € S(%: X) € S (61 X)  Sioe(€; X).

Our primary case of interest will be when ¥ = & is a collection of dyadic
cubes of R? in the sense of Definition 11.1.6. In this case, S(%; X) is dense
in LP(R%; X) for all p € [1,00). In (12.2) below, we will add yet another
space Spo(Z;X) C So(2;X) to this list, but its introduction requires some
preliminaries.
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12.1.a Haar multipliers

We begin with what is arguably the simplest class of operators deserving the
name of “dyadic singular integrals”. In essence, we have encountered these
operators already, at least implicitly on the one-dimensional domain space
R!, where we dealt with operators of the form

f=> el f )by

I1€e2

and showed their uniform boundedness on LP(R; X) for arbitrary unimodular
coefficients €y, assuming that p € (1,00) and X is a UMD space (see Theorem
4.2.13). We now wish to extend these consideration to the general Euclidean
domain R?. This hardly presents any new challenges, and mainly serves as a
warm-up for the subsequent considerations.

We first recall and extend the notation related to conditional expectations
and martingale differences over the dyadic filtration of R?. For any cube

Q = aq +£(Q)[0,1)?,

with sidelength £(Q) > 0 and “lower left” corner ag € R, we denote by

ch(Q) := {aQ + %E(Q)([O, D4+ a):ac 0, 1}d}

the collection of its 2¢ “children” obtained by bisecting each of the intervals
in the Cartesian product defining @Q. In particular, for

Q< Dy :={27%([0,1) +n) : n € 2},
we have
ch(Q) ={Q" € Zry1: Q' C Q}.
For every cube @, we define the conditional expectation and martingale

difference projections (acting on f € Li (R%; X))

loc
Eqf:=1qf fdz, Dof= Y  Eqf-Eqf. (12.1)
@ Q'ech(Q)
Then for every k € Z, we let

Erf :=E(flo(Z) = > Eof,

QEDx

Dkf = Ek+1f — Ekf = Z DQf

QEDk

We still want to express the martingale difference projections D¢ in terms
of vector-valued extensions of rank-one operators on scalar-valued functions.
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In dimension d = 1, the operators already have this form, as we recall from
Lemma 4.2.11 and the preceding discussion:

Drf = (f,hi)hr, hy =172 —1p,),

where hj is called the Haar function associated with the interval I.

In higher dimensions, there are various ways of constructing analogues of
the Haar functions. For the present purposes, a standard tensor construction
suffices. In d = 1, we denote

hYi=hr,  BY =17V,

Lemma 12.1.2. In general dimension d > 1, the (tensor-)Haar functions

d
B (@) = i) @) = [T 5@, o= (an,saa) € 0,1

Il>< de

satisfy the following identity for all f € LL _(R% X):

Dof= >, (fLh@)hy= > Daf.

ae{0,1}9\{0} ae{0,1}\{0}

Proof. From the (obvious) orthogonality of one-dimensional Haar functions,
it follows that

d
(hy, hig) = [ T(hey 0 H%,@
i=1

Let Hg be the space of scalar-valued functions supported on @, constant on
each dyadic child of @, and of mean zero. Clearly dim Hg = (2¢ — 1) and
hg € Hq for each a € {0, 134\ {0}. Since these h¢ are orthonormal and their
number is equal to dim Hg, they must form an orthonormal basis of Hg. On
the other hand, one easily verifies that D¢ is the orthogonal projection of
L*(R%) onto Hg, so in particular Dqf = f for all f € Hgq. Since the hg
form an orthonormal basis, the claimed identity is true for all f € Hqg. If
f €Ll . (R%:X) and z* € X*, then (Do f,2*) € Hg and thus

Dofay= Y (Dofi)hghhg=( Y.  (Dof.hi)hg.a”),
ae{0,1}9\{0} ae{0,1}4\{0}

where

(Dof,hg) = > (Eqf.hd) — (Bqf,he)
Q’€ch(Q)
= Y ([ Eqhd) = (f.hd).
Q'ech(Q)

The claimed identity follows, since the functionals z* € X* separate the points
x € X by the Hahn—Banach theorem. O
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The functions h%, with o € {0,1}%\ {0}, are referred to as cancellative Haar
functions, as they all have vanishing mean. In contrast, h¢, = Q71?1 is the
non-cancellative Haar function on Q). In the wavelet literature, the cancellative
Haar functions are special cases of mother wavelets, while the non-cancellative
Haar function is the father wavelet.

Lemma 12.1.3. Let X be a Banach space and p € (1,00). Then the space of
finite linear combinations of cancellative Haar functions with X -coefficients,

S00(Z; X) := span {h% r:Q€ P,ac{0,1}%\{0},z € X}, (12.2)

is dense in LP(RY; X).

Proof. The filtration generated by the dyadic cubes, (% )kez = (0(Zk))kez 18
o-finite with respect to the Lebesgue measure on R?, and .Z ., := 0( Ukez ﬁk)
is the Borel o-algebra of R?. Hence Eif — f in LP(R%; X) as k — oo for all
f € LP(R%; X) by the forward convergence of generated martingales (Theorem
3.3.2). On the other hand, .7_, := [,z #, contains only sets of Lebesgue
measure 0 (the empty set) or co (the quadrants, and their unions), which
means (by definition) that the Lebesgue measure is purely infinite on .#_ .
Thus Exf — 0 in LP(R% X) as k — —oo for all f € LP(R? X) by the
backward convergence of martingales (Theorem 3.3.5).

Combining these observation about the limits at +00, it follows that func-
tions of the form Ep; f —E,, f = Ziw:;i Dy, f are dense in LP(R%; X). Next, we
make the following observations about each D appearing in this expansion.
First, for any P € %,,, multiplication with 1p commutes with Dg; second,
1pDyf is a finite linear combination of some Dg f, and finally, if (P;)52, is
an enumeration of %,,, then Zfil 1p,f — f in LP(R% X) as N — oo. Thus
finite linear combinations of Dgf are dense in LP(R%; X). Finally, Lemma
12.1.2 shows that Dg f € Spo(Z; X), and completes the proof. O

Remark 12.1.4. One can check that
So0(Z;X) = {f €S5(2;X): / f =0 for each quadrant D of Rd}.
D

In particular, if & is a connected tree of dyadic cubes (i.e., every two cubes
are contained in a common bigger dyadic cube), then Syo(Z; X) = Sp(Z; X).
Making this connectedness assumption would slightly simplify some consid-
erations, but have the disadvantage of excluding the standard dyadic system
(cf. Remark 11.1.9).

After these preparatory considerations, we are in a position to prove the first
non-trivial estimates for operators of dyadic singular integral type. As one
expects, the UMD property is used, but in this first estimate still in a relatively
straightforward manner.



92 12 Dyadic operators and the 7'(1) theorem

Proposition 12.1.5. Let X be a UMD space, p € (1,00), and f € Spo(Z; X).
For any any a € {0,1}%\ {0} and coefficients A\g € K, we have the estimates

| S Aathe, fing

< Bp,x sup |)\Q|Hf||Lv(Rd;X),
Qe

S Lr(R;X)
| 3 bt PR3], ey < Bl Fllingesin.
Qe2 ’

Proof. Let us denote

of = (hg, NG,  DGf:=Dof =Dgf= > (hd, [Hh].
76{0’1}(1\{070‘}

Then (]D)% 1, Déo‘ f) is a martingale difference sequence on @, as each th with
v ¢ {0, a} has average zero on the sets where hg is constant. Appropriately
enumerated, (D% 1 Déa f)oez also forms a martingale difference sequence.
Estimating its martingale transform by a multiplying sequence of 0’s and 1’s,
we obtain

| 3 xam2/]
Qe2

- Ag-D&f +0 D5 )‘
Lr(R4;X) H%(Q Qf + o'/ Lp(R4;X)

< fpx|| 3 (Dos +Dg77))|

Qe

Lr(RE;X)’

For the other claim, we argue by the contraction principle and the ran-
domised UMD inequality to see that

R <|| 3 (capas +eapges)|
et LP(2xREX) & LP(2xR;X)
+ o —a
S prxH Z ( of +Dq f)‘ Lr (R X))
Qe

and in both cases we conclude by observing that
> (D6f +Dgf) = > Pas=f
Qev Qev

O

For operator-valued coefficients Ag € Z(X,Y’), the following variants of R-
boundedness turn out to be relevant:

Definition 12.1.6. For p € (1,00) and an operator family A = (Ag)gewr C
ZL(X,Y) indexed by a collection € of bounded Borel subsets of R, we de-
note by Dx,(N\) and EZ,(N) the smallest admissible constants such that the
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following estimates hold for all finitely non-zero families (xg)gew C X and
(Y5)qew C Y™

> 1QlI{rzq, 45)]

Q€%
< @‘%()‘)H > EQleQ‘
Q€%

coyn1 ‘ ,
LI’(QXRd;X)HQ;g @¥ete L (2xR4;Y*)

and

H > 5Q/\QxQ1Q’
QETE

<& H 1 ‘ .
Lr(2xR4Y) Zp(N) Z fetete LP(2xR4;X)

QE¥
We refer to 2%,(X\) as the D% ,-bound of X, and say that X is DX p-bounded
if 2%,(\) < 0o. The same convention applies to ER, in place of DR,.

Remark 12.1.7. The primary case of interest will be when ¥ = Z is a system
of dyadic cubes. In this case, it is useful to observe at once that the defining
inequality of £%,(\) immediately extends to Haar functions hg in place of
the indicators 1¢:

H Z EQ)\Q.'L‘QhZ?‘
Qe2

< g%p(A>" Z EQth%‘
QEZ

LP(2xR;Y) LP(2xRE;X)

Proof. We have h$ = sgn(h%)\er/le and hence, by the contraction prin-
ciple,

a _ —-1/2
| 3 cosata], gy = | 2 cel@™ 2000,
S LP(2XxR4;Z) S LP(2xR4;Z)
for both (z2q,Z) = {(zg, X), (Agzq,Y)}. Using this twice, with both « and
v, and in between the defining inequality of £%,()) for |Q|_1/2xQ in place
xQ, yields the claim. O

These notions are weaker than R-boundedness; we will shortly see that the
converse fails in general.

Lemma 12.1.8. For all Banach spaces X and Y, all operator families \ =
(A@)gewr € Z(X,Y) and their adjoints \* == (A\§)qez € L (Y™, X*), and
all p € (1,00), we have

sup || Aol < 2Z,(N\) < min{EZ,(N), EXZpy (N)},
QETE
ERXpy(N) < ||z —= Zpy({rg: Q> x})||Loo(Rd) < Zp(N).

Proof. The last two estimates are immediate. The first estimate follows by
testing the defining condition of 2%, with only one non-zero pair (zq, y;)) at
a time. To see that 2%, (\) < EZ%,()N), for suitable scalars |ng| = 1, we have
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> 1Qlema. 0 = 3 [ nebasolouite)

QE¥ QE¥

= ]E/< Y cenereralae: Y ERy}ElR>

QET? Re¥

< H Z 6Q?7Q>\Q=’EQ1Q‘ ,
Gev LP (2xRa;Y*)

*
ER 1R‘

< é”%p(A)H Z ngQlQ’ LP(QXRd~X)H Z SRleR’ LY (2xRAY )]
Qe% ’ Re€ '

where we used Kahane’s contraction principle and the definition of £%,())
to pull out the scalar 7ng and the operators Agp in the last step. Since
Az, ¥H) = (1@, \ousH), and D%, () is defined by testing the expressions
on the right over a more general choice of z7y € X™* in place of z¢ € X, it
follows that

DR, () < Dy () < E% (V)

by using what we already proved, but with A* in place of . O

Corollary 12.1.9. If A = (Ag)gew € Z(X) consists of scalar multiples of
the identity, then

sup [Aq| = Z%y(A) = EAp(N) = Zp(A).-
Qe<%

Proof. Lemma 12.1.9 shows that we have this chain with “<” in place of “="
throughout. On the other hand, Kahane’s contraction principle guarantees
that %,()\) = supgee |A@l- Thus we have equality throughout. O

The following example of 2% ,-bounded families will play a role in our inves-
tigation of criteria for boundedness of singular integral operators; the uniform
boundedness of the quantities |Q|~*(T'1¢, 1¢) is classically known as the weak
boundedness property of the operator T

Ezample 12.1.10. Suppose that T € Z(LP(R%; X),LP(R%Y)), and define
(T(1g),1q) € Z(X,Y) by

<T1Q, 1Q> T <T(1Q.€C), 1Q> = / T(].Q%) eY.
Q
For any collection € of bounded Borel subsets of R?, it follows that

T1g,1¢)
IR ({M} ) < Iy e
p ‘Ql Qe H ||$(L (R4;X),LP(R4;Y))

Proof. With suitable scalars |ng| = 1, we have
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(Mg 1q) .
ZIQ\K 5] vayQ>’ Z??Q (1gzq): 1oyg)

= E<T > conerolaes Y €Ry}‘q1pz>

Qee€ Re®

<[[r ¥ conarote | 3 erivta]
Ocw LP(2xR4;Y) oyt

Lv (2xR4;Y)’

where

7 3 camaratal],, g e,

||TH$(LP(1Rd ;X),LP(REY)) H ngQleQ‘ LP(2xR%;X)

by the assumed boundedness of T" and Kahane’s contraction principle with
the coefficients nq. 0

While Example 12.1.10 will only play a role later, the weakening of R-
boundedness has the following immediate application:

Theorem 12.1.11 (Haar multipliers). Let X and Y be UMD spaces and
€ (1,00). For a,v € {0,1}?\ {0} and A = (A\Q)geo C Z(X,Y) , consider
the operator

9 f e Y A hhy, (12.3)
Qe

initially mapping Soo(2; X) into Soo(2;Y ). Then HY" extends to a bounded
operator on LP(R%; X) if and only if D%,(N\) < 0o, and in this case
DXp(N)
By x By v

Proof Dualising 937 f € Soo(2;X) C LP(R% X) with g € Spo(Z2;Y*) C
LY (R% Y™*), we arrive at

(SRl =] Y (o). (1 0))
QED
(b (h.9)
*‘ > el i)

Qe

<I9N 2 r@ax), e ®ey)) < ;Xﬁ;ﬁy*@%’p()\). (12.4)

(12.5)

H Z =Q{f Q) |Q|1/2‘

X
LP(2XR%X)

X H Z €Q<gahaQ>W’
Qe

Lo (2xR;Y ")
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For a fixed s € R?, the sequences (£q1¢(5)/|Q|"/?)ges and (eQh®))qez have
equal distribution; thus

| 2 st ra @

Lr(2xR%;X) H Z colf, hQ

< p,XHfHLP(Rd;X)

QllLr(2xreX)

by Proposition 12.1.5 in the last step. Similarly, the last term in (12.5) is
dominated by S, . ||g||Lp/(Rd;Y*). Hence

(DN f,9)] < 2Ryp(N)By x By

which proves the second estimate in (12.4).

Conversely, for finitely non-zero families (zq)gee C X and (y5)qez C
Y™, we choose scalar |ng| = 1 such that [(Agzq,¥y5H)| = ne{rezq,yg) and
consider the functions

=Y 1QI"*nqrohdy € Soo(Z;:X), g:= Y |QI"*y5hd) € Soo(Z;Y™).

flle®a,x) 91 Lo (gasy +ys

QED Qe
Then
V=D 1QI *ngAqrghd,
Qez
O, 9) =D Qe (Mg, 5),
Qe

and hence

Z |Q||<)‘Qany5>| < ||~‘3§WHff(LP(Rd;X),LP(Rd;Y)||f||LP(Rd;X)||9||Lp’(]Rd;Y*)a
QREZD

where

- 1/2 o
11l o aex) < BP,XHQZE;EM narahd| o

=[5 egrgl ‘
p’XHQze:@ QTR L) (xre;x)

by a similar equidistribution property as before. Similarly, we have

Z EQ?JQ Q‘

QED

9]l 1o Ry =) < By«

LY (2xREY )

and combining the bounds, we have proved the first estimate in (12.4). O

Remark 12.1.12. Under stronger assumptions on the coefficients A, one can
improve the dependence on the UMD constants:
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I X =Y, a=7,and A C K- Ix is bounded, then 5 extends to a
bounded operator on LP(R%; X) of norm at most

195 |2 Lr@e;x)) < Bp,x 1A ]loo-

(2) If X C Z(X,Y) is R-bounded, then £ extends to a bounded operator
from LP(R%; X) to LP(R%Y) of norm at most

1937 2L @), Lo ReyY) < Boy By x ERp(N),
where a partial advantage over Theorem 12.1.11 comes from ﬁp__ y < ﬂ; Y-

Proof. (1): This is a restatement of the first estimate in Proposition 12.1.5.

(2): Since (hZ))Qe@ is a martingale difference sequence, using the defin-
ing properties of various constants and the definition of £%,()\) via Remark
12.1.7, we have

| > Aatsng)ny,
Qe

<Bry| X ceralss ng)ng|
ez

LP(R%;Y)

LP(2xR%X)

< Bry RN Y et hg)he
Qe

LP(2xREY)
< By EZp(NBy x| fll L e x)
where, in the last step, we used the second estimate in Proposition 12.1.5. [J

Here is a nice class of examples of coefficients satisfying the dyadic R-
boundedness condition:

Proposition 12.1.13. Let Y be a UMD space and p € (1,00). Let b €
L® (R Z(X,Y)), let a = (ag)gea € £°°(2; L= (RY)), and

A= (A@)geg = ((aqb)q)gea-
Then
EXp(((aqb)@)gez) < ﬂ;:Y”a”é“’(LOO)||bHL°°(]Rd;.,§f(X,Y))

Thus, for o,y € {0,1}?\{0}, the Haar multiplier $)§" extends to a bounded
operator from LP(R%; X) to LP(R%,Y) of norm at most

19537 .21 ®ex), Lo Resv)) < Boy Baty B x Nall e (o) 1]l oo (rts 2, v)) -
Proof. The second claim is immediate from the first one in combination with

Remark 12.1.12(2), so we concentrate on the first one. We may assume by
scaling that ||agl| gy < 1. Then
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- H > EQEQ(abeQlQ)’
QED

H Q;@Z_:chzbmelQ Le(Rd;Y Lr(R4;Y)

< B;:YHb Z 8Q$Q1Q‘

Lr(R4;Y
e P(REY)

+
< 5p,y ||bHLoo(Rd;z(X,Y) H Qze:@EQleQ’ Lr(R4:Y)’

where, in the first estimate, we applied Stein’s inequality (Theorem 4.2.23)
followed by Kahane’s contraction principle with the scalar coeflicients ag. O

The following result shows that result of Proposition 12.1.13 cannot be im-
proved to usual R-boundedness; thus the notions 2%, and &%, represent
genuine relaxations:

Proposition 12.1.14. For non-zero Banach spaces X and Y, the following
are equivalent:

(1) X has type 2 and Y has cotype 2;

(2) for every b € L>(0,1; £ (X,Y)), the set {(b)g : @ € 2([0,1))} is R-
bounded;

(3) for every b € L>(0,1; Z(X,Y)), the function

v 2({(bg e Qe 2(0,1)})
s essentially bounded.

Proof. (1)=(2): For b € L*>(0,1;.Z(X,Y)), it is clear that the {(b)g : Q €
2([0,1))} is uniformly bounded. Under the assumption (1), this implies R-
boundedness by Proposition 8.6.1.

(2)=-(3): This is clear.

(3)=(1): From the definition of R-boundedness, it is immediate that
H(T) = sup({Z(F) : F C 7 finite}). So if some collection .7 is not R-
bounded, it has finite subcollections .%#, with #Z(.%,) — co. Then the count-
able collection Uflo:l F,, C 7 also fails to be R-bounded.

If (1) is not satisfied, then Proposition 8.6.1 says that the unit ball of
B 2(x,y) of Z(X,Y) is not R-bounded. By what we just observed, this means
that we can find a sequence {ux}72, € Bo(x,y) that fails to be R-bounded.
Let v, := %uk — %Uk_i'_l and

b = Z’Uj].[4—j—174—j).
7=0

Then b € L®(R%.Z(X,Y)) and [|b]lc = supy ||vk] < %supk lugll = g
Moreover,
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Oy =483 F470 = 45347 50 = 347 Jum ) = u
Jj=k j=k j=k

Then for each n, we have

|z — Z({{b)r:2z€1e€2(0,1)))llree(0,1)

2 Z({(b)1:[0,47") e I € Z([0,1)}) = Z({(b)[o,4-%) }r=0) = Z({ur}i=0),
and hence

oo = Z({ur}iZo) = Sggﬁ’({Uk}Z:o)
<z = Z({b)r 2z €1 € 2([0,1))DllLee(0,1)-

Thus (3) fails, and by contraposition this proves the claimed implication. O
Comparison of D%, and EX)

In the rest of this section, we make a further comparison of the two relaxed
notions of R-boundedness from Definition 12.1.6.. When Y is a UMD space—
an assumption that we make a good part of the time—, these notions turn
out to be equivalent. The universal bound Z%,(\) < &Z,(\) was already
observed in Lemma 12.1.8. The reverse estimate could be achieved essentially
by concatenating a couple of results that we have treated earlier in these
volumes, but it turns out that a slightly sharper quantitative bound can be
achieved by also revisiting their proofs to establish the following proposition:

Proposition 12.1.15. Let Y be a UMD space and p € (1,00). Let & =
{2, 2} be the trivial o-algebra of a probability space (12,47 ,P) supporting a
Rademacher sequence (£,)N_,, and (Z,)N_, be a o-finite filtration of some
measure space (S,.F, ). Then, for all f € LP(2 x S;Y), we have

< BF .
Lr(@2xsy) By I fllLr(2xs:v)

N
| enElenfléo x Z)
n=1

Proof. Let &, :=o(e1,...,e,) forn=1,...,N. Then

E(gn.ﬂg() X yn) = E(E(gnf|gn X 9n)|g0 X g\n)
= E<EnE(f|@@n X yn”(g)o X yN)v

where in the last step we note that for both k& € {n, N}, the conditional expec-
tation of the function inside, given &y X Fj, is obtained by simply integrating
out the dependence on w € 2. On the other hand, we have

E(En]E(f|gn—1 ® ﬂn”go X 5‘\]\[)

= E(E(EnE(fkg)n,l X yn”gn,l X y]v)‘(g)o X yN)

= E(E(gnk’g}nfl X yN)E(fkg}n,l X yn)‘go X yN)

=E(0-E(f|&—1 X Fn)|60 X Fn) =0.



100 12 Dyadic operators and the 7'(1) theorem

Thus
E(Enf‘éao X yn)

E(en[E(f6n X Fn) — E(fl6n-1 X Fn)]|60 X FN)
E(en[E(f|%n) — E(f|%2n-1)]|60 X FN)
]E(EndQn‘CgoO X JN)a

where

_ JE(f1%) — E(f|%-1), k=2,...,2N,
TR, k=1,

are martingale differences relative to a filtration (%;)2Y, on £2 x S defined by
g2n = (g)n X y’ru g2n71 = gnfl X yn

Then, noting that E( |y x Fy) is constant in w € 2, and denoting by
(/)2 another Rademacher sequence on some (£2’, /', '), we have

N
| > cuBiensiés x 7)
n=1

N
= | > ehuEendanléo ﬁN)’
n=1
N
= [EC ehnendanldo x yN)]

n=1

Lr(2xS5;Y)

Lr(2'x2x8S;Y)

Lr(£2'x2x8S;Y)

N

N
E 52n5nd2n

n=1

< a’d‘ < B H d(
= 1; RO Lo %) < By 1; k

= BV IIE(f|1%an) | Lr(2x sy < By lIfllLe(@xsiv),

= H g 52n 2n
LP(Q'x2xS;Y) L (2 x 2% S;Y)

LP(2%S;Y)

where, in the four estimates, we applied the contractivity of conditional ex-
pectation on L?, Kahane’s contraction principle with coefficients {0,1}, the
definition of the UMD constant B;f y» and again the contractivity of condi-
tional expectation on LP. O

Remark 12.1.16. Proposition 12.1.15 is a simultaneous generalisation of Stein’s
inequality (Theorem 4.2.23),

N N
a < + H
H ;%E(fdjn) LP(2xSY) Bpy ;E"f"

for all f,, € LP(S;Y), and the K-convexity inequality for UMD spaces (Propo-
sition 4.3.10),

(12.6)

Lr(2x8;Y)
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Kpy | fllrayy, Koy < By, (12.7)

N
H Z EnE(Enf)‘
n=1

for all f € LP(£2;Y).

Namely, (12.6) is obtained from Proposition 12.1.15 by taking f =
S ek @ fr, in which case E(e, f|60 X Fn) = E(fn|Fn), while (12.7) is
the special case where S = {s} is a singleton, or in other words f is indepen-
dent of s € S. Moreover, Proposition 12.1.15 shows that (12.7) holds equally
well with real or complex Rademacher variable ¢,,, provided only that we use
the UMD constant 3,y defined in terms of the same variables; in contrast,
the proof of Proposition 4.3.10 was written for the real Rademacher variables
r, and made some explicit (although not essential) use of this choice.

Qualitatively, Proposition 12.1.15 could also be derived from the said two
results, but with a quantitatively weaker conclusion; namely,

<
Lr(£2;Y)

N
|3 enBlentléo x #2)
n=1

Lr(2%S;Y)

N
- H S EE(enfI6 x F)|Eo x F)
n=1

Le(2 x2xS;Y)

ol ZNjg;E(anﬂgo x 7))
n=1

LP(2'x02%S;Y)

< + K, s L H ’
(S 2) By Kpy I fllLe(s;Le(oiv))

N
= By || 3 enBlensico)|
n=1

using the K-convexity inequality in LP(£2;Y), pointwise at each s € S, in the
last step.

Corollary 12.1.17. If Y is a UMD space and X = (Ag)gew C Z(X,Y),
then
DEp(\) < EXp(N) < By, Y*@%’ (N).

Proof. We already proved the first inequality in Lemma 12.1.8. For the second
inequality, we first note that, by Fubini’s theorem,

| 3 cazetql

Qe

(12.8)
Lr(2xR;Z)’

Lr(2xREZ) H Z En(Q)ZQlQ’
S

where n(Q) € Z is such that @ € Z,: This is because, pointwise at each

s € R, there is exactly one dyadic Q 3 s of each generation n € Z, and we

can replace the sequence (£q)gss by the equidistributed sequence (e,,)nez =

(€n(Q))@ss- For zg = A\grg and Z =Y, we then dualise the right-hand side

of (12.8) with G' € LP (2 x R%; Y*):
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< 2 fn@Marale, G)| = | 3 (ove, (Eeno@e)IQ

QEDn

< 95,00 3 cuarvtel
Qe

x H Y @ <E(5n(Q)G)>Q1Q’
Qe

Lr (2xR4; X) (12.9)

LY (2xREY*)
In the L¥' (2 x R%; Y*) norm on the right, we write

Z%Q) En@@)ele —an Z E(E a(Zn))1g

QED nez QED,
=> &E(E =" c.E(enGl{2, 2} x 0(Z0)).
neZ nez

Thus, by a direct application of Proposition 12.1.15 in the UMD space Y™ in
place of Y, it follows that

H Z en(@) (Elen@G))ele ‘
Q€2

+
LP (2xR4;Y ) S ﬁp”Y*”GHLp/(_Qde;Y*).

Substituting back to (12.9), it follows by duality that

H >, En(Q))‘QleQ‘ _
Oco Lr(2xRL;Y)
S By Q%:@E" @rele LP (xR X))

and we can replace n(Q) by @ on both sides according to (12.8) to obtain the
claimed result. O

12.1.b Nested collections of unions of dyadic cubes

Before proceeding to more complicated dyadic singular integrals, we de-
vote this intermediate section to elementary, although not entirely trivial,
geometric-combinatorial considerations related to the dyadic cubes. Collect-
ing the relevant auxiliary results here for easy reference will allow our subse-
quent analysis to flow with a nice tempo without annoying interruptions.

Definition 12.1.18 (Nestedness). We say that two set E, F are nested if
ENF e {o,E,F}. A collection & of sets is called nested if any E,F € &
have this property.

The fact that the collection Z of dyadic cubes enjoys this property underlies
many considerations that we have encountered in these volumes.
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In the dyadic analysis of a singular integral operators that we undertake
in this section, we will also need to deal with unions @1 U Q4 of two dyadic
cubes of the same size. A moment’s thought confirms that two such sets will
not be nested in general, yet quite frequently they still enjoy this property.
Accordingly, a key to the related considerations will be the decomposition
of collections of pairs of dyadic cubes into controllably many subcollections,
where the nestedness of the unions @1 U @ is valid.

Definition 12.1.19 (Strong nestedness). Let Q1 UQ2 and Ry U Ry be two
unions of some Q;, R; € Z with £(Q1) = £(Q2) and {(R1) = ¢(Ry). We say
that E and F' are strongly nested if they are equal, or disjoint, or one of them,
say Q1UQ2, is contained not just in R1URs but in a dyadic child of Ry or Rs.
A collection of such unions is called strongly nested if any two of its members
have this property.

Note that the dyadic cubes themselves, contained in this definition as a degen-
erate case with Q2 = @1, clearly satisfy this strong nestedness. This notion
is relevant for considerations dealing with Haar functions which, as we recall,
are constant on the dyadic children of their supporting dyadic cubes; thus,
if @1 U Q@2 and Ry U Ry are strongly nested, unequal but intersecting, then
the smaller union is entirely contained in a set of constant value for any Haar
function related to the larger union.

Our first (relatively simple) decomposition into strongly nested subcollec-
tions is the following:

Lemma 12.1.20. Suppose that, for some n € N:

(a) .F C 2 is a finite subcollection;
(b) ¢ : F — 2 is an injection with £(d(Q)) = £(
(©) if Q, R € F and £(Q) < £(R), then £(Q) < 2~

and

) forallQ € F
"U(R);

pQ)CQ™  VQeZ. (12.10)
Then % can be partitioned into 3 subcollections F; such that each collection
{QU(Q) : Q € F;} is strongly nested.

Proof. Step 1 — Let all assumptions of the lemma be in force until further
notice. For each Q € .# U ¢(%), we define a label r(Q) € {0, 1,2} such that
r(Q) # r((Q)) for every @ € % unless ¢(Q) = Q. This ensures that QU (Q)
and R U ¢(R) are disjoint whenever @, R € % are two different cubes with
r(Q) = r(R) and £(Q) = ((R).

Indeed, @ # R implies ¢(Q) # ¢(R). Since different dyadic cubes of equal
size are disjoint, this implies that Q N R = @ = ¢(Q) N ¢(R). If ¢(Q) = Q
or ¢(R) = R, this already shows that Q U ¢(Q) and R U ¢(R) are disjoint. If
9(Q) # Q and ¢(R) # R, then r(6(Q)) # r(Q) = r(R) implies $(Q) # R and
similarly ¢(R) # Q. By equal size again, this implies that ¢(Q) "R = @ =
Q N ¢(R), giving the (strong) nestedness when £(Q) = ¢(R).
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To define such 7(R), let us denote ¢°°(Q) = Q, ¢°*(Q) = ¢(¢°*~D(Q))
for k > 1. An orbit of ¢ is a set {¢°*(Q) : k =0,..., K}, where Q € .# and
either p°K+1(Q) = @ (in this case the orbit is cyclic), or Q ¢ ¢(F) and
#°K(Q) ¢ Z. For all Q € F Up(F), we define r(Q) € {0, 1,2} by alternating
the values 0 and 1 on both non-cyclic orbits and cyclic orbits of even length,
and in addition using the value 2 once on cyclic orbits of odd length. In this
way, we ensure that 7(Q) # r(¢(Q)) for any @ € % unless Q = ¢(Q).

Step 2 — It remains to check the strong nestedness in the case of Q, R € %
with £(Q) < £(R), hence £(Q) < 27™¢(R). If QU¢(Q) intersect RUG(R), then
one of P € {Q, #(Q)} intersects one of S € {R, »(R)}. Since £(P) < 27™¢(S)
and the cubes are dyadic, this implies that P("™) C S. Since ¢(Q) C Q™), we
have ¢(Q)™ = QU and hence Q U ¢(Q) € Q™ C S, confirming strong
nestedness in the case of £(Q) < ¢(R). O

In the lack of (12.10), the situation is somewhat more complicated. Suitable
substitute conditions are provided in the following:

Lemma 12.1.21. Assume conditions (a) through (c) as well as:

(d) ¢(Q) C 3Q™ for all Q € F;
(e) 3Q C Q™ for all Q € .F U ¢(F).

Then F can be partitioned into nine subcollections F#; such that each collection

{QUG(Q) : Q € F;} is strongly nested.

Proof. Step 1 — We define the label r(Q) € {0, 1,2} exactly as in the proof of
Lemma 12.1.20 to ensure that 7(Q) # r(¢#(Q)) unless Q@ = ¢(Q). This gives
the nestedness of the sets Q U ¢(Q) for cubes of a fixed sidelength, as before.

Step 2 — We claim that, for each Q € .F U¢(.F), there can be at most one
R € .7 U ¢(F) such that

Q¢ R, 3Q™ ¢ Rq, (12.11)

where Rg is the unique dyadic child of R that contains Q@ C R.

In fact, let R be as above, and Q C R C S € .Z U ¢(.F), thus Q™) C R,
R™ C S by (c). By (e) applied to the cube R, we then have 3Q(™) C 3R C
R(™ C Sg, so indeed S will not satisfy the condition (12.11) that R does, and
this proves the uniqueness of R.

Step 8— For each P € .%, we define a second label s(P) € {0, 1,2} in such
a way that if (r(P), s(P)) = (r(S), s(5)), then (12.11) does not hold for either
R =S or R = ¢(S). This will ensure strong nestedness for the subcollection
with constant pairs of labels (r(P), s(P)).

Indeed, suppose that P,S € .# have (r(P),s(P)) = (r(5),s(S)) where
L(P) < £(S) and P U ¢(P) intersects S U ¢(S). Hence (at least) one of Q €
{P,»(P)} intersects (at least) one of R € {S,¢(5)} and thus Q@ C R. By (d)
and the failure of (12.11), we have P U ¢(P) C (1 +2"T'Q) C Rq.
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The required second label s(P) is defined for each P € % as follows. For
all P € # of maximal size, let s(P) := 0. Recursively, we proceed to the unla-
belled cubes P € % of maximal size. For these cubes, we first check whether
(12.11) occurs with either @ = P or @ = ¢(P), and some R € .F U ¢(.F).
It could happen that R € .#, or R = ¢(S) with S € .#, or both. We then
require that s(P) is chosen so that (r(P), s(P)) ¢ {(r(R), s(R)), (r(S), s(S))}.
If S = R, this is clearly one restriction on S(P). But if S # R = ¢(5), then
r(R) # r(S) by the alternating choice of r along the orbits, and we still get
at most one restriction of the possible value of s(P). Since different R and S
may arise from the case Q = P and @ = ¢(P) we get altogether at most two
restrictions on s(P), and we can declare that s(P) is the smallest remaining
number in {0, 1,2}. O

The next result relaxes the assumptions even further, at the cost of compli-
cating the conclusions:

Lemma 12.1.22. Assume conditions (a) through (d). Then # can be par-
titioned into 144 subcollections F;, and on each of them we have injections
Gij Fi = 2,75=0,1,2,3, where ¢; o(Q) = Q and ¢; 3(Q) = ¢(Q) such that
each collection

{0:;(Q)U¢i;41(Q) : Q € Fi} (12.12)

is strongly nested.

Proof. The idea is to combine the special cases treated in the two previous
Lemmas 12.1.20 and 12.1.21, which had the additional assumptions (12.10)
and (e), respectively; neither is assumed now.

For every R € 2, consider the 2"¢ cubes Q € 2 with Q™ = R. Among
them, there are (2" — 2)¢ off-boundary cubes @ with 3Q C R, while the
number of boundary cubes is then

1
27’Ld _ (271 _ 2)d — 2nd[1 _ (1 _ 2177’L)d] < 2nd . 217’nd g §2nd

if n > logy(4d). When this is the case, we can define a permutation ¢ : 2 — 9
with £(4(Q)) = £(Q), ¥(Q) € Q™ (as in (12.10)) such that (Q) is an off-
boundary cube in Q) whenever Q is a boundary cube in Q).

Let us first divide .# into four subcollection %, ,, where u,v € {0,1}, so
that Q € %,., is a boundary cube in Q™ if and only if u = 1, whereas ¢(Q)
is a boundary cube in 1(Q)™ if and only if v = 1.

Case %y,0 : By Lemma 12.1.21, we can divide %y o into nine subcollections .%;
such that {QU¢(Q) : Q € %} is strongly nested. Letting ¢, 1 = @i 2 = ¢ 3 =
¢ in this case, we trivially have the strong nestedness of {¢; ;(Q)U¢; ;j+1(Q) :
Q € #;} for j = 1,2 (since the collection is simply ¢(.%#;) C Z in this case.
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Case Fy,1 : On the collection % 1, we consider the map ¢ o ¢ and observe
that it also satisfies (d); indeed, ¢(Q) C 3Q(™ lies inside one of the dyadic
neighbours of Q(), and 1) keeps it inside this same nth generation ancestor.
Since ¢(Q) is a boundary cube in ¢(Q)™ for Q € F; 1 by definition of this
collection, ¥(4(Q)) is off-boundary in ¢(Q)™ = (4(Q))™ by definition of
1, and hence (o1, o ¢) also satisfies (e) in place of (#,¢). Then Lemma
12.1.21 shows that %, 1 can be divided into nine subcollections .%/ such that
each {Q U Y (¢(Q)) : Q € F.} is strongly nested. On the other hand, we can
write

{£(0(Q)Ue(Q): Q€ Foa}t ={RUP(R) : R € ¢(Fo,1)}-

Here (%0,1,1) satisfies the assumptions of Lemma 12.1.20, and hence ¢(.%,1)
can be divided into three subcollections ¢, such that {RUY(R): R € 4,)} is
strongly nested. This since ¢ is injective, this induces a decomposition of % 1
into three subcollections where .%;" such that {1(¢(Q)) U¢(Q) : Q € F/'}
is strongly nested. Then, defining %, = %, N #/ for i = (a,b), we find that
both

[QUUEBQ): Qe F),  {POQ)UQ): Qe Fi)

are strongly nested, and there is in total 9-3 such collections .%; decomposing
Fo,1. So taking ¢; 1 = 1o ¢ and ¢; 2 = ¢; 3, we have the strong nestedness of
the collections in (12.12), the case j = 2 for trivial reasons as in case % g.

Case F1 : Similarly, on the collection %1 o, Lemma 12.1.20 applies to the
mapping v to provide three subcollection .%/ such that {QU¥(Q) : Q € .Z,
is strongly nested. And Lemma 12.1.21 applies to (1)(%1,0), po1v~!) to provide
nine subcollections %]’ such that {(Q)U¢(Q) : Q € F/'} is strongly nested.
So altogether we have 3 - 9 subcollection .%; = %, N .%#]' such that

{QuUY@):QeZ}, {P(QUQ):Q e Fi}

are strongly nested. We can hence define ¢; 1 = 9, ¢;2 = ¢i 3 = ¢ to get the
claimed conclusions.

Case 11 : Finally, on the collection %71, Lemma 12.1.20 applies to both
(Z11 :9) and to (1 o ¢(F11 : 1) to provide three subcollections %, and
three other %/ such that {Q U ¢(Q) : Q € F.} and {¢(¢(Q)) U ¢(Q) :
Q € Z|'} are strongly nested. And we check that Lemma 12.1.21 applies to
(Y(F1 1), Yoporh™1) to provide nine subcollections .Z” such {1(Q)U(4(Q)) :
Q € F!"} is strongly nested. Then with .%; = .Z,N.%/'N.#!" we obtain 32 -9
subcollections such that {QU¥(Q) : Q € F}, {v(Q)UY(¢(Q)) : Q € F;}, and
{Y(0(Q)) Uo(Q) : Q € F;} are strongly nested, and we can define ¢; 1 = 9,
Gi2 =10, ;3 = ¢ in this case.

In total we have divided .# into 9 +2-9-3 +9 - 3% = 144 subcollections
Z#; with required properties. O

Another variant of the conclusion with the same assumptions is as follows:
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Lemma 12.1.23. Assume conditions (a) through (d). Then F can be parti-
tioned into 3391 subcollections F; such that each collection

{QOI U Q)M . @ e .7,} € g3

is strongly nested, where

(1) 233 s one of the dilated dyadic systems from Proposition 11.3.11;
(2) for each P € 9, we denote by PI™l the unique

P e 9™ with P™ D P and ¢(P™) = 3¢(P). (12.13)

Proof. We have Q U ¢(Q) C (1 +2"t1H)Q C 3Q™), where Q™ is the nth
generation dyadic ancestor of ). Recall that the cubes 3R, R € 2, can be
split into 3¢ new dyadic-like systems 2™ by Proposition 11.3.11. For each
Q € 7, let mg be the index such that 3Q™ € 2™ and let Q' = Q<]
Q" = ¢(Q)™el be as in (12.13). (Thus Q' is the three-fold expansions of one
of the neighbours of @Q; any of these contains (), and exactly one of them
belongs to the correct 2™#3; the same remark applies to Q" and ¢(Q) in
place of Q' and Q.) Note that the same Q' can arise from 3¢ different cubes
Q, and the same Q" from 3¢ different ¢(Q); however, by dividing .# into 9¢
subcollections #¢, we ensure that @ is uniquely determined by @', and ¢(Q)
by Q”, within each ..

Let us then consider the collections Z™ = {Q' : Q € F*, mg = m} C
2™3 for the 3¢ different values of m. We can define @ : F»™ — @™ by
&(Q') = Q"; this is well-defined since @’ uniquely determines @, which de-
termines ¢(Q) and then Q”. The map @ is also injective, since Q" uniquely
determines ¢(Q), which (since ¢ is injective) determines @ and then @'. More-
over, we have

U2(Q) = 4Q") = 3U(6(Q)) = 3L(Q) = £(Q").

Thus F*™ C 9™3 and @ satisfy properties (a) and (b) in place of . # C 2
and ¢, and the scale-separation property (c) is clearly inherited by @ from ¢.
Moreover, the nth 2™3-ancestor of both #(Q’) = Q" and Q' is clearly 3Q™
by construction, and hence & satisfies condition (12.10) of Lemma 12.1.20. The
said lemma guarantees that .% %™ can be split into 3 subcollections yj{l’m, SO
that each

{Q/ U@(Ql) . Q/ c Lg;jq,m} C Qm;S

is strongly nested. Writing ¢ = (a,m, j), and defining
Fi={Q e F :mg=m,Q" € 7]},

these are precisely the collections that we wanted to construct. Since a takes 99
values, m takes 3¢ values, and j takes 3 values, the number of these collections
is 9¢.39. 3 = 339*1 ag claimed. O
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Remark 12.1.24. In each of the Lemmas 12.1.20 through 12.1.23, we can drop
assumption (c) at the cost of multiplying the required number of decomposing
subcollections .%#; by n + 1.

Proof. For any .# C 9, consider the n + 1 subcollection .Z* := {Q € .Z :
log, £(Q) =k mod (n+1)}. Each of these clearly satisfies (c). Moreover, any
of the other properties (a) through (e) as well as (12.10), if valid for .Z, is
clearly inherited by each .#*. Thus, if .Z satisfies the assumptions of any of
these lemmas with the possible exception of (c), then each .#* satisfies all of
the relevant assumptions, and the lemma in question provides a decomposition
of .Z* into some ﬁik with appropriate nestedness conditions. The required
decomposition of the original .# is then obtained simply as .Z = J,_, U, FE,
and clearly the number of collections in this decomposition is n + 1 times as
many as in the decompositions .F* = |, .ZF given by the lemmas. a

12.1.c The elementary operators of Figiel

We will now study another family of dyadic singular integral operators with
more complicated interactions between Haar functions at different locations.
The first class of these operators combines the action of a Haar multiplier
with a translation of the Haar functions. One might be tempted to refer to
such operators as dyadic or Haar “shifts”, but this name has been adopted
for a somewhat different class of operators in the literature.

While the parameter n attached with these operators may appear like a
technical detail at this point, it is essential for subsequent applications that
one obtains a good dependence on n.

Theorem 12.1.25 (Figiel). Let ¢ : 2 — 2 be an injection with {(¢(Q)) =
Q) and ¢(Q) C 3Q™ for somen € N. Let X and Y be a UMD spaces, and
let pe(1,00). Let A = (A\g)gew € Z(X,Y). Consider the mapping

Tf;/f = Z )‘Q<f7 h%>h;(Q), (12.14)
Qez
initially from Soo(2; X) to Seo(Z;Y). Let Ay :=6- (81)%.
(0) If A is R-bounded, or more generally if

Ap-1(@) Q€ D),
0, else,

min{&%,(N), EXp(Ap-1)} <00, (Ag-1)q = {

then Ty extends boundedly from LP(R%: X) to LP(R%Y), with norm

1T N = 1Ty |2 e resx), Lo asyy) < Aa(n+1)8,y B xC(X, Y, p; \),
where
C(X,Y,p;A) = min{B;:X FERp(Ag1), 5;:3/ EAXp(N)}
< min{ﬂ,}fxﬁ;}fﬂ%@);
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(1) If, in addition, Y has type t € [1,p] and X has cotype q € [p, 0], or one
of them has both, then we also have the estimate

TN < Aa(n+ 1)V7Y6, 3 BF C(X, Y, pa, 1 M)

where
C(X,Y,p, 4,5 0) = min {rxp - B Caxip - EFp(g),
Tt,Yp B;X “CqXip EXp(Ag1),
UASN ;IY “Cqxp EX(N),
Ty By Cavi EA,(N) |
< C(X,Y,pq,t) - Zp(N),
and

C(X,Y,p,q,t) := min{TuX;p ;T,ch,X;pa Tt,Y;p ;_,ch,X;pv
(12.15)

+ +
Tt,Y;pPp,y Cq,X;ps Tt,Y;pﬂp,ch’Y;p}‘

(2) If, in addition, Ag # 0 only when ¢(Q) C Q)| then we have the alterna-
tive norm estimate

ITSYIN < 3+ Byy B, x min{eq xip, qyip}(n + 1) 7 ER,(N).

(3) For all f € LP(R%: X)) and g € L (R4 Y™), the extended operator has the
absolutely convergent representation

(T3 5,90 = D (Aalf b {9, W) )-

Qe

When || fllLrre;x) < and ||gll gy ga,y«) < 1, the corresponding absolute
value series is dominated by the same upper bounds as those given for

ITo5 || 2(Lr (re;x), Lo (e;y)) above.
Remark 12.1.26. (1) In the prominent special case that X =Y, we have
C(X, X,p,q,t;A) = C(X, X, p, q, t) - min{ EZp (Ap—1), EXp(N) },
C(X, X,p,q,t) = Tt x3p - 5;)( " Cq, Xsp-

(2) Case (0) of Theorem 12.1.25 is a special case of (1) using the trivial type
and cotype exponents t = 1, ¢ = oo with corresponding constants equal
to one. The role of non-trivial type and cotype is to relax the dependence
on the parameter n. The estimate obtained in case (2) is not strictly
comparable to the other two bounds; its main advantage over the other
two is achieving a quadratic bound in terms of the UMD constants, in
contrast to the cubic bound in the other cases.
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(3) Recalling the Haar multipliers " from Theorem 12.1.11, one can check
that, for any 6 € {0,1}%\ {0},

[ 6 0 0
T;Sw =T¢¥OS§§ :f))\zrl o gl

where 1 is the constant sequence of all ones. Hence, for the qualitative
conclusion of Theorem 12.1.25, it would suffice to consider just X =Y
and A = 1, and then combine this special case with Theorem 12.1.11;
however, the reader will quickly realise that this approach would produce
a higher power of the UMD constants in the quantitative conclusion.

Before going into the proof, let us still formulate a corollary in the important
special case when ¢ : 2 — 2 is a bijection:

Corollary 12.1.27. Let ¢ : 2 — 2 be a bijection with £(¢(Q)) = £(Q) and
#(Q) C 3Q™ for some n € N. Let X and Y be a UMD spaces, and let

€ (1,00). Suppose that Y has type t € [1,p] and X has cotype q € [p, 0], or
one of them has both. Let A\ = (Ag)geo € Z(X,Y) be R-bounded, consider
the mapping Ty, as in (12.14), and let

ITon || = T3 | (Lo ®e;x), L0 (R YY) -
(1) We have the norm estimate
ITEXN < 63496, x By (n+ DY min{C2,(N), C* %5 (\)}
where
C = Cu2.15(X,Y,p,q,1), C* == Claa5(Y", X", 0t ¢).

(2) If, in addition, Ag # 0 only when ¢(Q) C Q)| then we have the alterna-
tive norm estimate

TS < 3 By e min { O+ 1)19 2, (3), €+ 1) 50 .
where
C= miH{Cq’X;p, quy;p}, Cc* = II'liH{Ct/yy*;p/7 Ct’,X*;p’}

Proof. The first versions of both bounds (i.e, using the first item of the respec-
tive minimums) above are simply those of Theorem 12.1.25, cases (1) and (2),
where we estimated all UMD constants by Bf,t,z < fp,z. The second versions
of both bounds then follow by duality: When ¢ : 2 — Z is a bijection, one
directly verifies that

(Ty))* = Tqu,A;fl
is an operator of the same form, acting from 2y (R%; Y*) to Zoo(R?; X*) and
eventually from LP (R%; Y*) to LP (R%; X*). If Z € {X, Y} has type ¢, then Z*
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has cotype t' with ¢y z+.py < 74 z,p. (See Proposition 7.1.13; it is formulated
for p = t, but the same short argument is easily modified to give the general
statement.) If a UMD space Z has cotype ¢, then it has martingale type ¢
(Proposition 4.3.13), hence Z* has martingale cotype ¢’ (Proposition 3.5.29),
and thus cotype ¢’ (as observed right before Proposition 4.3.13). Thus we can
apply the case already handled, with (Y*, X* p’. ¢, ¢’) in place of (X, Y, p, ¢, 1),
to get

ITEN 2o i), Lo mayy) = 115 5 Nz wot gy, 1o mesxe)
<6-3%8, v By x-(n+ DY VY X5 p )Ry (NF).

The claim then follows from S, z« = 8,7z and 1/¢' —1/t' =1/t —1/q.
The second version of the second bound is obtained from the first version
in the entirely similar way by duality. O

Proof of Theorem 12.1.25. Claim (0) is the special case t = 1, ¢ = 0o of (1),
so we only need to prove the latter of the two. Let % be a finite collection of
dyadic cubes. Then .# and ¢ satisfy the assumptions of Lemma 12.1.23, except
possibly the scale separation (¢). By Remark 12.1.24, the lemma still applies
to produce 33?1 (n + 1) subcollections .%; C .# with the properties given in
Lemma 12.1.23. Let us write xg = (f, hg)). Since the functions (h(,)ge# form
a martingale difference sequence, we have

Y
H > ’\Ql‘Q%(Q)‘
QeF

< B I ’ .
LP(R4;Y) = ﬂnYH Z €QAQJUQ #(Q) Lr(2xR4;Y)

QeZF
From this point on, we have some flexibility as to when we want to “pull out”
the coeflicients Ag. For this reason, let us write 29 € Z for a generic choice
of either zg = Agzg € Y or zg = g € X. We then continue with

0
| X cozanyq) =X X deezeibia,, 0
OcF Lr(2xR%;Z) T Oc7 Lr (2 x 2xR4;7Z)
t 1/t
0
<Tt,Z;p(ZH Z €Q$Qh¢(Q)‘ LP(_QXR""Z)> )
i QEZF; ’

where, in the two steps above, we used the facts that

1. when multiplied by the random sign £g, both the independent random
sign e} and the possible difference of the signs of hg(Q)(t) and hg(Q)(t) are
invisible to the norm; and

2. whenever Z has type t € [1,p], then so has LP(S; Z) (here: S = 2 x R%),
and 7y 1r(5;2);p < Tt,z;p Dy Proposition 7.1.4.

For Q € .%;, let us denote by E(Q) = Q"W U¢(Q)™®] the sets provided
by Lemma 12.1.23 that form a strongly nested family, as guaranteed by the
said lemma. In particular E(Q) 2 Q U ¢(Q) and |E(Q)| < 2-34]Q|. (The
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inequality is due to the fact that the cubes Q"] and ¢(Q)!™®! are not
necessarily different.) Hence

2-3¢
L@ < L@ o 1€ = Le@2- 3d][ 1o <2:3'Ep@le,
[E(Q) E@Q)

where the Eg(q) are conditional expectations associated with a nested family,

and hence with a filtration. This allows us to use Stein’s inequality (Theorem
4.2.23) to the effect that

H ) €Q3Qh9¢(9>‘

o3, LP(2xR%;Z)
d 0
<2-3 H > EQzQEE(Q)hQ) Le(2XR%2) (12.16)
QEeF; ’
< 2. 3d . ARt ‘ hO ‘

Then

( § H E 6()2()h(Q) /
’ p d. )
P 7, L (.QX]R 7Z)

< (3% (n+ 1))”“”(2 H > EQZQhOQ’

QeF;

q 1/q
LP(QXRd;Z))

3d+1 1/t—1/q ’ 0
< (3 (n+ 1)) Cq’Z;pH zi:gi Z EQZQhQ LP(.Q’><Q><]R‘1;Z)7

QEF;

where, in the two steps above, we used

1. Holder’s inequality and counting of terms in the other factor; and

2. an application of the cotype ¢ property of Z, recalling that this implies
cotype g for LP(S; Z) (here: S = 2 x R?) with ¢, 1r(5.2)p < Cq,z;p When
q € [p, o0] by Proposition 7.1.4.

By the invisibility of signs multiplying a random &g, the last norm here is
0
55 Y carart)
i QEF;

If we did not already pull out the coefficients Ag, we do it at this point, after
which we are left with

| X cosaty
QeF

LP (2%xR%;Z)

= €0z ha‘
LP(2'x 2%xR%;Z) HQ;@ Q=Q7Q

+
LP(Qx]Rd;X) g p,XHf”LP(Rd;X)’

where the last step was a direct application of Proposition 12.1.5.
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It remains to collect the various coefficients that we accumulated. In any
case, the first estimate gave 6; y and the last one B;: v, but depending on
where we pull out the coefficients Ag, we may use the constant of the space
X or Y in place of the generic Z.

If we pull out the Ay before the application of Stein’s inequality in (12.16),
then Aq is the coefficient of i}, , hence the coefficient of Iy, is Ay-1(r), and
thus an application of Remark 12.1.7 produces the factor £%,(As-1). On the
other hand, pulling out the Ag only after (12.16) leads to a “direct” application
of Remark 12.1.7 and the factor £Z,(A).

Aside from the numerical factors 2 - 3% and (3341 (n 4 1))/t=1/9, we get
one of the following:

ERp(Ap—1) X Tt x3p X ﬂ;—,x X €q,X;p>
Teyp X EHp(Ag-1) X ﬁ;x X €q,X;p>
Tt,Yip X /8;_,)/ X EXp(A) X cq.X:ps
Tt,Y;p X ﬁ;Y X Cq,yip X ERXp(N),

where the order of the constants reflects the order of applying the related
estimates: Before pulling out the coefficients Ag, we apply estimates on the
Y side, and after that on the X side. Taking the minimum of the four terms,
we arrive at the assertion of the theorem.

The alternative estimate (2): In order to make efficient use of the additional
assumption ¢(Q) € Q™ when Ag # 0, we will need to modify the preceding
considerations at various points.

Let .% be a finite collection of dyadic cubes, and .#* := {Q € F : \g #=
0}. Then .Z#* and ¢ satisfy the assumptions of Lemma 12.1.20, except possibly
the scale separation (c). By Remark 12.1.24, the lemma still applies to pro-
duce 3(n + 1) subcollections .#} C .F* with the properties given in Lemma
12.1.20. Let us write zg = (f, h%> In the first step, we simply use the triangle
inequality:

H > AQ””Q@(Q)‘
Qe

Lr(R%Y)

¥
i S| DD Aezahl)]
LP(R4;Y) Pl

The more interesting deviations from the previous case begin now.
Note that h¢, = |Q\*1/2(1Q$ —1,-) for suitable subsets QEf C Q with
QE] = 31QI If Q # ¢(Q), we sce that
ah = 5 + o) = 3lal 2 - Lus@7)
QT \"R T Q) T 9 QIVH(QT T TQIUH(Q) /)
1 1
— . S (pa 1Y _ = —1/2 _
dg = 5(hg = hiq) = 51Q1" " (Igtue@); ~ Loaue@?)

form a martingale difference sequence (in either order) on Q U ¢(Q), since
either function has average zero on the sets where the other one is constant.
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If Q = ¢(Q) but a # v, then each of the sets QF N Qf has measure %|Q\,
and once again

1
+ . a _ —-1/2
ddy =5 (hey + 1) =1Q1™*(Lgsnor — 1ozner )

N -
dg = 5(hg —hg) = Q| (gtne; — Loznet)

Q

form a martingale difference sequence (in either order) on QU¢(Q) = @, since
either function has average zero on the sets where the other one is constant.
Finally, if Q@ = ¢(Q) and « = +, then the same definition gives dg = hg,

dg = 0, which is also a (rather trivial) martingale difference sequence.

The conclusion of Lemma 12.1.20, that each {Q U ¢(Q) : Q € F}} is
strongly nested, guarantees that the whole collection {da,dé}Qe #x can be
organised into a martingale difference sequence. Hence

§
H ZA AQxQ%(Q)’
Qe 7

= H > Aqz(dd —dé)’

QeF)

< ﬁp,yH Z EQ)\Q.%‘Q(CZCB + dé)‘
QeF)

:BP’YH Z 6@)\Q$Qh%‘
QeF}

Lr(R4Y)

Lr(R%Y)
(12.17)

LP (2xRE;Y)

LP(2xRLY)

where we used the definition of UMD with signs +eg multiplying the mar-
tingale differences dg, followed by taking an average over the eg. (It might

appear at first glance that we could have used just the one-sided UMD~ prop-
erty to arrive at the same conclusion with the smaller constant 3 -, but this
is not the case: an application of the one-sided UMD~ property would give us
independent random signs, say 55, in front of each dé, and this is not what
we want.)

For zg € {zg,A\gzg} and Z € {X, Y} we then have

EQZ ho"
zi:HQZ;A Qe Lr(2xR%;Z)

< B3(n+ 1))1/(1’(2 3 ngth(

i QeF)

<GB +1) gz el S cqzahy
( QeF}

= (3(n+ 1))1/qlcq’z;p Z EQZQhaQ‘
QeF*

q 1/q
LP(QXRd;Z))
(12.18)

LP(2xR%;Z)

Lr(2xR4;Z)’
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using in the last step the fact that the #* = J, % is a disjoint partition, so
the independent random signs eg with @ € JA do not “see” the multiplying
signs ¢]. Hence, pulling out the \g either at the beginning or at the end of
(12.18) (but in any case only after having replaced the translated hg(Q) by

o in (12.17), which in contrast to what happened in the previous case of the
proof), we obtain

H Z )\QCEQ}L ‘LP(Rd ) ﬁpYz H Z EQAQIEQhQ‘
QeF % QeZF

< 51,7}/5}%1,()\)(3(71 + 1))1/q/ min{qux;p, Cq7y;p}H Z {-le‘Qh%’
QeFA

Lr(R%Y)

Lr(R4X)
Finally, recalling that g = (f, hg) and using the contraction principle to

replace .#* C .F by the finite set F = {Q € 2 : (f, h$) # 0}, we obtain from
Proposition 12.1.5 that

| 3 carahd]|,, gy, <] 2 corany
QeF> ’ Qe

+
Lr(R%;X) g ﬁp,X”fHLP(Rd;X)’

which concludes the estimate.

The representation (3): Let first # C 2 be finite. For suitable ng € K with
Ing| =1, we have

) ‘<AQ<fv h%>’<9’hl<®>>‘ :< > nmadall-hy)hgy0)

QeF QeF

where (nA\)(Q) = ngAqg, and

Pefi= > (f,h)hE € Soo(2; X)
QeZF
6e{0,1}4\{0}

is a Haar projection of f; the action of T A 1s thus well- defined via the initial
definition on this space. From the prev10us part of the theorem that we already
proved, we have

S (el he) o, 1))

QeF

|| A ¢||=2’ LP(R4;X),LP(R;Y )||P9f||LP R%;X) ”gHLP(]Rd 5Y*)-
We now apply this estimate with the increasing sequence of finite sets

Fn={Q e 2:27VN <¢(Q) <2V, disto(Q,0) < 2V},



116 12 Dyadic operators and the 7'(1) theorem

whose union is U FnN = 2. The corresponding projection can be expressed
N=1

Pny:]-FN(]EN_EfN)fV Fyn = U Qa
QED_nN
distoo (Q,0)<2V

as

and this is seen to satisfy ||[Pzy f|rr@e;x) < 2| fllLr(ra;x) and Pz, — f in
LP(R%; X) as N — oo. Thus

ZK {(f;hQ): hl(@)>>‘

Qe
J— 3 pos ’Y
= lim_ > ‘</\Q<f7hcz>7<9»h¢<@)>>‘
QEFN

<N sl zwe e x), Lo ®e; v)) Jm | Pz fllLe®a,x) 191 e Rty +)
= T3 ol 2 (Lr (®asx), Lo (e, Y))Hf”m re;x) 191 L (R Y )5
where T;;’ » has the same norm estimate as 7' N :;, since
ERNIN) = ERN),  ERY () g) = ERy(Apr)

by the contraction principle.
Thus we have shown the claimed absolute convergence, and hence the

bilinear form
82059 =Y Malfihd), (g, hy))
Qe

is well-defined and bounded from LP(R?; X)x LP(R% Y to K. So is the bilinear
form (T}, f,g), where Ty denotes the bounded extension of the operator
initially defined on Sgo(Z; X). Moreover, these bilinear forms clearly coincide
when f € Spo(2; X) and g € Spo(Z2;Y ™). By density, they must coincide for
all f and g, and the proof is complete. O

The second class of operators that we deal with in this section have the addi-
tional twist of “tearing apart” the supports of Haar functions. The relevance
of this feature will be justified in the appearance of this type of operators in
the proof of the T'(1) theorem further below.

Theorem 12.1.28 (Figiel). Let ¢ : 2 — 2 be an injection with £($(Q)) =
0(Q) and $(Q) C 3Q™ for some n € N. Let X and Y be a UMD spaces and
€ (1,00). Let X = (Ag)gez € Z(X,Y), and consider the mapping

Uly: f = D0 Alfshd) (o) — 1), (12.19)
Qe

initially from Soo(2; X) to So(2;Y). Let By := 5200 - (81)<.
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0) If A C Z(X,Y) is R-bounded, or more generally if &%,(\) < oo, then
P
Uy, extends boundedly from LP(R%:; X) to LP(RY;Y) with norm

U1 = U3 |l 2(ze ra;x), L0 (R4 YY)
<Bg-(n+1) 8,y ,B;X -min{B;X%p(/\), ﬁiygﬁp(/\)}.
(1) If, in addition, X orY has cotype q € [p, 00|, then we also have

C(X7Kpa Q) . ‘%P()‘)v

UJ|l < Ba(n+1)'"98 B :
|| [ || ( ) p, Y ”p,X ﬂ;Y . mln{C%X;p, Cq,Y;p} . Cg)%p()\)v

where

C(X,Y,p,q) = min {@ixcq,X;pa @Jf,ycq,Xm’ ﬁzycq,Y;p}
= 0(12.15) (X7 Yapa q, 1)

(12.20)

(2) If, in addition, we have A\g # 0 only when ¢(Q) C Q™ , then we have the
alternative norm estimate

U <6+ (n+ 1)V By - B - min{eq xip, Coxip) - ERp(N).

(3) For all f € LP(R%; X) and g € L (R%;Y*), the extended operator has the
absolutely convergent representation

UInL.9) = (Aalfhd), (9. W) = 1%)).
Qe

When || fl|lrra,x) < 1 and [|g]| o ga,y~) < 1, the corresponding absolute
value series is dominated by the same upper bounds as those given for
Ul (Lr e x), Lr (Ra;YY) above.

Remark 12.1.29. We have observations analogous to Remark 12.1.26:

(1) When X =Y, we have C(X, X,p,q) = ﬁ;ch,X;p.

(2) Case (0) of Theorem 12.1.28 is a special case of (1) using the cotype
exponent ¢ = oo with corresponding constant equal to one. The role of
finite cotype is to relax the dependence on the parameter n. As in Theorem
12.1.25(2), the main point of the alternative bound (2) to improve the
cubic dependence on the UMD constants to a quadratic one; in contrast to
the situation in Theorem 12.1.25(2), when X =Y, the present alternative
bound (2) is a strict improvement of (1), in view of the fact that 5, x <
B;XB;X (Proposition 4.2.3).

(3) Recalling the Haar multipliers " from Theorem 12.1.11, one can check
that, for any 6 € {0,1}%\ {0},

Y 1760 ~6
U¢>\ =Ug 09y,
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where 1 is the constant sequence of all ones. Hence, for the qualitative
conclusion of Theorem 12.1.28, it would suffice to consider just X =Y
and A = 1, and then combine this special case with Theorem 12.1.11;
however, the reader will quickly realise that this approach would produce
a higher power of the UMD constants in the quantitative conclusion.

(4) In contrast to Theorem 12.1.25, our proof of Theorem 12.1.28 does not
allow replacing the assumptions on A by &%,(As-1) < oo. The related
issue of when in the argument, and under what assumptions, we may pull
out the coefficients Ag), is shortly discussed inside the proof.

Proof of Theorem 12.1.28. Claim (0) is the special case ¢ = oo of (1), so it
suffices to consider the latter of these two claims. Let . % C & be finite. An
additional challenge compared to the proof of Theorem 12.1.25 is that, unlike
the Haar functions hg(Q), the functions hg(Q) — h% do not necessarily form a
martingale difference sequence, preventing a straightforward introduction of
the random signs in the initial step. Instead, a decomposition of .# is necessary
from the beginning.

Let us denote by % = {Q € F : log, /(Q) = k mod (n + 1)} the
scale-separated subcollections of .# as in Remark 12.1.24. Then .#* and ¢
satisfy the assumptions of both Lemmas 12.1.22 and 12.1.23. Let us denote
the decomposing subcollections of .%, provided by Lemma 12.1.22 by .&Z* and
those provided by Lemma 12.1.23 by B¥, let FF = &% N Bk for i = (a,b),
and let .%; consists of an enumeration of all these .ZF. The total number of
these .Z; is then 144 - 3341 (n + 1), and they satisfy the conclusions of both
Lemmas 12.1.22 and 12.1.23.

We first make use of Lemma 12.1.22. For QQ € .%;, we have

2
0 0 _ 10 0 _ 0 0
Mo~ he = Mg a@ ~ Moia@ = 25, u@ — M@
=0
where each collection {¢; ;(Q) U ¢; j+1(Q) : Q € %;} is strongly nested. But
this implies that each

0 0
(h‘i’i,jJrl(Q) o h¢i,j (Q))QEL@i

is (or can be enumerated as) a martingale difference sequence. Note that here
it is important that a smaller union ¢; j1+1(Q)U¢; ;(Q) is not just contained in
alarger ¢; j+1(R)U¢; ;j(R), but entirely in (a dyadic child of) one of ¢; j1+1(R)
or ¢; ;(R), where the function hg) (R~ h%i,j(R) is constant.

Using this martingale difference property, we can then proceed as in the
proof of Theorem 12.1.25. Let us abbreviate zq := (f,h¢,) € X and yq :=
)\Q.TQ ey.

i
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H > velhi) — hOQ)’

Qeﬂ Lp(R;Y)
ZZ H Q;Q va(hg, , (@) — ’%”(Q))’ Lo (gesy)
ZZB v H Q%;j cu(hg, .1 (@) — h?z-,j(@)) ()
< B,y Zag Z: H Q%:g eQuahy, @ )’ Lr(2xREY) {Z? i Zz z ;:

where the first and the last steps were simply triangle inequalities.

As in the proof of Theorem 12.1.25, we have some flexibility on when to
pull out the coefficients Ag, and we again proceed with a generic choice of
zq € Z for either yg € Y or g € X. The norm to be estimated has exactly
the same form as what we estimated (12.16) in the proof of Theorem 12.1.25
(using Lemma 12.1.23 in this step), and we can there read the bound

H Z ngthi,j(Q)‘

QEF;

<230 85, D cqzahd)
QeZ,

i

LP(2xR4;Z)
(12.21)

LP(Q2xR1;Z)

By Holder’s inequality, we have

ZH Z EQZQhQ’

QeF;

< (144 33 (n 1+ 1)) (ZH 3 oz Q‘
QEZF;

Lr (2xR%;Z)

) 1/q
LP(2xR%;7) '
Invoking cotype ¢ of Z, and recalling that this implies cotype g of L?(S; Z)

(here: S = §2 x R?) with constant Cq,17(S:2)p < Cq,z;p When g € [p,00] by
Proposition 7.1.4, we continue with

? i
< Cq,LP(Z);pH 25; Z ngQhOQ‘
i

QEF;

)1/q
Lp(2xR4;2)

LP (2’ x 2xR%;Z)

=c . 0% h”’ .
q7Lp(Z),pHQz€:9 QQNQ Lr(2xRY:Z)

It is no later than here that we should to pull out the coefficients Ag, after
which we are left with the final step, based on Proposition 12.1.5, that
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H Z EQthz)‘
QeF

+
LP(2xR4;X) S ﬁP,XHf”LD(Rd;X),

Under the assumption of R-boundedness of A, depending on the moment
of pulling out the coefficients Ag, the constants that we accumulate in the
various steps with the option of estimating in Z € {X,Y} produce, aside

from the numerical factors 2 - 3¢ and (144 - 334! . (n + 1))1/(1,, one of the
products

Fp(N) - ﬁ;,x " Cq,X;ps
ﬁ;y - Zp(N) - cq,x3p5
ﬁ;r,Y “Cqyip HEp(A).

In the latter two versions, i.e., pulling out the Ag only after making the step
(12.21) with Z =Y, we might as well replace Z,(\) by £%p()), thus leading
to the possible upper bounds

B;:Y FEXp(A) - g, Xips
6;:1/ “Cqyip EXp(N).

(On the other hand, if we wanted to pull out the Ao before step (12.21), and
thus apply (12.21) with Z = X, the coefficient Ag would be multiplying a
Haar function h%i 1(q); this would lead to a constant of the type &%Z,(A;-1),

where ¢; ; need not be the original ¢ from the assumptions of the theorem, but
one of the auxiliary mappings produced by Lemma 12.1.22. This would lead
to an unreasonably technical formulation of probably little practical value,
which is why we have not included the resulting alternative upper bound in
the statement of the theorem.)

Altogether, choosing the best of the possible alternative estimates, we
arrive at

hS oy — hY ‘ -1
H Qze;gw( o@ ~ ha) Lp(Rd;X)HfIILp(Rd;X)
3 .
<Bux D oy(2-31(144- 3 (n+1) e By x X
j=0

X C(X7 Y7p7 q)%p(A%
5;,}/ min{cg, x;p, Cq,vip 6 Zp(N),

where C(X,Y,p,q) is as in the statement of the Theorem, and Z?:o o =
1+2+2+1=6.

The alternative estimate (2): As in the previous proof of Theorem 12.1.25(2),
we construct some auxiliary martingale differences. The initial considerations
are identical:
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Let again .Z be a finite collection of dyadic cubes, and .Z#* := {Q € .¥ :
Ao # 0}. Then F* and ¢ satisfy the assumptions of Lemma 12.1.20, except
possibly the scale separation (c). By Remark 12.1.24, the lemma still applies
to produce 3(n + 1) subcollections ﬁf‘ C .Z* with the properties given in
Lemma 12.1.20. Let us write g = (f, h$). In the first step, we simply use
the triangle inequality:

0 0 0 0
H > Aare(hyq) - hQ)‘ L@y S > H > Aeralhyg) _hQ)‘
QeF ’ i QeF)

Lr(RLY)

The slight symmetry break between hg) and hg(Q) — h% is also reflected
in the construction of the auxiliary martingale differences. As in the proof of
Theorem 12.1.25(2), we denote QF := QN {sgn(hd) = £1}. If #(Q) # Q, we
choose

1
1 . —1/2
dg = §|Q| / p@uer =3 107);
1
dg = 31Ql V2 (—1yq) + 2 151);

where dé has average zero on the sets where db is constant; note that, unlike
in the proof of Theorem 12.1.25(2), the order matters now. Moreover, we can
recover the original functions by

1
dé} +dy = §|Q‘_1/2((1 — Dl +(1+2)1yr —3- lQ;) = hg,
1 -
gy — 2dg = g|Q\ V214 2)10) + (1= 1ge —3-1-) = hl o) — hy.

If (Q) = Q, then hg(Q) — h% = 0, and we can simply set dé == h¢ and
dé = 0, and the original functions are recovered by

o g1 41 2 0 0 _n_— 1 2

The conclusion of Lemma 12.1.20, that {Q U ¢(Q) : Q € F} is strongly
nested, ensures that the full collection {dé, dQQ}Qe Fr appropriately enumer-
ated, is a martingale difference sequence. Hence

0 0
H > Aeza(hig) _hQ)‘

oo Lr (REY)
= H > Aqro((l—dg.u@)dy —2- dé)’ Lo (Resy)
FX ’
O (12.22)
S QBP’Y’ Z SQ)‘QIQ(% + dé)‘ LP(2xR;Y)

QeF)

zzﬁp,YH 3 aQAQthg]

LP(2xRLY
QeF) ( )
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as an application of the definition of UMD via martingale transforms with a
multiplying sequences of numbers {0,1, -2} X e, and averaging over inde-
pendent random &g.

Except for the factor 2, the right side of (12.22) coincides with the right
side of (12.17) from the proof of Theorem 12.1.25(2). Hence the rest of the
estimate can be concluded by repeating the said proof verbatim.

The representation (3): This is proved in the same way as the corresponding
part of Theorem 12.1.25. O]

12.2 Paraproducts

The notion of paraproducts arises from a number of considerations. Here we
choose a point of departure that also motivates their name: they are objects
that arise from a decomposition of the ordinary pointwise product of functions.
While paraproducts certainly look more complicated than the regular product,
it turns out that in certain respects they actually behave better. Another
motivation is the key role that these objects play in the T'(1) theorem in
Section 12.3. Some further connections will be discussed in the Notes.

Proposition 12.2.1. Letb € L. (R% Z(X,Y)), where X and Y are Banach

loc

spaces, and let f € Soo(Z;X). Then

bf= > S f+ILf+ I (12.23)

a,7€{0,1}4\{0}

where $;" are Haar multipliers of the form

DYV =) (sgn(hhd)b)o (f, bRy,
Qe

and the remaining terms are the paraproducts

Ife= Y (bhd){ehd,
Qe
ae{0,1}9\{o}

mr= 3 mh), hzg%,
Qe
a€{0,1}%\{0}
where the series of I f is finitely non-zero, and the non-zero terms in Il f
are attached to cubes contained in finitely many mazimal ones, and the series
converges (at least) conditionally along any decreasing order of the dyadic
cubes contained in these maximal ones.
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The notation II; is motivated by the easily verified duality relation
Iy f.9) = (f, 1), f€800(Z:X), g€ So(Z;Y),
where b* € L®°(RY; £ (Y*, X*)) is the pointwise adjoint of b.

Remark 12.2.2. The diagonal a =+ of the sum in (12.23) is

Soooarrt= > (Dol hg)hd

ae{0,1}9\{0} Qe
ae{0,1}\{0}

This has formally the same structure as Il f, but with the roles of b and f
reversed, and hence (12.23) could be also written in the form

bf= Y. S+ b+ LS+ 1T,
a,v€{0,13*\{0}
aFy

where the summation is empty in dimension d = 1 (since there is only one
possible value of a € {0,1}\{0}). It is also evident that II; f is symmetric in b
and f, and hence a more symmetric notation could also be preferred. However,
we shall not pursue this point of view any further, since the roles played by
the two functions b and f will be quite different in our main applications, so
that such symmetries would be only misleading.

Proof of Proposition 12.2.1. Tt suffices to prove this for f = x ® h%. Then

bf=b-Br)f+Orf= >,  (bh3)z@hEhy + (b)rr @ b,
QCR
ae{0,1}%\{o}

where the series converges (at least) conditionally along any decreasing order
of the dyadic cubes @ C R, by the Martingale Converge Theorem 3.3.2, since
this is a martingale difference expansion of the function 1r(b — (b)r)x €
L'(R%Y).

We observe that

hohe =hy(hRle  VQ G R,

whereas o
1 h%
601,60 _ 1R a6 'R

FRfR =Ry MRPRIR

where we use modulo 2 addition in {0,1}%. Hence

Va # 0,

S bhgzehyhh = > (bh§)flo @ hY = IIf,
QCR Q€9
{0,131\ {0} a€{0,1}4\{0}
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observing that (f)g = (h%)ox = 0 unless Q < R. Moreover,

> (b hg)a @ hEhG + (b)re @ hY
ae{0,1}9\{0}

1
= ((b7 ho)e @ LN Z (b, hg)x ® @ h%

et ) (b, h%)

|R| - [R|'/2/ " |R|Y?
a€e{0,1}9\{0,6}
1 a+6
o 2] R a R
7<b,hR>x®—‘R| + (b,hR>x®7|R|l/2.

ae{0,1}\{6}

Using the orthogonality of the Haar functions, we see that

1 1
(b,h%)z ® |—;§| = QZ@ (b, W) (f, h) @ @ﬁ = 11} f.
S

ac{0,1}%\{0}
Finally, with the change of variable v := o + 0

a+0

h Iy
> bhfre IRT#/Q = Y bhE e |R|ff/2
ae{0,1}9\{0} ~v€{0.1}4\{0}
= Y (bsga(hphf)rz @bl = Y (dfbrr @],
~v€{0,1}4\{0} ve{0.1}4\{0}
= D> D _laghetrhgyeny= > S

o, v€{0,1}4\{0} Q€2 a,v€{0,1}4\{0}

again by the orthogonality of the Haar functions in the penultimate step. [

Proposition 12.2.3. Let X and Y be UMD spaces and p € (1,00). Let
be L®RYG Z(X,Y)). Then Ay := II, + II}, initially defined on Soo(Z; X)
extends to a bounded operator from LP(R%; X) to LP(R%;Y) of norm

J

[ A6l 2 (Lr(®a;x),Lr (R YY) < (1 +(27 - 1)25p,y5;y5;fx) 0]l Lo (Ras2(x,v))»
and we have the identity
bf = > N f+ Af Y f e LP(REX).
a,ve{0,1}4\{0}

We will obtain a far better estimate in Theorem 12.2.25, but it seems worth-
while recording this relatively simple bound as an illustration of the techniques
that we have developed thus far.

Proof of Proposition 12.2.5. Tt is clear that pointwise multiplication by b €
L>(R% #£(X,Y)) defines a bounded operator from LP(R%; X) to LP(R%;Y),
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for any Banach spaces X,Y and all p € [1,00]. Moreover, the Haar multi-
plier £, featuring in Proposition 12.2.3 have exactly the form considered in
Proposition 12.1.13, and hence

1957 fll e ey < By By By x Ibll e ez x, 3 I | 2o et ) -

By triangle inequality, it then follows from (12.23) that

146 fll e @e;yy < N0f L (®asy) + Z 1957 fll e ey
a,v7€{0,1}4\{0}

< |Ibl] poe (R 2(x,v)) (1 + (2% - 1)25;315;1/5;)() £l 2 (resx)

for all f € Spo(Z2;X), and hence A, extends to a bounded operator from
LP(R% X) to LP(R?Y)) with the asserted norm estimate. Since the claimed
identity holds (by Proposition 12.2.1) for all f € Spo(Z; X), and each term is
continuous with respect to the LP(R%; X) norm of f (as we just showed), it is
immediate that this identity extends to all f € LP(R%; X). O

As we shall see later, the operator A, is not only as good as, but actually better
than the pointwise product f — bf, in the sense that it remains a bounded
operator for a broader class of functions b than just the bounded ones. As
the reader will have guessed from the introduced notation, we will also be
interested in the mapping properties of the individual paraproducts II, and
II;.

While the paraproduct I, arouse from our analysis of the pointwise prod-
uct with a multiplier b, in other considerations we will encounter similar series

of= > «8(fHe®hd
Qe
ae{0,1}4\{0}
with some coefficient 7) replacing the Haar coefficients (b, h%) of a function
b above. Formally, we always have 7¢) = (b, h%) by choosing

Cbhi=I(1)= Y wgehy 7,
QED
a€c{0,1}%\{0}

but giving a precise meaning for this series requires non-trivial considerations
in general, and it is hence useful not to insist in the a priori existence of
function b generating the coefficients in this way.

12.2.a Necessary conditions for boundedness

As we already saw in the analysis of the pointwise product bf, and we will
see again in the T'(1) theorem below, paraproducts frequently appear in pairs
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of the form II; + II5, where II; is a paraproduct as in the previous section,
and II5 is the formal adjoint of another paraproduct. In other words, we are
concerned with the operator

1
Af= ¥ (wga<f>QhQ+wQ <f,h">|5|) (12.24)
Qe
ae{0,1}4\{0}

Of course this covers both II; and I as special cases, by simply setting some
of the coefficients 75" equal to zero.

Compared to the operator A, featuring in Proposition 12.2.3, we now allow
possibly different coefficients 5% and 75 in the first and second term above,
as this will be relevant in the 7'(1) theorem. Via the duality relations

we define the formal adjoint
Ag= Y (e he) L+ (R wehs)  (12.25)
5 Q|
a€c{0,1}%\{0}

which has exactly the same form as A, only with different coefficients, and the
associated bilinear form

ef9) = Y (7§ (Ne (0. 9)) + (75" (1 hg) (g)e) ) (12:26)
U46{0?16}%\{0}
Lemma 12.2.4. The series (12.26) is finitely non-zero whenever
(f,9) € (So0(Z; X) x S(Z;Y™)) U (S(Z; X) x So0(Z;Y™)).
In particular, we have
Lz @1g,y" @ %) = (rpz,y"), Lz @hb,y* @ 1g) = (x5, y*)
forallz € X, y*€Y*, R€ 2 and 3 € {0,1}¢\ {0}.

Proof. By symmetry, it is enough to consider (f,g) € Spo(Z; X) x S(Z;Y ™).
We may further assume that

for some v € X,y* € Y*, P,R€ 2 and 8 € {0,1}%\ {0}, since general f and
g are finite linear combinations of such functions.
For such f and g, the (@, a) term in (12.26), is given by

(whz,y*) (W) (h, 1r) + (7> 2,y ) (Wp. h){(1R)q,
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where <h§i>Q # 0 only if @ C P, while (h$),1g) # 0 only if R C @; finally,
(3, h3) # 0p.qla,s. Thus

Lr@lpy @) = > (r5 2.y ) (B ohd. 1r) + (75 2,y ) (1r) p
QE2
RCQCP
ae{0,1}4\{0}

which is clearly a finite sum. When P = R, the sum above is void, and we get
Lz ®1g,y" ®h5) = <7TR x,y").
The other case follows by symmetry. ([

Although our main concern is LP boundedness, we formulate the following
lemma slightly more generally, since the additional generality comes essentially
for free.

