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SUMMARY

PROBLEM DEFINITION
According to the World Health Organization, traffic injuries have become the eighth cause of
death and the leading cause among children and young adults. Human error, and in particular
perceptual error, is among the most frequently reported causes of road fatalities. The desire
to reduce traffic fatalities has led to the development of automated driving, which promises
revolutionary advances in driver safety, traffic capacity and driver convenience. Since true
autonomy in mixed traffic has not yet been achieved, today’s automated vehicles require the
driver to continuously supervise the automation and to capably intervene when necessary.
However, simulator studies and experiences from disciplines such as aviation and factories
have demonstrated that humans are generally ill-equipped to monitor automation for longer
periods. This raises the concern that partial automation may harm rather than help traffic
safety if not designed to adequately support the drivers in their supervisory tasks.

RESEARCH OBJECTIVES
To address this concern, further insights are needed in how drivers monitor automation in
complex real-world traffic, and how their behaviour and performance change with long-term
automated driving experience. This dissertation sets out to investigate how real-world au-
tomation changes the availability of attentional resources, to establish where and how drivers
use automation in naturalistic conditions, and evaluate how these change with experience.
While these objectives investigate periods of automated driving, vehicles with automated
driving functionalities will often be driven manually, when outside the operational design
domain or at the driver’s preference. In these conditions, the available automation may still
outperform the driver on particular tasks, such as detecting and tracking surrounding road
users without bias or distraction. This dissertation therefore also contributes to the search for
ways in which automation can provide meaningful support to the traffic monitoring task in
manual and supervised driving.

To evaluate if and when supervised automated driving negatively affects the driver’s ability
to monitor, mental workload is evaluated in a Tesla model S on public roads (Chapter 2).
Voluntary automation use and attention are examined in a naturalistic driving study on public
roads (Chapter 3). To evaluate the effect of experience with automated driving, Chapter 2
compares drivers with and without prior automation use, whereas Chapter 3 examines how
behaviour changes over a two-month period, compared to one month of manual driving.

Two studies are performed to examine how driving automation can support the driver with
the monitoring task, for which an instrumented vehicle was extended with cameras which
track the driver’s gaze and associate it to surrounding road users as detected by the vehicle
perception. The first study (Chapter 4) investigates how well gaze behaviour can indicate
driver awareness toward individual road users, and proposes a recognition task to obtain

xi
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a ground truth for awareness of multiple other road-users. The second study (Chapter 5)
evaluates if driver gaze and head pose can provide earlier predictions for emergency alerting
and intervention systems. A crossing pedestrian collision risk prediction system is used as a
case study where gaze and contextual cues are evaluated in their contribution to path and risk
prediction using a dynamic Bayesian network.

FINDINGS & RECOMMENDATIONS
Chapter 2 found that workload differed between roads with high and low traffic complexity,
both for manual and automated driving, which indicates that drivers remain sensitive to
changes in task demand while supervising automated driving. Drivers with prior experience
in automated driving perceived a lower workload while supervising automation compared
to manual driving. No workload difference was perceived for first-time users. In contrast,
attentional demand as measured by a detection-response task was higher during automation
use compared to manual driving regardless of experience. This indicates that monitoring
automation (SAE2) requires more mental capacity compared to manual driving, which sug-
gests that in contrast to a wide range of studies, SAE2 can increase workload. Supervising
automation may therefore be beneficial for driver attention, but perception of workload during
supervision may be too low for this to occur naturally. Future work should consider calibrating
workload perception and system limitation understanding rather than actual task demand to
encourage attentive supervision.

Chapter 3 shows that automation is mostly used on road types generally considered suitable
for automated driving with only incidental use on urban roads. This suggests that users are
adhering to the operational design domain of these vehicles. On highways, automation is used
at all speeds, but less during short periods of slow driving. No time-in-drive, time-of-day or
experience effects were found for automation use. On the highway, head pose deviation was
smaller during automation use compared to manual driving but tended to increase over the
first six weeks of use, which may indicate a change in monitoring strategy. Further research is
needed to assess if this difference indicates better or worse monitoring behaviour.

Chapter 4 found that drivers performed better on the recognition task when road users
were relevant for the driven manoeuvre and when drivers had directed their gaze within 10
degrees of these road users. However, at least 18% of road users were recognised while only
observed peripherally, suggesting that peripheral vision should not be neglected in attention
monitoring. Recognition performance was not predicted by gaze metrics and requires further
development to reduce forget rates. Further analysis is needed to compare the recognition
task to established situation awareness measures after these improvements are obtained.

Chapter 5 demonstrates that driver and pedestrian attention monitoring can provide a benefit
to pedestrian crossing collision risk prediction when predicting further than 0.75 seconds
ahead.

The higher workload during supervised automation and the general adherence to the oper-
ational design domain in naturalistic driving indicate that supervising driving automation
can be beneficial to driver attention and traffic safety, but literature and recent accidents
demonstrate that challenges remain in encouraging such attentive behaviour. Strategies to
encourage attentive supervision should therefore be further developed, as well as ways to
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maintain these strategies while automation technology improves in pursuit of the opposite
objective to reduce engagement in the driving task.

The joint analysis of driver gaze and road scene may improve driver support during manual
driving and supervised automation, and benefit the development of automated driving. But
care should be taken that systems which use driver attention or rely on other contextual cues
do not become susceptible to the same mistakes as drivers tend to make. While careful design
approaches can reduce the risk of mimicking human error, validation will ultimately require a
reliable way to distinguish between awareness and inattentional blindness.

The instrumentation and conducted studies with on-road automation demonstrate that on-
road research is becoming more practical and accessible than ever before, thanks to recent
developments in automation. The observation that during on-road automation, inexperienced
drivers perceive higher workload compared to in simulators testifies for the importance of
on-road driving research. Challenges encountered during the naturalistic study and attention
study demonstrate that the instrumentation and processing have to be designed and tested
carefully for on-road research to be effective.
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2 1. INTRODUCTION

1.1. PROBLEM DEFINITION
According to the World Health Organization, traffic injuries are now the eighth cause of
death and the leading cause among children and young adults (WHO, 2018). While collision
mitigation and driver assistance systems have provided major safety improvements over the
past few decades, road fatality rates per unit of population have stayed constant between 2013
and 2017 for most world regions. Human error, and in particular perceptual error, is among
the most frequently reported causes of road fatalities (European Road Safety Observatory,
2018).

This has advocated a strong incentive for the recent developments towards automated driving,
with prospects of revolutionary advances in driver safety, traffic capacity and driver conve-
nience. Since true vehicle autonomy within today’s traffic has proven to be an enormous
challenge, developments are released to the public incrementally through various forms of
partial automation, where the driver remains responsible to ensure safety.

In 2014, the automated driving committee of the international society of automotive engi-
neers (SAE) produced a widely adopted standard for classifying the many forms of vehicle
automation, and revised it over consecutive years (SAE International, 2018). This taxonomy
divides automation in five levels according to the distribution of responsibilities between
driver and automation, as shown in Figure 1.1.

Figure 1.1: SAE levels of driving automation. Adopted from SAE International (2019)

Until the automation can flawlessly interpret all the complexities of the traffic environment
and our behaviours within it (SAE4/5), human drivers will have to complement these systems.
In SAE2 systems, the driver is required to continuously monitor the automation, and to capably



1.1. PROBLEM DEFINITION

1

3

intervene when necessary. In SAE3, the driver may engage in other tasks but should be able to
resume driving on short notice when requested by the automation. Since automation of levels
SAE0 to SAE4 only functions reliably under specific conditions (e.g. highway driving, congested
traffic, flat road sections with clear lane markings), the level of support a given vehicle can give
may vary with time and location. While automated driving can only responsibly control the
vehicle within the operational design domain (ODD), it may still play a supportive role while
the driver operates the car manually. Such support comes as SAE0 active safety features which
co-monitor the environment and either inform the driver of possible hazards (e.g. forward
collision warning, blind spot monitoring) or intervene when it becomes evident that the driver
will not react to an imminent risk (e.g. automated emergency braking). These systems have
been found to make a positive impact on driving safety statistics (Cicchino, 2017, 2018). In
contrast, continuous automation of speed regulation and lane keeping as implemented in
current levels SAE1 and SAE2 have not yet provided clear improvements in accident statistics
and raised concerns of unsafe use of automation (Dijsselbloem et al., 2019; Vlakveld, 2019).
Concerns are raised by researchers in the field of human factors which caution that "autopia"
may contain dystopian elements where (driving) automation may harm rather than help traffic
safety and quality of life in general (Hancock, 2019). This dissertation addresses immediate
safety implications in the interaction between driver and vehicle.

Despite the clear definition of roles, supervised automation (SAE 2/3) inevitably forms a transi-
tion between support and autonomy, which can cause confusion about the user’s expectations
and beliefs (Victor et al., 2018). Drivers may not be fully aware of their vehicle’s capabilities
(Harms et al., 2020), possibly leading to inattention, unsafe use or under-use. Zhang et al.
(2019) review that several determinants of reaction time to take over requests are voluntary
(secondary tasks, usage of available take over time), demonstrating that attentive supervision
is often challenged by motivational rather than mental or physical limitations. These reaction
times increase as drivers get more engaged in secondary tasks (Ko and Ji, 2018).

Even when these issues are addressed through clear communication and reminders, super-
vised automation still changes the driver’s role, which introduces further challenges. Skill
degradation from reduced practice in manual driving has been identified as a concern (Miller
and Boyle, 2018), and frequent transitions in responsibilities may lead to mode confusion
and schema-type slips (Norman, 1981). The transition from continuous driving to passive
monitoring also challenges driver’s vigilance and takeover performance.

Furthermore, automation reduces perceived workload and increases productivity on sec-
ondary tasks (de Winter et al., 2014). While these effects seem advantageous from a comfort
perspective, they also raise safety concerns. When the workload gets too low, mental under-
load may occur (de Waard, 1996), making it harder to pay attention to the task. Over time,
this can lead to a state of drowsiness (Vogelpohl et al., 2018), inattention and slower reactions
(Greenlee et al., 2018). In supervised automation, this form of drowsiness can develop within
15 minutes of monotonic driving (Goncalves et al., 2016), and already in manual driving, the
development of drowsiness forms a contributing factor in 20% of road accidents (MacLean
et al., 2003).

These risks of supervised automation (engagement in secondary tasks, schema type or habitual
errors and impaired mental state) can all contribute to perceptual error, and impair the driver’s
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situation awareness. While workload and driver state can impair our ability to monitor, driver
behaviour may moderate these effects. Risk compensation and misuse may lead to insufficient
situation awareness or time to respond. This may be reduced by compensatory strategies, such
as strategic planning of breaks, secondary tasks and automation usage, which may be adopted
naturally but can also be actively encouraged through system and HMI design or driver
training. However, human factors research generally concludes that these countermeasures
cannot fully overcome the reduced energetic state which automation imposes on the driver,
and that further improvements in automation reliability will make such countermeasures
less effective because without the perception of risk or error, there is no intrinsic motivation
to monitor the automation (Hancock, 2013). Other studies suggest that the mental model
of the automation’s operational design domain can be incorrect in many circumstances of
automation experienced and -inexperienced drivers alike (Farah et al., 2020). However, there
are also indications that experience with automation and automation failure can improve
the driver’s ability to intervene (Zhang et al., 2019). Alternatively, automation can be altered
to provide support for tasks which are challenging for the driver (e.g. preventing attentional
lapses), while limiting the extent to which easy tasks are automated (Cabrall et al., 2019; Mulder
et al., 2012).

1.2. OBJECTIVES
Many excellent simulator and test track studies have contributed to our understanding of the
driver’s interaction with automation (de Winter et al., 2014; Parnell et al., 2018; Zhang et al.,
2019). To prepare society for automated driving, it is imperative that we extend this knowledge
with empirically founded insights in how drivers perform and behave in complex real-world
automation, and to which extent concernable behaviours affect overall safety (Banks et al.,
2018; Fridman et al., 2018; Jarosch et al., 2019; Naujoks et al., 2016). More attention is needed
to examine behaviour and performance of drivers with long-term experience of today’s (but
also tomorrow’s) driving automation. Particularly, there is a paucity in studies that include
drivers with long-term, real-world experience with driving automation.

Since perceptual errors are amongst the leading factors in fatal crashes and since automation
has been demonstrated to negatively impact monitoring ability, I want to better understand
what makes (automated) driving hard or easy to attend to, and want to establish how monitor-
ing is affected by experience, and if this results in better or worse automation monitoring. I
set out to evaluate how current SAE2 automation affects the driver’s attentional state in the
real world, and how this varies with driving conditions and driver experience.

Since the impact of automation on the driver depends on how it is used, I also want to better
understand how different driving situations influence automation use in naturalistic condi-
tions, whether drivers adopt different monitoring strategies under different circumstances,
and how these strategies evolve as the drivers gain more experience in using these systems.

While the preceding objectives investigate periods of automated driving, vehicles with these
functionalities will often be driven manually, when outside the ODD or at the driver’s pref-
erence. In these conditions, the available automation may still outperform the driver on
particular tasks, such as detecting and tracking surrounding road users without bias or distrac-
tion. I therefore also contribute to the search for ways in which these automation components
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can provide meaningful support to the monitoring task during manual (and possibly during
SAE2) driving.

On-road research imposes additional challenges to the measurement and control of what
transpires around the vehicle. While the importance of high-fidelity research and validation
of simulator studies is widely accepted, there are two concerns which tend to make on-road
research a relatively unpopular choice (de Winter et al., 2012): the lack of experimental
control in on-road studies makes it hard to reduce variation in the independent and control
variables, and to control for confounding factors. Secondly, there is more effort involved in
the collection of dependent variables such as what happens to and around the vehicle. With
the present developments of automated driving, this last challenge is nearly resolved since
considerable effort is invested in reliable sensing and automated interpretation of the vehicle
surroundings. The lack of control under real-world experiments makes on-road research
especially unpopular for hypothesis testing, because the increased variance makes it harder
to demonstrate effects statistically. However, driver research is closer to the applied than to
the fundamental end of the scale, and the envisioned applications for driver monitoring and
driver support will ultimately have to cope with the diversity and confounders of real-world
driving. Familiarity with these real-world complications will benefit researchers who hope
to develop systems and tools that will meet the interned prospects once implemented, and
exclusively practicing research in idealized conditions designed to elicit maximum effects will
not provide such insights.

This dissertation fully pursues this by avoiding the simulator entirely and conducting all
research on-road. It also aims to illustrate that on-road research is becoming more practical
and accessible than ever before, thanks to recent developments in automation.

Figure 1.2: An instrumented vehicle used for this research, equipped with eye tracking and computer vision. The
green line and marker represent the visual focus detected using eye-tracking and is not visible while driving.

This leads to the following research objectives and questions:

1. Quantify the effect of real-world automation on the availability of attentional resources

(a) How does cognitive load differ between manual and automated driving?

(b) How does traffic complexity affect cognitive load?
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(c) How does automation experience affect cognitive load?

(d) What are the implications for monitoring quality and safety?

2. Gain insight in where and how drivers use automation, and how this changes with
experience.

(a) Which conditions affect when driving automation is used?

(b) To which extent is automation used outside the (safe) design domain?

(c) How does automation use affect attention behaviour?

3. Can driving automation technology support the driver’s monitoring task by interpreting
the driver’s awareness of individual cues in the road scene?

(a) Can a recognition task be used to evaluate awareness toward individual road users?

(b) Can situation awareness be predicted from gaze metrics relative to individual road
users?

(c) Can traffic awareness monitoring be used to provide a prediction benefit collision
warning and avoidance systems?

1.3. APPROACH
The first two objectives are pursued using current SAE2 automation using a controlled experi-
ment on public roads (Chapter 2), and a naturalistic driving study on public roads (Chapter 3).
The third objective is pursued using our instrumental automated vehicle in staged experiments
(Chapters 4 and 5).

To evaluate under which conditions automated driving may negatively affect the driver’s
ability to monitor, Chapter 2 examines how automation affects the driver’s cognitive workload.
To make a within-subject comparison of cognitive workload during attentive manual and
automated driving, an on-road experiment was performed in a Tesla Model S. Subjective,
psychological and performance indicators of cognitive workload were compared between
manual and automated driving, under the influence of two moderating factors: automation
experience (comparing driving automation-novices to Tesla owners) and traffic complexity
(comparing a quiet highway to the round-way of Amsterdam).

While Chapter 2 provides insights in driver workload during automation use, the participants
are instructed to show normative, attentive behaviour. Real-world behaviour is likely to differ;
drivers may choose when to use the automation and how to divide their attention between
monitoring the road and competing secondary tasks like texting on a phone. This implies
that the idealised capabilities obtained in the workload study only capture a partial image
of the safety impact of automated driving. Behavioural adaptation to automated driving is
best examined in a naturalistic study, where participants drive their vehicles in their daily life
without being influenced by instructions or the presence of an experimenter. Naturalistic
studies however result in large amounts of data whose condensation into knowledge can
be demanding. Chapter 3 contributes to the data enrichment and analysis of a naturalistic
driving study aimed to examine behavioural adaptation to the introduction of SAE2-capable
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vehicles. The study is unique in its inclusion of a baseline period without automation use,
which allows for a within-subject comparison of behavioural adaptation.

Chapter 4 and Chapter 5 investigate how vehicle perception of the environment can support
the driver in monitoring the environment. Meaningful attention support poses two challenges:
it requires the automation system to 1) understand which road users require the driver’s
awareness, and 2) measure which of these the driver is aware of, and which are overlooked.
To address the latter, Chapter 4 investigates how well gaze behaviour can indicate driver
awareness toward individual road users during left turns on complex urban intersections
using a vehicle with road-scene perception and eye tracking. This evaluation also requires a
ground truth for this awareness to be obtained for multiple road users simultaneously without
burdening the driver with additional tasks. A recognition-based method is developed for
labelling driver situation awareness.

Chapter 5 evaluates whether attention monitoring can provide a temporal advantage to
emergency alerting and intervention systems. A crossing pedestrian collision risk prediction
system is used as a case study. In order to be anticipative instead of reactive, the system has to
not only predict the travelled paths of the pedestrian or driver, but also reliably predict if they
intend to adapt their behaviour to resolve a potential collision. For this purpose, a dynamic
Bayesian network (DBN) is developed to predict the attentional and intentional hidden states
of the driver and pedestrian, as well as other contextual cues. The prediction performance
is compared to an awareness agnostic system, as well as the availability of other candidate
context observations.

1.4. DISSERTATION CONTRIBUTIONS
Chapter 2 examined how supervising SAE2 automation affects perceived workload and atten-
tional demand on two highways of different traffic complexity with automation experienced
and -inexperienced drivers. The results show that automation experience and traffic com-
plexity have substantial effects on workload while monitoring SAE2 automation. Perceived
workload and objective workload show the same trend while comparing driving environ-
ments; driver workload remained sensitive to changes in traffic complexity during supervised
automated driving, which implies that drivers maintain the ability to mobilize attentional
resources depending on the situation’s need. However, the objective and subjective workload
measures show opposite effects when examining the effect of automation, in particular for
automation-experienced drivers. Automation-experienced drivers perceived a lower workload
during automation use. However, their performance on the objective workload task indicates
that monitoring SAE2 automation requires more mental capacity compared to manual driv-
ing, which suggests that in contrast to a wide range of studies, SAE2 can increase workload.
Hence, SAE2 can alleviate unsafe mental under-load rather than cause it. Our on-road testing
further identifies a workload difference between automation-experienced and automation-
inexperienced drivers which was not observed in reviewed simulator studies, highlighting the
importance of testing automation experienced users.

In Chapter 3, a naturalistic dataset is enriched and explored to examine automation usage
and attention during the first two months of using SAE2-capable vehicles. For data enrich-
ment, neural networks were trained to classify automation status and the driver’s direction
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of attention. For status classification, template matching of instrument icons was used and
attention was classified from video-derived head pose. While status estimation was found to
be reliable, the second network was unable to distinguish between attentive and distracted
regions of attention, despite performing on-par with reviewed methods. This shows a need for
eye tracking rather than using head pose. Results of the automation status classifier were used
to explore when and in which driving conditions SAE2 automation is used, and if these pat-
terns change with experience. Automation is mostly used on road types generally considered
suitable with only incidental use on urban roads. This suggests that users are adhering to the
operational design domain of these vehicles. On highways, automation is used at all speeds,
but less during short periods of slow driving. No differences in usage were observed for time
in trip, time of day or experience. During highway automation use, head pose deviation did
not differ between SAE2 automation and baseline manual driving, but tended to increase
over the first six weeks of use, which hints at behavioural adaptation. Head heading and pitch
deviation were smallest during ACC use. Further research is needed to assess if this difference
indicates better or worse monitoring behaviour.

Chapter 4 examines if driving automation technology can interpret the driver’s awareness
towards individual road users. Driver gaze is associated with surrounding road users as de-
tected by computer vision during left turns on urban intersections. A post-drive recognition
task was performed to assess driver awareness. Typical gaze behaviour towards various road
users during left turn manoeuvres could predict road user relevance but not the outcome
of the recognition task. The recognition task was sensitive to road user relevance and min-
imum gaze angle, and yielded a low false positive rate, which demonstrates it can identify
awareness of individual road users during left turn manoeuvres. However, the true positive
rate was unexpectedly low, for which solutions were proposed. The findings further show
that perception occurs at gaze angles well beyond 10◦ which suggests that perception models
should incorporate more than fixation location in their parameterization.

Chapter 5 demonstrates that contextual cues including driver and pedestrian awareness
through gaze and head pose provide a temporal benefit on collision risk prediction perfor-
mance for prediction horizons beyond 1.5 s. The findings also show that collision course is an
insufficient cue to disambiguate who will yield when both driver and pedestrian are attentive.
Additional cues such as mutual awareness (i.e. knowing the other’s awareness of oneself) and
knowledge on right of way are required to correctly predict who may yield.
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Abstract

Driver mental workload is an important factor in the operational safety of automated driving.
In this study, workload was evaluated subjectively (NASA R-TLX) and objectively (auditory
detection-response task) on Dutch public highways (∼150 km) comparing manual and super-
vised automated driving in a Tesla Model S with moderators automation experience and traffic
complexity. Participants (N=16) were either automation-inexperienced drivers or automation-
experienced Tesla owners. Complexity ranged from an engaging environment with a road
geometry stimulating continuous traffic interaction, and a monotonic environment with lower
traffic density and a simple road geometry. Perceived and objective workload increased with
traffic complexity. When using the automation, automation-experienced drivers perceived a
lower workload, while automation-inexperienced drivers perceived their workload to be similar
to manual driving. However, the detection-response task indicated an increase in cognitive load
with automation, in particular in complex traffic. This indicates that drivers under-estimate
the actual task load of attentive monitoring. The findings also highlight the relevance of us-
ing system-experienced participants and the importance of incorporating both objective and
subjective measures when examining workload.

2.1. INTRODUCTION
Monitoring ability is essential in an increasing number of vehicles offering supervised, or SAE2
automation (SAE International, 2016), which require the driver to monitor the automation
and intervene when needed. Driver mental workload is an important factor in the operational
safety of supervised automation. When automation relieves the driver from the continuous
control tasks, mental underload can occur (de Waard, 1996). Over time, this can lead to a state
of drowsiness, inattention and slower reactions (Greenlee, DeLucia, & Newton, 2018; Hirose,
Kitabayashi, & Kubota, 2015). This has raised concerns regarding the driver’s ability to monitor
the automation and his/her performance to intervene in critical situations (Kyriakidis et al.,
2017).

In order to address these effects, it is important to know how workload is affected by the use
of automation, and how this effect varies with driving conditions. This study focuses on two
main moderating variables of workload: the complexity of the driving environment and the
driver’s experience with the automation. Understanding the effect of these moderators can
help to predict in which conditions workload is too high or too low. Experience with driving
automation can lead to task execution at a lower cognitive level, or reduce the perceived
complexity of the traffic situation (Paxion, Galy, & Berthelon, 2014; Young & Stanton, 2007). Au-
tomation experience can also lead to better monitoring and improved cognitive readiness for
familiar driving situations, resulting in higher control transition performance (Krampell, 2016;
Larsson, Kircher, & Andersson Hultgren, 2014; Paxion et al., 2014; Wright, Samuel, Borowsky,
Zilberstein, & Fisher, 2016; Young & Stanton, 2007). Moreover, automation experience may
reduce task demand, or reduce sensitivity to demand changes, and thus influence workload
differently in high and low traffic complexity (Patten, Kircher, Ostlund, Nilsson, & Svenson,
2006; Stanton, Hedge, Brookhuis, Salas, & Hendrik, 2005).
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Figure 2.1: Illustration of the independent variables: automation experience, automation use, and complexity of
the environment.

This study investigates how workload changes with monitored automated driving in real-
world conditions, and how this change is moderated by traffic complexity and by the driver’s
prior experience with automated driving. We conducted an on-road experiment on Dutch
public highways in a Tesla Model S. The change in workload was assessed subjectively (NASA
R-TLX) as well as objectively (auditory detection-response task). Traffic complexity was
moderated by driving in a monotonic, low workload and a complex, engaging highway. To
moderate automation experience, participants were either automation-inexperienced drivers
or automation-experienced Tesla owners. The conditions were driven both manually and
with automation. This resulted in a 2 (automation: on vs. off) x 2 (environment: monotonic
vs. engaging) x 2 (experience: experienced vs. inexperienced) mixed design as illustrated in
Figure 2.1.

2.1.1. THEORIES OF WORKLOAD
In line with resource theory and the capacity model (Kahneman, 1973), we describe workload
as the ratio between task demands and resources available to meet them. (A discussion of
alternative definitions can be found in (Cain, 2007)). Task demand depends on the complexity
of the driving task and the traffic situation, but also on how the goals are set (i.e. accepting a
level of performance), and the strategy chosen to achieve it. To meet these demands, the driver
has to allocate physical and mental resources, which are limited in availability. Driving consists
of multiple sub-tasks. To model when and how much these tasks interfere, Wickens (1981)
proposed the multiple resource theory in which resource pools are available for the different
modalities of perception (e.g. visual, auditory, tactile), the codes of processing (spatial or
verbal) and response selection and execution (hands, feet, speech). In addition, he proposed a
cognitive resource shared across all tasks.