Lemma 12.2.5. Let p,q € [1,00). A necessary condition for £ to satisfy
1£(f;9)| < ClIf e @a;x) 191 Lo (e =)

uniformly for all (f,g) of the form (z ® 1q,y* ® hg)) and (x ® he),y* @ 1q),
is that
. 1 1 1 3
o < v =_———t =< - 12.2
Il SCRP, =i thg<d (12.27)

On the other hand, assuming the coefficient bound (12.27), the defining series
(12.26) of £(f,g) converges absolutely for all

(f,9) € S(7;X) x S(2;Y™)
Proof. We have
(mg“z,y")| = |8 © 1o,y" ® h))
< Clloz @ 1 o re;x) 1Y" @ Al Lo may+)

= C|lz||x|QIM7|ly* |y Q|4 ~ /2
= Clz|x|y* |ly-|Q|/P~1/a+1/2

and taking the supremum over ||y*||y+ < 1 and ||z||x < 1 proves the estimate
for i = 1. The case i = 2 is entirely 5ymmetr1c Finally, note that 1/p,1/q €
(0,1] so that 1/p —1/g < 1.

To prove the convergence, it is enough to consider f = z®1p, g = y*R1p,
and moreover, by symmetry, just the first half of Z(f, g) with coefficients wé‘? .
Now

|(mg™(N)as (9 h))| = 1mg ™2,y [(1p)ol (1R, h)I,
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where
o< Bl |B]
QI QY2

and moreover the last pairing is non-zero only if @) 2 R. Hence the absolute
convergence of the series follows from the convergence of

(e, ") < ClRI el xlly v+, (1p) (r, h)] <

Z |Q|'y—3/2 _ |R|'y—3/2 Zde(w—wz) < oo,

Qe k=1
Q2R
since this is as a geometric series with v — 3/2 < 0. d

Lemma 12.2.6. Suppose that the series defining Af converges (even just con-
ditionally) in LP(R%,Y) for some f = 1p@x, where R € 9 and v € X. Then

(lr - Ep)A(lg@x)= Y  75"z@hd
QCR
ae{0,1}%\{0}

Proof. We have

5T ®hy +0, QCR,

1p(75%(1r @ 2)ohd + 75%(1 Q x, h =
R( Q < R >Q Q Q < R >|Q|) {y%73®13, QQR,

for some yg) p € Y, which is not difficult to find explicitly, but it is irrelevant
for the present purposes. The assumed convergence in LP(R%;Y), and the
boundedness of the conditional expectation Er and the pointwise multiplier
1g on LP(R%Y) guarantee that we can move (1g — ERr) inside the defining
series. Since ER(y%,R ®1g) = Y% g @ 1r, we have

(1r — Ep)A(lr® ) = Z 7TQ “r @ hg,
QCR
ae{0,1}\{0}

as claimed. O

Lemma 12.2.7. Let Y be a Banach space, and p € [1,00). Let vy €Y for
all Q € 2, a € {0,1}4\ {0}. For each R € 2 and n € N, consider the sum

Bhi= >  ys®hd
QCR
2(Q)>2""4(R)
ae{0,1}4\{0}

Suppose that, for every R € 9, we have one of the following
(1) Bg = lim,, o BR ezists in LP(R%Y), or
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(2) Y has the Radon-Nikodym property, and sup,,cy || BR |l Lrrey) < 00.
Then there exists a function b € LY. (R%Y) such that

loc
1r(b— (B)r) = Br, (b,h%) =y%, VRE 2, ac{0,1}%\{0}.
If, moreover, the supremum below is finite, then b € BMOg(R%;Y) and

1311y o 1Br — cllor@iy)
gz < Plsmos ) =208 2 ™ Tprn

(12.28)
Qe
ae{0,1}\{0}

Proof. 1t is immediate to verify that (BR)S%, is a martingale in LP(R%;Y).
By the Martingale Convergence Theorem 3.3.16, it follows that (2) implies
(1). Hence it suffices to prove the lemma under assumption (1).

We construct the function b via the correspondence established in Lemma
11.2.11. Tt is enough to construct b|s separately for each quadrant S C R9.
So we fix a quadrant S C R?, and let

Als,t) = > (hg(s) = hg )y,
QeD(S)
ae{0,1}9\{0}

where we need to justify the convergence of this series in some sense. We will
prove that it converges in LY (S x S;Y). To this end, note that any bounded
subset of S x S is contained in R x R for some R € Z(S). For s,t € R, only
Q € 2(S) with Q N R # & can contribute to the series; moreover, if Q 2 R,

then h¢ is constant on R, and hence h¢)(s) — h¢y(t) = 0 for s,¢ € R. Thus

(LaxrA)(s,t) = Lrxr(s,t) Y (hg(s) — h§(t))yd

QeZ2(R)
00,13\ {0} (12.29)

= (s, )(Br(s) - Ba(t),

where the (conditional) convergence in LP(R x R, ds dt; Y') follows by Fubini’s
theorem from the assumed (conditional) convergence of each Br in LP(R;Y).

Now that the convergence of the defining series of A(s,t) has been justified,
it is immediate from the defining formula that A(s,t) + A(t,u) = A(s,u) for
s,t,u € S. By Lemma 11.2.11, we have the existence of b: S — Y such that
A(s,t) = b(s) — b(t). substituting this into (12.29), we obtain

b(s) — b(t) = Br(s) — Br(t), for s,t € R,

and hence b(-) = Bg(-) + (b(t) — Br(t)) € LP(R;Y) C LY(R;Y). Taking the
average over t € R, it follows that

b(s) — (b)r = Br(s) — (Br)r = Br(s),  fors€R,
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observing that (h¢))r = 0 for all @ C R that appear in the series of Br. Then
it also follows that

(b,h) = (1r(b— (b)r), h) = (Br, hR) = Y-
This also implies, for any c € Y, that

lyg Iy

hOt
_ _ Q p
o = (Be—c i), < [ 1B —elhvigy < (f 18a eIk

and (12.28) follows from the identity Bg = 1g(b — (b)), which implies that

||b||BMoP (RL;Y) + = SUP 1nf 110 — o)llLr(@iy)

=5 f [1o(Bo —¢ .
Qlé%;relyll o(Bg — e

by a simple change of variable. O

Proposition 12.2.8. Let X and Y be Banach spaces and p € (1,00). Let
6" € Z(X,Y), and let A be defined by the formal series in (12.24).

(1) If, for some x € Xm the series (12.24) defining Af converges (even just
conditionally) in LP(R%;Y) whenever f = 1r @ x for R € 9, and these
satisfy the testing condition

11rA(LR ® @) Lo ey < Ti|RIMP,

< TEQIY? and there is b¥ € BMOg(R%Y) of norm
167 [ BMoz, (rayy < T such that 7TQ z = (b, h$).
(2) If, in addition to (1), we have X =Y and ﬂé’a €K, then b = by Q@ x for
some by € BMOg(RY) that is independent of x.
(3) If, for some y* € Y*, the series (12.25) defining A*g converges (even just
conditionally) in L’ (R%; Y*) whenever g = 15 @ y* for R € 9, and these
satisfy the testing condition

then, ||mg x|y

1rA*(1r @ y™)| 1o REX*) S ﬂi’* |R|1/p

then ||(r5%)*y*|lx- < Z4 QY2 and there is by € BMOg(RY X*) with
||b2 ”BMOP (Re; X *) <yA* and( )* t= <bg 7ha>‘

(4) If, in addition to (3), we have X =Y and Wéa € K, then bg* =b®@y"
for some by € BMOg(R?).

Proof. (1): Let us fix an € X. By assumption and Lemma 12.2.6, the series

Bf = Z ﬂ'éjax@h% =(1g — Erp)A(lg ® x)
QCR
aef{0,1}4\{0}
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converges (conditionally) in LP(R%;Y). Since ErA(1r ® z) is constant on R,
we have the uniform estimate

i 1% — cls i) < LeA(Lp © 2) sy < TRV,
By Lemma 12.2.7, there is a function % € BMOg(R%;Y) such that
167 lBmO? (Reyy < T4, (b, hG) = mHa

forall Q € 2 and a € {0,1}9\ {0},and [m&xlly < T4|Q|Y?||z|| x, from which
the claimed bound for |78 #(x,y) is immediate.

(2): Under the assumptions of this case, an inspection of the previous
argument shows that all auxiliary functions in the construction of 6y have the
form ¢ ® x for different scalar functions ¢, and hence this form also remains
in the final result.

(3)—(4) follow by repeating the proof of (1)—(2) on the dual side. O

Remark 12.2.9. In the setting of Proposition 12.2.8, if we know a priori that
Wéf‘x = (b1(-)x, h3y) for some by € L. . (R% £(X,Y)), then our conclusion

loc,so

on b¢ implies that b; € BMOg s (R?%; £ (X,Y)) and

[b1llBMor,  (Rey) < a-

According to Proposition 12.2.8; the following is a natural necessary con-
dition for the LP boundedness of paraproducts, even when restricted to very
special functions only.

Definition 12.2.10. We say that a paraproduct A as in (12.24) satisfies the
weak coefficient bound if there is a finite constant C such that

Img" ) < ClQIY2 (12.30)
for alli=1,2, a € {0,1}4\ {0} and Q € 2.

While rather far from being a sufficient condition for any interesting bounded-
ness results, this weak coefficient bound nevertheless allows us to make sense
of the defining series of the paraproduct on a sufficiently rich class of functions
for our subsequent purposes.

We have the following useful convergence result for truncated paraproducts:

Lemma 12.2.11. Suppose that ¢y € £(X,Y) satisfy (12.30). Let p € (1,00)

and f € LP(R%; X) be boundedly supported, and consider the truncated para-
product
wIf = > w8 (fohd.
Qe2
(Qy>2"m
ac{0,1}*\{0}
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(1) For anym € Z, the series defining ,,I1 f converges absolutely in LP(R%;Y).
(2) For 2=™ > diam(supp f), we have

HmeHLP(Rd;Y) < Cd,pC”Emf”LP(Rd;X)a (12.31)
and if g € LY (R, Y™), then
|(mILf, 9)| < Cd,pC”Emf”LP(Rd;X)||Emg||LP’(]Rd;Y*) e 0, (12.32)

2d _ 1

where C' is the constant in (12.30) and cq,p = T—o=dir

Proof. Let us first consider (2). When 2=™ > diam(supp f), the support
supp f is contained in at most 2¢ cubes R; € 2. Then in ,,IIf, we only
need to consider Q € 2 with Q 2 R; for some (not necessarily unique)
i=1,...,2% Then

2d
I AL f| Lo (rasy) = Z Z 176 (f)ohd Nl e ey

i=1 Qco
Q2R;
ae{0,134\{0}

where
I7& () hdllr®ayy < 1Toll2x v IKH el x A L ra)

1 |Q|1/p C
= X T <
el [ A ome < o

7l

and hence
24 1
gy < S -0 [ ] S o
Lp(RLY) ; & X@;ﬁ |Q[/P
2d
— kd/p’
=S G A >
=1
1/p
czm' ]{thX
where

24 24
R; 1/11][ fH de/p'(

This proves both the convergence of the series and the claimed bound (12.31).

pN\1/p /
L) =2 1Bl g,
R, X
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Each term in the series defining ,, I f is constant on cubes R € Z,,. Hence
mIl f = Ep (Il f), and thus

|<mﬂf79>| = |<me7 EmgH < ”meHL”(Rd;Y)HEmgHLP’(Rd;Y*)7

so that (12.32) follows from (12.31).

Concerning (1), it only remains to consider the part of the series with
2™ < Y(Q) < diam(supp f). But there are only finitely many cubes @ of
fixed side-length that intersect supp f, and hence only finitely many cubes
altogether that contribute to this remaining sub-series. Thus the absolute
convergence is trivial. O

Corollary 12.2.12. Suppose that ¢y € ZL(X,Y) satisfy (12.30). Then the

series Z <7r5<f>@» (hg, g>>

Qe
ae{0,1}\{0}

defining (I1 f,g) converges absolutely for all f € S(2;X) and g € S(Z;Y™),
and

(1 f, Eng) = (Il f,g).

Proof. Let v:=g— E,,g. Then v € Spo(Z;Y™*), and hence only finitely many
of the terms <h%, v) are non-zero. Hence it is enough to prove the convergence
with E,,g in place of g. Since (h¢), Emg) = 0 when £(Q) < 27™, this coincides
with the series of (,,IIf, E,,g). Since f € S(2;X) C LP(R% X) is bound-
edly supported, the series defining ., IT f converges absolutely in LP(R%;Y") by
Lemma 12.2.11. Since E,,g € S(2;Y*) C L* (R%Y*) C (LP(R%Y))*, the
series of the bilinear form converges absolutely in K.
The last identity follows by observing that

a ) (hg,9), Q) >27T,
<Q’Em9>_{0,Q Q) <27,

and the proof is complete. O

Corollary 12.2.13. Suppose that Wgo‘ € Z(X,Y) satisfy (12.30). Then the
two series

3 <7r(5’a(f>Q,<h%,g>>+ > <wé“< “Q,f>,<g>c;»>

Qe QeED
ae{0,13\{0} aef0,1}\{0}

defining (Af,g) converge absolutely for oll f € S(2;X) and g € S(2;Y™).

Proof. The convergence of the first series is the content of Corollary 12.2.12.
The convergence of the second series follows by permuting the roles of
f€S8(2;X)and g € S(2;Y*), and transposing nga to the dual side, since
(Wéa)* € Z(Y*, X*) satisfies the same estimate. O
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12.2.b Sufficient conditions for boundedness

We will then turn to exploring conditions that ensure the boundedness of the
full paraproduct II. The obtained necessary conditions serve as a model for
the type of sufficient conditions that we are looking for.

It is convenient to begin with a reduction to finite series. When Y is
reflexive, we have

LP(R%:Y) = LP(RE YY) ~ (L (R% Y¥))*.

Since Spo(2;Y™*) is dense in )i (R%; Y*), it is enough to show that the action
of ITf is bounded on Spo(2;Y*) with respect to the norm of L¥' (R%;Y*),
uniformly for f in the unit ball of LP(R%; X). Since any fixed g € Spo(Z;Y ™)
only “sees” a finite part of IT f, it is enough to prove a uniform LP(R%;Y") esti-
mate for the finite sums > 76 (f)@h@. A key initial estimate in this direction
is the following:

Lemma 12.2.14. Let X be a Banach space, Y be a UMD space, and p €
(1,00). Let F be a finite collection of dyadic cubes. For all f € LP(R%; X)
and 78y € Z(X,Y), we then have

| X matnah|,, gy, < Bvbiv|[ (X camand) /]
’ QEZF

QeF

Lr(R4Y)

Proof. Since (18 (f)qh$)qes is a martingale difference sequence in LP (R%Y),
we have

| 3= metnans|
S

QeZF

<Bo a h"" .
LP(R4:Y) pry“Q%:?EQﬂQUm Ql Lr(Rex 2;v)

Rewriting the LP norm on the product R¢ x {2 with the help of Fubini’s the-
orem, we observe that at each fixed t € R?, the sequence of random variables

eQmg(fhg(t)

has the same joint distribution as

ey (Nohg(t) = eQBq(rd fhY) (1),

since the possibly different sign of h@(t) and h¢)(t) is invisible after multipli-
cation by e¢. Using this and Stein’s inequality (Theorem 4.2.23), we conclude
that

| 3= comiinang|
€

QeEZF

_ E a hO ‘
Lr(REx $2;Y) HQZE;Q(eQ Q<7TQf Q) Lr(REx £2;Y)

Lr(RIxX(2;Y) B IB;’Y H (Q;? EQh%ﬂ.g)) f’

< B H EQTE ho‘ .
S Py Q%;] omelhg L (RIX2;Y)

O
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The previous lemma motivates the following. A background for the nomen-
clature will be discussed in the Notes.

Definition 12.2.15. Let p € (1,00). For an indezed family (7g)gez in a
Banach space Z, we define the Carleson norm

1

0
e d.z) = Sup sup ——— Eshﬂ" .
II¢ Q)HCarP(R i Z) ottr 3C2 |QO|1/p . eitQmna LP(Qox 2:2)
finite Q*e(g

With the help of Theorem 3.2.17 (the John—Nirenberg inequality for adapted
sequences), one can check that any these Carleson norms are actually equiv-
alent for different values of p. We will not need this observation, since the
following proof directly shows that we can use any of these norms in our upper
bound, as we like. Our first sufficient condition for paraproduct boundedness
is stated in terms of this notion as follows:

Proposition 12.2.16 (Paraproducts vs. Carleson norms). Let X be a
Banach space, Y be a UMD space, and p,q € (1,00). Let II be the paraproduct
defined by an indexed family (W%)Qegyae{o’l}d\{o}. In order that I is bounded
from LP(R%; X) to LP(RY;Y), it is sufficient that (78)qQea satisfies the Car®
condition for every o € {0,1}4\ {0}. Moreover, we have the bound

||HHz(LP(Rd;X),LP(Rd;Y))<32'4dpplﬂ;y5;y Z ||(W%)‘|Carq(Rd;$(X,Y))~
aef{0,1}4\{0}

Proof. We are going to estimate

(e f9) =3 (76(as (0. 9)) (12.33)

Qe

for f € Spo(R% X) and g € Spo(R% Y*); the latter guarantees that the sum
is finitely nonzero. We may thus replace 7¢) by 1#(Q)ng for some finite set
ZF C 2, but we do not indicate this explicitly in the notation.

Part I: Construction of principal cubes

Let &y be the maximal cubes appearing in this sum. We then construct cube
families &7, inductively as follows. For each P € &, let chg(P) be the
maximal dyadic subcubes P’ of F such that either

][Hfllx>4 Iflx  or ][||9||Y*>4 lglly--
P’ P P P

For each such P’, we have

1 , , .
1< L Jp Wl Syl y
UL flgly-
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Since these P’ are pairwise disjoint, we have

> [ < [ 1sls =17Lf 10

P’ECh,@(P)

and similarly with g, and hence

1 1
< =(|P P|) = =|P|.
S <(PI+IP) =5

P’echx(P)
Thus 1
Ex(P):=P\ |J satisfies  |E(P)| > 5| P
P’ech & (P)
Then we let

Py = |J cha(P), 2:=|] 2.,

pPeZ, n=0

and the sets Eg(P), P € &, are seen to be pairwise disjoint.

Now every () with a nonzero contribution to (12.33) will be contained in
some P € &) C Z. Let par 5 P € & be the minimal such P. By construction,
it follows that

éwm<%wu7émw<%w

For P € &, let

y+, 1if pargpQ@ =P

Pph = Z 1p/<h>p/+1E9(p)h.
P'Echz(P)

Let h € {f,g}. If u € E» be a Lebesgue point of h, then all Q withu € Q C P
fail the stopping criterion, and hence

IPPh(w)] = Al = lim [[{h)oll < 4(IA()I)p-

On the other hand, if u € P’ € chg(P), then its dyadic parent P’ fails the
stopping criterion, and hence

[Pehw)]| = [Ih) el < (1RGN e < 2(BC) D5 < 24 4RI p-
Hence we conclude that
[Pph(u)|| <4-2¢-1p(u){|bl)p,  he{f g}

If par, Q@ = P and Q' € chg @, then each P’ € chg P is either disjoint
from @ (thus a fortiori from Q'), or strictly contained in @, hence contained
in Q'. Thus
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/ Pph = Z \P'|<h>p/+/ h= h, pargsQ =P
! Pcc h o ( ) Q,OEQ"(P) Q’
P’ gQ’

Since both 1¢ and hg) are linear combination of @’ € chg @, this implies in
particular that

<f>Q: <HDPf>Qa <h%7g> = <haQaPPg>7 parﬂQ:P-
Part II: Estimates under the principal cubes

With the principal cubes P € & just constructed, we can now rearrange the
sum (12.33) as

(I f,g) = Z < Z w%(PPf>QhaQ,Ppg> =: Z Ip.

pPez Qe pPez
par g Q=P

By Lemma 12.2.14 at the key step introducing the UMD constants, and ap-
plications of Holder’s inequality and the properties of the principal cubes
elsewhere,

<) Y mG®rfohy

”IPPQHLQ’(]Rd;Y*)

Oco L4(R%;Y)
par g, Q=P
- +
= ﬂq Yﬁq YH( Z gQﬂ-QhQ>PP‘f‘ La (R4 x £2; Y)” P‘gHLq/(Rd;Y*)
Qe
par g, Q=P
- +
<5 YﬁqY” Z fQmQ Q’ Lq(Rde;f(X,Y))HIPPf”LOO(Rd;X)X
Qe
par g, Q=P

|1/q’

< 5q yﬂ y||(7TQ)||Carq(JRd \L(X, Y))|P|1/q x4- 2d<|\f||X>
x4 24|g|ly) p| PV

=16-4%- B,y By (7§l car? @azx, vy (I F1lx) p{llg]

=:16-47- 5(;3/5;,1/||(7T5)||Car2(w;$(x,y)) X Ilp.

v=)p|P|

(Note that, in the step that lead to the appearance of the Carleson norm,
we made use of our implicit replacement of 7 by 1 g(Q)ﬂ'%7 for some finite
F C 2, in the beginning of the proof.)

Finally,
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Y <2 Y (lIflx)pllgly-)plEx(P)l

Pew Pez

<2 Z/ My f - Mog

prPe» Ea(P)
<2 / Mo f - Mag
Rd

< QHM@f”LP(Rd)HM@QHLp’(Rd)
<2 'pI”fHLP(Rd;X) 'pllgHLl’/(Rd;Y*)7
by Doob’s maximal inequality in the last step.
A combination of the estimates proves the proposition. O

To compare the necessary and sufficient conditions for paraproduct bound-
edness, we have the following relation between bounded mean oscillation and
Carleson norms.

Proposition 12.2.17 (Carleson norms vs. BMO). Let Z be a UMD
space, and p € (1,00). If b € BMOg(R%; Z), then (m8)qez = ((b;h3))qea
satisfies the Car? condition for each o € {0,1}%\ {0}, and

& p(Rd:z) <3 b
ae{gﬁ%\{o} ||(7TQ)||Car (R%;2) D, zH ||BMO P (R;Z)

This estimate also has a converse, but since it has no immediate use in the
present discussion, we leave the details to an interested reader.

Proof. This is a direct computation

| > canen)

0CQo LP(Qox12:Z)

QeEF

<1an coh® (1 b—c,h‘l‘

S ez D cohy(lay(b - ). hg) LP(Qox2:2)
QCQo
QeF

< 1nf ﬁ+ZH1QO( — )|l Lr(re;2) by Proposition 12.1.5

< 5;Z|QO|1/p||b”BMO%(Rd;Z)'

Taking the supremum over finite % C 2 and Qy € 2, the claimed bound
follows from the definition of Car?. O

We can now formulate conditions for the boundedness of a paraproduct IT,
in terms of function space properties of b:

Theorem 12.2.18. Let X be a Banach space, Y be a UMD space, and p €
(1,00). Let b € Ly, (R L(X,Y)), and let IT, be the paraproduct defined
by the operators m¢y : @ > (b(-)x,hQ). In order that IIy is bounded from
LP(RY; X)) to LP(RE;Y), it is
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(1) necessary that b € BMOg s (R% Z(X,Y)), and
(2) sufficient that b € BMOg(R%; Z) for some subspace Z — £(X,Y) with
the UMD property.

Moreover, we have the quantitative bounds
[0lBMOg oo 2(x,v)) S M 2(Lr (e x), L0 (R YY)
< 32-8'pp' B,y By il 2(z.2x v))B; 2Bl B7og, (e 2)
where j : Z — Z(X,Y) is the embedding map and q € (1,00) is arbitrary.

Proof. The necessary condition and the lower bound for ||II|| are just restate-
ments of Proposition 12.2.8 and Remark 12.2.9.
For the sufficient condition, from Proposition 12.2.16 we obtain

T || o1 (R ), Lo(resyy) < 32-4%p By Bly D 1(78)llcarswasz2(x.v)»
ae{0,1}9\{0}
and the assumed embedding followed by Proposition 12.2.17 give us
||(7T%)||Carq(]Rd;$(X,Y) X H]”f (2,2 (X, Y))H(WQ)HCaTq(Rd Z)
< illz(z.2x.v)) By 2 bl BMoOY, (R4 2)-

The estimate is concluded by noting that #({0,1}¢\ {0}) =2¢ -1 <2¢. O

For paraproducts defined by scalar-valued coefficients, we now obtain a com-
plete characterisation of their boundedness on UMD spaces. For p = ¢, the
equivalence (1) < (4) provides a partial solution of the LP extension prob-
lem, discussed in Section 2.1, in the particular case of the paraproducts. Note,
however, it does not exclude the possibility of L?(R?%)-bounded paraproducts
extending boundedly to other classes of spaces besides UMD.

Corollary 12.2.19. Let X be a UMD space, and p,q € (1,00). Let Iy, II;
and A := II} + II5 be paraproducts with scalar coefficients Wclg ,Wéa e K.
Then the following are equivalent:

(1) A € 2(L* (R X))
(2) both IIy, 1T} € 2 (LP(RY; X));
(3) for some b; € BMO(R?), we have

= (b1, hY), Tt =(b2,hd), VQE Z,ae{0,1}*\ {0}
(4) A € L(LA(RY)).
Under these equivalent conditions, we have the estimates
max [[bi ||BMO”7~(Rd) ||AH$(LP(R‘1 X))
32 8¢ -pp’ - Bg,x “Bgk - ||biHBMo‘;j(Rd)a
64 -8 pp - g,x Bex - 1Al (pa(ray)-

||Hi||$(LP(]Rd;X))

NN

1Al (1o (me;x))

where Iy := Iy, IIy == 1T}, p1 :=p, poa == p', q1 :==q, q2 :=¢'.
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Proof. (1) = (3): The assumed boundedness (1) and duality clearly implies
the testing conditions

[4(1g ® @)[| Lo wa,x) < 1Al 2(zrrax) 1o @ || Lr R, x),
<

14" (Lo ® %) || Lot (ra, x+)

Condition (3) then follows from Proposition 12.2.8, which also provides the
bounds

|All 2 e mex) 11Q ® 27| o (R, x+) -

maxx (|01 latog, 20 192l agop ey ) < 1Al wsx)-

(3) = (2): We use Theorem 12.2.18 with Y = X and Z = K- I'x, which
clearly embeds into .Z(X) with constant one. With this choice, the theorem
shows that

<32 Sd 'pp/ﬁgxﬁ;’x@;}(
<32.8¢.

11 || 2 (L (re; X)) |b1][BMOY, (R4)-

IBMor (Ra),

where we also used ,BZTX < Bp,x . Similarly, we have

T3 | (Lo @esx)) = 12l oo @a.xey) < 3287 pp'B2 x By b2l pnod (rays

using the same bound on the dual side and recalling that B4 x+« = B4, x

(2) = (1): This is trivial by the triangle inequality.

(3) < (4): This is the already established equivalence (3) < (1) specialised
to X = K. The final quantitative bound follows by combining the bounds
already established:

2

1Al & (Lr@e;xy) < Z ||ﬁi|\$(Lp(Rd;X))
=1

2
< Z 32- 8¢ 'pp//82,Xﬁq7]K”biHBMO‘;’(R")?

i=1

2
< 328" pp' B2 Bkl All (1R
i=1

and Y7, 32 = 64. O

12.2.c Symmetric paraproducts

In this section, we will take a closer look at the special case of the symmetric
paraproduct A, with equal coefficients 75" = (b, h,) for both i = 1,2. Our
goal is to obtain a qualitative improvement of the earlier Proposition 12.2.3.
This will require developing modest prerequisites about the projective tensor
product of Banach spaces, and we first turn to this task.
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Definition 12.2.20. For two Banach spaces X and Z, and a bilinear form
A X x Z =K, we define

M, z) 1= sup { A, )] < el < 1,122 < 1,

B(X,Z) = {)\ . X x Z — K bilinear

IMlssx.2) < o0}
Lemma 12.2.21. (X, 2) ~ X (X, Z*) ~ L (Z, X*).
Proof. For u € £(X,Z*), we see that

Form(u) : X x Z = K, (x, 2) — (ux, z)

defines Form(u) € #(X, Z) of norm at most [|ul| ¢ (x z+). For A € #(X, Z),
we see that Op(A) : X — Z* : 2 +— A(z, ) defines Op(\) € .Z(X, Z*) of norm
at most ||A[|z(x,z). Both Form : Z(X,Z*) = %#(X,Z) and Op : (X, Z) —
Z(X,Z*) are clearly linear and we just saw that they are contractive. Since
both Form o Op and OpoForm are identities of the respective spaces, they
must in fact be isometries. This proves the first identification, and #(X, Z) ~
Z(Z,X*) follows by symmetry, since clearly Z(X,Z) ~ B(Z, X). O

Definition 12.2.22. For two Banach spaces X and Z, and elements © € X
and z € Z, we define x @ x € B(X,Z)* by

rRz: B(X,Z) > K: A= ANz, 2).
Let further
XQ®Z:=spa{z®z:2€X,z€ Z} CHX,Z)",
and, for allve X ® Z,

lollxgz i=imf {3 lailxlzillz v ="z @z},
i=1 i=1
where the inﬁrAnum is over all possible representations of v of any length n.
Finally, let X®Z be the completion of X ® Z with respect to this norm.
Proposition 12.2.23. For all Banach spaces X and Z, we have
(X®2Z)" = B(X,2),
in the following sense: For allv € X ® Z and A\ € B(X,Z), the pairing

n

(v, Ay == Z)\(xi,zi), if v= En:xl ® z;,
i=1

i=1

is well defined and extends by continuity to all v € X®Z. Conversely, every
element of (X ® Z)* has this form, and

Ml (xez)+ = 1M 2x,2)-
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Proof. To check that (v, \) is well-defined, we need to verify that two different
representations v = Z?;l r?®z¢, a=1,2, result in the same right-hand side.
To see this, pick a basis (x?);j:l for span{z¢ : 1 < i < ng,a = 1,2} and a basis
(22)f_, for span{z? : 1 < i < ng,a = 1,2} and expand all z¢ and z¢ in the
respective basis. With the help of the Hahn-Banach theorem, pick z}, € X*
and z; € Z* such that (29, 2},) = 0;m and (2], 25, =)0k n, and consider the
forms A (-1, -2) = (1,25, (2, 25) € B(X, Z) to see that x?@zg are linearly
independent in (X, Z)*. Hence their coefficients must be equal in the two
expansions of v. Make the same expansions on the right-hand side, using the
bilinearity of A, to find that both expansions lead to linear combinations with
equal coefficients of the values \(z3, z})).

Having verified that the action of A on X ® Z is well defined, its linearity

is clear. Moreover,

n

> @i 2] < Mlaxz) Y il x il 2,

i=1 1=1
and taking the infimum over all representations of v shows that
[0, V] < M zx,2) vl x5 2

for all v € X ® Z. From this estimate, we can uniquely extend the action of
A to all v € X®Z by density, with the estimate

Ml(xez): < [Max.2)-
On the other hand, we also have
Az, 2)| = [(z ® 2, )| < [z @ 2l xg 7 [ M(xo2) < lzllxllzlz[ Ml (xe2)-

thus |[X||z(x,2) < [[All(x@z)+, and hence in fact there is equality.

Conversely, if £ € (X ® Z)*, we can define A € B(X,Z) by A(z,z2) :=
(x ® z,£). From the previous construction, it is then clear that (v, \) = (v,§)
for all v € (X ® Z), and hence every £ € (X ® Z)* arises from the previous
construction. O

Corollary 12.2.24. ||z ® 2|/ x5, = |zl x||z]lz-
Proof. We compute the norm by duality:

o ® 2|l x5, = sup {\<x ® 2,8 €l xgz)- < 1}
—sup { ]\, 2)| s [Nl ax,z) < 1}

It is clear from the definition that |A(z, 2)| < ||z|x]/z]|z for any A as in the
last supremum. On the other hand, the Hahn—-Banach theorem guarantees the
existence of z* € X* and z* € Z* of norm one such that (z,z*) = ||z x and
(z,2") = ||z]|z. Then clearly (-1, -2) = (-1,2")(-2,2%) has |[A]|zx,z) <1
and gives A(z, z) = ||z]| x|zl z- O
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We are now ready to prove the following improvement of Proposition 12.2.3:

Theorem 12.2.25. Let X and Y be UMD spaces and p € (1,00). For every
function b € BMOg(R?; Z(X,Y)), the symmetric paraproduct Ay, defines a
bounded operator from LP(R%; X) to LP(R%Y) of norm

24 (pp' + BB ve)

0-2% By xBp.y IbllBro, mes2(x,v))

1 4]l & (Lr (R4, x), L2 (R YY) bl BMO o (R, 2 (X))

<6
<3
Proof. By density, it suffices to consider the action of A, on f € Syo(Z; X),
paired with g € Spo(2;Y™*). We will rewrite this pairing with the help
of the projective tensor product duality between X®Y™* and #(X,Y*) ~
Z(X,Y*) = Z(X,Y), recalling that UMD spaces are reflexive (Theorem

4.3.3). In the following computation, the summation is always over Q € Z
and « € {0,1}4\ {0}.

(4f.9) = S {{0h2) D hg)) o+ (010 Whe) .}
=2 (0h3) ANa @ (g 0) + (Fh) @ (ada) o

<b thz[ ® (h$), 9) + (f,hd) ® <g>Q}> =: (b, h).

On the last line, we are using the H'-BMO-duality from Theorem 11.1.30;
for f € Spo(Z; X) and g € Spo(Z;Y™), the summation is finite, and thus h €
LP(RY X®,Y™*). Since b € BMOg(R%; Z(X,Y)) C Ll (R% Z(X,Y)), the
pointwise duality product (b(u), h(u)) is integrable, and one find by dominated
convergence in the defining formula of Theorem 11.1.30 that the duality can be
computed simply as the integral of (b(u), h(u)) over R%. Thus, an application
of Theorem 11.1.30 followed by Theorem 11.1.28 shows that

(A f, 9)| < [[bllmo (e 2 (x, Y))“hHH (RE; X @Y *)

< [bllmo(re; 2 (x,v)) - 6 I

max

(REXQY %)
and it remains to estimate the H' norm here. Recall that

(17| 12

mdx

ixay) = [ Moh| gy = H sup 1r[[{(R) rllxey+ LRy
€

By the properties of Haar functions, we find that
Mr=Y > (h[(Ne® hGg.o)+fh3) @),
Q2R ae{0,1}9\{0}

=3 [(Ne @ (9)an — (9)0) + ((Nar — () © (9)a)].

Q2R

where Qg is the unique dyadic child of @ that contains R.
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Next, we make the following algebraic observation:

(Har®(9er — (Ha®(9aq

Thus

Nr=Y [(Nan @ @)ax — (e @ l9)e]

Q2R

+ - ((Nen = (Na) ® (9en — (9)0) = Ir + IIn.

QIR

The sum Ig is telescopic and, since f € Spo(Z; X) (we don’t even need the
similar property of g at this point), its terms vanish for all large enough Q.
Thus in fact

Y *

In={Nre@r  rlxz, v- = I()rlxg)r]

and

| sup 1rllnlixg, v ||, o0 < 1Mo f - Mogllza e
Re9

L1(RY)
< || Mo fll e @) | Mgl v (e
<Pl - Pl sy

by Doob’s maximal inequality in the last step.

Turning to I1g, we note that (f)g, — (f)¢ is the constant value of Dg f ()
for any u € R, and similarly for g. As before, the summation in IIg is finitely
non-zero, and we can disentangle it with the help of a Rademacher sequence

(eQ)qez as

IIp = ]E( 3 sp]]])pf(u)) ® ( 3 gQDQg(u)).

PR Q2R

Thus

| Trllxay- <E[| 2 erbes@)]| || D 2oPeg(w)]
PDR Q2R

Y *

< |3 crprfw)

=D ’
LP(§2;X) H C;;:Q Q9(u)

Lr' (£2;Y*)

PDR
ol PIRLIC N b DLCIEC F
= LP(2;X) oy Lr'(£2Y)

where the last step was an application of the contraction principle. Thus
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sup || 11g|| 3 <H Eprfu‘ ,
Rau” ”X®Y = 1%:@ () LP' (£2;Y*)

goD gu‘
LP(Q;X)HQZE:@ ePog(u)

and

| sup 12l 11x] oy
Re2

< H Z €PDPf‘
Pew

< ﬂ;foHLP(Rd;X) 'Bty* ”gHLP’(Rd;Y*)'

L1(R%)

zoD ’
Lp(Rde;X)”Qze;j QeI LP' (Rdx 2;Y*)

A combination of the estimates of Ir and IIg shows that

1Allzrs,,, (rax @y

< s 1allal xzy-| | sup 1alTx] <z
< | sop 1rlallxey- |, g + | 550 TR xEY- |,

< (pp' + B;CX ;rf,y*) |f||LP(Rd;X)HQHLP’(Rd;Y*)’

and altogether we have proved the first estimate claimed in the theorem.
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The final estimate is seen as follows: First, we have ﬁ; x < fBp,x and

ﬁ;y* < By v+ = Bpy by the observation after Proposition 4.2.3, and Propo-
sition 4.2.17(2). Second, denoting p* = max(p,p’) > 2, we have 5, 7z > Bpr =

p* —1 > 1p* by Theorem 4.5.7, and hence pp’ < (p*)? < 4B, xBp,v-

12.2.d Mei’s counterexample: no simple sufficient conditions

O

The following theorem shows the impossibility of obtaining simple upper
bounds for operator-valued paraproducts in infinite-dimensional spaces, even
by considering Hilbert spaces only, and even by replacing the bounded mean

oscillation conditions by the stronger L* norm.

Theorem 12.2.26 (Mei). Let ¢ be a function such that

ol L2z, ) < DN bl oo ize(ez,y)  for all b e L (R; L(63)).

Then

o(N) = [[Anll 2z = —(logN —1),

1
™
where Ay : L (0%) = ZL(0%) is the lower triangle projection defined by
e; ® €j, Zfl > j,

0, else

An(e; ®@ej) = {

and extended by linearity.
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Proof. For a € Z((%) and u,v € %, we have the tensor product u ® v €
ZL(03), and the trace duality (a,u ® v) = (au,v).
Let b € L= (R; £ ((3,)), and f,g € L?(R; (%;). We can then write

(f.g) = (D (b ha)fihrig) = (b Y"1 @ hrghhr ) =: (b Moy f),

I1€e2 1€9

where suggestive notation I, is defined by the last identity. In the two right-
most expressions, the duality is that between L>(R;.Z(¢3;)) and its predual
LY (R; 61 (¢3%)). (We recall from Theorem D.2.6 that (¢1(H))* = £ (H) for
any Hilbert space H and from Theorem 1.3.10 that (L!(R; X))* = L*°(R; X*)
when X* has the Radon—Nikodym property, which the finite-dimensional
(hence reflexive) X = £ (¢3;) does by Theorem 1.3.21.)

Thus we deduce that

1o fll s iz = 500 {10 Moo )] bl ey < 1}

= sup { (T, )| < D]l e w2,y <1
S OV fllez ez ) |9l 22 Rsez,) -

We now apply this to a special choice of f,g € L*(R;/3). Let (r)N,
be the standard realisation of a Rademacher sequence on [0,1), i.e., r;(t) :=
1p,1)(t) sgn(sin(2'wt)). With u,v € €3, we take f = Zfil ri{u,e;)e; and
g = Zfil ri{v, e;)e;, where (e;)N ; is the standard orthonormal basis of /3.
Then

N -1

g f(t) erz (u, ei)e; @1;(t)(v, €;)e;
j=11i=1
= Dr(t)( > (wei)(vej)e @ ej)Dr(t)
1<i<j<N
N

= DT'(t) (TN Z <7,L, €i><7}, 6j>6i X 6j>DT'(t) = Dr(t) (TN (u X v))Dr(t)
ij=1
where D, = Zf\il ri(t)e; ® e; and Ay is the upper triangle projection
defined by
~ e, ®e;, ifi<y
A i ® o E— 7 ’
n(ei®e;) {0, else

and extended by linearity. Since D, () is unitary for every ¢ € [0, 1), it follows
that

1T eg fllLr st @2,y = 12N (@@ V)| 110,101 22, )) = I1AN (@ V) 5142,

Dy Lemma D.1.1 and the definition of the Schatten class, every s € € (£3;)
has a singular value decomposition
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n

n
s=Y ar(s)ur @ vr, Nurlle, = lowllez, =1, D an(s) = lsllsr ez,
k=1 —

where ai(s) > 0 are the approximation numbers of s. Letting fi,gr €
L?(R; ¢3%;) of norm one be the functions corresponding to uy, vy, we find that

HANS||<€1(Z2 Zak ||AN Uk @ Uk)”(gl(EQ )
—Zak () Heg, frllLr®er@2,))

< Zak(5)¢(N) = () |Isllr(ez,)-
k=1

Noting that the lower triangle projection Ay on £ (£3,) = (¢1(¢%))* is the
adjoint of the upper triangle projection Ay on €1 (%)), this implies that

IANI2z@) = I1AN 2@ @2,)) < 6,

which is the first claimed inequality.
The final bound is essentially Lemma 7.5.12, where a variant

e ® €j, if 4 2 ja
0, else

TN(ei X €j) = {

was considered instead. However, the lower bound for the norm of this operator
was achieved by testing with the Hilbert matrix Ay = (1g;£j1(i — j)*l)g\fj:l
with vanishing diagonal; hence Ay(Ay) = Tn(An), and the same lower
bound follows for An as well. O

12.3 The T'(1) theorem for abstract bilinear forms

In Sections 11.2 and 11.3, the leading theme was extrapolating the bound-
edness of a singular integral operator from LPo(R%; X) to LP(R?; X), with
a different exponent p, or even to LP(w;X), with a different weight w. A
question that was largely left open in these sections was how to verify the
assumed boundedness on some LP°(R%; X) to begin with. In the spirit of the
LP-extension problem discussed in Section 2.1, we here obtain the following
useful answer that allows us to extrapolate the vast existing information about
scalar-valued singular integrals to the UMD-valued situation:

Theorem 12.3.1. Let py € (1,00), and let T € L (LP°(R?)) be an operator
associated with a Calderon—Zygmund standard kernel K : R2% — K. Let X
be a UMD space and p € (1,00). Then T ® Ix extends to a bounded linear
operator on LP(R%; X).
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In fact, this result will be obtained as a corollary of general criteria, known as
“T'(1) theorems”, for the boundedness of operators associated with Calderén—
Zygmund kernels; and we will also obtain versions dealing with operator-
valued kernels. However, the very statement of these results requires some
preparations that we take up next. Concerning the proofs, we only mention
at this point that the dyadic singular integral operators and paraproducts,
whose boundedness we already studied in Sections 12.1 and 12.2, will play
a significant role; indeed, our general strategy is to decompose a Calderén—
Zygmund operator into a convergent series of dyadic singular integral opera-
tors and paraproducts. Thus, this final section brings together several of the
themes developed in this chapter.

12.3.a Weakly defined bilinear forms

In order to make a non-tautological study of the question of boundedness of
an operator, we need to give a meaning to the notion of an “operator” before
its boundedness has been established. As usual, this will involve postulating
the action of the operator on a dense class of test functions from which we
wish to extend this action to the full space under consideration. For a dyadic
analysis of singular integral operators, it is convenient to adopt the following
framework:

Definition 12.3.2. For a Banach space Z, a Z-valued bilinear form on S(2)
is a bilinear mapping
t:5(2) = Z.
If Z = Z(X,Y), we extend the action of such a mapping to
t:5(2;X)x8S(2;Y") - K
by letting
oz, p@y") = (o Y)r,y") €K,  ¢9eS(2), zeXy €Y
and extending by bilinearity, observing that S(2;X) = S(2)® X.

Remark 12.3.3 (S(Z) vs. Soo(2) in the definition). Since Spo(Z;X) is al-
ready dense in LP(R?; X), in order to construct a bounded bilinear form on
LP(R%; X) x LP (R Y), it would be sufficient to have an a priori estimate on
S00(2; X) x Soo(2;Y*). However, for the type of theorems that we have in
mind, we also like to make assumptions on the action of our bilinear forms
on functions like 1g € S(2) \ Spo(Z), and hence we need to have our initial
bilinear form defined on the larger product S(Z; X) x S(2;Y™*). This gives
rise to the following problem, where we take X =Y = K for simplicity, since
the issue is already present in this case:

Suppose that we have a bilinear form t : S(2)? — K that satisfies the
estimate
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It )| < Cllfllpllglly V(f,9) € Soo(2)*.

Thus there exists T' € £ (LP(R?)) such that t(f, g) = (T'f, g) whenever (f,g) €
S00(2)?. Does it follow that t(f,g) = (T'f, g) for all (f,g) € S(2)??
Perhaps unexpectedly, the answer is “no”: Consider the bilinear form

W= [ 1 [ o (o)es@r.

If (f,9) € So0(2)?, we have the a priori bound |t(f,g)| = 0, and hence the
unique operator T' € .Z(LP(R%)) is given by T = 0. But of course t is not
identically zero on S(2)2. It is also clear that there cannot possible be any
T € Z(LP(RY)) with (T'f,g) = t(f,g) for all (f,g) € S(2)2.

To avoid this problem, we make sure to get our a prior: estimates on the
full set S(2;X) x S(2;Y™).

Definition 12.3.4. A bilinear form t : S(2)? — Z(X,Y) is said to deter-
mine a bounded operator T € £(LP(R% X), LP(R%,Y)) provided that this
operator T satisfies

t(f,9) =(Tf.9)
for all (f,g) € S(2;X) x S(2;Y™).

In the case of reflexive spaces, the last-mentioned condition can be charac-
terised by an a priori estimate. Finding sufficient conditions for such an esti-
mate will be our primary concern below. The assumption of reflexivity is not
a serious restriction at this stage, since the deeper related considerations that
we shall encounter below will have much stronger assumptions, anyway.

Lemma 12.3.5. Let X and Y be reflexive Banach spaces, and let Xy C X
and YO C Y* be dense. Consider a bilinear form

t:5(2; X)) x S(2;Y") = K.

Let C' > 0 be a constant and p € (1,00). Then the following conditions, each
to hold for every choice of (f,g) € S(Z; Xo) x S(2;Y?°), are equivalent:

(1) There is T € £ (LP(R%; X), LP(R%Y)) of norm at most C such that
(Tf.9) =S 9)-

(2) There is T* € L (L (R%Y*), LY (R X*)) of norm at most C such that
(£;T"9) = [, 9)-

(3) There is a uniform estimate

[t(f, ) < Cllflle@a;xo) 9]l Lo asyoy-
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Proof. (1) = (3) and (2) = (3) are immediate.

(3) = (1): Fix f € Q(R%; Xy). Then g + t(f,g) defines a bounded linear
functional on a dense subspace of L? (R?; Y*), and hence on L? (R%; Y*). Thus
there is Ay € (LP (R%;Y*))* such that

t(f,9) = {4y, 9)-
Moreover, since Y = Y** is reflexive, it has the Radon—Nikodym property
by Theorem 1.3.21, and hence Ay € (LP (R%Y*))* ~ LP(R%Y) by Theorem
1.3.10.

From the linearity of the left side in f, one deduces that f — Af is a
linear map from S(2; X) C LP(R%; X) to LP(R%Y), and (3) shows that it is
bounded. Hence there is a bounded extension T' € .Z(LP(R%; X), L?(R%;Y))
with the required identity for (f,g) € S(Z; Xo) x S(2;Y?).

(3) = (2): This can be proved either similarly to the previous case, or using
the already proven implication (3) = (1) and the general existence result of
an adjoint

T € Z((LP(REY)", (LP(RY; X))*) ~ 2 (1P (R V), L (R% X)),

where the identification of the spaces was again based on the assumed reflex-
ivity via Theorems 1.3.21 and 1.3.10. By definition, the adjoint satisfies

(£,T%9) =(T'f.9)
for all (f,g) in LP(R%; X) x LY (R%,Y*) D S(2; Xo) x S(Z;Y"). O

The very formulation of the conditions that give rise to the name “T'(1) the-
orem” requires us to slightly extend the initial domain of weakly defined sin-
gular integral operators.

Definition 12.3.6. For a bilinear t : S(2)* — Z, we say that t(h$),1) is
well-defined if the series

t( %, 1) = Z t(h%a 1R)
Re9
L(R)=£(Q)

converges absolutely. We say that t(-,1) is well-defined if t(h¢y,1) is well-

defined for every Q € 2 and o € {0,1}4\ {0}.
We define t(1,h¢y) and t(1,-) analogously.

Lemma 12.3.7. If t(h), 1) is well-defined, then
(1) for every k € Z with 27 > £(Q), we have

t(h$,1) = Y t(hd),1r),

REDy

where the series converges absolutely in the weak operator topology;
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(2) for every f € Spo(2), the series

t(f,1):= > t(f,1r)

ReDy,

converges absolutely at least for all sufficiently negative k € Z; moreover,
the value of the series is independent of k € Z, as long as it converges
absolutely.

The analogous statements hold for t(1,-).

Proof. (1): Let £(Q) = 2779. For k = j, the claim of the lemma is just the
definition. For 27% > 277 and R € %, we have

t(he), 15) :t(h%, 3 15) = 3 4@, 1s).

SeP; SeP;
SCR SCR

With f = h$, we then have

(=S i)=Y Y a1 = Y Whte), (1234
Se@j ReDy, SE@j ReEDy,
SCR
where the first equality holds by assumption, and the assumed absolute con-
vergence allows to make the rearrangements and to get the absolute conver-
gence also in the subsequent steps.

(2): Each f € S00(2) is a linear combination of terms of the form h%l,
where ¢ € # for some finite index set #. If Qg € %, is the largest cube
appearing here, then by the previous part of the lemma we know that

> U, 1r)

RE9y,

converges absolutely for each k < jo. Hence also

Yo HLLR) =D (fhE) D HhE . 1R)

RED), 1EF Re9y,

converges absolutely. If the absolute convergence holds for some j and k, the
equality of the corresponding series follows from (12.34).
The case of t(1,-) is entirely analogous. O

As we shall see later, the forms t(1,-) and t(-,1) are closely related to
paraproducts. Since the boundedness of paraproducts is tricky, it is use-
ful to be able identify situations, when they can be avoided, i.e., when
t(1,)=0=+(-,1).

With this goal in mind, we will now discuss an important case of trans-
lation-invariant bilinear forms. We first check that some natural candidates
for the definition are equivalent:
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Lemma 12.3.8. Let Z be a Banach space. The following conditions are equiv-
alent for a bilinear form t: S(2)* — Z:

(1) t(1q,1r) = t(Agims Lriy) for all Q,R € 2 with £(Q) = {(R), and all
m € 74, where Q+m = Q + ml(Q).

(2) t(f,9) = t(rnf,hg) for all f,g € S(2) and all dyadic rational vectors
h, i.e., all h of the form h = m2~F for some m € Z¢ and k € Z, where
Tnf(s) == f(s = h).

If Z = L(X,Y), these are also equivalent to a variant of (2) for all f €

S(2;X) and g € S(2;Y™) instead.

Proof. (2)=-(1): This is immediate by taking f = 1, g = 1z and h = ml(Q),
or f=19®z, g =1g ®y* for arbitrary x € X and y* € Y* in the variant
with Z = Z(X,Y).

(1)=(2): By definition, each f, g is a linear combination of some indicators
1o (or 1o ® x resp. 19 ® y*) with Q € 2 (and z € X, y* € Y*), and we
have h = mp2~ % for some m; € Z% and k;, € Z. Since any dyadic cube
is an exact union of dyadic cubes of any given smaller size, and h can be
expressed in a similar form h = (2=%2))2=* for any k > kj,, we may assume
that we have Q € %), and h = m2~F for the same k € Z to begin with.
By bilinearity of both sides of the claim in (2), we thus need to verify that
’t(lQ,lR) = f(Th]_Q,Th].R) = (1Q-i-m71R—7rm) for each @, R € P, but this is
exactly what we assumed in (1). O

Definition 12.3.9. A bilinear form t : S(2)? — Z s called translation-
invariant, if it satisfies the equivalent conditions of Lemma 12.3.8.

Formally, it is easy to see that t(1,-) = 0 = t(-, 1) if t is translation invariant.
Namely, if Q € 2, and Q1 is the “lower left quadrant” of @, then

Q = U (Q1+7)7 % = Z <h%>Q1+’YlQ1+’Y’

ve{0,1}¢ v€{0,1}4

where the coefficients (h¢)q, 1, are equal to +|Q|~1/2, with equally many of
each sign. Now, formally, we have

43 ”

t(1,1g, 1) = Uruenl Te@ la)) = H1,1,),
and hence

CRE) = Y (Mo, it 10, 1)
76{0’1}d

= ) (W) (1 1g,) =0-41,1g,) =0. 7
7€{O>1}d

Problems with this computation are:
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(1) While we defined t(1, hg)) for cancellative Haar functions hg), the expres-
sions “¢(1, IQIJW)” above need not even be defined; i.e., even if the series
defining the former converges, an analogous series for the latter need not.

(2) The assumption that t is translation invariant was made on the class of
functions S(2) only, and the constant function 1 is not in this class.

Nevertheless, under a mild decay assumption, and some care with limits, we
can bootstrap the above heuristics into a solid argument:

Proposition 12.3.10. Suppose that t : S(2)? — Z is translation-invariant
and satisfies the decay assumption, for all Q € 9 and m = Mg, that

16010, L)l + 1o 1) < colml . (12.35)
Then t(1,-) =0=1¢(-,1).

Proof. We fix some Q € 2, and o € {0,1}¢\ {0}. By definition, we have

HLAG) = D tgimhg) = lm > (g, hd)

M—o0

meZzZd mez?
[m]oo <M
= Jim > h@laii, Do lgiigiam o)
B,v€{0,1}4 mezd
‘m|<>c§M

where rearranging the order of the finite sums inside the limit presents no
issues. Here

(1o, 1p1oms Lo 4q) = g, 15—y i2m: 1Q1 )

and hence, noting that 3 — v € {—1,0,1},

Z t(1Q1+B—§-2m71Q1—i-'y) = Z t(1Q1—i-n>1Q1)
mez? nezd
oo <M ne(-2M,2M]%+(8—)
- ( Z + Z )t(lQH»nv 1Q1)
nezd nezd

ne[—(2M—-1),2M—-1]¢  ne[—-2M,2M]%+(8—~)
ng¢[—(2M—1),2M—1]¢

— Iy + 11577,

In IIJ@J’, we note that at least one component n; of n must satisfy |n;| > 2M,
and hence the decay assumption (12.35) ensures that

|‘t(1Q1Jrn7 ]'Ql)” < CQ1(1 + 2M)7d'

On the other hand, we have n € [—(2M +1),2M +1]9\[-(2M —1), (2M —1)]4,
and the total number of such n € Z4 is
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(1+202M +1))% — (14+202M — 1)) = (4M + 3)% — (4M — 1)¢
< 4d(4M +3)471,

and hence
(ITI577) < 4d(4M + 3)471 x cq, (14 2M) ™4 < cqeq, ML

Substituting back, it follows that
t(1,hg) = lim_ > (b i U +1157)
B,ve{0,1}4

_ 1 e? . B—=y _ 71; -1\ _
S eI = Jim 004 =0
Byy€e{0,1}4

The computation for t(hg), 1) is entirely similar. O

Remark 12.3.11. Tt is easy to see from the proof that the decay assumption
(12.35) could be somewhat weakened. We have not strived for maximal gen-
erality at this point, but stated a condition that is both relatively simple to
formulate and easy to verify in our main application to Calderén—Zygmund
singular integrals.

12.3.b The BCR algorithm and Figiel’s decomposition

In order to analyse t(f,g), we will use the auxiliary operators

Exf=) Eof= ) (flale, Z={Qe2:4Q)=27"}.

QEDy QEDy
Dif = Eenf~Eef= > (> Eof-Eof)= Y. Daof.
QEDr  Q'Ech(Q) QEDs

Our starting point for the analysis of a bilinear form is the following useful
identity:

Lemma 12.3.12 (Beylkin—Coifman—Rokhlin (BCR) algorithm). Let
X,Y be Banach spaces, and let t : S(2)? — ZL(X,Y) be bilinear. Suppose
that f € S(2;X) and g € S(Z;Y ™) are constant on all Q € Dpsr. Then for
all integers m < M,

t(f,9)= Y HDnf.Drg)+ > HDif Erg)

m<k<M m<k<M

+ Y UEwf,Dirg) + UEmf, Emg).
m<k<M

(12.36)
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Proof. That f is constant on all @ € Zy; means that f = Ej, f, and similarly
g = Eprg. Thus we have

t(fvg) - t(Emfa Emg) = t(EM.ﬂ EMg) - t(Emfa Emg)

= Z (t(Ek+1f, Ek+1g) - t(Ekfv Ekg))7
m<k<M

where

t(Ers1f, Er+19) = t((Dk + Ex) f, (Dk + Ek)9g)
= t(Dr.f, Drg) + {(Dr f, Exg) + (Ey f, Drg) + t(Eyf, Eyg),

and hence

t(Eryi1f, Ery19) — UELS, Erg)
= t(Dwf, Drg) + {(Drf, Exg) + {(Erf, Drg)-

O

Remark 12.5.13. The upper bound k < M imposed on the summation vari-
ables above is redundant: the condition that f and g are constant on all
Q € Py implies that Dy f = 0= Dyg for k > M, so that the right side would
remain unchanged if we allow the summations to run to infinity.

The final term in the expansion 12.36 is an error term, and can be controlled
under the following mild conditions, which are obviously necessary for t to
define a bounded operator on L?:

Definition 12.3.14. We say that a bilinear t: S(2)*> — Z satisfies
(1) the weak boundedness property if
1t(1q, 1o)llz < tlwepl@  VQ € Z;
(2) the adjacent weak boundedness property if
1t(1e: 1gia)llz < Itlawsy| Q1 VQ € 2, Vn € {~1,0,1}".  (12.37)

Lemma 12.3.15. Let X,Y be Banach spaces, and let a bilinear t: S(2)* —
ZL(X,Y) satisfy the adjacent weak boundedness property. Then for all f €
S(2;X) and g € S(2;Y), and all negative enough m, we have

|t(Emf7 Emg)| < 2d||tHawbpHEmeLP(Rd;X)HEmg”LP’(Rd;Y*) m:)OO 0.

Proof. We choose m so negative that the (bounded) supports of f € S(Z; X)
and g € S(2;Y*) are both contained in the union of at most 2¢ cubes Q € %y,
such that any two of them are related by R = Q-+n for some n € {—1,0,1}%.
We then have
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tEnf Emg)= Y. HEqf Erg)= > t(flelq (9)rlr)

Q,REDy, Q,RED,
and thus
Emf Emg)l < > 1o, 18)2x.x)(Helxll(g)ally-
Q?Re@’ln
< Y tlawsl QU x g v
Q,RED,
= tawer > 1QIM"I{Helx Y IR I(g)rllv-
QEDm RED,,
d/p’ p p d/p P’ L/
< tlawsn2 (37 1QUINQIE) 27 (Y IRING)RI-)
QEDm, REDm,
= 2|t awbp | Erm £ || o (me; ) || Em | Lo (R34
which is the claimed bound. O

The other terms in (12.36) can be identified with the various operators that
we have studied in the previous sections:

Definition 12.3.16. Let X,Y be Banach spaces, let t : S(2)? — ZL(X,Y)
be a bilinear form, and let t(-,1) and t(1,-) be well-defined. We define the
following operators associated with t:

He = Zﬁ?ﬂ,w, where ﬁfﬂw are Haar multipliers (12.3),
0 0

oy
T = Z Tg:,tﬁm where Tg:,tﬁ’” are Figiel’s operators (12.14)

a,v€{0,1}\{0}

o Jon(Q) == Qdn = Q +nl(Q),
with o = t(h< h’Y
n (Q) T ( Q> Q—i—n)’

Uy = Z Ugn,uf;‘“ where U(‘;‘mu%a are Figiel’s operators (12.19),

a€{0,1}4\{0}

with ui,a(Q) — {t}{a(Q)* = t(hOQ-i-n’haQ)*v i=1,
n : 2.0 o @inl -
2(Q) = thg,hd, ), i=2

We also define the related paraproducts:
IT} := paraproduct with coefficients (1, h$y)s
IT? := paraproduct with coefficients t( o7,
Ay := bi-paraproduct with coefficients 71'5’1 =t(1,hQ) and 7'('%’2 =t(h), 1),

—

¢ := the bilinear form of A.

We may drop the subscript t from these notations if it is obvious from the
contert.
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Remark 12.3.17. Our indexing of the operators U}'L,t may appear counterin-
tuitive at first sight, as one might like to think of the operators Ufm, which

act on f € LP(R?; X) with coefficients t(hd ho i) € Z(X,Y), as deserv-
ing to be the “primary” ones, rather than Un ¢» which act on the dual side
g € L (R%Y*) with adjoint coefficients t(hQ+ hg)T e L(Y*, X™). How-
ever, this indexing is chosen, since the operators Uy, ( naturally arise in par-

allel with the paraproducts II; of the same index i € {1,2}—see (12.42) and
(12.43) below—, and it turns out to have some other advantages in the sequel.

With this notation, we can formula Figiel’s decomposition of a bilinear form:

Proposition 12.3.18 (Figiel). Let X,Y be Banach spaces, let t : S(2)? —
Z(X,Y) be a bilinear form, and let t(-,1) and t(1,-) be well-defined. For all

fesS(z;X), g€ S(2;Y"), m € 7,
denoting
=T —-En)f € S (2;X), vi=(I—Epn)g € S00(2;Y"),
we have the following identity with absolute convergence:
tf,9) = (D, g) + (I f,0) + (u, 11g) + {Em f, Epg)+
+ 3 {Tuang) + (1,05 0) + U2 eg) ) (1238)

nez?
n#0

where the operators on the right are as in Definition 12.5.16. If these coeffi-
cients satisfy

161, )1, 16y, DI < ClQ[M2, (12.39)
then we have the further identity, with all terms below well defined:
(I} f, ) + (u, [ 2 g) = (Acf, 9) — (I f, 9) — (f, mITEg). (12.40)

Remark 12.3.19. Since ﬁA = T¢ »» we could have incorporated the Haar
multiplier into the second line of (12.38) as (H¢u,g) = (Totu,g). But we
prefer to keep it separate, since its treatment will involve some differences
compared to the rest of the T, ;.

Proof of Proposition 12.3.18. We start with the identity (12.36) of Lemma
12.3.12. Since the sums are finitely nonzero, we are free rearrange as follows,
observing that dyadic cubes @, R of the same size are necessarily integer (times
side-length) translates of each other:

D> UDwf,Drg)= > Y WDqf, Drg)

k>m k>m Q,REZ,
=3 D D> UDofiDoing) = Y, Y UDqfsDging)
kzm QED, neld QED nezd

()2 ™



158 12 Dyadic operators and the 7'(1) theorem

and we can also switch the order of the last two sums. Observing that u =
(I—E,,)f satisfies Dou = Dq f for £(Q) < 27 and Dgu = 0 for £(Q) > 2™,
we find that, replacing f by u (and/or g by v) we can drop the restriction
2(Q) < 27™ in the sum. Moreover, using the convention that summations
over o and v are always over the set {0,1}%\ {0},

3 WDgu. Dgiag) =Y. > <t< 80 ) B, (b))

Qe a,y Qe

= Z Mu 9) = (Thu, g).

Hence

> t(Drf, Drg) = > (Tau.g) = (Hu,g) + > _ (Thu,g)
k>m nezd ne;ézd
n#0

(12.41)

For the terms involving E%, we begin in the same way but then introduce
an additional twist to force some cancellation:

D UDfEvg) = Y. Y HDaof Egin9)

k>m QED nezd
(<2
= > > (UPef 105(Dgin — (9)0) + Do\ 1gi9)a)))-
QED nezd
(O

The assumption that (-, 1) is well-defined guarantees the absolute convergence

of
Y UDof,1g1.(9)0) = HDof, (9)q)-

nezd

Recalling that only finitely many Dg f with £(Q) < 27™ are non-zero, we also
get the absolute convergence of

> D UDoflgia{9e) = DY, UDof (9)q) = pm(f.9),

Qe nezd QED
(<2 (Q)<2™™

and hence, by triangle inequality, that of
D Def 101 ((9)gtn — (9)Q):
nezd

Thus we can make the rearrangements

Z t(Dif, Exg) = Z Z t(DQf’ 1Q+n(<g>QJrn - <g>Q)) +pm(f, 9)

k>m nEZd QEY
n#0 £(Q)<2™™
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where adding the summation condition n # 0 was for free, since the factor
(9)0in — (9)q evidently vanishes when n = 0. Again, replacing f by u allows
us to drop the restrictions to £(Q) < 2~ both in the sum spelled out above
and in p,,(f,g). Moreover,

> t(Dqu. 141, (9gin — (9)Q))
Qe

= Z Z < Q+n < > <h%+n he 7g>>

a Qez

_Z bt %Oug <U tu g>
Directly from the definitions, we also have

pm(f7g) = Z t(Dqu <9>Q)

Qe

= Z Z (h%< anu>v<g>Q)

QEZ ac{0,1}4\{0}

=Y Y (e g )

QEeZ aec{0,1}4\{0}

=Y > (gt 1) (9)e) = (u, TEg).

QREZ aec{0,1}9\{0}

In the computation above, the fact that u € Spo(2; X) guarantees that all
summations are finite, and the last step is simply the definition of the para-
product via its action of the finitely non-zero Haar expansions in the dual
space. Hence we have verified that

k>m nezt
n#0

and the proof that

Z t(Ekfa Dkg) = Z <f7 Uﬁ,tv> + <H71L,tfa ’U> (1243)
k>m nez?
n#0

is entirely analogous. Substituting the previous two identities and (12.41) into
(12.36), we obtain the claimed (12.38).

Under the additional assumption (12.39), we know from Corollary 12.2.12
that (II1 f,g) is well-defined and bilinear in (f,g) € S(2; X) x S(2;Y*), and
hence

(I} f,v) = (IT{ f.9) — (I} f, Emg) = (IIL f, ) — (11} £, ).

Similarly, (u, [12g) = (f, I12g) — {f,mII%g), and the previous two identities
combine to give (12.40), noting that (IT}f, g) + (f, [I2g) = (A f, g). O
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12.3.c Figiel’s T'(1) theorem

The previous section culminated in Proposition 12.3.18, which established a
decomposition of a generic bilinear form t : S(2)? — £(X,Y) in terms of
various fundamental operators. This is as far as it seems useful to proceed with
identities, and we now turn to conditions that allow us to make meaningful
estimates of the terms in the obtained decomposition. For this purpose, we
introduce a certain family of norms. For a smooth discussion of a couple
of closely related variants, it is convenient to adopt the following general
framework.

Definition 12.3.20. Let Z be a Banach space, and P(Z) the collection of
all subsets of Z. We say that p : P(Z) — [0,00] is a good set-bound on Z, if
it satisfies the following properties for all &, T C Z:

(1) If & C 7, then p(&) < p(T).

(2) p(LUT), 0(S + T) < p(F) + ().

(3) If Z CK, then o(Z7) < sup.c 2| X 9(T).

4) p(7) = p(conv T) = p(absconv 7).

(5) p(7) = p(T), where T denotes the norm-closure of T .

We primarily have in mind the following three cases:

Lemma 12.3.21. Let X and Y be Banach spaces and p € [1,00). Then each
of the following @ is a good set-bound on Z = £ (X,Y):

(a) p =%, where % (T ) :==sup{||T|| : T € T},

(b) o = %, the R-bound of order p,
(c) p = %, the dual R-bound defined by

BT =R T*), T ={T" e L(Y*"X*):T€ T}

Proof. (a): The verification of the properties is immediate.

(b): Properties (1) and (2) for p = %, are contained in the items with
same numbers in Proposition 8.1.19. Property (3) follows from

%p(g§> < %p(g)%p(y)v Kp(Z) = Su§£|z|,
z€

where the first estimate is Proposition 8.1.19(3) and the second is immediate
from Kahane’s contraction principle (cf. the discussion right before Defini-
tion 8.1.1 of R-boundedness). Finally, properties (4) and (5) are contained in
Propositions 8.1.21 and 8.1.22, respectively.

(c): All properties are direct corollaries of the corresponding properties
in (b), since all set operations involved in these properties are well-behaved
under the adjoint operation:

(1) . C 7 if and only if #* C T*,
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LSUIT ) =S*"UT* and (S + T ) =S+ T*,

it  CK, then (7)) =29",

(conv 3) = conv(ﬂ*) and (absconv.7)* = abs conv(.J*),
(7) =

(2)
(3)
(4)
()

O
Definition 12.3.22 (Figiel norms of a bilinear form). For a bilinear
form t: S(2)? — L(X,Y), let t7,t:2 : 9 — L(X,Y) be the associated

functions appearing in Proposition 12.3.18. For s > 0 and a good set-bound g
on L(X,Y), we define

Y @+lognl)e(tn), 0 € {(a,), G a)l,

nez?
n#0

Z 17 IFige (o).

a,7€{0,1}9\{0}

Z ||ti7a||Figs(p)7 (S {172}’7
ae{0,1}9\{0}

2
[tllFigs (o) == Z 1D | pige (g)-
=0

0
Ht ||Figs(p) :

Ht(O) HFigs(p) :

||t(z) HFigS(p) :

When o = % is as in Lemma 12.5.21(a), we write Fig®(c0) := Fig®(%).

Remark 12.3.23. Referring to Proposition 12.3.18, one observes that the Figiel
norms impose control on pairings t( O hZ))7 where at least one of the Haar
functions is cancellative, i.e., (c,7y) # (0,0). This is in contrast to the decay
condition (12.35), where o = v = 0.

Since we also encountered the adjoint function ul*(Q) := (t1%(Q))*, we recall
the following results from the previous volumes:

Proposition 12.3.24. Let X and Y be Banach spaces, 7 C £(X,Y), and
€ (1,00). If X is K-convez (resp. a UMD space), then

(7)< Kpx o T)( < Bix (7))
IfY is K-convex (resp. a UMD space), then
B T) < Ky By (7)< B3y 3 (T)).

In particular, if both X and Y are K-convex (resp. UMD spaces), the set-
bounds %, and %, are equivalent on L (X,Y).

Proof. The first inequalities in both chains are restatements of bounds in
Proposition 8.4.1, and we have K, 7 < ﬁ;z by Proposition 4.3.10. O
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Thanks to Proposition 12.3.24, we would not need to distinguish (when work-
ing in UMD spaces) between direct and adjoint R-boundedness conditions, as
such assumptions are actually equivalent. Nevertheless, we choose to do so,
for twofold reasons. First, as far as quantitative conclusions are concerned, we
would lose a constant each time we pass to the dual side, whereas in many
applications, verifying the R-boundedness of concrete operators is just as easy
(or difficult) directly on the dual side, so that applying the general duality
result for R-boundedness is unnecessary. Second, writing the adjoint bounds
explicitly, where they are relevant, will hopefully better clarify the role of the
different assumptions in the estimates.

In the following lemma, we observe that Figiel norm estimates, of the type
we will need to assume any way, will also guarantee the well-definedness of
t(-,1) and t(1,-)), which allows us to drop these as separate assumptions in
the sequel.

Lemma 12.3.25. Let X and Y be Banach spaces, and let t : S(2)?> —
Z(X,Y) be a bilinear form. If ||t(2)|\pig0(oo) < 00 (resp. [t [|pigo(0) < 00),
then t(-, 1) (resp. t(1,-)) is well defined, and

1ERE, DI < 1 |pigo o) [ Q1 2,

. . (12.44)
(1L ) < 1 lesgo (00| Q1)

Proof. For every Q € 2 and « € {0,1}%\ {0}, we have

Yo I 1)l = Y g, by, IQIY

nezd

<Y I @IIQIM? = 1€ frigo oo Q12 < o0,

nezd

Re9
L(R)=£(Q)

which shows both that t(-, 1) is well defined and the related bound. The case
of t(1,-) is analogous. O

Theorem 12.3.26 (T(1) theorem for bilinear forms). Let p € (1,00)
and 1 <t; <p<q <o00,1=0,1,2, where ¢ = oo and to = 1. Consider the
following conditions:

(i) X and Y are UMD spaces;
(ii) X has cotype q; and Y has type t;, or one of them has both, for each
i=0,1,2,
(iii) t: S(2)? — L(X,Y) is a bilinear form with

2
Z D%p(t5") + Z 1€ [ piges (2,) < 00,
ay i=0

where o; :=1/t; — 1/q;,
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(iv) t satisfies the adjacent weak boundedness property.

Under assumptions (1) through (iv), the bilinear form t— ¢ defines a bounded
operator T — Ay € Z(LP(RY; X), LP(R4;Y)) that satisfies

(a) the norm estimate:

1T — Adll (LR x), Lr (R YY) < Bp,xBpy { Z DR, (857 )+

2
. 0 %
+Ad P Co,ilt [igeo (o) + Ba z; Cuall )“Figoi(pi)}
=

where Aq :=6-(81)%, By :=5200- (81)%, p; := Ly, 2 1= Ap, and
Cig2 = Cr215(X,Y,p, ¢, t;), Cin = Ca215 (Y, X*, 0, 1], 4;),
(b) the representation formula, with absolute convergence for all f € LP(R%; X)

and g € L (R4 Y™*):

(T = 40f,9) = (9,00 + Y ((Tufo9) + (£ULg) + (U2 S

nez?
n#0

where the operators on the right are as in Definition 12.5.16.

>)’ (12.45)

Under assumptions (1) through (iii), the following conditions are equivalent:

(1) t defines a bounded operator T € £ (LP(R%; X), LP(R%;Y));
(2) t satisfies (iv), and I defines a bounded Ay € £ (LP(R%; X), LP(R%Y)).

Under these equivalent conditions, we have both (a) and (b).

Remark 12.5.27. The assumptions of Theorem 12.3.26 allow a certain trade-
off between the Figiel norms that one imposes on the bilinear form t on the one
hand, and (co)type assumptions (and the size of the related constants) on the
spaces X and Y on the other hand. Indeed, the norms || ||pige: become smaller
with decreasing o; = 1/t; — 1/q;, thus with increasing type ¢; or decreasing
cotype g;, but at the same time the related constants C(;515) may increase.

Let 1 <t < p < ¢ < o and suppose that X has cotype ¢ and Y has
type t, or one of them has both. In Theorem 12.3.26, we will then choose
(t1,q1) = (t,00) and (t2,q2) = (1,q); thus o1 = 1/t and o9 = 1/¢’. However,
there are three prominent choices of the exponents ty and gg:

(0) With (t07 QO) = (ta q)7 we have

with strict inequality if both ¢ and ¢ are chosen to be non-trivial (as one
always can for UMD spaces X and Y by Proposition 7.3.15). This shows
that a strictly weaker condition is required on () than on (") with i = 1,2,
but this seems to be largely a curiosity.
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(1) With (t9,q0) = (t1,q1) = (t,00), we have o9 = o1. Thus, we impose a
stronger norm of t(©) than in case (0), but we achieve the following better
constants in Theorem 12.3.26(a) under this choice:

CO,l - C(12.15)(Y*; X*aplat/a 1) - Cl,lv

while an inspection of (12.15) shows that Cp ; is larger than C 1 in general.
(2) Similarly, with (¢o, go) = (t2,92) = (1,q), we get

Co2 = C(12.15)(X7 Y,p,q,1) = Cy,2.

Using either choice (1) or (2) in Theorem 12.3.26, its key norm estimate admits
the following form, under the assumption (we recall) that X has cotype ¢ and
Y has type t, or one of them has both,

IT = Al oo ) 2o oswy) < Bpx By { 30 92,6571+

o,y

2
+ Z C; (Ad||t(0) |l Figei (o) + By||t® | pige: (@,;)) },

i=1
where 01 = 1/t, 02 = 1/¢, and
C"l = 0(12.15)(Y*7X*7p/7t17 1)7 02 = 0(12.15) (X7 Yap7 q, 1)

Proof of Theorem 12.3.26. The core of the proof will consist of establishing
claims (a) and (b) under the full set of assumptions (i) through (iv). Assuming
that this is already done, let us see how to conclude the rest of the proof.

The equivalence of (1) and (2) is asserted under the assumptions (i)
through (iii) only. However, the adjacent weak boundedness property (iv)
is clearly necessary for (1) and it is explicitly assumed in (2), so we can as-
sume that this condition is satisfied in any case, and so we are in fact working
under the full set of assumptions (i) through (iv) also in this remaining part
of the proof. Thus the consequences (a) and (b) of this assumption are valid.
In particular, since the bilinear form t — [ defines a bounded operator under
this assumption, it is clear that t defines a bounded operator if and only if [
does.

We then turn to the actual proof of (a) and (b) under the assumptions (i)
through (iv). From Lemma 12.3.25, we get that t(-, 1) and ¢(1, -), and hence the
two paraproducts, are well defined, and their coefficients satisfy the bounds
(12.44). For f € S(2;X) and g € S(Z;Y*), we then have both identities
(12.38) and (12.40) provided by Proposition 12.3.18. Combined together, they
read as

t(f.9) = Dum, ) + (Af, g) + Em(f, 9)+
£ 3 ot ) + (1 U + (Ung) ) (12.46)

nez?
n#0
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where u,, := (I —E,,)f € So0(Z;X), v := (I —Ep)g € Soo(2;Y ™), and the
error term

satisfies

2
6m(£, 9 < (cap 3 IO leig0 o0y + 2l ) ¥
p; £ " (12.47)

X NEm fllLe@ax) | Emgll e @y —= 0

——c0

by Lemmas 12.2.11 and 12.3.25 for the paraproduct terms and Lemma 12.3.15
for both the final term and the limit.
Directly from Theorem 12.1.11, we deduce that

ﬁumy Z| O"Yumvg

. N (12.48)
<BI B v D DRy |t gl

o,y

where, and in the rest of the proof, we abbreviate
Ilp =l lzr@exys Il =1 e may =y

Note that ¢, (Q) := Q+4n satisfies ¢,,(Q) C 3Q™N) provided that |n| < 2V
thus in particular for N = flog; [n|]; this is relevant in view of applying
Corollary 12.1.27 and Theorem 12.1.28. From Corollary 12.1.27, we deduce
that

| Tumag Z' bn,t D"Yumag>|
< Adyx By 2+ Togg ) 201/ min Coii (37w 19l

using the notation of the statement of the theorem that we are proving. Hence

Z | T nUm, g Adﬂp,Xﬁp Y mln Co z”t ||Fig1/to—1/q0(pi)

nez?
n#0

umllpllgllp

Similarly, recalling that ¢ := 1, Theorem 12.1.28 guarantees that

| U’Ltm, Z' 2“um’ >‘
< BaBy,x Bp,v (24 logy [n)M/ 27123 7 Co 02 (6 |um 19l
«@

in the notation of the theorem, and hence
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Z |<U7%Uma9>| < Bdﬁp,Xﬁp,YOQQHt(Q)||Fig1/t2*1/42(m)”um”p”g”p“

nez?
n#0

For the term (f, Ulv,,), we again apply Theorem 12.1.28 but on the dual
side, with X,Y, p replaced by Y*, X* p’. By assumption, Y has type t; < p,
and hence Y* has cotype tj > p’ by Proposition 7.1.13. So we can indeed

apply Theorem 12.1.28 with X,Y,p,q replaced by Y* X* p’ ¢|. Recalling
that ¢; := oo, and noting that 1 — 1/} = 1/t; = 1/t; — 1/q1, this gives

| f,Ul’Um Z| f7 ¢ (tl 0)*’Um>|

< Bdﬂp’,X*Bp',Y*(Q +1ogy [n )Y £l [om |y x
X C(Y*aX*’p,’tll)%p’((t}{a)*)’

where B, x+Bp v+ = Bp,xPp,y and
CY*, X, p' 1) R (%)) = C11 %y (£,) = Crap ()
in the notation of the theorem. Hence

Z [(f, Unom)| < Bdﬂp,Xﬂp,Ycl,IHt(l)HFigl/trl/ﬂ(pl)Hf”p”Ume’-
nezd
n#0
Noting that ||um|l, < 2||f]l, and ||vm|ly < 2||g]lp, and using the assump-
tion about ||t )||Flg1/f ~1/4; (¢, (combined with Proposition 12.3.24 in the case
of Z,((t5*)*)), it follows that the series in (12.46) are term-wise and uni-
formly in m dominated by absolutely convergent series. This allows us to pass
to the limit m — —oo in (12.46) with dominated convergence to deduce that

(t—=0(f,9) = RHS(12.45) YV feS(2;X), ge S(2;Y™). (12.49)
Taking the same limit in the term-wise bounds above, we obtain

(¢ =D(f9) = [t(f,9) = (A1, 9)|

< ﬁp,xﬂp,y{ Z D%y(t5"") + Aa min Co,i|t© I Figt/to-1/40 (1)
ay ’ (12.50)

2
4 B> Collt g0y M 9]
i=1
again for all f € S(2;X) and g € S(2;Y*), where Ay, By and C; are as in
the statement of the Theorem.

This estimate shows that the bilinear form t— [ satisfies a relevant a priori
bound, and hence defines an operator T — A € Z(LP(R%; X), LP(R%;Y)). By
density, it is immediate that (12.50) remains valid with general f € LP(R%; X)
and g € L' (R?;Y*), and this proves the claimed norm bound (a) for T'— A.
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We can then replace (t—[)(f, g) by ((T—A)f, g) in (12.49). Approximating
general f € LP(R% X) and g € LP (R% Y*) by functions as in (12.49), and
using dominated convergence and the term-wise bounds recorded above, this
proves the representation (b). This completes the proof of the claims under
the assumption that t satisfies the adjacent weak boundedness property. [

12.3.d Improved estimates via random dyadic cubes

A feature of Theorem 12.3.26 is that it deals with a bilinear form adapted
to a fixed system of dyadic cubes 2. This is an advantage in applications
to questions of intrinsically dyadic nature. But it is also a certain limitation
in view of applications to non-dyadic questions, in that the assumptions of
Theorem 12.3.26 fail to take advantage of possible information about non-
dyadic cubes. For example, with some effort, one could use Theorem 12.3.26
to re-derive the boundedness of the Hilbert transform on LP(R; X), which
we proved in a different way in Theorem 5.1.13. However, the conclusion
derived from Theorem 12.3.26 would be quantitatively weaker, in terms of
the dependence on the UMD constant 3, x, which was quadratic in Theorem
5.1.13. For X =Y, Theorem 12.3.26 also features the explicit factor ﬁix, but
there is another (3, x implicit in the constants C(12.15). On the other hand,
it is evident that, for t(f,g) := (Hf,g), there is no difference in estimating
t(hg, h};) for dyadic or non-dyadic intervals I,J. But Theorem 12.3.26, as
formulated, makes no use of this additional information.

We now wish derive to variant of Theorem 12.3.26 to address these issues.
First of all, we need a straightforward generalisation to R? of the random
dyadic systems that we used in the one-dimensional case in Section 5.1.

Lemma 12.3.28. Let 2 be a fized dyadic system on R, in the sense of Def-
wnation 11.1.6.

(1) For every w = (w;);eza € ({0,1}%)%,
Q¥ = {Qer :Q € @}
is another dyadic system on R?, where

Qtwi=Q+UQuw), UQw):= > 27w,

3277 <(Q)
(2) Conversely, every dyadic system 2' has this form for some w € ({0,1}%)Z.

Proof. Let 2° be the standard dyadic system, and consider a family of shifts
55 + .@jo. These clearly satisfy property (i) of Definition 11.1.6. A necessary
and sufficient condition for them to satisfy (i) of Definition 11.1.6 is that
S$5 — 8j+1 € 2-i-lzd,

If 2 is a dyadic system defined by shifts s;, then Z* is defined by the

shifts s; + wy;y, where
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w(j) = Z kafk.

k>j

These satisfy (s;+w(j))—(5j41—w(4+1)) = (8j—Sj41)Fw;p1277 71 € 2797174,
and hence 2% is also a dyadic system, as claimed in (1).