Resources are finite in capacity, but the upper limit is considered elastic (Kahneman, 1973;
Young & Stanton, 2002), and closely related to the driver’s energetic state. Drivers may ex-
ert state related effort to improve their energetic state. Investing computational effort can
compensate for increasing demand. Both forms of effort are consciously perceived, and are
considered key aspects of perceived workload (de Waard, 1996).

The relation between task demand and workload is u-shaped (de Waard, 1996) and consists
of regions of underload, optimal load and overload. In optimal load, performance is gen-
erally good and changes in demand have little or no effect on perceived effort or achieved
performance. Overload occurs when demands exceed the available resource capacity and per-



2

14 AUTOMATED DRIVING REDUCES PERCEIVED WORKLOAD

formance degrades despite the additional effort invested. Underload occurs when demands
are exceptionally low or monotonous in nature. Underload can lead to vigilance decrement,
or inattention. However, low task demand can lead to an increase in workload when drivers
recognize the development of drowsiness and invest state-related effort to compensate (Warm,
Parasuraman, & Matthews, 2008).

Experience can make some demanding tasks impose less or no effort, even when performed
concurrently with effortful tasks. These include routine operations and learned skills, executed
with a high degree of automaticity. Examples are lane keeping, speed or headway maintenance
and event detection. When automatized routines can handle the situation, these driving
tasks should be insensitive to changes in cognitive load. According to the cognitive control
hypothesis, cognitive load from competing tasks can only emerge for non-automatized tasks
or when overruling skill-based behavior (Engström, Markkula, Victor, & Merat, 2017). We
thus expect automation-experienced drivers to have a lower workload during automation
compared to automation-inexperienced drivers. Conversely, the cognitive control hypothesis
predicts that supervised automated driving, which mainly automates skill-based tasks, should
not reduce workload for skilled drivers compared to manual driving.

2.1.2. MEASURING WORKLOAD
There is an extensive amount of literature reviewing methods to measure workload, e.g. (Cain,
2007; de Waard, 1996; Miller, 2001; Paxion et al., 2014; Stanton et al., 2005, Ch. 39; Stanton et
al., 2013, Ch. 8; Young, Brookhuis, Wickens, & Hancock, 2015). Each measure is sensitive to a
different set of resource pools, and in different performance regions (de Waard, 1996). Here
we discuss measures used in the present study. The collection of workload measures can be
classified into subjective rating (self-report) or objective measures (task-performance and
physiological measures).

Subjective rating reflects workload as experienced by the operator (driver) and is thus sensitive
to changes in effort. It is the simplest way to measure workload and is considered more reliable
than physiological measures (Miller, 2001). The NASA task load index (TLX) (Hart, 2016) is
a commonly used subjective measure in aviation and automotive research, and captures
operator workload through six dimensions (mental, physical and, temporal demand; effort,
frustration and performance) and reduces variability between participants and task contexts
by letting participants score the relevance of each of these items. A variant, the Raw TLX (R-
TLX), ignores this scoring step and has been found to remain an effective workload measure
(Hart, 2016). We adopted the R-TLX to reduce the length of the post-drive questionnaire.

Subjective workload ratings have high face validity, but ratings may deviate from the actual
workload. Stanton (1995) and Young and Stanton (1997) suggest in the contextual attention
theory (CAT) that imbalance between perceived and actual demands and/or resources is one
of the mechanisms through which poor performance can emerge, and that such an imbalance
is especially likely in automated driving when there is insufficient feedback on the driver’s
performance (Norman, 1981). In order to capture such a mismatch, it is necessary to also
collect objective measures of workload.

Objective workload measures often derive from task-performance, assuming reduced perfor-
mance with under- and overload. Performance can either be measured on the primary task,
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or on secondary tasks. Most primary tasks in driving require manual operation of the vehicle
(e.g. lane keeping performance), and are not suitable for automated driving. Secondary tasks
aim to measure the driver’s spare capacity. They tend to have a high reliability and can be
designed to target specific resource pools. Consequentially, a variety of secondary tasks can
be found throughout literature. One drawback of secondary tasks is that they interfere with
the primary task. The detection-response task (DRT) is a secondary task designed to measure
driver’s cognitive load, and has been verified extensively (NEN-ISO 17488, 2016). Specifically,
it measures the driver’s ability to shift attention between the primary driving task and the
DRT by measuring the delay between stimulus and response. When using a modality not
interfering with the driving task (i.e. tactile or auditory), it is regarded as a pure measure of
cognitive load. Compared to other secondary tasks, the additional cognitive demand induced
by the DRT is generally considered to be low (Martens & van Winsum, 2000), but not effortless
and not prone to automaticity (Engström et al., 2017). We selected the auditory DRT since
monitoring of automation is centered in the cognitive resource pool, has low interference with
the driving task and is not visually distracting. We preferred auditory over tactile stimuli, as
this minimizes intrusive instrumentation.

Physiological measures sensitive to changes in workload include cardiovascular activity, gal-
vanic skin response, brain activity and pupilometry. Brookhuis regards physiological measures
as “the most natural type of workload index, since, by definition, work demands physiological
activity" (cited in Stanton et al., 2005, p.17-2). Physiological measures can be recorded con-
tinuously and unlike performance measures they do not require any task to be performed,
which makes them interesting for driver state monitoring. Cardiac monitoring is one of the
most commonly used physiological measures of workload. Mental effort is associated with
arousal which increases heart rate, while heart rate variability is found to decrease under high
mental effort (Stanton et al., 2005, Ch.20, Ch.39). This relation between heart rate variability
and mental effort is related to the sympathovagal balance between the sympathetic (0.02-0.06
Hz) and parasympathetic (0.15-0.40 Hz) nervous system, which is measured in the 0.10 Hz
range, or as the ratio between high and low frequency ranges (though the idea that the LF/HF
ratio is a suitable indicator for the sympatho-vagal balance has been challenged; see Billman
(2013) for a comprehensive review). However, heart activity (and variability in particular)
are not selective measures of workload. They primarily respond to the body’s regulatory
functions and are hypersensitive to noise from movement, changes in breathing rate and
speech (Jorna, 1992; Young, 2000). We recorded heart activity and explored LF/HF ratio and
standard deviation of inter-beat intervals, as they are related to mental workload and less
affected by artifacts than other variability measures (Stapelberg, Neumann, Shum, McConnell,
& Hamilton-Craig, 2017). Eye measures related to workload include blink rate, horizontal
gaze dispersion (for highway driving) and pupil diameter (Marquart, Cabrall, & de Winter,
2015). The latter is particularly sensitive to high levels of cognitive load, but requires careful
control of light conditions (Kahneman, 1973). In addition, eye tracking can provide further
insight into the quality of monitoring (i.e. task performance) by assessing changes in glance
frequency and durations to regions of interest (Kircher & Ahlstrom, 2017). We included eye
tracking in our study to assess visual load and monitoring quality.
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2.1.3. EMPIRICAL WORKLOAD IN AUTOMATED DRIVING
The theories of workload can help to explain and predict how automation and other moder-
ators affect the driver’s workload, but for quantitative effects we need to examine empirical
findings. To this end, we selected studies addressing effects of driving automation, traffic
complexity and automation experience.

The empirical review from de Winter, Happee, Martens, and Stanton (2014) summarizes
workload findings from 32 studies comparing different levels of automation on the NASA TLX
and RSME (Rating Scale Mental Effort). TLX responses were converted to a percentage scale
for better comparison to RSME, with the lowest item mapped to 0% and the highest to 100% .
Studies were mainly performed in simulators, and indicated a workload reduction of 21% on
average from manual to automated driving. Six of the reviewed automated driving conditions
could be considered SAE2 (Damböck, Weißgerber, Kienle, & Bengler, 2013; McDowell, Nunez,
Hutchins, & Metcalfe, 2008; Saxby, Matthews, Warm, & Hitchcock, 2013; Schermers & Malone,
2014). With SAE2 automation workload was only 13.5% lower compared to manual driving.
Ratings ranged from 23-66% for manual and from 23-40% for SAE2 automated driving.

The influence of traffic complexity on workload can be as large as the use of driving automation,
with a 35% workload increase from low to high traffic complexity in manual driving (Teh,
Jamson, Carsten, & Jamson, 2013). During supervised automated driving, traffic increases
demands for the monitoring task (Jamson, Merat, Carsten, & Lai, 2013).

While task complexity increases demand, experience with automation may reduce it. Until
recently, the influence of experience with automation could hardly be investigated due to
the unavailability of automation-experienced drivers. Simulator studies on workload in
automation often include a familiarization period, but the 15-30 minute exposure times are
too short for the development of experience (Beggiato, Pereira, Petzoldt, & Krems, 2015).
Some studies have approximated automated driving experience by using adaptive cruise
control (ACC) experienced drivers (Larsson et al., 2014; Naujoks, Purucker, & Neukum, 2016)
or developed special procedures to create experience through training (Krampell, 2016). Some
effects of experience, such as the perceived risk and trust, may also be hard to study in
simulators, which pose limitations on the perceptual fidelity (de Winter, van Leeuwen, &
Happee, 2012; Hallvig et al., 2013). However, some recent studies measured mental workload
during automated driving on the road.

Solís-Marcos, Ahlström, and Kircher (2018), measured visual secondary task performance in
a Volvo S90 equipped with pilot assist (SAE2) and included both automation-inexperienced
drivers and vehicle owners who had experienced the automation for 4.5 months on average be-
fore participation. In contrast to their expectations, they found that automation use increased
the percentage of incorrect responses to the secondary task compared to manual driving,
despite similar task completion rates in both conditions and longer glances towards the visual
task with automation. TLX ratings of mental effort were high (79% in manual driving and 67%
with automation use), which indicates that in supervised automation, secondary visual-motor
tasks can be very demanding. Automation-experienced drivers gave shorter glances to the
road compared to automation-inexperienced drivers in all conditions. They also gave longer
glances at the secondary task, and this behavior was more pronounced during automated
driving compared to manual driving, whereas the inexperienced drivers did not change glance
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time with automation use.

Banks and Stanton (2016) studied the workload of automation-inexperienced drivers during
a short but engaging trip in a prototype supervised automated vehicle. In contrast to find-
ings from simulators, the perceived workload was higher during automated driving (42%)
compared to manual driving (27%). The participants’ lack of prior training with the system,
the additional tasks (performing three lateral maneuvers and answering an interview) and
reported issues with the automation’s behavior may all have contributed to the perceived
workload increase.

Heikoop, de Winter, van Arem, and Stanton (2017) performed an on-road test with professional
drivers familiar to supercars, but with no prior experience with lateral automation in a Tesla
Model S on the highway, following a lead vehicle after 30 minutes of test-track training.
A simple secondary task (counting bridges) was performed during part of the trip. The
perceived workload during automated driving was rated very low overall (average of 19%),
which is even below findings from simulator literature and reduced over time, suggesting
that accustomization occurred during the trip. Accordingly, negative standardized change
scores between the pre-drive and post-drive engagement ratings on the Dundee stress-state
questionnaire suggest an overall disengagement during the drives.

Eriksson, Banks, and Stanton (2017) investigated the transition time in non-critical control
transitions on the road in a Tesla Model S and compared it to a simulator study. Participants in
the on-road experiment had prior experience with driving automation while the participants
of the simulator study did not. Drivers in the on-road experiment regained control 32% (1.5
seconds) faster on average compared to the simulator drivers. The workload was perceived as
low in both studies and no significant difference was found between the two studies.

Naujoks et al. (2016) performed a field study measuring secondary task uptake, secondary task
workload and compensatory behavior in congested traffic while driving manually, with ACC
and ACC plus steer assist in a Mercedes-Benz E-Class. They explored the effect of automation
experience by comparing drivers with and without prior ACC experience. ACC-experienced
drivers performed more secondary tasks in automated driving than in manual driving, in
particular when driving at lower speeds, suggesting reduced workload with automation at
lower driving speed. The effect however was not present for ACC-inexperienced drivers,
suggesting that automation experience is a prerequisite for freeing cognitive resources for
secondary tasks.
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Based on these preceding works, we formulated the following hypotheses for supervised
automation:

H1. Workload will be higher in the engaging condition than in the monotonic condition for
both manual and automated driving.

H2. Automation will reduce workload.

H3. Workload during automated driving will be higher for automation-inexperienced drivers
compared to automation-experienced drivers

We expect these effects to occur for both objective (auditory DRT) and subjective (R-TLX)
workload measures. It should be noted that H2 concurs with a wide range of findings in
various tasks, including driving in simulators, but not with the cognitive control hypothesis.
Also, opposite effects were reported in two recent on-road studies as reviewed above.

2.2. METHODOLOGY

2.2.1. PARTICIPANTS
Two groups (N=8 each) of participants took part in the experiment and were selected through
convenience sampling. Automation-experienced Tesla owners were recruited through the
Dutch/Belgium section of the Tesla Motors forum (Tesla Motors, 2017). Seven reported using
a Tesla and its Autopilot on a daily basis. One was an irregular user but reported 10,000 km
travelled using Autopilot. One of the experts was the safety instructor, who had observed 8
participants prior to taking part himself.

The automation-inexperienced participants were invited through the universities’ employee
mailing list and through a list of drivers who had indicated their interest to participate in
research regarding automated driving. Inexperienced drivers were required not to have
experienced driving automation before. Users of adaptive cruise control were excluded but
users of non-adaptive cruise control were included. The demographics of both groups are
summarized in table 2.1.

Table 2.1: Demographics of the two participant groups, with mean µ, standard deviation σ and [interval].

Experienced group Inexperienced group

age µ=43 σ=14 [27-69] µ=41 σ=14 [21-61]
years licensed µ=22 σ=15 [4-51] µ=21 σ=15 [3-43]
km driven past 12 months µ=26.500 σ=21.500 [7,500-75,000] µ=15,000 σ=13,000 [3,000-42,500]
gender 7 male, 1 female 8 male

2.2.2. VEHICLE AND INSTRUMENTATION
An on-road driving task was performed with a rented Tesla model S 75D equipped with
Autopilot (hardware version 1; update 8.0) and the driver’s seat on the left side. The vehicle
features supervised automation, which combines adaptive cruise control with automated
lane keeping. The system supports lane changes (which have to be initiated by the driver)
and adapts driving speed to traffic in the adjacent lanes and road curvature. The automation
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requires the driver to keep the eyes on the road and the hands on the wheel. An overview of
the instrumentation can be seen in Figure 2.2. Video was recorded with three GoPro cameras
observing the traffic in front and behind of the car, as well as the driver. A webcam observed
the instrument panel.

Figure 2.2: Overview of the instrumentation

a: Eye tracker
b: DRT button + heart activity

sensor
c: Webcam
d: GPS antenna
e: Experimenters
f: IMU + DRT

An auditory detection response task (DRT) was performed as an objective measure of the
driver’s cognitive workload. The DRT was implemented in Python on a Raspberry PI 3B
running Raspbian Jessie. The implementation and analysis were in line with NEN-ISO 17488
(2016), with the following notable exceptions:

• An auditory stimulus was provided randomly with an on-set interval of 3-5 seconds with
a 3.1 kHz tone lasting one second, irrespective of response time.

• Stimuli were presented over 5 minutes at a time (amounting to 72 stimuli per participant
per condition).

• The button used to respond to the stimuli was strapped to the participant’s right index
finger, as the right hand had no driving-related tasks other than steering during the DRT.

• The DRT instruction was phrased as “Press the button as soon as you hear the signal,
but keep your attention on the road".

Heart activity was recorded as a psychophysiological measure of arousal and workload. Two
variability metrics were analyzed: standard deviation of inter-beat intervals (sdNN), where low
variability indicates high workload; and low over high frequency ratio (LF/HF), where a high
ratio indicates a high workload. These metrics were calculated every 30 s over 300 s of data.

Heart activity was recorded using an optical sensor mounted to the participant’s right middle
finger, powered by an Atmel AtMega328P embedded processor board. The sensor was able to
obtain a heart rate measure, but occasionally suffered from artifacts (e.g. holding the steering
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wheel differently changed contact pressure of the sensor or reduced blood circulation in the
fingertip). The heart rate and variability metrics were calculated using an open-source Python
toolbox (van Gent, 2017; van Gent, Farah, van Nes, & van Arem, 2018). Data were collected at
100 Hz, and low pass filtered with a second-order Butterworth with a cutoff frequency of 5
Hz. The dominant (R-wave) peaks were identified as the maximum sample from any signal
section rising above a 1.5 s moving average. Sections of poor data were identified by a variety
of error detection and peak rejection algorithms, including the exclusion of heart rates outside
the normal range [30-130 bpm] as well as any R-peaks whose associated inter-beat intervals
exceeded the [250-300 ms] range.

A pupil labs head mounted eye tracker with the Linux distribution of pupil capture (pupil-labs
v0.9.1, 2017) was included for the exploratory glance behavior analysis. However, a power
outage on the second testing day resulted in software corruption, leading to random crashes of
the tracking software. As a consequence, we only obtained full recordings of two participants
and dropped the eye tracking from further analysis.

Vehicle motion (6 DOF acceleration, speed and location) was recorded using an MPU6050
IMU and GTPA013 GPS sensor connected to a second Atmel processor.

A safety instructor sat next to the participant and was proficient in the use of the Autopilot
and experienced in introducing new drivers to the vehicle. During the drive, his tasks were
to inform or warn the driver when needed, to help with the navigation and vehicle settings
from the center console and to provide answers to technical questions. He was also allowed
to engage in idle conversations except when instructions were given by the experimenter or
during the DRT. The participant was allowed to initiate a conversation at any time. We did
not inhibit speaking to maximize behavioral validity. By allowing participants the freedom
to engage in conversation, the effects of experimenters’ presence on behavior became more
representative to having any other passenger.

To control for confounders that are inevitable in an on-road study, the DRT data was enriched
by annotating events which may influence the response, such as lane changes, uninstructed
(dis)use of the automation and verbal interactions. For each stimulus-response pair, the
following classifications were made through manual annotation of the video footage:

• Lane change: ego vehicle undergoing a lane change or having indicators activated

• Use of Autopilot (on/off)

• Periods of congested traffic (vehicle or traffic speed slower than 75 km/h)

• Driver speaking (y/n)

• Other occupant speaking (y/n)

A stimulus was classified when these events occurred at any moment between the end of this
stimulus and the end of the preceding stimulus.

To obtain an accurate record of the experienced traffic conditions, traffic flow (intensity) and
traffic speed were logged from the NDW open data server (National Data Warehouse for Traffic
Information, 2018) every minute. For each recording that contained both values, traffic density
was calculated as lane-averaged intensity divided by lane-averaged traffic speed, where empty
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lanes were ignored. After pre-processing, the lane-average traffic data was interpolated to the
GPS position and time, to obtain a continuous estimate of the traffic condition surrounding
the vehicle. This interpolation accounted for differences in information travel in free and
congested traffic as described in the traffic-adaptive model of Treiber and Helbing (2002).
When GPS data was not available, a single average was computed for the road section over the
duration of the condition.

2.2.3. SUBJECTIVE MEASURES
Three questions were asked while driving, to which the participant responded verbally on a
scale from 1 to 9. The first question covered mental demand, the second regarded alertness
and the third question reflected the driver’s trust. In each condition, the three questions were
asked before and after performing the DRT to verify that this task did not influence the driver’s
state. The questions were phrased as: On a scale from 1 to 9, how mentally demanding was
the {manual driving, use of autopilot}? On a scale from 1 to 9, how alert were you during the
{manual driving, use of autopilot}? On a scale from 1 to 9, how much did you trust {yourself
with the driving, the automation}? For the alertness question, the descriptions of Karolinska
sleepiness scale (KSS) (Kaida et al., 2006) were used: 1: very sleepy, great effort to keep awake
2: sleepy, some effort to keep awake 3: sleepy, but no effort to keep awake 4: some signs of
sleepiness 5: neither alert nor sleepy 6: rather alert 7: alert 8: very alert 9: extremely alert. Each
time, the participant was reminded of the description of the given response and was permitted
to revise the response accordingly. The demand and trust questions were not anchored while
driving, but 1 was described as low and 9 as high before departure.

The NASA Raw Task Load Index (R-TLX) was filled out after each driving condition on a 21-
point scale. (we report results in percentages, with the lowest possible rating mapped to 0%
and the highest possible rating mapped to 100% ) Additionally, a confidence questionnaire
based on Rendon-Velez et al. (2016) was used, with items (1) driving manually was easy, (2) I
felt confident to drive manually, (3) I had a feeling of risk, (4) using the automation was easy, (5)
I felt confident to use the automation and (6) I had a feeling of risk during automated driving on
a 5-point scale with anchors: disagree strongly, disagree a little, neither agree nor disagree, agree
a little, agree strongly. Also the 12-item automation trust questionnaire from Jian, Bisantz, and
Drury (2000) was adopted on a 7-point scale. This questionnaire was only filled out for the
drive as a whole, and not for each condition separately.

2.2.4. ENVIRONMENT
Two highway sections were selected to represent two levels of driving complexity; an engaging
environment with a road geometry stimulating continuous traffic interaction, and a mono-
tonic environment with lower traffic density and a simple road geometry and a low chance for
high-demand scenarios to occur (Figure 2.3).

For the engaging environment, the A10 (ring-East of Amsterdam) was selected for its high
traffic density throughout the day and the 10-13 on/off-ramps (depending on direction trav-
eled). To maximize the traffic interaction, the driver was instructed to drive in the right lane as
much as possible and was allowed to overtake slow moving traffic. On parts of this road it is
legal to use the shoulder lane, but we instructed drivers to keep the regular right lane to avoid
unpredictable behavior of the Autopilot. The A10 was entered from the A1 and followed down
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till exit Oud Zuid, either driving manually or using the automation. The highway was then
followed in the opposite direction until exit Zeeburg, during which the DRT was performed.
The route was then repeated with the remaining mode of automation.

For the monotonic environment the A6 between Almere (exit 7) and Lelystad (exit 10) was
selected, which is a straight two-lane highway with low traffic density and no on/off ramps
between the two cities. Here the driver was instructed to remain in the right most lane, to not
overtake slow traffic and to drive as fast as traffic permits, but not faster than 110 km/h. Drivers
got stuck behind a truck or trailer driving approximately 85 km/h in 80% of the monotonic
scenarios. The automation was either used on the way towards Lelystad or back towards
Almere.

The two driving environments were located 15 minutes away from one another. The A1
connects the two locations and was used for the familiarization. The A1 was entered from
the A9 and first traveled in eastern direction. When the familiarization was to be followed by
the engaging environment in Amsterdam, the first available exit was taken before practicing
the automated lane change, but no later than Naarden. When the familiarization was to
be followed by the monotonic condition, the road was simply continued towards the A6.
The order of monotonic/engaging drives after the familiarization was counter balanced. For
the inexperienced driver, the total trip lasted for 1.5 h when first driving to the monotonic
condition or 1.75 h when first driving to the engaging condition. The experienced driver
needed 1.5 h for either route due to the shorter familiarization.

The McDonald’s Amsterdam Zuidoost was selected as the start/end point of the route, as it was
logistically located between the highway entrance and the Tesla supercharger, and provided
the facilities needed for welcoming the participants.

Figure 2.3: The driven route. Images were recorded during the drive of participant 5.
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2.2.5. PROCEDURE
The experiment was approved by the human research ethics committee (HREC) of the TU
Delft. Upon arrival, the participants were informed of the tasks and risks of the experiment. A
pre-drive questionnaire was filled out and the procedures were explained. Prior to departure,
the safety instructor informed the participants about the operation and limitations of the
vehicle and the automation while the experimenter positioned the eye tracker, heart rate
sensor, and DRT button. To explain and demonstrate the basic operation of the vehicle,
the safety driver closely followed a checklist covering the controls; all possible automation
modes, their functional meaning and methods for activating and disengaging them. Also the
automation-related symbols were explained using Figure 2.4. Guidelines for safe use were
phrased as: when using autopilot, you should be on the lookout for things that the automation
cannot handle correctly, for instance: lane markings that are not well visible or that have to be
crossed, situations that require very strong braking or steering, traffic that behaves unexpectedly,
when the car does something you would not do, or when it doesn’t do something when you
would. The participants were further instructed repeatedly to remain attentive drivers at all
times.

Figure 2.4: illustration of the automation-related information on the instrument panel.

Once on the highway, a familiarization drive was performed, during which the participants
were introduced to the general operation of the vehicle and the basic behavior of the automa-
tion. The performed tasks covered the different methods of activation and deactivation of the
automation, the adjustment of the cruise speed setting and the automated lane change. Ques-
tions were asked to make sure that the driver understood the instrument panel and operation
of the vehicle. The familiarization lasted as long as necessary to let the participant perform
each task successfully. The inexperienced drivers needed around 20 minutes while the experi-
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enced drivers required 8 minutes on average. The participants then drove manually to the
engaging or monotonic environments, where they performed 4 rides in manual/automated
and engaging/monotonic conditions in a randomized order.

To test for a possible effect of the DRT on subjective workload, within each condition we drove
5 minutes without DRT and 5 minutes with DRT. Each condition started with the instructions
regarding driving behavior, followed by 5 minutes of driving without DRT. The three questions
regarding mental demand, alertness and trust were asked before and after the DRT.