Then suppose that Z and 2’ are two dyadic systems defined by shifts s;
and s;, respectively. It is clear that the family ; = s; + .@]Q only depends on
s; mod 277, and hence we may assume without loss of generality that both
s; € [0,277)% and t; := s} — s; € [0,279)%. Since both s; — 5,41 € 27771 Z¢
and s’ — st € 2797172 it follows that also t; — t;41 € 2777174, Together
with the fact that t; € [0,279)% and t;41 € [0,27971)9 one finds that in
fact t; —tj 11 € 27771{0,1}4. Denoting w1 := 2771 (t; — t;41) € {0,1}4, we
obtain

tp =tj41 + 27j71wj+1 =...= ZQikwk = wW(j),
k>j
and then
@;:s;-—i—.@JQztj—l—sj—&—@?:w(j)—&—.@j:@f,
as claimed in (2), and this completes the proof. O

Definition 12.3.29. For w = (w;) ez € ({0,1}%)Z, let
Jow =sup{j € Z:w; #0} € ZU{—00, 0},
({0,135 = {w € ({0,139)% : j, < oo .
We say that w € ({0,1}%)7 is eventually zero if w € ({0,1}9).
Lemma 12.3.30. For every w € ({0,1}%)%, we have
5(2%)=5(2),  So(2%)=5(2).
Moreover, there exists an w € ({0,1}%)% such that Soo(2%) = So(2).

Proof. Recall that S(2) is the span of indicators 1g of @ € 2. Since every
Q € 2, can be written as a union of smaller cubes Q' € %y, for any k > j, we
see that, for any given jo € Z, the space S(2) only depends on ;. ;, Z;. On
the other hand, if w is eventually zero, and j,, is as in the definition of this
property, then ;" = 9; for j > j,. The first claimed identity thus follows.

The second identity follows by restricting to functions of vanishing integral
on both sides.

Finally, it is easy to choose w € ({0,1}9)% in such a way that 2 contains
an increasing sequence of cubes that exhausts all R?. Then, given any f €
S(2), we can find some Qo € Z* that contains the support of f. If, in
addition, f € So(2) = So(2¥), then f can be expanded in terms of finitely
many Haar functions hgy with @ C Qo, and thus f € Spo(2“). Since this
holds for every f € Sp(2), we obtain the final identity. O
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Remark 12.3.31. Without the assumption of eventually zero, the conclusion
of Lemma 12.3.30 fails in general. For instance, the indicator of the shifted
dyadic interval % +[0,1) cannot be expressed as a finite linear combination of
standard dyadic intervals.

Thanks to Lemma 12.3.30, any bilinear form t : S(2)? — Z may also be
regarded as a bilinear form t : S(2%)? — Z for every eventually zero w.
Although the objects in fact coincide, it will be convenient to denote the latter
by t“. This is particularly relevant when considering the various auxiliary
objects derived from the bilinear form. In particular, extending the notation
from Proposition 12.3.18, we have

@N(R) = (g k), ),  R=Qiwe 2

i) = {WR)* 0 ) =,

u
" G2 (R) = Wiy, b )" =2

The advantage of considering several dyadic systems 2 is that this allows
us to dispense with some of the cubes within each 2¢.

Definition 12.3.32. For a dyadic system 2 and k € Z>2, a cube Q € D is
called k-good (in ) if

1
dist(R,CR™) > Zz(R“f)) = 2F"2)(R),

where R%) is the kth dyadic ancestor of R in 9.

Lemma 12.3.33. Consider a random choice of w € ({0,1}4)2>M with respect
to the uniform probability on this space. For every Q € 9 with £(Q) > 2~M,

(1) the random set Q+w and the event {Q+w is k-good in 2} are indepen-
dent;

(2) P(Q+w is k-good in %) = 274,

Proof. (1) follows by observing that Q+w depends only on w; with 27M <

277 < {(Q), whereas {Q+w is k-good in 2*} depends on the relative position

of Q-+w with respect to cubes R+w with £(R) = 2¥/(Q), which in turn depends

on w; with £(Q) < 277 < 2F4(Q).

(2): When all w; with £(Q) < 279 < 2%/(Q) are independently chosen
from {0, 1}¢, it is easy to see that the probability of {Q+w is k-good in 2*}
is equal to the geometric probability (i.e., the relative volume) of the “good
region”

1 _
Ryood = {s € R : dist(s,CR) > Zé(R)} - -R
of the Z“-ancestor R of ), and this is simply

|Rgood| _ |%R| _
|R| |R|

1
2

2-1,
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Definition 12.3.34. For 0 € {(a,7), (i,@)}, and n € Z*\ {0}, we define

w;0

Jtn,good(R) = 1{R is k(n)-good in @W}t‘;;;e(R%
K(n) =2+ [logy n].

We define Figiel’s operators Tfigd and szﬁ?d as in Definition 12.5.16, but

with tﬁ;good in place of the respective tfl

For n € Z%\ {0}, we have k(n) > 2, and hence the notion of “k(n)-good” is
well-defined. For n = 0 we would formally get k£(0) = —o0, and “—oo-good”
reduces to the triviality dist(R, CR) > 0; accordingly, for definiteness, we let

tgjgood(R) =9 (R).

Replacing all quantities in Definition 12.3.22 by their “good” restrictions, we
have a natural definition of the Figiel norms

;0 i
”tgood”Figs(p)? e {(av’Y)v (7’70‘)}7
I Eige oy i=120  [ooallrigs (o)

As we are about to see, these good parts will suffice to control a bounded
extension of the form t, and this also allows us to obtain a better dependence
on the UMD constants. Here is the precise statement:

Theorem 12.3.35 (T'(1) theorem for bilinear forms, random version).

Let p € (1,00) and 1 <t < p < g < 00, and consider the conditions:

(i) X and Y are UMD spaces,
(ii) X has cotype ¢ and Y has type t, or one of them has both,
(iii) t: S(2)? = L(X,Y) is a bilinear form with

2
Y 27,(6577) + min [ [gigei,) + D 167V lpigei () < C,
a,7€{0,1}9\{0} ' i=1
uniformly in w € ({0,1}4)%, where o1 = 1/t and o2 = 1/¢'.
(iv) the formst* satisfy the adjacent weak boundedness property ||t | qwep < C
uniformly in w € ({0,1}4)Z,

Under assumptions (i) through (iii), the following conditions are equivalent:

(1) t defines a bounded linear operator T € £ (LP(R%; X), LP(R%;Y));
(2) t satisfies (iv) and the paraproducts Aw are uniformly bounded.

Under these equivalent conditions, we have:
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(a) the norm estimate:

”THK(LP(Rd;X),Lp(Rd;Y))
<sup ([ Ae Lz (e reix), Lo ®ay)) + 6p7X6p7Y{ sup Z DR (t57)

a,y

122" sup ( miny |65 s (o) + S el o)}
=1

where the suprema are over w € ({0,1}%)%, and

p1 = %;,, o 1= %pv o1 = 1/t, 092 = 1/q/,

C1:= Min ¢y gr.,, Co:= MiN €y 7z.p;
Zoxy e Zoxy ‘o

(12.51)

(b) the representation formula

<Tfa g> = E(<S’_’)twf, > <Atwf7 2d Z { T’r%ot?’d a
nez (12.52)
(L UNEg) + (U L )} )

with absolute convergence for all f € S(2;X) and g € S(2;Y*), where E
is the expectation over w € ({0,1})%<™ and M € 7 is any large enough
number such that f and g are constant on all Q € D).

Proof. We begin by observing that, according to Lemma 12.3.30, assumptions
(i) through (iii) of the present theorem imply assumption (i) through (iii) of
Theorem 12.3.26 uniformly for every w € ({0,1}¢)%. Thus the qualitative
statement (1)< (2) is just an application of Theorem 12.3.26 to each 2* in
place of 2, observing the uniformity just mentioned.

The more interesting part consist of the new quantitative conclusions that
we obtain for the implication (2)=-(1). This requires revisiting some details
of the proof of Theorem 12.3.26.

Let f € S(2;X) and g € S(Z2;Y™), and let us specifically assume that
both f and g are constant on all @ € %), for some (in general large) M € Z.
We identify ({0, 1}4)%<M with {w = (w;)jez € ({0,1}9)% : w; = 0 for j > M}.

For each w € ({0,1}%)%<%  we have 9%, = %), and hence f and g have
the same piecewise constancy property with respect to these dyadic systems.
For each m < M and w € ({0,1}%)%2<™ we then write an analogue of (12.46),

t(f,9) = Heus, g) + b (f,9) + E5(F9)+
+ Z { n t‘“um7g> <f’ Ui,t“’vxﬁ + <U5,t“’u{:ﬁmg>}a (1253)

nez?
n#0
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where all symbols have the same meaning as in (12.46), but with 2% in place
of 2. In particular,

U:Jn = (I - E;’:z)fv ’U:}m = (I - Eﬁm)g7

where By, = E( |75) satisfy [[ug, ||, < 2|[fll, and [[vg[lr < 2[lg]lp-
The first and third terms on the right of (12.53) are estimated as in the
proof Theorem 12.3.26. As in (12.47), we have

2
620 < (an D I esgooe) + 21 lawt ) 1 B3 £ ]| Bzl — 0
i=1

when m — —o0; note that this convergence is bounded by (iii), (iv), and the
easy estimates ||E¥ fll, < ||fll, and ||[E<gll,y < ||lg|lpr- Then, as in (12.48),
from Theorem 12.1.11 we get

|[(Hertiin, ) < BpxBpy Y PRp(65" ) iz lpllgll-

ay

The second term on the right of (12.53) is directly estimated by the uniform
boundedness of the paraproducts A.

We then turn to the more interesting part on the second line of (12.53),
where we begin with some observations. Due to the presence of the truncation
parameter m, all dyadic operators in (12.53) involve cubes of side-length at
most 27", On the other hand, due to the constancy of f and g on Q € Z); =
D3y, their martingale differences are non-zero only on cubes of side-length
strictly larger than 2=™ . Hence the right-hand side of (12.53) actually depends
on (wj)m<;<nm only, rather than the infinite sequence (w;);<ar. Nevertheless,
it will be convenient to also refer to this latter sequence, as we are about to
see.

We compute the expectation of (12.53) with respect to the choice of w €
({0,1}4)Z<m . As we just observed, this is actually just an arithmetic average
over a finite set of 2¢4(M~—™) eclements, so no integrability or measurability
issues arise at this point.

We wish to manipulate this average a little. We note that each of the terms
on the second line of (12.53) take the generic form

*

> 2(Qtw),

Qe

where

O(R) € { 3 (0 W U 1), (9. ),

a,y

> (0 B ) 1) (9 Wy, — ) ),

[e3
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> (g s B Wy, = B 90D

~

and the notation Y_" suppresses not only the size condition that 2= <
£(Q) < 27™ but also an implicit restriction to a fixed finite family of cubes of
each size, depending on the supports of f and g.

Inserting 1 = 27 E(1{0iw is k-good})s it hence follows, using in particular
the independence property established in Lemma 12.3.33(1), that

E Z QS(Q_FW) = Z 2d ’ E(I{Q+w is k-good})EQ(Q_i_w)

QE2 QED
= 2d Z E(l{Qer is k—good}gp(@_i_w))
Qe
=2E ) #(Qiw)

QeD:
Q4w is k-good

Thus, at the cost of the factor 2¢, we can reduce the summation to k-good
cubes only.

Taking the expectation of (12.53) and applying the above observation to
the terms on the second line, with k = k(n) as in Definition 12.3.34, we obtain

tf,9) = E((9eus, 9) + Lo (£.9) + E2(F, 9)+

42 Z{ Tf"t‘j,d © og)+ <f7 n%:))od ru;)z>+<U72L %Sod :;n’g>}) (12'54>
nezt
n#0

where the various “good” operators are defined in Definition 12.3.34.
When k = k(n) is as in Definition 12.3.34, and R = Q-+w is k-good, it
follows directly from Definition 12.3.32 that

dist(R,CR*“)) > 2k=2¢(R) > |n|¢(R),

and hence R+n C R% %), Thus the operators on the right of (12.54) are in the
scope of the sharper special cases of Figiel’s estimates, Corollary 12.1.27(2)
and Theorem 12.1.28(2).

An application of these estimates to (12.54), in the case of U#*! on the dual
side and otherwise directly as in Corollary 12.1.27(2) and Theorem 12.1.28(2),
gives

[(f, Upeodo) ZGﬂp,xﬂpYC1(1+k( )7 o1 (6 oo | llplvim Lo

2,good 32,
(UL um, 9)| < ZGBp,xﬂp,Y@(l + k(1) 02 (8 o) [Umllpll9lly,
«
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d . ) a,
(TEE 2, ) < S 38y, x By mim (1 + K(m) i (6 07 s gl
o,y ’

It follows from Definition 12.3.34 that
B(n) + 1< 4+ log, |n| < 2(2 + log, [n),

and hence

Z Z 1 + k ( ::;c())z)d) 2||tgoodHF1g i(pi)>

nezd o

n#0

Z Z (1+k(n i ( ZgoZd) 2||tg00d HFlg %i (i)

nezd &Y

n#0

We have thus estimated all terms on the right of (12.54). Let us further

recall that [[us,|l, < 2||f|l, and u¥, — f in LP(R% X) as m — —oo, with
similar results for v¥,, g and p’ in place of u¥,, f and p. We can thus pass to
the limit m — —oo in (12.54) and apply dominated convergence to deduce the
claimed representation formula (12.52). Applying the same estimates above
to (12.52) in place of (12.54), we deduce the claimed norm estimate (a). This
completes the proof of Theorem 12.3.35. O

12.4 The T'(1) theorem for singular integrals

A natural question arising from the Theorems 12.3.26 and 12.3.35 above is
whether their assumptions are verified by some familiar operators. In partic-
ular, what is the relation of these conditions to the Calderén—Zygmund oper-
ators discussed in Chapter 117 We will address this question in the present
section. Recall from Definition 11.3.1 that

cx = sup{|s — t|*|K (s, t)| : (s,t) € R*}.

Definition 12.4.1 (Weakly defined singular integral operator). Let Z
be a Banach space, and € be a collection of bounded Borel subsets of RY. We
say that a bilinear form t : S(€)? — Z is a weakly defined singular integral
with associated kernel K : R2 — Z, if cx < 00 and

(1o, 1) = /de K(s,t)10(t)1g(s) ds dt (12.55)

whenever Q, R € € are disjoint.

As usual, the main case of interest will be ¥ = 2.

The following lemma, which will also play a role later, shows that the
integral in (12.55) is well defined under the assumption that cx < co: While
n (12.55) we do not require the cubes to have equal size, we can always
dominate the integral with such a case by passing to a dyadic ancestor of the
smaller cube, if necessary.
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Lemma 12.4.2. For disjoint cubes Q, R C R? of equal size £(Q) = ¢(R), we

have ) J
Vd

g dsdt < (1+ 5[Q < 18- Q),

//Ms_ﬂd ( QI < 18-1Q)|

where vq is the volume of the unit ball in RY.

Proof. We first write

1 (o)
// ﬁdsdtz// d/ r=4tdrdsdt
oxr s —1 QxR J|s—t|

:d/ H(s,t) € Q@ x R:|s —t| <r}r ¢ tdr
0

Denoting by vy is the volume of the unit ball in R%, we have

\{(s,t)EQXR:|s—t|<r}|:/ {teR:|s—t| <r}ds
{s€Q:dist(s,R)<r}
< (s € Q: dist(s. R) < r}(*2 AR < me(Q))g'%)(W A|R]).

where we used the geometric observation that, for s € Q C CR, at least half
of any ball of centre s lies in CR. Hence

1 Q) |Q\ Udrd d
- < . Lp—d-l
//QxR|5_t|ddet\d/o TE(Q) 5 r dr

o d
+d / QI 1B~ dr = 221 + 1R,
£(Q)

where |R| = |Q)|, since {(R) = £(Q).

Finally, dvy/2 = n%?/I'(d/2) =: f(d/2). From the functional equation
I'(x +1) = 2I'(x), we find that f(x +1)/f(z) = 7/z, so that max{f(n) :
n € N} = f(4) and max{f(n + 3) : n € N} = f(7/2). Computing these two
values, one checks that max{f(d/2) :d € N} = f(7/2) = £3 < 17. O

For weakly defined singular integrals, some properties imposed as assumptions
on general bilinear forms are automatically satisfied:

Lemma 12.4.3. Let Z be a Banach space and t : R2 — Z q weakly defined
singular integral operator with kernel K. Then t satisfies the adjacent weak
boundedness property if and only if it satisfies the weak boundedness property,
and moreover

[tlwsp < [[tlawsp < max{|[¢lwsp, 18 - exc -
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Proof. The “only if” part is obvious. For “if”, it suffices to estimate t(1¢g, 1r)
for R = Q+n and n € {—1,0,1}¢\ {0}. Then Q N R = @, so that we have
access to the kernel representation (12.55), and Lemma 12.4.2 provides us
with the bound

1l < [ g dsdr <1810 ex.

O

Proposition 12.4.4. Let Z be a Banach space and t : R2? 5 Z q weakly
defined singular integral operator. If t is translation-invariant (in the sense of
Definition 12.5.9), then t(1,-) =0 = t(-, 1).

Proof. By Proposition 12.3.10, it suffices to verify that t satisfies the decay
condition (12.35). Let Q € 2 and m € Z4\ {—1,0,1}4. Then, for s € Q and
t € Q+m, and denoting by zg the centre of Q, we have

s =t = |s = tloo = [ml(Q)]c0 — |5 — ZQ\oo — [t = (2¢ +ml(Q))l

> Q) - 5Q) - 3(Q) > 3lmlt(@) > "2
and hence
1t(1g: 1o i)l \/ /Qm T ds dt
2 2\[ _ d —d
< 1QPex (i) = IQex(2va) .

This is one half of the decay condition (12.35). The estimate for ¢(14;,,, 1)
is entirely similar. O

Despite the simple observations above, in order to make serious conclusions
about weakly defined singular integrals, we will need the following elaboration
of the earlier Definition 11.3.1:

Definition 12.4.5 (p—Calderén—Zygmund kernel). Let Z be a Banach
space, o a good set-bound on Z, and K : R?*? — Z. We define the quantities

cx(p) = p({ls — t|'K(s,t) : s # t}),

and, for u € [0, %],
Wl (pu) = p({|8 — (K (s, 1) — K (s, 1)) : |s — /| <uls — t|}), (12.56)
Wi (p;u) = p({|s — /(K (s,t) — K(s,t)) : [t —t'| < uls — t|}) (12.57)
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Remark 12.4.6. (1) We recover Definition 11.3.1 by taking () = % (T) :=
sup{[|T'[| : '€ 7}. Our main interest now will be p € {%,,, %, }.
(2) In analogy with Lemma 11.3.3, one can check that

Wi (5 5) < (14 2exc(p).

(3) If K(s,t) = R(s —t) for some & : R?\ {0} — Z, then

cx(p) = p({|s|"8(s) : s # 0}) =: éalp),

and, for both i € {1, 2},

wiclpiw) = o({IsI"(8(s) = /(") : |s = | < uls|}) = Ga(piw).
Such a K (or R) is referred to as a convolution kernel.

If t is a weakly defined singular integral with p—Calderon—Zygmund kernel K,
the conditions of Definition 12.4.5 only provide control away from the diagonal
s = t. To compensate for this, we also need the following assumption directly
on the bilinear form t:

Definition 12.4.7 (Weak 2%,-boundedness property). Letting t :
S(2)? — ZL(X,Y) be a bilinear form, we define

[tlwep(22,) = D% ({t(lfQ,lQ)}QE@)

Our goal in this section will be to use these assumptions to control the Haar
coefficients t(h$), h}), where R = Q + £(Q)n, in the way that was assumed
in the Theorems 12.3.26 and 12.3.35 on bilinear forms. Using the defining
condition (12.55) and bilinearity (noting that h¢ is a linear combination of
1 for Q' € ch(Q), and likewise h7,), we have in particular that

t( %,h']%)/QXRK(s,t)dsdt, QNR=2.

If K is a p-Calderon-Zygmund kernel, we can establish the following esti-
mates:

Lemma 12.4.8. Let Z be a Banach space and ¢ a good set-bound on Z. Let
t:8(2)? = Z be a weakly defined singular integral with kernel K : R** — Z.
Then for all o,y € {0,1}%, we have, for all n € Z¢\ {0},

p{t( G hhi) Q€ .@} <18-2%- ek (p), (12.58)

and, for |n| > %\/g,
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3
U, h0) 1 Q€ 7} < (g)d Inf = wie(p; 4|;/E) if ¥#0. (12.59)
$/a

o{thg 1)) Qe 7} < ) Inl Wil A0 a£0, (12:60)

I

Proof. Including momentarily also n = 0 for later use, we have the expansion

the,h) ) = th‘:@ t(1r, Ls)(hg)r(h) 1, )s
€c
Sech(Q+n)
=000 > H1r,1r)(h3)r ()8
Rech(Q)

+ Y AR 1s)(hg)r(h),)s = I + g,
Rech(Q)

Sech(Q+n)
RAS

(12.61)

(The summation condition R # S in IIg is automatic for n # 0, but it makes
no harm to include it). Since

a 1
> IR R )sl = Y |R|@: d>ooo1=24
Rech(Q) Rech(Q) Sech(Q4n)
Sech(Q+n) Sech(Q+n)

we see that

t(1y,1y)
Ul

dsdt
t(1y,1y) = / K(s,t)dsdt = // s — t| K (s, ) ——
UxV UxV s — 1|

€ 18 U] - absconv ({ Ju — vl K (u,0) : (u,v) € R*}),

IIQGQdabsconv({ :U,Veg, UNV =g, €(U)=€(V)}>,

where

by Proposition 1.2.12 and Lemma 12.4.2 in the last step. Combining the above
inclusions with the defining properties of good set-bounds (Definition 12.3.20),
we obtain

o({I1g:Q € 2}) <18-2%. cx(p), (12.62)

which coincides with (12.58) when n # 0.

For large values of n, we want to obtain a decay, which is not present
in the uniform estimate just established. In this case we apply the kernel
representation combined with the vanishing mean of hg (when a # 0), to the
result that
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Q+n / K (s, t)hg(t)h/, ., (s)dsdt
. //[K(s,t) - K(&zQ)]h%(t)hZHn(s) ds dt,

where z¢ is the centre of Q. For t € Q and s € Q+n, we have |t — zg| <
1/dl(Q), whereas

1
Is = 2q| = |2gin — 2@l — |8 = 210l = (In] = i\ﬁ)ﬁ(Q)’
and hence W
t— sVd 1
1ozal Ve Loy 530G
|s — zg] In| — % d 2 2

In this case we have

hgin) // 5= |d|ha t)hl, (s) dsdt

xm({m—md[[((u,u)—K(u,u’)] =] < < |1ff|“ |})

and hence, by estimate (12.56) of a Calderén-Zygmund kernel (Definition

12.4.5) and the defining properties of good set-bounds (Definition 12.3.20),
we arrive at

p({t( 8hl ) Qe @})
1 1 1Vd
S 1Q] //Qx(Q-&-n) s — 2q|* dsdt x w%{(|n|2— 5\/8)

1 sVd 3 _ 3
< G vk G f><(§>d""' (4

S

)

In|

when |n| > 2Vd.
The estimate of t( O hz; Jrn) with v # 0 is entirely analogous to this, using
regularity in the other variable instead. O

Concerning the diagonal n = 0, which was excluded in Lemma 12.4.8, we have
the following estimate:

Lemma 12.4.9. Let X andY be Banach spaces andp € (1,00). Let t : R24 —
Z(X,Y) be a weakly defined singular integral with the weak D% ,-boundedness
property. Then

2%, ({1, 1))} eo) < |thubpoa,) +18- 20 cx(p), ¢ € {%p. 2y}



180 12 Dyadic operators and the 7'(1) theorem
Proof. We use the expansion (12.61) with n =0,
#( %7]7‘22) =Ig+ 11y,

where we now need to consider also the term Ig. We estimate the expression
in the definition of 2%2,({Io}qc2):

Y 1QIgze,u0) < D 1Q1 Y [tk 1r)rq, y)) [(hE) rikd) Rl

Qe Q€2  Rech(Q)

= Z Z t(1r, 1r)2Q, Y5

Qe Rech(Q)

= Z |<t(1Ra1R)‘TR(1)7yE(1)>|
Re2

X

< [[Hlwbp(2: p LP(2xR%;X)

LY (2xREY )

Re2

|| cuseord]

Re2

Using the usual observation that, by Fubini’s theorem and the fact that only
one R € 9 of each generation is “seen” at each fixed s € R?, we can replace
the random eg by &, () depending on the generation of R only, or further by
the equidistributed sequence of €,,(gr), we have

HZeRzR(l)lR‘M(Qdez) H Z Z n(@2Q1r ’

RED QEZ Rech(Q)

= H Z En ZQlQ‘ Z EQZQ].Q‘

Qez
for both choices of zq € {zq,y5} and Z € {X,Y}. Hence

2%,({1q}qe) < IHlwbp(22,):

and hence, by the obvious triangle inequality for Z%,, and its domination by
either p € {,%’p,,%’;,} according to Lemma 12.1.8, we have

Zp({t(h, 1) }ea)

Lr(2xR%:;Z)

Lr(2xR4,Z) ‘ LP(02xR4;Z)

< 9%y({1q}qer) + 2%,({11q}qea)

< Nlwbp22,) + 9{11g}gez)
< ||t||wbp(_@?2p) + 18- CK(@)

by (12.62) in the last step. O

We can now give estimates for the Figiel norms featuring in the 7'(1) theorems
for bilinear forms:
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Lemma 12.4.10. Let Z be a Banach space and o a good set-bound on Z. Let
t:5(2)% = Z be a weakly defined singular integral with kernel K : R?? — Z.
Then for all s € [0,1], we have the estimates

16 [ pige (o) 189 [Rige () < aack () + ballwic () |Dinis i=1,2,

where ag, by depend only on the dimension d, and

1/2 1..du
lw||Dinis ::/ w(u)(logy =) —. (12.63)
0 uwou

Remark 12.4.11. For u € (0,1), we have 1 € (2,00), thus log, 1 € (1,00).
Hence (log, 1)* and therefore ||w||pin;s are increasing in s.

Proof of Lemma 12.4.10. From Definition 12.3.22 and Lemma 12.4.8, it fol-
lows that

1N = > 17 e,
a,v7€{0,1}4\{0}

= X > (2 +logy nl)*p({t(hy. h),,,) : Q € Z)

a,v€{0,1}4\{0} nez?
n#0

< (24— 1)2{ D (24 1logy(3Vd)) - 18- 2% - e () + (12.64)
|n|<3vd

)

s 3 —d, i
+ 30 @+ log ) ) inl el (0 20
In|>3Vd

= (28 = )X(I + 1) < 4% + IT,).

Since both a # 0 # «, one can apply either of the estimates (12.59) or (12.60)
of Lemma 12.4.8, and thus take either i € {1,2} above. Similarly,

e D S L LM
a€e{0,1}9\{0}

= Y Y@t ety ) QDY) (12.65)

a€{0,1}9\{0} nez?
n#0
< (27— 1)(I + IL) < 44T + I1),

where we only have access to estimate (12.60), but not (12.59), of Lemma
12.4.8, now that the second Haar function hOQ in is non-cancellative. The very
last step in (12.65) is of course wasteful, but we make it in order to treat the
right-hand sides of both (12.64) and (12.65) at the same time.

Finally, in complete analogy with (12.65), we also have
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gy = Y. 1% rige(e) < 4%T + 11), (12.66)
ae{0,1}\{0}

as we now have access to estimate (12.59), but not (12.60), of Lemma 12.4.8.
It is immediate that

1T =aq-cx(p), ag=4" Y (2+1log,(3Vd))-18-2% (12.67)
In|<3vd

For the other term, we partition the summation over dyadic annuli, in which
the summand is roughly a constant:

ALY Y (24 logy(3VA) + k) (3 2V i (p3272),
k=0 3.2\/dg|n|
<3.2Ft1/4d

The unit-cubes Q,, with centres n € Z? are disjoint, and for |n| < 3-2F+1/d,
they are contained in B(0, (3 - 28+! + 1)v/d). Thus
1 d d
S r<w(B2 5)\/&) < 0g(6.5)728Vd", (12,68
|n|<3-2k+14/d
where v4 is the volume of the unit ball, and hence
(e’ d )

4111 <64 " 0a(6.5)2MVd (2 + log, (3V/d) + k)* (3 - 28Vd) " wic (p:27772)

k=0

< (13)%g(2 + log, (3v/d)) > (1 + k) *wic (1 27772).
k=0

Since w (p;u) is non-decreasing, we can finally estimate

g—k—1

. ke 1 1, wi(p;u) du
1+ k)wi(p;27%72) < / log, =) L2 2 2 k=0,1,...
( + ) WK(p7 ) 10g2 2—k—2 (Og2 u) 10g2 U b b b) b
and hence
; 13)%v4(2 + log, (3vV/d
411]—1-Z < bd”w[((p)HDiniSa by = ( ) d( gQ( ))

log 2

With (12.64), (12.65), (12.66), and (12.67), this concludes the proof. (An
estimate similar to (12.68) could also be used to give a more explicit bound
for the constant aq in (12.67), if desired.) O

We have now everything prepared for proving the following:

Theorem 12.4.12 (T'(1) theorem for operator-valued kernels). Let
pe€(l,00) and 1 <t < p < q < oo, and suppose that:
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(i) X and Y are UMD spaces.
(ii) X has cotype q and Y has type t, or one of them has both.
(iii) t : S(2)? — Z := L(X,Y) is a weakly defined singular integral and the
kernel K : R24 — Z of t satisfies the Calderén—Zygmund estimates

cxc(Zp) + |k (Z)Ipinit e + 1wk (Z) [ pigin s < 00 (12.69)

Then the following conditions are equivalent:

(1) t defines a bounded operator T € £(LP(R%; X), LP(R%;Y));

(2) t satisfies the weak D% ,-boundedness property ||t||wpp(22,) < 00, and the
associated bi-paraproduct Ay is bounded in £ (LP(R?; X), LP(R%;Y));

(3) each t satisfies the weak PX,-boundedness property || wop22,) <
C, and the associated bi-paraproduct Aw defines a bounded operator in
ZL(LP(RY; X), LP(R%Y)), uniformly in w € ({0,1}4)Z.

Under these equivalent conditions, we have
(a) the first norm estimate:
1T = Adl 2 (Lr®ax),Lr (R2;Y))
< 5p,X5p,Y{4dHf||wbp(@@p) +cq (C1CK(<@;/) + Cch(%p))+
+ iy (Crlk () i + Coalle () g )}
where cq, ¢}, are constants that depend only on d, and
C1 = Clanany (Y, X501 8,1),  Ca = Clanas) (X, Vipya, 1)
(b) the second norm estimate:
1T\l 2 (Lr®a:x),Lr (RS YY) — sup [ A || 2L e x),Lr (YY)
< By x By {4 50D | vy, )+ (ercxe (B)) + cack () ) +
+ ch (e lwk () lpimiese + ek (o)l ) }

where the suprema are over w € ({0,1}%)Z, the constants cq,c!; depend
only on d, and

€1 = Mmin cp g=.y C2 = Min ¢4 z:p; 12.70
Zexy ZTPD ZeXy DI ( )

(c) the representation formulas (12.45) and (12.52).

Proof. The plan of the proof is to reduce the theorem at hand to Theorems
12.3.26 and 12.3.35 on abstract bilinear forms.

(1)<(2): This will be an application of Theorem 12.3.26 (and Remark
12.3.27). Assumption (i) is identical in both theorems. Next, as explained in
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Remark 12.3.27, under the (co)type assumption (ii) of Theorem 12.4.12, the
assumption (ii) of Theorem 12.3.26 are satisfied with

(tisq) = (t,00), (t2,42) := (1,9),

and both choices of (to,qo0) € {(ti,q:)}?_;. Let o1 := 1/t and 02 :=1/q’.
Concerning assumption (iii) on the bilinear form t, we need to check that
the kernel assumptions (12.69) of the present theorem imply the assumptions
on the Haar coefficients t(hg), h) and the related Figiel norms of the bilinear
form t. With the choices of (¢;,¢;) as just explained, and recalling that the
set-bounds py := %, and o := %), are equivalent in the spaces that we are
considering, the assumption (12.69) can be equivalently written as

cx (pi) + |wic (0i)Ipmies < 00, i € {1,2}. (12.71)
By Example 12.1.10, we know that
[tlwbp(22,) < 1Tl 2(Lr®ax), L0 (YY) (12.72)

so in particular the weak ZZ,-boundedness property is either assumed, or
implied by the assumptions, in each case of Theorem 12.4.12.
From Lemma 12.4.9, we then have

@‘%P({t( %»hz))}QGQ) < Ht”wbp(@@p)a

whereas Lemma 12.4.10 guarantees, for both i € {1, 2}, that

< aqek (pi) + dewé((@i)HDini"iv (12.73)
<

aqcw (9i) + bal|wi (9i)||Diniv:

1€ | piges (o)
1t [ piges (or)

where both right-hand sides of are finite by (12.71). With either choice of
(to,qo) € {(ti,q:)}?_, the resulting finiteness of the left-hand sides coincides
with the assumption on these quantities in (iii) of Theorem 12.3.26.

Summarising, assumptions (i) through (iii) of Theorem 12.4.12, together
with the weak ZZ%,-boundedness property of t, which is either assumed or
implied by the assumptions of each case of Theorem 12.4.12, imply the corre-
sponding assumptions (i) through (iii) of Theorem 12.3.26. Moreover, the con-
dition of adjacent weak boundedness property appearing in Theorem 12.3.26
also follows from these assumptions by Lemma 12.4.3 and the domination of
uniform bounds by either 2.%,-bounds or p;-bounds:

[tllawsp < max{|[t|wop, 18 - cxc} < max{[[tlwpp(z2,): 18 - ¢k (9i) }-

Hence all assumptions, and thus all conclusions of Theorem 12.3.26 are valid
under the assumptions of Theorem 12.4.12. This proves in particular the qual-
itative equivalence (1)< (2).
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(a): For this quantitative estimate, we apply Remark 12.3.27, followed by
(12.72) and (12.73), to get

IT — Adll 2 (Lr (R x), L7 (R4;Y))

2
< Brx By { 32 22,(657) + 3 Ci(Adllt® Ivigei o) + Ballt lpigei o) }
o,y i=1

2
< Bp,X5p,Y{4d||wabp(@ﬂp) +Y G (CdCK(@i) + C&||W§<(@i)||Dinm)}>
=1

where ¢q 1= (Aq + Bg)aq and ¢, := (Aq + Bq)bgq. This is readily recognised to
coincide with the bound asserted in (a) of the theorem.

(1)<(3): This will be an application of Theorem 12.3.35. Assumptions (i)
and (ii) are identical in both theorems.

Concerning assumption (iii), we need to check that the kernel assumptions
(12.69) of the present theorem imply the estimates on Figiel norms of each
bilinear form t*, uniformly in w € ({0,1}%)%. We already did this for t = t°
above. However, all the lemmas of this section are stated for an arbitrary
dyadic system &, so we may in particular use them with any 2% in place of
2. Moreover, the constants in these estimates are explicit, and clearly inde-
pendent of the particular w. This proves the qualitative equivalence (1)< (3).

(b): For this quantitative estimate, we apply Theorem 12.3.35(a), followed
by (12.72) and (12.73) with t* and 2% in place of t and 2, to get

1
(||T||$(Lv(Rd;x),Lp(Rd;y)) —sup || A ||$(LP(Rd;X),LP(Rd;Y))) By
w D, D,

2
<sup Y- R (E507) +12- 205w Y e D gl e oo

ay =1 je{0,i}

2
< A% sup (€ |luop(22,) +5Up Y i (CSCK(M) + callwi (93) IDinie: ),
“ Y oi=1

where ¢ = 24-2¢. a4 and ¢} = 24-2¢-b,. This is readily recognised to coincide
with the bound asserted in (a) of the theorem.

(c): The representation formulas are immediate from Theorems 12.3.26 and
12.3.35, since we already verified that the assumptions of the said theorems
are valid in the present setting. O

12.4.a Consequences of the T'(1) theorem

We will now explore various consequences of Theorem 12.4.12 to more par-
ticular classes of operators. While Theorem 12.4.12 gives a complete charac-
terisation of the boundedness of an operator T', a drawback is the fact that
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this characterisation involves the boundedness of another operator A that is
not necessarily easy to check, as we found in Section 12.2. Thus, the follow-
ing special case, in which these paraproducts are completely avoided, will be
useful:

Corollary 12.4.13 (T(1) theorem for convolution kernels). Let p €
(1I,00) and 1 <t < p < g < 00, and suppose that:

(i) X and Y are UMD spaces;

(ii) X has cotype ¢ and 'Y has type t, or one of them has both;

(iii) t : S(2)? — Z := L(X,Y) is a weakly defined singular integral and the
kernel K : R** — Z of t has the convolution form K (s,t) = &(s —t) and
satisfies the Calderén—Zygmund estimates

¢a(Zp) + ||0g(Zp)|IDinic < 00, o := max( ), (12.74)

)

| =
Q\‘)—A

where ég and Og are as in Remark 12.4.6(3);
(iv) H(1g,1Q) = (1gim: Lgim) for all Q € P and m € YA
Then the following conditions are equivalent:
(1) t defines a bounded operator T € £ (LP(R%; X), LP(R%;Y));
(2) t satisfies the weak DR ,-boundedness property ||t|wop(22,) < 00;
(3) each t* satisfies the weak PR, -boundedness property [t ||l wep(22,) < C,
uniformly in w € ({0, 1}4)2.

Under these equivalent conditions, we have

(a) the norm estimate

7] 2 (L ra:x), Lr (R, YY)

< 5p,xﬁp,Y{4d SUp ||t || wop(22,) + €3 (Cléﬁ(f%);’) + C2éﬁ(%p)) +
w
+ (1|8 B pinirse + €255 i) }-

where the supremum is over w € ({0,1}4)%, the constants cq,c; depend
only on d, and ¢1,ce are as in (12.70);
(b) the representation formulas (12.45) and (12.52) with Ay = Aw = 0.

Proof. We will check that t is translation-invariant in the sense of Defini-
tion 12.3.9, i.e., that it satisfies the condition of Lemma 12.3.8(1). The very
assumption (iv) of the corollary already takes care of the case Q = R.
On the other hand, if Q@ # R are dyadic cubes of the same size, then
QNR = = (Q+m) N (R+m), and hence we have access to the kernel
representation
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t(1g,1r) = //Kstdsdt //ﬁs—t dsdt
:/R/Qﬁ((s—&—m)—(t—i—m))dsdt

_ / / R(s — ) dsdt = t(1o 1, L)
Ri+m JQ+m

which proves the condition of Lemma 12.3.8(1) for arbitrary @Q,R € Z of
equal size. Thus indeed t is translation-invariant.

Next, we wish to have the same property for t, for every w € ({0,1}9)%,
and requires verifying the identity t(1q/,1r') = t(1g/ iy, g/ i,,) for each
Q', R € 2% of equal size. By Lemma 12.3.30, we have S(2%) = S(2) when-
ever w € ({0,1})2. If Q' € 2*, then clearly f = 1o € S(2¥) = S(2), and
similarly with ¢ = 1g- where R’ € 9* has the same size. Thus Lemma 12.3.8
guarantees that

g i Lrrim) = UTmen fr Tmeng) = H(f,9) = (1gr, 1rr)

for all Q', R’ € 2% of the same size, and hence also t* is translation-invariant.
By Proposition 12.4.4, it then follows that t“(1,-) = 0 = t¥(-, 1), for every
€ ({0,1}9%. Thus the conclusions of the corollary are immediate from
Theorem 12.4.12 by setting all A¢ and A to be zero. O

Lemma 12.4.14. Let Z = Z(X,Y) and ¢ € Cy([0,00); Z) N C1((0,); Z),
and suppose that

(i) R(u) 1= 1(0,00) (u)P' (u) satisfies the Calderén—Zygmund estimate (12.74);
(ii) the range of @ is R-bounded, Z#,(P) := Zp({P(u) : u € [0,00)}) < o0;
(iii) a bilinear form t: S(2)? — Z is defined, for all f,g € S(2), by

—gl_r)r(l)//lu . R(u—v)f(v)g(u) dvdu.

Then

(1) t is well-defined as a weakly defined singular integral with convolution ker-
nel K (u,v) = K(u —v);
(2) ¢ satisfies the weak DI ,-boundedness property

1€ [wbp(z,) < [|P0)]| + min {2, (P), Z, (P)};
3)t(L,1;)=1;4,,,1;0,,) forallI € D and m € Z.
I+m I+m

Proof. (1): Clearly the integral inside the limit is well-defined, since we are
cutting away the singularity. To show the existence of the limit, let first f = 1;
and g = 1; for some intervals I = [a;,b;) and J = [a,by). Then
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br
Alu—v)f(v)dv = 1 ooy(u —0)® (u —v)dv
[ A or@a= [T ueu—)

ar

brA(u—e)
= 1(a1+6’00)(u)/ &' (u—v)dv

I

— Lay-terne) (WB((u — by) V &) — Blu — a)]

Since @ is continuous on [0, 00), we have

lim A~ ) f(0) v = L) o) (W) [B((w — 1)) — Blu — ay)],

=0 lu—v|>e

= P((u—br)4) — ((u — ar)y).

Since @ is bounded on [0, c0), we can apply dominated convergence to obtain

hi%//lu . Au — v)1;(0)1(u) dvdu

(12.75)
= [ 1@t = b)) = #((u - ar) )
In particular, the limit defining t(f, g) exists for all f,g of the form f = 1;
and g = 1;. By (bi)linearity, it exists for all f,g € S(2).
If f,g € S(2) are disjointly supported, then &(u—v) f(v)g(u) is integrable.
Hence

/ R(u—v)f(v)g(u)dvdu
by dominated convergence, and thus t is a weakly defined singular integral
with kernel K (u,v) = &(u — v).
(2): With J =TI € 2%, noting that a; < u < by for all u € I, the identity
(12.75) shows that

rtn) _ —P(u—ay))du
L~ (@0) - 9tu—ap)d

) (12.76)
:][ (8(0) — P(u)) du € D(0) + abco(P).
0
Thus, by Lemma 12.1.8, we find that
w t(1r,11)
s = 220 ({ =577,
t(117 11) L L *
< min p’({T}ze@w)’ 00 = Hp,  91:= Ry,

< |2(0)]] + min i(®)

(3): From (12.76) it is evident that t(17,1;) depends only on £(I); since
((I) = (I+m), it follows that ¢(17,17) = t(1;4,,,1;1,,), as claimed. O
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It often happens that kernels that we encounter satisfy standard Calderén—
Zygmund estimates with the best possible Lipschitz modulus of continuity
w(u) = O(u) as u — 0, but the implies constant in this estimate can be very
large. At the same time, we also have a trivial bound w(u) = O(1), where
the implied constant may be much smaller. The following lemma provides a
useful estimate of the Dini norms of w in such cases, showing that the larger
constant enters the estimates only via its logarithm:

Lemma 12.4.15. Let 0 < A < B < 0 and o € [0,1]. If w(u) < min(A, Bu),
then

B
][ Dinie < 3A(1 + log”+? Z)'

Proof.

A/B 1\ 1 1\© d
(108 2)7 |60 | pini </ B(1og ") du+/ Altog ) M =1y 11,
0 u A/B U u

where
A/B A/B B
IS—B/ logudu:—B(ulogu—u)‘O :A(logz—i—l)
0
and
1
d -1 o+l A Byotl
I11=A (—logu)”—u:—A%‘ = (log—) .
A/B U o+1 A/B o+1 A

Let G :=log(B/A). Since

G = (Ga-‘rl)l/(a-‘rl) . 1(7/(0'+1) < 1 Go—i-l +

o+1 oc+1’

g

we obtain

I+11< %Gm + A(1 + ULH) < 2A(G7F! 4+ 1).
Since (log2)~7 < (log2)~! < 3/2, the claim follows. O
Ezample 12.4.16. Let w € [0,7/2], o € [0, 1], and suppose that
b € 0([0,00), Z) N H™(Z,; Z)

has an R-bounded range. Then @[ o) and &(u) = 1(g,00) ()P’ (u) satisfy the
assumptions of Lemma 12.4.14 with

p(2) 3p(2)

sinw’ sin w

~ ~ o 4 *

éalp) < @a(9)Ibmie < =22 (141087 =), € {#,, %),
sinw

A particular instance of such a @ is (the negation of) an R-bounded holomor-

phic semigroup ®(z) = —e~*4, in which case &(u) = Ae "4 is the kernel of

the so-called maximal regularity operator.
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Remark 12.4.17. The role of the parameter o € [0,1] in Example 12.4.16 is
relatively insignificant and only recorded for curiosity. First, it only affects the
power of the logarithm. Second for applying Lemma 12.4.14, it is necessary
to take o > max(1/t,1/¢') > %, and it is always sufficient to take o = 1, so
that the power of the logarithm will always be in the range [3,2].

Proof of Example 12.4.16. Let o € {%,, %, }. It is evident that

p({P(u) s u € [0,00)}) = p({P(u) s u € (0,00)}) < p({P(2) : 2 € T }).

By Cauchy’s formula, we have

27i (u—z)itt

) il
D (y) = L% L‘dda u> 0.
|z—u|=usinw

Denoting p(P) := p(@(z) : z € X,,), we hence have

e ! t7]dz| j'p(P)
OO (L)t > 0) < L (@ 7{ __— y
p( ( ) ~ ) 271-@( )igg |z—t|=tsinw (t Sinw)ﬂ‘f‘l (SinW)J

With &(u) = 1(0,00)(u)®'(u), it follows that

() = ol u £ 0) = put!(u) s> 0) < A0
Moreover,
ol >:p<| [80) = K] | — '] < sful)
_ / @"(v)dv s |u | < su)
< <bm(f>)z o L[ el
where

|u—u’\< su s
o (l—wu 1-s

‘/u/ U2 dU

for [u — /| < wu and s € [0, 3]. Thus @ge(p;s) < 4p(P)(sinw)?s.
By Remark 12.4.6(2), we also have @g(p;s) < ¢a(p) < o(®)(sinw)™L.
Thus, an apphcatlon of Lemma 12.4.15 with 0 < A = p(®)(sinw)™! <

4@(@)(5111 w)~? = B < o0, we deduce that

3p(P 4
sl < 22D (14 10g+7 L),
Sin w sin w

This completes the proof. O
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We proceed to further corollaries of Theorem 12.4.12.

Corollary 12.4.18 (T'(1) theorem for antisymmetric kernels). Let p €
(1,00) and 1 <t < p < g < 00, and suppose that:

(i) X and Y are UMD spaces.
(ii) X has cotype q and Y has type t, or one of them has both.
(iii) K : R? — 7 := £(X,Y) is an antisymmetric kernel, i.e.,

K(s,t)=—K(t,s) for all (s,t) € R*,
which satisfies the Calderon—Zygmund estimates
cx(%p) + Wi (%p) | pigimnxca /170y < 00 (12.77)

(iv) A bilinear form t: S(2)? — Z is defined for all f,g € S(2) by

t(f,g) = %// K(s,t)(f(t)g(s) — f(s)g(t)) dtds. (12.78)

Then t is well-defined as a weakly defined singular integral with kernel K, and
the following conditions are equivalent:

(1) t defines a bounded operator T € £ (LP(R%; X), LP(R%;Y));

(2) A¢ defines a bounded operator in £ (LP(R%; X), LP(R%;Y));

(3) each Ay defines a bounded operator in £ (LP(R% X), LP(R%Y)), uni-
formly in w € ({0,1}%)5.

Under these equivalent conditions, we have

(a) the norm estimates as in parts (a) and (b) of Theorem 12.4.12, with

”tHwbp(Qﬂ'Z,) = ||tw||1ubp(@%p) = 0;
(b) the representation formulas (12.45) and (12.52).

Proof. To check that t is well-defined, we need to verify that the integrals
in (12.78) make sense. By linearity, it is enough to consider f = 1¢ and
g=1g for some Q,R € 2. If Q N R = &, then each of the two terms under
the integral is separately integrable by Lemma 12.4.2; and hence so is their
difference. Otherwise, we may assume by the nestedness of dyadic cubes and
symmetry that, e.g., Q@ C R. We can then split

f(t)g(s) = fs)g(t) = 1q(t)1r(s) — 1o(s)1r(t)
=1o(®)(1e(s) + 1ra(s) — 1o(s)(1e(t) + Lro(1))
=1o(H1rq(s) — 1o(s)1ma(),
observing the cancellation of the two equal terms 1g(s)1g(t). We can divide

R\ @ into finitely many cubes P € 2 of the same size as @, and then
the integrability of each of the terms on the left against K(s,t) follows from



192 12 Dyadic operators and the 7'(1) theorem

Lemma 12.4.2. Thus the formula defining t as a bilinear form t: S(2)? — Z
is meaningful.

To show that t has associated kernel K, let f,g € S(Z) be disjointly
supported. As we already observed, in this case both terms under the integral
are separately integrable, and we can write

W(frg) = 2 / K(s,6) (f(D)g(s) — F(s)g(t)) dt ds

I—
/ K(s,t)f dtds—f/ K(s,t)f(s)g(t)dtds =: 5

17

Using the antisymmetry of K and interchanging the names of the variables,
and applying Fubini’s theorem, we find that

—II—/ K(t,s)f dtds-/ K(s,ty)f(t)g(s)dsdt = I.

Hence

t(f,9) =

as required for t to be a Weakly defined singular integral with kernel K.
From the defining formula (12.78) it is immediate that t(1¢,1g) = 0, and
hence the quantities featuring in the weak boundedness property of t vanish.
With @ € 2% (which still satisfies 1o € S(2) for w € ({0, 1} )0, by Lemma
12.3.30, the same conclusion extends to t for all w € ({0,1}%)4. The rest of
the corollary is then a direct consequence of Theorem 12.4.12, simply setting
1t wop(22,) = 1€l wip(22,) = 0. We only need to note that w%(p) = wi(p)
when K is antisymmetric, which is why a seemingly weaker assumption suffices
n (12.77). O

—I—/ K(s,t)f(t)g(s)dtds,

Corollary 12.4.19 (T(1) theorem for antisymmetric convolutions).
Letp € (1,00) and 1 <t < p < ¢ < 00, and suppose that:

(i) X and Y are UMD spaces.
(ii) X has cotype q¢ and Y has type t, or one of them has both.
(iii) K : R? — 7 := Z(X,Y) is an antisymmetric convolution kernel, i.e.,

K(s,t)=R(s—t) = —R(t—s) for all (s,t) € R*,

which satisfies the Calderdn—Zygmund estimates (12.74).
(iv) A bilinear form t: S(2)* — Z is defined for all f,g € S(2) by

9= [[86-0( 09 - fo)9(0) e

Then t is well-defined as a weakly defined singular integral with kernel K,
which defines a bounded operator T € £ (LP(R% X), LP(R%;Y)) and satisfies
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(a) the norm estimate

1Tl (e (re;x), e (R YY)
< ﬁp,xﬁp,Y{Cg (Cléﬁ(%;f) + C25R(<%7p)> +

+ ch (e lox () pinirse + e2102( %) i) }-

where the supremum is over w € ({0,1}4)%, the constants cq,c; depend
only on d, and ¢, ca are as in (12.70).
(b) the representation formulas (12.45) and (12.52) with A¢ = Aw = 0.

Proof. This is straightforward by combining (the proofs of) Corollaries 12.4.13
and 12.4.18. In particular, in the proof of Corollary 12.4.18 we observed
that any bilinear form defined as in (iv) of the present corollary will satisfy
t(1g,1q) = 0 for all @ € &, and hence also (15 ,,, 1gim) =0 = t(1g,1q)
for all m € Z®. This is condition (iv) of Corollary 12.4.13 that was not explic-
itly assumed in the corollary that we are proving. O

Remark 12.4.20. As an immediate consequence of Corollary 12.4.13, we obtain
another proof of the essence of Theorem 5.1.13 on the boundedness of the
Hilbert transform H on LP(R;X) whenever p € (1,00) and X is a UMD
space. Indeed, take X =Y, t =1, and ¢ = o0, so that the constants in (12.70)
are simply ¢; = ¢ = 1. Clearly the kernel K(u,v) = 7~ *(u — v)~! of the
Hilbert transform is an antisymmetric convolution kernel, and it is easy to
check the Calderén-Zygmund estimates (12.74) with Dini' norms. Thus we
obtain the estimate
IH || 2(Le®ax)) < € Boxs

with the same quantitative form as (5.24), aside from the unspecified numer-
ical factor above, in contrast to the explicit constant 2 in (5.24). This is quite
natural, considering that (5.24) was obtained by an argument tailored for the
very Hilbert transform, whereas the argument that we just sketched was a
specialisation of a much more general argument to the particular case of H.

The following corollary provides a solution to the LP extension problem from
Section 2.1 for the important class of Calderén—Zygmund operators:

Theorem 12.4.21 (T'(1) theorem for scalar-valued kernels). Letp,s €
(1,00) and 1 <t < p < g < 00, and suppose that:

(i) X is a UMD space with cotype q and type t,
(i) t S(2)? — K is a weakly defined singular integral, whose kernel K :
R2¢ — K satisfies the Calderén—Zygmund estimates

2

cx + Y |wiclpiniz: < o0, (12.79)
i=1

where o1 =1/t and o3 =1/4’.
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Then the following conditions are equivalent:

(1) t defines a bounded operator T € £ (LP(R%; X));
(2) t defines a bounded operator T € £(L*(R%));
(3) [t lwbp < C uniformly in w € ({0,1}%)%, and for some b; € BMO(R?),

for all f,g € Soo(2*) and w € ({0,1}4)3;
(4) [[tllwbp < 00, and (12.80) for some b; € BMOg(R?) and all f,g € Soo(2).

Under these equivalent conditions, we have

1T (1o (ra;x)) < € x (€1 + c2)er+

2 , (12.81)
+ Cq (»312,’)( + Pplﬁf,xﬁs,ng) (HTHf(La‘(Rd)) + Z Ci||w}<|\Dinivi),
im1

with a dimensional constant ¢q and cotype constants
C1 = C¢' X*;p's C2 = Cq,X;p-

In particular, every LP(RY)-bounded Calderdn—Zygmund operator having ker-
nel bounds (12.80) with oy = 0o = 1, extends boundedly to LP(R% X) for
every UMD space X, and one can take ¢ = co =1 in the estimate (12.81).

Proof. (1) = (2): For s = p, this is evident by restricting the action of the
operator to a one-dimensional subspace of X. The case of general s € (1, 00)
follows from the Calderén—Zygmund Theorem 11.2.5 (or even just its classical
scalar-valued version).

(2) = (3): The weak boundedness property follows from Example 12.1.10:
[t wep < Tl 2z ®ay). (12.82)

and we turn to the construction of the functions b;.

The operator T € Z(L*(R%)) is a Calderén-Zygmund operator with
kernel K that satisfies in particular the Dini conditions in both variables,
and hence both direct and dual (operator-)Hérmander conditions by Lemma
11.3.4. (The qualifier “operator” is redundant for scalar-valued kernels.) By
(just the scalar-valued version of) Theorem 11.2.9, T has an extension T e
ZL(L>=(R%), BMO(R?)/K). By Theorem 11.2.9(b), for functions 1 € L>°(R?)
and g € Soo(2%) C L3 (R?), we have

(T(1),9) = lim (T'(11420m)q), 9)

M — o0

= lim Y tlgi,,.9) =t1,g).

M— o0
mez?
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This is one of the claimed identities with b; := T(1) € BMO(R%Y), and
Theorem 11.2.9, followed by Lemma 11.3.4, provide us with the estimates

b1 |lBMOs Ry = IT(L) |70 (R
< (cal Tl s rey + 1K [m6r- ) | 1] Loo (me) (12.83)

< (callT| (zs ey + Ta—1l|wk || Dini)-

The identity involving by := TV*(l), and the estimate

b2 llpaos ey = IT* (1) lmo+ (ra)
< (Call Tl (o may +
+ 1w, v) = K (u,0)" 16 ) 11 oo (re)

< (callT || (s ®a)) + Oa—1llwk |Dini)

(12.84)

are entirely analogous on the dual side.

(3) = (4): This is obvious by restricting to w = 0 and noting that
BMO(R?) € BMOg(R9).

(4) = (1): Under assumption (4), we see that the paraproducts related to
t are in fact IT{ = IIy,, where b; € BMO@(Rd> by assumption. Thus Corollary
12.2.19 guarantees that

Al (e e xy) = o, + I, || 2(Lr (R4 x))

<648 pp/' B2 x B (101 | Bros, (re) + 152l paioy mey): (12.85)
Our assumption (4) also involves ||t||,pp < 00, and Corollary 12.1.9 guarantees
that this coincides with the finiteness of [|t||.,pp(22,) = I[t]lwbp, When tis scalar-
valued. Thus both assumptions ||t[|ysp(22,) < 00 and [|A¢| ¢ (e ra;x)) < 00
of Theorem 12.4.12(2) are satisfied, hence also the equivalent condition of
Theorem 12.4.12(1), and this coincides with condition (1) of the corollary
that we are proving.

The quantitative estimates: While we have already closed the chain of impli-
cations (1) = (2) = (3) = (4) = (1), the claimed quantitative bounds require
a direct analysis of the implication (3) = (1), which relates to the implication
(3) = (1) of Theorem 12.4.12.

As in the proof of “(4) = (1)”, under assumption (3), we see that
the paraproducts related to t* are in fact IIf. = 5,5 while the function
b; € BMO(R?) C BMOg. (R?) is independent of w, the superscript of the
paraproduct signifies the fact that the defining series involves Haar functions
and averages related to @ € 2%. Thus, imitating (12.85) and substituting the
bounds (12.83) and (12.84), we obtain, with s; := s and s2 := ¢/,
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Aw | 2 rma;xy) = 1Ty, + ()" || 2(Lr re;x))

2
<648 pp/B2 < Bsx Y |IbillBros: (e
s, XHMs ; 7 || BM (R4) (12.86)

2
<6487 pp/ B2 x Bo Z (CdHTHf(LS(Rd)) + 0d71||w}<||Dini)~
i=1
where we implicitly dominated [[bi[|gpnos, (may < [[illBpos: (ra) in the first es-
timate. We now substitute (12.86) and (12.82) into the second norm estimate
in Theorem 12.4.12(b), noting that all R-bounds and ZZ%,-bounds may be

omitted, since they simply reduce to uniform bounds for scalar-valued func-
tions:

1T .2 (Lr®a;x)) < sUp || A || 2mr@a,x))+
2 d w 0
+ ﬂp7X{4 sup ||t |lwop + cglcr + c2)crx+

+ b (ex ek paminse + 2l gz ) }-
This gives the bound asserted in the corollary. O

Remark 12.4.22. If by = bs, the term pp'ﬂixﬂsﬂg can be omitted in (12.81).
This applies in particular if T is translation-invariant.

Proof. By inspection of the proof of Theorem 12.4.21, the said term only arises
in the estimate of A in (12.86). Under the assumption that b; = by, we have
A =AY, and we may replace (12.86) by an application of Theorem 12.2.25:

[ A | (o @asxy) = 145 | 2L raxy) < 3027 B2 x[b1llpmo(®a),

where

b1 BMo®e)y < [[b1llBMos Ry < call Tl (L ®a)) + Ta—1l|lwkDini-

Substituting this alternative estimate into the proof of Theorem 12.4.21, we
obtain the claimed modification of (12.81).

If T is translation-invariant, the paraproduct terms vanish, and hence we
can take b; = by = 0, which is indeed a special case of by = by. Of course, in
this case, we do not even need to use Theorem 12.2.25. O

12.4.b The dyadic representation theorem

The randomised dyadic representation (12.52) underlying the proof of T'(1)
Theorem 12.3.26 can be further reorganised into a form that has proven to be
useful for various extensions. Recalling Definition 12.3.34 of the good parts
of Figiel’s operators, and in particular the quantity k(n) := 2 + [log, |n|], we
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regroup the sum over n € Z4\ {0} in (12.52) according to a constant value of

k(n) as N
> =) X

nezZd\{0} k=2 nez?
2k—3<|n|<2k72

We denote by ch® (P) the collection of dyadic descendants of P of generation
k, and define the operators

k k
DY = Y Dg, EF = Y Eq
Qéech(®) (P) Qéech(F) (P)
k—1
DY =EY - EY =Y DY
j=0

Lemma 12.4.23. If t : S(2)* = £(X,Y) =: Z is a weakly defined singular
integral with kernel K : R*¢ — Z, then

To= > ATEf,g) = (SOPf,g),
nezd
2k—3<|n‘<2k—2
u= Y (LU = (ST ),
nez?
2k73<|n‘<2k*2
U= Y (UREfg) = (5PN fg),

nez?
2k =3 <|n|g2k—2

where
SER =N ABP g ARN f(s) = ][ e (s, 1) (1) dt,
Pe P
and these satisfy the identities
AE,:?JC) _ (k)A(O’k)]D)Sf),

A(F}JC) A(O k 0 k) (1287)

2,k 0,k) 1(0,k)m (K
AGH) _ gg )4 mgy.

For i =1,2, we have the further splitting

AGN = ARy - S ARy

Rech(®)



198 12 Dyadic operators and the 7'(1) theorem

where
AGRI = R ns@adn Re{Pyua®(P),
and these kernels have the bounds

o({alt™ (s, ), %) (s,u) : s,u €R € (P} U™ (P), P € 2})

cx(p), if 28 < 12V/4d,
wK(p7 62\71(% Zf Qk 2 12\/&7

X Cd

Proof. By definition, the left-hand side of the claim is equal to

Z= 3 S (U R ) (9 ) ),

nez? QEDk-good
2873 <|n| <282 a,7€{0,1}9\ {0}

where the k-goodness of @ guarantees that R := Q+n, for |n| < 272, shares

with @ the same kth dyadic ancestor R®) = Q%) =: P ¢ 2. Thus we can
regroup this series under the ancestors P to get

Te=3" D (teooahd HR)L ), (9. hR)),

PE? (Q,R)E%,(P)
a,7e{0,1}1\{0}

where
1 1
Go(P) = {(Q,R) : QRecM(P), JUP)<|:q -zl < ] (p)}.
The subseries under each P € 2 takes the asserted form (Agf) f,g) if we define

0,k a a

al®® (s, u) := |P| > tgood (R, KR & (u) Ry (s).
(Q.R)€C)(P)
a,7€{0,1}\{0}

The cases of %kz are analogous, and lead to representations of the same
form with

1,k

ab P (s,u) =[P 3" tgoa(hd, )[R () — K% (w)]h)(s),
(Q,R)ECK(P)
v€{0,1}*\{0}

and
aSP(su) =Pl Y tgood (A, ARG (u) [ (s) — hS(s)],

(Q,R)EC(P)
ae{0,1}%\{0}
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The further splitting is then naturally defined with

abi (su) =[Pl > tgooa(hd, ARG (w)hR(s),
(Q,R)€6L(P)
v€{0,1}\{0}
ap (s u) =Rl D tooalhy KR)hR()hR(s), R € ch(P),
Q:(Q,R)ECK(P)
ye{0,13\{0}

where the last summation runs over all relevant Q € ch” (P), for fixed R.

Observe that ag’? has the factor |R| in front, instead of |P|, due to our

definition of AS;,’?Q f(s) as the average integral f, ag;’g)(s, w) f(u) du.

The splitting of ag’k) is entirely analogous; in particular,

ao)(s0) = 1Q1 Y0 tgoa(h, hR)AG(WhG(s), Q € ch*(P).
R:(Q,R)EC,(P)
ae{0,1}%\{o}

It remains to verify that these operators and their kernels satisfy the as-
serted properties. The identity Aﬁi”’“) = Dgﬁ)Ag’k)]D)gf) is immediate from the

orthogonality of the Haar functions, and the invariance of Ag’k) under com-

position by ]D)gf) on the side, where the cancellative Haar function appear
in a%’k) is justified similarly. Concerning the factors ]D[Po’k)7 we note that the
are orthogonal projections onto functions supported on P, constant on each
Qe ch(k)(Q), and integrating to zero. Noting the functions h% — hY% belong
to this class then justifies the remaining parts of the claimed identities.
Concerning the claimed bounds, we note that any given (s,u) € P x P is

contained in exactly one @@ x R with Q, R € ch(k)(P), and moreover,

1 2kd
a A QXR _ s
|he) @ hip| = 7|Q\1/2|R\1/2 P loxr-

The claimed p-bounds for agg’k)(s,u), as well as for ag;]g(s,u), then follow
from Lemma 12.4.8, noting that the factor |P| in the definition of these kernels
cancels with the ITl’\ above.

For ag;’ﬁ) with R € ch(k)(P), all terms in the defining sum are supported
on the same 1z« g, and each individual summand can be estimates by Lemma
12.4.8. We now have the smaller factor |R| in front, but at the same time there
are up to 2*? terms in the sum, all of which accumulate on the same support
now. Since 2¥¢|R| = |P|, we get the same final bound as before. The case of
ag;’g) with @ € ch(k)(P) in entirely analogous, and completes the proof. [
Definition 12.4.24. An operator S : Soo(2;X) — Soo(2;Y) is called a

dyadic shift of type (i,k), where i € {0,1,2} and k € {2,3,...}, if
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S = Z Ap, Apf(S) = AP;Pf(S) - Z AP;Qf(S)a

147 Qéech(k) (P)

where
Ap.rf(s) :]éap;g(s,u)f(u) du, Re {P}uch®(P),
suppap,;r € R x R,
1S shite () == p({ap;R(s,u) cs,ue Re {P}uch®(P),Pec @}) < 00

for o = %o, and moreover, for every P € 9,

(0) if i =0, then Ap = ]Dy;)Ap]D)%c), and Ap,g =0 for all Q € ch(k)(P);
(1) ifi =1, then Ap = D ApDI0Y;
(2) if i =2, then Ap =DM 4D

We say that a shift has type i € {0,1,2}, if it has type (i, k) with some k.

Remark 12.4.25. In the language of Definition 12.4.24, the operators S(:%) of
Lemma 12.4.23 are dyadic shifts of type (i, k), and we may further write

) CK(@), lf 2k
1S | shite(e) < ca ]
W8S wic (s 0), i 2
The key boundedness properties of these dyadic shifts are contained in the
following:

Theorem 12.4.26. Let X and Y be UMD spaces, and p € (1,00). Suppose
that X has cotype q and'Y has type t for some 1 <t < p < g < oo.

Then for all i € {0,1,2} and k € {2,3,...}, all dyadic shifts S of type
(i, k) extends to a bounded operator from LP(R%; X) to LP(R%;Y). Moreover,
they satisfy the norm estimates

1S snite(zz,)Cer, v - KYE, i=1,
S . 1 . < 4_ . X P ) ) , ’
| ||$(LP(]Rd,X),Lp(]Rd7y)) Bp,xBp,y {"S”Shjft(%;,)cq’x;p i,

and the norm of a shift of type (0, k) is bounded by the minimum of these two
bounds, but with 6 in place of 4.

Proof. We divide the proof into case according to the type of the shift under
consideration.
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Shifts of type 1

Let us start with the case i = 1. For f € Sp(R% X) C LP(R% X) and
g € Soo(R%LY) C LP (R%Y™), we expand the pairing (Sf, g) by separating
the scales according to log, ¢(P) mod k:

k—1
(Sf.9) = | > (pWaps,Ddg)|
j=0  Pec9
log, £(P)=j
mod k

< H Z 5PD§§)APf’

LP (2xR%Y)

3 et

pPey
log, ¢{(P)=j
mod k

k-1
= I; x II;.
L (2xR;Y*) JZZ:O J J

In I;, we write out lD)gf) = ZQECh(k)(P) D¢ and note that, in a randomised
sum like here, we are free to replace eg by ep, since the difference is invisible
to the LP(£2;Y) at a fixed s € R%. This gives

I = H 3 3 sQDQAPf‘

Lr(RY)
Pc2 ch (k)
log, Z%P)Ej Qecht®(P)
mod k
Using the splitting of Ap, it then follows that
el o
J Z Z EQ Q@ P’Pf LP(2XRY)

Peo Qéech(®) (P)
log, £(P)=j
mod k

X X cebedral]
Pez  Qech(® (P)

log, £(P)=j
mod k

Lr(2XRY)

= I1I; + 1V}.

We first consider IV;. Denoting by (s the unique dyadic child of @ that
contains a given s € (), and with the understanding that D¢g acts in the s
variable, we have

DoApqf(s) :][ Doar:q(s, W)Dp™ f(u) du
Q

=100 ((aral-wie. ~ ratwie) (g~ (Hr)du
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= apg(s)1g(s) (o — (f)p) = apq(s)la(s)DE™ (s),
where

ara(s)= | ((aral-mle. ~ el mie) du

belongs to the two-fold multiple of the absolute convex hull of the set appear-
ing in the definition of ||S||snife(p). Thus

0,k
]Vj = H Z Z é‘QOLP;QlQ]D)BD )f‘ Lr(2xRY)
Pcg )
togs e(P)=3 T )
mod k
0,k
< 2[|S|Isnite(22,) Z Z EQlQDED/ )f’ ;
Fo  oeadim LP(2xRi X)
log, {(P)=j
mod k
g 2 S . ]D)[ka) ‘ R
15 l|shife(<z,) F;@ epDp™f LP(2xRiX)
logy £(P)=j
mod k

using the identity ZQech““)( plo=1p and the interchangeability of ep and
€@ in the random sum in the last step.

Observing that (I[))E(D)’k)f)log2 ¢(P)=j mod k is @ martingale difference decom-
position of f for each j € {0,...,k— 1} to deduce directly from the definition
of the UMD constants that

1V < 2[|SIsnite(sz,) By 1 f | e (e x)-

We then turn to term I7I;. By the exchangeability of ep and €g again,
this can be written as

III:H D® Ap. ’ :
J Z epDp Appf LP(2XRY)
Peg
log, £(P)=j
mod k

where

DY Ap.pf(s) = ][ DW ap.p(s, )DL f(u) du,
P

and it is understood that ]D)gf) acts with respect to the s variable.

We will now make use of the tangent martingale construction as in Corol-
lary 4.4.15 and explained just before the statement of the said result: For
every P € 2, let Tp be a copy of P equipped with the normalised measure
vp = |P|~'m|p, where m is the Lebesgue measure, and consider the prod-
uct space T := HP69 Tp with probability measure v := Qpcgvp. Writing a
typical element of T as t = (tp) pcy, we then have
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DY Ap.pf(s) = / DY ap.p(s, tp)DE™ f(tp) du(t).
T

Hence (suppressing, as usual, the dependence of random functions on w € 2),

111, = s / S crDBapp(s,tp)DEY f(tp) du()
T  peg
log, 4(P)=j
mod k

<[som X erteEDParp(s te)DEY fitr))
Pco

log, £(P)=j
mod k

LP(2xR;Y)

LP(2xRIXTY)

Here, ]D)gf)ap;p(s, tp) is the difference of two averages (ap,p(-,tp))q, and
hence in twice the absolute convex hull of the set in the definition of ||S||shifs(p)-
Thus, the definition of R-boundedness implies that

LT < 2[[S|shife(,)

(s6) = 3 eplp(sDRY f(tp)|
Pe2
logy £(P)=j
mod k

LP(QXRIXT;X)

We are now in a position to apply Corollary 4.4.15. Indeed, the functions

]D)[lg’k) f are “atoms” in the sense defined before that corollary: D[Po’k) f is sup-

ported on P, of average 0, and constant on all P’ € ch® (P), which are the
next smaller cubes in the scales-separated dyadic system {P € Z : log, £(P) =
j mod k}. Thus, a direct application of Corollary 4.4.15 to

f= > DYy
PeD
log, £(P)=j
mod k
shows that
0,k
(5,8) Zj ertp(DRr )| < Bl oo,
Peg ’
log, £(P)=j
mod k
and hence

I1T; < 2[S||snite(22,) By x || f1 Lo (re; x) -

Combining this with the estimate for term IV; (and estimating the one-sided
UMD constant by the basic UMD constant), we deduce that

I; < I1I; + IV < 4S||snite(2z,) B, x | f | Le (re; x) -

Hence
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k—1 k—1
I(Sf,9)] < ZIj x 11 < 4||S||snite(,) Bp. x || f | o (s ) ZIIj)
7=0 7=0
where
k—1 k—1 L/
Sy <R (> )
§=0 7=0
k—1 *) ! 1
=i X enly )"
= et LP' (2XRE;Y*)
log, £(P)=j
mod k

1/t
< kY CC Y p!

Dgf)g‘

LP (2xR4;Y*)

1/t +
< k / . ct’,Y*;p’ . /Bp/’Y*

9l (R; Y *)

Here B;y* < By v+ = Bpy by Proposition 4.2.17(2), and ¢y y =,y < T1,yp DY
Proposition 7.1.13 (or its easy extension to deal with the third index in these
constants). This completes the proof for shift of type (1, k).

Shifts of type 2

For a shift of type (2, k), we note that its adjoint S* is a shift of type (1, k),
and hence

151l 2(Lr®a;x), Lo ®ayy) = 157 | (1o Ry ), 10" (RE X +)
< A" Isnite(,) By v+ By X+ Cq x kT

= 4|5 Isite (<27, ) Bp, v Bp, x Cq, X A

which is the asserted bound in this case.

Shifts of type 0

Let finally S be a shift of type (0,%). We can then proceed as in the case of
type (1,k) with slight modifications: In view of the eventual application of
the tangent martingale estimate of Corollary 4.4.15, we now separate scales
by k + 1 levels instead of k, since ]D)gf) f is only guaranteed to be constant
on Q € ch®* D (P). On the other hand, we now have IV; = 0, and hence
I =I11;.

Following the argument in the case of type (1, k) leads to

g eplp(s D( )f( )‘
Pe9

log, £(P)=j

mod k+1

111,

LP(2XRIXT;X)



12.4 The T'(1) theorem for singular integrals 205

To complete the estimate, we will need a little additional trick compared to
the previous cases. First, we observe that

DR’ = (I - ER)DE* Y.
Second, we have
ES f(tp) = E(flo(ch™ D (P)))(tp)
—E(t = f(tr)| Q) o™ (@) = E(t > f(tp)|%hin ),
QED

where on the right-hand side we take a conditional expectation with respect
to a product o-algebra on the product probability space T, of a function that
only depends on the “coordinate” tp of t € T. The importance of this last
formula comes from the fact that only the function inside the conditional
expectation, but not the conditional expectation operator itself, depends on
the dyadic cube P. Using the previous two formulas, it follows that

H > 5P1P(S)Dgf)f(tP)H

LP(2xRIXT;X)

Peg
log, ¢(P)=j
mod k+1
< 1 DA+ £y ’
H Z eplp(s)Dp f(tp) LP(2xRIXT;X)
Pe9
log, £(P)=j
mod k+1
E( 1p(s)DOFD £t ‘g )‘
4+ ‘ Z Ep P(S> P f( P) k+1 LP(2xRIxT;X)
Pe2
log, £(P)=j
mod k+1

LP(2xRIXT;X)

by the contractivity of the conditional expectation in the last step. This last
expression has the same form as what we encountered with shifts of type
(1,k), only with k + 1 in place of k. Thus, by an application of the tangent
martingale inequality of Corollary 4.4.15, we have

H > 5P1P(S)D£g’k+1)f(tp)‘
Peg

log, £(P)=j
mod k+1

< By x| fll Lo (re; x)-

Lr(2XRIXT;X)

Thus,
I = I11; < 4|S||snite(zz,) Bp. x /| Lo (ra; %)
which is the same bound as for the corresponding terms in the estimate of

shifts of type (1,%). The rest of the argument is exactly the same, only with
k + 1 in place of k, and leads to the conclusion that
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IS0l (Lo (re:x), 0 (Ra:v)) < 41|SIsnite(,) Bp,x Bp,y cer v (K + 1)

Since the adjoint of a shift of type (0, k) is another shift of the same type, we
also obtain

ISz (Lr @), Lo @asyy) < 4IS|snisecz:,) Bp.x Bp,y a,xp(k + Hya,

and we can take the minimum of the two bounds. Since k > 2, we can also
make the trivial estimates k+ 1 < 3k and 4+ (2)'/* <6 for v € {t q'} so that
in case v > 1. O

With the help of the shifts, we can represent any weakly defined singular
integral with appropriate kernel bounds as follows:

Theorem 12.4.27 (Dyadic Representation Theorem). Letp € (1,00)
and 1 <t < p < q< oo, and suppose that:

(i) X and Y are UMD spaces,
(ii) X has cotype ¢ and Y has type t,
(iii) t: S(2)* = Z := L(X,Y) is a weakly defined singular integral and the
kernel K : R* — Z of t satisfies the Calderdn—Zygmund estimates

cx (%) + |k (Zp) pimit/e + 1wk (Zp) [ piin /< 00

Then the following conditions are equivalent:

(1) t defines a bounded operator T € £ (LP(R%; X), LP(R%;Y));

(2) each t satisfies the weak DA p-boundedness property ||l wpp22,) <
C, and the associated bi-paraproduct Ay defines a bounded operator in
ZL(LP(R% X), LP(RYY)), uniformly in w € ({0,1}4)Z.

Under these equivalent conditions, we have

(a) the dyadic representation formula

<vag>:E’(<~6f“’f7 > At“’f7 + Z (lk).f’ )

ie{ O 72}

with absolute convergence for all f € S(Z;X) and g € S(2;Y™*), where E
is the expectation over w € ({0,1}%)%2<™  and M € 7Z is any large enough
number such that f and g are constant on all Q € Dy;; the operators Hiw
and Aw are a Haar multiplier and a paraproduct as in (12.52), and each
Su(j’k) is a dyadic shift of type (i, k) (Definition 12.4.24) with respect to the
dyadic system D% and with shift norms estimated by

S8 suangey < g KO0 H2 <12V
wic(p; &4, if 28 > 12V/d;
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(b) the resulting norm estimate:
||T||$(Lp(Rd;X),Lp(Rd;Y)) - Sgp ||Atw ||$(LP(Rd;X),LP(Rd;Y))
< By x By {4 5D 1€ uioca,) + i (exc (By) + exc( ) ) +
+ el (cv 10k (B it + caxipllke (Bl ) }:

where the suprema are over w € ({0,1}%)%, and the constants cg, c}l depend
only on d

Proof. We note that the present assumptions coincide with those of Theorem
12.4.12, except that (ii) of the present theorem is slightly stronger than (ii) of
Theorem 12.4.12. Thus the equivalence of (1) and (2) is just repetition from
Theorem 12.4.12.

The first new claim is the dyadic representation formula (a). To see this,
recall that Theorem 12.4.12 gave the representation formula (12.52), repeated
for convenience as

(Tf,9) = E((9e f.0) + (A fog) +20 > {1858, g

nez?
n#0

+ (UL g) + (URE.9) )

where f, g, and E have the same meaning as in the claimed formula (a). On the
other hand, Lemma 12.4.23 and Remark 12.4.25 inform us that the summation
of the three types of terms over n € Z? \ {0} can be rearranged into a sum
over k > 2 and i € {0, 1,2} exactly as in the assertion.

From the representation (a), we can then estimate

||T||:£(Lp(Rd;X),Lp(Rd;Y)) — sup || A ”Z(LP(Rd;X),LP(Rd;Y))

< sup (||53tw | (v ®a;x), L (REY))

+ > IISff”“)IIz(LP<Rd;X>,Lv(Rd;Y)>)-
ie{oi2)

The first term here is estimated as in the proof of Theorem 12.4.12 by
4dHt||wbp(@gp). For the remaining sum over shifts, we obtain from Theorem
12.4.26 (using this theorem with trivial type ¢ = 1 for small k, and as stated
for large k) that

S IS oo (masx), Lo @eyy)
k=2
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<4 ﬁp“Xﬁ?”Y( Z 1S58 | shigeee, ) -
k:1<28<12Vd
+ Y 1S5 P Isnisean, ey -kl/t>
k:2k>12+/d

< Cdﬁp,Xﬁp,Y( Z CK('@p)k

k:1<2F<12Vd

6vd
+ Ce' Y *;p! Z W}((%p 2T)k1/t)

k:2k>12d

< by x By (ox () + v |k (%)l 1)

Similarly,

ZHSU(?’@ .2 (Lr®ax),Lr (R2,Y))
k=2

< by x By (ex () + ool W3 (F) gt )-

Finally, The sum over shifts of type (0, k) may be estimated by either of the
two bounds above (the different numerical constant in Theorem 12.4.26 is in
any case absorbed into the unspecified dimensional constant). O

Remark 12.4.28. The norm estimate obtained in Theorem 12.4.27 via the rep-
resentation in terms of dyadic shifts is essentially the same as that in Theo-
rem 12.4.12 obtained via Figiel’s representation. While the proof of Theorem
12.4.27 partially relied on the proof of Theorem 12.4.12 to avoid repetition, a
larger part of the machinery behind the proof of Theorem 12.4.12, relying in
particular on Figiel’s Theorems 12.1.25 and 12.1.28 concerning his elementary
operators, was replaced in the proof of Theorem 12.4.27 by Theorem 12.4.26 on
the dyadic shifts, which in turn was based on the tangent martingale bounds
of Corollary 4.4.15.

12.5 Notes

Section 12.1

The Haar multipliers )y = 3¢ are special cases of martingale transforms dis-
cussed extensively in Volume I; see in particular Sections 3.5 and 4.2.e. In this
framework, the predictable sequences multiplying the martingale differences

DYf = > (fhg)hd,  Dy%f:= > Dy°f

QEDy QEDy,
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are then

vy = Z Melg, € L®(0(%); L(X,Y)), v, ¢ =0.
QEDk

On the other hand, the Haar multipliers §” with a # v already take a
departure from the general theory, and this is even more so with the general
operators of Figiel.

(Note that the conventional indices of dyadic analysis and martingale the-
ory are off by one from each other. In martingale theory, it is customary to
emphasise measurability, and hence the indices of martingale differences agree
with those of the o-algebra that makes them measurable, while predictable
multipliers are measurable with respect to the “previous” o-algebra with in-
dex k —1. In dyadic analysis, the emphasis is on the supporting dyadic cubes,
and hence the “kth” martingale difference Dy f is the sum of the local mar-
tingale differences Dy supported, and averaging to zero, on the dyadic cubes
Q € Yy, but then they are actually measurable only with respect to the “next”
0(Pk+1); at the same time, the “predictable” multipliers are then measurable
with respect to the o-algebra indicated by their index.)

The relaxed R-boundedness notion 2%, of Definition 12.1.6 seems to
be new, but the slightly stronger &%, appears implicitly in Di Plinio, Li,
Martikainen, and Vuorinen [2020b, Remark 6.29], where it is shown that
the family |Q|~'(T'1g,1g) of Example 12.1.10 has this property when T' €
Z(LP(RY%; X), LP(R%;Y)) and X and Y are UMD spaces; this also follows by
combining our Example 12.1.10 (on the 2%, property of this family) and
Corollary 12.1.17 (the equivalence of 2%, and &%, for UMD spaces). An
advantage of the new 2%, is that it allows Example 12.1.10 without any
assumptions on the Banach spaces.