2.3. ANALYSIS AND RESULTS
The drives were performed on workdays between the 3rd and 10th of March 2017. All drives
took place between 9:00 and 16:45 to avoid rush hours and congestion. All tests occurred
in normal (Dutch) weather conditions, except for two automation-experienced drivers, who
drove in heavy rain. The automation operated reliably for all drivers in all experienced con-
ditions. There was one occasion where ACC momentarily braked for no apparent reason
(we suspect that the radar caught a guard rail at the end of a highway exit) and a couple of
non-critical conflicts with surrounding traffic (e.g. another vehicle cutting in front, Autopilot
attempting to undertake another vehicle at the right lane); all were adequately resolved by the
participants with no or negligible inconvenience. Two experienced drivers did not follow all
instructions during the monotonic condition. One occasionally overtook trucks. The other
had not turned off ACC during manual driving in the first half of the monotonic drive.

During the DRT, the 8 automation-inexperienced users collectively made 8 lane changes
in the engaging condition during the automated drive (2 with automation turned off) and
5 in the manual drive. The 6 experienced users made 17 in the automated drive (4 with
automation turned off) and 15 in the manual drive, suggesting that the experienced users
were more comfortable with making lane changes. In the automated engaging drive, the
Autopilot was turned off 9.8% and 5.2% of the time by inexperienced and experienced drivers
respectively, while in the monotonic drive the Autopilot was turned off 1.9% and 0.7% of the
time respectively. The descriptives and effect sizes resulting from a 3-way ANOVA are provided
in Table 2.4 and Table 2.1 and will be described in sections 2.3.2 and 2.3.3.

2.3.1. TRAFFIC CONDITIONS
Despite a technical malfunction in the power supply to the GPS equipment, we managed
to retain the GPS data of 48 5-minute conditions among 11 drives. Since the interpolated
traffic estimates require this GPS signal, approximate traffic estimates were made for the
conditions where the GPS signal was not available. The two methods were compared to
ensure that the approximation is appropriate. Pearson’s r and the difference in means between
the two calculation methods as well as its significance according to a paired Student’s t-test
are outlined in Table 2.2. On all three metrics, the two calculation methods correlate well.
Although the difference in means of traffic flow and (consequentially) density is statistically
significant, we deemed its practical significance small enough to include the approximate
traffic data in the analysis.

Table 2.3 shows the mean driving and traffic conditions among the experimental conditions,
as well as the sample sizes for which GPS (and thus traffic speed) is available. Figure 2.5 shows
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Table 2.2: Pearson’s correlation between interpolated and approximated estimates of traffic speed, flow and density

r Econtinuous-approx t(1,47) p

Traffic speed 0.836 -0.407 (km/h) -0.415 .680
Traffic flow 0.871 -85.7 (veh./h) -2.858 .006
Traffic density 0.929 -0.458 (veh./km) -2.385 .021

traffic density and speed of the individual participants. It demonstrates that comparable
traffic conditions were obtained between manual and automated driving for both groups,
while differentiating between the two driving environments.

Table 2.3: Driving speed and traffic properties.

Monotonic Engaging

Automated Manual Automated Manual

µ σ µ σ µ σ µ σ

car speed [km/h] 87.3 13.7 88.5 10.5 87.2 16.6 90.0 9.9
traffic speed [km/h] 111.2 15.6 115.2 12.4 96 10.5 96.9 6.5
traffic flow [veh./h] 751 524 707 530 1303 421 1302 448
density [veh./km] 9.4 5.7 8.06 4.19 14.14 4.9 14.04 4.29

Nused 16 16 16 16
NGPS 8 8 8 4
NGPS during DRT 5 5 4 3
Ntraffic 16 16 14 13
Ntraffic during DRT 14 14 13 11

Nused = number of participants driving each condition.
NGPS = number of participants for which GPS (and thus car speed) data is available.
Ntraffic = number of participants for which traffic data (speed, flow, density) is available.
During DRT = number of samples for which 5 minutes of data is available
while performing the DRT.
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Figure 2.5: Traffic density (left) and speed (right) as experienced by the two groups across all test conditions during the
DRT. Lines indicate condition means, symbols represent individual participants. engAuto = engaging environment
using automation, engMan = engaging environment with manual driving; mono" = monotonic environment with
either driving mode.

2.3.2. DETECTION RESPONSE TASK (DRT)
The auditory DRT was performed as an objective measure of changes in cognitive load. Due
to missing values, the experienced and inexperienced group are represented by six and eight
participants respectively.

Lane changes contributed to only 0.10% of the time for the inexperienced group and 0.17%
of the time for the experienced group. During lane changes in the engaging condition reac-
tion times were 240 ms (t(5)=3.206, p=.024) and 261 ms (t(7)=3.797, p=.007) slower for the
experienced and inexperienced drivers respectively. These effect sizes are comparable to
the 1-back task (adds 232 ms to baseline manual driving according to NEN-ISO 17488 (2016,
Table E8)) or counting backwards from a 3-digit number (adds 125 ms to baseline manual
driving according to Merat, Johansson, Chin, Nathan, and Victor (2006, figure 30)). Of all DRT
misses, 30% and 25% occurred during lane changes for the inexperienced and experienced
group respectively, resulting in a miss rate of 12% for automation-experienced and 19% for
automation-inexperienced drivers during lane changes.

The time spent conversing varied across participants, with 3 out of 14 participants accounting
for 65% of all conversations held. When speaking, the participants’ reaction time was 240
ms slower compared to when being silent (t(13)=3.45, p=.004). No difference in reaction
time was found between other occupants being silent or speaking (t(13)=1.388, p=.188). The
DRT thus showed a higher miss rate and slower response time during lane changes and a
slower response time during speaking. This indicates that single DRT responses can uncover
additional information when combined with the identification of external events.

To remove some of the confounders for the DRT, we omitted all stimuli that occurred during
lane changes, uninstructed automation (dis)use, and during driving or traffic speeds below
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75 km/h. This refinement excluded 10.4% of the stimuli (with 17.0% of stimuli removed
from the engaging-automated condition, 18.7% from the engaging-manual condition, 1.8%
from the monotonic-automated condition and 0.5% from the monotonic-manual condition).
Results after this removal are presented in Table 2.4 and Table 2.5. Stimuli during speaking
or listening were not excluded from the analysis, as we consider speaking to be inherent to
the driving strategy, but we verified if removing stimuli during speaking would change the
trends and effects reported in Table 2.4 and Table 2.5. All trends with automation, experience
and complexity remained. Reaction time received slightly smaller effect sizes, but significant
effects remained significant. The effect of environment on miss rate became insignificant
(p=.081). It is however not surprising that miss rates, which depend on the occurrence of rare
events, are sensitive to data removal.

Reaction times and miss rates show similar trends (see Table 2.5). Both reaction time and
miss rate have a main effect of environment (engaging environment has 99 ms slower reaction
time and 1.6% higher miss rate compared to the monotonic environment), indicating that the
engaging environment is more demanding than the monotonic environment. This effect size
is similar to adding the 0-back task to baseline manual driving, which increases reaction time
with 99 ms according to NEN-ISO 17488 (2016, Table E8). Reaction time also shows a main
effect of automation (38 ms slower reaction during automated driving compared to manual
driving), indicating that automation use resulted in less spare cognitive capacity compared
to manual driving. Miss rate did not increase significantly with automation. However this
can be attributed to a capping effect from the measurement resolution; with 72 stimuli, only
miss rate increments of 1.4% can be distinguished with each measurement. No main effect for
experience was found. None of the interactions was statistically significant.

Although the interaction automation∗ environment is not statistically significant (p = .065), the
increase in reaction time during automated driving is more pronounced in the engaging envi-
ronment (Eauto-man = 64 ms, SE = 18) compared to the monotonic environment (Eauto-man = 13
ms, SE=16). Thus, automation seems to increase cognitive workload particularly in the engag-
ing condition. These effect sizes are similar (but opposite) to comparing DRT performance
with and without manual driving (baseline driving increases DRT reaction time with 52ms on
average according to NEN-ISO 17488 (2016, Table E8)).

Table 2.4: DRT reaction time and miss rate, and R-TLX

Reaction time (ms) Miss rate (%) R-TLX (%)

Experienced Inexperienced Experienced Inexperienced Experienced Inexperienced
N=6 N=8 N=6 N=8 N=7 N=8

µ σ µ σ µ σ µ σ µ σ µ σ

Engaging
Automated 548 212 532 161 3.10 2.00 4.19 3.09 24.3 20.3 42.9 20.1
Manual 491 232 460 160 2.55 2.15 3.54 2.99 48.3 19.6 42.6 17.1

Monotonic
Automated 379 109 451 182 1.70 0.62 1.93 0.70 10.2 7.1 24.7 16.2
Manual 386 114 420 167 1.65 1.09 1.79 1.09 32.0 19.6 29.6 15.4

2.3.3. NASA R-TLX
Subjective workload ratings were collected using the NASA R-TLX. Due to missing values,
the experienced and inexperienced group were represented by seven and eight participants
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Table 2.5: Univariate effects and interactions of 3-way ANOVAs for reaction time, miss rate and overall workload. The
effect of automation in the R-TLX contradicts that of RT and MR. Sub-items indicate which R-TLX sub-scale items
were significant (mental, physical, temporal, performance, effort, frustration)

Reaction time (ms) Miss rate (%) R-TLX (%)

Effects and interactions F(1,12) p η2
p F(1,12) p ν2

p F(1,13) p η2
p Sub-items

environment 15.168 .002 .558 7.036 .021 .370 14.584 .002 .529 m,ph,t,pe,e
automation 11.321 .006 .485 0.480 .502 .038 8.871 .011 .406 m,ph,t,e
experience 0.028 .870 .002 0.972 .344 .075 0.886 .364 .064 -
environment*experience 2.266 .158 .159 0.514 .487 .041 0.003 .957 .000 -
automation*experience 1.306 .275 .098 0.007 .934 .001 5.945 .030 .314 m,pe,f
environment*automation 4.111 .065 .255 0.360 .559 .029 0.175 .682 .013 -
environment*automation* 0.218 .649 .018 0.000 .999 .000 1.119 .309 .079 -
experience

respectively. The subjective workload is given in Table 2.4 and Figure 2.6, which also includes
the six contributing items. The main effects and interactions are given in Table 2.5. For each
effect and interaction, we indicated the sub-scale items that were statistically significant. The
familiarization condition was excluded from further analysis, as it differs in road type.

Figure 2.6: R-TLX for the experienced (left) and inexperienced (right) group, converted to percentage. Whiskers
indicate standard errors.

Overall, workload was perceived 15.4% higher in the engaging than in the monotonic environ-
ment, and 12.6% lower during automated driving compared to manual driving. The interaction
automation∗experience however indicates that only the experienced group (Eman-auto = 22.9%
, p=.003) perceived a workload reduction with automation use, whereas the inexperienced
group did not experience a workload difference between manual and automated driving
(Eman-auto = 2.29% , p=.699). The perceived workload reduction with automation for the ex-
perienced group was consistent for both traffic conditions and for the six contributing items
(Figure 2.6 left). No main effect of experience and no further interactions were observed.
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Figure 2.7: Mean-adjusted heart rate (bpm) over time of experienced (left) and inexperienced (right) drivers for each
individual driver. Each sample is calculated over a 5 minute sliding window. Data collected during the conditions are
highlighted.

2.3.4. HEART ACTIVITY
Individual heart rate traces are shown in Figure 2.7. An ANOVA on the mean-adjusted heart rate
did not reveal any main effects or interactions on environment or automation use. Similarly,
no effects or interactions were found for sdNN or LF/HF. Heart rate varied over time without
apparent relation to the conditions or observed events. We suggest that the inherent variability
of on-road driving along with artifacts from speaking, gripping of the steering wheel and other
confounders overshadowed any possible effects resulting from automation or complexity of
the environment.

A linear regression on the mean adjusted heart rate shows a time on task effect for the inexpe-
rienced group (b=-0.034 bpm/min, F(1,169)=51.71, p<.001), but not for the experienced group
(b=-.002 bpm/min, F(1, 138)=0.024, p=.878). This indicates that the inexperienced drivers may
have been acclimatizing to the vehicle and automation use during the experiment. Apart from
this trend, heart rate proved ineffective to disclose significant effects of automation and traffic
complexity.

2.3.5. QUESTIONNAIRES
To assess the impact of the DRT, the participants rated mental demand, sleepiness and
trust both before and after performing the DRT. Overall, mental demand was 32.4% with-
out the DRT and 36.9% with DRT, which is a measurable yet small increase in mental demand
(F(1,9)=3.361; p=.027). No difference between driving with and without DRT was found for the
KSS (F(1,9)=0.941; p=.357) or for trust (F(1,9)=0.764, p=.405).

Drivers reported lower sleepiness (KSS) in the engaging condition compared to the mono-
tonic condition (Emono-eng=0.875 points; F(1,14)=18.08, p=.001), but KSS was not affected
by automation (F(1,14)=1.577, p=.230), experience (F(1,14)=0.140, p=.714) or on any of the
interactions.
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An overall confidence rating was computed over the items of the confidence questionnaire.
Ratings ranged from 63% to 95% as can be seen in Table 2.6. The confidence questionnaire
only showed a main effect of environment, with the engaging condition providing 13.4% less
confidence than the monotonic condition (F(1,12)=13.38; p=.003). The ratings suggest that ex-
perienced drivers felt more confident during automated driving than in manual driving, while
the inexperienced drivers felt more confident during manual driving than in automated driv-
ing, but the interaction automation∗experience was not statistically significant (F(1,12)=4.37;
p=.059).

In the 12-item automation trust questionnaire, automation-experienced drivers reported a
higher trust in the automation than the automation-inexperienced drivers. (experienced:
µ=84.9% , σ=9.42; inexperienced: µ=67.7% , σ=14.0; t(1,13)=2.82; p=.014)

Table 2.6: Confidence ratings (%) among conditions and participant groups.

Experienced Inexperienced
N=7 N=7

µ σ µ σ

Engaging
Automated 91.9 11.7 63.0 30.4
Manual 67.9 20.0 73.7 28.4

Monotonic
Automated 95.2 12.5 80.9 19.8
Manual 84.6 24.2 89.3 14.1

2.3.6. POST-HOC ANALYSIS
To complement the ANOVAs presented in table 2.5, we checked post-hoc for any relations
between traffic conditions, heart rate (BPM, sdNN, LF/HF) and DRT response time within
the experimental conditions. Pearson’s correlation was used to explore relations between
the participant averages in each condition. Traffic density correlated inversely with traffic
flow on both environments (Pearson’s r=-.590 for engaging; r=-.624 for monotonic), which
is in agreement with traffic flow models. Within the conditions, none of the traffic metrics
correlated with neither RT nor with any of the heart rate metrics.

We further checked if the difference in mileage between participant groups could confound the
results by observing the correlations between the DRT and R-TLX measures for both groups
and all conditions. As shown in Table 2.7, 19 out of 24 correlations were of negative sign,
which suggests a higher mileage is associated with better performance at the secondary task.
However, the sample sizes are too small to make any conclusive statements regarding the effect
of mileage. Although the miss rate correlation of the experienced group in the monotonic
condition during automation was statistically significant (p=.016), this may be attributed to
an inflated type I error from the multiple comparisons being made. A Bonferroni correction
for the 8 comparisons would dictate that the probability is to be tested at a confidence of α’ =
0.0064 instead of α = 0.05, in which case also this correlation is not statistically significant.

Because the dynamics of mental demand vary at a smaller time scale than a five-minute aver-
age can reveal, we further explored relations among the measurements at a shorter time scale
by looking for correlations between individual DRT responses, heart activity and traffic condi-
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Table 2.7: Correlations between mileage and reaction time, heart rate and R-TLX. engAuto = engaging environment
using automation, engMan = engaging environment with manual driving; mono” = monotonic environment with
either driving mode. The p-values are not corrected for the 8 independent comparisons.

Reaction time Miss rate R-TLX

Pearson’s r p Spearman’s ρ p Pearson’s r p

Inexperienced engAuto −0.153 .717 −0.621 .100 −0.348 .399
engMan 0.039 .927 −0.185 .660 −0.451 .262
monoAuto 0.233 .578 −0.113 .791 −0.241 .565
monoMan 0.202 .631 0.296 .476 −0.403 .323

Experienced engAuto −0.577 .231 0.174 .742 −0.351 .440
engMan −0.441 .382 −0.696 .125 −0.078 .868
monoAuto −0.292 .574 −0.893 .016 −0.323 .480
monoMan −0.395 .439 −0.585 .222 0.583 .170

tions, as well as time on task effects. Since the raw response times are not normally distributed,
Spearman’s non-parametric correlation was used. No correlations were found between heart
rate and the individual responses. Similarly, relations between the traffic conditions and
individual responses did not reveal further relations within the driving conditions. No time
on task effects were found for DRT reaction time using linear regression (b=0.1ms/stimulus,
p=.645).

2.4. DISCUSSION
In this study, we investigated how workload changes with attentively monitored automated
driving in real-world conditions, and how this change is moderated by traffic complexity and
by the driver’s prior experience with automated driving.

The engaging traffic environment resulted both in a higher overall subjective (R-TLX) and
objective (DRT reaction time and miss rate) workload compared to the monotonic environ-
ment. Additionally, the drivers remained as sensitive to changes in driving complexity while
using automation as they were while driving manually. This supports hypothesis H1 and
demonstrates that monitoring automation imposes a considerable task demand.

Hypothesis 2, reduced workload with automation, is only supported for the perceived overall
workload (R-TLX) for automation-experienced drivers but not for automation-inexperienced
drivers. Furthermore in both driver groups the objective cognitive load (DRT) increased with
automation. These results were unexpected and show opposing effects on subjective and
objective workload in the experienced drivers.

The R-TLX ratings suggest that automation experience is a prerequisite for a reduction in
perceived workload. The automation-experienced user may have developed a less demanding
(or automated) strategy for monitoring the automation, while the inexperienced driver may
stay closer to strategies from manual driving. This view is also supported by Solís-Marcos et al.
(2018), who showed that automation-inexperienced and -experienced drivers have different
glance behavior and that only the automation-experienced group changes glance behavior
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with automation use. In our study, during automated driving, automation-experienced drivers
did not perform better on the DRT task compared to automation-inexperienced drivers.
Although we believe our per-group sample size is rather small to formally test hypothesis H3,
we would like to point out that this observation also aligns with Solís-Marcos et al. (2018),
who despite the longer glances of experienced drivers to the secondary task did not find a
difference in task performance between the two groups. In contrast, Naujoks et al. (2016)
found that automation use resulted in a higher secondary task completion rate compared to
manual driving for ACC experienced drivers. A possible explanation could be the difference in
driving speed, since higher performance in Naujoks et al. (2016) only occurred in slow-moving
(<60 km/h) congested traffic.

It should be emphasized that our findings for automation-inexperienced drivers are in conflict
with results from simulator studies as reviewed in de Winter et al., (2014), where automation-
inexperienced drivers reported workload reduction due to automation of a magnitude similar
to the reduction we found for experienced drivers. Since the automation-inexperienced
group reported lower trust and confidence in the automation compared to the automation-
experienced group, we suspect that this difference between real-world and simulator findings
relates to the low validity of risk perception in driving simulators. This further suggests
that driver trust accounts for a large difference in perceived workload reduction by automa-
tion. We should however remark that on-road studies provide mixed results. Automation-
inexperienced drivers perceived low workload during automation in Heikoop et al. (2017),
while Solís-Marcos et al. (2018) found high workload ratings for both inexperienced and
experienced users of automation. With the emerging on-road studies addressing workload in
automated driving with automation-experienced users, we believe that a new meta-analysis
on the effects of automated driving may be in order.

The dissociation between perceived overall workload (R-TLX) and objective cognitive load
(DRT) for the effects of automation deserves further examination. Although overall workload
incorporates more than cognitive load, we believe that a direct comparison between the two
measures is fair, because the monitoring sub-task, which is centered in the cognitive resource
pool, forms a large part of the driving task, and because the mental demand sub-items of the
R-TLX show similar patterns as the overall load. The increase in reaction time and miss rates
could theoretically be attributed to mental underload since such performance reduction is an
indicator of vigilance decrement (Greenlee et al., 2018). We have however several indications
that this is not the case. The Karolinska sleepiness scale did not indicate any development of
drowsiness, and when drowsiness had been compensated with state-related effort, we should
have seen this reflected in the effort or mental demand sub-scales of the R-TLX. Furthermore,
the periods of automated driving were relatively short (10 minutes of automated driving at
a time, interluded with verbal ratings after 5 minutes). Although vigilance decrement can
develop in such time span, we should have been able to see such decrement as a time-on-task
effect, which we did not in our regression analysis. Finally, the reaction time increase with
automation use was larger in the engaging condition compared to the monotonic condition
for both driver groups, which contradicts the hypothesis that longer reaction times of this
study signify underload.

The increase in DRT reaction time can also not be fully explained by the malleable attentional
resource theory (Young & Stanton, 2002; 2007), which suggests that total capacity reduces
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when task demands are low. In order to explain the reduction in DRT performance, the
capacity reduction should have been larger than the reduction in primary task demand,
whereas Young and Stanton (2002) propose that spare mental capacity should still improve, but
disproportionally to the reduction in primary task demand. The cognitive control hypothesis
cannot explain the increase in reaction time, but provides an explanation why supervised
automation did not reduce objective workload.

The increase in objective cognitive load (DRT) suggests that the ratio between task demand
and allocated resource increases with automation, whereas the reduction in subjective work-
load suggests that this increase is not perceived as such. Assuming that the TLX ratings are
not confounded by confirmation bias or attribution error, we believe that this is caused by a
mismatch between perceived and actual workload as suggested in contextual attention theory.
Stanton (1995) proposed there can be a mismatch between the perceived and actual demands,
between perceived and actual resources, or between the perceived demands and perceived
resources. Under-estimation of task demand should result in too few resources being mobi-
lized for both primary and secondary task. Such underestimation would reduce monitoring
performance but may still lead to improved secondary task performance, unless the primary
task demand is met with a resource allocation that is higher than the perceived requirement.
An over-estimation of allocated resource is particularly likely in low-effort conditions, and
could explain the reduced DRT performance under lower perceived workload. We can further
expect workload to be rated lower than actual load, when a surplus demand investment (either
perceived, or allocated in response to the instruction to monitor attentively) is ignored or
weighted less in the overall workload rating. This suggests that either 1) automation increases
demand while automation-experienced drivers perceive less effort and lower demands, or
that 2) automation does not reduce demand as much as we think, and we allocate a larger
fraction of our resource to monitoring than we made available for it. The first suggestion
would be in conflict with hypothesis H2 whereas the second is not. Both however indicate a
difference between perceived and actual workload. While drivers remain sensitive to changes
in task demand (i.e. changes in traffic), they appear to over-estimate their resource allocation.
The idea that experienced users under-estimate the actual task load has implications for safe
usage of SAE2 automation. It indicates that supervised automation does not increase spare
capacity as much for secondary tasks or interaction with in-vehicle information systems as the
driver believes. These perceptual differences should be incorporated in the design and user-
education for these systems. The results also reinforce the importance of measuring workload
both objectively and subjectively. We recommend to incorporate objective measures of both
primary task performance (i.e. monitoring) and spare capacity when studying mismatches
between perceived and actual workload.

Our DRT findings suggest that attentively supervised automation results in a healthy workload
(i.e. a little higher than manual driving) and thereby do not support the concern that super-
vised automated driving causes mental underload. In contrast, in particular the automation-
experienced drivers perceived a reduced workload with automation. This means that, when
drivers supervise attentively, they can maintain a healthy workload while perceiving a mean-
ingful comfort benefit. However the mismatch between objective and perceived load may be
a point of concern when it motivates users to pay less attention than is required, which in turn
could mediate underload and may compromise safety.
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Limitations: Eye tracking could not be assessed due to technical malfunction. The number
of participants was limited, which in particular makes the between-subject comparisons
sensitive to individual differences. However, the within-subject effects were very consistent
among participants, and persisted when correcting for speaking during the experiment. The
instructions and presence of a safety instructor and experimenters motivated attentive su-
pervision of the automation. The results should therefore be regarded as workload under
intended use, which may differ from every-day use. The idle conversations held may have
reduced the sensation of being in an experiment, raised energetic state and increased work-
load. Although these aspects are representative for a drive with other occupants, results may
differ when driving alone, with no one to talk to. The effects of supervised automation with
longer periods of automated driving in a naturalistic setting without additional motivations to
supervise remain to be investigated. Convenience sampling balanced years licensed, age and
sex. Mileage was not balanced between groups, but sample size was too low to correlate this
between-group difference. Furthermore, the Tesla users were sampled from a forum which
actively discusses the limitations and abilities of the vehicle. The owner’s disposition towards
the vehicle may have resulted in confirmation bias or attribution error (i.e. general satisfaction
being expressed on the workload scale). As an approach to compensate for such rater bias in
future experiments, we propose to assign automation users to different vehicle brands, or to
group participants based on their disposition regarding the automation.

Highlights

• Monitoring automation imposes a healthy workload.

• This demand increases with driving complexity.

• Automation lowered subjective workload, but experience was a prerequisite for this.

• Automation lowered subjective workload, but increased objective cognitive load.

• This suggests that drivers underestimate the resources allocated.

• Studies should assess workload subjectively as well as objectively.

Acknowledgment

We kindly thank Paul van Gent for providing us with the heart rate and GPS equipment, and
his support in pre-processing the cardiovascular recordings.

Funding: This work was supported by the NWO-TTW Foundation, the Netherlands, under the
project “From Individual Automated Vehicles to Cooperative Traffic Management - Predicting
the benefits of automated driving through on-road human behavior assessment and traffic
flow models (IAVTRM)" -STW#13712.