The exact characterisation of the boundedness of the Haar multipliers
H in Theorem 12.1.11 is new; by Lemma 12.1.8 and Propositions 12.1.13
and 12.1.14, the characterising condition is strictly more general than the R-
boundedness condition ||z — Z({Ag : ¢ € Q € Z})|lec < 0. This seems
at first to contradict Girardi and Weis [2005], where the necessity of uniform
pointwise R-boundedness for operator-valued martingale transforms is estab-
lished. This apparent contradiction is resolved by observing that, in order
to obtain this necessity of R-boundedness, Girardi and Weis [2005] actually
assume that their transforming sequence (vy)r>1 is allowed to multiply any
subsequence (dfy, )k>1 of the martingale difference sequence (dfy)32,, i.e.,
they assume the boundedness of the family of operators f — Zk>1 Vdfn,
instead of just f — Z,@l vidfy. In the case of Haar multipliers, this would
mean that, for a given sequence A = (Ag)gey we would consider a family of
operators including in particular all

Fe D7 Aow (f, hg)hg,

Qe2
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where k € N and Q) is the k generations larger dyadic ancestor of Q. How-
ever, in particular situations like that of Propositions 12.1.13, each coefficient
Aq is naturally associated to a unique cube () only.

The underlying ideas of Section 12.1.b come from Figiel [1988], and they
have been developed further by Hytoénen [2006], but substantial details of
the present treatment are new. Figiel [1988] also introduced the elementary
operators 1" and U and proved the first versions of Theorems 12.1.25 and
12.1.28. A novelty of the present treatment, also reflected in the auxiliary
considerations in Section 12.1.b, is to set up the argument in such a way
as to obtain a reasonably efficient dependence of the estimates on the UMD
constants, although we make no claims concerning sharpness. A technical
point was to use the decomposition of Lemma 12.1.22 in such a way that the
parts of the decomposition contribute additively, rather than multiplicatively,
to the operator norms in Theorems 12.1.25 and 12.1.28; while this seems
only natural in retrospect, it was not the case with earlier treatments of the
analogous bounds by Figiel [1988] and Hyt6nen [2006]. This proof detail only
affects the constants in the final estimates, which was not a concern in these
earlier works.

Besides the “dyadic singular integrals” studied in this section, there are re-
lated classes of operators that might be regarded as “dyadic pseudo-differential
operators”, in that their symbol depends on both the spatial variable s € R?
and the “dyadic frequency variable” I € &. These are the generalised Haar
multipliers

D) f(s) = Z Ar(8)(f, hr)h1(s),

I1€2

where each coefficient A\f(+) is a function. A primary example considered by
Katz and Pereyra [1999] consists of

where ¢ € R and w is in a (dyadic) A, or (dyadic) reverse Holder class.
Given the close relation of their techniques to those of the present section,
it seems likely that some of the results concerning the operators .y could
be generalised to functions taking values in a UMD space, but this line of
research seems not to have been pursued so far.

Section 12.2

In analogy with the quote of Stein [1982] on square functions at the beginning
of Chapter 9, also the concept of paraproduct is “not an idea in its pure form,
but rather takes various shapes depending on the uses it is put to”. A friendly
overview to this variety of “shapes and uses” of paraproducts can be found
in Bényi, Maldonado, and Naibo [2010]. Paraproducts were systematically in-
troduced by Bony [1981], but Bényi et al. [2010] convincingly argue that their
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first version is already implicit in the treatment of commutators of singular
integrals by Calderén [1965].

Our treatment concentrates on dyadic paraproducts. We are uncertain
about the earliest appearance of this notion in the literature but it was
certainly known to Figiel [1990]; according to this paper, the LP(R%; X)-
boundedness of the dyadic paraproduct with a scalar-valued b € BMOg(R?)
“relies on an estimate due to Jean Bourgain (October 1987, unpublished)”.
This argument was only presented in print much later by Figiel and Woj-
taszcezyk [2001]. In particular, Corollary 12.2.19 goes back to these works. The
first results on the boundedness of operator-valued paraproducts on UMD
spaces were obtained by Hytonen and Weis [2006b] for a Fourier-analytic
cousin of the dyadic paraproduct that we have treated. A sufficient condition
similar to Proposition 12.2.16, in terms of a version of the Carleson norm,
was identified there under the name of “Littlewood—Paley—BMO” norm. The
condition of Theorem 12.2.18, in terms of BMO(R?; Z) with values in a UMD
subspace Z — Z(X,Y), is also implicit in Hytonen and Weis [2006b], and
explicitly formulated by Hytonen [2006]. However, both Hyténen and Weis
[2006b] and Hytonen [2006] also required an additional R-boundedness con-
dition, most easily formulated by the requirement that the unit ball By of
Z should be an R-bounded subset of #(X,Y’). This condition was found to
be superfluous by Hytonen [2014] when revising the argument for an exten-
sion to non-doubling measures, a generality that we have not considered here.
The details of the present approach are largely borrowed from Hanninen and
Hytonen [2016], where several simplifications were found when specialising the
considerations back to the case of the Lebesgue measure. A particular novelty
of Hanninen and Hytoénen [2016], which we have followed, was to estimate
the vector-valued paraproduct directly in LP(R%;Y'), in contrast to earlier ar-
guments that achieved the LP bounds only via interpolation from auxiliary
end-point estimates between the Hardy space H'(R%; X) and L'(R%;Y) on
the one hand, and between L>(R?; X) and BMO(R%Y') on the other hand.

Theorem 12.2.25 on the boundedness of the symmetric paraproduct A is
from Hytoénen [2021]. The case when p = 2 and X =Y is a Hilbert space was
obtained earlier by Blasco and Pott [2008], and extended to any p € (1, 00) and
any non-commutative LP(M) space (with the same p) by Mei [2010]. (Recall
that LP(M) is a UMD space for p € (1, 0c0)—the case of Schatten classes, due
to Bourgain [1986], is treated in Proposition 5.4.2, while the general case can
be found in Berkson et al. [1986b]—so the mentioned result of Mei [2010] is
indeed a special case of Theorem 12.2.25.) The auxiliary material on projective
tensor products is classical; much more on this topic can be found in Ryan
[2002].

Theorem 12.2.26 on the dimensional growth of the norms of operator-
valued paraproducts is from Mei [2006]. The optimal dimensional dependence
in the estimate

[Ty [| 2 (L2 (msez,)) < Y(N)[[bllBMoOse (2 (e2,)) = Y(IN) sup [[b(-)ullBymo, (miez,)-
uEB[%V
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had been settled some years earlier: Independently, Katz [1997] and Nazarov,
Treil, and Volberg [1997b] proved that ¥(N) < 1+ log N, and the latter
authors also obtained the preliminary lower bound ¥(N) > (1 4 log N)/2.
This was improved to ¢¥(N) = 1+log N by Nazarov, Pisier, Treil, and Volberg
[2002a]. For a while, there were hopes in the air of obtaining a dimension-free
estimate with BMOg(R; .Z(£%;)) in place of BMOZ) (R; £ (¢%)) on the right.
Some indications that made this plausible are discussed in the introduction
of Mei [2006] who, however, destroyed such hopes were by the main result of
that paper, reproduced as Theorem 12.2.26. In combination with the upper
bound by Katz [1997] and Nazarov et al. [1997b] just mentioned, it shows that
1 +log N is the optimal upper bound for [|ITy[| ¢ (z2 w2 ))/ |0l p(r;z(e2,)) for
any of the choices F € {BMO%,BMOg, L>°}.

Further relations between various BMO-type quantities and the norms
of related transformations in infinite-dimensional Hilbert spaces have been
studied by Blasco and Pott [2008, 2010]. Analogous results in the context
of the operator-valued BMOA space of analytic functions are due to Rydhe
[2017].

Section 12.3

We refer the reader to the Notes of the following section for an account of
the T'(1) theorem in its more traditional meaning as a boundedness criterion
for Calderén—Zygmund operators (as in the title of David and Journé [1984]).
The section under discussion presents a rather non-canonical approach to this
theory, introduced and described by Figiel [1990] as follows:

Our approach is indirect in the following sense. Rather than trying
to prove that some “classical” operators are bounded, we start from
considering certain rather new operators, which in our opinion have
a basic nature. (All the “singularities” which can occur in our con-
text are neatly packaged inside the basic operators.) Having estab-
lished precise estimates for the norms of those basic operators, we can
take up the “general case”. We just look at the class of those oper-
ators which can be realised as the sum of an absolutely convergent
(in the operator norm) operator series whose summands are simple
compositions of our basic operators. Then it turns out that the choice
was sufficiently efficient for that class to contain so-called generalised
Calderén—Zygmund operators and much more.

A large part of this section, up to and including T'(1) Theorem 12.3.26, is an
updated review of Figiel [1990], incorporating a few elaborations:

e the trade-off between the type and cotype properties of the underlying
spaces and the minimal rate of convergence of the coefficients of the bilinear
form, as in Theorem 12.3.26(ii) (which is implicit in the combination of
Figiel [1988, 1990]);
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e conditions involving R-boundedness to deal with operator-valued versions
(first introduced into the context of T'(1) theorems at large by Hytonen
and Weis [2006b] and into Figiel’s approach by Hytonen [2006]);

e keeping track of, and optimising the argument for, the quantitative de-
pendence on parameters like the UMD constants (which seems new for
this “non-random” version of the T'(1) theorem, involving—in contrast to
Theorem 12.3.35—one dyadic system Z only).

The decomposition (12.36) of t(f,g) into three one-parameter series, in
contrast to the perhaps more obvious two-parameter decomposition

.3

was already used by Figiel [1990], but it is frequently referred to as the “BCR
algorithm” after Beylkin, Coifman, and Rokhlin [1991]. They explored its ad-
vantages for the numerical evaluation of singular integrals, also making a con-
nection with the 7'(1) theorem but apparently independently of Figiel [1990].
A decade later in 2002, when two of the present authors started to investigate
a Banach space valued T'(1) theorem (eventually published in Hyténen and
Weis [2006b]), they were also initially unaware of the work of Figiel [1990],
which was first brought to their attention by Hans-Olav Tylli. Ever since, the
approach of Figiel [1990] has been highly influential for the development of
the theory of Banach space valued singular integrals.

The second T'(1) Theorem 12.3.35, which makes use of a random choice of
the dyadic system 2%, has a history of its own. This method, referred to by
its inventors as “pulling ourselves by hair”, was introduced by Nazarov, Treil,
and Volberg [1997a] to tackle the difficulties in estimating singular integrals
with respect to a non-doubling measure p, thus going beyond the established
theory in spaces of homogeneous type due to Coifman and Weiss [1971]. Their
original idea consisted of splitting a function into its “good” and “bad” parts,
according to the “good” and “bad” cubes supporting the martingale differ-
ences Dg f:

;)od = Z ]D)Qfﬂ f{)uad = Z Dva

Qegzg.um)d Qegﬁad

and showing that the latter is small, “on average”, with respect to a random
choice of w:

Ell fraall 2o < el fllzz -

As a result, it is enough to estimate (an a priori bounded) operator T of
“good” functions only. Namely, if

T fgo0a: Ggood) | < Cllfgooall2llggooallz < Cllfll2llgll2,

then
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‘<Tfa g>‘ < |< ;)odvggoodH + |<T g)oodag(t‘;adﬂ + ‘<Tfl‘;]advg>|
< Cllfll2ligllz + 1T N2l g5aallz + 1T fiaall2llgll2-

Taking the expectations of both sides, it follows that

(TF, )l < Cllfll2llgllz + 2¢l T fll2llgll2,

hence

c

1—2¢"

This method was successfully applied and further developed by Nazarov, Treil,
and Volberg [2002b, 2003]. The latter work was extended to Banach space
valued singular integrals with respect to non-doubling measures by Hytonen
[2014]. The first arXiv version of this paper was posted already in 2008, and
hence it was available to provide the backbone for the proof of the A5 theorem
in Hyt6nen [2012] (arXiv 2010); see the Notes of Chapter 11 for more on the
latter. It was for the purposes of the A theorem that a technical elaboration of
the averaging method of Nazarov, Treil, and Volberg [1997a, 2002b, 2003] had
to be invented: “on average”, the bad part is not only small but completely
absent. This allows the replacement of the estimates above by identities of the

type

1T <C+2|T), TN <

<Tf7 g> = E<T§30dfa g>

The observation that one can combine this averaging method with Figiel’s de-
composition of singular integrals in order to simplify the latter, and thereby
obtain sharper quantitative conclusions (notably, a quadratic dependence on
the UMD constant), was then made in Hytonen [2012] (arXiv 2011), where
a version of Theorem 12.3.35 (for scalar kernels and under vanishing para-
product conditions) was first established. The question of obtaining a linear
dependence on the UMD constant is an outstanding open problem already
in the special case of the Hilbert transform (see Problem O.6); but of course
a possible counterexample could be more feasible within the larger class of
operators covered by Theorem 12.3.35. A positive answer has been obtained
for sufficiently smooth even singular integrals on LP(R; X)) by Pott and Sto-
ica [2014]; their result depends on the same averaging trick and the resulting
dyadic representation theorem, but then applies different techniques to com-
plete the estimate.

While our approach to the “random” T'(1) Theorem 12.3.35 took a detour
via the “non-random” 7T'(1) Theorem 12.3.26, we should emphasise that this is
by no means necessary; rather, in many recent extensions of the 7'(1) theorem,
one starts with the randomised set-up from the beginning, and it is often not
even clear whether this could be avoided. We will say more about some of
these extensions later in these Notes. The reasons that we have chosen to
present also the non-random 7T'(1) Theorem 12.3.26 are (at least) two-fold:
On the one hand, we feel that there is some historical documentary value
in providing (probably) the first detailed exposition of the original Banach
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space valued T'(1) theorem of Figiel [1990], considering also the number of
other results in the literature relying on this in their proofs (although, in
many cases, one could alternatively apply one or several of the more recent
variants). On the other hand, the non-random 7'(1) Theorem 12.3.26 is not in
all respects subsumed by the random T'(1) Theorem 12.3.35, which makes the
first one applicable in some situations where the latter one is not, and it might
hence be useful for the reader to keep the original T'(1) Theorem 12.3.26 in
their toolbox.

While we are not aware of many such applications, here is at least one:
Pseudo-localisation of singular integrals refers to estimates of the form

1Les, T fllzewexy < ¢()fllLrmax), s €N,

where

Sre = J9Q: Qe 2, DY f£0}, DY f= > Daf,

Rech® Q

and the point is obtaining a quantitative decay ¢(s) — 0 as s — oo. Case
p = 2 was considered by Parcet [2009] for X = K and by Mei and Parcet
[2009] for a Hilbert space X, with applications to non-commutative Calderén—
Zygmund and Littlewood—Paley theory, respectively. An extension to p €
(1,00) and a UMD space X was obtained by Hytonen [2011] using a version
of the T'(1) Theorem 12.3.26. This leads to studying a bilinear form whose
Haar coefficients satisfy a non-standard estimate of the form

[t(hg), h’Z?jrm)| S |m|_(d+6)1(2-23,oo)(|m|) + |m|_d1(4_2372,4,25+2)(|m|).

The first term on the right with decay d + ¢ is typical, but the second one,
without any e, is not. However, this term is only supported in a relatively
narrow region of values of the parameter m € Z¢, which still allows one to
make favourable estimates of the Figiel norms of t.

A notable aspect of this application is that the construction of the set
X s refers to a fixed dyadic system &, which calls for a Haar expansion of
the operator in terms of this same 2, as in the non-random 7'(1) Theorem
12.3.26, and seems to prevent any effective application of the random systems
2%, as in the random T'(1) Theorem 12.3.35. This suggests that, even after the
successful recent (and very likely future) development of T'(1) theorems and
other results based on random dyadic systems, the non-random 7'(1) Theorem
12.3.26 might not become completely obsolete.

Section 12.4

The classical theory of Calderén and Zygmund [1952] had its focus on con-
volution operators. Their L?(R%) boundedness is amenable to methods of
Fourier analysis, which then serves as a starting point for extrapolation to
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other LP(R?) and different function spaces, as discussed at length in Chap-
ter 11. It was observed quite early, notably by Coifman and Weiss [1971],
that these extrapolation aspects of the theory could be extended to much
greater generality, certainly including non-convolution operators on R?% and
much more. On the other hand, the boundedness of some prominent non-
convolution operators was obtained by different methods over the years, in-
cluding the commutators of Calderén [1965, 1977], and the Cauchy integral
on a Lipschitz graph, which we give in the parametrised form

_ o0 f(t)dt
Caf(s):=p.v. /_Oo s—t+i(A(s) — At)

The boundedness of €4 was first established, in the case of a small Lips-
chitz constant ||A||Lip, by Calderén [1977], and eventually in full generality by
Coifman, McIntosh, and Meyer [1982]. However, a general criterion for verify-
ing the L?(R?) boundedness of any given Calderén-Zygmund operators was
missing.

The first such general criterion was provided by the “T'(1) theorem” of
David and Journé [1984]. In its original formulation, this theorem stated that
an operator T : .7 (R%) — .#/(R%), with a Calderén-Zygmund standard ker-
nel, extends to a bounded operator on L?(R?), if and only if it satisfies the
following three conditions, from which the name of the theorem (also intro-
duced by David and Journé [1984] in the title of the first section of their
paper) is derived:

(i) T(1) € BMO(R?),
(i) T*(1) € BMO(R?),
(iii) T has the weak boundedness property.

Despite being a complete and elegant characterisation, giving, e.g., the results
of Calderdn [1977] as a quick corollary, it turned out that it is not always fea-
sible to use this theorem for some operators. As a prime example, the theorem
of Coifman, McIntosh, and Meyer [1982] could not be directly recovered by
David and Journé [1984], since €4(1) does not admit an expression whose
BMO norm could be easily estimated.

This shortcoming was fixed by the more general “T'(b) theorem” of David,
Journé, and Semmes [1985], which replaced (i) and (ii) by the more flexible
conditions

(i") T(b1) € BMO(R?),
(i) T*(b2) € BMO(R?),

where one is free to choose the pair of functions b; € L>(R%) subject only
to the restriction that they be accretive (meaning Rb; > § > 0 almost every-
where) or just para-accretive (a technical generalisation, for which we refer the
interested reader to the original paper). In particular, one can take b; = 14+47A’
for which the computation of (any finite truncations of) €4(1 + iA’) is easy.
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While also this T'(b) theorem has been extended to UMD spaces by
Hytonen [2006], the need for this is perhaps not as great as in the scalar-
valued case, at least as far as the extension of the boundedness of scalar-
valued Calderén-Zygmund operators to LP(R%; X) is concerned. The reason
for this is that, while it might be difficult to check the T'(1) conditions (i) and
(ii) directly, they can nevertheless be verified by the converse direction of the
T(1) theorem, provided that the L?(R¢) boundedness of T is already known
by some other method (such as the T'(b) theorem). This is, in essence, the
point of the scalar-kernel 7'(1) Theorem 12.4.21.

Corollary 12.5.1. Let X be a UMD space, p € (1,00), and A: R — R be a
Lipschitz function. Then the Cauchy integral on a Lipschitz graph €a extends
to a bounded operator on L?(R; X) and

€Al 2(Lr@:x)) < capp’ - B3 x,
where ca is a constant that depends on A only.

Sketch of proof. By the theorem of Coifman, McIntosh, and Meyer [1982], the
operator €4 is bounded on L?(R). It is straightforward to verify that the kernel
of €4 is a standard kernel, and hence verifies the assumptions of Theorem
12.4.21 with Dini' conditions (and associated constants depending only on A),
in which case only trivial type and cotype is needed. Thus Theorem 12.4.21,
with s = p = 2, proves the corollary for p = 2. While we could apply Theorem
12.4.21 with s = 2 and any p € (1,00), a better quantitative conclusion for
p # 2 is obtained by using case py = 2 as input to the Calderén—Zygmund
theorem 11.2.5, which then yields the asserted bound for all p € (1,00). O

Corollary 12.5.1 seems to have been first stated in Hyténen [2006]; however,
given that it is essentially a concatenation of its scalar case due to Coifman,
McIntosh, and Meyer [1982], and the T'(1) theorem of Figiel [1990], it was
probably “known to experts” much earlier. The case when X is a UMD lattice
was established by a different method already by Rubio de Francia [1986].

In a similar way, the extension of the non-homogeneous T'(1) theorem of
Nazarov, Treil, and Volberg [2003] to UMD spaces has the following conse-
quence:

Theorem 12.5.2. Let u be a positive non-atomic Radon measure on C. Then
the following conditions are equivalent

(1) There is a constant ¢ < oo such that, for every disk D = D(z,r) C C, the
measure | satisfies
(a) the linear growth condition u(D(z,7)) < cr, and
(b) the local curvature condition

///DxDxD du(lg(duﬁ,tgjj);)m(z) < cp(D),
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where R(u,v,z) is the radius of the circle through u,v,z (understood
as o0, if the points are collinear).
(2) The Cauchy integral

G f(u) = /C f(t;)fﬁ;(v)

defines a bounded operator on L?(u).
(3) For every UMD space X and every p € (1,00), the Cauchy integral €,
defines a bounded operator on LP(u; X).

Note that €4 is (equivalent to) the special case, where p is the arc-length
measure on the graph {(¢, A(t)) : t € R}.

Sketch of proof. The implication (2)=-(1a) is due to David [1991] and (2)=-(1b)
due to Melnikov and Verdera [1995] and Mattila, Melnikov, and Verdera
[1996]. The sufficiency of these geometric conditions, (1)=(2), was proved
by Tolsa [1999].

The implication ((1a) and (2))=(3) follows from an analogue of Theorem
12.4.21 for measures on R¢ with the power growth bound u(B(s,r)) < cr®
(0 < n < d), which is one of the main results of Hytonen [2014]. The implica-
tion (3)=-(2) is trivial. O

This proof sketch highlights the role of T'(1) theorems as a device for extending
deep results about the boundedness of specific operators from scalar-valued to
vector-valued spaces, without the need to revisit the details of the original ar-
guments. Indeed, by using the scalar-valued result (2) as an intermediate step,
the equivalence of (1) and (3) is obtained without ever having to deal with
the local curvature condition (1b) in the context of vector-valued functions!

Our operator-kernel T'(1) Theorem 12.4.12 is the outcome of a line of
evolution starting with the first such results obtained by Hytonen and Weis
[2006b] and Hytonen [2006], and continued with several variants and exten-
sions addressing

e mnon-homogeneous measures (Hytonen [2014] (arXiv 2008), Martikainen
[2012a] (arXiv 2010), Hytonen and Vahakangas [2015]);

e simplifications of the underlying decomposition of the operator (Hytonen
[2012], Hénninen and Hytonen [2016));

e sharper conclusions under additional symmetry assumptions (Pott and
Stoica [2014], Hytonen [2021));

e product-space/multiparameter singularities (Di Plinio and Ou [2018], Hytonen,

Martikainen, and Vuorinen [2019a]);
e multilinear operators (Di Plinio, Li, Martikainen, and Vuorinen [2020b],
Airta, Martikainen, and Vuorinen [2022]).
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While these papers extend the theory into several directions that we have not
considered here, many of them also provide valuable pieces of insight into the
basic case of linear Calderén—Zygmund operators on R? with the Lebesgue
measure, which we have tried to incorporate into the present treatment. De-
spite this extensive background material, some aspects of our present 7'(1)
Theorem 12.4.12 appear to be new:

(1) For the first time, we are able to state an operator-valued T'(1) theorem
that gives a characterisation (as in the scalar-valued T'(1) theorem of
David and Journé [1984]), and not just a sufficient condition (as in all
operator-valued papers cited above), for the boundedness of a Calderén—
Zygmund operator with an operator-valued kernel. This depends on two
recent ideas, the combination of which appears here for the first time:
(a) Replacing the (sufficient but not necessary) weak R-boundedness
property of most of the previous contributions by the correct weak
DX ,-boundedness property. As discussed in the Notes of Section 12.1,
this idea is from Di Plinio, Li, Martikainen, and Vuorinen [2020D].

(b) Treating the bi-paraproduct A = ITp) + H}*(l) as a single object,
and making its boundedness into a condition in its own right, rather
than trying (in vain) to force it into a form involving some operator-
valued BMO space. This is implicit in Hytonen [2021].

(2) Recording the quantitative dependence of the estimate in terms of both
the UMD and the (co)type constants, and optimising the argument for
what seems to be the best possible bound currently available. This was
available in important special cases (notably in Hytonen [2012]), and ar-
guably implicit in some other works, but seems to be original as an explicit
statement in the present generality.

Consequences of the T'(1) theorem

The “T'(1) theorem for convolution kernels”, Corollary 12.4.13, is a somewhat
untypical statement, in that convolution kernels have been usually treated by
more traditional Fourier-analytic methods, rather than the 7'(1) technology.
As such, this very formulation seems to be new. However, essentially the same
class of operators was considered with Fourier methods by Hytonen and Weis
[2007]. (Despite the publication year, this paper was actually the first joint
project of its authors, which they completed and submitted in 8/2002, be-
fore starting their follow-up work on the T'(1) theorem, Hyténen and Weis
[2006Db], later in the same year.) In place of the combinatorial estimates for
Figiel’s operators from Sections 12.1.b and 12.1.c, this proof employed analo-
gous Fourier-analytic estimates due to Bourgain [1986]. Just like the combi-
natorial details of the T'(1) theorem can be simplified with the random dyadic
systems, the proof of the key lemma of Bourgain [1986] was later simplified
in Hytonen [2012] by the same technology.

While the direct comparison of Corollary 12.4.13 with the results of
Hytonen and Weis [2007] is complicated by the presence in Corollary 12.4.13 of
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the (untypical in the classical theory) weak boundedness property, Corollary
12.4.19 on antisymmetric kernels comes rather close to some results of Hyténen
and Weis [2007]. Indeed, in this special situation, one can completely avoid
both paraproducts and the weak boundedness property, obtaining a bound-
edness criterion in terms of the Calderén-Zygmund kernel bounds alone.

Corollary 12.4.18 on antisymmetric but non-convolution kernels (where
the weak boundedness is automatic but a paraproduct is present) is probably
new in the operator-valued setting, but a rather straightforward adaptation
of similar statements that are well known in the scalar-valued theory.

On minimal smoothness conditions

As one can see from T'(1) Theorem 12.4.12 and its corollaries, the minimal
smoothness of the kernel involves a modulus of continuity ||wl||pinic, Where
o = max(1/t,1/q") if X has cotype ¢ and Y has type ¢, or one of them has
both. In the scalar-valued (or more generally Hilbert space) case, this reduces
to o = % Incidentally, this appears to be the minimal condition required to
run any known proof of the T'(1) theorem, even in the scalar case. As Figiel
[1990] puts it,

it was a nice surprise that such austere methods could in fact lead to
some results which were not less general than their counterparts estab-
lished earlier with no restrictions on the range of admissible methods.

While the original T'(1) theorem of David and Journé [1984] and most of its
successors are formulated for Calderén-Zygmund standard kernels, an exten-
sion to Dini-type conditions was obtained shortly after by Yabuta [1985], who
proved the theorem under the condition that ||w3||pin; < co. It is not obvious
at first sight how this compared to Figiel’s condition ||w||Dini 1 < oo. However,
we may observe that any non-decreasing w on [0, 1] satisfies

/Olw(t)(logi)aitZ/Olw(t)livw(t)ga(/tl(is

< [wrs S( [Curs L)°
~(f =)

With H% = 1, we see that Yabuta’s |w? || pini dominates ||w]|pinie With o = 2.
(While the Dini® norms were previously defined with log, in place of log,
and integrating over [0, ] instead of [0, 1], the reader may easily verify that,
extending w from [0, 1] to [0,1] by w(t) := w(min(t, 1)), these details affect at
most the constants in the final conclusions.)
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Subsequently, Meyer [1986] (according to Han and Hofmann [1993], but we
have not been able to verify the original reference) relaxed the assumption to
a =1 (plus a further weakening of the pointwise bounds to integral conditions
rather closer to the Figiel conditions for bilinear forms as in our abstract
T(1) Theorems 12.3.26 and 12.3.35). Han and Hofmann [1993] obtained a
further slight relaxation of the conditions of Meyer [1986], and Yang, Yan, and
Deng [1997] proved the T'(1) theorem with assumptions essentially matching
the special case a = % of the conditions of Figiel [1990] in the scalar-case.
Later attempts to relax this condition were made by Grau de la Herrdn and
Hytonen [2018], who found that the same regularity is sufficient also for the
non-homogeneous 7'(1) theorem, but did not succeed in relaxing it even in the
standard case. Thus, various different proof strategies all seem to meet this
same threshold.

At the same time, it seems to remain unknown whether even the much
weaker Héormander conditions of Definition 11.2.1 could in principle be enough
for a T'(1) theorem. A positive result in this direction seems out of reach with
the presently available methods, but there does not seem to be any definitive
counterexample to rule out this possibility. As very partial evidence for a
counterexample, Yang, Yan, and Deng [1997] show that the 7'(1) conditions
for a Hormander kernel are insufficient to guarantee the boundedness in some
end-point spaces.

The dyadic representation theorem

A dyadic representation formula resembling Theorem 12.4.27 was first ob-
tained by Hyténen [2012] as a key component of the original proof of the A
Theorem 11.3.26 for all standard Calderén—Zygmund operators in the scalar-
valued case. Subsequent refinements and simplifications of the original rep-
resentation were obtained by Hytonen, Pérez, Treil, and Volberg [2014], and
Hytonen [2017]. The first version of both Theorems 12.4.26 and 12.4.27 for
dyadic shifts and singular integrals on LP(R%; X) with operator-valued kernels
were obtained by Hanninen and Hytonen [2016], by essentially the same tech-
niques (notably, the tangent martingale estimates of Corollary 4.4.15) that
we have followed. In all these contributions, like several other contemporary
ones, the notion of dyadic shift was essentially that of Hytonen [2012], which
is somewhat different from the present Definition 12.4.24. In the shifts of
Hytonen [2012], the components Ag take the form

Apf= Y abrlf hd)hk,
Qech® (P)
Rech) (P)

with two independent complexity parameters (i, j) € N? in place of the single
k > 2 in Theorem 12.4.27. The “new shifts” of Definition 12.4.24 were first
introduced by Grau de la Herrdn and Hytonen [2018]. Their Banach space
valued theory, including Theorems 12.4.26 and 12.4.27 in essentially their
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present form, as well as multilinear extensions, has been developed by Airta,
Martikainen, and Vuorinen [2022].

As far as proving the T'(1) theorem for Calderén—Zygmund operators on
LP(R%; X) is concerned, the advantages of the Dyadic Representation Theo-
rem 12.4.27 over (the randomised version of) Figiel’s representation may be
considered a question of mathematical taste (depending, among other things,
on one’s preference for the tangent martingales methods of Section 4.4 over
the dyadic singular integrals of Section 12.1 or vice versa). However, these
advantages become prominent in extensions of the 7'(1) theory to other situ-
ations that we have not treated here. Roughly speaking, the decomposition of
Figiel is essentially based on multi-scale versions of translations—reasonably
well-behaved objects as far as translation-invariant spaces like LP(R%; X) are
concerned, but somewhat unstable in more general situations. In contrast, the
basic building block A of the dyadic shifts are essentially averages, which
are much more stable operations. In particular, the averages f — 1o(f)o
over arbitrary cubes Q C R are uniformly bounded on LP(w) if and only if
w € A,, which partially explains the usefulness of such objects in the origi-
nal context of proving the A, theorem. Averages are somewhat well-behaved
even when taken with respect to non-doubling measures, which is the con-
text in which a certain precursor of the dyadic representation of Hytonen
[2012] (arXiv 2010) was established by Hytonen [2014] (arXiv 2008) in order
to extend the non-homogeneous T'(1) theorem of Nazarov, Treil, and Volberg
[2003] to the Banach space valued setting. Conversely, after the discovery of
the Dyadic Representation Theorem, it was used by Volberg [2015] to give a
new proof of the non-homogeneous 7'(1) theorem.

An adaptation of the Dyadic Representation Theorem 12.4.27, by Hytonen,
Li, H., and Vuorinen [2022], was instrumental in extending the T'(1) the-
ory to singular integral operators adapted to so-called Zygmund dilations
(z1,22,23) — (sx1,txe,stxs), where s,t > 0 are two independent parame-
ters. Variants of the Dyadic Representation Theorem 12.4.27, with the Haar
functions replaced by smoother wavelets, have been explored by Hytonen and
Lappas [2022], Di Plinio, Wick, and Williams [2023c], and Di Plinio, Green,
and Wick [2023D,a).

T(1) theorems on other function spaces

The original T'(1) theorem of David and Journé [1984] was a characterisation
of boundedness on L?(R%), while we have dealt with extensions of such re-
sults to LP(R?; X). However, the boundedness of a given (singular integral)
operator is basic question arising in several other function spaces as well, and
the T'(1) theorem has served as a model for similar results in other spaces.
(See Chapter 14 for information about the functions spaces appearing in this
discussion.) Extensions of the T'(1) theorems to Besov spaces B;q were ob-

tained by Lemarié [1985] and to Triebel-Lizorkin spaces B;’q and Fz‘f’q by

Frazier, Han, Jawerth, and Weiss [1989]. In these results, p,q € [1, 0], and
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the smoothness parameter s was restricted by the Holder exponent of the
standard kernel of T'. In order to cover a broader range of Besov and Triebel—-
Lizorkin spaces, where the smoothness index can take any value s € R, it is
necessary to consider higher order Calderéon—Zygmund estimates such as

09K (s,1)] < Cls — |74l

With appropriate assumptions of this type in place, Frazier, Torres, and
Weiss [1988] and Torres [1991] obtained T'(1) criteria for the boundedness
of Calderén—Zygmund operators on any Triebel-Lizorkin space F;yq, where
s € R and p,q € (0,00]. The precise assumptions are necessarily somewhat
technical, and the result splits into three cases, where s < 0; or s > 0 and
p,q € [1,00], or s > 0 and min(p, q) € (0,1).

In a limited range of s again, T'(1) theorems on (scalar-)weighted Triebel—
Lizorkin spaces F;q(w) were obtained by Han and Hofmann [1993], and on

matrix-weighted Besov spaces B;,q(W) by Roudenko [2003]. The full scale
of both matrix-weighted Besov and Triebel-Lizorkin spaces B;’q(W) and

F;q(W) (as well as further generalisations with a fourth index) was covered
by Bu, Hytonen, Yang, and Yuan [2023]. When restricted to the unweighted
case, this last work even slightly simplifies the assumptions of Frazier, Torres,
and Weiss [1988] and Torres [1991].

In all these mentioned works on T'(1) theorems beyond LP spaces, the
focus has been on special T'(1) theorems providing sufficient conditions for
boundedness under vanishing paraproduct assumptions. General T'(1) the-
orems, providing a characterisation of boundedness on a given space, were
obtained on Besov spaces B; 4 of positive smoothness s > 0 by Youssfi [1989],
in terms of the weak boundedness property and the boundedness of higher
order paraproducts. A far-reaching extension to Triebel-Lizorkin and other
function spaces, including versions on quite general domains @ C R?, is due
to Di Plinio, Green, and Wick [2023a].

For Banach space valued functions, special T'(1) theorems (i.e., with van-
ishing paraproduct assumptions) on Riesz potential spaces H*?(R% X) and
Besov spaces Bf),q(Rd; X) were proved by Kaiser [2007, 2009], respectively. The
results in H*?(R%; X) need the UMD property of X, but those in B;q(Rd; X)
do not. While we are not going to discuss these specific results in any further
detail, the reader can witness a similar dichotomy—that the UMD property is
needed to obtain results in certain function spaces, but not for analogous re-
sults in certain others—in our discussion of the theory of Banach space valued
function spaces in Chapter 14.
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The Fourier transform and multipliers

In this chapter, we complement the discussion of three major themes of Fourier
analysis that we have studied in the previous Volumes. The first one is the
Banach space valued Hausdorff~Young inequality

11l o rexy < CUFllera;x)- (13.1)

As we recall from Section 2.4.b, this is a non-trivial condition, expressed by
saying that the space X have Fourier type p. The basic theory around this
notion was already developed in 2.4.b, but we now turn to the main result on
this topic, Bourgain’s Theorem 13.1.33, which says that (13.1) holds for some
p > 1if and only if X has some non-trivial type. Section 13.1 is dedicated to
a detailed proof of this deep result.

The second theme is about connecting the Fourier multipliers T}, : f —
(mf)Y from Chapter 5 and Section 8.3 with the Calderén—Zygmund theory
of Chapter 11. In principle, we have

~

Tnf=(mf)" =mxf=kxf,

where the right-hand side has the formal structure of the operators studied in
Chapter 11, but the question then becomes the correspondence of the condi-
tions on the multiplier m and on the singular convolution kernel k. As we will
see in Section 13.2.a, the function k£ will be a nice Calderéon-Zygmund kernel,
and hence f — kx* f will be in the scope of all results of Chapter 11 (notably,
including those dealing with extrapolation of boundedness to the weighted
LP(w; X) spaces), as soon as m satisfies assumptions like those in the Mihlin
Multiplier Theorem 5.5.10 for sufficiently many derivatives 9%m. Moreover,
this result is very general in that it holds for multipliers taking values in arbi-
trary Banach spaces, and then in particular in .Z(X,Y") for any Banach spaces
X and Y. However, the required number of derivatives on this level of gener-
ality is higher than that in the Mihlin Multiplier Theorem 5.5.10. Coping only
with the same derivatives as in Mihlin’s theorem turns out to be more deli-
cate and require the use of a Banach space valued Hausdorff-Young inequality
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(13.1). It will be convenient to know, thanks to Bourgain’s Theorem 13.1.33,
that this estimate is always available in the UMD spaces that we so frequently
deal with (recalling that every UMD space has non-trivial type by Proposition
7.3.15). As we have already seen in a number of occasions (notably, Bourgain’s
Theorem 5.2.10 on the Hilbert transform, and Guerre-Delabriere’s Theorem
10.5.1 on the imaginary powers (—A)® of the Laplacian), the UMD condition
is often necessary for the theory that we develop.

As the third topic of this chapter, we complement these result by The-
orem 13.3.5 of Geiss, Montgomery-Smith, and Saksman, which significantly
extends the previous examples of Fourier multipliers whose L?(R%; X') bound-
edness implies the UMD condition. As one of its consequences, in Corollary
13.3.9, we are able to compete the characterisation of situations in which there
is a continuous embedding H*?(R%; X) — W*P(R%; X) between two classes
of classical function spaces studied in the previous Volumes. This also pro-
vides a link with the following Chapter 14, where we undertake a systematic
development of the theory of function spaces of Banach space valued functions.

Despite the interconnected themes of the three sections of this chapter, any
of them can be studied independently of the other two by a reader interested
in a particular topic.

13.1 Bourgain’s theorem on Fourier type

Already in Section 2.4.b, we discussed in some detail the notion of Fourier
type, or the extent to which the Hausdorff-Young inequality |||, < C|fllp
remains valid for the Fourier transform of vector-valued functions. In the
Notes of Chapter 2, we also mentioned without proof the main theorem on
this topic, due to Bourgain, stating that non-trivial type implies non-trivial
Fourier type (and hence is equivalent to it, the other direction being a rather
easier Proposition 7.3.6). The aim of this section is to prove this fundamental
result, which will also play a role in the subsequent parts of the book.

We recall from Proposition 2.4.20 that the Fourier type p € [1,2] of a
Banach space X can be defined by any of the following equivalent conditions,
where moreover any choice of d € Z is equivalent by Proposition 2.4.11:

(1) The Fourier transform on R¢, defined on f € L'(R%; X) by
J©) = | femtas, ¢er,

extends to a bounded operator from LP(R?; X) to L¥' (R%; X).
(2) The Fourier transform on T¢, defined on f € L*(T¢; X) by

fk)y= [ fe ¥t a, ke zd,
Td

restricts to a bounded operator from LP(T4) to ¢ (Z%).
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(3) The Fourier transform on Z%, defined on = = (z4)geze € (1 (Z% X) by

z(t) = Zeihik'txk, teTe,
keZ

extends to a bounded operator from ¢?(Z% X) to L? (T%; X).
Denoting the norms of the respective extensions (or restrictions) by ¢, x (R?),
©p.x (T?) and ¢, x(Z%), we have:
Proposition 13.1.1. Let X be a Banach space, p € (1,2] and d € Z,. Then
d

ep,c (R Ny x (R) < ¢, x (RY) < (9p,x(R)), (13.2)

_ p.x+ (1) = 0px (Z)) _ ppx(RY)
Wp,X(Rd) - @p,X*(Rd) < {@p,i(Td) —_ Sﬁp,X)i(Zd)} < @p,C(Rd) : (13'3)

It is actually known that ¢, c(R%) = (p!/?(p')~1/?")?. For the purposes of de-
riving Proposition 13.1.1 with these explicit values, one only needs the easier
lower bound ¢, c(R%) > (p'/?(p/)~1/?")?, which is readily deduced by com-
puting the LP norms of ¢(x) = gg(x) = e~ mlal*,

As we shortly recall in more detail, most of the estimates of Proposition
13.1.1 have been proved in Section 2.4.b. To complete the picture with the
final estimate in (13.3) (stated in Proposition 2.4.20 with a weaker constant),
we begin with:

Lemma 13.1.2. Let X be a Banach space and p € (1,00). Let f € LP(T%; X)
be a trigonometric polynomial, which we identify with its periodic extension
to R, and let ¢ € #(R%; X). Then

leiﬁ)l Hf(')¢(€')8d/p||Lp(Rd;X) = Hf”LP(’]l‘d;X)H¢||LP(Rd)»

1611101 Hj[f(')(b(g')sd/p]HLP’(Rd;X) = ||f||£p’(Zd;X)||¢HLP’(R‘1)'

Proof. For the LP norm we have
LS oy = [ 17000 e
= [ 150l (3 lotete+ ke ar.

keza

where in parentheses we have a Riemann sum of [,, [¢(t)[? dt.
For the L¥' norm, let us write f(t) = > keze Trer(t). Then

o)) = Y / entingmitganict g

kezd
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= 3 e € — k)
kezd

Let us split this into two parts,

I=Y" alq(& — k)d(e (€ — k),

kezd
1= wplgg(€ — k)o(e ™ (§ — k)7,
kezd
where ) = [—%, %)d The terms in I are disjointly supported, and hence

) 1/
1o ey = (D2 el 1 = WS¢ = kD=7 |17, )

kezd
' 1/l
= (3 lleal” 10317, (Rd))
kezd
S (2 el 191 )
kezd

On the other hand,

1Tl o gy < Y lalliteq(- = )= (- = k)™ | Lo (za)

kezd
<D el 1o (e)dll o ray = 0-
kezd
Thus [|I + 11| (ga,x) indeed converges to the claimed limit. O

Proof of Proposition 13.1.1. The second bound in (13.2) is contained in Prop-
osition 2.4.11. The first bound is also there, but in a slightly different form,
and the present formulation is obtained by repeating the same proof: Given
feLP(R;X) and ¢ € LP(R?~1), we have

||fHLp’(R;X)H‘b“m’(RH) =[|Z(f® ¢>||Lp/(Rd;X)
< epx(RY|f @ dllLr@ax) = ©p.x RNl Lo @x) 10| Lo a1y

Choosing f and ¢ that (almost) achieve equality in the definition of the con-
stants ¢, x (R) and ¢, c(R™1), we obtain the first bound in (13.2).

The first equality in (13.3) is Proposition 2.4.16. The first pair of inequal-
ities and the two equalities in the middle of in (13.3) are all contained in
Proposition 2.4.20 (either as stated or substituting X™* in place of X).

Concerning the last pair of inequalities in (13.3), it suffices to prove that

$p,X (Rd>

d
SO X T < )
px(T°) op,c(R?)

(13.4)



13.1 Bourgain’s theorem on Fourier type 229

since the other bound follows with X* in place of X and using the first equality
n (13.3). To this end, it follows from Lemma 13.1.2 that

1 Fler @) 19 oy = i | Z 17 ()b(e)e P sy
< lim oo, x RS (D) Lo (ra;x)
= QDI),X(Rd)”fHLP(’JI‘d;X)||¢HLP(R’1)~

Choosing, again, f and ¢ that (almost) achieve equality in the definition of
the constants ¢, x(T?) and ¢, c(R?), we complete the proof of (13.4), and
hence the Proposition. d

Proposition 13.1.1 at hand, in order to prove that a given Banach space has
Fourier type p, we can pick any of the equivalent conditions amenable to our
analysis. We will eventually achieve our goal with the constant ¢, x(T), but
a major part of the work will take place on the dual group Z. This has the
advantage of presenting a convenient finite formulation as follows:

Definition 13.1.3. Let X be a Banach space, p,q € [1,00] andn € Z,. Then

@;q;(( ) is the smallest admissible constant such that the inequality

|3 e

<@k (Z ||33k||p) ex(t) == (teT),

La(T;X)

holds for every choice of x1,...,x, € X. We abbreviate ¢, x(n) := cpz(op)g( ).

Although the case ¢ = p’ is most directly linked with the Hausdorfl-Young
inequality on the infinite spaces R%, T¢ and Z¢, it turns out that our inter-
mediate steps towards this final goal will also need to make use of the more
general definition with “mismatched” exponents. Moreover, we will even need
some further variations of this definition (e.g., involving other index sets F' in
place of {1,...,n}), but we postpone them until the point where they will be
used. For the moment, we have the fairly obvious

Lemma 13.1.4. Let X be a Banach space and p,q € [1,00]. The sequence
(gol()q;((n))n)l is increasing, and

’

L< o (m) <n'/”, 0, x(Z) = lim g, x(n) € [1,00].

Proof. That the sequence is increasing follows simply by extending a shorter
sequence by additional zeroes. This also shows the existence of a (possibly
infinite) limit lim, o @p, x (n). The lower bound follows by taking z; # 0 =
xy for k > 2, and the upper bound is also simply the triangle and Holder’s
inequality
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1/p' P
| el ) < o llanll <n (3 ll?)
k=1 k=1 k=1

Given (zg)}_q, let © = (zx)kez be its zero extension. The upper bound
op.x(n) < ¢p x(Z) follows by observing that >_;_, ex(t)zy is simply Z(—t).

It only remains to check that ¢, x (Z) < limy, o0 ¢p, x (n). Let ¢ = (2 )kez
be finitely supported, i.e., x = 0 if |k| > N for some finite N. Now

2N—1 2N—1
xTr = E C_LT = E E_N+jTN—j = €E_N E E;TN—j,
|k|<N—1 =1 j=1
hence
2N-1 2N -1
T 7 pr (. :H e»mN,<‘ < v x 2N—1( TN_ p)
ol iy = | 25 €5y, < 0 X ool
j:

= ¢px 2N = D]lerzx) < lim. @p,X(n)||$||ép(Z;X)~

By the density of finitely supported sequences in ¢P(Z; X), this shows that
©p.x (Z) < limy,—y00 pp,x (n), and completes the proof. O

The task of proving that a space X has non-trivial Fourier type (assuming
non-trivial type) is hence reduced, in principle, to showing the boundedness
of the sequence (pp x(n))n>1 for some p > 1. Although the proof that we
are about to give is eventually set up slightly differently, this idea serves as a
good motivation for a major part of the subsequent analysis. The proof that
we will present can be roughly divided into the following main steps, treated
in the next four sections:

1. Using type bounds on Sidon sets that partition {1,...,n} gives a first mild
improvement ¢ x (n) = o(n'/?) over the trivial estimate oy x(n) < n'/2.

2. Comparison with the finite Fourier transform on Z, gives sub-multi-
plicativity and leads to @9 x(n) = O(n'/"~1/2) for some r > 1.

3. By a delicate Lemma 13.1.25 of Bourgain, this gives a first uniform bound
gp(f))(( ) = O(1), but with mismatched exponents s € (1,r) and 2 # s'.

4. Standard duality and interpolation, combined with repeating the same
key Lemma 13.1.25 on the dual side, allow us to conclude with p € (1, 7).

A thorough reader may recognise some conceptual similarity with the consid-
erations encountered in Section 7.3.b in the context of deducing non-trivial
type (and cotype) from the non-containment of certain subspaces. There we
defined the finite type constant 75 x (n) as the best constant in the estimate

|3z

These numbers will play a role in the first proof step outlined above.

/2
oty STX( (ZkaH) Vo,...,zn € X, (13.5)



13.1 Bourgain’s theorem on Fourier type 231
13.1.a Hinrichs’s inequality: breaking the trivial bound

Recall that our goal is deriving non-trivial Fourier type from non-trivial type.
Thus, from the knowledge that random sums ), erx) can be dominated by
|(zx)]|er, we would like to conclude that trigonometric sums ), erx) can
be similarly dominated (though possibly with a different p). An obvious idea
that suggests itself is to try to dominate the trigonometric sum by the random
sum. Indeed, we know from Section 6.5 that this can be done under particular
circumstances if the trigonometric sum is restricted to a special set called a
Sidon set. This leads to the following strategy: Given the initial sum over k €
{1,..., N}, we want to partition this into sums over Sidon sets on which we can
make estimates, and this partitioning should be done sufficiently economically
so that it allows us to beat the trivial estimate. To carry out this idea, we
need to be able to

1. efficiently recognise Sidon sets, and
2. decompose arbitrary sets into as few as possible Sidon sets.

We now turn to these tasks. Recall from Section 6.5 that a subset A C Z
is called a Sidon set if the following estimate holds uniformly over all finitely
non-zero sequences (cy)xea of complex numbers:

Z ‘C)\| g CH Z C)\E\
AeA

AeA

’ oo

The smallest admissible constant C' is called the Sidon constant of A and is
denoted by S(A). However, this definition in itself is hardly helpful in checking
whether or not a particular set actually satisfies this property. A first sufficient
condition for a set to be a Sidon set was achieved in Proposition 6.5.3, showing
in particular that S({2* : k € N}) < 4. For the present purposes, we require
a more robust criterion, which is provided in the following:

Definition 13.1.5 (Quasi-independent set). A subset F' C Z \ {0} is
called quasi-independent if o = 0 is the only finitely non-zero sequence such
that o, € {—1,0,41} for all k € F and

Zak-kzo.

keF

Ezample 13.1.6. The sequence {2* : k € N} is quasi-independent. In fact, if
Yo ak2® =0 for a finitely non-zero sequence (ax)7,, then

o2k 3 ok
kiap=+1 kiag=—

It follows from the uniqueness of the binary expansion that {k : ap = +1} =
{k : ag; = —1}, and this is possible only if both sets are empty. Hence oy = 0.
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Proposition 13.1.7 (Bourgain). Fvery quasi-independent set F C Z\ {0}
is a Sidon set with
S(F) < 16.

By Example 13.1.6, this gives another proof of the fact that {2¥ : k € N} is a
Sidon set, but with a slightly weaker constant than Proposition 6.5.3.

Proof. This is based on a variant of the Riesz product method also used in
the proof of Proposition 6.5.3, but the details are somewhat different, and we
will provide a self-contained argument. By considering every finite subset of
the original F', we may assume without loss of generality that F' is finite to
begin with. Given parameters o € (0,1] and £ = (&)rer € RY, let then

Re(t) := [ (1 + gcos(2m(kt + &)))

keF

TT (1+ Z(ertter(e) +e-rlt)e-1(60))

keF

Z 2"“'9'“‘ exp (2m' Z oy - k‘t) exp (2m' Z akgk),

ae{—1,0,+1}F keF keF

where |a| := ),y |ax| as usual for multi-indices,. (To relax the notation, we
do not explicate the dependence of R¢ on ¢.)
From the assumption that F' is quasi-independent, it follows that

Zak~k:0 only if ap =0,
keF

and hence 1/%5 (0) = 1. It is also clear from the first line of the definition of
Re(t) (recalling that o € (0,1]) that R¢(t) > 0, and hence

1
| Rel oy = / Re(t)dt = Be(0) = 1.
Let us further write

Rém)(t) = Z 2~ exp (2m' Z oy kt) exp (2m' Z ozkfk),
ae{-1,0,+1}F keF keF

lal=m
so that

#F
Re(t) =" o"R{™(t),  where
m=0

ROW =1, B0 =33 (@0e@) + e rbe (@),
keF

From the orthogonality of the exponentials, for each j € F, we have
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1
1 1
/ Rél)(t)ej(t) dt = 3 Z (Ok,—je1(&r) + Ok je—1(&k)) = 5671(53‘),
0 =
where we observed that k = —j is not possible when k, 7 belong to the same

quasi-independent set F', since 1-k+1-j = 0 is a direct violation of the defining
condition. It is also immediate that [ Réo)ej =0forall je FFCZ\{0}.

For
f= Z cje;,

JEF

we then conclude that

1 1, #E
/O Rﬁf:/o (n;@mRém))(gcjej)
=0+ g S e (&)Y ey Qm/olRém)ej'

jeFr JEF  m>2

(13.6)

Using again the orthogonality of the exponentials, we have

1
‘ / Rém)ej‘ = ‘ Z 27 exp <2m' Z akfk) ’
0 a€{-1,0,+1}F keF
|al=m

ZkeF ap-k=—j

1
D S
0

ae{-1,0,+1}F
la]=m

ZkeF ap-k=—j

where R(()m) is simply Rém) with £ = 0. It follows that

#F 1 #F 1 1
m=0 70 m=0"0 0

The last term in (13.6) can now be estimated by
1 1
Sa o [ Bl <l Y o [ R < Clee
JEF  m>2 0 jEF m>2 0 JEF
If we now choose &; so that cje_1(§;) = |¢j|, then (13.6) gives

1 1
§Z|cj|:/o RffchjZQm/O Rém)ej

JjEF JeEF  m2>=2

< Rellzr I £ os (i) + 02 Z le; 1,
jEF
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and hence
0 2 _
(5 —e ) Z el < 1 fllzeemixy = H > CkekHLOC(T;X).
jEF keF

Choosing finally o = % completes the proof. 0

By the previous result, our initial task of decomposing arbitrary sets into
Sidon sets is reduced to decomposing into quasi-independent sets. A first step
in this direction is to know that every set has a quasi-independent subset of
somewhat substantial size.

Lemma 13.1.8. Any finite subset F C Z\ {0} has a quasi-independent subset
Fy C F of cardinality #Fo > [logs #F1.

Proof. Let Fy C F be a quasi-independent subset of maximal cardinality, and

let
F o= { S - kiage {—1,0,+1}}.

keF,

Clearly Fy D Fp, and we claim that in fact Fy O F. If not, let kg € F'\ F;. We
will check that Fy U {ko} is quasi-independent, contradicting the maximality
of Fy. Namely, suppose that

Z Qg - k= 0,

keFyU{ko}
where oy, € {—1,0,+1}. If o,y = £1, then
]CQ = Z (—OékoOék) -k e Fl,
ke Fy

contradicting ko ¢ Fi. Thus ag, = 0, but then also ay, = 0 for all k € Fy, since
Fy is quasi-independent, and this proves that Fy U {ko} is quasi-independent.
As explained above, this proves that F; O F', and hence

#F < #F, < 3%

from which the proposition follows, since #Fy > logs; #F' is necessarily an
integer. g

By recursively removing big quasi-independent subsets, we arrive at the de-
sired decomposition of the initial set:

Lemma 13.1.9. For N € Z ., let
d(N) :=min{k € Z, : any subset F C Z\ {0} of size #F < N can be

divided into at most k quasi-independent subsets}.

n

T ") <
hen d(3™) i

quasi-independent subsets can be chosen to have size at most n.

for all n € N. For all n > 1, each of the partitioning
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Proof. Since clearly d(3™) < 3™ (as each singleton is quasi-independent), the
claim is obvious for n < 1. For 3 < #F < 9, Lemma 13.1.8 guarantees a
quasi-independent subset of size 2. Starting from a set of size 9 and repeatedly
extracting 3 quasi-independent subsets of size 2, we are left with a subset of
size 3 that trivially splits into 3 quasi-independent subsets of size 1. Hence
d(3?) <3+3=6=2-3%/(2+1). We then assume that, for some n > 2,
any set of size 3" can be divided into at most 2-3"/(n+ 1) quasi-independent
subsets of size at most n, and we prove the same for n + 1.

If #F = 37! Lemma 13.1.8 guarantees that we can repeatedly extract
quasi-independent subsets F; (i = 1,...,J) of size n + 1, until

3T jn4+1) <3 < 3" — (j—1)(n+1),
thos 23" 23"
AP P I Rl
n+1 J +n—|—1

The remaining set of size at most 3" can then be divided into at most d(3™)
quasi-independent subsets, and by the induction assumption we have

2.3" 2.3" 4-3"
7)-1-7:1—&-7.
n+1 n+1 n+1

d(3™Y) < j +d(3") < (1 +

For n > 2, we have 1/(n+ 1) < 3/(n+2) and 3"/(n+2) > 2, and hence

3" 3" 2. 3nt!

4
<6 = ,
n+2 n+2 (nm+1)+1

aw < (5+3)

and this completes the induction step. Note that all quasi-independent subsets
that we constructed in the induction step had either size n + 1, or they came
from the induction assumption, in which case their size is at most n. 0

In the next remark, we indicate converses to the obtained bounds of Lemmas
13.1.8 and 13.1.9.

Remark 18.1.10. Let Fy C F := {1,...,N} be such that N > 2 and Fj is
quasi-independent. We claim that necessarily #Fy < 2logy(N). Clearly, this
implies d(N) > ﬁm. Indeed, write m = #Fy. It suffices to consider m > 2.
Let A C Fjy be arbitrary. Then

0< Z a < Z a < N2.
acA acFy
Therefore, the number of different values can be estimated by
#{ZG:AQFO}éNQ.
a€A

One the other hand, if A, B C Fy are such that ., a =3, b, then the
quasi-independence of Fy implies A = B. Therefore,
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m:#{AgFo}g#{Za:AgFo}.

acA
We can conclude 2™ < N2 and thus the claim follows.

We now possess all the ingredients needed for the first estimate of Fourier type
in terms of type, stated in terms of the finite versions of both properties. The
reader may wish to compare the next proposition to Theorem 7.6.12 which
gives a related inequality for the Walsh system.

Proposition 13.1.11 (Hinrichs’s inequality). For all n > 1 we have

p2,x(3") T2,x(n)
W < 16\/5‘ \/ﬁ .

Proof. By Lemma 13.1.9, the set {1,...,3"} can be divided into

A<2:3"/(n+1)

quasi-independent subsets F, of size #F, < n. By Proposition 13.1.7, each
quasi-independent F, is a Sidon set with S(F,) < 16. By Pisier’s Theorem
6.5.5, trigonometric series over a Sidon set is comparable in the LP norm to the
corresponding Rademacher series, up to the Sidon constant. Chaining these
observations and using the definition of the type constants 7 x(n) and the
Cauchy—Schwarz inequality, we obtain

A
Hzek k‘]ﬁ(]‘x _HZ Z ck k’LZ(TX) ;H ; ck k‘L2(’]TX)
A
1

<> 16 ZW'@\LW

a=1 keF,

A

kEF,

< 16- nax, 7, x(#F,) (Z Z lzk]l )
a=1keF,

<16 max(n)y (Zn A7)

from which the proposition follows. O

The following corollary gives the promised improvement over the trivial bound
©2,x(3") < /3" as soon as n is large enough.
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Corollary 13.1.12. Let X be a Banach space of type p € (1,2]. Then for all
n > 1, we have

©2,x(3") —1/p
V- 16v2 -7, x,2 -0~ /P
The type constant 7, x.s with a secondary parameter (above s = 2) was
introduced right before Proposition 7.1.4 as the best constant in the inequality
K K
1/p
p
H Zekxk‘ Le(2;X) S TP’X;S(Z | ) ’ (13.7)
k=1 k=1
where z1,...,2x € X and K € Z_ are arbitrary. Recall that 7, x := 7 x;p.

Proof. From the definition of the type constants and Holder’s inequality, it is
immediate that

L 1/p—1/2
72,x (1) < X2 n'/r =T X2 n-1/p
\/ﬁ \/ﬁ sy
In combination with Proposition 13.1.11, this gives the result. g

13.1.b The finite Fourier transform and sub-multiplicativity

Note that the improvement of Corollary 13.1.12 over the trivial bound is only
very slight. Our first goal in bootstrapping this initial estimate is to obtain a
power-type bound of the form ¢g x (N) = O(N'/279). As the reader can easily
verify (perhaps referring to Lemma 7.3.19), this would readily follow from the
established bound, if in addition we had a sub-multiplicative estimate

?
P2, x (nm) < @2 x(n)p2 x (M)

As we do not know whether this is true, we take a detour by comparing
the sequence ¢y x (n) with the following discretised variant:

Definition 13.1.13. Let X be a Banach space and n € Zy. Then @;?;((Zn)
is the best constant in the following inequality with arbitrary x1,...,x, € X:

(B[S enthma])" < ok (X hauir) "
B k=1

As the notation suggests, @é?;( (Z,,) has an interpretation as the norm of the

Fourier transform (thus, a Fourier type constant) of functions on the finite
group Z,, = Z/nZ, but there is no need to insist too much on this point here.
The difference of the defining inequalities of cp;g((n) and gpgg((Zn) is that
the LP(T; X) integral norm in the former is replaced by a finite Riemann sum
approximation in the latter. We will next develop some tools for comparing
the two kinds of norms. This will involve elements of some fairly classical
Fourier analysis, and we begin with
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Definition 13.1.14. The Dirichlet kernel is defined by

Dn(t):= Y ex(t), teT,

|k|<n

the Fejér kernel by

Fo(t ;:nHZDk Z( —n|_17_|1)ek(t), te,

|k|<n

and the de la Vallée-Poussin kernel by

2n1

ZDk => e+ > (—%)ejm, teT.

l7l<n n<|j|<2n

Lemma 13.1.15. These kernels satisfy the identities

Do(t) = sin(m(2n 4+ 1)t) Fo(t) = 1 sin®(m(n+ 1)t) S0
" sin(rt) ' " n+1  sin?(nt) ’
‘/n(t) = 2F2n—1(t) - Fn—l(t)-
Proof. The formula for D,, is the summation of a geometric series:
D (t) = Z e27rikt _ 6727rint 62ﬂi(2n+1)t -1 _ Sin(ﬂ—(?n + ]')t)
" emit — 1 sin(7t)

|k|<n

Since

ei27r(n+1)t

- , -1
kz_osin( 2k+1)t) = Z it gr2mkt %(e”t a1 )

- g(eiw(nﬂ)t sin(r(n + 1)t)) _ sin? (7 (n + 1))
sin(rrt) sin(t)

)

we obtain the formula for F;, by summing over the formula for Dy. Finally,

2n1 n—1

Z Dy = f( Z Dy — ZDk) <2nF2n - nFn_1>.

O

Lemma 13.1.16. If f is a trigonometric polynomial with deg(f) < n, then
for all s € R we have

1 n
| f®ae= 25" s 1),
0 [

i.e., f can be integrated exactly by uniform Riemann sums of order n.
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Proof. Tt is enough to consider f(t) = eg(t), where |k| < n. We observe that

n o2mik n 2Tk n_q
E 627rzkh/n — / ermik/n_1 =0, 0< ‘k‘| <n,
h=1 a k = O,

and hence

n 1
er(s ;
= Zf (s+h/n)= (5) Ze%’kh/” = ex(s)0k,0 = Ok0 = / er(t) dt.
0

n
h=1

On the level of L? norms, this leads to the following comparison result:

Proposition 13.1.17 (Marcinkiewicz inequality). Let X be a Banach
space and p € [1,00). Then for alln € Zy and x1,...,x, € X, we have

(o [ etmiman)” <3| S even
h=1 k=1 k=1

With the usual modification, the result is also true (and entirely trivial) for
p = oo: of course the supremum over {j/n:j =1,...,n} is dominated by the
supremum over all of T!

Lr(T;X)

Proof. Let
)= ex(ak,  m=|n/2].
k=1
Then (n—1)/2 <m < n/2 and the function e_(,,41)f is a linear combination
of e, with
—-m=1—-(m+1)<k<n—(m+1)<2m+1)—(m+1)=

SO €_(m41)f is a trigonometric polynomial of degree m.

Since the de la /\ValléefPoussin kernel V,,, from Definition 13.1.14 has
Fourier coefficients V,, (k) = 1 for all values |k| < m on which the Fourier
coefficients of e_(,, 1) f are supported, we conclude that

~

Vinle—manf] = le—menf]

hence V,, * (6,(m+1)f) = e*(erl)f' Thus
1O = lle—meny OFE = Vi * (e i O]
< [IValt =9l s as 155)

< ([1vmte=91as) " ([ Wnte =9l as)”
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By Lemma 13.1.15, we have
Vinl = [2F2m—1 — Frn—1| < 2Fom—1 + Fo1, (13.9)

where [ Fj,(t)dt = F,(0) = 1, and hence

/ |[Vin(t — s)|ds < 3
T

Substituting into (13.8) and summing, we have
D /P < 3”/”//TZ|Vm(h/n—8)H|f(S)||pdS-
h=1 h=1

Since the right-hand side of (13.9) is a trigonometric polynomial of degree
2m —1 < n—1, Lemma 13.1.16 guarantees that

n

Z |Vm(h/’fl - 5)' < Z(2F2m—l + Fm—l)(h/n - 8)
h=1

h=1

= n/(QFQm,l + Fno1)(u) du = 3n.
T

Substituting back, we conclude that

1 — ,
-~ Z If(h/n)||P < 3°/P /TSIIf(S)H”dS = 3" f 1 (r.x)-
h=1

O
We now have the desired comparison of the two finite Fourier type constants:
Lemma 13.1.18. For any Banach space X and n € Z,, we have
ek () < @y (Zn) < 3+ 0 ().
Proof. Substituting ey (t)xy in place of xj in Definition 13.1.13, we find that
Il 4w a/p
|| ettt hmpan]|” < (o} (Z lel)
h=1 k=1
Integrating over ¢ € T and using the translation invariance
£+ h/n)lLacrx)y = 1 fllLacrx),
we obtain

,ILZ/ |5 cxtt[" ar < (i@ (3 hul) ™,
h=17T " k=1

k=1
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and hence cp(q) (n) < gaéq;((Z ).
The other estimate follows at once from the Marcinkiewicz inequality
(Proposition 13.1.17), which is the first step in

(i,;\i;euh/nmu")“<3H2emww)
(fl) (Z ”xk”p)

O
The following lemma is our reason for considering the quantities go(Q) (Zy,):

Lemma 13.1.19. For any Banach space X and m,n € Z, we have the sub-
multiplicative estimate

P

s

in particular

Op. X (Zinn) < 0p, X (L) p,x (L) Vp € [1,2].

Proof. The second estimate is an obvious special case with ¢ = p’ > 2 > p.
For the proof of the general estimate, it is convenient to observe that, by
simple reindexing and modular arithmetic, the condition defining gp(q) (Z,)

is unchanged if instead of {1,...,n} we take all sums over {0,...,n —1}. In

the defining condition of the constant <p1() ;((Zmn) we should then sum over

{0,...,mn — 1}, and the key trick of the proof is to use a non-symmetric
remdexmg of this range for the h and k sums, namely

h=an+b: a=0,....m—1, b=0,...,n—1,
k=um+v: u=0,....,n—1, v=0,....m—1.

Then
hk = (an + b)(um + v) = aumn + avn + bum + bv,

and hence, noting that e?™#* = 1,

erx(h/mn) = e, (b/n)e,(a/m)e,(b/mn).

Thus
mn—1 mn—1
1 1/q
h=0 k=0
n—1 m—1 m—1
1 1 qy1/q
{n m H cola/my ’
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n—1
yf,b) = ey(b/mn) Z ew(b/N)Tumtv,
u=0
{ ZSO(Q) q(nif|y£b)||p)q/p}1/q
v=0

m—1

<ot 3 (SIS o)}

by Minkowski’s inequality for p < ¢,

- = 1/p
@1(7(71) (Z ){ Z 901(;1;( (Zn)p Z ”-Tum-i-va}
v=0 u=0

mn—1

= o Ton) e (Z0){ > el }

where we used the defining condition for w(q;(Z ) with the sequences

(yP)ry) for each fixed b = 0,....n — 1, and that for ") (Z,,) with the
sequences (:Emquv)Z;é for each ﬁxed v=0,...,m—1. O

Combining the above results with Corollary 13.1.12 of Hinrichs’s inequal-
ity, we achieve the desired power-type improvement over the trivial estimate
@2, x(N) < NY2. One could try to deduce this from Lemma 7.3.19 applied
to 2 x(Zy). However, this time that does not work since we do not know
whether @9 x(Z,,) is increasing in n. Therefore, we adapt the proof of the
lemma and use the facts that o x(n) is increasing and that o x(Z,,) is sub-
multiplicative. Our choice of notation r’ below is indicative of the fact that
this is the Holder conjugate of a (small) exponent r > 1.

Corollary 13.1.20. Let X be a Banach space of type p € (1,2]. Then
<,02,X(N) <C- N1/271/r’ - C. N1/7~71/2’

where
=3 (68 T xp) s Ci= e (13.10)

Proof. Given N;n € Z., let k € Z satisfy

3=l < N < 37k, (13.11)
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< ¢2.x(Z32)® by sub-multiplicativity (Lemma 13.1.19),
< (3-p2.x(3")F by the comparison in Lemma 13.1.18.

Therefore, by (13.11) for any s € (1, 2] we find

For appropriate n and s, we will show that the term within brackets satisfies
[...] < 1. By Corollary 13.1.12, we can estimate

1

[.]<3"579).3.16v2- 7, xip - 32 VP = 3/ Y
where T := 48v/27, x.o. Therefore, setting ' = (1 + eT? )p'log(3) and taking
eTP <n< eT? + 1 we find that

—1/p
qn/s'y,—1/p < el/p/Ti —1.
T

From the above we conclude that
N1/271/SSD2)X(N) < 3n(%7%) < 3n/2 _ enlog(S)/2 < 68//(217/).

The above trivially holds true if we replace s’ by any r’ > s’. Since 50 < T <
687y, x;2 and p’ > 2, one can check that

s' = (1+eT?)p' log(3) = TP (T + e)p'log(3) < (687, x:2)" 3p' =: 1.
Thus the statement follows. 0

Before turning to some of the sophisticated constructions and estimates for
Bourgain’s theorem, we discuss a much simpler situation where one can obtain
©a.x(n) = O(n*/71/2) with r € (1,2). It does not play a role in the proof of
Bourgain’s theorem.

Proposition 13.1.21. If X has type p and cotype q, then for alln > 1,

p2.x(n) < T2.x (n)e2,x (n) < 7 xi2¢q, x,20 P71,

Of course the latter bound is nontrivial only if % — % < %

Proof. Let (vn)n>1 be a complex Gaussian sequence (i.e., standard indepen-
dent Gaussian random variables). Also let

LSy b
’Yk:_\/ﬁh:1’yhekn7 =1...,n.
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Then (Vx)7_, are also independent standard Gaussian random variables (see
Section E.2). Hence, using the natural Gaussian analogue of the finite type
and cotype constants,

I DIETIC RN Dap seettc |
h=1 = h=1 k=1
— ] x (n)%E| Z%%H
k=1

n
<G’ x ()Y llanl®.
k=1

Since ||v||2 = 1, Proposition 7.1.18 informs us that T;X < To.x and c;X <

c2,x, and the analogous result for the finite constants 7, y(n) etc. follows by
1

the same argument. Finally, Hélder’s inequality implies 75 x (n) < 7, X;zn%7 2
and ¢z, x (n) < cq,X;gn%fé. O

13.1.c Key lemmas for an initial uniform bound

The core of this section consists of two delicate lemmas of Bourgain that
allow us to bootstrap the power-type improvement over the trivial bound on
the growth of 2 x (IN), as given in Corollary 13.1.20, into a uniform estimate

for the constants go( ) (N) with some s > 1. To streamline the presentation of
the core arguments, we begin with the following classical identity:

Lemma 13.1.22. Let f = ., f(j)e; with (f(j))jez € ¢*(Z). Then

>ofG) Ze 1(nh/N) f(h/N).

j=n mod N
Proof. We first observe that

N
LS i =St Seoom= ¥ fo
h= h=1

JEZ j=0 mod N

,_.

which is case n = 0 of the claim.
We apply this with f replaced by

efnf = Zf(j)ejfn = Zf(] + n)ej
JEZ JEZL
to find that
N
%Z NN = 3 FGi+m= S J0),
h=1 7=0mod N j=n mod N

which is the general case. g
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Lemma 13.1.23 (Bourgain). Let F' C Z be a finite subset with #F = N.
Then there exists to € T such that at least %N of the pairwise disjoint intervals

satisfy tok € I, + Z for some k € F.

Proof. We in fact show that this is true for the “average” choice of ty € T.
Forte Tand n=1,...,N, we denote

vp(t) =#{keF :tkel,+7Z},
N(t):=#{n=1,...,N :v,(t) > 0}.

The claim is then that N(tg) > §N for some to € T, and we will prove that

[u—y

/ N(t)dt > =N, (13.12)

oo

which clearly implies the existence of a desired ¢.
The strategy of the proof is as follows. Since each of the N different k € F
satisfies tk € I,, + 7Z for exactly one n = 1,..., N, we have

N

N=Y =Y wt< N(t)l/z(z un(t)Q)

1<n<N ot
v (t)>0

1/2

Integrating and using the Cauchy—Schwarz inequality, we obtain

< (/01N(t)dt)l/z(/olﬁ:un(t)zdtfﬂ,

and (13.12) follows if we can prove that

1 N
/ > vn(t)*dt < 8N. (13.13)
0 n=1

Now

vn(t ZlI"+Z (kt) ZlIU+Z kt —n/N).

keF keF

For the convenience of Fourier analysis, we replace the indicator

11
110+Z(t) - 1[— )(t)v te [*57 5)7

1 1
2N 2N

by the regularised version given by the 1-periodic extension of the “tent”
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s(0) = (1= Ny, t€[-5.5)

An elementary computation of the Fourier coefficients shows that

1/N, j=0,

i (13.14)
0, 0+# j=0mod N.

34) = 7 sinc(mj/N) = {

Note that the first equality above is valid for all j € Z, although in the second
we only consider particular cases. Clearly 0 < 3(j) = O(572), so that Lemma
13.1.22 applies to f = s. Since s(h/N) = 1yz(h) for h € Z, the conclusion of
the lemma takes a particularly clean form, namely

1
> osG) = VYn=1,...,N. (13.15)
j=n mod N

We observe that 17,,7(t) < 2s(t), and hence

223 (kt —m/N) —222 (kt = n/N)

keF keF jeZ
N
=2 en(—n/N) Y 504) > e;(kt).
h=1 j,dh keF
mod N

Substituting this into (13.13), we can now estimate

/Olﬁjy /Z‘Zeh —n/N) Z §(j)Zej(kt)’2dt

n=1 h=1 Jj=h keF
mod N
,4/ NZ’ ej(kt)‘ d,
kGF
modN

since the matrix (N_1/2eh(—n/N))hN’n:1 is unitary,

N
S (3 | Senl,.p)
mCIiN
4N{N 1( Z Nl/?) COLEEDYS §<j>N1/2)2},
ey ik

since HZe-k’ = N, 7=0
= T5 L2 (1) N2 otherwise,

(S G s G’
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by (13.15) and (13.14),
=4N{(N —1)N"' +1} =4{2N — 1} < 8N = RHS (13.13).

This confirms (13.13) and hence, as explained in the beginning of the proof,
the assertion of the Lemma. g

From the comparison between ¢4 (X) and ¢ (X), it is immediate that
P2y (N) < @S (N) - NP,

This triviality admits a crucial improvement, where on the left we have a
similar quantity associated to an arbitrary subset F' C Z of size N.

Definition 13.1.24. Given F' C 7Z, we denote by gagé)X(F) be the best con-
stant in the estimate

|3 e
keF

which is to holds for arbitrary families (xy)rer in X.

<9 (F) sup |l
keF

La(T;X)

Clearly the previously considered gpt()i)’ «(N) is the special case wg)’ <(N) =

@éi)x({l, ..., N}) in this notation. In contrast to random sums with indepen-

dent sequences of random variables, the particular choice of the indexing set
F is very relevant here, since the joint distribution of (eg)rer can be very
different from that of (ex)M_;.

Lemma 13.1.25 (Bourgain). For any Banach space X and exponents p,q €
[1,00) we have

141
o0 (F) < AQUO(N) - NYP, A= (8p(m +21/7-3)) 717,
whenever F C Z is a subset of size #F = N.

Remark 13.1.26. We only apply Lemma 13.1.25 with p = 2 < ¢. In this case

3/2

A< (16(r+v2-3))7" < 1285.

Proof of Lemma 13.1.25. Since

| 3 x|, 0 < D el < Ve,
La(T;X) keF
keF keF

and ¢, (N) > 1, we have the trivial estimate

/

@ (F) S N <@ (N)NYPHP < A0 (N)NHYP yN < A7
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Suppose then, for induction, that N > Ap/, and moreover that the Lemma
has been verified for all N’ < N in place of N. For F' C Z, of size N, we
consider a splitting (with & # Fy C F' to be specified shortly)

[DILER B DL Ml P
L4(T;X) La(T;X)
keF keFy

kEF\F,

= IT+1I.
L(T;X)

Since F'\ Fy C F is a strictly smaller set and <p(q> is clearly non-decreasing,
the induction hypothes1s applies to show that

(13.16)

Let us make a specific choice of Fy C F' as follows. By Lemma 13.1.23, there

exist to €T and 1 <ny <ng <...np <N with £ > %#F such that each of

the mutually disjoint sets
1 1 .

I?LJ+Z:N[TL_§7’”'+§)+Z7 (]:1755)7

intersects with the set {kto : k € F}. For each j € {1,...,¢}, we pick a

k;j € F such that kjtg € I,, + Z, and set Fy := {k; : j = 1,...,£}. Then

H#Ey=1> %#F. The size bound on #Fy shows that (13.16) implies

7

< Ap () (5 N)l/p max x| (13.17)
“p, 8 kep R '

Let ¢ : kj — n; be the corresponding bijection from Fy onto 9 (Fy) C

{ LN} Thus by definition that kjto € Ly, +Z = I, + Z for all j =

E For any h € Z, we then have

I= H Z er(- + htO)wkHLq('ﬂ‘;X) by translation invariance
kEF,
(L) Y(k)
(ho) = Jovcron 1 20 |
H Z o) = en N e La(T;X) en N e L4(T;X)
kEF, ke Fy

=: I (h) + Iy(h),

where (using again the induction hypothesis, now with the smaller set Fy C F')
L(h) < 99 4 (Fy) ma ‘ exp(2mikhto) — exp(227rh \ s

k
< AP\, (#Fo)l/pmax(27r|h|1nf‘kto %f‘j‘)}ggﬁx”xkﬂ (13.18)

m|hl

< g (VN max e
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since kty € Iw(k) + Z.
Having estimated both I7(h) and IT in terms of the induction hypothesis,
the serious work is left with I5(h), which we first average over a range h =

1,..., H < N, where a favourable value of H is to be determined. We have
H
1 N q
2 n0 =3 [ A S e
h=1 h=1 " jey(Fo)

< ZA;;\\;eh<j/N>yj<t>\\th

y;(t) = {ew_l(j)(t)%_l(j)’ J € ¥(Fn),

0, else,
N
(q) » 1/p\a
H/ Ak @[ ol | ) at
(q)
by definition ofgo v(Zn)
N
N (30 (Z [ ) by Lemma 13.1.18
keFy

N (q) q /
< g7 Bepx (V)" (#F0)* P max ||z |,

Combining the previous bound with (13.17) and (13.18), we have

|3 e

S H
z Vo, (13.19)
< max I1(h (ﬁz ) II )
! /p

H
KT+ IIL (I ( Iy (h II
Lamix) + 2:: 1(h) + Iz(h)) +

1<h<H

< (AT s (B a(D) ) Nl () i e

where N = #F, as we recall. We now choose H so as to essentially equate
the first two terms:

H:=|H]|  H :=A9YEDN,

Since A > 1, we have H < H' < N. Recalling that N > Ap/, and noting that
p’ > 1> q/(qg+ 1), we also observe that H' > 1, and hence H > 1. Thus
this choice of H lies in the admissible range considered above. We also have
H' < H+1<2H, and thus

mH N\ 14 mH' 2N\ /4 L
il — < - = /q. 1/(g+1)
AN +3(H) \AN +3(H’) (m+279.3)A
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We also note that

(%)1/1) 1 %51/;7—1 (g _ 1) < _é, for some £ € (; 1)-

Substituting into (13.19), we hence have
1
P9 (F) < [(w 4oL/ 3y, A+ | (1 - %)A} Pl (N) - NP,

To complete the induction step, it remains to check that the quantity in
brackets is at most A, which after easy simplification is the same as

(m+21/1.3). AV (@) ¢ siA‘
/4

Clearly this is the case with the choice of A stated in the Lemma. O

We are now ready for a first uniform bound on the finite Fourier type con-
stants:

Corollary 13.1.27. Let X be a Banach space, r € (1,2], and suppose that
wx(N)<C-NY™1/2  yNez,.
Then for all s € (1,r), we have

C
P (V) < 3500i YN € Z,.

Proof. By Lemma 13.1.25 and Remark 13.1.26 with p = ¢ = 2, we have
P ¢ (F) <1285 ¢ x(N) - N'/2 <1285 C- NV (13.20)

whenever F' C 7Z has size #F = N.
Let = (z1)_, € £5,(X) have norm one. For a € (0,1) to be chosen, we
denote

Fj:={n€Z:al < |z, <71}, a9 = (1p, (k) - 2)hy

Note that F; = & and ) =0 for j <0, and

#E; < #n€Z:od < |} <a Pzl =’ G221
Thus
> - (4)
< <
DIUTYIINED o) SR NN SN e

j=1 k€F; j=1
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Z 1285 - oS5 (#F;) - (#F;)Y? - a/™1 by (13.20)

21285 C(#F;)Ymal ™1 <Zl285 Ca~75/mi ™1
Jj=1
~1285-C  al7e/r
- o 1—ql-s/r’
The choice a = (s/r)"/("=%) gives
l al—s/r - a—s/T B (T/S)s/(r—s) - e
al—al=s/m  1—qal=s/r  1—5s/r ~1-s/r

by an elementary optimisation in the last step. Substituting back, this gives

N
c
H§ eka:kH <1285-C - — & —1985.¢- — < 3500-
p L2(T;X) 1—s/r

r—s r—s
for all (zx)A_, € £5,(X) of norm one, which is the claimed bound. O

13.1.d Conclusion via duality and interpolation

With the uniform bound of Corollary 13.1.27, we have already covered the
core of the deep implication from non-trivial type to non-trivial Fourier type.
The rest of the argument depends on the more routine techniques of duality
and interpolation, but is still not entirely straightforward. We now turn our
attention to giving these finishing touches to the proof. At the end of this
section, a statement and proof of Bourgain’s theorem will finally be given.

The first duality that we want to use is most elegantly expressed in terms
of the Fourier type constants on the cyclic group Zy:

Lemma 13.1.28. Let X be a Banach space, N € Z; and p,q € (1,00). Then
NYIg (Zw) = NV o (Zn).

Proof. Since X is norming for X*, Proposition 1.3.1 shows that ¢} (X) is
norming for ¢4, (X*), so that

N N
(3] X ertrrma

P')l/iﬂ/
h=1 k=1

:sup{z<xh,§::€k h/N) $k> (ZHth ) }

2

where, observing the symmetry ey (h/N) = e>™ /N = ¢, (k/N),
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i<xh,iek(h/]\7)wz> Z<Zeh (k/N) xh,xk>

h=1 k=1
< (S Sewmal) " (S i)
k=1 h=1
< N, (2 (anhnp) (S ).
k=1

Substituting back, this proves that
Nl/”/wg);( (Zn) < NY1pl0 (Zy).