2.5. REFERENCES
Banks, V. A., & Stanton, N. A. (2016). Keep the driver in control: Automating automobiles of

the future. Applied Ergonomics, 53 Pt B, pp. 389–395. https://doi.org/10.1016/j.apergo.2015.
06.020

Beggiato, M., Pereira, M., Petzoldt, T., & Krems, J. (2015). Learning and development of trust,
acceptance and the mental model of ACC. A longitudinal on-road study. Transportation

https://doi.org/10.1016/j.apergo.2015.06.020
https://doi.org/10.1016/j.apergo.2015.06.020


2.5. REFERENCES

2

35

Research Part F: Traffic Psychology and Behaviour, 35, pp. 75–84. https://doi.org/10.1016/j.trf.
2015.10.005

Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal
balance. Frontiers in Physiology, 4(26), pp. 1–5. https://doi.org/10.3389/fphys.2013.00026

Cain, B. (2007). A review of the mental workload literature. Defence Research and Development
Canada Toronto Human System Integration Section, pp. 1–35.

Damböck, D., Weißgerber, T., Kienle, M., & Bengler, K. (2013). Requirements for cooperative
vehicle guidance. IEEE Annual Conference on Intelligent Transportation Systems (ITSC), 16,
pp. 1656–1661.

De Waard, D. (1996). The measurement of drivers’ mental workload. Traffic Research Centre
VSC.

De Winter, J. C. F., Happee, R., Martens, M. H., & Stanton, N. A. (2014). Effects of adaptive
cruise control and highly automated driving on workload and situation awareness, a review
of the empirical evidence. Transportation Research Part F: Traffic Psychology and Behaviour,
27(B), pp. 196–217.

De Winter, J. C. F., van Leeuwen, P. M., & Happee, R. (2012). Advantages and disadvantages of
driving simulators: a discussion. Proceedings of Measuring Behavior, pp. 47–50.

Engström, J., Markkula, G., Victor, T., & Merat, N. (2017). Effects of cognitive load on driving
performance: The cognitive control hypothesis. Human Factors, 59(5), pp. 734–764. https:
//doi.org/10.1177/0018720817690639

Eriksson, A., Banks, V. A., & Stanton, N. A. (2017). Transition to manual: Comparing simulator
with on-road control transitions. Accident; Analysis and Prevention, 102, pp. 227–234.
https://doi.org/10.1016/j.aap.2017.03.011

Greenlee, E. T., DeLucia, P. R., & Newton, D. C. (2018). Driver vigilance in automated vehicles:
Hazard detection failures are a matter of time. Human Factors and Ergonomics Society,
18720818761711. https://doi.org/10.1177/0018720818761711

Hallvig, D., Anund, A., Fors, C., Kecklund, G., Karlsson, J. G., Wahde, M., & Akerstedt, T. (2013).
Sleepy driving on the real road and in the simulator–A comparison. Accident; Analysis and
Prevention, 50, pp. 44–50. https://doi.org/10.1016/j.aap.2012.09.033

Hart, S. G. (2016). Nasa-Task Load Index (NASA-TLX); 20 years Later. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 50(9), pp. 904–908. https://doi.org/10.1177/
154193120605000909

Heikoop, D. D., de Winter, J. C. F., van Arem, B., & Stanton, N. A. (2019). Acclimatizing to
automation: driver workload and stress during automated car following in real traffic:
Transportation research part F: traffic psychology and behaviour, 65, pp. 503-517. https:
//doi.org/10.1016/j.trf.2019.07.024.

Hirose, T., Kitabayashi, D., & Kubota, H. (2015). Driving characteristics of drivers in a state of
low alertness when an autonomous system changes from autonomous driving to manual
driving. SAE Technical Paper 2015-01-1407. Advance online publication. https://doi.org/10.
4271/2015-01-1407

Jamson, A. H., Merat, N., Carsten, O. M.J., & Lai, F. C.H. (2013). Behavioural changes in drivers
experiencing highly-automated vehicle control in varying traffic conditions. Transportation

https://doi.org/10.1016/j.trf.2015.10.005
https://doi.org/10.1016/j.trf.2015.10.005
https://doi.org/10.3389/fphys.2013.00026
https://doi.org/10.1177/0018720817690639
https://doi.org/10.1177/0018720817690639
https://doi.org/10.1016/j.aap.2017.03.011
https://doi.org/10.1177/0018720818761711
https://doi.org/10.1016/j.aap.2012.09.033
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/j.trf.2019.07.024
https://doi.org/10.1016/j.trf.2019.07.024
https://doi.org/10.4271/2015-01-1407
https://doi.org/10.4271/2015-01-1407


2

36 AUTOMATED DRIVING REDUCES PERCEIVED WORKLOAD

Research Part C: Emerging Technologies, 30, pp. 116–125. https://doi.org/10.1016/j.trc.2013.
02.008

Jian, J.-Y., Bisantz, A. M., & Drury, C. G. (2000). Foundations for an empirically determined
scale of trust in automated systems. International Journal of Cognitive Ergonomics, 4(1), pp.
53–71. https://doi.org/10.1207/S15327566IJCE0401_04

Jorna, P.G.A.M. (1992). Spectral analysis of heart rate and psychological state: a review of its
validity as a workload index. Biological Psychology. (34), pp. 237–257.

Kahneman, D. (1973). Attention and effort. New Jersey: Englewood cliffs.

Kaida, K., Takahashi, M., Akerstedt, T., Nakata, A., Otsuka, Y., Haratani, T., & Fukasawa, K.
(2006). Validation of the Karolinska sleepiness scale against performance and EEG vari-
ables. Clinical Neurophysiology : Official Journal of the International Federation of Clinical
Neurophysiology, 117(7), pp. 1574–1581. https://doi.org/10.1016/j.clinph.2006.03.011

Kircher, K., & Ahlstrom, C. (2017). Evaluation of methods for the assessment of attention while
driving. Accident; Analysis and Prevention. Advance online publication. https://doi.org/10.
1016/j.aap.2017.03.013

Krampell, M. A. H. (2016). Accelerated behavioural adaptation through targeted training
programs – the case of highly automated driving (Master’s thesis). Department of Computer
and Information Science (IDA) at Linköping University.

Kyriakidis, M., de Winter, J. C. F., Stanton, N., Bellet, T., van Arem, B., Brookhuis, K., Martens,
M., Bengler, K., Andersson, J., Merat, N., Reed, N., Flament, M., Hagenzieker, M., Happee, R.
(2017). A human factors perspective on automated driving. Theoretical Issues in Ergonomics
Science, 53, pp. 1–27. https://doi.org/10.1080/1463922X.2017.1293187

Larsson, A. F.L., Kircher, K., & Andersson Hultgren, J. (2014). Learning from experience: Famil-
iarity with ACC and responding to a cut-in situation in automated driving. Transportation
Research Part F: Traffic Psychology and Behaviour, 27 https://doi.org/10.1016/j.trf.2014.05.008

Marquart, G., Cabrall, C., & de Winter, J. C. F. (2015). Review of eye-related measures of drivers’
mental workload. Procedia Manufacturing, 3, pp. 2854–2861. https://doi.org/10.1016/j.
promfg.2015.07.783

Martens, M., & van Winsum, W. (2000). Measuring distraction: the peripheral detection task.
TNO Human Factors.

McDowell, K., Nunez, P., Hutchins, S., & Metcalfe, J. S. (2008). Secure mobility and the au-
tonomous driver. IEEE Transactions on Robotics, 24(3), pp. 688–697. https://doi.org/10.1109/
TRO.2008.924261

Merat, N., Johansson, E., Chin, E., Nathan, F., & Victor, T. (2006). Specification of a secondary
task to be used in safety assessment of IVIS.

Miller, S. (2001). Literature review: Workload measures. National Advanced Driving Simulator.
Iowa City, United States.

National Data Warehouse for Traffic Information. (2018). NDW open actuele dataservice.
Retrieved from http://opendata.ndw.nu/

Naujoks, F., Purucker, C., & Neukum, A. (2016). Secondary task engagement and vehicle
automation – Comparing the effects of different automation levels in an on-road experiment.
Transportation Research Part F: Traffic Psychology and Behaviour, 38, pp. 67–82. https:

https://doi.org/10.1016/j.trc.2013.02.008
https://doi.org/10.1016/j.trc.2013.02.008
https://doi.org/10.1207/S15327566IJCE0401_04
https://doi.org/10.1016/j.clinph.2006.03.011
https://doi.org/10.1016/j.aap.2017.03.013
https://doi.org/10.1016/j.aap.2017.03.013
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1016/j.trf.2014.05.008
https://doi.org/10.1016/j.promfg.2015.07.783
https://doi.org/10.1016/j.promfg.2015.07.783
https://doi.org/10.1109/TRO.2008.924261
https://doi.org/10.1109/TRO.2008.924261
http://opendata.ndw.nu/
https://doi.org/10.1016/j.trf.2016.01.011
https://doi.org/10.1016/j.trf.2016.01.011
https://doi.org/10.1016/j.trf.2016.01.011


2.5. REFERENCES

2

37

//doi.org/10.1016/j.trf.2016.01.011

NEN-ISO 17488. (2016). ISO 17488:2016: DRT for assessing attentional effects of cognitive
load. Nederlands Normalisatie Instituut.

Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88(1).

Patten, C. J. D., Kircher, A., Ostlund, J., Nilsson, L., & Svenson, O. (2006). Driver experience
and cognitive workload in different traffic environments. Accident; Analysis and Prevention,
38(5), pp. 887–894. https://doi.org/10.1016/j.aap.2006.02.014

Paxion, J., Galy, E., & Berthelon, C. (2014). Mental workload and driving. Frontiers in Psychology,
5, 1344. https://doi.org/10.3389/fpsyg.2014.01344

Pupil-labs v0.9.1. (2017). Pupil Capture, Player, and Service release v0.9.1. Retrieved from
https://github.com/pupil-labs/pupil/releases/tag/v0.9.1

Rendon-Velez, E., van Leeuwen, P. M, Happee, R., Horváth, I., van der Vegte, W. F., & de Winter,
J. C. F. (2016). The effects of time pressure on driver performance and physiological activity:
A driving simulator study. Transportation Research Part F: Traffic Psychology and Behaviour,
41(41), pp. 150–169. https://doi.org/10.1016/j.trf.2016.06.013

SAE International (2016). Taxonomy and definitions for terms related to driving automation
systems for on-road motor vehicles. (J3016 SEP2016).

Saxby, D. J., Matthews, G., Warm, J. S., & Hitchcock, E. M. (2013). Active and passive fatigue in
simulated driving: Discriminateing styles of workload regulation and their safety impacts.
Journal of Experimental Psychology: Applied.

Schermers, G., & Malone, K. M. (2014). Dutch evaluation of Chauffeur Assistant (DECA): Traffic
flow effects of implementation in the heavy goods vehicles sector.

Solís-Marcos, I., Ahlström, C., & Kircher, K. (2018). Performance of an additional task during
level 2 automated driving: An on-road study comparing drivers with and without experience
with partial automation. Human Factors: the Journal of the Human Factors and Ergonomics
Society, 001872081877363. https://doi.org/10.1177/0018720818773636

Stanton, N. A. (1995). Ecological ergonomics: Understanding human action in context. Con-
temporary Ergonomics, pp. 62–67.

Stanton, N. A., Hedge, A., Brookhuis, K., Salas, E., & Hendrik, H. (2005). Handbook of human
factors and ergonomics methods. Boca Raton: CRC Press.

Stanton, N. A., Salmon, P. M., Rafferty, L. A., Walker, G. H., Baber, C., & Jenkins, D. P. (2013).
Human factors methods: practical guide for engineering and design (2nd edition). Wey Court
East, Union Road, Farnham, Surrey, GU9 7PT England: Ashgate Publishing Limited.

Stapelberg, N. J. C., Neumann, D. L., Shum, D. H. K., McConnell, H., & Hamilton-Craig, I.
(2017). The sensitivity of 38 heart rate variability measures to the addition of artifact in
human and artificial 24-hr cardiac recordings. Annals of Noninvasive Electrocardiology : the
Official Journal of the International Society for Holter and Noninvasive Electrocardiology, Inc,
23(1). https://doi.org/10.1111/anec.12483

Teh, E., Jamson, S., Carsten, O., & Jamson, H. (2013). Temporal fluctuations in driving demand:
The effect of traffic complexity on subjective measures of workload and driving performance.
Transportation Research Part F: Traffic Psychology and Behaviour, 22, pp. 207–217. https:
//doi.org/10.1016/j.trf.2013.12.005

https://doi.org/10.1016/j.trf.2016.01.011
https://doi.org/10.1016/j.trf.2016.01.011
https://doi.org/10.1016/j.trf.2016.01.011
https://doi.org/10.1016/j.aap.2006.02.014
https://doi.org/10.3389/fpsyg.2014.01344
https://github.com/pupil-labs/pupil/releases/tag/v0.9.1
https://doi.org/10.1016/j.trf.2016.06.013
https://doi.org/10.1177/0018720818773636
https://doi.org/10.1111/anec.12483
https://doi.org/10.1016/j.trf.2013.12.005
https://doi.org/10.1016/j.trf.2013.12.005


2

38 AUTOMATED DRIVING REDUCES PERCEIVED WORKLOAD

Tesla Motors. (2017). Tesla Motors Club Forum: Belgium and the Netherlands. Retrieved from
https://teslamotorsclub.com/tmc/forums/belgium-and-the-netherlands.118/

Treiber, M., & Helbing, D. (2002). Reconstructing the spatio-temporal traffic dynamics from
stationary detector data. Cooperative Transportation Dynamics, 3.1-3.24.