Permuting the names of the exponents and using the isometric embedding of
X into X**, it also follows that

NV (Zy) < N9\ (Zn) < NV ok (Zw),
which proves the claimed equality. ]
Corollary 13.1.29. Let X be a Banach space, r € (1,2], and suppose that
2.x(N)<C-NY™12  wyNez,.
Then for all s € (1,7) we have

7C7"

P (F) < 1.35-10 NV se (L),

whenever F C Z is a subset of size #F = N.

Recall from Corollary 13.1.20 that if X has type p € (1,2], then the assump-
tion is satisfied with C' and r as in (13.10).

Proof. By using both estimates of Lemma 13.1.18 with Lemma 13.1.28 in
between, and finally Corollary 13.1.27, we have
s’ s s’ s 2
N1/ @é ) (N)<N1/ ( ) (Zy) = N1/2<p( )( N)

S,

< N3 () < N2 3500-C

Then Lemma 13.1.25 and Remark 13.1.26 with p = 2 < g = s’ show that
P (F) <1285 - 0. (N) - NY/2 < 1.35 - 107 OTS N1/2+1/2-1/8

whenever F' C Z is a subset of size #F = N. O
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We now come to another form of duality, where we pass from the Fourier
transform on Z to that on the circle T, and it is in this latter setting that our
argument will be completed.

Lemma 13.1.30. Let X be a Banach space, 1 < s < 00, and suppose that
P (F) < K -NV*

whenever F C 7 is a subset of size #F = N. Then the Fourier transform

~

Fif e DMX) o e F) = [entiro,
satisfies the weak-type estimate

-7 f 0o (X)) S K| fllzs(r;x)- (13.21)

Proof. Let f € L°(T; X), let A > 0, and let F' be a finite subset of {k € Z :

o~

[If (k)] > A}. (By a periodic analogue of the Riemann-Lebesgue Lemma 2.4.3,
which has essentially the same proof, we could argue that this set is finite to
begin with, but we do not need this here.) Then

#F <5 ST = 5 Rk,

keF keF
for suitable z* ; € X™ of norm one

-2 /T f(t)(];ek(t)x*k> dt

1
< Xllf”LS(’]l‘;X)H Z 6k$k’
ke—F

1 s’ 1 s
< 3o @ (=F) < Sl r) K ),

L' (T;X*)

and hence
AF#F) Vs < K| f]

Ls(T; X)-

Since this is true for any finite F' C {k € Z : ||f(k)|| > A}, it is also true
for F ={k € Z: |f(k)|| > A} (showing, a posteriori, the finiteness of this
set). Then the supremum over A > 0 of the left-hand side is precisely the

¢5":°°(Z; X) norm that we wanted to estimate. O

From (13.21) and the trivial fact that .# is bounded from L(T;X) —
>*(Z; X), it seems apparent that we should conclude that % is bounded
from LP(T;X) to ¢?'(Z;X) by interpolation. However, the version of the
Marcinkiewicz Interpolation Theorem 2.2.3 covered in the text is not suffi-
cient for this purpose, and we would need the generalisation stated in the
Notes as Theorem 2.7.5. We will give a proof of a quantitative version of the
special case relevant for the present application:
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Lemma 13.1.31. Let X be a Banach space such that (13.21) holds for some
€ (1,2]. Then

3K
1Z flleer (z:x) < m”f”uor;)q vt e (1,s).

Proof. By homogeneity we may assume that || f| .+ (r,x) = 1. We have

I ey = [ A1 46005 1O > A}y
< /OOO EN T e || (R > B0} dA (13.22)
O AR I G
where 6y 4+ 61 = 1 and, with parameters A and 7 to be chosen shortly,

o= gpiecanys = o lgpesang-
Then

172 1z ) =/{|f| “ }Ilfllx < (AN TS Nz ) = (AN)
x >ANY

and hence R
[ F Moo zx) < (AXN)TTE < 010,

provided that we choose
y=-1E-1), A=

Then the second term on the right of (13.22) vanishes, and subsequently

19 £y < [ N 00 IR > oAb

g/ t/At/71(90>\)75lK5/Hf/\|SL/s(T;X) dA
0

by Lemma 13.1.30

() ([ )

<G i)

L#(T)

by Minkowski’s inequality with exponents s < s’

G ey
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keeping in mind the choice v = —1/(t — 1)

RN, L A D) N1
(&) 1= i) I15%)

6o t—s"L|fllx Ls(T)
K\s 1 1 s (t—1)(¢' —s") 1/s" s’
(YL ey

90 oi —s t/ _ S/ ||fHX LS(T)

where, observing that tt' =t + ', we have
s—t-1){t —§)=8s—(t+t —ts' —t' +5)=t(s — 1),

so that

’

s —(t—1)(t' —s’ /s 18
[ (i 0e=)

Ls(T)

’
S

o (7S

—fEsls
o = M = 1.
Taking 6y = 6; = 3 and using ) < elle < 3. we obtain

2(t/)1/t’Ks’/t’ 3Ks’/t’
(t' _ 3/)1/15’ < (t’ _ S/)1/t’ :

||yf||et’(z;x) <

Testing (13.21) with a constant function f = =z, with Fourier coefficients
f(k) = 0x.0z, shows that K > 1 and hence K*'/* < K. Moreover,
s t(s—1)—s(t—1) s—t

/ r_ t _ _
s = T 1T G- Gone-n-°h

and hence
3K

1F Flle z:x) < GO
O

Lemma 13.1.32. Let X be a Banach space, and suppose that there are con-
stants C' and r € (1,2] such that

@Q,X(N) < C. Nl/’r‘fl/Q
for all N € Z.. Then for all t € (1,r), we have

< 10°-C
P, X X m

Proof. By Corollary 13.1.29, for all s € (1,r), we then have

s C
o) (F) <1.35-10"——NVs = K . NV/s
’ r—s
whenever F' C 7Z is a subset of size #F = N.
By Lemma 13.1.30, it follows that
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IF | (e (mi )05 00 (z:x)) < K
which by Lemma 13.1.31 implies

3K 5-107-C-r
ot,x(T) :== ||9||3(Lt(1r;x),ét’(z;x>) < (s — t)l/t/ X (r—s)(s — t)1/F

for all 1 < ¢t < s < r. Optimising the bound with respect to s in this range,

we choose
(= 1)r

2t—1

With this choice, a computation shows that

tir—t) _ 1 (r=t)t—1) _ 1
— 8§ = > —(r — — = > —(r — —1).
res= 5 /3(7" t), s—t 57 — 1 /3(7" H(t—1)
Substituting back,
31+1/t'

. 7 . .
prx(T) <5-10°-C " (- )Y

where < 2 and 311/t < 33/2 and, for ¢ € (1,2),
(t _ 1)1/15’ _ [(t . 1)t—1]1/t > [e—l/e]l/t > e~ 1/e.
Thus

33/2 . 61/8 3 109 .C
(r _ t)1+1/t’ = (7“ _ t)1+1/t/ ’

P, X (T) < 108 . C

We are finally ready for the main theorem:

Theorem 13.1.33 (Bourgain). A Banach space X has non-trivial type if
and only if it has non-trivial Fourier-type. Quantitatively:

(1) If X has Fourier-type t € (1,2], then it has type t with 7 x < @1, x(Z).
(2) If X has type p € (1,2] with related constant 7, x.o as defined in (13.7),
then it has Fourier-type

1

t=1+————
+ 6p' (68 - 7, x:2)P

with constants

¢r.x(R) < ¢r,x(T) < exp (2(68 - 7, x;2)” ).
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Proof. (1): This is contained in Proposition 7.3.6.
(2): This is the main part of the proof, and depends on the results devel-
oped in the section. By Corollary 13.1.20, the assumptions imply that

QOQ,X(N) < C . Nl/'r‘fl/Q,

where, denoting T := (68 - 7, x.2)?" > 682 > 4000, we have

r' =3p'T, C—e’zv =e2T.
Thus Lemma 13.1.32 shows that
10°-C
er,x(T) < (r— ) te(lr),

where 7 > 1+ (3p'T) L. Hence, choosing t := 1+ (6p'T)~! € (1,r), we have
r—t>(6p'T)"Y,  (r— )Y < (6p'T)5,
Thus, noting that p’ < p’log(687, x,2) = log T, where T' > 682 > 4000,
prx(T) <10° - €37 - (6p'T)
=10°-62 - (logT)? -T2 - 37

1 1 1 3
§ eGT . eeT . eGT .ezT = eQT_

Finally, ¢ x (R) < ¢4, x(T) is part of Propositions 13.1.1. O

Ezample 13.1.34. For each r € [2,00), the space X = L"(S) has type 2 with
To,x:2 = Kr2k (the Kahane—Khintchine constant from the scalar-valued case
of Theorem 6.2.4), but Fourier-type t if and only if ¢ € [1,7']. Hence, any esti-
mate of the Fourier-type exponent in terms of the type of X must necessarily
depend not only on the type exponent but also on the type constant of X.

Proof. The estimate 73 x;2 < kr2x follows from

N N
H Zgnxn = H Zenmn
o Lrsirsy) &

< “7',27KH{1‘H}7}L1‘

<[ X enan|
L2(2;L7(S)) an_:l . L™ (S;L7(£2))

< T',Q,KH {x’rb}i:;l

L (S:62,) 2.(Lr(s))

For the reverse estimate, it suffices to pick some non-zero ¢ € L"(S) and
observe that the type inequality for x, = a,¢ € X implies the Kahane—
Khintchine inequality for a,, € K.

The fact that X has Fourier-type t if ¢ € [1,r/] follows from the scalar-
valued Hausdorff—Young inequality and Minkowski’s inequality:

Il @iz isy) Hf||u(s @) S fllerspwy) < Ifllzewnrs))

We indicate two alternative proofs of the “only if” part:



258 13 The Fourier transform and multipliers

(1) In Example 2.1.15, it is verified directly that the Fourier transform is not
bounded from LP(R; ET/) to L¥' (R; ET/) for p € (+/,2]. By duality, it is also
not bounded from LP(R; (") to L? (R; (7).

(2) Proposition 7.3.6 says that if X has Fourier type p, then it has cotype p’.
But Corollary 7.1.6 says that L"(S) has cotype p’ only for p’ € [r, o0].

This concludes the verification of the example. O

We also record the following simpler variant, which is nevertheless sufficient
for many purposes:

Proposition 13.1.35. Let X have type p and cotype q, where %f % < % Let
1.1 16[10
r 2 p g 277/

Then X has every Fourier-type t € (1,7), and

Tp,X;2Cq,X;2

9
@t,X(R) < @t,X(T) < 10 W

Proof. By Proposition 13.1.21, we have
11 11
P2 x(N) SNv 0 =N7"2, =1, x;2¢4,X;2

Thus Lemma 13.1.32 implies the bound for ¢; x(T), and Proposition 13.1.1
the bound for ¢; x(R). O

Remark 13.1.36. The assumptions of Proposition 13.1.35 are satisfied by many
“common” spaces of nontrivial type (and hence finite cotype). Namely, such

space often have type or cotype 2, and hence either % — % = % — % < % or
1_1_1_1_7_1_1
p q p 2 2 2

13.2 Fourier multipliers as singular integrals

The goal of this section is to see how the results on singular integrals proved
above can be applied to the theory Fourier multipliers developed in Sections
5.3 and 5.5. Given m € L= (R%; Z(X,Y)), we recall that the operator T}, is

a priori defined as T, : L'(R% X) — L'(R%Y) by

~

Tfa) = [ m(@F@)eede.

The notation MLP(R?; X, V') stands for the space of all m € L>®(R%; Z(X,Y))
for which Tj, extends to a bounded linear operator from LP(R? X) to
LP(R4;Y). The connection of Fourier multipliers to integral operators is par-
ticularly simple in the following special case:
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Proposition 13.2.1. Let X, Y be Banach spaces and m € L (R4, Z(X,Y)).
Then for all f € L' N LY(R%; X)), we have

Tof(@) = [ b =0 f0)do,

where k = m e L'(R% Z(X,Y)).

Proof. Under these assumptions, we can make a direct computation

- /R () /R Flglenmine dy) T e

where the first step is the definition of T;, for f € fl(Rd;X ), the second is
the definition of f({) for f € L*(R% X), the third is Fubini’s theorem that
applies since both m € L'(R% Z(X,Y)) and f € L'(R% X), and the fourth
is the definition of the inverse Fourier transform of m € L'(R%; £(X,Y)). O

The compact support assumption on m in Proposition 13.2.1 is not as restric-
tive as it may seem at first sight, as one can often reduce considerations to
this situation by simple limiting arguments that we shortly explain. Recall
from Definition 5.5.20 that ¢ € .#(R%) is called a smooth Littlewood-Paley
function if

(i) ¢ is smooth, non-negative, and supported in {¢eRY: 1 < g <2

(i) > 9(277¢) =1 for all £ € R\ {0}

JEL

Such functions exist by Lemma 5.5.21, whose proof also gives the identity

12(5) = @(¢) — P(2¢) and hence
> g =ae Ve - g2t

L<j<N

for some § € 2(R?) with $(0) = [ ¢ = 1. Let

m; (&) == D(27Em(e), mN (&) =2 VEm(©),
m (€)= mN (&) —m (&) = Y my(e), (13.23)

L<j<N

and observe that m”™ € L®°(R%; £ (X,Y)), whereas

mj,m" € LR\ {0}; Z(X,Y)),
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i.e., these are supported away from both the origin and infinity. While the
support away from zero is not required by Proposition 13.2.1, it is a conve-
nience for forthcoming considerations due to the special role of the origin in
various multiplier conditions. The next two lemmas describe a precise sense in
which, for many purposes, it is “enough” to study the truncated multipliers
mh.

Lemma 13.2.2. Let X,Y be Banach spaces and m € L>®(R%; £(X,Y)). For
p € (1,00), we have m € MLP(RY; X, Y), if and only if m™ € MLP(RY; X,Y)
uniformly in N, if and only if m¥ € MLP(RY; X, Y) uniformly in M and N.

Proof. By the algebra of multipliers (Lemma 5.3.2), we have
Tonf= Tm(T$(2—N-)f) = Tn(p2-~ * f),
where ¢;(z) = t~%p(t~'x) and
e fllp < lleellall fllp = llellall fllp,

so that [m™ [lanre e x,v) < ll@llillmllonses rae,x,v), and thus

Im lonre®esx,y) < 2lelllmllonce @ax,y)-

On the other hand, it is evident from property (ii) of Littlewood—Paley
functions that m”™ (&) — m(£) as N — oo for every ¢ € R, and mY (¢) —
m(§) as N — oo and L — —oo for every & € R?\ {0}. In particular, both
limits hold for almost every ¢ € RY. Then Proposition 5.3.16 implies that

I lon e (resx,v) < 1}{,1;1;1; Im™ o zr (e;x,v)s

[mlon e re;x,v) < lim inf [|m ) [lon e (e, x,v)-
— 00
L——o00

13.2.a Smooth multipliers have Calder6n—Zygmund kernels

We will be mostly concerned with multipliers satisfying Mihlin-type conditions
of the form
[0°m(&)|| < Mgl ¢ e RY\ {0}, (13.24)

for some set of multi-indices o € N¢. Recall that the Mihlin class, introduced
and used in Definitions 5.3.17 and 5.5.9 and Theorems 5.3.18 and 5.5.10 (in
one and several variables, respectively) to deduce that m € 9MMLP(R%; X,Y)
for all p € (1, 00) without any a priori boundedness assumptions on T,,, fea-
tured stronger R-boundedness versions of such conditions. The difference in
the present context is that we are willing to assume that m € 9MLP° (R%; X|Y)
for some py € (1,00) to begin with, and we wish to show that this a priori
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boundedness on one space can then be extrapolated to boundedness on other
function spaces under conditions that are similar to those in Mihlin’s theo-
rems, but without the R-bounded aspects. As a matter of fact, these pointwise
bounds can often be relaxed to weaker integrated versions, which is easily ver-
ified by inspecting the proofs, but for the clarity of the exposition we state
the results under such pointwise assumptions. This is hardly a restriction for
most applications.

The role of the multiplier conditions (13.24) for the kernel estimates is via
careful use of the fundamental relation @(f ) = 2mig; F(€). So as to make most
efficient use of the relation, and to unburden the formulae from inessential
constants, we introduce the abbreviation

@ = 0/2mi
so that o R
P;£(€) =& f(&)

The deduction of the kernel estimates is easiest when sufficiently many
derivatives are allowed in (13.24); as it turns out, this is somewhat more
than the collection a € {0,1}¢ appearing in Mihlin’s Theorem 5.5.10. We
formulate several results for a generic Banach space Z instead of Z(X,Y), as
the operator structure plays no role here; this also makes the formulae slightly

shorter. We say that a collection .7 of multi-indices is convez, if @ € &7 implies
B € o/ whenever 0 < 8 < a.

Lemma 13.2.3. Ifm € L=(R%; Z) satisfies (13.24) for a convex set of multi-
indices o, then each m; € L (B(0,2771); Z) satisfies

17 mlloe < M2771e
for the same set of multi-indices, where M ‘s the constant of (13.24).
Proof. By the Leibniz rule, we have
~ o . ~ o
o*my(€) = oI m(] = 3 (§ )20 G2 0% (e,
<

where each 9*~%m also satisfies (13.24) by convexity. Thus

AP la—
[0%m; (&)l <Z(a)2 00151 e MIE| 1

<

<3 <‘;‘)2je|M(2j1)a|+e|

<

— argilelglel 3 (‘;)2a—9 4o

<
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- szjla\g\al(g_k 1)|O¢\ = M2~ ilelglel

where the binomial formula was used in the second to last step. The result
follows after dividing both sides by (27)l*l > 6lel. O

Lemma 13.2.4. Let Z be a Banach space and f € L¥(B(0,A); Z) have dis-
tributional derivatives that satisfy

17 flloo < A1
for some A > 0 and all multi-indices o in some convex set. Then
lz = FZ (™ = 1) f(@)]]loe < (64217 Aly| - A7
for all y € R? with |y| < A™Y, and for the same set of multi-indices.

Proof. The derivatives are given by

Pol(e e 1) ()] = (20 — D) f(a)+ > 1 er v T f(a),

0#y<a

and hence

921> = 1) f@)]]| < 2nly|A- AT Y7yl ATIeER]

0#y<a
< IylA-A*'a‘<27r+ 3 (Alyl)'”'*l)-
0Ay<a
If Aly| <1, then (Aly))"1=* <1 and D 0ty<al = 2lel 1, O

Lemma 13.2.5. Let Z be a Banach space and f € L°(B(0,A); Z) have dis-
tributional derivatives that satisfy

18° fllee < ATIT - V]a] <d+1
for some A > 0. Then for almost all x,y € R with |y| < §|z|, we have
2" F(2)] < caAT, (13.25)
j2|"|f(z —y) = f(2)] < caA?" min{Aly|, 1} (13.26)
foralln=0,1,...,d+ 1. In particular, fe LY(RY; Z) and
£l < ca-

Proof. For x € B(0,A), we have

2% Fllso < N3 fll < 10” Flloo I LB0,a) I < A¥waA?,
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where wy is the volume of the unit ball in R?. With a = ne;, this shows that
|25 f (7)] < wgA?™™ for i =1,...,d, which readily gives (13.25).

We observe that f(z —y) — f(x) is the Fourier transform of (e2%@¥ —
1) f(x), which satisfies the same assumptions as f for |y| < A, except for a
multiplicative factor (64 2%)A|y|, by Lemma 13.2.4. An application of (13.25)
to this function in place of f hence gives

2| f(z —y) — f(z)] < caA " Aly]

when A|y| 1. On the other hand, if Aly| > 1, then we simply estimate
f (9: y)—f ( ) by (13.25) and the triangle inequality, recalling the assumptions
that |y| < i|z| and n < d + 1:

~

[f(@—y) = F@)| < |f@ = y)| + ] (@)] < cad™" (o = y|7" + || 7")

<
< cg AT 4+ 1) || T < LAY T
The last two bounds are both seen to be dominated by the claimed bound in

(13.26).
That f € L'(R%; Z) is immediate from (13.25) by integrating the estimate

(@) < cqdtmin {1, (AJz]) =41},

O

Proposition 13.2.6. Let X,Y be Banach spaces and m € L™®(R%; Z(X,Y))
satisfy
lo“m(©ll < Mlg|*h Vo] <d+1.

Then each KN (z,y) = kN (z —y) = m™ (x —vy) is a Calderén—Zygmund kernel
with the following bounds independent of the truncation N :

HkN(-T)” < @, ||kN(x7y) *kN(x)H < iw(‘m)’

for all z,y € R? with |y| < |z|, where
1
c=cqM, w(t):ch-t-(l—l—log;).

Note that the modulus of continuity w above is slightly “worse” (i.e., with
slower decay as t — 0) than the Lipschitz modulus wy(t) = t, but “better”
than any of the Holder moduli ws(t) = ¢ for § € (0,1).

Proof. By Lemma 13.2.3, the functions m; satisfy the assumptions, and hence
the conclusions, of Lemma 13.2.5 with A = 2/*! and a multiplicative factor
cqM. Thus,
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£ 20+ D(d=h)

N .
Ik Z Ik (@ §O<h<d+1 |z |P M

J<N
-+
i+1)d cq2 1o—d
< Z Cd2(] ) M+ Z WM < cd\x| M.
G201/ |2 J:29F1 21/ |z

Similarly, for |y| < 3|z|,

9(i+1)(d—h)

N N . Cd : i+1
) — < fao” - J
kM (z—y) —k (x)|\Zo<r;?£+1 T min{2’ " |y|, 1} M
JEL
. Cd
< Z Cd2(1+1)(d+1)|y|M+ Z WMM
20411/ || J:1/]2]|<29+1 <1/ |y
cd2_(]+1)
+ Z |I|d+1
32941 >1/|y|

/

1 o c
<CQW|@/IM B ‘d+1|y|(1+log )M+7d|y|M

H
)M gt
o [
< el (1 +Tog )

This completes the proof. O

With the uniform pointwise bounds of Proposition 13.2.6 at hand, we can
strengthen the sense in which the operator T;,, with such bounds is associated
with a Calderéon—Zygmund kernel k:

Proposition 13.2.7. Let X, Y be Banach spaces, p € [l1,00), and m €
MLP(RY; X,Y) satisfy

[9*m©)] < Mg~ V]a] <d+ 1.
Then there is a kernel k € C(R4\{0}; £(X,Y)) that satisfies the same bounds

as kN in Proposition 13.2.6 and such that

T f(x) = y k(z —y)f(y)dy
for all f € LP(R% X) and almost all x € R? outside the support of f.
Proof. We split the proof into two cases:

Case p € (1,00): Let f € LP(R% X). Using the notation from the proof of
Lemma 13.2.2 and the preceding discussion, we have

ngf = Tm[(@Q—N * f) - (@Q—L * f)]a
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where oo~ * f — f in LP(R%; X) as N — oo by a standard mollifier re-
sult (e.g., Proposition 1.2.32). We also have |¢pr * f|, < llerlplfli =
R/ ||y — 0 as R — oo if f € LNR% X) and [lor * fll, < lerlilfll, =
| fll, uniformly in R. Since (L' N LP)(R% X) is dense in LP(R%; X), it follows
that @y % f — 0 in LP(R?%; X) as L — —oo for all f € LP(R%; X).

Summarising this discussion, it follows that, for all f € LP(R%; X), we
have the convergence T,,v f — f in LP(R% X) as N — oo and L — —o0. By
passing to a subsequence if needed, we may assume that this convergence also
takes place almost everywhere.

If f € LY(R% X)N LY(RY; X) C LP(R%; X), then Proposition 13.2.1 shows
that

Ty f = kg * f,

where T}, ~ is bounded from LP(R%; X) to LP(RYY) by Lemma 13.2.2. On
the other hand, k) is a finite sum of k; = 77;, where the multipliers m; are
in the scope of Lemma 13.2.5, and hence kY € L'(RY; £ (X,Y)). But then
also f + kx * f is bounded from LP(R% X) to LP?(R%Y’), and the previous
display must remain valid for all f € LP(R% X) by continuity. Combining
these pieces, we obtain

Tnf(e)= lim T f(z)= lm [ k(e —y)f(y)dy

L——o0 L——oc0

for all f € LP(R%; X) and almost every = € R<.
Let us finally consider 2 € Csupp f. Since this set is open, we can pick an
£ > 0 such that B(x,e) C Csupp f. For such = and any y € supp f, the series

D kilz—y) = lim kY(z—y)

JEL L——o0

converges absolutely by the proof of Proposition 13.2.6. We denote by k(z—1v)
the limit. Moreover, the same proposition shows that

1Y (= — ) F ()] < Cd_—f‘jwuﬂy)n,

|z

which is integrable over y € RY by Holder’s inequality, since f € LP(R%; X)
and [y — |z —y|~9] € L? (CB(z,¢)). Thus

Tof()= Jim [ K@ -ni@dy= [ e-n)iw
—00 R4 Rd
L——o0
by dominated convergence. The pointwise estimates of kY are clearly inherited
by k by the pointwise convergence. This completes the proof for p € (1, c0).
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Case p = 1: We can still make use of large parts of the preceding consid-
erations, but some details require a modification. The standard mollifier re-
sult (Proposition 1.2.32) still applies to show that @s-~ % f — f, and hence
Tonf — Tof, in LY(RY X) as N — oo, but it no longer guaranteed that
@o—r * f should converge to 0 as L — —oo. Hence, we will separately deal
with T,z f.

For f € LY(R% X) N L' (R%; X), we have

T s@ = [ b omie)fie) ag|
<[ Imll FO)] de < w2t il 1.
l¢]<2L+1

Hence T,,. extends to a bounded operator from L!'(R%; X) to L>=(R%Y) of
norm at most wg2“TVe||m||, — 0 as L — —oc.

For f € L' (R X) N LY(R? X), we can now write
T,.~f= ngf + T f = kmg « f+T,of.

Since all of the operators acting on f above are bounded from L!(R%; X) to
LY (R4 Y) + L*°(R%;Y), the identity continues to hold for all f € L!(R%; X).
Taking the limits N — oo and L — —oo, we have T,,,~ f — T, f in L'(R%Y)
and T,,. f — 0 in L>=(R%Y). Along suitable subsequences, we have both
limits almost everywhere, and hence we arrive at the same pointwise limit

Tnf(x)= lim [ ki'(z—y)fy)dy
257 Jue
as in the case p € (1,00). The rest of the proof can then be concluded in
the same way as before. Specifically, let us note that the final application
of dominated convergence is justified simple because the product of [y —
|z —y|~9] € L=*(CB(x,¢)) and f € L*(R% X) is integrable. O

Corollary 13.2.8. Let X,Y be Banach spaces and pgy € [1,00). Suppose that
m € MLP (R4 X,Y) satisfies

[0%m(€)| < Mg|7l*l Vo] <d+1.

Then T,, extends to a bounded operator from LP(w;X) to LP(w;Y") for every
p € (1,00) and every Muckenhoupt weight w € A,,. Moreover,

max{l,p%}
||Tm|\$(LP(w;X),LP(w;Y)) < Cd,p(”m”fmuw (R X,Y) T M) [w]A,, '

Proof. By Proposition 13.2.7, the A; Theorem 11.3.26 applies to such an
operator T},, and this gives precisely the stated conclusions. (
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Corollary 13.2.9. Let X, Y be UMD spaces. Suppose that m € L (R%; X,Y)
satisfies
lom(@)ll < Mgl Yol <d+1,

and in addition
Z({lg] oo m() - € e RIN{0}}) <M Vo€ {0,1},

Then Ty, extends to a bounded operator from LP(w;X) to LP(w;Y") for every
p € (1,00) and every Muckenhoupt weight w € A,. Moreover,

max{l,plj}

T | 210 (), L2 i) < Cap(min(Tiy x, 1 ) B, x Bp,y M A-M)[w]

Proof. By Mihlin’s Multiplier Theorem 5.5.10, the assumptions imply that

Imllonre®ex vy < camin(hl x, b ) Bp.x Bpy M.
We then conclude with an application of Corollary 13.2.8. O

This proof displays a certain dichotomy between the multiplier conditions
needed to get the boundedness of T}, to begin with, and the conditions needed
to extrapolate this boundedness to other spaces. The former one needs the
stronger R-boundedness assumptions, but only for a smaller number of deriva-
tives, while the latter only needs usual pointwise bounds, but for a larger set of
derivatives. This dichotomy disappears from sight in the following important
special case:

Corollary 13.2.10. Let X be a UMD space. Suppose that a scalar-valued
m € L>®(RY) satisfies

0°m(&)| < MI¢|7I*T V]a| <d+1.

Then T, extends to a bounded operator on LP(w; X) for every p € (1,00) and
every Muckenhoupt weight w € A,. Moreover,
max{1, 515}
1Tl (Lo (wixyy) < caphfy x By x M[w] L
Proof. The assumed pointwise bounds coincide with the R-bounds required
by Corollary 13.2.10 in the case of a scalar-valued multiplier m. O

13.2.b Mihlin multipliers have Hérmander kernels

We now turn to the question of kernel estimates assuming only the multiplier
conditions appearing in Mihlin’s Theorem 5.5.10. It turns out that the max-
imal order of d derivatives is just on the border of what we need to make
useful estimates, and in order to cope with this condition, we need to impose
an additional assumption on the underlying Banach space X in terms of the
notion of Fourier type discussed in Section 13.1.

The analogue of Lemma 13.2.5 in the present context is the following
rather more complicated assertion.
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Lemma 13.2.11. Let X be a Banach space with Fourier type p € (1,2]. Let
feLX(—A, A X) satisfy

19° flloe < ATIL Vo€ {01}
for some A > 0. Then fe L'(R%; X) and, denoting
Dy, x = 4p' (4 +logy vp.x),

we have the estimates

1l < @2y, (13.27)

n P e S (13.28)
C[—R,R]d 1 x p,X (AR)l/p/ ) .

1FC—y) = FO) < D2y -4-29A]y| Wy e RY, (13.29)

7 7 : 8d*pp x
a0 [ =) = FOl < @ yomin {2, Zo8E5, 4240k, (13.30)

Remark 13.2.12. Thanks to Bourgain’s Theorem 13.1.33, the assumption on
the Banach space X in Lemma 13.2.11 is simply that X has some non-trivial
type r € (1,2]. Namely, Theorem 13.1.33 guarantees that we can then take

P =1+46"T, ¢,x <, T:=(687.x:2)" >68%> 4000,

and hence
48 1 2log2
T) = (1)
log 2 log2 " 67'T T
<70 7'T? = 700" (687 x:2)" .

+1)7'1?

Ppx <A(1+60T) (44

Proof of (13.27). For k € Z4, let
Dy={zecR:q;c 2 2kt vi=1... d}

so that obviously

11l = > I, flh-

kezd

For each k € Z4, we partition 1 = o + 3 + v for some «, 3,7 € {0,1}% yet to
be chosen. Then

Dy =D x D x D}, Dj={(&;)sg=1:x; € [25,2MH)}.
Similarly,
R? = R™ x R? x R, R = {(2;)i:0,—1 : 7; € R},

and we abbreviate L°L! := L*(R* x R; L'(R; X)).
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For x € Dy, we have |z;| > 2% and hence |2°+7| > 25547 We can now
make the following estimate. At a critical point, passing from a norm of the
Fourier transform f to a norm of f itself, we apply the Fourier type assumption
to .Z : LP(R"; X) — LP (R"; X), producing the constant ¢, x (RY) < gpm
and the trivial boundedness of the Fourier transform .%# : L'(R®*#; Z)
L>(Re*A: Z), with Z = L4(R"; X) for either ¢ = p or ¢ = p’, depending on
the (irrelevant) order in which we perform these two steps:

1o, fllzr < 275 1p, 257 f]| s
< 2_k‘(ﬂ+7) H]‘Dk HLle ||x,8+’nyLooLp/
. . B+
< 27k(B+7) | gdok-(ath+7/p) | W\ ([ ’nyLng

< 949k (a=v/p) | \I)W\XA*WI*IVIQdA\aHIﬁIJrM/p
< 4dgh e/ Gl glel=/p

=4t ] A2 x ] 1x ] (epx @)%,

1o =1 :8i=1 iy =1

Since the splitting 1 = a + 8 + v is free for us to choose, it is obvious that,
for each i, we choose it to be in the first, second or third category according
to which of the three numbers

Ak 1 g x (2R AT

is the smallest. This gives us the estimate

17l =" 1o, flls

kezd

d
<413 T min{A2% 1, ¢, x (25 4) 717}

kezd i=1

= 47(>" minf42",1, gpp,X(2’“A)—1/P'})d
kezZ

<43 ke Y e Y wp,x(Q’“A)’”p/)d

. A2k ’ . ’
k: A2k <1 kil AZRSQP o ki A2k >pb

, P \=1/p 4
<49 (2 +(1+1logs @ )+ Xy )17 )

1 -2/
<AY(3 + p'logs gpx +2p)" < (4p)(4 + logd gy x)
where we observed that 1 —271/7" > 1/(2p/), since the function g(u) = u/2 +

27 satisfies g(u) < 1 for u = 1/p’ € [0, 3], being convex with g(0) = 1 and
g(3)=1/4+2712 < 1. O
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Proof of (13.28). Making the same decomposition

g rmefln = o g pmafl
kezd

as in the proof of (13.27), we observe hat 1p, 1g_p g« is non-zero only if at
least one k; satisfies 2%t1 > R. Thus

e rmefli <D D Il

=1 pezd
2%i >R/2

L Nd—1
<d- 473 min{A2", 1,y x (254) 77}
kez

><< 3 min{A2k71,<pp7X(2kA)71/p,}),
k:2k>R/2

by inspection of the proof of (13.27). The factor raised to power d — 1 is
estimated as in the proof of (13.27) by

, Ny d-1 d—1
(Z min{ A2, 1, npp7X(2kA)_1/p }) < (p)4t (4 + logg npp7X)
keZ

On the other hand, we have

> min{A2¥,1,¢, x(284)7HP}
k:2F>R/2

< Y ppx @Ay
k:2k>R/2

op.x (AR/2)~1/¥
g 9
1—2-1/r

< A4p' o, x (AR) M7,

again by recycling some estimates from the proof of (13.27). Collecting the
bounds, the proof of (13.28) is complete. O

o~

Proof of (13.29). We observe that f(x —y)— f(m) is the Fourier transform of
f(x)e?™ @Y which verifies the same assumptions as f by Lemma 13.2.4, aside
from the multiplicative factor (6 + 2%)A|y|, provided that Aly| < 1. Applying
(13.27) to this function gives (13.29) for Aly| < 1. But for Aly| > 1, (13.29)
is an immediate consequence of (13.27) by the triangle inequality. O

Proof of (13.30). This final bound is a certain synthesis of the other bounds.
The first and third bounds in the minimum are obtained from (13.27) (with
the triangle inequality) and from (13.29), respectively, ignoring the restriction
to 0B, which only increases the norm.
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For the second bound, we also use the triangle inequality, but keeping the
restriction to CB. Then

11ea0.3y) /=Wl = 1es—ysyfllt
< ||1CB(0,2\y|)f||1 < ||1G(72r/\/3}2r/\/3)d)f”17

and the same bound is obvious for f in place of f( — y). Applying (13.28)
with R = 2r/v/d produces the required bound. O

Proposition 13.2.13. Let XY be Banach spaces, and suppose that m &
L>(R% Z(X,Y)) satisfies

l0°m (&) < Mg~ va e {01} (13.31)

Let KN(t,s) = kN (t—s) = mN(:E—y) be the kernels related to the Littlewood—
Paley truncations m~ of m as in (13.23).

(1) If the space Y has Fourier type p € (1,2], then the kernels K satisfy the
Hérmander condition uniformly in N, and quantitatively

/ IEY (= 5) = KN (0)z]ly dt < (20,,y) T M|z x Vo € X,
[t|>3]s]

where @,y = 4p' (4 +logy v,y ).
(2) If the space X has Fourier type p € (1,2], then the kernels KV satisfy the
dual Hérmander condition uniformly in N, and quantitatively

/}HWW@—@“%W@ﬂfWﬂ<@%XWHMMWW vy e Y™,
t|>3|s

where @, x = 4p’ (4 + log ¢ x).

Proof of (1). From Lemma 13.2.3 it follows that each Littlewood-Paley trun-
cation m; € L°(B(0,2711); £(X,Y)) satisfies

13 mj oo < 2¢M27GFDlel,

which is like the condition of Lemma 13.2.11 with A = 27! and an additional
multiplicative constant 2¢M/.

Moreover, for z € X, the function m;(-)r € L(B(0,2911);Y) satisfies
the same assumption with constant 2¢M||z||, and now the range Y also has
Fourier type p € (1,2], as required to apply Lemma 13.2.11. In particular,
from (13.30), we conclude that

[t te=s) = k@l ar
[¢]>3]s|

d od : 8d%ppy i1
S M||m\|m1n{2,m78.2 92 r}.
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Since m™ € LE(RY; £(X,Y)) C LY(RY; £(X,Y)), the kernels kY = ' e

Co(R%; £ (X,Y)) are well defined, and we can estimates
[ N0 (= s) = K )l ae
|t1>3]s|
<) / it —8) — ki (0)z||y dt

J<N
< o 20M |z ( 3 8. 2421ty
j:8.242i+1pL2—d—5

+ > 1

§:2—4=3L20+1rL(8d2 pp,v )P’
2
+ 8d gopyy )
Z (2j+1r)1/p’
251> (8d2pp, v )P’

, 1
<2 M| (2 + (log3 (8d%pp,y )" +d +4) + m)

< @5y 2 M|z (6 + 3d + logi ¢y )»'
<Pl 2 M|z - d- By < (20,y) T M |2
O

Proof of (2). We note that (13.31) implies a similar bound for the pointwise
adjoint function m* = m(:)* € L>®(R% . £(Y*, X*)), while the assumption
that X has Fourier type p € (1,2] implies that X* has the same Fourier
type with ¢, x+ = ¢, x (Proposition 2.4.16). Thus case (2) follows from the
already proven case (1) applied to (m*,Y™*, X*) in place of (m, X,Y). O

Corollary 13.2.14. Let X,Y be Banach spaces with non-trivial Fourier type,
let po € [1,00), and suppose that m € MLP°(RY; X, Y) satisfies

[0%m(©)]| < Ml vae (0,1}
Then m € MLP(RY; X, Y) for all p € (1,00).

Proof. By Lemma 13.2.2, the Littlewood—Paley truncations of m satisfy m®¥ €
MLPo(R%: X,Y) uniformly in N € Z. By Proposition 13.2.13, the kernels
kN =m satisfy both Hérmander and dual Hérmander conditions uniformly
in N € Z. On the other hand, by Lemma 13.2.11, the kernel k; = m; satisfy
ki()z € LY(R%Y) for all z € X, uniformly in ||z|| < 1, and hence k; €
LL(R% 2(X,Y)).

It follows that the kernels &% satisfy both Hormander and dual Hérmander
conditions uniformly in L, N € Z, and they belong to L. (R%; £ (X,Y)) (but
in general not uniformly). Thus the convolution with k:N defines a bounded
operator from LP°(R%; X) to LP*(R%;Y). So does Ty and hence the identity
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T f =k + f,

initially guaranteed by Proposition 13.2.1 for all f € L' N L'(R% X), ex-
tends by continuity and density to all f € LP°(R%; X). Since the operators are
uniformly bounded on this space, and their kernels satisfy both Hérmander
and dual Hormander conditions uniformly, it follows from the Calderén—
Zygmund Theorem 11.2.5 that they extend boundedly from LP(R?; X) to
LP(R?:Y) for all p € (1,00), again uniformly in L, N € Z. This is the same
as mY € MLPo (R X, Y) uniformly in L, N € Z, which, by Lemma 13.2.2,
implies that m € MLP(RY; X,Y). O

The following corollary is just the operator-valued Mihlin Multiplier Theo-
rem 5.5.10 in the special case of Hilbert spaces (in contrast to general UMD
spaces covered by Theorem 5.5.10); we state it here for the sake of pointing
out the alternative approach to this special case via the Calderén—Zygmund
extrapolation theory developed in this chapter.

Corollary 13.2.15. Let Hy, Hy be Hilbert spaces and suppose that m €
L>®(RY; £(Hy, Hy)) satisfies

[0°m(&)|| < M|l Va e {0,134,
Then m € MLP(RY; Hy, Hy) for all p € (1,00).

Proof. By Plancherel’s theorem in both Hilbert spaces, we have

1T fll L2 (res 1) = ISl 2 RasE) < M fll2®emyy = M fll2@aesmy),

and thus ||m||on 2 e, 1, ,1,) < M. Since both H; have Fourier type 2, Corollary
13.2.14 applies to give that m € IMLP(RY; Hy, Hy) for all p € (1,00). d

13.3 Necessity of UMD for multiplier theorems

In the previous sections, we have seen Fourier multiplier theorems of roughly
two types:

1. If we already know the boundedness of such an operator on one LP° (Rd; X),
then this boundedness can be extrapolated to other LP(R%; X) spaces un-
der relatively mild (or even no) assumptions on the space X.

2. If we need to prove the boundedness “from scratch”, then the required
assumptions on X tend to be much stronger, and in particular involve the
UMD property.

Let us also recall from the previous volumes that the need of the UMD prop-
erty is not only imposed by the chosen proof strategies, but by the very nature
of things: for prominent examples of multipliers like —isgn(£) corresponding
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to the Hilbert transform (Theorem 5.2.10), or |£|** corresponding to imaginary
powers of the Laplacian (Corollary 10.5.2), the UMD property is indeed nec-
essary. The goal of this section is to continue this list by yet another class of
Fourier multipliers whose boundedness requires UMD, and thereby close the
circle of implications in a number of useful characterisations of UMD spaces.
We start by discussing the types of multipliers that we are going to consider:

Definition 13.3.1. We say that m is constant in the direction of x € R%\ {0}
if m(tx) = m(x) for allt > 0. We say that m is stably constant in the direction
of x € R4\ {0} if, in addition, we have

lim m(y + tx) = m(x) vy € R4
t—o0
Note that if m is stably constant in the direction of x, then for every s > 0,
tlggo m(y + tsx) = tlggo m(y + tz) = m(z) = m(sz),

where the last step follows from the assumption (included in the definition of
stably constant) that m is in particular constant in the direction of x.

Ezample 13.3.2. Suppose that m € C(R%\{0}) is homogeneous, m(tx) = m(z)
for all t > 0 and x € R?\ {0}. Then m is stably constant in every direction.
Indeed

lim m(y + tz) = tlgglo m(t~ 'y + x) = m(z)

t—o0

simply by the continuity of m at x.

Ezample 13.3.3. Suppose that m € C1(R?\ {0}) satisfies the first order Mihlin
condition |Vm(x)| < M|z|~! for all z € R?\ {0}. If m is constant in the
direction of some x, then m is stably constant in this direction. Indeed

1
Im(y + tz) — m(z)| = Im(y + tz) — m(tz)| = ‘ /0 y-Vm(ys + tx)ds

< ‘/ M ds M|y
y :
lys + tx| tIII — |yl

and clearly this converges to 0 as ¢ — oo.

Proposition 13.3.4 (Transference from T? to T"¢). Let
m e C(R?\ {0}; £(X)),

and suppose that it induces a periodic Fourier multiplier

T := Ty € Z(Lh(T% X)).

7))jezn\{0}

If Ty, is the extension of T to Ly(T?; LP(T*=14; X)) (LP(T% X) := X ), then
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HZ kfk‘

for all fr = fr(te,...,tr) € LE(TY, dty; LP(T*=D4 dty ... dty_1; X)) that
have non-zero Fourier coefficients with respect to ty only in the directions
where m is stably constant.

<7 ||z (e (e X))H ka‘

Lr(Trd, dty...dt,;X) Lr(Trd, dty...dt,;X)

Proof. By the density of trigonometric polynomials in LP, we may assume
that

feltr, - thonte) = falfeorste) = > > agfcg)ej(fkq)ee(tk),

/A Yy CEE
O<IISB ™ |j|<B

where
Ek—l = (tl, L. ,tk_l) S (Td)kil, tL € Td,
ej(tk—1) == exp(2mij - ty—1), ee(ty) = exp(2mil - ty,),

and we may choose the same B for all the f, since there are only finitely many
of them. Then Ty fx has a similar expansion with the (j,¢) term multiplied by
m(¥).

Let us fix some f := (fx_1,t1) = (t1,...,tx) € T* for the moment, and

Ny = (N1,..., Nj—1, Ny,) = (Nj—1, Ny,) € ZF

to be chosen below.

We will shortly define an auxiliary function of the new variable ¢ € T?. For
this we need to introduce a couple of product-like operations between vectors
of different lengths. We set

Ni @t := (Nj_1 ®t, Nyt) = (Nit, ..., Npt) € (TD*, N, € Z*,
Nec1 @ ji=Niji+ ...+ Ne—iji—1 € 2%, j = (j1,...,jx—1) € (2}
These operations satisfy the identity
VE (Nk,1 ® t) = (Nk,1 @j) -t, hence ej(Nk,1 ® t) = equ@j(t%
where - stands for the usual Euclidean scalar product.
The new function is then defined by

fe@) == fr(te + N @ 1)

Z Z a§ Z)ej(tk 1)€f(tk)€Nk 1®J+ng(t), (13.32)

ZEZ" jeZ(kfl)n
O<KISB ~ jji<B

The function T;f/k : T™ — X is defined analogously.
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We now want to compare f;;f/k with T' fk They are both multiplier trans-
forms of fi, where in the first one the exponential ey, ;4 n,¢ 1 multiplied
by m(Nj_1 ® j + Nif), and in the second one by m/(¢).

By the assumption on fr, we know that m is stably constant in the direc-
tion of £ whenever a 75 0, and therefore

lim m(Nk 107+ Nkf) (5)
Nk*)OO
Hence, assuming that Nj_; was already chosen, and recalling that j € Z(*—1d

and ¢ € Z¢ with |j|,|¢| < B take only finitely many different values, we can
choose Ny, large enough so that

|m(Ng—1 ©j + Npl) —m(0)] < e

for any preassigned ¢ > 0 and all relevant values of j and £.

In conclusion, denoting by ||g||a the sum of the norms of the Fourier co-
efficients of a trigonometric polynomial g (on a torus of any dimension), we
have

|Tefe = Thelly < 1 Tife — Thilla < ellfilla < ellfulla-

Of course the || - || 4 norms are finite since the functions above are all trigono-
metric polynomials.
Summing up, it follows that

T T I
ISSTeh]| <o Al| + e Il (13.33)
k=1 P k=1 T k=1

Here the LP norms are taken with respect to the variable ¢ € T¢, and we
recall that the variables tq,...,t, € T¢ were kept fixed until now. We now
take the LP norms of (13.33) with respect to ¢, = (t1,...,t,) € T"% and use
the triangle inequality to get

< ||T||$(Lg(1rn;x))(/m /

+e [ fnlla
k=1

Exchanging the order of the integrations on T7¢ and T, we find by translation
invariance that the dependence on t and N, disappears and we are left with

HZkak‘
k=1

P _\1/p
kak (t + N, ®t)“thdtr>

" _ _ N1/
;; fulh+ Ny o) ara,)’

i |25 -
Ly ST lzasmes) Zf e 2 el
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Since there is no more explicit N, dependence, we may take ¢ — 0, and this
gives the assertion. O

Theorem 13.3.5 (Geiss—Montgomery-Smith—Saksman). Let d > 2 and
m € C(R%\ {0}) be a multiplier that is stably constant in the directions of
four vectors t+u;, i = 1,2, where moreover

m(—u1) = m(uy) # m(uz) = m(—us).
If m € MLP(R%; X), then X is a UMD space and

R 2||m||£mLP(]Rd;X)~

b X S onlun) — mlug)] (13.34)

To streamline the proof, we recall a transference result that we already ob-
served and used in the proof of Corollary 10.5.2:

Lemma 13.3.6. If m € C(R?\ {0}) N MLP(R%; X), then (m(k))reza (o} €
IMLE(T; X) and

[ (m(k))rezayfoy lmre e, x) < [mllonre ra;x)-

Proof. This is a slight variant of Proposition 5.7.1, which says that if every
k € Z¢ is a Lebesgue point of m € L>(R9), then (m(k))pecze is a Fourier
multiplier on LP(T¢; X) of at most the norm of the Fourier multiplier m
on LP(R% X). A slight obstacle is that 0 may fail to be a Lebesgue point
of our m(§), no matter how we define m(0). But, if we only consider the
action of these operators on L’O’(Td;X ), the Oth frequency never shows up,
and one can check that the proof of Proposition 5.7.1 also applies, with trivial
modifications, to the case that each k € Z?\ {0} is a Lebesgue point, giving
exactly what we claimed. O

Proof of Theorem 13.3.5. We begin by essentially the same reduction as in
the proofs of both Theorems 5.2.10 and 10.5.1 (the necessity of UMD for the
boundedness of the Hilbert transform and the imaginary powers of the Lapla-
cian, respectively); but we repeat this short step for the reader’s convenience:
By Theorem 4.2.5 it suffices to estimate the dyadic UMD constant. In order to
most conveniently connect this with Fourier analysis, we choose a model of the
Rademacher system (ry)7_,, where the probability space is T4 = T¢x-..xT4
(each T is simply an indexed copy of T¢), and 7, = rg(tx) is a function of the
kth coordinate t; € ']I‘z only. Moreover, we are free to choose any instance of
such function, as long as it takes both values 41 on subsets of T¢ of measure
1. Then it is sufficient to prove that

n
H Zﬁkfk‘
=1

n
<[5
Le(Tdn;X) kz_:lfk Lp(Tdn; X))
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where K is the constant on the right of (13.34), for all signs ¢, = +1, for
all fi of the form fr = ¢g(r1,...,7k—1)7k; these are precisely the martingale
differences of Paley—Walsh martingales (see Proposition 3.1.10). We use the
convention that LP(T%; X) := X.

Let us then observe that, with suitable choice of the invertible matrices
Aj, 7 = 1,2, the multipliers m,;(§) = m(A;§) (of the same multiplier norm
as the original m) are stably constant in the directions of e, k = 1,2, and
moreover m;(xer) = m(uq) if j = k and m;(£er) = m(ug) if j # k. Defining
yet another multiplier m/ = %(m; — m2) (of at most the same multiplier
norm as m), we find that m’ is also stably constant in the directions of +ey,
k =1,2, and moreover m’(+e1) = (m(u1) — m(uz)) =: a and m'(ez) = —a.
If we can prove the claim with m’, e1, es in place of the original m, u1, us, then
the original claim also follows from

2”m/||93?L1”(Rd;X) 2lmllonLe me;x)-
Im’(e1) —m/(e2)|  |m(ur) — m(us)]

Bp,X B

Dropping the primes, we assume without loss of generality that m(+e;) =
a = —m(=£esz), and m is stably constant in the directions of +e;, j =1, 2.

From Proposition 13.3.4 and Lemma 13.3.6 we know that, for suitable
functions fy,

H kafk‘
k=1

n
< 0| X4
Lp(Tdn;X) h ”mHMLS(Td’X)H — T Lr(Tdn;X)

n
<l | 325 ey

where T}, is a copy T(m(j)) acting in the kth 'H‘ﬁ, thus

jezd\{o}

Ty fr = or(r1,. .. ,?"k—l)f(m(j))v

TE.
jezd\{oy *

The required condition on f; above is that its Fourier coefficients with respect
to the variable t; should be non-zero only in the directions, where m is stably
constant, i.e., only in the directions +e; and +ey. Given the product form of
[, this means more simply that r; should have non-zero Fourier coefficients
only in these directions, which holds in particular if 7 is a function of only
the first or only the second coordinate. Note that this gives still (more than)
enough flexibility to make r; equidistributed with a Rademacher variable.
Now, given a sequence (ex),_, we choose ry to be a function of the first
coordinate if e, = +1, and of the second coordinate if £, = —1. It then follows

that in either case T(,,(;)) eniv oy Tk = OCKTES and we conclude that
J
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1 n
Lr(Tén;x)  |al H kz::l ki

Lp(Tdn; X)

o
k=1

2 n
< ey e " meeso | 20

LP(Tdn; X))
which is what we claimed. O

For the sake of precise quantitative conclusions, we also record the follow-
ing variant of Theorem 13.3.5. The assumptions of the next result are much
stronger than those of Theorem 13.3.5, so that the qualitative conclusion that
X is a UMD space is immediate from the previous theorem. The point of this
variant is that under the Stronger assumption we can directly estimate the
complex UMD constant ,6’ ‘x of X. The result is not strictly a corollary of
Theorem 13.3.5 itself, but follows by a modification of its proof, as we are
about to see.

Corollary 13.3.7. Let d > 2 and m € C(R?\ {0}) be an even, homogeneous
multiplier whose range contains the complex unit circle. If m € MLP(RY; X),
then X is a UMD space and
CX S HmHSUZLP(]Rd 1 X)-

Proof. By the same reductions and notation as in the proof of Theorem 13.3.5,
we now need to check that

HZ kfk’

for any o € C with |og| = 1. By the assumption about the range of m, we
can further write o = m(uy) for some uy € C with |ug| = 1.

Consider a large number R > 0. For each k, we can find an integer vector
ni € Z4 such that ||ng — Rug e < 5. Thus [lur, — R ng || < 55. Since m is
continuous, by choosing R large enough we ensure that [m(uy)—m(R™1n)| <
0 for each k =1,...,n and any given § > 0. Thus

HZ kfk‘

Lp(Tdn:X) S llm HmLP(RdX)Hka‘Lp(Tdn;X)’

n

= H Zm uy) fk‘
L (Tdn; X) 4

=1

where we also used the homogeneity m(R™1ny) = m(ny).

We now come to our choice of the Rademachers functions r appearing in
the martingale differences fi, = ¢i(r1,...,7k—1)7k. Fixing any Rademacher
function r on T, we take r(t) := r(ny - t) for t € T%. Substituting ny, - ¢ into
the Fourier series of r, we find that

Lp (']rdn X)

31| il o rems ),
Lp(Tdn; X) Z ”kaL (Tdn; X)

N

NIE

min) fi

b
Il

1
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r(t) = S (et

JEZL

has a Fourier series involving only frequencies that are multiples of the vector
ny. By the homogeneity of m again, this means that

T(m(j))jezd\{o}rk = m(nk)rk,

and thus

|3 ninos

Lp (T4 X) sz_jl @), oo T LP(Tdn;X)

< oz s | 3
k=1

Lp(Tdn;X)
Collecting the estimates, we have checked that
n n
< .
H Zakfk‘ Le(Tdn;X) HmHmLP(Rd’X)H ka‘ LP(Tdn; X)
k=1 k=1
n
+6 Z I fell Lo (ran; x5
k=1
or in other words
n
Hzakrmk(rl,--wrkd)‘Lp(Tdn;X)
k=1
n
< . R _
NS ||m||9:an(Rd7X)H;Tk(bk(rh , Tk 1)’ LZ’(Td”;X)

+ 52 rkdr(res. .. me—1) || o (ran,x)-
k=1

While the specific choice of the Rademacher functions r, depended on the
numbers ny, which in turn depended on §, it is clear that this last bound
is true for any Rademacher sequence (r)}_,, as soon as it is true for one.
Once this observation is made, we see that everything is independent of 4,
and taking the limit § — 0, we obtain the required bound. g

Corollary 13.3.8. Let X be a Banach space, d > 2 and p € (1,00). If any of
the following operators is bounded on LP(R?; X), then X is a UMD space:

(1) a second-order Riesz transform R; Ry, 1 < j,k < d,
(2) their non-zero difference R?- — R, 1<j#k<d,
(3) the Beurling transform B = (R% — R?) + i2R1 Ry (d = 2).
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Moreover, we have the following estimates:

(1) By x < 2/|BjRell 2 (rrra:x)).
@) S < I~ Rl
(3) Bpx < IBllz(rr®zx))-

Proof. These operators correspond to the multipliers

R & -& b —i&
€12 €2’ & +i&’

each of which is even and homogeneous, in particular stably constant in all
directions.

Writing &1 + i€ in the polar coordinates as re', it is clear that mp(¢) =
mp(re?®) = —e~2% takes all values in the complex unit circle. Hence the
claims concerning B are immediate from Corollary 13.3.7.

For R; Ry, we observe that mps &) = —£J2/|§|2 is —1 for € = e; and 0 for
& = ek, k # j, whereas mp, g, () = —1 for £ = (ej+e;) and § for § = (e;—ex)
when k # j; in each case we have |m(u1) — m(usz)| = 1 for suitable vectors
u;. For R]2- — R%, the multiplier is —1 for £ = e; and +1 for £ = ey, so that
|m(e;j) —m(er)| = 2. In each case, the claimed conclusion is immediate from
Theorem 13.3.5. O

mp(§) =

me;r, (€) = Mz () =

Corollary 13.3.8 allows us to complete a characterisation of a function space
embedding that we studied in Section 5.6:

Corollary 13.3.9. Let X be a Banach space, let d,k > 1 and p € (1,00).
Then there is a constant C' such that

I llwee@ax) < Ifllaer@exy  Vf €S REX)
if and only if at least one of the following holds:

(1) d =1 and k is even, or
(2) X is a UMD space.

Proof. The sufficiency of (1) has been established in Proposition 5.6.10 and
the sufficiency of (2) in Theorem 5.6.11. Moreover, in Theorem 5.6.12, it has
been shown that the UMD property is necessary when k is odd, and that the
boundedness of the second-order Riesz transform R? is necessary when k is
even and d > 2. By Corollary 13.3.8, the UMD property follows from this,
and hence it is necessary in all cases except (1). O

In our final corollary to Theorem 13.3.5, we dispense with the evenness con-
dition.
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Corollary 13.3.10. Let d > 1 and m € C(R¢\ {0}) be any positively homo-
geneous multiplier (i.e., m(\&) = m(€) for all ¢ € R4\ {0} and X\ > 0) that is
not identically constant. If m € MLP(R%; X), then X is a UMD space and

R . 4HmH9ﬁLP(]Rd;X)
px < min ,
urupeSe1 [m(ur) + m(—u1) — m(ug) — m(—ug)|
2[lm|lom e (re;x) )2
uesi-1 |m(u) —m(—u)|/ ’

Py < () < (

where at least one of the right-hand sides is finite.

The assumption that m is not identically constant, rather than the perhaps
expected “not identically zero”, is necessary: the Fourier multiplier T}, with
m = c¢ coincides with the scalar multiplication f +— c- f, whose boundedness
certainly needs no UMD.

Proof. As pointed out right before Proposition 5.3.7, the assumption that
m € MLP(R?; X) implies the same property for the reflected function m(€) :=
m(—¢). Then, by the triangle inequality, the even and odd parts meyen =
1(m+m) and meqq := 1(m—m) are also positively homogeneous multipliers
of at most the same multiplier norm as m. Since m is not identically constant,
and M = Meyen + Modd, at least one of Meyen Or Moqq is not identically
constant.

If Meven is not identically constant, there are two directions uy, us € Sd-1
such that Meyen(U1) 7 Meven(u2) and hence, by evenness,

meven(_ul) = meven(ul) 7é meven(UZ) = meven(_UQ)-

By Example 13.3.2, the homogeneous meven € C(R?\ {0}) is stably con-
stant in every directions. Hence meyen satisfies the assumptions of the Geiss—
Montgomery-Smith—Saksman Theorem 13.3.5, and the said theorem guaran-
tees that, for any such u,us € %1,

R 2||meven||ﬁmLP(JRd;X)
P Mieyen (1) — Meven (u2)
4||m||thp(Rd;x)
S omuy) +m(—uy) — mlug) — m(—usg)’

(Note that the condition that Mmeyven (%1) 7 Meven (u2) is precisely the require-
ment that the denominator is non-zero, and hence can extend the previous
display to all pairs of uy,us € S?!; interpreting 1/0 = oo, as usual, this only
amounts to adding the triviality 55 x < o00.)

For the odd part meqq, being not identically constant is equivalent to being
not identically zero. If this is the case, there is some direction u € S~ such
that m(—u) = —m(u) # 0. Writing ¢ € R? as € = (£ - u)u + [€ — (£ - u)u], we
consider the invertible linear transformations A& = (£ - u)u + A[§ — (€ - w)u],
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where A > 0. By Proposition 5.3.8, each mgqq © Ay has the same multiplier
norm as Meaq. As A — 0, it is clear that A& — (€ - u)u for all £ € R? and
thus, by the continuity of m and hence mqqq,

Modd © Ax(§) = Moda((§ - w)u) = sgn(§ - u)moaa(u).
A convergence result for multipliers, Proposition 5.3.16, then implies that
[Moda(w)|[|§ = sgn(& - u)llonrrre,x) < 111;11_%& [Moda © AxllonLrre;x)
= HmoddHSﬁLP(Rd;X)-

By another application of Proposition 5.3.8 with a rotation that sends w to
e1, it follows that

€ — Sgn(fl)”szP(Rd i X) = [|€ = sgn(§ - )||smLp(Rd iX)
[Modallonre®ex) _ 2lmllonrera;x)
[moaa(uw)] —  m(u) —m(—u)]

(The bound remains valid for all u € S?~1, reducing to a triviality if m(u) =
m(—u).) By Fubini’s theorem, we find that

fip, x = € — Sgn(f)”mm(R;X)Hf = Sgﬂ(fl)Hszp(R;X)-
The bound between S y < (hy,x)? is contained in Corollary 5.2.11. O
13.4 Notes

Section 13.1

The precise quantitative form of the final bound in the comparison of various
Fourier-type constants in Proposition 13.1.1 seems to be new; we were not
aware of this estimate at the time of completing Volume II, where a weaker
version was given. The identity ¢, c(R?) = (p'/?(p')~1/#")¢ mentioned below
the said proposition is due to Babenko [1961] in the special case that p’ is an
even integer, and due to Beckner [1975] in full generality.

The main result of this section, Theorem 13.1.33 is from Bourgain [1988a],
with preliminary versions going back to Bourgain [1981, 1982]. The main
theorem of Bourgain [1982] reads as follows: If X is a B-convex Banach space
(which is equivalent to non-trivial type by Proposition 7.6.8), then there are
u,v € (1,00) and 0, M € (0, 00) such that

5(3 o) sz\mx) (Z\mnx), (13.5)

yer’

whenever {z.},er is a finitely non-zero sequence of elements of X and I is
the spectrum of the compact abelian group G. This is a Hausdorff-Young
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inequality with mismatched exponents; our Corollary 13.1.27 is the special
case of the right-hand inequality with G = T and I' = {ej }rez. For these
particular G and I', and under the stronger assumption that X be super-
reflexive, (13.35) was proved in Bourgain [1981]. A further predecessor of
such results is due to James [1972], who proved a bound like (13.35) with a
super-reflexive Z in place of both X and L?(G; X), and z;, € Z in place of
both ., and vz, under the assumption that (2x)72, is a basic sequence in Z,

ie.,
K
> awen
k=1

for all scalars ap and integers K < L. Requiring (13.36) for 2z = epxy €
Z = L?*(T; X), uniformly in x; € X, is equivalent to the still stronger prop-
erty that X be a UMD space, which is why additional work was required by
Bourgain [1981] to obtain his result for trigonometric series in super-reflexive
spaces. (The estimate (13.36) in the said special case is equivalent to the
L?(T; X)-boundedness of the periodic Hilbert transform by Proposition 5.2.7,
and this is equivalent to the UMD property by Corollary 5.2.11. UMD spaces
are super-reflexive by Corollary 4.3.8, but the converse is false. Various exam-
ples showing the last point are due to Pisier [1975], Bourgain [1983], Garling
[1990], Geiss [1999], and Qiu [2012]. The example of Qiu [2012] is an infinitely
iterated LP(L?) space, which has been presented in Theorem 4.3.17, but the
super-reflexivity of this space is not treated there.)

As in our treatment in the section under discussion, getting from estimate
(13.35) with mismatched exponents to dual pairs requires further ideas. This
was achieved by Bourgain [1988b], who proved that, for some u1,v1 € (1,00)
and 61, My € (0,00), there further holds

/N 1/uh
o (Dl i) <D0 v
yel’ yel’
<
yer

when G is either T or the Cantor group {—1,1}". For G = T, the leftmost
and rightmost estimates correspond, in our notation, to ¢, x(T) < 1/6; and
oy, x (Z) < My, respectively. The easy estimate ¢, x (R) < ¢, x(T) was also
observed by Bourgain [1988b]. In contrast to the case of T, a scaling argument
(substituting f(A-) in place of f and considering the limit A — 0 or A — o0)
shows that an estimate of the from ||f||Lq(R;X) < O]l (r:x) can only hold
for ¢’ = p; thus, in order to deduce any Hausdorff~Young inequality on R at
all, the additional steps from the mismatched exponents of Bourgain [1982]
to the dual exponents of Bourgain [1988b] seem to be necessary.

The second half of the argument leading to Bourgain’s Theorem 13.1.33, as
presented in Sections 13.1.c and 13.1.d, is close to the treatment of Bourgain

L
< 13.
e S, 150

L1 (G;X)

ey (1337)
vy

RS VY S FH i R
L¥1(G;X) ! VGFHJJWHX
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[1988Db], although we have also benefited from the exposition of these steps by
Pietsch and Wenzel [1998]. On the other hand, the first half of our treatment,
in Sections 13.1.a and 13.1.b, is also based on Pietsch and Wenzel [1998] but
deviates from the original approach of Bourgain [1982]. The beginning of the
argument, leading to Proposition 13.1.11 on “breaking the trivial bound” is
due to Hinrichs [1996], but it also uses a result of Bourgain [1985], Proposition
13.1.7, on the Sidon property of quasi-independent sets.

We have chosen this approach of Hinrichs [1996] and Pietsch and Wenzel
[1998] due to an independent interest, in our opinion, of some of its intermedi-
ate steps, despite the fact that the original argument of Bourgain [1982, 1988b]
seems slightly more efficient in terms of the final quantitative conclusions. In
any case, the main result says that every Banach space of type p € (1, 2] will
have Fourier-type 7 = 14 (¢7, x.2) ¥, for some absolute constant ¢. (The ad-
ditional factor 6p’ in our formulation of Theorem 13.1.33 could obviously be
absorbed by choosing a larger constant ¢.) The difference is in the numerical
value of ¢, which is 68 in our formulation (up to the lower order factor just
mentioned) and 17 in Bourgain [1982, 1988b].

In our approach, this constant comes from the proof of Corollary 13.1.20,
where the estimate 48v/2 (=~ 67.88) < 68 is made. (Since we are clearly off
Bourgain’s constant at this point already, it would seem pointless to insist in
the decimals here.) The constant 48+/2, in turn, is produced as

48v/2=16-v2-3,  where

(i) 16 is the upper bound of the Sidon constants of quasi-independent sets
from Proposition 13.1.7;

(ii) v/2 comes from the factor in front of the upper bound of the number of
quasi-independent sets required to partition a given set in Lemma 13.1.9;
the root is due to the use of this number count after an application of
the Cauchy—Schwarz inequality in the proof of Proposition 13.1.11;

(iii) 3 is the constant from the Marcinkiewicz inequality (Proposition 13.1.17),
which enters into the estimate through an application of the Comparison
Lemma 13.1.18 in the proof of Corollary 13.1.20.

One may speculate that the constant 16 (just below the 17 of Bourgain [1982])
is the heart of the matter, and the other two factors are only produced by
secondary details that should be avoidable by more careful reasoning.

The approach of Bourgain [1982] is based on two abstract results (avoided
in the present treatment) about the collection of tuples of functions

0= (€ = (&)1, € LADR)" : il < 1,/& _ /@fj ~ 0
forall 1 <i#j<n}

on a probability space (2; namely:

(1) The set & of extreme points of & consists of tuples of +1-valued functions.
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(2) For each € € O, there is a Borel probability measure p on & such that

gi:/nid,u(n), for every i =1,...,n.
&

According to Bourgain [1982], the proof of (1) is “essentially contained in”
Dor [1975], while (2) can be derived from a generalisation of Choquet’s inte-
gral representation theorem due to Edgar [1976]. Combining these abstract
tools with delicate hard analysis, Bourgain [1982] eventually arrives at his key
technical estimate, which in our notation (and exchanging the roles of X and
X* compared to Bourgain [1982]) may be stated as

Spg))X* (F) < K- Nl/ta tl = (]-7 : Tp,X;Q)p/~ (1338)
This is recognised as a close relative of Corollary 13.1.29, where the bound
P (F) SK-NY5, & >0/ = 3p/(68- 7 x0)"

is obtained. While the left-hand sides are not identical, (13.38) allows Bourgain
[1982] to deduce the Hausdorff-Young inequality with mismatched exponents
as in (13.35) (with X* in place of X) for any v € (1,¢), and finally, in Bourgain
[1988Db], also the classical Hausdorff-Young inequality (13.37) (again with X*
in place of X) with any u; € (1,v). Since v € (1,t) is arbitrary, one can reach
any u1 € (1,t), and thus in particular the r determined by

= (18- 7y x:2) (13.39)
is a Fourier type of X*, and hence of X.

Remark 13.4.1 (A typo in the statement of Bourgain’s theorem in Konig
[1991]). Tt seems to be claimed by Kénig [1991] that every space of type
p > 1 would have Fourier-type r with v’ =c¢- 7 'X o and ¢ =18 (forgetting
brackets from (13.39)). As written, this is absurd for any absolute constant c:

It is straightforward to verify that, for every p € (1, 2], the space X = ¢P
has type p with constant 7, x,o = 1:

N N
H > enn ) < H > enin
4P
n=1 L2(str) n=1

< |t

= |[{ea 1l

£r(L2(£2)) e (£%)

N 1/p
L= (X lzali%)
e (ey) n=1

Thus, were the claim in the beginning of the remark true, all these spaces
would have the Fourier-type r» = —%; > 1, which is impossible for p € (1,7)
by Example 2.1.15.
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Since the numerical constant in (13.38) may be affected by an equivalent
choice of the type constant, we note that Bourgain [1982] is not explicit about
the precise definition of the constant that he denotes by C, but one can see
in the proof of the first step of his Proposition 4 that C = 7, x,2; recall that
we exchanged the roles of X and X* compared to Bourgain [1982].

More details on quasi-independent sets can be found in the monograph of
Graham and Hare [2013]. Sometimes quasi-independent sets are called disso-
ciate sets, but it seems that in more recent works this terminology is reserved
for the slightly stronger property where one allows ay € {—2,—1,0,1,2} in
Definition 13.1.5. In particular, one can find there that quasi-independent are
Sidon sets with constant 6v/6 ~ 14.70, which is slightly better than the con-
stant 16 in Proposition 13.1.7. The converse bounds of Remark 13.1.10 have
been shown to us by Dion Gijswijt. If one replaces the group Z by another
group it was shown on page 203 in Pietsch and Wenzel [1998] that the bound
of Lemma 13.1.8 is sharp.

The result of Proposition 13.1.21 states that type p and cotype ¢ with
1/p—1/q < 1/r —1/2 with r € (1,2) implies Fourier type r. In the limiting
case of equality it is unknown what happens. However, the result is sharp
in the sense that for every r € (1,2) and for every p € (r,2) there exists
a Banach space X such that X has type p, cotype ¢, and Fourier type r
with 1% — % = % - %, and none of the exponents (p,q,r) can be improved
(see Bourgain [1988a] and Garcia-Cuerva, Torrea, and Kazarian [1996]). This
example was also used to show that the dependence on the type constant is
necessary in Theorem 13.1.33. The following improvement was observed in
Garcia-Cuerva, Torrea, and Kazarian [1996] for Banach lattices X:

sup{p € (1,2] : X has Fourier type p}
= sup{p € (1,2] : X has type p and cotype p'}.

Section 13.2

In the scalar-valued case, considerations of the kind that we have presented in
this section go back to Hérmander [1960] who used similar methods to rederive
(a variant of) the multiplier theorem of Mihlin [1956, 1957] by transforming
it into a form where the theory of Calderén and Zygmund [1952] could be
applied. The methods of Hérmander [1960] are already very close to the ones
in the Section 13.2.b, the key difference being that he can make use of the
Plancherel theorem to pass between L? estimates in the space and frequency
variables. For functions taking values in a general Banach space, the only
available substitute is the elementary L'(R%; X)-to-L>(R%; X) boundedness
of the Fourier transform. This still allows essentially similar conclusions, at
the cost of requiring estimates for a higher number of derivatives as input.
On the other hand, as soon as we start imposing such stronger assumptions,
we can also obtain stronger conclusions, namely, standard Calderén—Zygmund
kernels rather than just Hormander kernels, as in Section 13.2.a. Scalar-valued
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versions of such results are again well known; for example, a version of Propo-
sition 13.2.7 with d + 2 derivatives (instead of d 4 1 in the said proposition)
appears in the book of Stein [1993]. Under this stronger assumption, Stein
[1993] deduces that k € CY(R?\ {0}), while Proposition 13.2.6 gives the
slightly weaker conclusion that & is just barely below Lipschitz, with a modu-
lus of continuity w(t) = O(¢t-log(1+ 1/t)). This is still quite enough to derive
like Corollaries 13.2.8, 13.2.9, and 13.2.10 on the boundedness of Fourier mul-
tipliers on weighted LP(w;X) spaces. Using the result from Stein [1993] in
place of Proposition 13.2.7, a version of Corollary 13.2.10 assuming d + 2
derivatives was formulated by Meyries and Veraar [2015]. In principle, vari-
ants of Propositions 13.2.6 and 13.2.7 sufficient for Corollaries 13.2.8 through
13.2.10 would only require smoothness of order d+ ¢, but such statements and
proofs are bound to have additional technicalities due to the very formulation
of fractional order smoothness conditions. Various results in this direction, in-
volving kernel bounds for Fourier multipliers with close-to-critical fractional
smoothness, were explored by Hytonen [2004].

To get rid of the ¢ > 0 altogether, i.e., to deduce useful (in view of
Calder6n—Zygmund extrapolation) kernel estimates for k = m from just d
derivatives of m, one needs to impose assumptions on the Fourier-type of the
underlying spaces. While we have only dealt with the sufficiency of the Fourier-
type assumption in Section 13.2.b, an early result involving both directions,
in dimension d = 1, is the following:

Theorem 13.4.2 (K6nig [1991]). A Banach space X is K-convex if and
only if every f € CY(T, X) has Fourier coefficients (f(n))nez € (*(Z; X).

Recall that K-convexity is equivalent to non-trivial type by Pisier’s Theo-
rem 7.4.23, and non-trivial type is equivalent to non-trivial Fourier-type by
Bourgain’s Theorem 13.1.33. The proof of “=" in Theorem 13.4.2 is then
straightforward from non-trivial Fourier type. For the converse, Konig [1991]
starts with a concrete counterexample when X = L!(T), and approximates
this finite versions that can be represented in £}, with blow-up in the limit
N — oo. By the Maurey—Pisier Theorem 7.3.8, if X does not have non-trivial
type, then it contains subspaces isomorphic to E}V uniformly, and hence the
said finite examples can also be represented in X. Finally, the closed graph
theorem guarantees that a sequence of examples with blow-up also guarantees
the existence of a single f € C1(T, X) with (f(n))nez ¢ €*(Z; X).

In our formulation of Proposition 13.2.13, the assumed Fourier-type p €
(1,2] only affects the constant in the estimate. However, by more careful
reasoning, one could show that also the number of the required derivative
0%m could be reduced as a function of p; roughly speaking, one needs only
derivatives up to order |d/p| + 1, or more generally fractional smoothness of
order d/p + €, to obtain the same conclusions. Such results can be found in
Hytonen [2004]. In the more general context of various function spaces, this
phenomenon will be explored further in Chapter 14; see Proposition 14.5.3
and take ¢ = oo there.
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Our focus in the section under discussion has been exploring conditions
that one needs to assume on a multiplier m in order that their associated ker-
nel k = m satisfies the assumptions of one of the extrapolation theorems of
Chapter 11 (so that the a priori boundedness of T},, on one LP° (R%; X) extends
to other spaces), but similar considerations can also be used to reduce the re-
quired smoothness, as a function of the Fourier-type of the underlying spaces,
in results like Mihlin’s Multiplier Theorem 5.5.10 (where the boundedness of
T,, on LP(RY X) is deduced “from scratch”). Such results were pioneered
by Girardi and Weis [2003b] and further elaborated by Hyténen [2004]. If m
is scalar-valued, it is also possible to replace Fourier-type by quantitatively
weaker assumptions on type or cotype; see Hytonen [2010].

Section 13.3

The main results of this section, notably Proposition 13.3.4, Theorem 13.3.5,
and Corollary 13.3.8, are essentially from Geiss, Montgomery-Smith, and
Saksman [2010], but we have incorporated some improvements, partially in-
spired by unpublished observations of Alex Amenta that he kindly shared
with us.

These results may be seen as successors, in terms of both statement and
proof, of Theorem 5.2.10 of Bourgain [1983] and Theorem 10.5.1 of Guerre-
Delabriere [1991], which deal with the necessity of UMD for the boundedness
of the Hilbert transform and the imaginary powers (—A)% of the Laplacian,
respectively. However, none of these three results contains any of the other
two.

Certain elaborations of Corollary 13.3.8 are due to Castro and Hytonen
[2016]. Namely, the identity 0;0,u = —R,; R Au implies that

d
||6jakUHLp(Rd;X) < CZ HR'L‘QUHLP(Rd;X)’ (1340)

i=1

where C' < || Rj Ri|| (1 (re;x)), but C could a priori be much smaller. How-
ever, Castro and Hytonen [2016] show that the seemingly weaker inequality
(13.40) still implies the UMD property with the same control

Bp.x < 2C(13.40) (13.41)

as in Corollary 13.3.8 for || R; Ri|| ¢ (Lr(r4;x))- More generally, the same paper
proves the necessity of UMD for any member of a family of inequalities of the
form
107 ull Lo (e, x) < C Z 10%ul| o (re;x) 5
acod

but the relation between the constants is particularly clean in the example
just mentioned.

It could be of interest to identify more general criteria (subsuming previous
related results) for inequalities of classical/harmonic analysis to
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(1) imply the UMD property of X (as in all mentioned results), or
(2) control the UMD constant 8, x linearly by the constant in the inequality
(as in Theorems 10.5.1 and 13.3.5, but not Theorem 5.2.10).

While we have concentrated, in this section, on lower bounds of multiplier
norms by the UMD constants, Geiss, Montgomery-Smith, and Saksman [2010]
also treat the other direction. In particular, they show that the first two
bounds of Corollary 13.3.8 are actually identities:

12R; Riel| (v (re;x)) = |RS — Rill 2 (1o (rax)) = Bpx (13.42)

for all 1 < j # k < d. The upper bounds for the norms are proved by
representing and estimating the operators by means of stochastic integrals.
Yaroslavstev [2018] obtained further variants of these estimates for related
operators. We plan to detail this in a forthcoming Volume. By (13.41), a
trivial bound, and (13.42), it follows that

Bp.x < 2C3.40) < 2||RjRell (e re;x)) = Bp.xs

and hence all these quantities must be equal. In particular, as observed by
Castro and Hyténen [2016], it follows that

_ 1 1
Clis40) = 5519,1& = i(max(p,p/) - 1),

using Burkholder’s Theorem 4.5.7 for the last equality. We are not aware of
another method than that of Geiss, Montgomery-Smith, and Saksman [2010]
to determine the exact norms (13.42) or the sharp constant in (13.40), which
highlights the benefits of martingale techniques even for questions of classical
analysis.

In the third case of Corollary 13.3.8 concerning the Beurling—Ahlfors trans-
form, the matching upper bound is an outstanding open problem even for
X = C (see Problems O.1 and 0O.2).

More generally, Geiss, Montgomery-Smith, and Saksman [2010] prove that
all real, even, and homogeneous (i.e., m(t¢) = m(¢) € R for all £ € R4\ {0}
and t € R\ {0}) multipliers m € C>(R?\ {0}) satisfy the estimate

[mlon e resx) < Cm - Bpx,

where C,,, depends only on m. Note in particular that the estimate is linear in
Bp.x, improving on the quadratic estimate provided by T'(1) Theorem 12.4.21,
or the still higher order dependence in the Mihlin Multiplier Theorem 5.5.10.
By elaborations of the T'(1) technology, linear dependence has also been ob-
tained for a class of even non-convolution operators on LP(R; X) (but only in
dimension d = 1, as written) by Pott and Stoica [2014], but beyond that the
availability of linear bounds in terms of 3, x remains open. In particular, a
possible linear estimate between 3, x and the norm of the Hilbert transform
hp x = | H| 2 (Lr®;x)), in either direction, is unknown (see Problem O.6).
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Certain substitute results related to the latter are due to Domelevo and
Petermichl [2023c,d]. They construct a new dyadic operator and show that
its boundedness is equivalent to that of the Hilbert transform, with linear de-
pendence between the respective norms in both directions. Analogous results
for the Riesz transforms are obtained in Domelevo and Petermichl [2023a,b].

Further estimates between the Hilbert transform (and variants) and de-
coupling constants related to the UMD constant can be found in Osekowski
and Yaroslavtsev [2021].

Corollary 13.3.9 characterises situations in which there is a continuous
embedding H*?(R?%; X) — W,P(R? X). Several related results, including
versions on domains @ C R, are due to Arendt, Bernhard, and Kreuter
[2020].
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Function spaces

This chapter presents an in-depth study of several classes of vector-valued
function spaces defined by smoothness conditions. In Volume I we have already
encountered two such classes: the Sobolev spaces W*P?(R%; X) for s € N and
s € (0,1) (Chapter 2) and the Bessel potential spaces H*?(R%; X) for s € R
(Chapter 5). Both classes are parametrised by an integrability parameter p and
smoothness parameter s. The present chapter introduces two related classes of
function spaces, the Besov spaces B (R%; X) and the Triebel-Lizorkin spaces
Fy, (R?; X). From the point of view of applications these spaces play an im-
portant role in the theory of partial differential equations, where they typically
occur as trace spaces associated with initial value problems. What makes these
spaces interesting from a mathematical point of view is the wealth of differ-
ent characterisations of these classes: they can equivalently be introduced via
Littlewood—Paley decompositions, difference norms, and interpolation.

In line with earlier developments, we introduce both Besov spaces and
Triebel-Lizorkin spaces via their Littlewood—Paley decompositions. These
involve a so-called inhomogeneous Littlewood—Paley sequence (¢k)r>o0 of
Schwartz functions on R? whose Fourier transforms behave, informally speak-
ing, as a dyadic partition of unity radially. In terms of such sequences, the
Besov and Triebel-Lizorkin norms are defined by

”fHB;,q(Rd;X) = H(kapk * f)k?Oqu(LP(Rd;X))

and
Hf”F;yq(]Rd;X) = H(ka‘pk * f)k>0HLp(Rd;e<z(X))’

in the sense that a tempered distribution f € .#/(R%; X) belongs to either
one space if and only if the respective expression is well defined and finite.
The third parameter ¢ featuring in these definitions is often referred to as the
microscopic parameter.

In both cases, the norms are independent of the Littlewood—Paley se-
quence up to a multiplicative constant independent of f. Accordingly, it will
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be a standing assumption that throughout the chapter we fix a Littlewood—-
Paley sequence (¢r)r>0 once and for all (Convention 14.2.8). Dependence of
constants on this sequence will never be tracked.

Interestingly, the Bessel potential spaces studied in Chapter 5, and whose
study is continued in the present chapter, admit a similar decomposition re-
placing ¢2-norms by Rademacher norms (Theorem 14.7.5) in case X has UMD:

1l sy = 116250k % Disollon 2o
= [l(er2"en * Hizoll o oo (x))-

using the notation for Rademacher spaces introduced Section 6.3; the equality
of the latter two norms is obtained by repeating the proof of Theorem 9.4.8
for Rademacher sums. Comparing these norms with the previous two, it is
also of interest to note that equivalent norms are obtained if the eP-norm is
replaced by an €?-norm, by the Kahane-Khintchine inequalities.

In view of their very similar definitions, it comes as no surprise that the
theories of Besov and Triebel-Lizorkin spaces largely parallel each other and
resemble the theory of Bessel potential spaces to some extent. There are some
notable differences however, due to the different orders in which the LP-norm
and /9-norm are taken; as we have already pointed out, the Triebel-Lizorkin
norm is generally speaking more difficult to handle. The main advantage of
the Besov and Triebel-Lizorkin over the Bessel potential spaces is that they
are often easier to work with, and indeed many basic results for these spaces in
the vector-valued setting do not rely on the geometry of the Banach space X.
This is in stark contrast with the theory of Bessel potential spaces, where the
corresponding results often require geometrical properties such as the UMD
property of X or the Radon—-Nikodym property of X*, as we have seen in
Chapter 5.

After establishing notation and proving some preliminary results in Sec-
tion 14.1, the class of Besov spaces is introduced in Section 14.4 via their
Littlewood—Paley decompositions. Several basic aspects of these spaces are
discussed, such as their independence of the inhomogeneous Littlewood—Paley
sequence used in the definition, the density of smooth functions, and Sobolev
type embeddings. We continue with several more advanced results, including
a difference norm characterisation, identification the complex and real inter-
polation spaces, and identification of the dual spaces. In Section 14.5 these
results are used to prove embedding theorems for the spaces v(L?(R?), X)
introduced in Chapter 9 and to prove R-boundedness of the ranges of smooth
operator-valued functions under type and cotype assumptions. In the same
section we discuss Fourier multiplier results for Besov spaces under (co)type
and Fourier type assumptions.

In Section 14.6 the Triebel-Lizorkin spaces are introduced. Proving the
same basic properties as before is more complicated, especially for the impor-
tant endpoint exponent ¢ = 1, and requires the boundedness of the so-called
Peetre maximal function and the boundedness of Fourier multiplier opera-
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tors for functions with compact Fourier support in an LP(R%; £9(X))-setting.
Most of the elementary and more advanced results discussed for Besov spaces
have a counterpart for Triebel-Lizorkin spaces and indeed our treatment mir-
rors that of the Besov spaces. Some results, however, have a different flavour,
such as the Sobolev embedding theorem (Theorem 14.6.14), the Gagliardo—
Nirenberg inequalities (Proposition 14.6.15), and the embedding theorem of
Franke and Jawerth (Theorem 14.6.26), all of which have an improvement in
the microscopic parameter ¢. In some situations this improvement makes it
possible to derive results for general Banach spaces X in an effective way. For
instance, for any Banach space X one has continuous embeddings (here and
below denoted by “—")

P L(REX) o HOP(REG X) < F (R% X) (14.1)
for p € (1,00) and s € R. For Hilbert spaces X this can be improved to
H*?(RY; X) = Fy,(R% X)

with equivalent norms for all p € (1,00) and s € R; this identity characterises
Hilbert spaces up to isomorphism (Theorem 14.7.9). The “sandwich result”
(14.1) often makes it possible to prove results about H*P?(R%; X) without
conditions on X by factoring through a Triebel-Lizorkin space. At the end
of the section apply some of the obtained result to prove boundedness of
pointwise multiplication by the function 1, in Triebel-Lizorkin spaces and
Besov spaces. Such results are non-trivial due to the non-smoothness of 1g_,
and are important in applications to interpolation with boundary conditions
of vector-valued function spaces used for evolution equations.

In Section 14.7 we return to the study of Bessel potential spaces and dis-
cuss some basic properties not covered in the earlier volumes. These include
improvements of (14.1) for UMD spaces X under type and cotype assump-
tions, as well as some advanced results on complex interpolation of Bessel
potential spaces (Corollary 14.7.13). At the end of the section we prove the
boundedness of pointwise multiplication by the function 1g, in Bessel poten-
tial spaces again for UMD spaces.

As we will be using Fourier techniques practically everywhere, it will be
a further standing assumption that throughout the chapter we work over the
complex scalar field. As usually is the case, the case of real Banach spaces
can be treated by standard complexification arguments. In some cases one
can argue directly on real Banach spaces (see Remark 14.2.6). Unless stated
otherwise, X will always denote an arbitrary complex Banach space.

14.1 Summary of the main results

Scattered over this section a wealth of inclusion and interpolation results are
developed. For the convenience of the reader, we include a concise overview
of them here, with pointers to their location.
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In all identities, unless otherwise no geometric restrictions apply to Banach
spaces and the occurring indices are taken in the ranges

Po,p1,p € [1,00], quthe[laOOL 5075135€R7 kOakl EN,
or subsets thereof. The interpolation results assume that 6 € (0,1) and where

1 1-6 6 1 _1-6 ¢
=—+ -

Do Po P 9 ¢

and
892(1—9)8()-i-9817 k@Z(l—Q)ko-i-GIﬁ.

The complex and real interpolation spaces of an interpolation couple (Xg, X1)
of Banach spaces are denoted by

Xo = [Xo0, X1lo, Xop= (X0, X1)op

respectively.

Identities. Up to equivalent norms we have the following identifications. If
p € [1,00), s € (0,1), then

W P(R%: X) = B; (R X) (Corollary 14.4.25)

and, if s € (0,00) \ N,
SR X) = B, (R% X). (Corollary 14.4.26)

If H is a Hilbert space and p € (1,00), s € R, then

H*P(RY H) = Fj o(R% H) (Theorem 14.7.9)
and, if p € (1,00) and k € N,

WEP(RY H) = FF (R H). (Theorem 14.7.9)
If X is a UMD space and p € (1,00), k € N, then

wkr(RY X) = HP"(RY X). (Theorem 5.6.11)

Embeddings. We have the following continuous embeddings:

S (R%: X) < B (R: X) = 7' (R% X) (Proposition 14.4.3)
B (R: X) = B (RGX) < BS (R X) (Proposition 14.4.18)

d. s (md. d. e
SR X) = Fy (R X) = S (RY X) (Proposition 14.6.8)
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F3 (REX) — B (REX) < FS (REG X) (Proposition 14.6.13)
FF (RE X)) = WHP(RE X) < FY (RE X) (Proposition 14.6.13)
FS (RGX) = HYP(RG X) < Fy (R X) (Proposition 14.6.13)

and, if p € [1, 00),

B ngRE:X) 5 Fy (RYG X) < By

s ovg(RE X). (Proposition 14.6.8)

Sobolev embedding theorem I: If (and only if) either one of the following three
conditions holds: pg = p1 and sg > s1; po = p1 and sg = s1 and qg < qq;
po < p1 and go < ¢ and So—f0 281—1%;'0}1611

s d. s d.
By o R%X) = Bt (R X). (Theorem 14.4.19)
Sobolev embedding theorem II: Let pg,p1 € [1,00). If (and only if) either one
of the following three conditions holds: pg = p; and sg > s1; po = p1 and
so =81 and qo < q1; po < p1 and sg — p% > 81 — 1% (no condition on ¢q, q1);
then

F (RY X) < F1 (R X). (Theorem 14.6.14)

Po,9q0 P1,91

Sobolev embedding theorem III: Let pg,p1 € (1,00). If (and only if) either one
of the following three conditions holds: pg = p1 and sg = s1; po < p1 and
so—%Esl—p%;then

HoPo(RE X)) <5 H5PH(RE: X) (Theorem 14.7.1)

and, if in addition sg, s1 € N, then the same necessary and sufficient conditions
give

Weopo (R X)) < WoLPH(RY; X). (Theorem 14.7.1)
For k € N,
BY J(R:X) = Chy(R: X) — BE ((R%X). (Proposition 14.4.18)

If py € [1,00] and sg,s1 = 0 satisfy so — pi > s1, then

0

B

0 (R%G X) — CoL(RY X) (Proposition 14.4.27)
and, if in addition ¢ € [1,00] and s1 € N,

B (RYX) — €% (RY X)), (Proposition 14.4.27)

Po.q
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Jawerth-Franke theorem: If pg < p1, and sg — p% > s — z%’ then

s d. 1 d.
Fpe (R X) — Bt (R X) (Theorem 14.6.26)
and, if p; < oo,
B (R:X) < Fo (R X). (Theorem 14.6.26)
If k£ > d, then
Fllfoo(]Rd;X) — C']’jb_d(Rd;X). (Corollary 14.6.27)

Embeddings under (co)type assumptions: If (and only if) X has type p € [1,2],

1_1
Bz(nl}? 2)d(Rd§X) — v(L*(RY), X). (Theorem 14.5.1)
If (and only if) X has cotype ¢ € [2, o0],

1_1
Y(L2(R), X) < Bt PRE X).  (Theorem 14.5.1)

If X has type po, then for all p € [1,pg) we have
HG=2%(RY X) < ~(L2(RY), X). (Corollary 14.7.7)
If X has cotype qo, then for all ¢ € (g, 00) we have
V(LA(RY), X) — HG@™DRE X)), (Corollary 14.7.7)

If X is a UMD Banach space with type pg € [1, 2] and cotype ¢o € [2, 0], and
if pe (1,00), s € R, then

Fs (R X) < HYP(R% X) — F5(RY X). (Proposition 14.7.6)

Y2y Pp»qo0

Complex interpolation. Let (Xy, X7) be an interpolation couple of Ba-
nach spaces. Let pg,p1 € [1,00] with min{pg,p1} < 00, qo,q1 € [1,00] with
min{qo, q1} < 00, and sg, s1 € R or kg, k1 € N. Under these assumptions:

[Byo.qo (RY: Xo), Byt 4 (RY X1)]o = By

Po,qo Po,q0 Po,qe

(R%; Xy). (Theorem 14.4.30)
If po,p1 € (1,00) and qo, q1 € (1, 0],

[Fpe, (R Xo), Ft (R X1)]p = F4 (RY; Xo) (Theorem 14.6.23)
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and, if in addition X is a UMD space, then

[Whopo(RE; X)), WhtP1(RY: X1)]g = HFoPo (RY; Xy) (Corollary 14.7.13)

[H%oPo (R X)), HoVP1(RY; X1)]g = H®P(RY; X). (Theorem 14.7.12)
Real interpolation. Let (Xy,X;) be an interpolation couple of Banach
spaces and X be a Banach space. Let pg,p1 € [1, 00] with min{pg,p1} < o0,

qo,q1 € [1,00] with min{qo, ¢1} < 00, 0,51 € R, and ko, k1 € N. Under these
assumptions:

If s # s1, then

(B, (R%: X), Bst (RY X))g,q = Bie (R% X) (Theorem 14.4.31)
(H*P(R% X), HP(RY X))g,q = By, (R X). (Theorem 14.4.31)

In addition, if sg, s1 € N with sg # s1, then

(WP (RY X), WP (RY X))g,q = By, (R X) (Theorem 14.4.31)
and if sg,s1 € (0,1) with sp # s1 and p € [1,00), then

(WP (RY X), W P(RY X))gq = By?,(RY X). (Theorem 14.4.31)
If sg,51 € [0, 00) satisfy so # s1, then

(C2(R% X)), CoL (R X))g,00 = B o (RY X). (Corollary 14.4.32)
If p e [1,00) and sp # s1, then
(Fso (R X), Fon (R% X))g,q = Bio (R X). (Proposition 14.6.24)

Duality. With respect to the natural duality pairing of L?(R% X) and
L?(R4; X*), for p,q € [1,00) and s € R we have, up to equivalent norms,

s d. * —s d. *
B, (R X)* = B,° (RY X7) (Theorem 14.4.34)
and, for p,q € (1,00) and s € R,
s d. * —s d. *
Fj(RY X)* = Fp,,q,(R ; X). (Theorem 14.6.28)
If X* has the Radon-Nikodym property, p € [1,00), and s € R, then

H*P(R%; X)* = H" (RY; X*). (Proposition 5.6.7)
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14.2 Preliminaries

In this section we prepare some, mostly technical, results that will be of use
in our treatments of both Besov and Triebel-Lizorkin spaces.

14.2.a Notation

We start by reviewing some notation that has been introduced in the two
earlier volumes. We use the standard multi-index notation explained in Section
2.5. For the details we refer to the relevant sections (Section 2.4.c for Schwartz
functions, 2.4.d for tempered distributions, 2.5.b and 2.5.d for Sobolev spaces,
and 5.6.a for Bessel potential spaces).

Let X be a Banach space and let d > 1 be an integer. The Schwartz space
Z(R%; X) is the space of all f € C°(R% X) for which the seminorms

[fla,s = sup [|z70° f ()] (14.2)
z€R

are finite for all multi-indices a, 3 € N¢. These seminorms define a locally
convex topology .7 (R%; X) in which sequential convergence f,, — f is equiv-
alent to the convergence [f — fn]a.s — 0 for all multi-indices o, 3 € N%. This
topology is metrisable by the metric

S T S ] Y [f = glas

=t L+ [f = glas

which turns .#(R%; X) into a complete metric space. Thus .#(R%; X) has the
structure of a Fréchet space. As a consequence of Lemma 1.2.19 or Lemma
14.2.1, the space C°(R?) ® X is dense in LP(R% X) for 1 < p < co. We
will prove in Lemma 14.2.1 that C2°(R%) ® X is sequentially dense in both
C>(R% X) and .7 (R%; X).

The space of continuous linear operators

S'(R%: X) = Z(S(RY), X)

is called the space of tempered distributions with values in X.

Let D be an open subset of R%. For 1 < p < oo and k € N the Sobolev space
WkP(D; X) is the space of functions f € LP(D; X) whose weak derivatives
0 f of order |a| < k exist and belong to LP(D; X). Recall that a function
g € L (D) is said to be the weak derivative of order « of f if

/ F(2)0%6(x) dz — (-1)‘&'/ g(2)é(z)dz for all ¢ € C2(D).
D D
Such a function g, if it exists, is unique. With respect to the norm

L lwerix) = D 10 fllp,

|| <K



14.2 Preliminaries 301

the space W*P(D; X) is a Banach space. For 1 < p < oo and 0 < s < 1,
the Sobolev-Slobodetskii space W*P(R%; X) is the space of all functions f €
LP(R%; X) for which the seminorm

Wlweroix) = (/D D Mdzdy)l/p

|z — ylortd
is finite. With respect to the norm
[fllwsrepix) = [1fllp + [flwer(pix),

the space W*?(R%; X) is a Banach space. By Theorem 2.5.17, for 1 < p <€ o
and 0 < s < 1 the real interpolation method gives

(L (R X), WP (RY X))o, = WO (R X)

with equivalent norms.
For 1 < p < oo and s € R the Bessel potential space H*P(R%; X) consists
of all u € /(R4 X) for which the tempered distribution Jyu € .#'(R%; X)
defined by
Tou = ((1+4n°| - [2)*/2a)~
belongs to LP(R%; X). Recall that the Fourier transform of v is defined by

u(f) = u(f) for f € .#(R% X), where the Fourier transform of a function
f € LY(R%; X) is defined as

&)= 71(6) = /R f@)e € ds, € R

The inverse Fourier transform of a tempered distribution is defined similarly.
With respect to the norm

||u||HSJ’(Rd;X) = ||Jsu||Lp(]Rd;X)7

H*?(R% X) is a Banach space. The following continuous embeddings hold,
the first being dense if 1 < p < oo:

Z(R%: X) = HP(R% X) — 7' (R% X).
By Theorem 5.6.1, complex interpolation gives
[LP(RY X)), WFP(RY; X))y = H*P(R?; X)

with equivalent norms, provided X is a UMD space, 1 < p < oo, and k > 1 is
an integer. Under the same assumptions, Theorem 5.6.9 gives

[HeoP(RY X), HP(RY X)) = HP (R X)
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with equivalent norms, for sg,s1 € R satisfying so < s; and with sy = (1 —
0)so + 0s;1. Still for UMD spaces X and 1 < p < oo, by Theorem 5.6.11 for all
integers k > 1 we have

WhP(RY X) = HRP(RY X)
with equivalent norms. For k£ = 0 we have the trivial identities
WOP(R?: X) = HOP (R X) = LP(RY; X),

valid for all Banach spaces X and 1 < p < 0.

For k € N the space Cf(R?; X) consists of all k-times continuously differ-
entiable functions f : R? — X whose partial derivatives 9 f are bounded for
all multi-indices o € N? satisfying || < k. With respect to the norm

1flloprasxy == sup [[0% flloo,
RING

the space Cf(R%; X) is a Banach space. We denote by C¥, (R%; X) its closed
subspace of functions for which 9% f is uniformly continuous for all |a| < k.

For 0 € (0,1) the space of Hélder continuous functions Cf (R%; X) consists
of all bounded continuous f : R* — X for which the seminorm

If(z) = fW)
[flooga.xy == sup ———2"
@ (R0 z,yER Ay |3;‘ - y‘e
is finite. With respect to the norm
1fllco®a;xy = I flloo + [floo ®a;x)

the space C(R%; X) is a Banach space. The Banach space obtained by taking
0 = 1 in these expressions is called the space of Lipschitz continuous functions
and is denoted by Lip(R%; X).

For s = k+6, with k € N and 6 € (0, 1), the space C¢ (R%; X) is defined as
the space of all f € CF(R?; X) for which 9*f € CZ(R%; X) for all multi-indices
satisfying |o| < k. With the norm

Hf”Cg(Rd;X) ‘= Sup ||8af||cg(]Rd;X)7
ler| <k

this space is a Banach space. For all s € [0, 00) we have continuous embeddings
SRY:X) = C(RY X) — 7' (RY X).

The first embedding is not dense, as non-zero constant functions cannot be
approximated by Schwartz functions. For non-integers s > 0 we will use the
notation

SR X) = Co(RY X).
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14.2.b A density lemma and Young’s inequality

Let U C R? be an open set. The elements of the space C2°(U; X) will be
referred to as X-valued test functions. Sequential convergence in C°(U; X) is
defined by insisting that f, — f in C°(U; X) if there exists a compact set K
of U containing the support of all f,, and ||0%f — 9% f||sc — 0 for all a € N%.
Related sequential notions, such as Cauchy sequences, are defined similarly.
Note that if f,, — f in C>(U; X), then also f,, — f in . (R%; X), provided
we extend the functions identically zero outside U.

Lemma 14.2.1. The space C°(R?) ® X is sequentially dense in C2°(R%; X)
and ' (R%; X).

Proof. We prove the lemma in two steps.
Step 1— We first prove that C2°(R¢; X) is sequentially dense in .7 (R%; X).
Let f € Z(R% X). Let ¢ € C(R?) satisfy ( =1 on {¢ € R?: [¢] < 1}
and ( = 0 on {¢£ € R? : |¢| > 2}, and put f,(z) := ((z/n)f(z). Then
fn € CX(R%; X). To prove that f, — f in .(R% X) it suffices to check that
for all multi-indices «, 8 € N¢ we have
lim || ﬁaa [(1- (/n))f]Hoo = 0.

n— oo

The elementary verification is left to the reader.

Step 2 — Let f € C(R% X). Choose bounded open sets O,U,V C R?
such that supp(f) CU C U CV CV C O. We first claim that for every
€ > 0 there exists a g € C2°(V) ® X such that || f — g||cc < €. Fix e > 0. Since
f(U) C X is compact, it follows that there exist x1,...,z, € X such that
f(U) C B(x1,¢)U... B(zy,¢). The sets Uy = O\U and U; = f~Y(B(z;,€))NV
for j =1,...,n define an open cover (U;)}_, of V. Let (¢;)}_, be a smooth
partition of unlty subordinate to this cover, i.e., ¥; € CX(U;), 0 < ¥; < 1,
and Zg:O t; =1 on V. Letting g := Z]:O Y @x; with xg = 0 for all u € ]Rd

we have
n

I1f (u <D W) fw) — 4] <e.
7=0
which proves the claim.
Let ¢ € C(RY) satisfy [p. ¢(u)du = 1 and put ¢;(u) := j%(ju). By
compactness, the exists an index ]0 € N such that for all j > jp and all
g € C=(V; X) we have ¢;+g € C(0; X) and, for all multi-indices a, 8 € N,

[0 * 9 — 9lap < Coplldj*0%g —0%gllec — 0

as j — oo, by the uniform continuity of 0%g. We conclude that for all such
g and j = 0 we have ¢; x g — g in (R% X). In particular, this holds with
g = f. By the claim, we can find a sequence (gx)x>1 in C°(V) ® X such that
If — gklloo = 0. Now for each j > jo the functions gx; := 1, * gx belong to
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C>*(0)® X, and by the above we have g; — g in . (R%; X). For appropriate
Jk = jo we find that g;, — g in S (R% X). Since gi;, € C°(0) ® X, this
proves density in C>°(R%; X).

To prove density in .7 (R%; X) let f € .7(R% X). By Step 1 there exists
a sequence (fn)n>1 in C(R% X) such that f, — f in (R% X). Using
Step 2, for every n > 1 choose a sequence (fy, x)k>1 in C(RY) ® X such
that f,r — f, in C(R% X). Then in particular, f,r — fn in 7 (R% X).
Since convergence in .#(R%; X) is governed by countably many seminorms, a
standard diagonal argument allows us to find a subsequence such that f, 5, —
f in (R X). O

As a corollary to the above lemma we record:

Proposition 14.2.2. For all p € [1,00) and s € R the space C°(RY) @ X is
dense in H*P(R%; X).

Proof. By Proposition 5.6.4, for all p € [1,00) and s € R we have a dense
embedding .7 (R%; X) — H*P(R?; X). O

We will often make use of the following version of Young’s inequality, which
extends a special case already proven in Lemma 1.2.30.

Lemma 14.2.3 (Young’s inequality). Let p,q,r € [1,00] be such that
%4—% =141 Iff e LP(RLEL(X,Y)) and g € LY(R% X), then fxg €
L"(R%:Y) and

ILf * gl Lrmasyy < I flle@a,2x vyl Lara; x)-

Proof. For 1 < g < oo, by density it suffices to prove the estimate for g €
C>(R%) ® X, and if ¢ = oo, then p = 1 and r = oo and it suffices to prove the
required estimate for f € C°(R%) ® .Z(X,Y). In either case, f * g is strongly
measurable and we have the bound || f * g|| < || f|| * ||¢g]|- The estimate then
follows from the scalar version of Young’s inequality. O

We recall from Section 1.3 that the variation of an operator-valued measure
¢ o - L(X,Y), where (S, ) is a measurable space, is the measure
|?] : & — [0, 0] given by

12][(A) = sup > [|&(B)]l;
T Ber

the supremum being taken over all finite disjoint partitions 7 of the set A € o7;
the is taken in Z(X,Y’). We say that @ has bounded variation if ||@||(S) < oo.
For a strongly measurable function f:S — X such that

[l < o,
S
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the construction of the Bochner integral (see Section 1.2.a) can be repeated
to define f g [ d® as an element of Y satisfying

| [ rao] < [usiaien.

When (S, 7, u) is a measure space, a simple example of an operator-valued
measure with bounded variation is obtained by taking #(A) := [, ¢ du with
¢ € LY(S, u; £(X,Y)). The total variation of this measure satisfies

12[1(S) < 1BllL(s,u.2x,v))-
Standard arguments show that [¢[|fllx d[|?| < oo if and only if ¢f €

LY(S;Y) and in that case
/ fdo = / of du.
S S

Lemma 14.2.4 (Convolutions with measures). Let ® : R? — Z(X,Y)
be an operator-valued measure of bounded variation, and let f € LP(R?; X).
For almost all x € R? the integral [g. f(x — y)dP(y) is well defined in the
above sense, and the convolution

D x f(x) = » fz —y)do(y)

defines a function @ * f € LP(R%,Y) which satisfies
[|® * fHLP(]Rd V) H@”(Rd)”fHLP(Rd X))

Proof. For 1 < p < oo, Minkowski’s inequality (Proposition 1.2.22) implies

| / Jre=widieiw), ., < / o £ =) sy A1)

= |/l e @) |21l (RY).

For p = oo, the same holds for trivial reasons. It follows that for almost all
z € RY the mtegral D f(x) = [ga f(x—y)dD(y) is well defined in Y. By ap-
proximation with simple functlons 1t is seen that @ x f is strongly measurable,
and since

25 @I < [ 17—l delw)

the required estimate also follows. O

14.2.c Inhomogeneous Littlewood—Paley sequences

We now introduce one of our main technical tools, which allows us to break
up a function spectrally into pieces with control on their frequencies.

Let @ denote the set of all Schwartz functions ¢ € .7 (R9) with the follow-
ing properties:
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(i) 0<PE) <1, EeRY,

(i) &) =1 if ¢ <1,

(i) P(§) =0 if [¢] > 3.

Such functions can be constructed in a similar way as in Lemma 5.5.21.
Remark 14.2.5. If ¢ € @, the function ¢ € .7 (R%) given by

~

P(&) = (&) — @(2€)

is a smooth Littlewood—Paley function in the sense of Definition 5.5.20, i.e.,

() 12 is smooth, non-negative, and supported in {& € R%: 1 < |¢] < 2};
(i) Y 9(275¢) =1 for all € € RT\ {0}.
keZ

Remark 14.2.6. 1t is possible to choose the function ¢ is real and even (or
equivalently @ real and even). In that case it would be possible to use real
Banach spaces in several of the definitions and results of this chapter. For
instance if f € LP(R% X) or even .#/(R%; X), then ¢ * f can be defined
without using any complex structure.

Definition 14.2.7 (Inhomogeneous Littlewood—Paley sequence). The
inhomogeneous Littlewood—Paley sequence associated with a function p € @
is the sequence (pr)k>0 in . (R?) given by

Po(§) = (&), k=0, {€RY,
Pu(&) = p(27F) —p(27F e, k>1, e R

Note the scaling property

@k(f) = @1(2_k+1§)7 k = 17 (144)

and the telescoping properties

(14.3)

S B© =502, Y E©) =1 (14.5)

k=0 k>0

We will often use the simple L'-norm identity

|2, =
k=0

e2miz-E 5 0(277€) d{‘ x—Q"/d lpo(2"2)| dz = ||¢oll1,

(14.6)

which implies

lowl = | Zsak - ZsokH <2lgolli, k> 1. (14.7)
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The adjective ‘inhomogeneous’ refers to the special role played by the
function g whose support contains an open neighbourhood of the origin.

Inhomogeneous Littlewood—Paley sequences will be used to define the
classes of Besov spaces and Triebel-Lizorkin spaces. Up to equivalent norms,
the definitions of these spaces turn out to be independent of the particular
inhomogeneous Littlewood—Paley sequence chosen. This allows us to fix an
arbitrary such sequence once and for all and always work with that given se-
quence. In order to avoid endless repetitions we therefore make the following
convention.

Convention 14.2.8. Throughout this entire chapter, (py)ren denotes the in-
homogeneous Littlewood—Paley sequence associated with a function ¢ € @
which we fix once and for all. Whenever this is useful, we extend the index
set of the sequence to include the negative integers by setting

gbkEO, k:—17—2,...

Constants in estimates involving a Littlewood—Paley sequences or spaces de-
fined by using them will often also depend on the generating function ¢ € @,
but since it is considered to be fixed we will not express these dependencies
in our estimates.

Let us collect some easy properties of inhomogeneous Littlewood—Paley
sequences. It is immediate to check the Fourier support property

PO=1 for 32 <<, k21, (148)
and
suppPr C{E € R : 2P e <3-2571), k> (14.9)
In particular we have the disjointness property
supp ; Nsupp P = &, [j —k[ > 2, (14.10)
which implies the orthogonality properties
0ior =0 and @;*x@r =0, [j—kl>2. (14.11)

From (14.5) and (14.11) we infer

1

> Bres=1 on supp(@r), k>0, (14.12)
j=-1

using the convention ¢_; = 0 for the case k = 0.
By Proposition 2.4.32, for ¢ € .%(R%) and u € .#/(R%; X) the convolution

Yxu=F (0f) (14.13)

is well defined as element of C*°(R%; X) and as such it has at most polynomial
growth. For later use we record the following useful consequence:
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Lemma 14.2.9. Every f € .'(R%; X) with compact Fourier support belongs
to C(RY%; X) and has at most polynomial growth.

Proof. This follows from Proposition 2.4.32 by writing f = f % g with g €
(R?) satisfying g = 1 on supp(f). O

Returning to the main line of development, by applying (14.13) to the con-
volutions ¢y, * u, the latter can be identified with distributions in ./ (R¢; X))
and we have the following result:

Lemma 14.2.10. Let E = Y (R% X) or E = (R4 X). For all f € E we

have .
F=onxf= > ¢rrexprp*f

k>0 (=—1k>0

with convergence of the sums in E.

Proof. The second identity follows by applying the first twice and (14.11). It
thus remains to prove the first identity.

By the second identity in (14.5), (14.13), and the continuity of the
Fourier transform on E proved in Proposition 2.4.22, it suffices to show that
Zk>0 prg = g for all g € E, with convergence of the sum in F.

First suppose that g € .%(R%; X). In view of the first identity in (14.5) we
must to show that, for arbitrary multi-indices «, (3,

lim ||(-)79%((1 = 3(27"))g]|| , = 0.

n— oo

This is elementary and left to the reader.
Next suppose that g € .%/(R%; X). Fix a function ¢ € .7 (R%). We need to
check that >, - g(¢@k) = g(¢). For this it suffices to check that 3, 1@k =

¥ in #(R9), which is the content of the previous case. O

As a first application of Littlewood—Paley sequence techniques we prove a
lemma that will be useful for establishing Fourier multiplier results in later
subsections. For its proof we recall from Volume I the space

LYREX) = {f e L®(R: X) .27 f e LYRY X)),

where the inverse Fourier transforms is viewed as an element of .#/(R%; X).
With respect to the norm

1l gy = 1722
Lt (R?; X) is a Banach space. It enjoys the scaling invariance property

Hf(A')”\L/l(Rd;X) = Hf”\[:l(]Rd;X)? A>0, (14.14)

which is proved by a simple change of variables.
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Lemma 14.2.11 (Integrability of Fourier transforms — I). Let f €
CHHY(RY; X)), and suppose that there exists an & > 0 such that

Craei= 1 ey 19 £ (9| < oo
fod,e m%ﬁ;;ﬂ@(ﬂ&l MO F(E)| < o0

Then f € L'(R% X) and || fl| o rasx) Sae Cae-

Note that Cj g is trivially finite (for all ¢ > 0) if f € C4T}(R? X) has
compact support.

Proof. In view of (14.5) we have Hf”El(Rd;X) < 2iso ”@ijEl(Rd;X)’ and
therefore it is enough to show that for all j > 0 we have

||@jf||fl(Rd;X) Sd 27(j71)60f7d7€' (1415)

First we consider indices j > 1. Setting B := {¢ € R? : [¢] < 1}, by (14.4)
and (14.14) we obtain

H@jf”f/l(]Rd;X) = ||{51(.)f(2j_1.)||f1(]Rd;X)

1F @1C)F @ D ix) + 1 @10) (277 @asx)
=: T1 -+ TQ.

The first term is easy to handle. Indeed, since ||.#||p1 p~ < 1and 0 < $; < 1,
B [|.7(@1()f(2771))llo
Bl21()f(27 e gax) < B ) e apyaix),s

using that @7 is supported in 3B \ B in the last step. Together with the
assumed bound for f with o =0, for £ € 3B\ B we have

Ty <
< |

Ca,e

_ Yrde o 5-(-1)
1+2<j—1)€|§le<2 7T Crde

[F{CZI][ES

Combining this with the previous estimate, this gives the bound 77 <
~U=DeCy 4|38\ B||B|.
For the second term we use the finiteness of Cy := fRd\B |z| =4~ dz to
obtain

Ty < Cal|é = 1" F (@1 f (7)) ()]

By the estimate |£|9H1 <, 2 laj=a+1 |7 | and the identity (2mi)leleaZ (g)(¢) =
F(0%9)(€), for each ¢ € R? we can further estimate

el Z @@ NEy Sa D 1@ F(@f @)«

|a|=d+1
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= > 7@ RN -

lor|=d+1
Using that ¢ is compactly supported we obtain

|7 @[22, < |02 f @Iy S [0%[@r @]

After an application of the Leibniz rule it remains to estimate terms of the
form 0°3,07[f(2771.)] with |B| + |y| = |a| = d + 1. By the assumptions and
the fact that @, is supported in 3B \ B,

10°2107 [£ (27 )]loo Sa Slulp 1207 f (297 1) || < 270 D0y 4 .
1<€1<3

It follows that Ty <4 2-U=YeC} 4 .. This proves (14.15) for j > 1. The case
7 = 0 can be shown in a similar way, skipping the dilation step. O

For later reference we state the following consequence of Lemma 14.2.11.

Lemma 14.2.12. Let A\ > 0 and suppose that f € CHH1HIMN (R X) has sup-

port in the ball Br = {€ € R% : |¢| < R}. Then (1+|-)*f(-) € LY(R% X)

and
I+ DOl @ex) < Croall fll gasiem masx)-

Proof. Upon replacing A by [A] we may assume that A € N. By Lemma
14.2.11 we have f € L'(R4; X). Therefore it suffices to prove the estimate
with (1 +|-|)* replaced by |- |*.

Arguing as before, since |z <4 2 o161=x |28,

H |- |>\ﬂ|L1(]Rd;X) Sd.R Z ||8/ﬁ\f||L1(Rd;X)~
[B]=X

Therefore, the required result follows from Lemma 14.2.11 applied to 97 f. O

14.3 Interpolation of LP-spaces with change of weights
When (S, o, 1) is o-finite measure space, we call a measurable function w :
S — [0, 00] a weight if w(x) € (0,00) for almost all € S. On earlier occasions
(e.g., in Appendix J and Chapter 11) we have considered the weighted spaces
LY (w; X) := {f : S — X strongly measurable,
q 1/q
s = ([ 1@ @) du@) ™ < oo},

For the present purposes, it is more convenient to introduce the variant
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Li(S;X):= {f : 8 — X strongly measurable,
1/a
£ liacsio = ([ @@ du) " < oo},
S

For ¢ < oo, this is just another way of expressing the same spaces with a
different normalisation of the weight, namely L% (S; X) = L%(w?; X). How-
ever, using the usual modification for ¢ = oo, the first version reduces to just
L>(w; X) = L*™(5; X) (since dp and w dp share the same zero sets), whereas
LE(8; X) with norm || f||pe(s;x) = [[fwl|l=(s;x) 15 a new space with non-
trivial dependence on the weight w.

14.3.a Complex interpolation

Our first main result concerning these spaces is the following:

Theorem 14.3.1 (Stein—Weiss). Let (Y, Y1) be an interpolation couple of
Banach spaces, let qo,q1 € [1,00] satisfy min{qo,q1} < oco. Let (S, o, ) be
a o-finite measure space, let wg,w; be two weight functions on S, and let
0 € (0,1). Then

(L35, (53 Y0), Lig, (S;Y1)]e = L, (S; [Yo, Yil)

isometrically, where

1 1-0 ¢
- = + —, w:wéfow‘f.
q do a1

We first record the simple:

Lemma 14.3.2. In the setting of Theorem 14.5.1, if fn, — f in the norm of
LL (S;Y0) + L& (S;Y1), then a subsequence converges almost everywhere in
the norm of Yo + Y7 to the same limit function.

Proof. We assume that || f, — f||quo(S;Y0)+Lq1 (s;v;) — 0. Hence, for every

w wy
n, there is a decomposition f,, — f = f9 + f}, where “f£||Lfg,(s;3g) — 0 for
j = 0,1. By the well known version of the Lemma in just oile LP space, a
subsequence of f converges to 0 almost everywhere in the norm of Y. By the
same result, a further subsequence of f! also converges to 0 almost everywhere
in the norm if 3. Thus, along this last subsequence, f,, —f = f°+f} converges
to 0 almost everywhere in the norm of Yy + Y7. O

Proof of Theorem 14.3.1. The unweighted version (wp = w; = w = 1) of this
result is contained in Theorem 2.2.6. We will reduce the weighted version to
this special case. Let us abbreviate Y := [Yy,Y1]y. For n € Z,, we denote
Sp = {n"! <wp,w; <n}. Then |J,=, S, exhausts S, up to a set of measure
zero, by definition of weights.
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Step 1 - L7,(S; [Yo, Yalo) € [, (S; Yo), L, (S; Y1)]o:
Let f € LI(S;Y), and assume first assume that {f # 0} is contained in S,
for some n € N. Thus

¢:= fwe LI(S;Y) = [L(S;Yy), LT (S; Y1)]o,

where the equality of space is Theorem 2.2.6, and hence ¢ = &(0) for some
& € H (L (S;Yy), L1 (S;Y1)), where this notation of holomorphic functions
on the unit strip with appropriate boundary behaviour is defined in Section
C.2. The relation ¢ = $() remains valid if we replace #(z) by ¢(z)1g, , and
hence all the subsequent considerations can be restricted to E,,. In particular,
multiplication by any power of wg or w; is then a bounded operation on any
of the (weighted or not) LP spaces appearing in this argument. Now

f=owt = 20wy "y * = F(6),

where F(z) := @(z)wo_(l_z)wfz € H(L%(wo;Yp), LT (w1;Y1)). Qualita-
tively, the last inclusion is easy from the corresponding relation for ¢ and
the restriction of the supports on FE,, where all multiplications by powers of
w; are bounded. Quantitatively, we have

IF G+ i) 195 ayev;) = 190 + it)wg ™D wr | Las uyevs)
= ||@(j +it)| re (S;Y;) 7 =0,1,

thus, recalling that ||F||»(x,,x,) := max;—o,1 Sup;eg ||F(j + it)||Xj7

1E e Lo, (sive).La (siva)) = [Pl (zao (s5v0), L1 (5:31)) (14.16)

U1

and hence

1130 (s:vo).z2 (svile < 1w (n0 (s:v0).L2 (s:71))
= 12lloe oo (s:v0),L91 (5v1))-

Taking the infimum over all @ in this space with ¢ = &(6), we obtain

Hf”[LfU"O(S;YO),Lf}l(S;Yl)]g < ||¢||[LQO(S;YO),L‘H(S;Yl)]e
= ||¢||Lq(s;Y) = ||f||L?,,(S;Y)~

Recall that the previous estimate was obtained under the assumption
that f € LZ(S;Y) satisfies {f # 0} C S,. For a general f € LL(S;Y),
this bound holds with either 1g, f of 1g,f — 1g, f in place of f. Since
1s,f — f in L%(S;Y) by dominated convergence, it follows that 1g, f
is a Cauchy sequence, and hence convergent, in the interpolation space
(L% (S;Y0), L% (S;Y1)]e and thus in the sum space L% (S;Yy) + L2 (S;Y1)
by Lemma C.2.5. By Lemma 14.3.2, a subsequence converges almost every-
where to the same limit function. But it is clear that the a.e. limit is f, and

hence
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Hf”[LfUOO(S;YO),LfUll(S;Yl)]g = nh_{rolo ||1Snf||[L$uOO(s;Yo),L$U11(s;yl)]e

< lim |1, fllza s;vy = [1fllLe siv)-
n— oo

Step 2 — [L0 (S;Yo), LL (S;Y1)]e € LL(S; [Yo, Yile):
Let f = F(0) € [LL (S;Y0), LL (S;Y1)]e, where

As before, we first assume that {f # 0} C S,, and then without loss of
generality (multiplying by 1g if necessary) that F'(z) has the same property
for every z. We can then reverse the previous reasoning. Defining

B(z) = F(2)ugwi,
we check the same relation (14.16), and hence
1f 2o wsyy = IEO)wl|Lasiyy = [1PO) Lo (s5v5). L9 (5:v0)16
<N @lloe(zo(sivo).Lo(siva)) = IF w0 (s:v0), L2 (5:v0))-
Taking the infimum over the relevant F' with F(6) = f, we get
1f1leg, sivy < It (sivo).o (sivoyer S 7# 03 € Sa. (14.17)

wo
Consider next a general f € [LL (S;Yy), LiL (S;Y0)]e. Multiplication by
1g, contracts all L? spaces, including weighted ones, and hence also the inter-
polation space [L% (S;Yp), L (S;Y1)]g by Theorem C.2.6. Now (14.17) holds
with 1g, f in place of f, and hence

115, fllaquiyy < ILs, fllinm (sive),zo (ssvorle < Il (s0v0).L98 (5:v0))6-

But then monotone convergence shows that

Iflloquwyy = Jim 115, fllzsivy < IFlliLa (sivo).on (s:vo)le-

This completes the proof. O

For easy reference later in this chapter, we state the special case of the previous
result for sequence space with the weights ws(k) = 2% on the integers.

Proposition 14.3.3 (Complex interpolation of the spaces ¢, (Y)).
Let (Yo,Y1) be an interpolation couple of Banach spaces, let qo,q1 € [1,00]
satisfy min{qo, q1 } < oo, and let 59,1 € R and 6 € (0,1). Then

(€%, (Yo), £33, (Y1)lo = €5, ([Yo, Y1lo)

170_|_9

isometrically, where s = (1 — 0)sg + 0s1 and % ==+

Proof. The condition s = (1 — 6)sg + 0s; is equivalent to w, = wl fwf ;

whence the Proposition is a special case of Theorem 14.3.1. O
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14.3.b Real interpolation

We next turn to the case of real interpolation. Recall that for a Banach couple
(Xo,X1), the real interpolation space (Xo,X1)s, with p € [1,00] and 6 €
(0,1), was introduced in Section C. 3 Also recall from Theorem C.3.14 that if
po, p1 € [1,00] satisfy + 5= 11,*9 + =, then (Xo, X1)o,p = (X0, X1)0,po,p, With
equivalent norms, where the latter denotes the Lions—Peetre interpolation of
Xo and X; (second mean method). The main result of this section is as follows.

Theorem 14.3.4 (Stein—Weiss, real version). Let (Yo,Y1) be an inter-
polation couple of Banach spaces, let qo,q1 € [1,00] satisfy min{qo,q1} < oo.

Let (S,47, 1) be a o-finite measure space, let wgy, w1 be two weight functions
on S, and let 0 € (0,1). Then

(LZ(;JO (57 Y0)> L?ull (S’ Yl))e,qo,lh = LZ}(S, (Yb7 }/l)e,qoﬂh)

isometrically, where

1 1-46 0
+ w 1-6, 0
q q0 q1

In particular,
(L, (S5Y0), L, (S5Y1))e,q = LE(S: (Y0, Y1)a,q),
with equivalent norms.

Proof. The unweighted version (wy = w; = w = 1) of this result is contained
in Theorem 2.2.10. We will reduce the weighted version to this special case.
Let us abbreviate Y := (Yy,Y1)0,45,q:- As in the proof of Theorem 14.3.1 we
denote S, := {n~! < wp,w; < n} for each n € Z,, and observe that | J7—, S
exhausts S, up to a set of measure zero, by definition of weights.
Step 1 - Lg,(S;Y) C (L%, (S;Y0), L, (S;Y1))0.00.01°

Let f € LY (w;Y), and assume first that {f # 0} is contained in S, for
some n € N. We also make the technical assumption that the weights w; are
discrete, in that they only take values of the form p*, where p > 1 is a fixed
number, and k € Z. This plays a role in the representation (14.18) below. Now

¢ = fw e LU(S;Y) = (L*(S;Yo0), L™ (55 Y1))0.q0.01

where the equality of spaces is Theorem 2.2.10. Hence, by Definition C.3.10
of the Lions—Peetre interpolation method (, )g g.q:, for some strongly mea-
surable @ : (0,00) — L%(S;Yy) N L7 (S;Y1), we have

¢=/OOO
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where t/=0¢(t) € L% (dt/t; L9 (S;Y;)) for j = 0,1, and (as a consequence)

the improper integral converges in L% (S;Yy)+ L% (S;Y1). Multiplying by 1g,

if necessary, we may assume that each @(t) is also supported on S,,.
Choosing the auxiliary weight W := wg Lwy, we then have

_ o _, dt e _, dt > dt

On S, both w; are bounded from above and below. Due to the technical
assumption on the discreteness of their ranges, both these weights, and hence
W, only take finitely many possible value on S,,. Hence

K
F(t)=o(W)w™" =Y 15,0(toy)B;" (14.18)

for some ay, B € (0,00) and sets E C S, from which it is immediate that
also F' : (0,00) — L®(S;Yy) N LT (S;Y7) is strongly measurable. This still
remains true with each L% (S;Y;) replaced by L% (w;;Y;) since the intersec-
tions of these spaces with functions supported on S, coincide. With these
qualitative issues out of the way, we make the quantitative observation

dt
0P (t
[, o %

T —1, 119 dt
= [ IRy g s s,
0. (14.19)
= WO w0 (t a
= [T R ey sy T
dt
0
= [ a1 sy G
where in the last step our choice W := wy L, and the assumption w =
wé 0 wf show that W9~ Jw_lu) = 1 for both j = 0,1 (and indeed having this

1dent1ty dictates our choice of the auxiliary W).
Now, by the Lions—Peetre method, we have

i—6
190 (S5v0), L2 (811160001 S sup 1t = 7 E @ oy (a0 (5:v))

= SUP [t = 7B (t) | 295 (aejesL (5:v;))
=0

and taking the infimum over all such @ shows that
HfH(LfUUO(S;Yo),L?}l(S;Yl))ququl < ||¢||(LqO(S§YO),Lq1(S§Y1))9‘q0,q1
= ||¢||Lq(s;Y) = Hf”L?U(S;Y)'

We proved this assuming that {f # 0} C S,. For arbitrary f € LL(S;Y),
this is true with either 1g, f or 15, f —1g,, f in place of f. It follows that 1g, f
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is a Cauchy sequence, and hence convergent, in (L (S;Y0), LZ (S;Y1))0.q0,q1
and thus in LL (S;Yy) + L (S; Y1) by the very Definition C.3.10 (recall that
f e (X(),Xl)qug’q1 is given by an integral that converges in Xy + X;). By
Lemma 14.3.2, a subsequence converges almost everywhere to the same limit,

and hence this limit must be f. Thus f € (LL (S;Y0), L%, (S;Y1))0,40,q:> and

||fH(L 0 (85Y0),LE (S5¥1))0,00.a1 n11_>m [1s, f||(L 9 (85Y0), L%, (S5Y1))0,40.01

< lim |15, f|

Lo siv) = I fllze, siv)-

We still had the additional hypothesis on the discreteness of the ranges of
both w;. For arbitrary weights w; and p > 1, we consider

w; , = sup{p” : p* <w;, k€ L},

which clearly satisfy the discreteness property, as well as w; , < w; < pw;j .
Hence

||f||LZ,JJ (S;Y5) < p”fHLzpr(Sny)
J
and Theorem C.3.16 gives the first estimate in

P00
||f||(L:1,90(s;yo),L?,}1 (55Y1))0,q0.a01 < ||f|| (L2 (S:Y0),LEL  (SY1))0.00.01

=P||f||Lq179 s (S5Y)
wo’p wl’p
< p”fHLq(w;Y)'
Taking the limit p — 1, we finally deduce
||f||(L % (S:Y0), L (S5Y1))6.40.a1 ||fHLZJ(S;Y)

unconditionally.

Step 2 (L1, (S5 Y0), LY, (S5 Y1))ogon © L4(S:Y):
Let f € (L (S;Y0), LE, (S;Y1))6,40,q, - We make the same initial assumptions
on both f and the weights w; as in the previous part. By definition, we have
f= [ F(t)9 with t/=F(t) € L9 (dt/t; L, (S;Y;)). Working the previous
computations backwards we find that

T R
b= fw:/o F(t)w7=/0 P :./0 (1)<,

where @ satisfies the relevant measurability conditions (by the structural as-
sumptions on the weights) and the quantitative relation (14.19). We conclude
that

H¢||(LqO(S§Y0)7Lq1(S§Y1)) S sup ||tj70¢(t)”L"J'(dt/t;LqJ'(S;Yj))
J

=0,

0,490,491

— sup [ OF(t)

H aj .79 Y.
b L9 (dt/6LE, (S5Y7))
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and taking the infimum over all relevant F,
1Fll2s, sv) = 9l Lagsivy = 1Dl (s:v0).L91 (5:1))6,00.01
Hf” L0 (S;Y0), L4, (S:Y1))0,q0 a1 °

For a general f in the interpolation space, applying the previous conclusion
to 1g, f in place of f, we have

1, f]

rosv) S s, fllnmo (s:v0).29 (5:¥1))6.00 0,

<
< ”fH(L S5Y0), Ly (S5Y1))0,q0,a1°

since multiplication by 1g, is clearly contractive on each L% (wj;Y;), and
hence on the interpolation space by Theorem C.3.16. It then follows from
monotone convergence that

1 llzg, sivy = Tim [1s, fllzg sy < I 1lenss, sivo), 22 (5510000,

Finally, the discreteness assumption on the weights can be removed by the
same considerations as in the previous part: For general weights w; and the
auxiliary discrete wj, , as in the previous part, we have

I fllLe, (sivy = If]lLe tio s(s;y) < P(1_9)+9||f||Lq179 , (SiY)
“0.p Y10
< pllfllezze, L (S5Y0). L3, (S5Y1))6.00.01
S Il 20 (5:v0). L8 (S:1))6.00 0 2
and taking the limit p — 1 completes the proof. 0

For applications of the real interpolation theorem to Besov spaces, it is useful
to include a version that is genuine variant, rather than just a special case of
the previous theorem. This version is concerned with the particular case of
S = N or S = Z with the exponential weights w,(k) = 2*%, and restricting
to just one range space Yy = Y7 = Y. Remarkably, under these circumstances
the condition % = 1q;09 + (;% of Theorem 14.3.4 can be omitted:

Proposition 14.3.5 (Real interpolation of the spaces /
D, qo,q1 € [l,00], let so,s1 € R satisfy sog # s1, let 0 € (
s=(1—0)sg+ 0s1. Then

Y)). Let
);

&, (
0,1), and let

(é?fso (Y),E,Z}SI (Y))op = €5, (Y) with equivalent norms,

with constants in the norm estimates only depending on 0, p, sg, s1. Moreover,
Jor ally € 03 Y)n G (Y) we have

)
Il (v < oI’ o I8y v

where C' only depends on sqg, s1, 0.
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Proof. We will present the details for S = N, as the case S = Z is proved in
the same way. By interchanging the roles of /3 (Y) and £}, (Y) if necessary,
without loss of generality we may assume that sg > s1.

Since £l (V') = €37 (Y) and £8 (V) < 37 (V) continuously, real inter-
polation (Theorem C.3.3) gives (¢, (Y), €8 (Y))op = (€35 (V) €3 (Y))op
continuously. Hence to show that (Eq”so( ), qusl (Y))op embeds into E” p(Y)it
suffices to consider the case ¢o = ¢; = 00. If y = y(@ 4y € o (Y)+L5 (Y),
then

1 S S
lyell < ol + g < 27 olly ez vy + 275 1y Ve, -

Multiplying with 2%% and taking the infimum over all admissible pairs
(¥, y), we find
250 |y | < K (28070 )

using the notation of Section C.3. In combination with the identity 0(s1—s¢) =
s — so and the fact that the K-functional is non-decreasing, this gives

1/p
I, < (3 e K @Hom) y)ir)
k>0
o(k+1)(sg—s1)

de\1/p
<a(Y KMy L)
2

>0 k(sp—s1)
_ dt\ 1/p
< CO(/O LK (t, )P 7) = Collyll gz, SO (V))a 0

(0p)'/?
(1—2—(s0—s)p)1/p

gives the same result with Cy =1 if p = co.
To prove the reverse inequality it suffices to consider the case ¢y = ¢1 = 1.
Discretising as before, we find

where Cy = if p < co. A simple modification of this argument

ok(so—s1)

de\1/p
1 < t 0K t, pi)
Il 2, 00, < (3 Lo WK P S
1/p
(Zl2 srtere (oo )
k>0
(s0—)p_1)1/p
where C; = %. If p = oo we consider the supremum norm in

the above and take Cy = 2°7°. Splitting ¥m = Ym1im<r) + Ymlim>ry, we
estimate

k 9]

K0, ) < 37 2oy, |+ 25007 3 2y,

m=—oo m=k+1
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Therefore, since 6(s; — sg) = s — sg and (1 — 0)(s1 — sg) = s — 1,

2—9k(80—81)K<2k(80—81)’ Y)

k o)
< Y 2 Reemdgmly, |+ Y amimeRlemeame |y, .
m=—oo m=k+1

Taking ¢P-norms in k and using Young’s inequality for convolutions we obtain

1/p
(Z |2—0k(so—81)K(2k(so—S1), y)|P) < (CQ + C3)||?J||zfu3 (v)
k>0

where Cy = S°72 (27k(0=%) and C3 = S°72 , 27%(s=51) This gives the inequal-
ity

Ylles,,, vys, 7o < Cr(C2+Ca)llyllen, (-

The final assertion is immediate from the first assertion and the log-
convexity inequality (L.2). O

14.4 Besov spaces

The various Littlewood—Paley decompositions encountered in Chapter 5 ex-
press the norm of a function f € LP(R? X) in terms of (sharp or smooth)
dyadic cut-offs in the frequency domain. For instance, in Theorem 5.5.22 we
have seen that if X is a UMD Banach space, p € (1,00), and ¢ is a smooth
Littlewood—Paley function,

1 lasmaey = || D exton + /|

kEZ

, (14.20)
Lr(2xR4;X)

where 9y () := 29 (2Fx) and (¢4, )rez is a Rademacher sequence. With an eye
toward the ensuing discussion we also remark that we have an equivalence of
norms

”f”LP(]Rd;X) ~ H Zék% * f‘ (14.21)

keN

Lr(2xRE;X)

where now (¢x)ken is an inhomogeneous Littlewood-Paley sequence as in
(14.20). This follows from Theorem 14.7.5 below, but could already have been
proved in Chapter 5 with the methods presented there.

The idea behind the Littlewood—Paley approach to Besov spaces is to take
this representation as a starting point, introducing an additional smoothness
parameter s € R, and trading the norm of the Rademacher sum for an ¢4 -
sum. The possibility of having p # ¢ presents us with two possible deﬁmtlons
utilising the spaces ¢4, (LP(R%; X)) and LP(R%; ¢2, (X)) respectively. For p =
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q, these spaces are canonically isometric by Fubini’s theorem. The two choices
lead to the theory of Besov spaces and Triebel-Lizorkin spaces, respectively.

The choice ¢ (Z) with the (homogeneous) Littlewood-Paley sequence
(Vr)kez as in (14 20) leads to the so-called homogeneous Besov and Triebel-
Lizorkin spaces. Alternatively, the choice ¢4, (N) and the use of Littlewood-
Paley sequences (¢g)ren as introduced in Definition 14.2.7 leads to the in-
homogeneous version of these spaces. In what follows we will only present in
the inhomogeneous case. Both classes of spaces are used in applications to
PDE. The advantage of inhomogeneous spaces is that, in the development
of their theory, one can make effective use of Schwartz functions and tem-
pered distributions. The theory of homogeneous spaces is technically more
involved and requires the use of different classes of test functions and equiv-
alence classes of tempered distributions modulo polynomials. Since we have
already encountered Schwartz functions and tempered distributions in many
places, we choose to only develop the theory of inhomogeneous spaces here.
Homogeneous spaces have better scaling properties, and scaling often plays
a crucial role in PDE, but for the purposes of the theory developed here
homogeneous spaces are not essential.

The proofs of (14.20) and (14.21) require the Banach space X to be UMD.
In contrast, in the theory of Besov and Triebel-Lizorkin spaces these norm
equivalences are promoted to definitions, thus eliminating the need of impos-
ing any conditions on X. By taking this approach, most of the fundamental
results in the theory of Besov spaces and Triebel-Lizorkin spaces are true
for arbitrary Banach spaces X. They come with their own versions of the
Mihlin multiplier theorem which does not require the UMD property either,
allowing multipliers without singularities at the origin in case of inhomo-
geneous spaces. The more general multipliers considered in Chapter 5 have
corresponding versions for homogeneous Besov and Triebel-Lizorkin spaces.
Perhaps more surprising is the fact that also for the duality theory of these
spaces no geometrical conditions need to be imposed on X. This contrast
the duality theory for the Bochner spaces, which requires that X* have the
Radon—-Nikodym property.

14.4.a Definitions and basic properties

As anticipated in the above discussion, we now introduce scale of Besov spaces
through a Littlewood—Paley decomposition.

Definition 14.4.1. Let p,q € [1,00] and s € R. The Besov space Bj  (R%; X))
is the space of all f € 7' (R%; X) for which ¢y, * f € LP(R?; X) for all k: 0
and for which the quantity

2ks

Hf”B;;‘q(le;X) = H( Pk * f)k>0ng(Lp(Rd;x))

is finite.
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Here, (¢k)k>0 is the inhomogeneous Littlewood—Paley sequence that has been
fixed throughout the chapter (see Convention 14.2.8). By the discussion of
(14.13), the tempered distribution ¢ * f is a C°°-function of polynomial
growth, so that the LP-norm in the above definition makes sense.

To see that ||- ||B;q(Rd;X) is indeed a norm, suppose that Hf”B;’q(Rd;X) =0.
Then 3)f = F o+ f)=0forall k > 0, so g * f =0 for all £k > 0, and
therefore f = 0 by Lemma 14.2.10. All other properties of a norm can be
deduced from the fact that || - ||ga(1r(re;x)) 15 @ norm.

It is immediate from Young’s inequality, applied term-wise with respect
to the (7%-sum, that ¢ = f € Bj (R%X) whenever ¢ € L*(R?) and f €
B;,q(]Rd; X), and more generally the analogue of Proposition 14.2.3 is valid.

Up to an equivalent norm the above definition is independent on the choice
of the sequence (g )k>0, as will be shown in Proposition 14.4.2.

From the continuous embedding ¢%° — {9 for 1 < gp < ¢1 < 0o we obtain
the continuous embedding

B: (R%: X)— BS (R%X). (14.22)

bp,qo0 p,q1

For 1 < ¢p,q1 < o0 and sg > s; we have the continuous embedding

B (R% X) — BS (R X). (14.23)

Pp,qo0 p,q1

Indeed, for gy < ¢ this follows from (14.22) and the inequality 2¥% < 2ks1
for k£ > 0. For gy > ¢ this follows from Holder’s inequality with q% = q% + %

and using that Zk>0 9—k(so—s1)r ~ o

Proposition 14.4.2. For all p,q € [1,00] and s € R, up to an equivalent
norm the space B;,q(Rd;X) 1s independent of the choice of inhomogeneous
Littlewood—Paley sequence (pg)k>0-

The proof will give explicit constants depending only on s and ¢q (in one
direction), respectively s and g (in the other direction).

Proof. Suppose (¢x)r>0 is another inhomogeneous Littlewood—Paley seq-
uence. Then the analogues of (14.10) and (14.11) hold with ¢; and y; in
particular for all j,k > 0 with |[j — k| > 2 we have ¢ * ¢; = 0. Using
(14.12) for the sequence (¢r)r>0, the triangle inequality, Young’s inequality,
and (14.7), we obtain

(27 o * f)k>0||eq(LP(le;X))

< Z 125 * s * f)k>0||ea(Lp(Rd;X))

1
< ekl Z 2lsl|| K+ oy *f)kgo”zq(L,,(Rd;X))

j=—1
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< 6”‘100”12‘S| ||(2ks7v[’k * f)k>0||eq(Lp(Rd;X))’

where we used (14.7). This gives the required estimate in one direction. The
reverse estimate is obtained by reversing the roles of ¢y and . O

Proposition 14.4.3. For all p,q € [l,00] and s € R we have continuous
embeddings
S (R% X) < By (R: X) — 7'(R% X).

Moreover, if 1 < p,q < oo, then C°(R?) ® X is dense in By (R X).

Proof. We split the proof into three steps.

Step 1 — For the first embedding, by (14.22) it is enough to prove that
& (R% X) embeds into B} ;(R% X). For f € .(R% X) and L = Ly, 4 € N so
large that (1 + |27 - [2£)~! € LP(R?) we find

1£1l5s , ex) = D, 250w * fll o e x)

k>0
Sd,p Z2kSH(1 + |27T : |2L)SD]€ * f||Loo(Rd;X)
k>0
< Z 2163”(1 + <_A)L)(@k:f)HLl(Rd;X)7
k>0

where we used the fact that F~! maps L' into L™. It remains to estimate
2ks||3°‘((ﬁkf)\|L1(Rd;X) for multi-indices || < 2L.

First consider k& > 1. Then supp ¢y, C By, := {£ € R?: 2F-1 |¢] < 3-2F)}
and |By| <4 284. By Leibniz’ rule and the boundedness on By, of the functions
0o, with || < la] < 2L =2L, 4,

10%(@r)ll L (e, x) Sd.p Z 115,0° Fll 1 (ma. x) -
18I<]e]

To estimate the terms on the right-hand side, fix an M € N which is arbitrary
for the moment. Then

e, (L+ |- P ip@ay (14 |- PO fll oo resx)

|
| Byl (1 4+ 22ME=) =0 N (] 5,
|6 <2M

115, 0° Fll 11 (et x)

NN

using the notation (14.2) for the seminorms defining the Schwartz space. Keep-
ing in mind that |By| <q 28¢ we now choose M = M, 4 € N so large that
> k>0 2ksokd (1 4 22M(k=1))=1 < 55 With this choice, we obtain the estimate

”fHB;,l(]Rd;X) Sdp,s Z [f]ﬁ,&

|5]<2M
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A similar estimate in the case & = 0 can be obtained in a similar, but simpler,
way. Since .% is continuous on . (R%; X) (see Proposition 2.4.22), this proves
that we have a continuous embedding .7 (R%; X) — B;ﬁq(Rd; X).

Step 2 — Next we prove that B;,q(Rd;X) embeds into .7/(R%; X). By
(14.22) it is enough to prove that the inclusion mapping B;’OO(R‘{;X) -
' (R%; X)) (by definition Bj , (R%; X) is contained in .&’(R%; X)) is continu-
ous.
Fix f € B;)Oo(Rd;X) and ¢ € .Z(RY), and set fi := ¢ * f and ¢y =
¢k * 1. By Lemma 14.2.10 and (14.10) we have

F@) =" o) = D > feltnro).

k60 =—1k>0

Thus, by (14.13),

1
HOIED S Sy NI PREITs

(=—1k>0

1
< Z H (ka”fk(')n)k}O Hgoc(LP(Rd;X)) H (2_kswk3+z)k3>0Hel(Lp’(]Rd))
l=—1

<328 7]

B; @40l B2 ey

Since . (R?) < B,.% (R?) continuously by the previous step, the result follows
from this.

Step 38— To prove density, by Lemma 14.2.1 it suffices to prove the density
of (R4 X) in B;q(]Rd; X).
Fix f € Bj ,(R%: X) and set ¢, := >__o @k By (14.6) we have [|¢, 1 =

llll1-
We will first show that (, « f — f in B‘;)q(Rd; X). Fix € > 0 and choose

K € N such that
Z 2ksq||90k * quLp(Rd;X) <el
E>K

By Young’s inequality combined with the identity ||C,ll1 = ||¢oll1 we have
CGhxprx f € LP(Rd§X) and [|Cn * @k * fHLP(]Rd;X) < lellalleor * fHLP(]Rd;X)-
From this we infer that (, * f € B;7q(Rd; X) and

Z 2ksq||§ﬂ * Qg * f”%p(Rd;X) < eellf-
k>K

Hence by the triangle inequality in ¢7(LP(R?; X)),

1f = Gnx fl

Bqu(]Rd;X)
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1/q
— (szsquwk «(f = Cn *f)HqLP(Rd;X))
k>0
= ksq q 1/q
< (D2 len+ (F = G Dlldpgany) e+ Iglh).
k=0

The first term in the last expression tends to zero as n — oo by Proposition
1.2.32; here we use that ¢, = 2"%p(2") and [, pdz = $(0) = 1. This
concludes the proof that ¢, * f — f in Bj ,(R% X).

It remains to approximate each of the functions f,, = (,, * f by elements in
Z(R%; X). Observe that f, € LP(R?; X) since the functions ¢, * f belong to
LP(R% X). Let n € . (R%) be a functions satisfying 7(0) = 1 and supp(#) C
{€ e R |¢] < 1}. Since F(n(8)) = 6~ (671+), for all § € (0,1) the support
of #(n(d-)f,) is contained in a ball of radius 3-2"~1 +1 < 2"*L; here we use
the definition of ¢, and (14.9). Using (14.11), (14.7), and Young’s inequality,
it follows that

n+2 l/q
Bp, @) = (D0 25k * (=100 ) 14, g )
k=0

< Ol fn = n(8°) faull r e x) 5

where C' = Cy 54 = (31—, 2"*9)Y/9. For each fixed n, the right-hand side
tends to zero as 0 | 0 by the dominated convergence theorem. O

Next we will prove the completeness of the normed space By q(Rd; X).

Proposition 14.4.4. For p,q € [1,00] and s € R the space B;q(Rd; X) isa
Banach space.

The proof requires some preparations. Recall that a sequence (fy,)n>1 is said
to converge in .’ (R%; X) if there exists an f € .#/(R% X) such that f,(¢) —
f(#) in X for all ¢ € .7 (R?). Likewise, it is said to be Cauchy in .7’/ (R%; X)
if (fn(4))n>1 is a Cauchy sequence in X for all ¢ € 7 (R9).

Lemma 14.4.5. The space .'(R% X) is sequentially complete, i.c., every
Cauchy sequence in ' (R% X) is convergent in /' (R%; X).

Proof. Let (fn)n>1 be a Cauchy sequence in .#/(R%; X). Since X is complete
we may define a linear mapping f : .7(R%) — X by f(¢) := lim, o0 fn(0).
We claim that f is continuous. Indeed, for every ¢ € .7(R?) the sequence
(fn(@))n>1 is bounded in X, and therefore the Banach—Steinhaus theorem for
topological vector spaces implies that the sequence (f,,),>1 is equicontinuous.
Hence, given an ¢ > 0, we can find an open neighbourhood V of 0 in .#(R%)
such that |f,(¢)| < e for all ¢ € V and n > 1. Taking limits, it follows that
|f(#)| < e for all ¢ € V. This means that f is continuous at zero and hence
continuous. U
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A normed space E — .#’/(R%; X) is said to have the Fatou property if for all
sequences (fn)n>1 in E such that

fn— fin.2(R% X)  and 1irginf|\fn||E < oo
we have f € E and ||f||g < liminf, || ful &

Lemma 14.4.6. For allp,q € [1,00] and s € R the space B;, , (R4, X)) has the
Fatou property.

Proof. Choose a sequence (f,)n>1 of functions from B (R% X) with
fn— fin.Z"(R% X)) and liminf [| full g | ra; ) < 00
Then lim,, 00 @k * frn = @k * f pointwise. In case p < oo, Fatou’s lemma gives
lox * fllzeraixy < Hminf [[og * foll Lo eix) < oo
Multiplying with 2%% and taking ¢9-norms, it follows that we have f €

Bg,q(Rd; X) and || f] B:,(R%;X) < liminf, o0 || fr] B: ,(R%;X) (by Fatou’s lemma
if ¢ < oo and directly if ¢ = 00). For p = co the proof is similar. O

Lemma 14.4.7. Every normed space E — .'(R%; X)) with the Fatou prop-
erty is complete.

Proof. Let (fn)n>1 be a Cauchy sequence in E. Since .#/(R% X) is se-
quentially complete by Lemma 14.4.5, and E' is continuously embedded in
' (R% X), it follows that there exists an f € .#/(R%; X) such that f, — f
in 7/ (R% X). Since (f,)n>1 is a Cauchy sequence in E it is bounded in E.
By the Fatou property of F it follows that f € E. To prove that f, — f in
E we fix an € > 0 and choose N € N such that for all n,m > N we have
| fm — fnlle < e. Using the Fatou property once more, we obtain

and the result follows. O

Proof of Proposition 14.4.4. Combine Lemmas 14.4.6 and 14.4.7 and Propo-
sition 14.4.3. 0

Coming back to the discussion on homogeneous verses inhomogeneous norms
(see (14.20) and (14.21)), we have the following remark.

Remark 14.4.8. Let p,q € [1,00] and s > 0. For f € .%'(R% X) one has

1255 % FIrzollgaqrnmaxy = 150k % Frezllpaernmaxy T 1o @),
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where both expressions are infinite whenever one of them is. Here the (¢r)k>0
are as in Definition 14.4.1, and thus the left-hand side of the above identity
equals || f|ps (re;x)- The (¢ )rez are as in (14.20). The first expression on
the right-hand side is equal to the homogeneous Besov norm, which we will
not discuss in detail.

To prove the norm equivalence first recall that 1, = @y, for £ > 1. For “<”
it suffices to observe that by Young’s inequality

HSOO * fHLp(Rd;X) < lleollallfll e gax)-

Conversely, assume that f € B} | (R%; X). Since §p = 1 on supp(vZk) for k <0,
we can write

|9 * f||LP(Rd;X) = |9k * po * f||Lp(1Rd;X)
< NWkllilleo * fll e x) = [Yollillvo * fllLe®ax),
and thus using that s > 0 we obtain
H(ka?/’k * f)k<0||zq(Lp(Rd;X)) S ||(2kS‘P0 * f)k<0||eq(Lp(Rd;X))
< Csllpo * fllLe(ra;x)-

Moreover, since s > 0, from (14.23) B;yq(Rd;X) — Bg’l(Rd;X), and thus by
Lemma 14.2.10

1l e x) = H > ok f‘
k>0

< »(R%;
LP(R%:X) ,;)”(pk * Fller@eix)

= Hf”Bg’l(Rd;X) < CS,q”f”B;‘q(Rd;X)

14.4.b Fourier multipliers

The goal of this section is to prove a version of the Mihlin multiplier theorem
for operator-valued Fourier multipliers acting on vector-valued Besov spaces.
In contrast to the situation in the LP-setting (cf. Theorems 5.3.18 and 5.5.10),
where we had to assume the UMD property, a variant of the Mihlin theorem
for Besov spaces holds for arbitrary Banach spaces.

We wish to emphasise that the main result, Theorem 14.4.16 below, is
not applicable to multipliers which are non-smooth or even singular near the
origin. This is due to the presence of the term g in the definition of in-
homogeneous Littlewood—Paley sequences, whose support contains the origin
in its interior. For instance, the Fourier multiplier associated to the Hilbert
transform does not satisfy the conditions of the theorem.

Unlike in other chapters, we also include the case p = oo. In order to avoid
density issues, we define 9ML>(R?; X,Y) as the space of Fourier transforms
of operator-valued measures of bounded variation:
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Definition 14.4.9. We define
IML>®(RY; X, Y):= {q? : the operator-valued measure
& : BRY) = L(X,Y) is of bounded variation}.

With the norm || @/l @ax.y) = |6 (R%), the space ML® (R X,Y) is a
Banach space.
For m € ML>®(R% X,Y) and f € L>®(R%; X) we define

T x fi=mxf,

recalling that the convolutions with an operator-valued measure of bounded
variation has been introduced in Lemma 14.2.4.

Remark 14.4.10. In the scalar case it can be shown that the space ML (R?) =
IMML>(R?; C,C) as defined in Definition 14.4.9 coincides with the space of all
m € L>(R?) for which the quantity

sup{[| T flloo : f € 7 (R?) with || fllee < 1}

is finite, and that this quantity then equals the norm on 9L>(R¢) introduced
above. This provides further motivation for Definition 14.4.9.

Various properties discussed in Section 5.3.a extend to p = co. Moreover, from
the definition of the Fourier transform one sees that

1Dl poo (v, 2(x,v)) < |DII(RY).
This induces a contractive embedding
ML®(RY X,Y) — L®(R%: Z(X,Y)).

For m € ML>(R%; X,Y) and f € . (R% X) one can check that mf = F(h*
f), and by Lemma 14.2.4 for all p € [1, 00| we have

177 % fll Lrra;y) < Hm”(Rd)Hf”LP(Rd;Y)'
This shows that for all p € [1,00] we have a contractive embedding
ML>® (R X,Y) — MLP(RY; X, Y). (14.24)
In the discussion preceding Lemma 14.2.4 it was observed that for any function

¢ € LY(R%; £ (X,Y)), an operator-valued measure @ : Z(R%) — £ (X,Y) of
bounded variation is obtained by setting

#(4):= [ pda.
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and that its total variation satisfies ||®|/(RY) < D1l 1 (re; 2(x,v))- In this way
we obtain contractive embeddings

L'RY 2(X,Y)) <= ML®(RE X, Y) — MLP(RE X,Y).

In combination with Lemma 14.2.11 we now obtain the following sufficient
condition on m for membership of 9MLP(RY; X,Y).

Proposition 14.4.11. If the multiplier m € L>®(R%; £ (X,Y)) satisfies m €
L' (R4 £ (X,Y)), then for all p € [1,00] we have m € MLP(RY; X, Y) and

Imllonre ®ex, vy < 70l e, 2(x,v))-
In particular, if m € CTY (R, £(X,Y)) and there exists an € > 0 such that

Cm e — 1 lal+e 8a < 9
d, \Q,I&?ilgs;@( + |¢] Mo“m(&) < oo

then m € MLP(R%; X,Y) and Hm||9ﬁLp(Rd;X,y) Sde Crdye-

Remark 14.4.12. In applications it can be useful to apply Proposition 14.2.11
to a dilated multiplier m(¢) instead of m(:). The MLP(R?; X, Y )-norm is
invariant under dilations, but the expression for Cy, 4 is not. A similar remark
applies to Lemma 14.2.11.

Remark 14.4.13. 1f m € CYY(R?; Z(X,Y)) is supported in the ball Bg
around the origin, one easily checks that Cp,4e Sr ||m||cg+1(Rd,$(X,Y)).
As a consequence we obtain that every m € C41(R%; Z(X,Y)) belongs to
MLP(RY; X,Y) and mlon e e x,v) Sde,r ||mHCg+1(Rd;g(x,y))~

Remark 14.4.14. Multipliers with singularities in the origin, such as the mul-
tiplier giving rise to the Hilbert transform, are not covered by Proposition
14.4.11.

Before moving to a Mihlin multiplier theorem for Besov space we present an
important result on lifting operators. Recall from Subsection 5.6.a that the
Bessel potential operators are the continuous operators J,, o € R, acting on
' (R%; X) by

Jou = (1447 - )7?0)", we ' R%X).
They satisfy Jo = I and Jp, 46, = Joy, © Jo,y-

Proposition 14.4.15 (Lifting). Let p,q € [1,00] and s € R. For all 0 € R
we have

. RS d. ~ RS—O d. . .
Jo : By (RY; X) ~ BS" 7 (R% X)  isomorphically.
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Proof. Noting that J, is a bijection from .#'(R% X) to .#/(R% X), with
inverse J;! = J_,, it suffices to prove that .J, maps B;Vq(Rd;X) into
B;;J"(Rd; X) and is bounded for each o € R.

We claim that there exists a constant C' > 0, independent of k > 0, such
that for all f € .'(R%; X),

ok * Jo fllLoa,x) < C2% |k * fll o (ra,x)-

This will imply the result.
To prove the claim we use that Z}:_l Prre = 1 on the support of @ to
write

1
2_kath‘Pk * f= Z y_l(@kmak-i-lf)’
f=—1
where m(&) = 2757 (14-472|¢|?)?/2. Using a dilation, Proposition 14.4.11, and
the Fourier support property (14.9), for & > 1 we obtain

H<Pkm||zmm(Rd;X) = H<P1(2')m(2k')||thp(Rd;X)

S e sup (14 1[I 1) 10901 (24)m (28 )] (&)

<a max sup [9%[m(2")](€)],

laf<d+1 L¢le<3

where in the last step we applied the Leibniz rule as before and the Fourier
support properties of ¢; given by (14.8) and (14.9). Since m(2*¢) = (272F +
1€]2)7/2, it is elementary to check that the latter expression is uniformly
bounded in k > 1. A similar argument shows that pom € MLP(RY X). O

The simple multiplier result of Proposition 14.4.11 is already strong enough to
prove the version of Mihlin’s multiplier theorem for Besov spaces B, (R%; X)
contained in Theorem 14.4.16 below, valid for arbitrary Banach spaces X and
integrability exponents p, ¢ € [1, 00]. In the statement of the theorem the end-
points p = co and ¢ = oo create some technical difficulties, since we cannot use
the density of the Schwartz functions to define 7,,,. It is for this reason that in
the theorem we assume that the multiplier m is smooth and has derivatives
of polynomial growth. Many interesting multipliers satisfy this condition, and
to proceed with the development of the theory this version suffices for the
time being. A version which avoids this restriction on m will be presented in
Theorem 14.5.6.

When m € C*(R% £ (X,Y)) has derivatives of polynomial growth, one
can define the Fourier multiplier 7}, as an operator from .#’(R%; X) into
S'(REY) by Tinf = Z 1 (mf). To see that this is well-defined it suffices
to note that mf € S'(REY) for f € .#'(R; X). In the next theorem, T}, is
understood to be the restriction of this operator to B;’q(Rd; X). The theorem
then asserts that, under Mihlin type conditions on m, it maps B, , (R%; X)
into Bj ,(R%Y).
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Theorem 14.4.16 (Mihlin multiplier theorem for Besov spaces). Let
X and Y be Banach spaces and let p,q € [1,00] and s € R. Suppose that
m € C® (R Z(X,Y)) has derivatives of polynomial growth, and that

sup sup (1+ |£|‘a|)”aam(f)”$(x7y) = K, < oo. (14.25)
la|<d+1 EER?

Then the Fourier multiplier T,, = .F ~'m.F restricts to a bounded operator
from Bj ((R%; X) to B} ((RGY') of norm [Tl < Cs,alm.

The usual Mihlin condition involves a factor |£[l® instead of 1 + |¢[lel. A
multiplier theorem involving the former can be shown to hold for the scale of
homogeneous Besov spaces.

For finite p and g, the condition m € C*(R%; £ (X,Y)) can be weakened
to m € CHL(R?; £ (X,Y)). This can be seen by taking f in the dense class
(R ® X in the proof below.

Proof. For f € B ,(R% X) let f, := @n * f for n > 0. Since 22:71 Orie=1
on the support of @y,

1T fllBs  vay) = | (2" * y_lmf)k20|’gq(Lp(Rd;y))

1
= H (kaf_l@cm > @kﬂf)

{=—1

k>0llea(LP(R4;Y))

1
< Z ]|2k39_1(@cmfkw)k?OHeq(Lp(Rd;Y))
(=—1

1
S %lgnakaWU’(W:X,Y) Z ”(2ksfk+€)n20Heq(LP(Rd;Y))
Z t=—1

< 2l sup [@kmllon e ®ae;x v) 1l Bs, R:x)-

=

To complete the proof we must show that supy ¢ |Gk /lonrrra;x,v) Sd Km-
First consider the case k > 1. Since the multiplier norm is invariant under
dilations by Proposition 5.3.8, it suffices to show that

igl? ”‘21(')m(zk_l')”DﬁLP(]Rd;X,Y) Sd K-

By Proposition 14.4.11, it even suffices to show that there exists an € > 0
such that

lel+ey 19215 (.- k-1,
e sup (14 [ 0° B (m(@ T Za Ko

We will verify this bound for e = 1. By the Fourier support properties of ¢
implied by (14.8) and (14.9), for f < a with |a] < d + 1 we have
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sup [(1+[¢[1*#1)0°%1 ()] < Cp -
£eRd

Hence, by Leibniz’s rule the Mihlin condition on m, and the Fourier support
property of @1 given by (14.9), for all |a| < d + 1 we have

f;lﬂfd(l + e 0 @1 (Om2E 1))

= sup (15 I 0B (m( )]

< sup (14 [¢]911) 37 o pl0% 1 (6)] - 2Dl g0 (2 1))

Sa sup 37 2k DIa=Bl ety (gh=1)|
< sup S ot-Dlasl__ HKm
€121 <a 1 [28tg]le=s]
Sd K’m
(14.26)
The case k = 0 is proved in similarly, omitting the dilation argument. O

As an application of Theorem 14.4.16, we obtain the following analogue of
Theorem 5.6.11.

Proposition 14.4.17. Let p € [1,00), q € [1,00], and s € R. For all k € N,

By ,(R4X) *= Z 10 f]

la| <k

I/

J— (14.27)

defines an equivalent norm on B;q(Rd; X)

Proof. As a consequence of Proposition 14.4.15 it suffices to prove the equiv-
alence of (14.27) with ||Jx f| Bk (ra;x)- This can be deduced from Theorem
14.4.16 by an argument similar to the one in Theorem 5.6.11. In the present
situation it is important to note that the multipliers in the proof of the propo-
sition also satisfy the more restrictive condition (14.25). Below we present a
simplification of the argument of Theorem 5.6.11 adapted to the Besov space
case. Let (€) = (1 + [2m¢|?)"/2.

First we prove the estimate

HaafHB;;l’“(Rd;x) < O||ka||B;;lk(Rd;X)-
Applying the Fourier transform, we have

(2mi€)°

BE (EFF(E) = ma(E)(E)FF(©).

F10°f1(€) = (2mig)" f(§) =
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One checks that m,, satisfies the conditions of Theorem 14.4.16, and thus

||aaf||B;jqk(Rd;X) S Cacd,p,q||32_1[<'>kf]||B;;;I’“(Rd;x)
= CaClapgllJrf|

Bj " (R% X))
For the reverse estimate it suffices to show

”ka| Bi, k(R4;X) <C Z Haaﬂ

la|<k

BiF(RY; X))

Again we apply Theorem 14.4.16. By induction on k,

(€ = (1 +1276")F = > cap(2mie)* (2mi)*,

|| <k

and therefore

R 2% _ ~
@470 = 270 = X coma(©)2rie)” 6
<k
= 3" caumal(£)0°F(6),
|l <k

where m,(§) = (2&16 . Applying Theorem 14.4.16 to m, now gives

1k f]

B;qu(Rd%X) = ||§_1[<>kf]| B;qu(Rd;X)

< Z |Ca,k’|HTmaaaf|

o] <k

< Capk Z Ilaaf||B§;1k(Rd;X)-

lal <k

B} (R4 X)

14.4.c Embedding theorems

We begin by showing that various classes of function spaces lie ‘sandwiched’

between Besov spaces.

Proposition 14.4.18 (Sandwiching with Besov spaces). For all p €

[1,00], s € R, and m € N, we have continuous embeddings

B:,(R% X) — H*P(R% X) < Bs  (RY; X), (14.28)
7RG X) = WP (R X) < By (R X), (14.29)

B2 (R: X) = CIL(RY X) — BZ (RY X). (14.30)



14.4 Besov spaces 333

An improvement for p € (1, 00) will be given in Proposition 14.6.13.

Proof. In order to prove (14.28), by Propositions 5.6.3 and 14.4.15 it suffices
to consider s = m = 0. Similarly, in order to prove (14.29) and (14.30), by
Proposition 14.4.17 it suffices to consider s = m = 0. Therefore, (14.28) and
(14.29) reduce to proving the continuous embeddings

BY,(R% X) = LP(R% X) < BY (R% X). (14.31)

Fix f € BY,(R% X). By definition,

”f”Bg,l(]Rd;X) = Z | * fHLP(Rd;X)~

k>0

In particular, the sum Zk>0 @ * f converges absolutely in LP(R?; X), and
the required result follows by Lemma 14.2.10 and the triangle inequality.

To prove the second embedding in (14.31), fix f € LP(R%; X). By Young’s
inequality,

1£llBy . we;x) = = sup lor * fllLere;x)

2(

< sup okl o way 1 flLe re,x) < 2[l@0ll L ey L | e (et x5

V=

where the last step uses (14.7). This completes the proof of (14.31).
As we already noted, in order to prove the embeddings in (14.30) it suffices
to consider the case m = 0. Fix f € BY, | (R% X). As before we sce that the

sum Y po pk * f is absolutely convergent in L>°(R%; X). By Lemma 14.2.10
its sum equals f and

1 lloo < D llw* Flloo = 1f 1132, )
k=0

To see that f has a uniformly continuous version, we note that by Proposition
2.4.32 we have ¢y,  f € C®(R%; X) and

105 (r * lloo = [1(@jp1) * flloo < 1052kl flloo < 105xlI111fll B2, Re:x)-

In particular, each function ¢ * f is Lipschitz continuous and hence uniformly
continuous. Therefore f € Cyp(R% X) by uniform convergence.

The second embedding in (14.30) follows by combining the embedding
Cm (R X) — Wm>(R%; X) and (14.29). O

Theorem 14.4.19 (Sobolev embedding for Besov spaces). For given
Do, D1, Go,q1 € [1,00], and sg, s1 € R, we have a continuous embedding

B o»R:X) < Byt (RE X)

Po;q0 P1,q1

if and only if one of the following three conditions holds:
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(i) po = p1 and [so > s1 or (so = s1 and qo < q1)];
(i) po < p1, qo < g1, and sp — p% =51 — ,%;
(iii) po < p1 and sg — pio > 51 — rjil'
The most interesting cases are (ii) and (iii), since they can be used to change
the integrability parameter from pg into p;.

For the proof of the sufficiency of the three conditions we need two lemmas.
The first provides an LP-estimate for the derivatives under suitable Fourier
support assumptions. Recall from Lemma 14.2.9 that every f € ./(R%; X)
with compact Fourier support belongs to C*°(R%; X) and has at most poly-

nomial growth.

Lemma 14.4.20 (Bernstein—Nikolskii inequality). Let pg,p1 € [1, 0]
satisfy po < p1. If f € LPo(RY; X) satisfies

supp f C {€ e RY: [¢] <t}

for some t > 0, then for any multi-index o € N there is a constant C =
Coa.d,po.py Such that

+4_d
10% fll L1 (ra;x) < ot 5o 5 11l Lro (met; x) -
An extension to exponents 0 < pg < p1 < 0o will be given in Remark 14.6.4.

Proof. By a routine scaling argument it suffices to consider the case t = 1.

Let ¢ € Z(R%) satisfy ¢y = 1 on By := {z € R? : |z| < 1} and put
Yo = 0. Then f = ¢ * f, and by Young’s inequality with --- 41 = _- + 2
we obtain

||8af||LP1(]Rd;X) =10 * f)ll Lo (R4; X)
= |[Ya * fllzer e, x) < [YallLe@e)ll fll Lo (re;x) -

O
The next lemma provides shows how the LP-norm of ¢y, * ¢ ; scales with k.

Lemma 14.4.21. For all j € Z there exists a constant Cy i, > 0 such that

forallk >0 and k+ /¢ > 0 we have

,J5P

[ pk-+e * xllLe@ay = Crp.a2"7

Proof. The identity @5 (€) = @1(27%11€) implies g (z) = 2(-=Ddp, (2F1x)
and therefore, by a change of variables in = and y,

”SOkJrj * @k||1£p(Rd)

. . p
_ /Rd 2(k71)d2(k+‘771)d /]Rd 901(2]2]671(-73 _ y))gpl(Qkfly) dy dz
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— 9kd(p—1) 9jdp—d(p—1) /
]Rd

| @@= ie) s da

P
Cde

and the result follows. O

Proof of Theorem 1/4.4.19. For the sufficiency of (i), first consider the case
sp = s1 and qg < q1. Then the result follows from the fact that for any scalar
sequence (ax)k>0,

12" ar)izol] oy < 1250 an)iz0] oo -

If sg > s1, the result follows from (14.23).
If (ii) holds, then writing fi := ¢k * f for k > 0, from Lemma 14.4.20 we
infer that

k 4 _d S0—S
1l Lo easxy < C2°F6 750 | fill oo (macxy = €28 ™D fi |l oo (et -

It follows that

Hf”B;} g (REGX) = ||(2k81fk)kZOHgﬂ(Lpl(]Rd;X))
< CH QkSOfk)k>0HZ‘Il(LPO(Rd‘X))
—C||f||B*0 R%;X) C||fHB“0

d.
P0,q1 po-a0 (R%X)?

using (14.22) in the last step.
Suppose now that (iii) }'101ds and let t := sg— pio + p%. Then t— pil =s9— z;io
and therefore, by the previous step,
IfllBsr ,, waxy < Cllfllse, , @ax)-

pl ‘11

Since t > s, it follows that the conditions (i) are satisfied, and thus
”f”Bt g REX) S C”fHB;g a0 (REX):

Next we move to the necessity of the conditions (i), (ii), and (iii). It suffices
to consider the case X =K.

Suppose that we have the continuous embedding stated in the theorem.
By the closed graph theorem there is a constant C' = Cq py.p1,90,q1.50,51 Such
that for all f € BS (R%),

Po,q0
17551, ey < Ol oo (14.32)
First we will derive
d d
sg—— =281 — — and pg < p1. (14.33)

Po P1
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By (14.22), (14.32) also holds (with a possibly different constant) for g = 1
and ¢; = co. The Fourier support properties (14.8) and (14.9) of ¢y, then imply

2551l on, % on || Lor ray < [kl o

P1:0°

(R)

< Clierllpo | ray < < C2kee Z ok * Pl Lro a)-
j=-—1

By Lemma 14.4.21 this implies

2k51 de/p'1 < é2k502kd/p6

for some possibly different constant C independent of k. Upon letting k — oo,

this gives the inequality s; — pi, < 59— pi/, or equivalently, s1 — = < so — z;io
1 ]

Define f; : RY — C by ﬁ(x) := Po(t™1). Then @y = 1 and pr = 0 for
k > 1 on supp(f;) for ¢ > 0 small enough. Therefore,

_d
t Pl fillors may = 1 fellzes may = llpo * fill Lpi ray = ||ft||B;§’qj(Rd)
Combining this with (14.32) gives

_d _d
t ”leLPl(]Rd) < Ct v HflnLPO(]Rd)-

Upon letting ¢ | 0, we find that py < p1. This completes the proof of (14.33).
Now there are two possibilities: (i) po < p1, or (ii) po = p1. First consider
the case (i). If 30 - 1% > 51 — d , then (iii) follows. Still assuming (i), if
S0 — pio = 51 — %, then in order to deduce (ii) it suffices to show that go < ¢1.
We claim that for any finite sequence of scalars (aj)p_1,

[(ar)i=illen < Cll(ar)i=1 s, (14.34)

where C is a constant independent of n > 1 and the sequence (ax)}}_,. Once
established, this claim gives ¢y < ¢;.
To prove the claim fix a scalar sequence (ag)y_,. Applying (14.32) to the

function f := Y, _;2 3k(30+”0)ak<p3k = > 73k(51+”1)ak<p3k gives the
inequality
k(si+-2 q 1/q
(Z 2meaa 22 D o * o3 Llpl(]Rd)) 1
>0
" y (14.35)
3k(so+-2) q0 90
msoq »
O(ZQ 0do 22 0 AR Pm * O3k LPO(Rd)) :

m=0

Let us analyse the expressions on the left-hand and right-hand sides for general
values of p, ¢, and s. We have ¢,, * @3 # 0 only for m = 3k + £ with
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¢ € {—1,0,1}. This suggests splitting the sum over m into the sums over
m =3j+ ¢ for £ € {—1,0,1}. Using the lemma, they evaluate as

(3 20 Lo
LP(R4)

7=0
— (Z 9(Bi+0)sq||o 1 ) 1a
= Lr(R%)

n . 9 dg . N 1/a
= Crpa (32 20000273005 g |ag2dals’)
j=1

- 1/q
= 2Copa(Y llay|7)
j=1

We thus find (using the triangle inequality in ¢3 for the upper estimate)

ms . —3k(s l/ a
(30 27t 30 2y v o LW) s (Znagu)

m>0 k=1
Inserting this norm equivalence into (14.35) (taking (p,q,s) = (po, qo, So) on

the left and (p, ¢, s) = (p1, 41, s1) on the right) we obtam (14.34).

Finally suppose that (ii) holds. Then from sy — p—o > 51 — pil we see that

~3k
Z g~ oh(et3) Ak P3j+0 * P3k

Paj o350 * P35

—3j(s+ %) ‘

so = s1. If o = s1, then by arguing as above it follows that ¢o < ¢1 and (i)
follows. O

14.4.d Difference norms

In this section we show that Besov spaces with smoothness parameter s > 0
admit a characterisation in terms of difference norms. This characterisation
can be often used to effectively check whether a given concrete function be-
longs to a given Besov space. For example, we check in Corollary 14.4.26
that the Besov spaces B2, . (R% X) coincide with certain spaces of s-Holder
continuous functions. /

For functions f : R — X and vectors h € RY, the function Ay, f : R — X
is defined by

Apf(x) = flx+h) = f(z).

Clearly, the difference operator Ay, thus defined is bounded as an operator on
LP(R4; X) for all 1 < p < oo, with norm at most 2. We have the following
formula for the powers A7 = (Ay,)™

Lemma 14.4.22. For all f € L'(R% X) and h,¢ € R? we have

= i (7 )07 s6+ om—spm
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Proof. The identity Z (f(-+h))(§) = eQﬂhffimplies F(ARf)(€) = (2T —
1)f(€), from which it follows that

m mwih- m 7z — m i _2mih-£(m—73) 7
FALNEO = (@i =3 (M) v )
j=0
Now apply the inverse Fourier transform. O

Definition 14.4.23 (Difference norm for Besov spaces). Let p,q,7 €
[1,00], s € R, and m € N\ {0}. For functions f € LP(R%; X) we define the

difference norm by setting
(m,T) o —sq m p||T 1z
5 ey = ([ [ (f 1A s an)
P 0 {Ihl<t}

with obvious modifications for ¢ = oo and/or T = co where the integral with
respect to dt/t and the average are replaced by essential suprema, and

q de\1/a
Lr(R%) 7)

17153 ) = 1o + 1155 Thmac-
Here we used the notation fF = ﬁ i)  to denote the average over the set F.
In typical applications one takes T € {1, p, co}.
It is clear that 79 < 71 implies
1 ey < U152 sy (14.36)
The next theorem implies that if s > 0, then each of the norms || - ”|(B,’T:’T()Rd' X)

with m > s defines an equivalent norm on Bj  (R%; X).

Theorem 14.4.24 (Difference norms for Besov spaces). Let p,q €
[1,00], s > 0, 7 € [l,00], and let m > s be an integer. A function
f € LP(R%; X) belongs to B;q(]Rd;X) if and only if [f]gfj-q(Rd;X) < o0, and

the following equivalence of norms holds:

/]

— (m,7)
B (R X) ~d,m,s |||f|||B;q(Rd;X)-

Before turning to the details of the proof we give some simple applications.
The first two identify the Sobolev—Slobodetskii spaces and the Holder spaces
(cf. Section 14.1 for the relevant notation) as Besov spaces.

Corollary 14.4.25 (Sobolev—Slobodetskii spaces). Let p € [1,00) and
s€(0,1). Then
s d. — TA/S» d.
By ,(R% X) = W*P(R% X)

with equivalent norms. In fact,

(1,p) _ 1
[f]B;’p(Rd;X) - (Sp+d)1/p|Bl|[f]WS,p(]Rd;X). (1437)
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Proof. By Theorem 14.4.24 it suffices to prove the identity (14.37) for the
seminorms, which follows from Fubini’s theorem and a change of variable:

Bal? (115" a.x))” / / / Lni<nt ™" Y| A f(2)|? dt dh da
Rd JRA
= (sp+d)? / / B~ Ay f () |? dh dz
Rd

= (59 + ) [P gt
O

Corollary 14.4.26 (Holder spaces). Let X be a Banach space and let s €
(0,00) \N. Then
B (R X) = Cop (RE X)

with equivalent norms.

Proof. Let s =k + 0, where k € N and 0 € (0,1). It follows from Proposition
14.4.18 and Theorem 14.4.19 that we have continuous embeddings

o (R%X) < BY, 1 (RY X) < Cf (R X).

Therefore there is no loss of generality in assuming that our functions are
k-times continuously differentiable. For functions f € C% (R X) and multi-
indices |a| < k, from Theorem 14.4.24 we infer the equivalences

le} 100 fe}
10°F I, masx) a0 10°FU55™ ey = 190 g, sy

where we used the continuous version of 9¢ f to replace the essential supremum
by a supremum. Now the result follows after summation over all multi-indices
|a] < k and an application of Proposition 14.4.17. O

Corollary 14.4.27 (Embeddings into Holder spaces). Let pg,q € [1, 0]
and sy, s1 = 0 satisfy so — p% > s1. Then we have the following continuous
embeddings:

(1) B (R%: X) — C2L(R%: X) if s ¢ N;

Po,q
(2) By’ (R X) — C2L(R% X).

Po,1

Proof. (1): By Theorem 14.4.19 and Corollary 14.4.26,

By o (R X) < BY (R X) = Cf (R X).

Po,q

(2): The case s; ¢ N follows from the previous case. If s; € N, then by
Theorem 14.4.19 and Proposition 14.4.18,

B;g’l(Rd; X) < B3 (RY X) < 3 (R% X).
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The proof of Theorem 14.4.24 makes use the following simple lemma. Recall
the Fourier multiplier notation of Subsection 14.4.b.

Lemma 14.4.28. For non-zero £, h € R? [et
eQTr'L'h-E -1
&)= i
Then for all p € [1,00] we have my € MLP(R%; X) and [|[mp|lonrerax) < 1.

Proof. By an elementary computation, the associated Fourier multiplier is
given by

Ty, f (2 /fw—ht)dt i f(z), e IP(REX),

where pup,(A) = fol 14nea dt defines a measure by monotone convergence.
Hence the result follows from (14.24). For p < oo, one can also use the direct
estimate

1
1T 1l ooy < / 17— ht) | o osy dE = 1 low -
0

Proof of Theorem 1/.4.24. Let

pru- (., 1 )

where the integral average has to be replaced by sup|,|<; if 7 = oco. Discretising
the integral over ¢ in the definition of the difference norm (Definition 14.4.23)
and noting that

][ < ;kd/ = Qd][ ,
(ni<ty  Wa27" Jqn<a-riy {Ihl<2—F+1}

2 k+1

Lr(R4)

we obtain

115 sy = 2/2

kEZ

1/7149 1/q
e (F g an) T ar)
{InI<t} Lr(R7)

R /714 1/q
(f lag i an) )
{ln|<2-++1} Lr(R)
/719 1/q
AT fIIT dh
(F o 18zt an) )

() )
<y 2" Lr®e)/

< 2d/‘r <Z 2k:sq
keZ

— 9d/T (Z 9(i+1)sq
JEZ
_ gs+d/T (Z 97sq
JEZL
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Similarly,
[f](mﬂ’) > g—s—1- d/T(ZQ]Sq (][ ||A Ik dh) /THq )1/11'
By, (®4:X) 2 = <y " Lr()
Hence,
15 ey B | @I (F Rkl o - (14.38)

In view of (14.36) and (14.38) it thus suffices to prove the two estimates

”fHLP(]R";X) + ||(2ksIz§n7m(f k)) keZHeq(z) ~d,m,s Hf”B* Z(RE X)) (14.39)
Hf”Lp(]Rd;X) + }|(2k31;,n’1(fak keZHeq(Z) Zs,m,d 11 B ,(R%X)- (14.40)

Throughout the proof of (14.39) and (14.40) we will use the standard algebraic
properties of LP-multipliers discussed in Section 5.3.a.
Put f; :== ¢; * f for 7 > 0. By Hoélder’s inequality,

£l e @exy < D Mfille@axy < @750/l o 11l B3, R5)
>0

where the assumption s > 0 implies the finiteness of the ¢ -norm. To prove
(14.39) and (14.40) it therefore remains to estimate I;"*°(f,k) from above
and I (f, k) from below.

Step 1 — We begin with the proof of (14.39). By Lemma 14.2.10 and the
triangle inequality,

Im ,00 f7 Z Zlm ,00 ([ ;¥ fj+€7k)7

{=—13520

observing the standing convention ¢_; = 0 which implies that f_; = 0.
Keeping in mind the operator norm inequality | Ax|| < 2 and (14.7), for j > 1
and arbitrary g € LP(R%; X) we have

1> (gj * g, k) = sup HAz kpPj *gHLp R4; X )
|n|<1] (14.41)

<27l * gllp < 2™ Il gl

On the other hand, using that @;(¢) = $1(27U~1Y¢), we find that

L7 (w5 % g, k) < lil‘lfl 7 (A5%k,05) I (resx) 91| p
. _k . ~ _ s
< sup. 1€ (€22 — 1)™B1 (270D [lgn o ra x) |9

(14.42)
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By Lemma 14.4.28 and a dilation

€ = (227 — )™ (- &)™ lomLp(rasx) < (2m)"27F™ (14.43)
Moreover, since 1 is a Schwartz function, dilation, and |h| < 1,

g = (A~ &)™ G127 VE) lamrr e x)

=207Dm ¢ (h- §)"01(E) llamrr (e x)
< 20-bm Z Camll§ = E¥P1(E)llomrr me;x) (14.44)

la]=m

< Cm,d2(j_1)ma

where in the last step we used Proposition 14.4.11 with d%p; € L'(R?). Com-
bining (14.41) with (14.42), estimating the latter using (14.43) and (14.44),
we obtain the estimate

L (pj %9, k) S

~

am min{1, 2079 Ylg],, > 1.
Similarly one checks that

L (o * 9, k) Sam min{1, 275" }g]l,
Therefore, with a;,,, = min{1, 2imy

H (ka[;n,oo(f, k))keZHZ‘Z(Z)

1
<) H (2’“ DI+ fj%k)) -
=—1

=20

1
—(i—k)s i+£)s
Sama 3 ||( 270 m 2T fyells),

(=—1 j>0

01(2)

)

Ss 1@ ajm)izolln 1Y% £llp)i20]l o

Ss 1]

where we applied the discrete version of Young’s inequality and used the
assumption m > s for the finiteness of the ¢! norm.

Step 2 — In this step we prove (14.40). For k > 0 let T}, f := 2kdp(2%.) * f
and Sif := g x f. By (14.3), for k > 1 we have Sy, = Ty — Tr—1 = (I —
Ti—1) — (I — T}) and therefore

/]

B;Yq(Rd;X)v

By (R4X) = H(2ks||skf||LP(Rd;X))k>Oqu

. (14.45)
< IS0 f e ey + 2|25 Tk f = fllze®ax) k=0 1o

By Young’s inequality,
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1S fllr e, x) < llpollell £l e e x)- (14.46)

It remains to estimate the terms vAvith k > 0 by the diffelfnce norm.
Choose 1 € .7 (R?) such that (&) = 1if |¢| < 1 and §(€) = 0 if [¢] > 3/2.
Let ¢ € .7 (R?) be given by

m—1
N " m -~ .
#6) = 1 3 () 17D m - e
§=0
and define the sequence (¢)r>0 asin (14.3). For [¢| < 1/mand 0 < j < m—1
we have ¢(—(m — j)§) = 1 and therefore

m

B(6) = (—1ym+ m; (") = e (3 () ap - ) <1

Jj=0

by the binomial theorem, and for || > 3/2 we have ¢(¢) = 0. Furthermore
the Fourier supports of ¢; and ¢y, are disjoint for |j—k| > N,,, where N,,, € N
only depends on m (rather than for |j — k| > 2 as in (14.10) in the case of an
inhomogeneous Littlewood—Paley sequence). Thanks to these properties, the
proof of Proposition 14.4.2 may be repeated to see that this system leads to
an equivalent norm on Bj  (R%; X).

Let f € LP(R%; X). We claim that

Tef(@) = f(@) = ((0" [ A f@pew)dy (1447

Indeed, taking Fourier transforms in the z-variable and using Lemma 14.4.22
and the fact that ¢(0) = 1, we have

~

Tif(€) - f(&) = (B(27F¢) = 1) F(€)

= (X () a2 - 1) i)

<\ j
= 3 ()P m -2t
(

and the claim follows.
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Fix a real number r > 0, the numerical value of which will be fixed in a
moment. Taking norms in (14.47), using that sup,cge(1 + |z|")|¢(z)| < oo,
and writing Bg = {£ € R?: [¢] < R}, it follows that

1#(2) = Tif @)
< [ 1Az, f@ay

<, / A7 F(@)|dy + 3 2 G / JAT ()] dy
Bi1 =0 Byj+1\By;

= [ 1ap @l Sz [ ag ) an
B, >0 Bi\B,

<Y 2= /

. A% —xp f ()| dh.
>0 1

Taking LP-norms with respect to x, we obtain the estimate
1Tk f — flloe®ex) Sdaw 22‘j(7"‘d)1,?’“1(f7 k—j).
j=0

Taking ¢9-norms with respect to k > 0 and choosing r > d + s, we obtain

1@ 0T = oy isoll
Saw (S 2002 (1,1 - )

>0
_ H (Z 2_.j(r—d—8)2(k—j)51;n’1(f, k— ]))
>0
<3270 | @B I (£ k — )isol|,.
>0
< 32 (25 [ (£ ) e
320

= S o ik (£, k)|,

Jj=0

k>01lea

k>01leq

In combination with (14.45) and (14.46) this proves estimate (14.40). O

14.4.e Interpolation

In order to consider interpolation for Besov spaces, we will now introduce the
so-called retraction and co-retraction operators, which allow us to reduce ques-
tions about the interpolation of Besov spaces to the corresponding questions
about the spaces £2 (LP(R?; X)).

s
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Lemma 14.4.29. Let p,q € [1,00] and s € R. For k > 0 set ¥y := pp_1 +
0k + Yrt1- Define the operators
R:0% (LP(R% X)) = By (RY X)
. RS d. d.
S: B, ,(R% X) — £, (LP(R% X))

by
R((fi)rz0) = D Wk * fro  Sf=(r* [z

k>0
Then R is bounded of norm < 60|¢o|/24!%!, S is an isometry, and RS = I.

Proof. 1t is clear from the definitions of the spaces involved that S is an
isometry. Next we turn to the proof that R is well defined and bounded. By
(14.7) and Young’s inequality, ||@x1e* k|1 < 12]|¢o||3. Therefore, by another
application of Young’s inequality and (14.11),

szk*kaBs (R%;X) H SO] Zwk*fk) j >0

k>0 k>0

H (90] Z Vjte * fJH)

le]<2

< Z (| (5 % Wjqe % fj+£)j>0H£?US(Lp(Rd;X))
2L

< 12”900”% Z H(fj"'[)j)()”éis(LP(Rd;X))
[£]<2

Ly (LP (R X)

olled,, (LP(R%;X)

]

< 60[lpoll 3411 (f5)5z0lles,, (2o asx)),

the convergence of the sum Ekzo g * fr in B;,q(]Rd; X) being a consequence
of the convergence of the sum >~ .-, 27 f; in LP(R%; X)), for this allows to first
perform the same estimates for differences of partial sums. R

The identity RS = I follows from Lemma 14.2.10 and the fact that ¢, =1
on supp(Pg). O

Now we are ready identify the complex interpolation spaces of Besov spaces
in a very general setting. In contrast to the complex interpolation results for
Sobolev and Bessel potential spaces in Section 5.6, where it was necessary
to impose UMD assumptions, no geometric restrictions on the interpolation
couple (Xo, X1) are needed.

Theorem 14.4.30 (Complex interpolation of Besov spaces). Let
(X0, X1) be an interpolation couple of Banach spaces, let py,p1,qo,q1 € [1,00]
satisfy min{pg,p1} < oo and min{qo,ql} < 00, and let sp,s1 € R and 0 €
(0,1). Furthermore let 1% = 1 0 p LA =2019 unds=(1-0)sy+0s;.
Then 1749 g0 q1
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[Bro.ao (R X0), Byl g, (R X)]g = B 4 (R [Xo, Xi]o)

with equivalent norms.
Proof. Let R : £, (LP(R%: X)) — B (R%;X) and S : B (R X) —

¢4, (LP(R% X)) be the retraction and co-retraction operators of Lemma
14.4.29. Set

Bj =y (L"(R%:X;)), Fj=By , (R:X;), je{0,1},

j P14

and
Eg := (Eo,E1)e, Fp:= (Fo,F1)g, Xg:=[Xo,X1]s.

By Theorem 2.2.6 and Proposition 14.3.3, Eg = (2, (L?(R?%; X)) isometrically.
Therefore,

(B . (R%: Xo), Bt (R% X1)]g = Fy = RSFy C REy C By (R Xy),

Po,qo0 Po,q0

and for all f € Fy we have

1£llms  moss) = IS

using Theorem C.3.3. Conversely, by Theorem C.3.3,

o, (Lr@x,)) = 1S fllEy < fl7

B ,(R%: Xy) = RSB} (R%; Xy) C REy C Fo,
and for all f € Bj (R% Xj) we have
£l = IRSFl, < CUISFlm, = CUISFley (toeorny) = Cllf i ooy

where C' = 60]|ol|34!*! is the constant of Lemma 14.4.29. O

In the next result we identify the Besov spaces as the real interpolation spaces
of Besov spaces, Bessel potential spaces, and Sobolev spaces, allowing only
non-negative integer values of s in the latter case. In contrast to the case of
complex interpolation, the integrability exponent p as well as the range space
X are fixed.

Theorem 14.4.31 (Real interpolation of Besov spaces). Let X be a
Banach space, let p,q,q0,q1 € [1,00], let sg,$1 € R satisfy so # s1, and let
0 €(0,1) and s = (1 —0)sg + Os1. Then

(B, (R%: X), Bst (RY X))g,q = By ,(RY X), (14.48)
(H*P(R% X), HP(RY; X))g,q = B ,(R% X), (14.49)

with equivalent norms. If we additionally assume that sg,s1 € N, then

(Wso’p(]Rd;X), WShP(Rd;X))e’q = B;q(]Rd;X) (14.50)
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with equivalent norms. If instead we additionally assume that p € [1,00) and
s0,81 € (0,1), then

(Weor(RY: X), WP (R X))o g = By, (RY X) (14.51)
with equivalent norms.

Proof. The identification (14.51) follows from (14.48) and Corollary 14.4.25.
We will give the proof of the remaining identifications in two steps.

Step 1 — If we can prove that (14.48) holds for g9 = g1 € {1, 00}, then all
remaining cases can be inferred as follows. Let A" € {By,, H%P, WP},
where we assume that s; € N if A" = WP, Then by (14.48), Theorem
C.3.3, (14.22), and Theorem 14.4.18, we have continuous embeddings

B; ,(R%: X) = (B;2 (R% X), By! (RY; X)),
— (A%™P(RY X), AP (RY X))o,
— (B;?oo(Rd7X)’ B;S),loo(Rde))Q,q = B;,q(Rd; X)7
and (14.48), (14.49), (14.50) follow.

Step 2 — It remains to prove (14.48) for r := qo = ¢1 € {1,00}. The
argument is similar to that of Theorem 14.4.30.

Let R and S be the retraction and co-retraction operators considered in
Lemma 14.4.29. Let

Bj =10, (L(R%X)), Fj:=By.(R:X), je{0,1},
j )
and
EO,q = (E07E1) 0,q> F@,q = (F07F1>0,q

By Proposition 14.3.5, Ey , = €%, (LP(Rd X)) with equivalent norms, say with
constants C1,Cy (depending on [ D54, S0, S1), 1€,

Crtlgll gy, < lglles,. (Lr@a;x)) < CallgllE,,-
From Theorem C.3.3 it follows that
(B3 (R%: X), Bit.(RY X))g,q = Fp.qg = RSFy g € REg 4 C B (RY; X),
and for all f € Fp , we have
/]
In the converse direction, interpolation R and S by Theorem C.3.3,

B (R X) = RSB; (R} X) C REgq C Fy g,

B ,®4x) = [Sflleg, (o me;x)) < C2llSf B, = Callfllr,,-

and for all f € Bj (R% X) we have

1l 7o = HRSfHFe,q
S CUSflEo, S CUSFlles,, (rrax)) = C3CillfllBs , me;x)5

where C' = 60]|ol|34/*! is the constant of Lemma 14.4.29. O
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Corollary 14.4.32. Let sg, s1 € [0,00) satisfy so # s1, let 6 € [0,1], and put
s:=(1—6)sp+ 0s1. Then

(Cap(RY X), O3 (R X))o 00 = B, oo (R% X)

with equivalent norms. Moreover, if s ¢ N, then B3, . (R%; X) = C3 (R%; X)
with equivalent norms and therefore

(Cap (R X), O (R X))o, = (Cip (R X).

Proof. By Corollary 14.4.26 it suffices to prove the first identity. Since

by Proposition 14.4.18 we have continuous embeddings Bzél(Rd;X) —
CH(R%: X) — B oo(R% X) we can straightforwardly adapt the proof of

Theorem 14.4.31. O

As a simple application we show that multiplication by a smooth function
leads to a bounded operator on Besov spaces.

Ezample 14.4.38 (Pointwise multiplication by smooth functions —I). Let p, q €
[1,00] and s > 0, and let k € (s,00) NN. If ¢ € CF(RY Z(X,Y)), then
pointwise multiplication

fe=df
defines a bounded operator from B;,q(Rd; X) into B;yq(Rd; Y) of norm

If = Cfllzms ,®ex),Bs, @) Sk [1Cllor@azxvy)-

Indeed, f — (f is bounded as a mapping from W7P(R%; X) into W7P(R%;Y)
for each j € {0,...,k}. Interpolating between the cases j = 0 and j = k by the
real method with parameters (,¢) and applying Theorems 14.4.31 and C.3.3,
the desired result is obtained. Alternatively one can prove the boundedness
as a consequence of Theorem 14.4.24.

14.4.f Duality

The main result of this section identifies the duals of Besov spaces By  (R%; X)
for p,q € [1,00). It is interesting that no geometric assumptions are needed on
X. This contrasts with the situation for vector-valued Bochner spaces: recall
that, by Theorem 1.3.10, for o-finite measures spaces one has LP(S;X) =
L (S; X*) if and only if X* has the Radon—Nikodym property.

We start with the preliminary observation that elements in the duals of
Besov spaces can be naturally identified with tempered distributions. Indeed,
if g € B ,(R% X)*, then for all ¢ € .(R?) and 2 € X we have

(e@w,9)| < @l ps  ®e;x) 9l Bs  REX)- = [l0llBs R 9]l B, (R3[|l

where we used Proposition 14.4.3 to identify the Schwartz function ¢ with
an element of BS  (R?). Thus the mapping = — (¢ ® x, g) defines an element
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ge € X, of norm ||g,|| < ||Q0||B;,Q(Rd)”gHB; ,(Re;x)+- By the continuity of the
embedding .7 (R?) < B3 (R?) (see Proposition 14.4.3), this implies that the
mapping ¢ — g,, defines an element in .7/ (R%; X*).

In the converse direction, for g € .%/(R%; X*) and elements f = anzl (n®
z, in .7(R%) ® X, we can define

N
Z (@, 9(Cn) (14.52)

In order to check whether the mapping f +— g¢(f) defines an element of
B;,q(Rd; X)*, with p,q € [1,00), by the density results contained in Lemma
14.2.1 and Proposition 14.6.8, it suffices to check that there is a constant
C > 0 such that

9(NI <Clfls; rex), [ EFSR)X. (14.53)

Theorem 14.4.34. Let X be a Banach space and let p,q € [1,00) and s € R.
Then every g € B, (Rd X*), when viewed as an element of .7'(R%; X*),

determines a umque element of B;,q(Rd; X)*, and this identification sets up
a natural isomorphism of Banach spaces

s d. ~ s d. y*
B (R: X)* = B, (R% X™).

Proof. The second assertion follows from the first, combined with Corollary
14.4.25.

As a preliminary observation to the proof of the first assertion, we recall
Proposition 2.4.32, which asserts that if ¢ € .#/(R% X*) and ¢ € #(RY),
then ¢ * g is in C*°(R?; X*) and 9“g has polynomial growth for any a € N%.
Moreover, by Lemma 14.2.10, and the support properties (14.11), (14.12), we
have the identity

Z/ );9;(t)) dt = ZZ/ (PjrexC(t),g;(t))dt, (14.54)

>0 (=—17530

where g; := @; * g.
We split the proof of the theorem into three steps.
Step 1 — First let g € B, (Rd X*). Identifying ¢g with an element of

S!(R% X*), in order to prove that g defines an element of Bj ,(R% X)* we
will check that the duality given by (14.52) satisfies the bound (14 53).

By (14.54), if f € S(R%) @ X is as in (14.52), then with f; := ¢, * f we
have

=35 [ e, g0

=—135>0
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By Holder’s inequality,

RS S UG

(=—135>0

1
< 27517 fi0) 20l ga o oo | 277 90)520 g (1 gt oy
l=—1

<3280 7|

Bqu(]Rd;X) HgHBp_/fq/(Rd;X*)‘

This verifies the bound (14.53).

Step 2 — Suppose next that g € B;yq(]Rd; X)*. As explained above, we can
identify g with an element of .#/(R%; X*). Let (f;);0 be any finitely non-
zero sequence in . (R?) @ X such that [|(27 ;) j0lea (e ®a;x)) < 1. Put f:=
R(f;)j>0, where R : 0%, (LP(R%; X)) — Bj ,(R% X) is the operator considered
in Lemma 14.4.29. Then by (14.54) and the fact that Jj =Qj1+P;+P41 =1
on supp(@;) we see that

gm—géﬁ@@mw—§ANMwwm

Therefore,
‘Z/Rd@jsfj(t)ﬁ_jsgj(t»dt‘ =g < I f11Bs, resx) 91l B, (R x0)-
Jj=0

<R[ lgll g, @mesx)~-

Taking the supremum over all admissible finitely non-zero sequences (f;);>o,
Propositions 1.3.1 and 1.3.3 imply that g belongs to B};fq, (R%; X*) and

”g”Bp_,‘?q/(Rd;X*) = H(2_]8%)]‘20ng(Lp(Rd;X*)) <Rl ||g||B;;1q(Rd;X)*'

Step 3 — Since the identifications in Steps 2 and 3 are inverse to each other,
they set up a bijective correspondence, and the estimates in the above proof
show that this correspondence is bounded in both directions. (]

Theorem 14.4.34 permits an extension of Example 14.4.33 to negative smooth-
ness exponents.

Example 14.4.35 (Pointwise multiplication by smooth functions — II). Let X
and Y be Banach spaces, let p € (1,00), ¢ € [1,00], s < 0, and let k €
(|s], 00) NN. For functions ¢ € CF(R?; £ (X,Y)), the pointwise multiplication

f=df
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defines a bounded operator from B} ,(R%; X) into Bj ,(R%Y) of norm

If = Cfllzms  ®ax),Bs &) Skes [Cllor@azx,v))- (14.55)

To prove this, first assume that ¢ € (1, 00) and s < 0. From Example 14.4.33
we obtain the boundedness of g — (*g from B, (Rd Y™) into B, (Rd X*).
Therefore, by Theorem 14.4.34, the adJ01nt mapplng f—=< f 15 bounded
from Bqu(Rd,X**) into B;Vq(Rd,Y**). Restricting to . (R%; X) and using
density (Proposition 14.4.3) we obtain boundedness from B;q(Rd;X ) into
B;ﬁq(Rd; Y).

Next let ¢ € {1,00} and s < 0. Interpolating the inequality (14.55) for
the cases B;:SE and B;,° by the real method with parameters (%,q), and
using Theorems 14.4.31 to the effect that (B;Jgs, By 2% )1 = By 4 we obtain
boundedness in the endpoint cases ¢ € {1, 00} by Theorem C.3.3.

Finally, if ¢ € [1,00] and s = 0, then by interpolating the cases B , and
B, 5 by the real method with parameters (%, q) we obtain the boundedness
also in this case.

As another application of interpolation and duality we present a density re-
sult, which at first sight looks a bit technical. It will be used to derive an
analogues density result for Triebel-Lizorkin spaces (see Proposition 14.6.17)
which will serve to show that several end-point results do not hold (see the
text below Theorem 14.6.32 and Example 14.6.33). Moreover, some of these
density results will be used to prove results on pointwise multiplication by the
non-smooth function 1g, (see Sections 14.6.h and 14.7.d).
Let
R?:= (R {0}) x R,

Proposition 14.4.36 (Density of compactly supported functions). Let
p.q € [1,00) and s € R. Then C°(R?) ® X is dense in B (R% X) in each
of the following situations:

(1) s < 1/p;
(2) p,q € (1,00) and s =1/p.

Proof. By Proposition 14.4.3 it suffices to show that for every f € C°(R%)
there exist f, € C®°(R?) such that f, — f in Bs (R%). Moreover, by the
embedding (14.23) and Theorem 14.4.19 it suffices to prove (2).

In order to prove (2) let f, := (. f, where (,(z) = ((nz1,22,...,2,) is
multiplication by n in the first coordinate, and where ¢ € C*°(R%) satisfies
¢ =1if|z1] > 2and ¢ =0if |z1] < 1. Then by Theorem 14.4.31 the following
interpolation inequality holds:

1/p 1
1 fall g2/ oy < ClFnl oy I Fallif s -

Since
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1 Fall oy < 1FloollnllLo@ay S n™ P flloo
and similarly
| fallwngay S nt P (1 lloo + 1V lloo).
the interpolation inequality implies that (f,),>1 is a bounded sequence in

B;/P(RY). Using the reflexivity of By/F(R?) (which follows Theorem 14.4.34)
we find that (fy,)n>1 has a weakly convergent subsequence, say f,, — g weakly
in By/P(R?). Since also f,, — f in .#/(R%), we find that g = f and therefore
fn, — f weakly in B;ff(]Rd). Therefore, f € C® (R)UJ = CgC(R)H.”, where the
closures are taken in the weak and norm topology of B;(f (R9), respectively.
This completes the proof. 0

14.5 Besov spaces, random sums, and multipliers

In the preceding subsections we have proved various results on embedding
Besov spaces into other function spaces and vice versa. In the present sub-
section we take a look at the embeddability of Besov spaces into spaces of
~v-radonifying operators. This question turns out to be intimately connected
with the type and cotype properties of the space X.

The point of departure is provided by Theorems 9.2.10 and 9.7.3, by which
we have the following natural continuous embeddings:

o L%(S;X) < y(L3(9),X) if and only if X has type 2;

o ~(L%(S),X) < L*(S; X) if and only if X has cotype 2;

° Wii%’p(R; X) < y(L?(R), X) if and only if X has type p.

In the first two embeddings (S, o7, u) is an arbitrary measure space.

The main result of this section is the following characterisation of type p
and cotype ¢ in terms of embedding properties:

Theorem 14.5.1 (y-Sobolev embedding — I). Let X be a Banach space
and let p € [1,2] and q € [2, 0].
(1) X has type p if and only if the identity mapping on C°(R%) ® X extends

to a continuous embedding

(3—3)d

Bph T (RYG X) < y(L(RY), X);

(2) X has cotype q if and only if the identity mapping on C°(R?)® X extends
to a continuous embedding

1_ 1
Y(L2(RY), X) = By P (RY X).

In particular, for any Banach space X we have continuous embeddings

1 _1
B{(R%: X) < 4(L*(RY), X) — Bxiw(R% X).
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The proof of Theorem 14.5.1 provides quantitative estimates for the norms of
these embeddings. It relies on the following Gaussian version of the Bernstein—
Nikolskii inequality (Lemma 14.4.20).

Lemma 14.5.2 (y-Bernstein—Nikolskii inequality). Let p € [1,2] and
q € [2,00].

(1) Let X have type p. If f € ./ (R% X) satisfies supp f C {£ € Re: [¢] < t},
then for all multi-indices o € N we have

a_d
10% flly(re,x) < Ko pTWX”‘altlaHp 2[[flLe e x) -

(2) Let X have cotype q. If f € .7 (R%; X) satisfies suppf C{eeR?: ¢ <
t}, then for all multi-indices o € N% we have

da_d
10° fll o x) < fig2c) N ETE FIL rax).

Here, K2 ) and kq,2 are the Kahane-Khintchine constants introduced in Section
6.2 and 7' X and ¢’ 4, x are the Gaussian type and cotype constants of X,
respectlvely, 1ntroduced in Section 7.1.d.

Proof. (1): By a scaling argument it suffices to consider the case t = % By
Example 9.6.5, 9° f € v(R%; X) if and only if £ f”‘fe v(R%; X) and in this
case

1% Flyme.xy = @M)€ = € FE)Il e

In order to show that & — fo‘f(f) € v(R4; X), by Examples 9.1.12 and 9.4.4

it suffices to check fe v(Q; X), where Q := [—5, §]d; in that case

(2m)' 1€ = €2 Fllymasxy < @m)IE = € Flly@in) < Tl @ix)-

The assertion f € v(Q; X) is short-hand for the statement that the Pettis
integral operator ]If: L?(Q) — X defined by

9= [ Fweds, g 1%@)

belongs to v(L*(Q), X) (see Section 9.2.a). We will prove the latter by testing
against an orthonormal bases, making use of Theorem 9.1.17.

Let e,(&) = €2™™¢ for n € Z and ¢ € Q. These functions define an
orthonormal basis for L?(Q) and we have

Lee, = /Q F(&)ex i dg = f(n).

By the Kahane—Khintchine inequalities (Theorem 6.2.6) and the type p con-
dition, for any finite subset F' C 7% we have



354 14 Function spaces

nH n ::H n ‘
H%V e L2(£2;X) 7;7 fn) L2(£2;X)
< R2, an n
| Z 0]
~ » 1/p
<rapmlx (D IFIP)
neFr

It follows from Theorem 9.1.17 that ]?E ~7(Q, X) and, by the above observa-
tions,

~ 1/p
10° Flly gy < 711 Fllye < mzgrer®l (2 1£m)I7)
nezl

To deduce the estimate in the statement of the theorem from it, for h € Q
and s € R? put f,(s) := f(s+ h). Then supp fr, C Q and

1/p
107 Il sy = 107 Fally ey < rpmlcm® (3 Ia(mIP)
nezad
Raising both sides to the power p and integrating over h € () we obtain

16 s < saomi( [ 3 Lntmy1ean)”

nEZd

= e ([ IrePas)”

(2): This is proved similarly. O

Proof of Theorem 14.5.1. (1): First we prove the ‘only if’ part and assume
that X has type p. Let f € #(R% X), put fr := ¢ * f, and note that

supp fo C {€ € R [¢] < £} and
supp f C S = {€ e R%: 2871 g < 2M1), k> 1.

By Lemma 14.5.2, f; € v(R% X) and
1fellyra;x) < “27p7’;x2k(%_%)d||fkHLP(Rd;X)-

By Proposition 9.4.13, applied to the decompositions (Sax) k>0 and (Sax+1)k>0
of R4\ {0}, for n > m > 0 we obtain

LI 1_1)pd 1/p
H Z ny(RdX < F2pTp X Tr.X <j§2](p 2” Hfsz]ZP(Rd?X))
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v S @i (3 dpd P r
+ 52,p7p,x7p,X( > 2 P2 ||f2j+1HLp(]Rd;X)) :
—r

Sums of the form Y ;bl 2 41> and St 41 can be estimated in a
similar way. Since f = >, ,0p * f = > 1oz fx in (R4 X) (by Lemma
14.2.10) and hence in v(R%; X) (by the continuous embedding .7 (R%; X) —
v(R%; X)), it follows that f € y(R%; X) and

) 1/p
1_1ypq
11y < 2020 (D0 2 FT9 fo5117, )
JEZ
—2“27p7prp,X||fHB;1p Lya ®E:X)

Since . (R%; X) is dense in Bl(7 D ) (R4; X) by Proposition 14.4.3, the identity

1 1

mapping on .#(R% X) extends to a bounded operator from B;;_E)d(Rd X)
into v(R%; X) of norm at most 2k ,7 - xTp,x- The simple proof that this ex-
tension is injective is left to the reader

Next we prove the ‘if’ part. Since every Banach space has type 1, the ‘if’
part is trivial for p = 1. In the rest of the proof of (1) we may therefore assume
that p € (1, 2]. We will prove the stronger statement that if for some r € (1, 0]
the 1dent1ty operator on .#(R%; X) extends to a bounded operator, say I,

from Bl(j - 2‘)d(]Rd; X) into v(L?(R%), X), X has type 7 (and then necessarily
r e (1,2]).
Let ¢ € .7(R?) be such that [[¢)||2(re)y = 1 and supp(y) € {¢ € R? :

?1(¢) =1}. For n > 1, let ¢, € S(RY) be defined by

D (€) := 20 HI 297t ey

Then (¢,)n>1 is an orthonormal system in L?(R%). By Proposition 9.1.3, for
any finite sequence (z,,)_; in X we then have, with f := 22;1 UV @ T,

N 2
112 e xy = E[| D o
n=1

On the other hand, since @y * 1, = 0,1, (this is seen by taking Fourier
transforms and using the Fourier support properties of ),

N N
L,l d
L1 3 Pig Z Pl llzall” = 191 D ]
n=1 n=1

By putting things together we see that X has type r, with Gaussian type r
constant 7,y < [|¢]|p[|T]].
(2): This is proved similarly. O
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14.5.a The Fourier transform on Besov spaces

This section presents some mapping properties of the Fourier transform on
spaces of functions taking values in a Banach space with (co)type or Fourier
type properties. Recall from Section 2.4.b that a Banach space has Fourier type
p € [1,2] if the Fourier transform, initially defined on L!(R%; X) N LP(RY; X),
extends to a bounded operator from LP(R%; X) into L? (R%; X). If that is the
case, the norm of this extension is denoted by ¢, x (R).

Proposition 14.5.3 (Integrability of Fourier transforms — IT). Let p €
[1,2], and suppose that one of the following two conditions holds:

(i) q € [p, 0] and X has Fourier type p;
(ii) g € [2,00] and X has type p and cotype 2.

Let F denote the Fourier transform on ' (R% X) and let s := (% - %)d.

(1) F restricts to a bounded operator from B, ., (R X) into L9 (R X);
(2) .F restricts to a bounded operator from WsJ+12(R?: X)) into L9 (R%; X).

The case ¢ = oo gives sufficient conditions for the Fourier transform to take
values in L'(R? X). Different conditions guaranteeing this have been dis-
cussed in Lemma 14.2.11, where growth assumptions on the functions and
their derivatives where imposed.

Proof. We start with case (i). Accordingly, let ¢ € [p,o0] and let X have
Fourier type p
(1): Let f e By (R4 X). Put fi := g * f for k> 0. Let Iy = {¢ e R :
|€] < 1} and
L= {EeRT 2L ClE < 2"}, n> 1.

The sets I,, thus defined are pairwise disjoint, we have Un>0 I, =R? and

~ ~ 7 1/‘1/ ! ~ N 1/q
1Pl = (D1 A1) < 32 (Do I el

n=0 l=—1 n>=0

where we used that supp(@x) NI, or [n—k| > 2 and that >, -, ¢, = 1.

= o f
By Holder’s inequality with ; = 5 + i, and the Fourier type p assumption,

for £ € {—1,0,1} we have

117, faselle < Nnlle | Farelly
< @px RNV frp ol < 205, x R0 fe

Taking (7 -norms on both sides we obtain f € LY (R4 X) and

1Pl < 2230, xR fl3: ).
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(2): This follows from (1) since by Proposition 14.4.18 and Theorem
14.4.19 we have the embeddings WlsI+1p(Re X) — BT (REG X) <
B;,l(Rd; X).

Case (ii): Assume now that ¢ € [2, 00] and that X has type p and cotype 2.
Using the same notation as in case (i), by Holder’s inequality with % = % + %,
Theorem 9.2.10, and Lemma 14.5.2 we have

11 Fuselle < Il ll Fosells
< C;,X2d/r(n+1)an+fH7(Rd;X)
Sd.p ‘327X7'p,X2(n+1)d/T2(n+1)(%_%)dan—s-éHp
= ¢2,xTp,x 2" V% furelp-
The proof can now be finished as in case (i). O

As an application of Proposition 14.5.3 using the Fourier type of X, we give an
improvement of the Mihlin multiplier theorem for vector-valued Besov spaces
presented in Theorem 14.4.16. Before we do that we derive an immediate
consequence of Propositions 14.4.11.

Corollary 14.5.4 (Fourier multiplier theorem for L”? under Fourier
type). Let p € [1,00] and s € R, let X and Y be Banach spaces, and suppose
that one of the following conditions holds:

(i) Y has Fourier type 7;
(i1) Y has type 7 and cotype 2.

Then we have a continuous embedding

BYY (R Z(X,Y)) < MLP(RE X, Y),
i.e., every m € B%T(Rd;f(X, Y)) defines a bounded operator T,, from
LP(R?:; X) to LP(R4Y).

Proof. The result is immediate from the fact that m € L'(R%; Z(X,Y)) by
Proposition 14.5.3. d

Remark 14.5.5. It is possible to prove a result as in Corollary 14.5.4 under
assumptions on m and m* in the strong operator topology if X (equivalently
X*) has Fourier type 71 and Y has Fourier type 7. Indeed, assume there is a
constant C,,, such that

[ma|| 4 < Cpllzll, € X, (14.56)

/72 (RE;Y)

[y | ga/ms ga, oy < Cmlly™ll y* € Y™ (14.57)
71,1 ’

First observe that by (14.56), (14.57) and Proposition 14.5.3,
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mx| pyraey) < CryCnl|z
el < Cruy Culel .
Hm Yy HLl(]Rd;X*) < Cn,XCmHy ||-

Here iz := # ' (mx) and 7" y* := F 1 (m*y*). Therefore, for f € .7 (R?)®
X, by Fubini’s theorem one can write

7% Flls ey < //umt—s ()] ds dt

/ / $)|[drds < Conl| £l 2 retyy)-
R4

This proves that T, extends uniquely to T, € Z(L'(R%; X), L}(R%Y)).
Since the second line of (14.58) trivially implies that the kernel /m satisfies
the dual Hormander’s condition, it follows from the Calderén—Zygmund ex-
trapolation theorem (Theorem 11.2.5) that T,, extends uniquely to T, €
ZL(LP(RY; X), LP(R%;Y)) for all p € [1,00). By a duality argument a similar
result can be derived for p = co.

It is clear from the above proof that we can replace the Fourier type
conditions by the conditions that Y has type 7 and cotype 2, and X* has
type 71 and cotype 2.

We continue with an improvement of Theorem 14.4.16 using the Fourier type
or type and cotype Y.

Theorem 14.5.6 (Mihlin multiplier theorem for B;q(Rd;X) under
type conditions). Let p,q € [1,00] and s € R and X and Y be Banach
spaces and suppose that one of the following conditions holds:

(1) Y has Fourier type T;
(ii) Y has type 7 and cotype 2.

Ifme CLEIFYRL L(X,Y)) satisfies

Kpo= sup  sup (14 [N [0°m(€)] 2 (x,v) < o0,
la|<| £]+1 €€R?

then there is a bounded operator T : Bs (R%: X) — B3 (R%Y) with | T <
Cas,xvEKm such that Tf = .F~ 1(mf) for allfGﬂ(]Rd)(@X

Note that in the case p, ¢ < 0o, one has that T is the unique bounded extension
of Ty : YR @ X — .#'(R%Y). In the end point case p = oo or ¢ = oo this
does not make sense since .7 (R?) ® X is not dense in B} ,(R% X). This is the
main reason for the unusual formulation in Theorem 14.5.6.

By a duality argument one can also formulate the (Fourier) (co)type con-
ditions on X*, but the end-point cases require some caution.

Proof. For f € B;,q(Rd;X) let fx = o * f and my = @rm. Define
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1
Tf= ) Tompprfr- (14.59)

(=—1k>0

We will check that the series converges in .#/(R?;Y) and defines an element
in B;q(Rd; Y).

The proof follows the lines of Theorem 14.4.16. First we show that my
bound MLP(RY; X,Y) with a uniform bound in k > 0. First let k¥ > 1. By
invariance under dilations (see Proposition 5.3.8), Corollary 14.5.4, and the
embeddings (14.23) and (14.29), we have

Il e (re; x,v) = ”mk(2k—1')”9ﬁLP(Rd;X,Y)

< CT,Y ||mk (Qk_l')”Bf,/lT (RE:.2(X,Y))

k—1
< Crylmi(2 ')”WL%JJrl”'(]Rd;f(X,Y))

Since my(2871) = @1 (-)m(2F~1.), by the support properties of @; is suffices
to bound %[ (§)m(28~1¢)] for |af < [ 4] + 1, uniformly in & > 1 and 1 <
|€] < 3. This can be done in the same way as in (14.26). The case k = 0 can
be proved in the same way without the dilation argument. We can conclude
that

(Lo fill Lo masyy < Cas,x,v K| frll e (ra,x) (14.60)

Next we check the convergence of the series in (14.59). For ¢ € .%(R%) one
has T, ., fr(¢) = Z}:_l Ty o J1(Chts), where (i = ¢ * ¢, and thus

1
T fe(Olly < Wiy Filloesyy D Nkl oo ma)

j=—1
1
< Cd,s,X,YKmZSk”fk||LF(Rd;Y) Z 2‘S|2 s(k+) HC’H‘JHLP (R%)
j=—1

Summing over k we see that

1
Z Hka+sz HY Cd,s,X,YKmZQSk”kaLP(]Rd;Y) Z Q_Sk”Ck-s-jHLp’(Rd)

k>0 k>0 j=—1
<3 29C0 0y Kol £l 0 I ey

which gives the required convergence.
By the properties of (¢p)n>0 We can write

Jj+1 1 j+1

F(p *Tf Z QOJ Z Crrem@rf = Z %WQDkf ijf]-ﬁ%

k=j—1 =—1 k=j—1
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Therefore, the boundedness follows from

1
ITfllBs oy < D 1Ty Five)jzollearo ey
-1

1

< CaoxyEm Y _(fis0)izollea(romax))
/—1

< Cé,57X7YKmHf”B;,q(]Rd;X)-

It remains to observe that for f € . (R%) ® X, the following identities
hold in .#/(R%; X)

1
ﬂ = Z Z @kwm@kf: Zm@kfz mf
E>04=—1 k=0
g

A further consequence of Proposition 14.5.3 is a Fourier multiplier theorem of
a very different nature, in which the multiplier is non-smooth but the domain
and range spaces have different integrability and smoothness exponents.

Proposition 14.5.7. Let X and Y be Banach spaces with Fourier type p €

[1,2] and let s := (% - i)d. Let m : R4 — Z(X,Y) be strongly measur-

able in the strong operator topology and uniformly bounded. Then the Fourier
multiplier T,, = F 'm.ZF is bounded as an operator from B;,p(Rd;X) into

LP (R Y) with norm

||Tm||§f(B; »(R%X),LP' (RE;Y)) Sp ‘Pp,X(Rd>30p7Y(Rd) ;uﬂgz ||m(§)H$(X,Y)-

’ €
Proof. By the Fourier type p of Y,
HTmf“LP’(Rd;Y) X Pp, v (R )”mf”LP(]Rd ;Y)
< ¢y (RY) sup [[m(E)l| 2 x ) 1f ]l e @eix)s
£eRd
The Fourier type p of X and Proposition 14.5.3, applied with ¢ = p/, give
Hf”LP(Rd;X) Sp $p, X ( )||f||Bs (R4;X) s

and the result follows. O

14.5.b Smooth functions have R-bounded ranges

In Chapter 8 we have seen several instances of the general principle that
sufficiently smooth operator-valued functions have R-bounded ranges. The
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amount of smoothness needed depends on the geometry of the underlying
Banach spaces. For instance, it was shown in Theorem 8.5.21 that if X has
cotype ¢ and Y has type p, and if T € W*"(R%; £(X,Y)) with (% — %)d <
g < s < 1, then T has a continuous version whose range is R-bounded.

In the present section we will show that if the Besov scale is used instead
of the Sobolev scale, the analogous result holds for the optimal smoothness
exponent s = (1 — 1)d and the restriction s < 1 can be omitted. The precise

p
statement reads as gollows.

Theorem 14.5.8 (Besov functions with R-bounded range — I). Let
X and Y be Banach spaces, X having cotype q € [2,00] and Y having type
p € [1,2]. If r € [1,00] satisfies 2 > %—%, then every T € Bf’/lr(Rd;.iﬂ(X, Y))
has R-bounded range, with R-bound

(14.61)

%(T(t) tte Rd) < C||T||B’:/1T(Rd;$(x7y))7

where C' is a constant depending on d,p,q,r, X,Y .

By Theorem 14.4.19, the spaces Bi/lr (R4, £(X,Y)) increasing in the exponent

r € [1,00] and we have continuous embeddings
B (R Z(X,Y)) = BY,(RGZ(X,Y)) = Cup(RG Z(X, V), (14.62)

the second being a consequence of Proposition 14.4.18. The continuous version
provided by (14.62) is used in the left-hand side of (14.61).

In the proof below, we will use the Lorentz space L™ °(R?) with o =
min{ 7, %}
%7:’4
L9 (R%) is the space of all measurable functions f : R¢ — K for which the
(quasi-)norm

€ (0,1]. Referring to Appendix F, we recall that the Lorentz space

P A atCa] P

is finite, where
fAr)=mf{A>0: [{|f| > A} <7}, TERy,
is the non-increasing rearrangement of f.

Proof. By the observation before (14.62) it suffices to prove the theorem in
the case % =1_ %. In the proof we will only consider r € (1, c0]; in Theorem
14.5.9 a stronger result is proved which covers the case r = 1 of the present
theorem.

Let us write

1
TZZTkZ Z Z@lﬁ-é*Tk’

k>0 =—1k>0
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where T, = ¢ * T, and we used (14.12) in the second identity. Since T €
BY, 1 (R%.Z(X,Y)) (see (14.62)), the series > k>0 T converges uniformly on
R? with respect to the operator norm of .#(X,Y). By Propositions 8.1.19 and
8.1.22,

R(T(t): t e RY) < ZZ% e * Ti(t) - t € RY), (14.63)

{=—1k>0

provided of course that the operator families occurring in the sums are R-
bounded and their R-bounds are summable. Proving this will occupy us in
the remainder of the proof

Fix an integer n > 1. Starting from the identity o, (t) = 2(*~Ddp, (27~ 1¢)
(see (14.4)), it is elementary to check that the non-increasing rearrangements
satisfy ¢ (1) = 2(*~Ddpr(2n=17), Therefore,

lonllprn ey = 207 D7 = 7701 (2771 7) | Lo gy ar)

- 2(n—1)d/r||7_ s LT @T(ﬂ”Lﬂ(Dh,%*) — 9(n—1) d/r‘|<pl||L7" Ry
the latter being finite since ¢; € .#(R?). A similar calculation can be done
for n =0.

For t € R? define ¢, € Z(R?) by ©n+(s) := @n(t — s). Then ¢, ; is

identically distributed with ¢,. Letting Ty ,,, € Z(X,Y) be the integral
operator from Proposition 8.5.16, i.e.,

Tesr o= [ ns&Ti(s)a ds,
R

it follows from Proposition 8.5.16 with o = 7/ min{i, %} and ¥ = ¢,, that for
alln > 0 and k > 0 the set {¢, xT)(t) : t € R?} is R-bounded, with R-bound

%((pn * Tk(t) 1t e Rd) = %(Tkﬁon,t 1t e Rd) < CQnd/r||Tk||Lr(Rd;‘_g(X7y)).

With (14.63) we conclude that

1
A(T(t): teRY<C DD 280Uy g xyy)
f=—1k>0

da
<328 CITl porr e vy
U

We have the following variation of this result for the strong operator topology:

Theorem 14.5.9 (Besov functions with R-bounded range — II). Let X
and'Y be Banach spaces and assume that Y has type p € [1,2]. Suppose that

T:RY— Z(X,Y) satisfies Tx € B;i/lp(]Rd; Y) for allz € X and
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1Tl gy < Crllall, € X
P

P (REY)

Then the family {T(t) € Z(X,Y) : t € R?} is R-bounded, with R-bound
R(T(t) e Z(X,Y): teRY < CC,

where C' is a constant depending on p and Y.

Proof. We begin with the case p = 1, which corresponds to the case where Y’
is an arbitrary Banach space. By Proposition 14.5.3 we have Tz € L'(R%;Y)
and

T2l 2 @aryy Sa 1Tl pa < COrllzf].

P (REY)

This implies that we have the integral representation
T(t)e = / T () de, ¢ € RY,
Rd

where the operator-valued kernel is strongly in L. Now Theorem 8.5.4 implies
that the family {T'(t) : t € R?} is R-bounded, with R-bound %Z,(T(t) : t €
RY) <4 Cp.

Next assume that p € (1,2]. For k£ > 0 and « € X set Ty (t)x := @i+ T (¢)x.
By Theorem 14.5.1,

1_1
ITallyzo@a,y) < CITeall_a-ppa < Caps2 072 Tl oy,
p,p

(R%;Y)
(14.64)

where (setting s = d(% — 1) for brevity) the second inequality follows from

||Tkx||11)3; L(RE:Y) = Z 2nsp||(pn * Pk * TmHZZ,p(Rd;y)
' n>=0
1
= Z 2(k+£)5p||80k+€ * QP * Tngp(Rd;y)
(=—1

1
< 37 200 g o x T2, gy
(=—1

<3 26H0% IR Tl gy
using (14.11) and (14.7).

Choose arbitrary finite sequences (t,,)M_; in R? and (2,,)*_, in X, and
let (e,,)M_, be a Rademacher sequence on a probability space (£2,P). Since
Y has type p > 1 it follows from Theorem 9.6.14 with constant L, y hat

M
| > enTtm)an]
m=1

L2(8;Y)
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1 M
< Z Z H Z EmPhte * Tk(tm)xm‘
k>206=—1 m=1
1 M
- Z Z H Z €m /Rd T (w)m Prte(tm — u) du‘

k>204l=—1 m=1
M
Z EmTkxm‘
m=1

1
< Lp,YZ Z H<Pk+l||L2(Rd)
M
< LZD,YCQD Z 2kd/2HTk< Z Z':ml'm) ’

L2(82;Y)

L2(£2;Y)

L2(82;7(L2(R4),Y))

k>0 f——1
L2(27(L2(RD),Y))
= — (2D (R, Y)

where we used that (14.9) implies [[@riellL2me) = [|PrrellL2re) < C,2kd/2,
Applying (14.64) pointwise in 2, setting Cy := L,y C,Cyqp s, and using the
Kahane-Khintchine inequalities, we continue estimating

L2(2;LP(R4Y))

M
<G Y 2GR T (3 e )|
m=1

k>0

M
< 0062,1/ Zde/pHTk( Z mem)‘
2 m=1

k>0

M
=i (35 eonn)

M
<00K2)10T/ H Eml'mH dP

Lr(R4;Y)

B (ReY)

M
< COR2,1CTH E mem‘ .
el L2(92;X)

Putting things together gives the required R-boundedness estimate. g

Remark 14.5.10.

(1) The method of proof for p = 1 in Theorem 14.5.9 could be extended
to p € (1,2] if Y has Fourier type p. We have not done this, because
Proposition 7.3.6 shows that having type p is weaker than having Fourier
type p.

(2) In the case p = 1 and d = 1, a variation of the argument in Proposition
8.5.7 actually gives a stronger result than Theorem 14.5.9, namely that if
Tz € WHL(RY, £ (X,Y)) for all € X, then the range of T is R-bounded.
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14.6 Triebel-Lizorkin spaces

As we have seen in the preceding sections, the study of Besov spaces is inti-
mately connected with the space £9(LP(R?; X)) through the very definition,
which features the norm

||f||Bg,s(Rd;X) = H(2ks@k * f)k>0H€q(LP(]Rd;X))'

The class of Triebel-Lizorkin spaces Fps’q(Rd; X) is obtained upon replacing
(9(LP(R%; X)) by LP(R% (1(X)), putting

11

The theory of Triebel-Lizorkin spaces is in many respect analogous to the
theory of Besov spaces, but the occurrence of the /9-norm inside the LP-norm
precludes the use of Young’s inequality to estimate the norm of term-wise
convolutions, a technique that was critically used in our treatment of Besov
spaces. This makes the norm of Triebel-Lizorkin spaces more difficult to deal
with.

£ o ®53) = (1200 * Aizoll ogaa ooy

14.6.a The Peetre maximal function

The obstruction just noted already makes itself felt if one tries to adapt the
proof that Besov spaces are independent up to an equivalent norm of the in-
homogeneous Littlewood-Paley sequence ()0 to Triebel-Lizorkin spaces.
The encountered difficulty will be resolved by a variant on the Fefferman—
Stein inequality due to Peetre, to which we turn in the present preliminary
subsection.

Throughout this section, unless otherwise stated X is an arbitrary Banach
space. For a strongly measurable function f: R? — X and r € (0,00) we let

M, f(z) = (M(|fII") @), @ eRY, (14.65)

where M is the Hardy-Littlewood maximal operator introduced in Section
2.3,

wm:mgémmm

B>x
the supremum being taken over all Euclidean balls B in R? that contain z.

Lemma 14.6.1 (Peetre’s maximal inequality). Fiz r,t € (0,00) and a
multi-index o € N, and let f € 7' (RY; X) satisfy

suppfg B, :={¢eR?: |¢| <t}

Then f € C>®(R%; X) and there exist constants Cy and Cy, depending only on
lal, d, r such that for all z € R? we have
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sup = ‘MM < Cl sup M C2M f( )

2€Rd L+t = 7 ega L+t
In particular, taking z = 0, for all x € R? we have

1Mo f ()] < I ()] < CoM, f(x).

Proof. That the tempered distribution f is represented by a function in
C>(R%; X) has already been observed in Lemma 14.2.9. In the remainder
of the proof we assume that this identification has been made.

By an iteration argument it suffices to consider multi-indices satisfying
|| = 1. The short-hand notation |V f(z)| = Z?:l |0; f(z)|| will be used
throughout the proof. We first consider the case f € .7 (R% X). Replacing f
by f(t~1.), it suffices to prove the result for ¢ = 1.

Step 1 — Choose 1 € .#(R%) such that 12 =1 on Bj. Since fis supported
on By, we have f = ¢ * f and Vf = (V) x f. It follows that for z,z € R?
and A > 0,

105 (z = 2)|| </ 0;0(z — z = y)| 1/ (y)ll dy
R4
<cA/ (L4 lz =z =y £ @) dy,
Ra

where ¢y = sup, cga(1 4 [y])*0;4(y)|. Clearly we have 1+ |z —y| < (1+ |z —
z —y|)(1 + |z]), and upon taking A = d + 1 + d/r we obtain

10;f(x = 2]

TESER /Rd( o =2 —y) A+ ) 1) | dy

Sy e e (RN EE i P

£z — )|
< Cq sup
b erd (L+ [y &

where Cy = ¢y fRd(l + |y|) =4~ dy. This gives the first inequality in the state-
ment of the lemma.

Step 2 — Fix € > 0 and let Q. be the closed cube centred at zero and of
side-length . We claim that for all g € C*(Q.; X),

£ - 1/r
9O < 5 s IV + (f lowiras) ™, (469

where we write JCQ = ﬁ fQ for averages. By scaling it suffices prove (14.66)

for e = 1.
Fix g € C'(Q1; X). For all y € Q1 we have |y < 3 and
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1
9(0) =g(y)+/ Vy(ty) -y dt.
0

Therefore, ||g(0)]| < lg)Il + 3 sup,cq, IV9(y)||. Taking L"-average over Q1
gives (14.66) for € = 1.

Step 3 — By Step 2, applied to the function f(x — 2z — ),

I =< 5 sup 195t ===l + (f W === a) "
(14.67)

Now let € € (0,1]. It follows from z — Q. C Q14;| that

r—z—y)|"dy = x—y)|"d
Lovse—snra={ iy

< Q142
|Qel Q12|

<e 1+ DM @).

[f(z =)l dy

Substituting this into (14.67) and dividing by (1 + |z|)%", it follows that

wp =2 & Vw2 =)l
sera (14 ‘z|)d/7' 2 Lerdyeq. 1+ |Z|)d/7'
ceri 1 g IV 2

zerd (14 ]2))4/r

+e UM, f(x)
+e Y M, f(x),

where we used that (14 |z]) > $(1+ |y + z]) for |y| < e < 1 and performed a
change of variables. Combining this estimate with the first inequality in the
statement of the lemma, and taking e € (0, 1] small enough, the result follows.

Step 4 — Next let f € 7/(R% X) and ¢t > 0. Let fs = (5-)f, where
¢ € Z(RY) satisfies 1(0) = 1, supp® C {£ € R? : |¢] < 1} and § €
(0, min{1,¢}). Recalling that f € C°°(R%; X), clearly we have f5 € .7 (R% X),
fg has support in By; and therefore, by the previous steps, the second in-
equality in the statement of the lemma holds if in the two expressions on the
left-hand side f is replaced by fs and for the right-hand side we note that
M, f5(x) < [|¥||ooMrf(z). It remains to let § — 0 on the left-hand side and

note that fs(x — z) — f(x — z) and similarly for its derivatives. O

Using the pointwise estimate of Lemma 14.6.1, we will now deduce a maximal
inequality in LP(R?; £9).

Proposition 14.6.2 (Boundedness of Peetre’s maximal function).
Let p € [1,00), q € [1,00], and let v € (0,min{p,q}). Let f = (fr)k>0 in
LP(R4;¢09(X)) be such that supp(fr) C Sk for all k > 0, where Sy C R? is a



368 14 Function spaces

compact set with diameter o > 0. There exists a constant C > 0, depending
only on d, p, q, v, such that

| fi(- — 2)| ) ‘
s 1. Nd/r <C p(RA-72( X)) -
H(zseung (1 —|—5k|z|)d/7‘ k>0 £z (R0 (X))

Proof. We use the short-hand notation f = (fi)r>0 and f;/r = (f,:‘,d/r)@(),
where

Lr(Rd;09)

. _ [ fe(z — 2)|| d

Multiplying f(z) with 2™ for suitable h, € R? we may assume that
each fk has support in By = {£ € RY: |¢] < &} for k > 0.

Let gi(x) := fk(é,zlx). Then gi has support in a ball of radius 1 centred
around the origin. Thus by Lemma 14.6.1 there is a constant ¢, depending
only on d and r, such that for all £k > 0 and = € R? we have

wup Lz =2

< M, gi(2).
S e cM, gy ()

Rewriting this in terms of fj, gives

: fe(e = 2|
Xr) = Su
iy = S8 (W gy

< M, fi(x).
Taking LP(R?; ¢7) norms and applying the Fefferman-Stein maximal Theorem
3.2.28 in the space LP/"(R?;¢9/7), we find that
* T 1/
13l oy < ell M i dusoll ogseny = el LS isol[ 2o e
IS 1/r
Spaaer Ul sl o/r gasparry = lf Lo @asen(xy)-

]

As a first application we derive a Fourier multiplier theorem for certain func-
tions in LP(R%; £9) for p € [1,00) and q € [1, 00] which is essential for later con-
siderations about Triebel-Lizorkin spaces. The main difficulty arises if p = 1
or ¢ = 1 since the maximal function is not bounded in these cases. The case
q = 1 turns out to be of particular importance in Section 14.7.a.

The statement of the following theorem, which is needed in the proof of the
Mihlin multiplier theorem for Triebel-Lizorkin spaces (theorem 14.6.11) is ad-
mittedly somewhat technical. We recall from Subsection 2.4.a that L!(R%; X)
denotes the subspace in L>°(R%; X) of all functions whose inverse Fourier
transform belongs to L'(R%; X).
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Theorem 14.6.3. Let X and Y be Banach spaces and let p € [1,00), q €
[1,00], and r € (0,min{p,q}). Let S, C R%, k > 0, be compact sets with

diameter 8, > 0. Then for all sequences m = (myg)rso in L'(R%:.Z(X,Y))
and all f = (fi)kso € LP(R%;¢9(X)) with supp fr C Sk for each k > 0 we
have F'm.Z f € LP(R%04(Y)) and

H(jilmyf”LP(]Rd;N(Y))

<C sup 1L+ 6] - )Y™)F ()| p1 e x v | F Nl o (retsea ()

¢ i‘i% (1+]- |)d/r)§_1[mk(5k')]||L1(Rd;$(X,Y))||f|\LP(JR<d;m(X))

where the constant C' > 0 depends only on d, p, q, r, provided the supremum
on the right-hand side is finite.

Proof. The kernels Kj := % 'my, are in L'(R%;, Z(X,Y)) by assumption.
Therefore, the functions .# ~!(my, fx) = Kj * fi are well defined in LP(R%;Y)
by Young’s inequality. Let

T (R AR K AC PSPy

Then, using the notation introduced in (14.68),

IEWI

i < K _ 145 . d/r
5w Sl < (=)0 ouke =) et

< :;,d/r(x) Ad HK/C(:E - y)”(l + 5k|x - y|)d/T dy < ij;,d/r(x)'

The required result follows from this by taking L?(R?; £7)-norms and applying
Proposition 14.6.2.

The final identity of the theorem simply follows by a substitution together
with the dilation property &, ' (# ~'my)(6; ') = .F 1 mu(dy-)] of the Fourier
transform. 0

Remark 14.6.4. Lemma 14.6.1 can be used to extend the Bernstein—Nikolskii
inequality presented in Lemma 14.4.20 to the full range 0 < py < p1 < oc.
To this end let ¢ be as in the proof of the lemma and note that it suffices to
consider the case that f has support in the unit ball.

First consider 0 < pp < p1 < oo and o = 0. If py € (0,1) and p; = oo,
then

[f (@) </ ¥z =yl f (Y)ll dy]
R4
< ||¢Hoo/ LF Il f @17 dyl < [ llssl L £IISPNF 115
R4
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and consequently || flloo Spo.w || fllpo- Since we already knew the result for
po = 1, this inequality holds for pg € (0,00). In the remaining case pg < p1 <
oo, we similarly find that

1oy < IFUSSTPILAIB P Spo,no 11 1lpo-

The case pg = p1 and a # 0 follows by taking LP*-norms in the pointwise
estimate [|0%f(z)| < CM,(f)(x) with r € (0,p1) (see Lemma 14.6.1) and
using the LP*/"-boundedness of the Hardy Littlewood maximal function, to
conclude that [|0% fl|p, < C||f|lp,-

If po < p1 and a # 0 combining the previous two cases gives

10% fllps < Cllfllps < Cllflpo-

14.6.b Definitions and basic properties

We now introduce our main characters. Recall that we have fixed a inhomoge-
neous Littlewood—Paley sequence (¢i)r>0 in Subsection 14.2.c (see Conven-
tion 14.2.8).

Definition 14.6.5 (Triebel-Lizorkin spaces). Let p € [1,00), ¢ € [1, 0],
and s € R. The Triebel-Lizorkin space F;q(Rd;X) is the space of all f €
' (RY; X) for which the quantity

Hf||F;1q(Rd;X) = ||(2ks<Pk * f)kZOHLp(]Rd;(q(X))
is finite.

We comment on the case p = oo and ¢ < oo in the Notes, as this exceptional
case behaves differently. Below we will check that the above definition is inde-
pendent on the choice of the Littlewood—Paley sequence up to an equivalent
norm and that the resulting spaces are Banach spaces.

It is immediate from Young’s inequality that ¢ * f € Fg’q(Rd; X) when-
ever ¢ € LY(RY) and f € F;’q(]Rd;X)7 and more generally the analogue of
Proposition 14.2.3 in valid.

By Fubini’s theorem, for all p € [1,00) we have

s d. _ s d.
F (R X) = By, (R% X).

We have continuous embeddings

Fpo®RGX) = Fp o (REX), 1< g0 < qu < oo, (14.69)
and, by Holder’s inequality for the ¢9-norm,
Fyo (REX) = Bl (RE X)), qo,q1 € [1,00], 50 > s1. (14.70)
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Next we prove that, up to equivalence of norm, the Triebel-Lizorkin spaces
are independent of the choice of the inhomogeneous Littlewood—Paley se-
quence (g )k>0- The corresponding result for Besov spaces, Proposition 14.4.2,
was rather easy to prove. The case of Triebel-Lizorkin spaces is not so easy
and is based on Proposition 14.6.2. For p > 1 and ¢ > 1 the use of this theo-
rem can be avoided by using instead the estimate ||¢x * f|| < cM f together
with the Fefferman—Stein Theorem 3.2.28.

Proposition 14.6.6. Let p € [1,00), g € [1,00], and s € R. Up to an equiva-
lent norm, the space F]f,q(Rd; X) is independent of the choice of the inhomo-
geneous Littlewood—Paley sequence (¢k)r>0-

Proof. Fix inhomogeneous Littlewood—Paley sequences (¢x)r>0 and (k) k>0-
For all j, k > 0 with [j — k| > 2 we have ¢y * p; = F 1 (¢3;) = 0. Therefore,
writing f = ZDO fij with f; = ¢ x f,

1

H(kal/’k * f)k>0||Lp(Rd;m(X)) < Z H(kaw’c * f£+k)k>0’|LP(Rd;E<1(X))'
=—1

Fix an arbitrary r € (0, min{p,q}), say r=Tpg = %min{p, q}. Applying
Theorem 14.6.3 with §; = 3 - 2% and my = 1, to (2% fo k) k>0 We obtain
k k
||(2 "y * f)k>0HLp(]Rd;[q(X)) < vadypvqysH(Q Sf5+k)k>0HLp(Rd;zq(X))
< Clapasll (2 0n f)k>0HLP(Rd;z<1(X))'
Since (¥)k>0 and (¢k)k>0 were arbitrary, this completes the proof. O

The same argument and (14.5) lead to the following useful estimate.

Lemma 14.6.7. Let f € F; (R% X), let (Y)r>0 be a Littlewood—Paley se-
quence, and set

Suf =Y trxf, n>0.

k=0
Then S, f € Fﬁ,q(Rd;X) and there exists a constant C = C(p,q,d, ) such
that
1S5 f1

We have the following analogue of Proposition 14.4.18 for Triebel-Lizorkin
spaces:

Fp ,(REX) S Clfl Fs (RYx), 1 =0

Proposition 14.6.8 (Sandwiching with Besov spaces). For all p €
[1,00), ¢ € [1,00], and s € R, we have the natural continuous embeddings

SREX) <= Fy (R X) = (R X),
the first of which is dense if p,q € [1,00), and
BS

s ongREGX) = Fs (R X) < By

p,pVq

(R4 X).



372 14 Function spaces

By combining the first of these inclusions with Lemma 14.2.1 we see that if
p,q € [1,00), then C°(R?) ® X is dense in F5 (R% X).

Proof. First let p > ¢q. For f € B;’q(Rd;X) it follows from the triangle in-
equality in LP/9(R%) that

%;Q(Rd;x) = H Zkaq”% * qu‘
' k>0

< Zkaq”@k * quLp(Rd;X) = ”f‘
k>0

/]

Lr/a (]Rd)

q
B;)Q(Rd;X)'

This gives the first embedding in the second displayed line of the proposi-
tion. The second embedding follows from (14.69), which gives inq(Rd; X) —
Fs (R%: X) = By (R% X) continuously. The case p < ¢ is handled similarly.

The continuous embeddings in the first line now follow from the corre-
sponding result for Besov spaces contained in Proposition 14.4.3.

Let us finally show that .(R% X) is dense in F; (R% X). The proof is
similar to Step 3 of the proof of Proposition 14.4.3. Let f € Fz‘f,q(Rd; X) and
set Gn := D o_o k- By (14.6) we have [|Ga]l1 < [|oll1-

We will first show that ¢, * f — f in sz’q(Rd; X). Let £ > 0 and choose
K > 0 such that

|(2 25l s17) ™

k>K

<e
Lr(R%)

By Young’s inequality,

2ks H )
Cn * (2% 0k * fr>k i (x)) elleolly

It follows that

1f = o * fllFs , (maix)

K 1/q
< e+ leoll) + [[ (S22 lonx £ = Guxux fl17) |
=0

P L (R4)
K

<e(l+ lleolln) + Z2ks||80k # [ = G * on * fllLegax)
k=0

The last term tends to zero as n — oo by Proposition 1.2.32.
It remains to approximate each of the functions (, * f by elements in
Z(R%; X). This can be done as in Proposition 14.4.3. O

This result enables us to give a quick proof of the completeness of Triebel—
Lizorkin spaces:
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Proposition 14.6.9. For p € [1,00), ¢ € [l,00], and s € R, the space
F3 (R% X) is a Banach space.

Proof. As in the Besov case one proves that for all p € [1,00), ¢ € [1, 0],
and s € R, the space F;’Q(Rd;X ) has the Fatou property. Since Triebel-

Lizorkin spaces embed into ./ (R?; X) by Proposition 14.6.8, the completeness
of Fps’q(Rd; X) follows from Lemma 14.4.7. O

14.6.c Fourier multipliers

The main result of this subsection is a version of the Mihlin multiplier theorem
for Triebel-Lizorkin spaces. Before we state it we first prove an important
lifting property as we saw in Proposition 14.4.15 for Besov spaces.

Proposition 14.6.10 (Lifting). Let p € [1,00), ¢ € [1,00|, and s € R. Then
for all o € R,

. IS d. ~ I'$S—0 (md. ; ;
Jo : Fj (R X) >~ F77(RY X))  dsomorphically. (14.71)

Proof. As in Proposition 14.4.15 it suffices to show that J, maps F} (R%; X)
into Fs-7(R% X) and is bounded for each ¢ € R We must show that
(2=, % J, f)nso belongs to LP(R?¢4(X)). This will be done by ap-
plying the multiplier Theorem 14.6.3 to a multiplier m = (my,), >0 naturally

associated with J,.

Write )

27" x Iy f = Z ﬁ’_lmn@lﬁf,
r=—1

where
mn(€) =277 (14 4n?[€]*)72 5., (6)-
We have m,, € C*(R?%) and, putting J,, = 3 - 2",

supp Pn(0p) C{€€R?: — <[ < 5}, (n>1)

CD\*—‘
DN =

supp Po(do-) C {€ € R : [¢] < }

Lemma 14.2.12, applied with A = d 4+ 1 + [d/r] with an arbitrary r =7, , €
(0, min{p, ¢}), gives the estimate
(1 +]- |)d/ry_1[mn((sn')]HLl(Rd;ﬁE(X,Y))

< Callmn (0n)llcasrram (va, 2(x,v)) < Cm,dr = Cmodp.gs

where the last inequality is elementary to verify.
Since for £ € {—1,0,1} we have supp(Pnief) C {£ € RY: €] < 5, } we are
now in a position to apply Theorem 14.6.3 and obtain
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||(2n(570)<pn * Jo-f)n>0||Lp(Rd;[q(X))

1
< Z ”(y_lmn2nsan+€f)n20HLP(]Rd;Z‘?(X))
t=—1

1
< Cmdpa Z (2" prte * f)HEOHLP(Rd;Z‘Z(X))
1=—1

< !
=N Ym,d,p,q

[ fllEs  (rasx)-
0

We continue with the Mihlin multiplier theorem for Triebel-Lizorkin spaces.
Note that the Besov space case was considered in Theorems 14.4.16 and 14.5.6.

Theorem 14.6.11 (Mihlin multiplier theorem for Triebel-Lizorkin
spaces). Letp € [1,00), ¢ € [1,00], s € R, and X and Y be Banach spaces,
and set N :=d+ 1+ [max{%, g 1. If m € ON(R%; £ (X,Y)) satisfies

Ky i= sup sup (1+[¢]'*N)[|0"m (&) ] 2(x.v) < o,
la|<N £eR?
then there is a bounded operator T : Fs (R%: X) — Fs (RLY) with [T <
Capasx.yKm such that Tf =.F~Y(mf) for all f € S(RY) @ X.

Note that in the case ¢ < oo, one has that 7" is the unique bounded extension
of T : S(RY) ® X — ' (R%Y).

Proof. We define T in the same was as in (14.59) of the proof of Theorem
14.5.6:

1
Tf= > Tomihs

1=—1k>0

where f € FS (R%: X), fio = ¢r * f and my, = $pm. Since Fj (R4 X) C

B;OO(Rd; X) it follows from the proof of Theorem 14.5.6 that the above series

converges in .%'(R%;Y), and that Tg = .Z ~!(mg) for all g € ¥/ (R?) @ X.
To prove the required boundedness, note that

1
1T f Ly avy < D 125 F 7 mBrse@rlkzol| Lo guaseniyy-
{=—1

Fix ¢ € {—1,0,1}. Then supp Frre C {|€] < 61}, where 65, = 3 - 2F,

To estimate further it is sufficient to apply Theorem 14.6.3, for which we
choose r = rq,p4 € (0, min{p, ¢}) such that N = d+ 1+ [d/r]. To check the
assumptions of the theorem we have to show that
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sup f[(1+]- DT @Sy m(1)) s ras e (x,v)) < Chms

k>

where C' > 0 is a constant depending only on d and r. Since @y (dx-)m(dy-)
has support in {¢€ € R? : |¢] < 1}, the estimate follows from Lemma 14.2.12.
(]

The following result is proved in the same way as Proposition 14.4.17.

Proposition 14.6.12. Let p € [1,00), ¢ € [1,00], and s € R. For all k € N
the expression

171

Fs (REX) = Z 0% f|

|| <k

Fpg" (R4 X)
: d.
defines an equivalent norm on F; (R% X).

14.6.d Embedding theorems
We have already noted the continuous inclusions
Z(R%: X) < Fy (RE X) — 7" (R% X)

and
BS

s ona(RE X) = Fo (RE X) < By g (RY X)

PPV
for s € R, p € [1,00) and ¢ € [1,00]. Moreover, for any ¢ € [1,00], it is
immediate from the definitions that

B (REX) = FS (RGX) — B (R% X). (14.72)

The next result compares Triebel-Lizorkin spaces with the Bessel potential
and Sobolev spaces. It can be improved if X is UMD and has type and cotype
properties (see Proposition 14.7.6 below).

Proposition 14.6.13 (Sandwiching with Triebel-Lizorkin spaces). For
p € (1,00), s € R, and m € N, we have the following continuous embeddings:

F3y(R% X) — HYP(RY X) = Fj (R X), (14.73)
Iy (RY X) — WmP(RY X) — Fi (R X). (14.74)

In view of the embeddings Bj | (R%: X) < Fs (R% X) and Fj (R4 X) —
B (R% X), (14.73) and (14.74) improve the corresponding embeddings in
Proposition 14.4.18.
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Proof. For (14.73) and (14.74), by Propositions 5.6.3, 14.6.10 and 14.6.12
it suffices to consider the special case s = m = 0, for which H*P(R%; X) =
WOP(RY X) = LP(R?; X). It thus remains to show the continuous embeddings

Fp1(R% X) = PR X) < By o (R X), (14.75)

The first embedding in (14.75) is true for any p € [1,00): writing f =
Z;@o g * f it follows that

£l e asx) < D llow * Fllora;x) = £l 7o, ra;x)-
k>0

For the second embedding in (14.75) observe that since ¢ € .7 (R?%), it has a
radially decreasing majorant which is integrable. Therefore, by Theorem 2.3.8
there is a constant Cy > 0 such that for all £k > 0 and almost all € Rd,
lor * f(x)]| < CgM f(x). Therefore, by the LP-boundedness of the Hardy—
Littlewood maximal function (Theorem 2.3.2),

1o rax) = | sup llor * £l HLp(Rd) < Cal| M fllewey Sp Callfll v ma;x)-

This completes the proof. O

We continue with a version of the Sobolev embedding theorem. A surprising
feature is that in case of the Triebel-Lizorkin spaces there is an improvement
in the microscopic parameter gq.

Theorem 14.6.14 (Sobolev embedding for Triebel-Lizorkin spaces).
For given pg,p1 € [1,00), qo,q1 € [1, 0], and s, s1 € R, we have a continuous
embedding

s d. s d.
Fpay REX) = Fp g, (RS X)

if and only if one of the following two conditions holds:

(i) po = p1 and [so > s1 or (8o = s1 and qo < q1)];

(i) po < p1 and 5o — = > 51 — L
The main ingredient is a version of the Gagliardo—Nirenberg inequality with
a microscopic improvement.

Proposition 14.6.15 (Gagliardo—Nirenberg inequality for Triebel—
Lizorkin spaces). Let p,pg,p1 € [1,00), q,q0,q1 € [1,00], let sg,s1 € R with
so < s1, let 0 € (0,1), and assume that ]% = 17_09 + p% and s = (1 —0)sg + 0s;.
For all f € F3o . (R: X)NFs! (RY: X) we have f € Fj (R X) and

Po,9q0 DP1,91

/]

0

1-6
Fpd a0 (REX) ||fHF;11,<I1 (R4; X))

Fs, (rex) < C|lf]

where the constant C' > 0 depends only on 0, sg, s1.
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Proof. Proposition 14.3.5 (applied with gg = g1 = o0) implies that

1@ k)20l s < Croonsl| @ aidizol |25 aidizolfy. (14.76)

for all sequences of scalars (ax)x>0 for which the expression on the right-hand
side is finite.

To prove the desired estimate, by (14.69) it suffices to consider the case
qo = q1 = oo. Taking ai(z) = ||<p;C * f(x)|| with € R? in (14.76), raising to
the power p and integrating over RY, by Holder’s inequality (with exponents

(lfi%)p and §1) we obtain

HfHF <(R% X) 807817 ||f| oo (R4 X) oo (R4: X)

as required. O
In a similar way one can prove the following variant for the end-point p; = cc.

Proposition 14.6.16 (Gagliardo—Nirenberg inequality for Triebel—
Lizorkin spaces — II). Let p,po,€ [1,00), q¢,q0 € [1,00], let sp,81 € R
with so < s1, let 6 € (0,1), and assume that % = 1p_09 and s = (1 —0)sg+0s;.
For all f € F30, (R%: X)N Bgém(Rd;X) we have f € F5 (R% X) and

Pos90

/1

0
Fs (R X) a0 (R%; X)Hf” oo (RE; X))
where the constant C' > 0 depends only on 0, sg, S1.

Proof of sufficiency in Theorem 14.6.14. For the sufficiency of (i) first assume
that po = p1, g0 < ¢1, and sg = s1. Under these assumptions the result follows
from the fact that

2 adisoll e < 12 @)zl
If po = p1, o > q1, and 59 > s1, the result follows from (14.23) and (14.72):

F3 (R X)=F° (R%:X) — B (R X)

Po,q0 P1,90 P1,00
= B (R:X) = Fl o (R X)),

This completes the proof of (i).
Let us now assume that (ii) holds. By (14.70) it suffices to consider the
case sg — Ijio s1 — =. By (14.69) we may furthermore assume that q = 1.

First take f € y(Rd,X). Let fp € [0,1) be such that L — 1= _ .

Po
Choose 6 € (6g,1) arbitrary and let r be defined by p% = po + Z. Note
that pg < p1 < oo implies r € (p1,00). Let further ¢ € R be deﬁned by
t— % = s9 — =. Observe that t < sp and s1 = 6t + (1 — 0)sg (write out
the expression for 0t and use the formula for 6/r). Therefore, by Proposition

14.6.15,
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/]

Fob L (REX) < 03073179||f| quo (Rd;X)”fH%;‘m(Rd;X)' (14.77)
By the case (ii) in Theorem 14.4.19 (using that r > p;),

1fllre, ®a;x) = 1flBr, ey < CllfllBz
=C|/f]

(R%X7)

F;1lvp1 R%;X) < C||f| F;i,l(Rd§X)7

where in the last step we used (14.69). Substituting the latter estimate into
(14.77), we obtain

1/(1-6 _
1121 sy < Cat €70 1]

F;&‘IO (]Rd;X)' (1478)

Now if gg < 0o, then the result follows from the density of .#(R%; X) in
F;(?yqo(Rd;X).

If g = 00 and f € F3° (R%X), we let S,f = >.p_, ¢k * f. Then by

Po,0

Young’s inequality and the fact that ¢;*S,f = 0for j > n+1, we have S, f €

B;g’l(Rd;X). Thus Theorem 14.4.19 implies S,f € B;i)l(Rd;X). More-
over, by Proposition 14.6.8 and (14.69) we also have S, f € F;g’l(Rd;X) —
F;g’oo(Rd;X) and S, f € szll’l(Rd;X). Therefore, by (14.78),

[1Sn f Fl L (REX) < C;o/,(sl;e)ce/(lie)”S"f”F;g,oo(Rd?X) < é”f”F;gm(Rd?X)’

where the last estimate follows from Lemma 14.6.7. Since S,f — f in
Z'(R%; X) by Lemma 14.2.10, the assertion now follows from the fact that
Fy, (R%; X) has the Fatou property. O

Proof of necessity in Theorem 14.6.14. By Proposition 14.6.8,

B

Po,1

(R X) — F0  (RLX) — B (REX) — B (RY X).

Po,q0 P1,91 P1,0

Therefore, Theorem 14.4.19 implies that pg < p1. If pg = p1, then (i) follows
from (i). If po < p1, then (ii) follows from (iii) and (ii). O

Proposition 14.4.36 has the following analogue for Triebel-Lizorkin spaces:

Proposition 14.6.17 (Density of compactly supported functions). Let

R?:=R\ {0} x R~L.
Let p,q € [1,00) and s € R. Then C°(R%) @ X is dense in F3 (R X) and
H*P(R%; X) in each of the following situations:

(1) s <1/p;
(2) pe(l,00) and s =1/p.
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Proof. First consider the Triebel-Lizorkin case. As in the proof of Proposition
14.4.36 (using Propositions 14.6.8) we can reduce to the smooth and scalar-
valued setting. Thus it suffices to show that an arbitrary f € C°(R?) there
exist functions f,, € C°(RY) such that f, — f in F;{f(Rd). By the embedding
(14.70) and Theorem 14.6.14, it suffices to prove this for the case (2). However,
for this case the result follows from Proposition 14.4.36 and the estimate

If — anFl/P R S <CO|f - fnuplﬁ (Rd) = =C|f - f”‘lBi,/%"(Rd)’ r € (1,p),

which follows from Theorem 14.6.14.

The same proof for Bessel potential spaces holds, where we note that
for the reduction to the scalar situation one can use Proposition 5.6.4, and
the embedding Ff}f (RY) «— H'/PP(R?) follows from Proposition 14.6.13 and
Theorem 14.6.14. 0

The proof of Theorem 14.5.1 shows that the existence of a continuous embed-
ding

(5=%3)d d. 2 mod
By 7T (R% X) < y(L7(RY), X)

implies that X has type r, and that the existence of a continuous embedding

Y(L?(RY), X) Bér 2 (R?; X) implies that X has cotype 7. Therefore

in the Besov scale the embeddings of Theorem 14.5.1 cannot be improved
by using the microscopic parameter r. For the Triebel-Lizorkin spaces the
situation is different, as witnessed the following result.

Corollary 14.6.18 (y-Sobolev embedding — II). Let 1 < py <2< qp <
0.

(1) If X has type po, then for all p € [1,po) and all r € [1,00] we have a
continuous embedding
(3-=3)d 1. 2 (mod
FP,?” (R 7X)‘_>,7(L (R )7X)
(2) If X has cotype qo, then for all g € (go,00) and all v € [1,00] we have a
continuous embedding
(3—2)d
YLARY), X) = Fpi * (R4 X).
Proof. We give the proof of (1), the proof of (2) being similar. Let 1 < p < py.
Let s = (% —1)dand s = (% 3)d. By Theorem 14.6.14 we have a continuous
embedding
s d. s s d.
Fy (R 7X)c—>Fp(§’pO( X) =By, (R X).
Now the result follows from Theorem 14.5.1. O



380 14 Function spaces
14.6.e Difference norms

In Section 14.4.d we have discussed a difference norm characterisation for
Besov spaces of positive smoothness. We will now prove a similar result for
the Triebel-Lizorkin spaces. Recall the notation

Anf(@) = f(z+h) = f(=z)
and AP = (Ap)™
Definition 14.6.19 (Difference norm for Triebel-Lizorkin spaces).

Let p € [1,00), ¢ € [1,¢], s > 0, m € N\ {0} and 7 € [1,00). For f €
LP(RY; X) we define the difference norm by setting

A5 oy = ([ (][W} lag sl an)"” )|

with obvious modifications if ¢ = oo, and

Lr(RY)’

IANS ey = 1oy + L1150 ks -
It will be shown shortly that each of the norms || - |||g:';T()Rd x) With m > s and

5> deﬁnes an equivalent norm on F¥ (R% X).

mm{p ar
The expressmn for the seminorm simplifies for 7 = ¢ € [1,00). Indeed, by

Fubini’s theorem we have

! —s m 1/q
(sq+d)1/q|Bl|H(/]R (Bl A f ()| an) |

Theorem 14.6.20 (Difference norms for Triebel-Lizorkin spaces). Let
X be a Banach space and let p,T € [1,00), q € [1,00], s > 0, let m > s be an
integer, and suppose that

(m,q)
[f]Fe q(R d:X) —

Lr(R)

o4 4 (14.79)

min{p,q} T

Then for all f € /(R% X) the following norm equivalence holds:

11l 7g ,re:x) Fdmp.a,s.r HIfHFs (R4X) (14.80)

whenever one of these expressions is finite.

Note that the condition (14.79) holds trivially holds if 7 < min{p, ¢}, and in
particular if 7 = 1. The condition (14.79) is only used in the proof of “>” of
(14.80).

For the proof we will use a discretised version of || f |||§7‘TZLT()Rd x)- Put
p,q ?
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@)= (f A seira)”

|h|<1

As in (14.38) we have
iy ey o (1252 T (F ) ke :
Fp g (REX) T ’ LP(R%309(Z))
Therefore, to obtain (14.80) it suffices to prove the norm equivalence
Hf”F;‘q(Rd;X) ~ ”fHLP(]Rd;X) + ||(2ksjm’7(f7 k))k‘GZHLP(Rd;gq(Z))V (14~81>

where the implicit constant may depend on d,p,q, m,s, 7. The proof of the
estimate < in (14.81) is similar to Step 2 of the proof of Theorem 14.4.24
except that instead of Proposition 14.4.2 one has to use Proposition 14.6.6
and towards the end of the proof one has to take LP(R%; ¢9)-norms instead of
09(LP(R%))-norms.

In the remainder of this subsection we will concentrate on proving the in-
equality 2 in (14.81). We begin with a lemma involving the maximal function

M, = (M) ()"
introduced in (14.65).

Lemma 14.6.21. Let f € .'(R%; X) satisfy supp(f) C {|¢| < t}. Then f €
C>®(R%; X) and for all r € (0,00), m €N, and all z,h € R? we have

AT f (@) Samr (RN M (f)() if [h] >t (14.82)
AR f (@) Saam,r (E[R1)™ M (f) () if b <t (14.83)

Proof. That f belongs to C>(R%; X) follows from Lemma 14.2.9.
Recall that by Lemma 14.6.1

10° f (@ + )| Sjag,ar 11+ RNV M, f (). (14.84)
The estimate (14.82) follows from (14.84) and Lemma 14.4.22, for if |h| > ¢t~
then

m

A @<y (’;‘) 1@+ )

§=0
Sar 2™+ tIhlm)Y" My f (2) Samr (tR)Y" M, f(2).
To prove (14.83) fix |h| < t71. Set ¢(s) := f(x + sh) for s € R. Then

Amf(z) = AP$(0). Since for any g € C'(R;X) we have [|A1g(s)]| <
SUPge(s,s+1] 119 (0) [, an induction argument gives

IAT¢(s)| < sup (6 (@), s eER.
0€[s,s+m]
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In particular,

1/2
lap @l < sup 6™ @) < b sw (30 107G+ om)]?)

0€[0,m] oclo.m] N 5T,

y (14.84) and the fact that t|h| < 1, for 6 € [0, m] we have
10° f (2 + OR)| Sam.r t™(L+ tml W)Y My f(2) Sarim 1" M, f(2).
Substituting this into the previous estimate gives the required estimate. [

Proof of Theorem 14.6.20. It remains to prove the inequality = in (14.81).
To begin with, from (i) we have inequality

o0
I zmceeis < [ U] gy = 1900 S 1N ey
‘7:

where f; = ¢; * f as always.
To deal with the seminorm, note that from the assumption (14.79) it fol-
lows that we can find r € (0,00) and A € (0, 1] such that
p,q > max{r, At} and s> (1—\)d/r. (14.85)

Since f =3, oy fatk in LP(R% X) for any k € Z (recall the convention
that we set ¢; = 0 for j < —1, so that we may put f; =0 for j < 1), we have

@77 (k) kezll o gaseaczyy < D NI s Kbz | g gnayy
neZ

For n < 0, by (14.83) with ¢t = 2¥%7+1 we have
I e )@) = (f

n m T 1/7—
Same (f, (WM an)
<2 M, (Fu) (0),

m LY
| AT ey fo ()7 dR)

and therefore

H (kae]mﬂ-(fn+k7 k)(x))k>0 ||€‘1(Z)

Sd,m,r (2ks2anrfn+k (:’E))k}@ ||£q(Z)
= 270m=)|| (WAL, £ (2) k0| o

Since s < m and M,. is bounded on L?(R%; £9) by the Fefferman-Stein maximal
Theorem 3.2.28, we obtain
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Z H(ka‘]m’T(f7t+k7 k> O))’fHLv(Rd;eq(z))
n<0

Sdymyr Z gn(m=s)|| (2(k+n)52anrfn+k)k>0HLP(Rd;ZQ(Z))
n<0

Sam.s [|fllFs , ®ax)-

Next take n > 1. Fixing A € (0, 1] for the moment, we have

I (foiks k) ()
m 1-X m TA L/
< swp A7 Fuik @I (AR fasi(@) |7 )
[hl<1 {Inl<1}
=: Ty (x) x Ta(x).
From (14.82) we obtain the pointwise bound
Tl({E) < an(lfz\)/er(fnJrk)(‘,L,)lf)\.

To estimate T3, we use Lemma 14.4.22 and the inequality (3°72, |a; DM Samr
it la;|*™ to obtain

VAT For @)™ Samer [ s |”+Z< )|fn+kx+2 Ehg) 7.

Estimating both terms by the maximal function, we obtain the pointwise
bound that T5(z) is less than a constant depending on A\, m, T times

m 1/
TA —kp\TA h
( TA(ferc + § ( ) i{|h|<1} ”fnJrk(x +2 h.])” d )

Jj=1

_ )™ A LT
= (Mr(fusn) (e +Z( >J|[y|<w i+ )] dy)

< @™+ DY Mea(farr) (@)

Combining the estimates for T7 and T5, we conclude that
Jm’T(fn-‘rka 2_k) gd,)\m,r,r 2dn(1_)\)/rM7'(fn—&-k)l_)\MT/\(fn—&-k))\-

Since s > w (see (14.85)), by Holder’s inequality (applied twice) we obtain
Z 125 T™ (i, k))kEZHLP(Rd;Zq(Z))
n>1

5 Z 2—n(s_ (LTA)d) H (2(n+k)sMT(fn+k)1_>\MT>\(fn+k))\)kezHLP(Rd;gq)
n=0
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Sanrs 1@ Me(55)) ssoll o geosen |27 Mor () ol 2o e

Saparr H(2jsfj)j>oHLp(Rd;eq) = £ 1z, @aix),

where in the last estimate we used the boundedness of M, and M, on and
LP(R%; £7) thanks to (14.85). O

14.6.f Interpolation

In order to prove interpolation results for the scale of Triebel-Lizorkin spaces
we need the following variation of Lemma 14.4.29.

Lemma 14.6.22. Let s € R, p € (1,00) and q € (1,00]. For k > 0 set
Vi = Yr—1 + @k + ©rt+1. Define the operators

R:LP(R% 0, (X)) — F5 (R% X)
S Fp (R X) = LP(RE €, (X))

R(fi)kzo =Ytk * frs  Sf= (o * o

k>0
Then S is an isometry, R is bounded, and RS = I.

Proof. All assertions follow in the same way as in Lemma 14.4.29, except for
the boundedness of R. To see that ), -1y * fi converges in 7' (R4; X) note

that LP(R% (2 (X)) — LP(RY 8 (X)) = €8, (LP(R% X)) for any ¢t < s by

» My

Holder’s 1nequahty, so the convergence follows from Lemma 14.4.29. To see
that R is bounded, note that since ¢k =1 on supp(px) we have

| R(fx)k> |Fé JREX) S Z || HSOJ *¢J+l*fj+€||X ]>0HLP(Rd 0,.)
l)<2
N |?sz | (M ||fj+€||X))j>0HLp(Rd;egjs)

Sdp.q sup ||( ||fj+l||X)j>0||Lp(Rd;egu )
lel<2 .

<AL 0520l o g,

where we used Proposition 2.3.9 and the boundedness of the Hardy-Littlewood
maximal function M on LP (Rd,ﬁﬁ, ), which is an immediate consequence of

the Fefferman—Stein theorem (Theorem 3.2.28); here we use the assumptions
p € (1,00) and ¢ € (1, 00]. O

Using the operators R and S from Lemma 14.6.22 in the same way as in
Theorem 14.4.30, the following theorem identifies the complex interpolation
spaces of Triebel-Lizorkin.
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Theorem 14.6.23 (Complex interpolation of Triebel-Lizorkin spac-
es). Let (Xo, X1) be an interpolation couple of Banach spaces and let py,p1 €
(1,00), 490,91 ¢ 6 (1, oo] with mm{qo,ql} < 00, 9,51 € R and let 6 € (0,1).
Define 1 5= b 4 ;T = 1 0 , and s = (1 —0)sg+6s1. Then

1
q

[F20  (RY; Xo), FS! (Rd;Xl)]e = F (R% Xy),

Po,q0 Pp1,91
isomorphically, where Xo = [Xo, X1]o-

The following result on the real interpolation of Triebel-Lizorkin spaces can
be derived from the corresponding result for Besov spaces in the same way as
Theorem 14.4.31, but now using the sandwich result of Proposition 14.6.13.

Proposition 14.6.24 (Real interpolation of Triebel-Lizorkin spaces).
Letp € [1700); 4o, q1,9 € [17 00]7 and 50 7é s1 € R. For 6 € (07 1)7 % = 1(1_709""_(%;
and s = (1 — 0)sg + 0s1 we have

(Fso (R%:X), Fon (R X))g,q = By (R X).

p»qo0 b,q1

Our next aim is an interpolation result which will be used improve the Sobolev
embedding result of Theorems 14.4.19 and 14.6.14.

Proposition 14.6.25. Let pg,p; € (1,00), ¢ € (1,00], and s € R. For § €

(0,1) and % = 1;—06 + p% we have

(Fs (REX),Fe (REX))g, = Fi (R X)),

Po,q P1,q
(Fpo 1 R X), By, 1 (RY X))o — Fy 1 (R X).

Proof. The first interpolation identity can be proved as in Theorem 14.4.31,
using Lemma 14.6.22 and the isomorphic identification

(L7 (R €8, (X)), L (R 44, (X))o = LP(RY; £, (X))

which follows from Theorem 2.2.10 and Proposition 14.3.5. The case ¢ = 1
can be deduced from the proof of Theorem 14.4.31 as well. Indeed, since the
operator S of Lemma 14.6.22 is an isometry also for ¢ = 1, we find

/]

Fe ®ax) = 1Sfllemaze, (x))
~ppopn 1SSl (ro e, (x)), L0 (201, (x)))0,,

Seow0 1fllers,  @ex),F5 ®@4X))0,-

As an application we can prove some further embedding results.



386 14 Function spaces

Theorem 14.6.26 (Jawerth—Franke). Let pg,p1,q € [1,00] and sg,s1 € R
satisfy 1 < po < p1 < 0o and s > s1. If sop — p% > 5 — p%’ then we have
continuous embeddings

s d. s d. . .

BPSJH (R 7X) — Pjpll,q(}R 7X) prl < 005 (1486)
s d. s d.

FP(?7Q(R 7X) — Bpi,pg (R 7X) (1487)

Since the embedding Fs0  (R% X) < Bso | (R% X) holds trivially, (14.86)
improves the embedding in Theorem 14.6.14. In a similar way one sees that
(14.87) is an improvement of Theorem 14.6.14. Consequently, it follows from

Theorem 14.6.14 that, under the assumption py < p1, the condition sg — I% >
51— 1% is also necessary for both (14.86) and (14.87).

Proof. By the trivial embeddings (14.23) and (14.70), it suffices to consider

S0 — 1% =81 — p%
To prove (14.86), assume that p; < oco. In view of (14.70) it suffices to
consider ¢ = 1. Fix py < ro < p1 < r1 and 6 € (0,1) such that p% = 1709 + %.

T
Let tg,t1 € R be such that

d d d d
to**zslff and tlffzslff.
Po To Po 1

Then (1 — 0)ty + 0t1 = so and therefore, using Proposition 14.6.24, Theorem
14.6.14, and Proposition 14.6.25,

By, (R4 X) = (Ff  (RY X), F2 (R X))o p,
— (F3 (R X), 5 (R X))o p, — F251 (R X)),

ro,1 ri,1 p1,1
which implies the embedding (14.86).
To prove (14.87) it suffices to consider ¢ = oo. Moreover, by Theorems
14.4.19 and 14.6.14 we may assume that 1 < py < p; < oc0. Fix 1 <rg < pg <
r1 < pp and 6 € (0,1) such that pio = 1_09 + %. Let tg,t1 € R be such that

T

d d d d
to—fZSO—* and tl—fZS()—f.
b1 To p1 1

Then (1 — 0)tg + 6t; = s1. By Proposition 14.6.25, Theorem 14.6.14 and
Proposition 14.6.24,

Fit oo (R X) = (30 o (RY X), 20 o (R X)),

Po,0 70,00 71,00
< (Fl0 (R X),Fl (R X)), = Byt (R4 X).

O

As an interesting consequence of Theorem 14.6.26 we have the following im-
provement of Corollary 14.4.27 (2), extending it to the case pg = 1. The result
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is false for integrability exponents po > 1. Indeed, if s — = > 0 and it would

hold that F3 (R?) — C’ o (R%) for ¢ = oo, then it would also hold for
all ¢ € [1,00). However, by Proposition 14.6.17 this would imply that every

function in F3 (R?) is zero at 2y = 0, which is of course not true.

Corollary 14.6.27. If s > d is an integer, then Ff (R%; X) — Cso YR X)
continuously.

The result also holds in the case where s > d is not integer. However, in this
case Corollary 14.4.27 (2) gives a better result.

Proof. By Theorem 14.6.26 and Proposition 14.4.18,

Ff (R X) — B;;f(Rd; X) = O304 RY X).

14.6.g Duality
The next theorem identifies the duals of vector-valued Triebel-Lizorkin spaces.
Theorem 14.6.28. Let p,q € (1,00) and s € R. Then
s d_ ~ d.
Fp o REX)" ~ 5 (R XT)
isomorphically.

The proof is similar to that of Theorem 14.4.34. The restriction p,q > 1 comes
in through Lemma 14.6.22.

14.6.h Pointwise multiplication by 1g, in B;’ and sz’q

In this section we apply the difference norm characterisation of Theorem
14.6.20, as well as the interpolation and duality results proved in this sec-
tion, to study pointwise multiplication in Triebel-Lizorkin spaces with the
non-smooth function 1g, . The corresponding result for Besov spaces will be
derived afterwards by real interpolation.

As a preparation we first deduce several fractional Hardy inequalities.

Proposition 14.6.29 (Hardy—Young inequality). Letp € [1,00] and o €
R\ {0}, and let f : Ry — X be strongly measurable and integrable on every
finite interval (0,t). Each of the conditions

(1) & > 0 and lim;_,o + fo 7)dr =0
(2) & < 0 and limy_,o0 7 fo 7)dr =0
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implies

[t = 7)o, , 2:x)

<(1 - ‘t e

1+ ol ™) O f rar),. .
provided the right-hand side is finite.

Proof. (1): Let F(t) fo 7) dr. Integrating by parts on [t, o] we

obtain

I::/ta;/(Jsf(r)drds:—i/oaf(r)dr—k1/0tf(r)dr+/tof(5)is.

Therefore,

/ ds /f 7,] ]éaf(fr)dfr]{f(r)dr

) (14.88)
~ f(0) - F(o) - ][ £(r)dr.

Letting ¢ | 0 in (14.88) and taking norms, we obtain the estimate

@I <IF@I+ [ IFEI S, t>0.

Applying Hardy’s inequality (see Lemma 1..3.2(1)) with @ :=a—1 > —1 to
the function s — || F(s)|| we obtain

o — U_af(U)HLP(RJr,‘{T“;X) <@+a o U_QF(U)|‘LP(R+,{TU;X)

which gives the required estimate.

(2): We argue in the same way, but this time we rewrite the right-hand

side of (14.88) as
/tUF(s) % :]{, Fr)dr — £(t) + F(1).

Letting ¢ — oo and taking norms, we obtain the estimate

o<+ [ 1Ees, oo

Now the proof is finished as before, this time applying Lemma L.3.2(2) with
a:=a—-1<—1. O

As an immediate consequence we obtain the following result.
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Proposition 14.6.30 (Fractional Hardy inequality). Letp € [1,00) and
B8 € R, and let f : Ry — X is strongly measurable and integrable on every
finite sub-interval (0,t). Each of the conditions

(1) B € (1/p,00) and limyyo £, || f(7)||dT =0
(2) B € (—00,1/p) and limy_oq f || f(7)]|dT =0

implies

£l ey < Cllors ™ (f 1#6a) = 5o~ w an)

(0,2) Lr(Ry)
<C’Hxl—>sup t_ﬁ][ T —h dh‘
Sup o) If(x) = f(z = h)l .
with C :=1+ = 1 g provided the right-hand side is finite.
Proof. By Proposition 14.6.29 with a = g — %,
Hf”Lp(RJr’tin dt:X) S Clje m_ﬂH'f($> - (0,z) f(T) dT‘ Lr(R4;X)

< Clla? (]{W 1f(2) = F(x — B[ dhll o e,y

t>0 LP(Ry)

<Clap o (f W@~ s —mian

This gives the required estimate in both cases. O

For p € [1,00), ¢ € [1,00], and s € (1/p,1) we define the following closed
subspaces of H*P(R; X) and F}; ,(R; X), respectively:

oH"P(R: X) s= {f € HPV(R: X) + £0) = 0}
Fyo(Rs X) i= {f € Fy(Rs X) : £(0) = 0},

Here we use the bounded continuous version for f (which exists by Corollary
14.4.27 combined with Propositions 14.6.8 and 14.6.13) respectively. The con-
tinuity of the embeddings in Corollary 14.4.27 gives the closedness of these
subspaces.

We can now prove the following fractional Hardy inequality in terms of
the spaces F; , and H*? and their analogues oF}; , and o H*P.

Corollary 14.6.31. Let p € [1,00) and g € [1,00].

(1) If s € (1/p, 1), then each of the spaces oF; ,(R; X) and o H*P(R; X) con-
tinuously embeds into LP(R, |¢t|”*P dt; X).

(2) If s € (0,1/p), then each of the spaces F; ,(R;X) and H*P(R; X) (if
p # 1) continuously embeds into LP(R, [t|~*P dt; X).
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Since W*P(R; X) = F; ,(R; X) for s € (0,1), the corollary also covers frac-
tional Sobolev spaces.

Proof. By the embeddings (14.69) and (14.73) it suffices to prove the result
for o F3 oo (R; X) and F3 _(R; X).

By Prop051t10n 14 6 30, using that for bounded continuous functlons f:
R—)Xwehavefo dT—)f()—()ast¢01ncase andf0 7)dr = 0
as t — oo in case (2), we have

12, i iran) < Clle o= f 150~ sty

Lr(Ry)

< 2CH$|—>supt_S][ ||Ahf($)||th
t>0 (—t,t) Lr(R)

= 2C[f](1) oo (R;X) Sp.s 1]

Fs (R X)

where in the last step we used Theorem 14.6.20 with m = 1. A similar estimate
holds for f on the negative real axis. O

As a consequence we obtain the following result on pointwise multiplication.

Theorem 14.6.32 (Pointwise multiplication by 1g ). Letp € [1,00),
q € [1,00], and s € (0,1). Each of the two conditions

(1) s €(0,1/p) and f € F}; (RX)
(2) s e (1/p,1) andfeo > (R X)

implies that 1g, f € F; (R; X) and
I1r, f]

Without the condition f(0) = 0, the result is false for s > 1/p. Indeed, this
is clear from the fact that, by combining Corollary 14.4.27 and Proposition
14.6.13, we have a continuous embedding F; (R; X) — Cup,(R; X). A coun-
terexample to the case s = 1/p will be discussed in Example 14.6.33. It shows
that Propositions 14.6.29, 14.6.30, and Corollary 14.6.31 do not hold for « = 0
and s = 1/p.

Fg ,(8:X) < Ol fllpg i)

Proof. Clearly, ||1g, fllzrre;x) < |l rre;x)- Therefore, using the difference

(€))

+ In terms of
F3 (R X)

norm of Theorem 14.6.20 it remains to estimate [1g, f]

/]

requires the usual obv1ous modifications.
By the triangle inequality,

P (R;x) and [f]%s) J(RX)" We give the proof for g € [1,00); the case ¢ = 0o

[1R+f]Fs (]R X)

< (/]R+ (/ﬂh iy /(_tm(_m) |Gz + )~ ()] dn)’ %)”/“ dx)””
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1 q dt\r/q 1/p
(LG is@nan) ) )
1 a dt\pr/a 1/p
+ / f/ flx+h)|dh) — dz
( —00,0) t t,t)N(—xz,00) H ( )” ) t ) )
= (I)+ (II) (II1).
We estimate these three terms separately. Clearly, (I) < [ f]g,l) (R;x) and, with
P,q ’
C=1+m

< ([ ([ ) )™

<o ([T ris@lrar)”
Sona I

using Corollary 14.6.31 in the last step.
To estimate (I1I) fix x € (—o0,0). By Minkowski’s inequality (Theorem
1.2.22),

1 q dt\r/q
s / F(z+h)| dh
(/ U J(—t,)n(—z,00) ¢ )l ) t>

so— di\1/q
([ 520000 F) a5+ B ah
Ry “JR,

F3 (R X)>

— K, / B gy (W] £ ( + )| B
~K,. / (v — =) | f (v) d,

where K, , = (sq+q)'/9. Setting z = —z and ¢, (2) = 22/P(1 + 2)~*71, (I11)
can be estimated using Young’s inequality for convolutions for the multiplica-
tive group Ry with Haar measure 92

amn < Koo [ ([ @ irwla) )

= Ko [ ([ otermwinron ) 5)"

1/p

< Kololae, ([ v wlr ay)

N
Spass 1]

Fy (R X))

using Corollary 14.6.31 as in the estimate for (II). O
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Ezample 14.6.33. Theorem 14.6.32 is false for s = 1/p even in the scalar-
valued case. Indeed, f € C°(R) is any function satisfying f = 1 on [—1,1],

then for all p € [1,00) we have f € Fpl’{]p(R). Let us prove that 1g, f ¢

FI}QP(R). To this end it suffices to take ¢ = oo. In case p € (1,00) we can use

Theorem 14.6.20 to find
(1)

||1R+f||FZ}‘/£(Rd;X) ~p ||1]R+f||F;’/£(Rd;X)

> H:v»—)supt_%_l/ |f(x)|dh’
—t

t>0

LP(0,1)

= Haﬁ — supf%*l(t - x)’

t>x Lr(0,1)

_1
Zp 1z = 277 | Lr(0,1) = o0

For p = 1 we note that F} (R) — F,}/OZ(R) for all r € (p,o0) by Theorem
14.6.14, and therefore 1g, f ¢ F! ,(R).

One could still hope that the boundedness of f + 1g, f for s = 1/p holds
on the closure in Fpl,{lp (R) of the smooth functions satisfying f(0) = 0. This
turns out to be false as well. Indeed, in the case ¢ < oo the latter space
coincides with Fpl,{f(R) by Proposition 14.6.17. If ¢ = oo, the boundedness is
also fails, as follows from the previous example and the embedding Fp{{ﬁ) (R) —

F,}{ﬂr(R) for all r € (p,00) contained in Theorem 14.6.14.

By duality and interpolation, we now extend Theorem 14.6.32 to smoothness
exponents s < 0, which excludes the end-point cases.

Corollary 14.6.34 (Pointwise multiplication by 1g,). Let p € (1,00),
q € (1,00), and s € (=1/p',0]. For all f € F; (R;X) we have 1g, f €
Fj,(R; X) and

11ry fllFs ,®x) < CllfllEs, ®:x)-

Proof. By density it suffices to consider f € C*°(R\ {0}) ® X. We use duality
result. By Theorems 14.6.28 and 14.6.32 for any g € . (R%; X*) we have

(L, fr9) = [{f, 1r.9)| < C|f]
< /]

Fy (R X) I 1R+9HF};:, (R; X*)

F;Yq(]R;X)HQHFP—,;,(R;){*)'
Since .7 (R%; X*) is dense in Foo (R X™), the result follows by another ap-
plication of Theorem 14.6.28.

The case s = 0 follows by complex interpolation between the cases s and
—s for s > 0 small enough, using Theorems C.2.6 and 14.6.23. 0

Applying the real interpolation method instead, we obtain the following for
the Besov scale.
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Corollary 14.6.35 (Pointwise multiplication by 1g,). Letp € (1,00),
q € [1,00], and s € (=1/p,1/p). For all f € B, (R;X) we have 1g_f €
B, ,(R; X) and

1. fllBs,®ix) < ClfllBs (mix), [ € By (R; X).

Proof. First let s > 0. Since (F;,ga,sz"ga)l/Q’q = B, , by Theorem 14.4.31,
the result follows from Theorems 14.6.32 and C.3.3. Here we can allow p =1
as well.

The result for s < 0 and ¢ € (1, 00) follows from Theorem 14.4.34 in the
same way as in Corollary 14.6.34. The cases ¢ = 1 and ¢ = oo can be obtained
by another real interpolation argument as we did in Example 14.4.35.

The case s = 0 follows by real interpolation between the cases s and —s

for s > 0 small. O

14.7 Bessel potential spaces

In this section we prove Sobolev embeddings and norm estimates for Bessel
potential spaces. Some results will depend on the geometry of X. Real in-
terpolation for H*P?(R% X) has already been considered in Theorem 14.4.31.
Duality for H*P(R?; X) has already been considered in Proposition 5.6.7.

14.7.a General embedding theorems
We begin with the following Sobolev embedding theorem.

Theorem 14.7.1 (Sobolev embedding for Bessel potential spaces and
Sobolev spaces). Let po,p1 € (1,00) and sg, $1 € R. We have a continuous
embedding

HooPo (R X)) s HPH (R X)

if and only if one of the following two conditions holds:

po=p1 and s = Si; (14.89)
d d

Po < p1 and Sog— — = 8] — —. (14.90)
Po P

If so,s1 € N, then the same necessary and sufficient conditions give the exis-
tence of a continuous embedding

Weoro (R X)) s WU (RY X).
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Proof. We first prove the result for Bessel potential spaces.

‘If’: By Proposition 14.6.13, for p € (1,00) and s € R we have continuous
embeddings

S (REX) = HYP(RG X)) — B (R X). (14.91)

From Theorem 14.6.14 we see that if either (14.89) or (14.90) holds, then
o (R X) Ey (R%; X). Therefore the required embedding follows from

(14.91) with s = 59, $1 and p = pg, p1.
‘Ounly if”: If the stated embedding holds, then by (14.91) with s = s¢, 51

and p = pg,p1, we also have a continuous embedding Fsol(Rd X) —
F;lloo(Rd;X). Therefore, either (14.89) or (14.90) must hold by Theorem
14.6.14.

The corresponding result for Sobolev spaces with integer smoothness can
be proved in the same way, noting that the analogue of (14.91) holds for these
spaces. O

Remark 14.7.2. The embedding of Theorem 14.7.1 for Bessel potential spaces
can be restated as the boundedness of J_(5 ) = (1 — A)=(0=s1) from
LPo(R%; X) into LP*(RY; X). Since J_(so—sy) 18 a positive operator by Propo-
sition 5.6.6, we infer from Theorem 2.1.3 that the boundedness in the scalar
case is actually equivalent to boundedness in the vector-valued situation.

By the same argument as in Theorem 14.7.1, the following result can be
deduced from Proposition 14.6.15.

Proposition 14.7.3 (Gagliardo—Nirenberg inequality for Bessel po-
tential spaces). Let pg,p1 € (1,00), —00 < 59 < 51 < 00, and 6 € (0,1),
and let

1 1-0 0
= +—, s=(1-—0)so+ 0s1.
p Po D1
There exists a constant C' = Copypr,se,s1 = 0 such that for all f €

HeoPo(RE; X) N H*vP1(RY; X) we have f € H*P(R% X) and
”fHH* P(REGX) X CHf”Hbo PO Rd;X)”fH?JSlfPl(]Rd;X)'
If, in Proposition 14.7.3, sg, s1 > 0 are integers and p € (1,00), the same argu-

ment gives that f € Weoro(R; X) N Wer-P1(R?; X) implies f € WP (RY; X)
and

1Fllws o sy < CUF Iy iaumo s 1 1Ber.on zasx)- (14.92)

The latter estimate extends to py € (1,00] and p; € (1, 00]. Indeed, if only
one of the exponents is infinite, then (14.92) is a consequence of Proposition
14.6.16 and the sandwich results of Propositions 14.4.18 (see (14.29)) and
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14.6.13. If p = pg = p1 € [1, 0], (14.92) can be deduced from these sandwich
results and real interpolation and (L.2):

(WSOp(Rd;X),Wslp(Rd;X))g,l < (B;?oo(Rd§X)aB;7loo(Rd§X))O,l
=B (R X)  (by (14.48))
— WP(R% X).
Note that this even gives (14.92) for p = pg = p1 = 1.

The estimate (14.92) self-improves to the following Gagliardo—Nirenberg
type inequality for W*?(R%; X):

Theorem 14.7.4 (Schmeisser—Sickel). Let po,p1,p € (1,00], m € N, and
la] < m satisfy

and — = .
m p Po P1

There exists a constant C > 0 such that for all f € LPo(R%; X)NW™P1(R4; X)
we have

o 1 1-60 6
— ! 7_"_7

0
10° Fllzomesey < CU Ity (D2 10%Flum max)) -
|Bl=m

Moreover, the same holds if p=py =p1 = 1.

Proof. For 6§ = % € {0, 1} there is nothing to prove, so we may assume that
6 € (0,1). Taking s = |a|, so =0, and s; = m in (14.92), it follows that

0
10 Fllzowesy < CU Nty (D2 107 Fllim o)) -

|BI<m

Applying this to the function f(A-) for A > 0, we obtain

_dna
Al r[0 f||Lv(Rd»X)

<COTH S oo ar))' (3 )\lﬁl—anaﬂf”mlmdm) .

|BI<m

Now divide both sides by Alel=5 and pass to the limit A — oo. O

14.7.b Embedding theorems under geometric conditions
Littlewood—Paley inequality for Bessel potential spaces

The aim of this paragraph is to prove the following Littlewood—Paley inequal-
ity with smooth cut-offs for H*?(R%; X).
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Theorem 14.7.5 (Littlewood—Paley theorem for Bessel potential
spaces). Let X be a UMD space, p € (1,00), and s € R. A tempered distri-
bution f € .7'(R%; X) belongs to H>P(R?; X) if and only if

n
s (R X) 1= er2F o * )
0l e gﬂ;k S| -
In this situation the sum 3, -, er2F5 . * f converges, both in LP(2 x R%; X)
and almost surely in LP(R% X), and we have an equivalence of norms

1A e i) =apos,x |1 flmsrga;x)-

For s = 0 the above estimate yields an equivalent norm on LP(R?; X) which
is slightly different from the Littlewood—Paley estimate with smooth cut-offs
of Theorem 5.5.22, where the summation was taken over Z and the functions
Y, were of the form 2¥4)(2".) for a Littlewood-Paley function ¢ in the sense
of Definition 5.5.20.

Proof. ‘Only if”: Fix f € H*P(R% X). Fix a sequence of signs € = (e)
{z € K: |z| = 1}. For integers n > 0, define the function m,, € C>°(R¢

ma(€) == 3 2 (L4 [€?) 2B (0)
k=0

From the location of the supports of the functions @ one sees three things:
first, that for each ¢ € R? at most three terms in this sum are non-zero
(the sum therefore converges for trivial reasons); second, that [|0°%k|s <
Cp27 %181, and third, that

ca=supsup sup sup[£[1]0%ma(€)|
€ n20ae{0,1}4 £#0
is finite, the outer supremum being taken over all sequences of signs € =
(€k)k>0-
By the Mihlin multiplier theorem (Theorem 5.5.10), the Fourier multiplier
operators T, associated with m,, are bounded on LP(R?; X), with estimates
uniform in n and signs €, say sup, sup,,> [|Tm,, |l.2r®e;x)) < Cx p,a- Since

n

> e2bgpx f =T, JLf, (14.93)
k=0

we obtain

n
e _
H kZ_OEkQ o * fHLp(]Rd;X) < CxpalJsflloemexy = Cx p.all fll 5sr e x)-
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Taking € = e(w) and passing to the LP({2)-norms, we obtain the estimate

HZEkaS k*f‘

k=0

C s
LP(2xR4;X) X,p, d“fHH P (R4 X) -

If7: Assume now that f € &'(R% X) satisfies || f]| renra,x) < 00. We
claim that >, - 1275y x f converges in LP(2; L?(R%; X)) and almost surely
in LP(R% X). Indeed, LP(R?; X) is a UMD space by Proposition 4.2.15, so by
Proposition 4.2.19 it does not contain an isomorphic copy of c¢g. The con-
vergence of the sum, in LP(§2 x R% X) and almost surely in LP(R%; X), now
follows from Corollary 6.4.12. Moreover, by Fatou’s lemma and the Kahane
contraction principle,

LP(2xRE;X)

|||f|||H51p(]Rd;X) = H Z€k2k8@k « f‘
k>0

For k € {0,1} choose ¢, € C>°(R) such that 0 < ¢, < 1, supp ey C {0 <
|€] < 2} and supp; C {i < €] <€ 4}, and 1/1k =1 on supp @x. For k > 2 we
define 12;1@ = 121(2_(k_1)~). For w € {2 put

My, 1= Zej Y2795 (1 4| - | )s/z%’ G = ng(wmks%*f'

>0 k>0
As before,

Cpo=sup sup suplé]®9*m,,(€)] < co.
weR ae{0,1}4 ££0

Therefore, by the Mihlin multiplier Theorem 5.5.10,

1T 9ol e resx) < CllgullLera;x)

for almost every w € (2. Considering finite sums first, one checks that w —
Ton, ge is strongly measurable. Since w + g,, belongs to LP(£2; LP(R%; X)), it
follows that so does w — T}, ¢g.. By the condition @Zk = 1 on supp @k, as in
(14.93) we have

/ Ty g dAP(w) = J, .
Q
By Jensen’s inequality and Fubini’s theorem, f € H*?(R%; X) and

||f||Hs P Rd X - HJSf”z[)/p(Rd;X)

= T, 9. dP
H/Q wd (@) Lp(RL;X)

< [ 1Tl ) AP)

p
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<C [ 101 o P) = Ol ey

O

We continue with an embedding result under additional geometric assump-
tions on X. The cases pg = 1 and gy = oo were proved for general Banach
spaces in Propositions 14.4.18 and 14.6.13.

Proposition 14.7.6 (Sandwich theorem under type and cotype). Let
X be a UMD Banach space with type py € [1,2] and cotype qo € [2,00]. For
all p € (1,00) and s € R we have continuous embeddings
s d. s, d. < d.
F, (R%: X) — HY?(R% X) — F2(RY X).
Proof. We only prove F; (R X)) — H*P(RY; X); the other embedding is
proved similarly.

Let f € F, (R%; X). By Theorem 14.7.5, the Kahane-Khintchine inequal-
ity (Theorem 6.2.4) and the type po property of X, we have

n
e <O S et
||f||H P(R:X) X ZI;I; % k or* f LP(2xR4; X)
n P 1/p
~p C'sup (/ ngQ’fﬂpk *f‘ dx)
n>1 \Jra 17—

LPo(£2;X)

n p/Po 1/p
<C (/( oks PD) d)
sup ([ (S0 u )" aa

nzl k=0

= CHf”F;YPO(]Rd;X)-
In combination with Proposition 14.6.13 and Corollary 14.6.18 we obtain:

Corollary 14.7.7 (7-Sobolev embedding — III). Let py € [1,2] and ¢ €
[2, o).

(1) If X has type po, then for all p € [1,py) we have a continuous embedding
HG= DR X) s (L2 (RY), X).

(2) If X has cotype qo, then for all ¢ € (qo,00) we have a continuous embedding
WL RY), X) = HGDMRY X)

By Theorem 9.2.10, for pg = 2 assertion (1) also holds for p = 2, and for
go = 2 assertion (2) also holds for ¢ = 2.
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Necessity of the type and cotype assumptions

Proposition 14.7.8. Let p € (1,00), g € [1,0¢], s € R, and m € N. Then the
following assertions hold with A € {B, F}:

(1) If A5 ,(R%: X)) — H*P(RY X)) continuously, then X has type q.
(2) If HP(R%: X)) — A5 (R% X)) continuously, then X has cotype q.
(3) If AF (R%; X)) — W™P(R% X) continuously, then X has type q.
(4) If WmP(RY; X)) A, (R%; X)) continuously, then X has cotype q.

Proof. (1): By the lifting properties of Propositions 14.4.15, 14.6.10, and
5.6.3, it suffices to consider s = 0. Fix a finitely non-zero sequence (zy)n>1
in X. Let ¢ € .#(R%) be a non-zero function satisfying supp(&) C [f%, f%]d
and put

f(t, OJ) = ¢(t) Z En(w)e%rﬁ"tlxn,

n>1
where as always (€,)n>1 is a Rademacher sequence. Since (8n62”i2"t1)n>1 is
a Rademacher sequence for each t € R?, we have
on p
El 12, o) = /d BOVE| Y ene™ 2 1" at
R
>t (14.94)

p
= 1612 B[ 3 nn
n>=1

On the other hand, the Fourier support properties of {b\( — 2™1e1) and @,
(see (14.8) and (14.9)) imply that [|f(-,w) * ¢n|[x = [ (t)[[|zx]l and [|f(-,w) =
©ollx = 0. Therefore,

1 w)llas , ®ax) = 19llLe@ay [ (@n)nz1lleax (14.95)

P,q

Applying the assumption (1) pointwise in {2, we obtain

1612, )| anxn

- E”fHLp(]Rd X

S CP]EHfHA;’q(Rd;X) = Cprn ]Rd)||($n)n>1”eq X)*

By the Kahane—Khintchine inequalities, this shows that X has type q.
(2): This follows from the previous proof upon replacing “<” by “>”.
(3): The idea of the proof is the same as in (1), but this case is slightly
more technical. Let (z,,)n>1 and ¢ be as before and put

Ftw) =(t) Y27 en(w)e? ™ Py = (1) funt,w).

n>1

By Leibniz’s rule we obtain
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8af(t,LU) = Z CB,w85¢(t)fm—j (t,OJ),
|Bl+i=|al

For j € {0,...,m — 1},

100%49) fn—j (-, )l o (rasxy < N0 lloc |l Fins (@) | Lo ;)

107100 Y 27 2| < 10700 sup [|za].

n>1

NN

For j = m, as in (14.94) we have

p
Ellfoll ) = 10150 B 3 entn
n>1

By the reverse triangle inequality, this shows that there exists a constant
C = C(d,m,p,v) such that

Hf”LP 2;Wmp (R4 X)) — H¢||LP R)H anwnHLP(Q X)‘ CSUP ||$n|| (14. 96)

n>1

Stated differently, up a relatively small term the norm || f|| z»(o;wm.»@e;x)) 18
equivalent to the norm || 3°, -, en@y| of the random sum. As in (14.95) we
see that

1 G )llag, @esx) = 101 Lo ey [ (@n)nz1llenx)

Now from (14.96) and the assumptions, we obtain

lellzom | - enen
n>1

< m, C
Lp(g;x)\Hf”L” ;Wm.p(Rd; X)) T igl?”%”

S llze(2sam, ®a;x)) + sup [|zn|
' n>1
Sl @n)nz1lleacx)-

(4): This can be proved in the same way as (3). By (14.96) and the Kahane
contraction principle, which implies bound sup,,>1 [z ||? < E| }2,5, enzall?,
from the assumption (4) we obtain

190l o @y 1@ )nz1lleax) = [fllLeoiam, mesx))

S W lleruwmre@aex)) S H Z Enn

Lr(2;X)

A Hilbert space characterisation

The equality F,(R% X) = H*?(R? X) with equivalent norms characterises
Hilbert spaces:
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Theorem 14.7.9 (Han—Meyer). Letp € (1,00), s € R, and m € N. The
following assertions are equivalent:

(1) E (R X) = WmP(RY X) with equivalent norms;
(2) F;’Q(Rd; X) = H*P(R?; X) with equivalent norms;
(3) X is isomorphic to a Hilbert space.

Proof. (1)=(3) and (2)=(3): By Proposition 14.7.8, X has type 2 and cotype
2. Therefore X is isomorphic to a Hilbert space by Theorem 7.3.1.

(3)=(2): This is immediate from Proposition 14.7.6 and the fact that
Hilbert spaces are UMD (by Theorem 4.2.14) and have type 2 and cotype 2
(by the result of Example 7.1.2).

(3)=(1): This is a special case of the previous implication since Theorem
5.6.11 implies W™P(R%; X) = H™P(R%; X) with equivalent norms. O

14.7.c Interpolation

Real interpolation of vector-valued Bessel potential spaces has already been
considered in Theorem 14.4.31. Complex interpolation was considered in The-
orem 5.6.9, but only in the case py = p; and Xy = X;. In order to treat a
more general case we need a variant of the complex interpolation results for
8, (X) of Proposition 14.3.3.

Let (ex)r>0 be a Rademacher sequence on a probability space (2. Let
p € (1,00) and s € R, and let ¢*P(X) denote the space of all sequences
(xk)k>0 In X for which

| (zk)r=0 0.

n
ks
s :zsupHE ER2 xk‘ <
esP(X) n>1l = LP($2;X)

The spaces eP(X) := ¢%P(X) have been introduced in Section 6.3. Clearly
the mapping (2x)r>0 = (2°°7k)k>0 defines an isometric isomorphism from
e®P(X) onto eP(X). For fixed s € R the spaces ¢*P(X), 1 < p < oo, coincide,
with pairwise equivalent norms; this follows from the Kahane—Khintchine in-
equalities as in Proposition 6.3.1. If X does not contain a copy isomorphic
to ¢o, then Corollary 6.4.12 implies that for any (zg)k>o in €>P(X) the sum
Zk>0 12751, converges in LP(£2; X) and almost surely in X, and in this case

_ ks
enp(X) = H > ex? m’f’
k>0

| (x)k>0

Lr($2;X)

In particular, the partial sum projections P, : (zx)r>0 — (Tr)j_o are uni-
formly bounded and strongly convergent to the identity as operators on
e®P(X).

The next result extends Theorem 7.4.16, which corresponds to the special
case s = 0.
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Lemma 14.7.10. For j € {0,1} let X; be a K-convex space and let p; €
(1,00). For 6 € (0,1) set Xy := [Xo,X1]g. Then

[£%072(Xo), 7P (X1)]g = 7P (Xo),

1_1-0 | 60 —(1—
where & = ===+ = and s = (1 —0)so + 0s1.

Proof. By Proposition 7.4.15, Xy is K-convex. By Proposition 7.4.5 and
Lemma 7.4.11, Xy, does not contain an isomorphic copy of ¢y, and hence
the partial sum projections P, on e%P(Xjy) are strongly convergent to the
identity.

To prove the required identity one can repeat the argument in Theorem
14.3.1 to reduce the result to the unweighted setting considered in Theorem
7.4.16. O

As a final preparation for the complex interpolation of Bessel potential spaces,
we prove a version of Lemma 14.4.29 for Bessel potential spaces.

Lemma 14.7.11. Let X be a UMD space and let p € [1,00], q € [1,00], and
seR. Fork >0 set ¥, = pr—1 + 0 + @r+1- The operators

R:e*P(LP(R% X)) — HYP(R% X)
S H*P(R% X) — e*P(LP(R% X))

defined by
R(fi)ks0 = D e+ frs  Sf=(r* [z,

k>0

are bounded and satisfy RS = 1.

Proof. The identity RS = I is proved as in Lemma 14.4.29. The boundedness
of S follows from Theorem 14.7.5. It remains to prove that R is bounded. Let
E := LP(2; LP(R%; X)). By Theorem 14.7.5 and a density argument it suffices
to show that, for all finitely non-zero sequences (f¢)e>0 in LP(R%; X),

n
k k
IS oo sl <ol Seoal, nso
k=0 j=0 k>0

From Theorem 14.7.5 (with s = 0) and Proposition 8.4.6(i) we see that
the sequence {pp* : k > 0} is R-bounded in .Z(L?(R%; X)), with R-bound
at most by Cp x. Hence also the sequence {¢y* : k > 0} is R-bounded in
this space, with R-bound at most 3C), x. Therefore, by the Fourier support
properties (14.8) and (14.9) of ¢y,

n n
H AT fjHE <Y H D er2* g Ypre x fk+eHE
k=0 7>0

<2 k=0
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n
<30} x Z H kaQkakHHE

le<2 k=0

ZEkakaHE

k>0

< 302 x4l

where in the last step we used Kahane’s contraction principle. O

Theorem 14.7.12 (Complex interpolation of Bessel potential spaces).
Let (Xo,X1) be an interpolation couple of UMD Banach spaces and let
po,P1 € (1,00), so,81 €R, and 6 € (0,1). Then

[HoPo (R Xo), HSVPH(RY: X1)]g = HSP(RY:; Xy)  with equivalent norms,
where Il] = 11);00 + z%’ s=(1-60)sg+0s1, and Xy = [Xo, X1]o.
Proof. Let R and S be the operator of Lemma 14.7.11. Let
Ej = e (L (R X)), Fy = H9W (RG X)), j € (0,1},

and set By := (Ey, E1)g,q and Fy := (Fy, F1)g,q. Then, by Theorem 2.2.6 and
Lemma 14.7.10, Ey = e%P(LP(R%; Xy)) isomorphically. Now the proof can be
completed in the same way as in Theorem 14.4.30, replacing £, by *F and
B, , by H*P everywhere. O

Theorem 14.7.12 contains several results of Volume I as special cases. To
begin with, it contains Theorem 5.6.9, which asserts that if X is a UMD
space, p € (1,00), and sg < $1, then
[HP(RY X), HP(RY; X)]g = HP(RY X)
and, if in addition s > 0,
[LP(R% X)), H*P(RY; X)]g = HP*P(R?; X)

up to equivalent norms. It also contains Theorem 5.6.1, which asserts that if
X is a UMD space, p € (1,00), and k > 1 is an integer, then

[LP(R% X), WHP(RY; X)g = HP"P(RY; X)

up to an equivalent norm. This result is obtained by taking Xg = X; =
X, po=p1 =p, so =0, and s; = k in Theorem 14.7.12 and noting that
HRP(RY; X)) = WFP(RY; X) up to equivalent norm by Theorem 5.6.11.

Upon combining Theorem 14.7.12 with Theorem 5.6.11 we obtain another
extension of Theorem 5.6.1:

Corollary 14.7.13 (Complex interpolation for Sobolev spaces). Let
(Xo,X1) an interpolation couple of UMD Banach spaces and let py,p1 €
(1,00), ko, k1 € N, and 6 € (0,1). Then

[Wkopo (R Xo), WoPL (R X)]g = HYP(RY; Xy) with equivalent norms,

where = =0 4 & gy — (1 —0)ko + 0k, and Xy = [Xo, X1]p-
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As in Examples 14.4.33 and 14.4.35, we can use this corollary to prove bound-
edness of pointwise multiplication by smooth functions:

Ezample 14.7.14 (Pointwise multiplication by smooth functions — I). Let X
and Y be UMD spaces, let p € [1,00] and s € R, and let k € [s,00) NN be an
integer. If ¢ € CF(RY; #£(X,Y)), then pointwise multiplication

f=df

defines a bounded mapping from H*?(R%; X) into H*?(R%;Y) of norm <y s
||C||C§(Rd;$(x,y))-

Indeed, the pointwise multiplier f +— (f is bounded as a mapping from
WP (R%; X) into W7P(R?;Y) for each j € {0,...,k}. Therefore, for s € N the
result is immediate from Theorem 5.6.11. If —s € N, then the result follows by
the duality result of Proposition 5.6.7 and Theorem 5.6.11. If s € (0, 00), then
the result follows by interpolation between the cases j = 0 and j = k by the
complex method [,-]s and applying Theorem C.2.6 and Corollary 14.7.13.
Finally, the case s € (—o0,0) follows by duality again.

14.7.d Pointwise multiplication by 1g, in H*?

To conclude this section we present a result on pointwise multiplication by 1r,
for vector-valued Bessel potential spaces. The cases of vector-valued Besov
spaces and Triebel-Lizorkin space have been considered in Section 14.6.h;
in both cases, values in general Banach spaces X could be allowed. In the
Bessel potential case, the proof below requires the UMD property of the range
space X. It seems to be an open problem whether this conditions is actually
necessary.

Theorem 14.7.15 (Pointwise multiplication by 1g,). Letp € (1,00)
and s € (—=1/p’,1/p), and let X be a UMD space. For oll f € H*P(R; X) we
have 1g, f € H*P(R; X) and

I1r, fllzor@®x) < Cllfllzor®x), f€H*P(R;X).
The UMD property of X will only be used through the following proposition.
Proposition 14.7.16. Let p € (1,00) and s > 0, and let X be a UMD space.
(1) The operator (—A)* : S (R%; X) — 7' (R%; X) given by
(-4)f =fox - I'F

uniquely extends to (—A)® € L(H*P(R% X), LP(RY; X)).
(2) For all f € H*?(RY; X) the following norm equivalence holds

I £l zrsop e x) =p,x |1 fllLrgasx) + ||(_A)s/2f||LP(Rd;X)~
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Proof. (1): Let my(§) = % Using Mihlin’s multiplier Theorem

5.5.10 one can check that m; € 9MLP(R?; X,Y). Therefore,

(=) fllp = 1T, s fllp < llmallonrs @ax ) 1 Jaflp < Co.xI1f | ren ma;x) -

(2): Note that since s > 0, Proposition 5.6.6 gives that H*P(R%; X) <
LP(R?; X)) contractively. This combined with (1) gives the estimate “>”.

2vs/2
A+27€19" " Phen Mo €

The estimate < follows similarly. Let mo(§) = ERbrIE

IMLP (Rd;X ,Y) as before. Therefore,
1 llze sy = [ Tons (1 + (— A7) 11,
< mallon o e x,vy (LF 1o + 1(=2)* £ll,.
O

We need two more preparatory results. The first one is a concrete formula for
(—A)*/2f as an integral operator.

Lemma 14.7.17. Let s € (0,1). For f € (R; X) we have

(-4 S/Qf— /f |h|1+5 ) dh, xeR,

where the integral on the right-hand side converges absolutely pointwise R, and
as a Bochner integral in LP(R; X) for any p € [1,00). Here ¢ € R\ {0} is a
constant only depending on s.

Proof. The convergence of the integral for \h| > 1 is immediate The conver-

gence for |h| < 1 follows by writing f(z + h fo (x + th)hdt.
To prove the stated identity we take Fourler transforms on the rlght hand
side and use Fubini’s theorem to obtain

SC+R) = £() o2mihE _ 1 - -
y/ |h|1+s dhdz /wa(ﬁ)dh—ks\ﬂ f(&),

where from the fact that the odd part of the integral cancels we see that
ks = QIR COS(tQITS —L 4t is in (—00,0). This proves the result with constant

= k;1(2m)s. O
We also need the following inequality.

Lemma 14.7.18 (Hilbert absolute inequality). Let p € (1,00). For f €
LP(R,) one has

|f(y)] H
B AT
HLE /]R+ r+y Y Lr(Ry) p”f”L (Ry)
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Proof. Letting (,(y) = x_il,
inequality for the multiplicative group R with Haar measure d%” to obtain

HSC - /]R+ mdy' LP(Ry4) - /R+ ( Cplz/y)y 1/pf( ) d?/)pdxx)l/p

< ||Cp||L1(R+,df)”fHLP(]R+)'

after rewriting the integral, we can use Young’s

O

Proof of Theorem 14.7.15. By Proposition 14.6.17 it suffices to prove the de-
sired estimate for f in the dense class C>°(R \ {0}) ® X. In that case one
actually has g := 1g, f is in the same class and thus is smooth as well.

We claim that

1(=2)*"2gll, < [(=2)*"2 fllp + Cp,slLfllrm ;) (14.97)

As soon as we proved the claim, then the result follows. Indeed, applying
Proposition 14.7.16 twice we obtain

A)S/Q

Igllzer@:x) ~p.x [lgllp + [[(=2)"gll,

97) ’
<l +N=2)2 Fllp + Cosl fllrem @ix)-
~p,X e ;%)
To rewrite (—A)*/2g in a suitable way, let
S:={(x,h) €R*:(z>0and h < —x) or (x <0 and h > —z)}.

Then applying Lemma 14.7.17 twice, by elementary considerations we see that
for all x € R,

(—A)*2g(x) —cs/ gw+h) =g,

|h|1+s
fl@+h)— f(x) fl@+h)
|h|1+5 — <~ 2dh — Cg sgn(x) R].S(:C,h)W dh

o f(z +h)
— (-4 /2f(fc) ~ c,sga(z) / L h) S dn

Taking LP-norms, we see that (14.97) holds if we can show that

Y IR

To prove (14.98) we only consider the part LP(R.) as the other one is similar.
By elementary considerations

(st 0y g - ([ L gy,

— 00

<, 5P (R:X)- 14.98
oviey S 1oy (14.98)
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< [T =Y
[ e
</O (/0 y ‘Ji(;y)ll dh)de

(i) .
< Cplly = [y FW o oy

(? creP P
~N P pﬁ”fHH&p(]R;X))

where in (i) we applied Lemma 14.7.18 to the function y — y~°||f(—y)|l,
and (ii) follows from Corollary 14.6.31(2). This completes the proof of the
remaining estimate (14.98). O

14.8 Notes

Early influential monographs on function spaces are those of Adams [1975] (see
also Adams and Fournier [2003]), Bergh and Lofstrom [1976], Peetre [1976],
and Triebel [1978]. After these works appeared, a new maximal function argu-
ment was discovered by Peetre [1975] which made it possible to study Besov
and Triebel-Lizorkin spaces in the full range p, ¢ € (0, oo]. This theory is pre-
sented in detail in the monograph of Triebel [1983] and the more recent works
of Triebel [1992, 2006, 2020, 2013, 2014]; further expositions are due to Ba-
houri, Chemin, and Danchin [2011], Denk and Kaip [2013], Grafakos [2009],
Maz’ya [2011], Runst and Sickel [1996], and Sawano [2018].

Standard references for function spaces in the vector-valued setting in-
clude the works of Amann [1995, 1997, 2019], Triebel [1997], Konig [1986],
Schmeisser [1987], Schmeisser and Sickel [2001], and Schmeisser and Sickel
[2005]. A unified treatment of Besov and Triebel-Lizorkin spaces and related
classes of function spaces is given by Lindemulder [2021], where the axiomatic
setting of Hedberg and Netrusov [2007] is extended to the vector-valued con-
text. In particular, this covers the weighted and anisotropic settings, and it
allows for Banach function space other than the spaces ¢4(LP) or LP(¢7) em-
ployed in the construction of the Besov and Triebel-Lizorkin spaces.

The theory of function spaces is a vast topic, and by necessity our
treatment does not cover a number of important topics such as approxi-
mation theory, wavelets, atomic decompositions, weighted spaces, paraprod-
ucts, anisotropic spaces, and typical aspects for bounded domains and man-
ifolds such as traces, extension operators, boundary values, and interpola-
tion with boundary conditions (although some of these topics will be briefly
visited in these notes). Of the omitted themes, we specifically mention the
¢-transform of Frazier and Jawerth [1990], which allows the identification of
Besov and Triebel-Lizorkin spaces with subspaces of appropriate discrete se-
quence spaces. In this identification, the question of boundedness of various
operators on the original function spaces is transformed into the question of
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boundedness of infinite matrices on the corresponding sequence spaces, which
in turn can be deduced from natural almost diagonality estimates of these
matrices, in certain analogy with our proof of the T'(1) theorem on LP(R%; X)
spaces through estimates of the matrix coefficients of 7" with respect to the
Haar basis. This approach lies behind many of the proofs of T'(1) theorems in
Besov and Triebel-Lizorkin spaces that we discussed in the Notes of Chapter
12.

The ‘classical’ Besov and Triebel-Lizorkin spaces considered in this chap-
ter are modelled on the gradient V in the setting of R%. It is possible to
introduce Besov and Triebel-Lizorkin spaces based on different types of sec-
torial operators and to study them in the setting of manifolds; we refer to
Batty and Chen [2020], Haase [2006], Kriegler and Weis [2016], Kunstmann
and Ullmann [2014], Taylor [2011a], Taylor [2011b], Taylor [2011c], Taylor
[1974], and Voigtlaender [2022].

Section 14.2

Lemma 14.2.1 is taken from Amann [1995]. The other results of this section are
standard in the scalar-valued case, and their extensions to the vector-valued
setting are straightforward.

Section 14.3

The complex and real interpolation results for vector-valued and weighted L9-
spaces of Theorems 14.3.1 and 14.3.4 extend Theorems 2.2.6 and 2.2.10, where
the unweighted case was treated. The scalar-valued case goes back to Stein
and Weiss [1958], and the extension to the vector-valued weighted setting is
well-known, at least for complex interpolation. The case of real interpolation
is included in the work of Krein, Petunin, and Seménov [1982], and a dif-
ferent approach based on Stein interpolation for the real method is due to
Lindemulder and Lorist [2022]. The interpolation results for gy = g1 = oo are
false in general. Indeed, already Triebel [1978, 1.18.1] gave an example where
[ffvoso (X0>7£311 (X1)]o # Loy ([Xo, X1]p) with w,(n) = 2"*. Propositions 14.3.3
and 14.3.5 are presented by Triebel [1978], who attributes the real case to Pee-
tre [1967]. More generally, Triebel [1978, Section 1.18] identifies the complex
and real interpolation spaces of £7°((X;);>1) and €7 ((Y;);>1) for po,p1 < 00
and for sequences of interpolation couples (X;,Y;);>1; here £7((Z;);>1) is the
space of all sequences (z;);>1 with z; € Z; such that (||z;[/z,);>1 belongs to
., Z € {X,Y}. Proposition 14.3.3 then follows by taking X; = 2/*X and
X; = 27%Y. It seems that Proposition 14.3.5 can only be stated for a single
space X unless further assumptions on gg and ¢; are made.

Section 14.4

Our introduction of vector-valued Besov spaces is self-contained up to a mod-
est number of prerequisites from earlier chapters. Part of the section follows
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the presentation by Schmeisser and Sickel [2001]. For the history of Besov
spaces, we refer the reader to Bergh and Lofstrom [1976] and Triebel [1978,
1983]. Besov spaces appear naturally as real interpolation spaces between LP
and W*P (see Theorem 14.4.31). As such, they have important applications
in the theory of evolution equations (see Chapter 18). Moreover, by choosing
the microscopic parameter ¢ suitably, one can often include end-point cases
into the considerations.

In contrast to the theory of the spaces WH*P(R% X) and H*P?(R% X),
where assumptions on the space X such as the Radon—Nikodym property or
the UMD property are often needed, many key results on vector-valued Besov
spaces hold for general Banach spaces X.

Lemma 14.4.5 on the sequential completeness of .7/ (R%; X) is a standard
result. It is possible to endow the space C°(U; X) with a complete locally
convex topology in such a way that sequential convergence in this topology co-
incides with the ad hoc notion of sequential convergence used here. A detailed
construction is presented by Rudin [1991].

Fourier multipliers

Fourier multipliers for vector-valued Besov spaces have been discussed by
Amann [1997], Weis [1997], Girardi and Weis [2003a], Hytonen [2004], and
Hytonen and Weis [2006a]. In Theorem 14.4.16, we only considered smooth
m, and this restriction was removed in Theorem 14.5.6. The latter result
and related ones can be found in the work of Girardi and Weis [2003a], who
showed that the operator T is a continuous extension (with respect to a weaker
topology) of T, also if max{p, q} = co. Fourier multipliers for vector-valued
Besov spaces have been applied by Weis [1997] to obtain sharp exponential
stability results of Cy-semigroups in spaces with Fourier type p.

Embedding

The sandwich result of Proposition 14.4.18 is very useful in avoiding additional
conditions on the Banach space X . The Sobolev embedding result of Theorem
14.4.19 is standard. Especially the sufficiency is simple to prove via Lemma
14.4.20. For the proof of this lemma and its extension to all 0 < pg < p; < 00
in Remark 14.6.4, we follow Schmeisser and Sickel [2001].

Difference norms

The difference norm characterisation of Besov spaces can be found in many
places. It was already used before the Fourier analytic description of Besov
spaces was given. We refer the reader to Bergh and Lofstrom [1976], Triebel
[1983], and references therein for historical details. The difference norms have
the advantage that in certain cases one can check by hand whether a given
function belongs to some given Besov space. By choosing the parameter 7 in
Theorem 14.4.24 appropriately, the Besov spaces can be identified with other
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classical spaces, as we have done in Corollaries 14.4.25 and 14.4.26 for W*P
and Cp.

In Step 1 of the proof of Theorem 14.4.24 we follow the presentation of
Bergh and Lofstrom [1976], where the case 7 = oo was given. Step 2 of the
proof is based on the presentation of Schmeisser and Sickel [2001].

Interpolation

Interpolation of Besov spaces is discussed by Bergh and Lofstrom [1976],
Konig [1986], and Triebel [1978, 1983]; further references to the literature
can be found in these works. The method to reduce the proofs to interpola-
tion of £9(LP)-spaces fits into a more general retraction—co-retraction scheme
explained by [Triebel, 1978, Theorem 1.2.4].

The complex interpolation result of Theorem 14.4.30 is folklore, although
we are not aware of a reference containing the general form with an interpo-
lation couple (Xp, X1) presented here. In the special case X = Xy = X7, the
theorem can be proved in the same way as in the scalar-valued case, and some
end-point results are valid as well. For instance, we have

(B3 (R:X), B3 (RY X))o = By (R X), pj,q5 €[1,00], 55 €R,

Po.q0 P1,91

with equivalent norms, where

1 1-06 0 1 1-06 0
= +—, == +—, s=(1-0)so+0s1.
Po D1 q qo q1

The real interpolation result of Theorem 14.4.31 is well known, and the
proof is a simple generalisation of the standard proof for the scalar-valued
case. Several other real interpolation results can be proved with the same
methods. For instance, if min{pg, p1} < 0o, min{qp, ¢1} < 0o, and sg, s1 € R,
then

(ByS 0o (R%: X0), Byt 1, (R X1))op = By, (R (Xo, X1)0,p)s

Po,q0 P1,91

with equivalent norms, where again + = =0 4 0 — 1260 L 0 4,4 5 =
p Po D1 40 q1

(1 —6)sp + 0s1. This follows Theorem 14.3.4 in a similar way as in Theorem
14.4.30.

Duality

In Theorem 14.4.34, we identified the dual of B;7Q(Rd;X) with respect to
the duality for .#(R%; X) and .#’/(R%; X). Unlike in the LP-setting treated in
Section 1.3, no conditions on X are needed. A result of this type in a more
general abstract setting (including weights and anisotropic function spaces)
is presented by Lindemulder [2021]. The proof that we have given follows
Agresti, Lindemulder, and Veraar [2023].
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Section 14.5

The characterisations in Theorem 14.5.1 of type and cotype in terms of em-
bedding properties of Besov spaces into spaces of «-radonifying operators are
due to Kalton, Van Neerven, Veraar, and Weis [2008]. This paper also con-
tains the v-Bernstein—Nikolskii inequality of Lemma 14.5.2, as well as optimal
embedding results for the smooth spaces v(H ~*2(R%); X). The consequences
for Bessel potential spaces discussed in Corollary 14.7.7 are taken from Veraar
[2013]. This work also contained the following result:

Theorem 14.8.1. Let X be a Banach lattice, and 1 < p <2< g<oo. If X
is p-convex and q-concave, then

HG=2D(RY X) — y(LX(R?), X),
VLARY), X) — HG™ DRI, ).

It is an open problem to characterise the Banach spaces for which these em-
beddings hold (see Problem Q.14).

Mapping properties of the Fourier transform

The mapping properties of the vector-valued Fourier transform .% for Banach
spaces X with Fourier type p contained in Proposition 14.5.3 appear in the pa-
pers by Garcia-Cuerva, Kazaryan, Kolyada, and Torrea [1998], Konig [1991],
and Girardi and Weis [2003a]. Real interpolation of the end-point cases ¢ = p
and ¢ = oo in Proposition 14.5.3 gives an alternative proof of some of the
results in the papers just mentioned:

Theorem 14.8.2. Suppose that X has Fourier type p € (1,2]. Let q € (p, 00),

r € [1,00], and s = % - g. Then .F is bounded from Bj .(R% X) into the

Lorentz space Lq/”(Rd; X).

Proposition 14.5.3 contains a parallel result under the assumption that X
has type p and cotype 2. Recall from Proposition 13.1.35 that, under these
assumptions, X has Fourier type r for any r € [1,p).

The mapping properties of the Fourier transform on vector-valued LP-
spaces with power weights have been recently studied by Dominguez and
Veraar [2021], who show that a version of the classical Pitt inequalities holds
if and only if X has non-trivial Fourier type. In particular, the following result
was proved:

Theorem 14.8.3. Let X be of Fourier type pg € (1,2]. Let 1 < p < ¢ < o0
and B,y = 0. If

1 1 d 1 1
max{O,d<.+—1>}<fy< and B—’y:d(l—f—f),
min{p,po} = ¢ q P q

then F estends boundedly from LP(RY,| - |PP; X) into LY(RY,|-|~79; X).



412 14 Function spaces

In the limiting case v = max{0, d(m + % —1)}, the above boundedness
of Z still holds true under further restrictions on p and g. Surprisingly, if
X has non-trivial Fourier type (equivalently, by Theorem 13.1.33, non-trivial
type), one can allow p = ¢ = 2 by choosing the weights suitably. A similar
result holds in the periodic setting, but the problem is open for more general
orthogonal systems that have been considered by Stein [1956].

R-boundedness

R-boundedness of smooth operator-valued functions is studied by Girardi and
Weis [2003c] under Fourier type conditions, and by Hytonen and Veraar [2009]
under (co)type conditions; the latter paper contains Theorems 14.5.8 and
14.5.9.

Section 14.6

In this section, we followed part of the presentation of Schmeisser and Sickel
[2001]. For a detailed description of the history of Triebel-Lizorkin spaces, we
refer the reader to Bergh and Lofstrom [1976], and Triebel [1978, 1983]. Below,
we only discuss those aspects of Triebel-Lizorkin spaces that are specific for
this class of spaces.

Triebel-Lizorkin spaces FJ  were originally introduced as a natural vari-
ant of Besov spaces, with the roles of LP and ¢7 interchanged in the definition.
The special case ¢ = 2 leads to the equality Fj, = H*P with equivalent
norms for p € (1,00), and in the early days of the theory the cases ¢ # 2
were mostly studied for reasons of mathematical curiosity. The definition of
Triebel-Lizorkin spaces given here does not cover the spaces F5 . The lat-
ter are known to be connected to BMO spaces, and require a modification of
the definition for which we refer to Triebel [1983]. These spaces are naturally
contained, as F3 = F;qu/p for any p € (0,00), in the general framework of
Triebel-Lizorkin-type spaces F,>7 with a fourth parameter 7 € [0, 00), which
has been introduced by Yang and Yuan [2008] and studied in several subse-
quent works.

Genesis of (vector-valued) Triebel-Lizorkin spaces

Vector-valued Triebel-Lizorkin spaces are needed for the treatment of parab-
olic boundary value problems in the spaces LP(0,T} Lq(Ri)). Such applica-
tions first appeared in the works of Weidemaier [2002] for ¢ < p and scalar
second order equations with inhomogeneous Dirichlet boundary conditions,
and of Denk, Hieber, and Priiss [2007] for p,q € (1, 00) and more general sys-
tems and boundary conditions. Kunstmann [2015] introduced a new interpo-
lation method (-, -)g ¢« and shows that F; = (L?, Wk’p)s/k,gq with equivalent
norms. This interpolation method fits into the axiomatic setting of discrete
interpolation recently developed by Lindemulder and Lorist [2021].
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As in the Besov space case, results for vector-valued Triebel-Lizorkin
spaces typically hold without restrictions on the target Banach space X.
Thanks to the sandwich result

By = Fyy = HP = F) < B o,
one can sometimes deduce results about vector-valued Bessel potential spaces
as well. Within the Triebel-Lizorkin scale, one can get closer to H*®P than in
the Besov scale, which often makes Triebel-Lizorkin spaces more useful. For
instance, the sandwich result can be combined with the Sobolev Embedding
Theorem 14.6.14, which allows arbitrary microscopic improvement for Triebel—
Lizorkin spaces. Further flexibility in sandwiching and embedding theorems
can be built in by introducing weights such as |z|” or |z1|” as was done by
Meyries and Veraar [2012, 2014a].

The boundedness of the Peetre maximal function proved in Proposition
14.6.2 appears in the book of Triebel [1997]. This proposition extends results
of Triebel [1983, Theorem 1.6.3] and Triebel [1997, Formula 15.3(iv)] to the
vector-valued setting.

Theorems 14.6.3 and 14.6.11 are presented by Triebel [1997] for scalar-
valued multipliers m. An operator-valued extension is due to Bu and Kim

[2005].
Gagliardo—Nirenberg inequalities and Sobolev embedding

The Gagliardo—Nirenberg inequalities of Proposition 14.6.15 and 14.6.16 are
taken from Brezis and Mironescu [2001]. Our presentation follows Schmeisser
and Sickel [2001, 2005]. Proposition 14.6.13 and Theorem 14.6.14 can also be
found in these works. Gagliardo—Nirenberg inequalities in the Besov scale can
be found in the paper of Brezis and Mironescu [2018]; they do not allow for a
microscopic improvement.

Difference norms

Difference norm characterisations of Triebel-Lizorkin spaces appear in the
works of Kaljabin [1977, 1979], and Triebel [1983]. Our presentation of Theo-
rem 14.6.20 follows Schmeisser and Sickel [2001], who consider the case 7 = 1.

Interpolation and duality

The interpolation and duality results for Triebel-Lizorkin spaces are similar
to their Besov space counterparts. In our presentation, the end-point ¢ = 1 is
excluded, since the Fefferman—Stein inequality for the maximal operator is not
valid in LP(R¢; ). This problem can be circumvented by a reduction to in-
terpolation identities for vector-valued Hardy spaces instead of LP(RY; £7(X))
(see Triebel [1983]). The embedding (14.87) of Theorem 14.6.26 is due to
Jawerth [1977], and the one of (14.86) to Franke [1986].
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Fractional Hardy inequalities

The fractional Hardy inequalities of Proposition 14.6.30 and Corollary 14.6.31
are variations of those by Krugljak, Maligranda