Van Gent, P. (2017). Python heart rate analysis toolkit. Retrieved from https://github.com/
paulvangentcom/heartrate_analysis_python

Van Gent, P., Farah, H., van Nes, N., & van Arem, B. (2018). Analysing noisy driver physiology
real-time using off-the-shelf sensors: heart rate analysis software from the taking the fast
lane project. (Submitted for Publication to the Journal of Open Research Software). Advance
online publication. https://doi.org/10.13140/RG.2.2.24895.56485

Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance requires hard mental work and
is stressful. Human Factors, 50(3), pp. 433–441. https://doi.org/10.1518/001872008X312152

Wickens, C. D. (1981). Processing resources in attention, dual task performance and workload
assessment.

Wright, T. J., Samuel, S., Borowsky, A., Zilberstein, S., & Fisher, D. L. (2016). Experienced
drivers are quicker to achieve situation awareness than inexperienced drivers in situations
of transfer of control within a Level 3 autonomous environment. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 60(1), pp. 270–273. https://doi.org/10.1177/
1541931213601062

Young, M. S., & Stanton, N. A. (2007). What’s skill got to do with it? Vehicle automation
and driver mental workload. Ergonomics, 50(8), pp. 1324–1339. https://doi.org/10.1080/
00140130701318855

Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2015). State of science: Mental
workload in ergonomics. Ergonomics, 58(1), pp. 1–17. https://doi.org/10.1080/00140139.
2014.956151

Young, M. S., & Stanton, N. A. (1997). Automotive automation: Investigating the impact on
driver mental workload. International Journal of Cognitive Ergonomics, 1(4), pp. 325–336.

Young, M. S., & Stanton, N. A. (2002). Malleable attentional resources theory: a new explana-
tion for the effects of mental underload on performance. Human Factors, 44(3), pp. 365–375.
https://doi.org/10.1518/0018720024497709

Young, M. S. (2000). Attention, automaticity, and automation: Perspectives on mental under-
load and performance.

https://teslamotorsclub.com/tmc/forums/belgium-and-the-netherlands.118/
https://github.com/paulvangentcom/heartrate_analysis_python
https://github.com/paulvangentcom/heartrate_analysis_python
https://doi.org/10.13140/RG.2.2.24895.56485
https://doi.org/10.1518/001872008X312152
https://doi.org/10.1177/1541931213601062
https://doi.org/10.1177/1541931213601062
https://doi.org/10.1080/00140130701318855
https://doi.org/10.1080/00140130701318855
https://doi.org/10.1080/00140139.2014.956151
https://doi.org/10.1080/00140139.2014.956151
https://doi.org/10.1518/0018720024497709


3
EXPLORATION OF THE IMPACT OF SAE2

AUTOMATION ON DRIVING BEHAVIOUR:
A NATURALISTIC DRIVING STUDY

Jork Stapel, Riender Happee, Michiel Christoph,
Nicole van Nes, Marieke Martens

This chapter represents preliminary results using only a part of the collected data. Finishing the analysis is currently
not possible due to technical problems of the data-holder and Covid-19.

39



3

40 NATURALISTIC DRIVING STUDY ON THE IMPACT OF SAE2 ON DRIVING BEHAVIOUR

Abstract

To better understand the safety impact of automated driving, situational and longitudinal
adaptation of automation use and driver attention have to be analysed in naturalistic settings.
This study reports preliminary findings on automation use and driver attention from a longi-
tudinal naturalistic driving study, for which data enrichment through visual annotation was
automated and validated. The dataset is unique in that it includes one month of manual driv-
ing followed by two months with automation use, allowing for a longitudinal within-subjects
analysis of behavioural adaptation. From among five vehicle types used in the dataset, this
study examined Tesla and BMW production vehicles with adaptive cruise control (ACC) and
lane keeping (LK) features, and compares one month of baseline driving to the first two months
of automated driving.

Data enrichment successfully retrieved automation status from video for Tesla vehicles with
an accuracy of 99.3% while automation of the BMW could be retrieved from CAN data. Head
pose was obtained from low end cameras to automatically classify visually attended regions.
While performing on-par with literature, head pose without gaze information was found to
be insufficient for attention classification and head pose variance (horizontal & vertical) was
selected as alternative measure for monitoring activity.

On the highway, ACC+LK was used 63% and 70% of the time for respectively the Tesla and
BMW and occurred the least (49%) when driving 60-70 km/h. Both ACC and ACC+LK are used
significantly more often with higher speeds while on highways. On roads with speed limits
below 70 km/h, automation was used less than 8%, and use on urban roads was incidental
rather than habitual. Usage did not change with time in trip, time of day or experience. In the
experimental phase, head heading variance was smallest during ACC use, but did not differ
between ACC+LK and baseline manual driving. Head pitch deviation increased over the first 6
weeks of automation use for ACC+LK use and head heading tended to increase during ACC and
ACC+LK, which hints at behavioural adaptation.

Because part of the required data was either unavailable or inaccessible at the time of analysis,
the preliminary findings reported here are limited to 6 participants for the descriptives and 3
participants for the statistics on Tesla and BMW vehicles. This manuscript will be extended
including further participants and vehicles when this data becomes accessible.

3.1. INTRODUCTION
Supervised driving, or Level 2 automation (SAE International, 2018) is rapidly deployed in
commercial cars. Level 2 systems can take over the continuous lateral and longitudinal control
of the vehicle, but their limitations require the driver to actively monitor the driving task
to ensure traffic safety. While these systems are intended to improve safety and comfort,
drivers may not be fully aware of their vehicle’s capabilities (Harms et al., 2020) and may
also introduce new risks, such as driver inattention and incorrect expectations about the
driver responsibilities, possibly leading to under-use or unsafe use. This has resulted in
several accidents (Dijsselbloem et al., 2019). While these confirm that drivers are not always
monitoring the environment sufficiently to intervene in time when a system fails, it remains
unknown under which conditions and how attentively drivers normally use automation.
Safety benefits of adaptive cruise control (ACC) and automated lane keeping (LK) as currently
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deployed in Level 2 automation remain unknown (Dijsselbloem et al., 2019; de Winter et
al., 2014; Vlakveld, 2019). The evaluation is further challenged since system functionality,
capability and interfaces differ strongly between brands and changes with over the air updates.

While Level 2 automation is active, the driver has to supervise the automation, and intervene
when needed to ensure safety. Safe use requires that the driver is aware of these responsibilities,
has an accurate understanding on how the vehicle may respond to the situation at hand, and
maintains sufficient situation awareness to respond when necessary.

If and how a driver experiences these requirements can be inferred from how often and in
which situations these systems are used, and from how drivers distribute visual attention
between driving-related and other tasks. Several studies have used these measures to evaluate
the safety of automated driving features. Jamson et al. (2013) found that the use of driving
automation changed the driving style compared to manual driving and reduced the number of
lane changes. Drivers spent more time on secondary tasks but adjusted their attention to the
road depending on traffic. Similarly, Naujoks et al. (2016) demonstrated in a 2013 Mercedes
E-class that only drivers with prior ACC experience perform more secondary tasks while using
driving automation. Farah et al. (2020) found that drivers over-estimated the operational
design domain as defined by the vehicle manufacturer during an on-road study with a Tesla
model S. Banks et al. (2018) performed thematic video analysis of behaviours observed during
on-road driving in a Tesla model S and identified multiple occurrences of missed notifications
from the HMI leading to mode confusion.

The distribution of visual attention between driving-related and secondary tasks can be
inferred from gaze or head movement (Lee et al., 2018) and provides guidelines for the risk of
driver distractions (Strickland, 2013). Park et al. (2017) demonstrated that a reduction of on-
road glance duration impairs hazard detection performance. Glaser et al. (2017) demonstrated
that eyes-off-road time negatively impacts driver performance when resuming manual control
in critical scenarios. Additionally, gaze can be indicative of cognitive load or distraction (Wang
et al., 2014), fatigue and intoxication (Victor et al., 2005).

As drivers’ understanding of the automation develops with experience, so will their usage and
monitoring behaviour (Sullivan et al., 2016). On road and simulator studies demonstrated
substantial differences between drivers with and without driving automation experience.
Larsson et al. (2014) compared control transition performance in a simulator between ACC
users and drivers without prior driving automation experience and found that while auto-
mated driving increased response time, experienced users responded faster than novices in
cut-in scenarios. Victor et al. (2018) however demonstrated on a 30 minute test track drive
in a Volvo XC90 that expectation mismatch during first-failures can result in a crash even
with attentive drivers. Stapel et al. (2019) demonstrated that Tesla owners experienced with
automated driving perceive a lower workload during automation use compared to first-time
users. However, this perception was contrasted by a slower response time on an auditory
detection-response task, indicating an increased objective workload when using automation.
Hancock and Matthews (2018) provided reflections on the occurrence of similar dissociations.
Large et al. (2019) performed a 5-day longitudinal simulator study on conditional automation
(SAE level 3) showing high automation usage, trust and secondary task uptake throughout the
drives. Time spent attending the road during automation use reduced from 30% to 20% over
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the five days accompanied with reduced driving performance after resuming manual control.
The latter improved after introducing a routine for regaining situation awareness.

While several studies were conducted in controlled or semi-controlled on-road conditions,
only a few have investigated the use of and adaptation to automated driving in a naturalistic
setting. Beggiato et al. (2015) performed a longitudinal on-road study where they found
that drivers developed their trust and functional understanding of ACC over ten drives while
establishing a high acceptance within two drives. Morando et al. (2019) investigated how
SAE2 driving automation influences attention during 10 months of naturalistic manual and
automated driving by 17 participants. They found longer on-road glances and lower percent
eyes on road centre during automated driving (ACC and LK) compared to manual driving.
The latter was interpreted as a reduced task demand during automation use. Russel et al.
(2018) conducted a naturalistic driving study with 120 participants driving vehicles equipped
with adaptive cruise control and automated lane keeping for 4 weeks. They report the effects
of traffic stability, road type and weather conditions (no-precipitation vs precipitation) on
automation use and found that drivers were performing secondary tasks 60% of the observed
time regardless of automation use and found no difference in percentage eyes-off-road time,
off-road glance duration or type of secondary task. Reaction times to the ‘hold steering
wheel’- requests did not change over the four weeks of use, but instances occurred in the first
week where such requests were intentionally ignored to investigate the vehicle’s response.
While these studies provide useful insights, the evolution of behaviours from manual to
automated driving has mainly been examined for the first experiences with automation, or
lack observations of baseline driving prior to developing experiences with automated driving.

In this study we report preliminary findings on automation use and driver attention from a
longitudinal naturalistic driving study conducted in the Netherlands. The study is unique in
its inclusion of a one month manual driving baseline followed by a two month experimental
phase with the same participants and vehicles where participants were allowed to use the
vehicle’s automation, enabling a within-subject analysis of behavioural adaptation over the
first two months of automation usage.

We addressed the following two research questions:

1. When and where do drivers use ACC and/or lane keeping, as a function of road type and
driving speed, time in trip, period of day and automation experience?

2. Is driver attention different during manual driving and supervised automation?

We studied automation use and driver visual attention allocation. In order to perform these
analysis, we explored to which extent the visual annotation of automation status and driver
attention can be automated. We trained a classifier to identify system icons in the instrument
panel using video and to classify driver attention distributions among attentive regions and re-
gions associated with non-driving tasks using head pose estimated from video. Both classifiers
were trained and evaluated on manually annotated data from the naturalistic study.

In the following sections, we provide a brief description of the used dataset and methodolo-
gies for data preparation, and provide an overview on the data selected after filtering. The
results section provides insights in driver’s usage of the automation and attention distribution
including longitudinal effects.
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3.2. METHODS

3.2.1. DATA DESCRIPTION
In a collaborative project conducted by TNO, SWOV and the Dutch ministry of Infrastructure
and Watermanagement, the RDW (Dutch Vehicle Authority) and RWS (Dutch Road Authority),
recent passenger cars with SAE level 2 automation were equipped with additional instrumen-
tation to observe the driver and the environment. Naturalistic driving data was collected
providing these vehicles for daily use to drivers having no prior experience with SAE level 2
automation. The naturalistic dataset is unique in that it includes one month of manual driving
(baseline condition) followed by two months of use with automation under naturalistic driving
conditions (experimental condition), allowing for a longitudinal within-subjects analysis of
how automation use changes over time. The full dataset includes five vehicle types (BMW 540i,
Tesla S, Mercedes E, Volkswagen Golf E, Audi A4 Avant) driven by 20 participants. However, the
data from only two vehicle types (Tesla and BMW) and 9 participants are currently included
in this paper. An overview of the kilometres driven is provided in Table 3.1. Currently 379 trips
without automation are compared to 775 trips during which automation was available. For
the remaining recordings automation status was either unavailable or inaccessible at the time
of this analysis.

Both the BMW and Tesla were equipped with full-range ACC and lane centring. The BMW ACC
operated for speeds between 0-180km/h while the Tesla ACC operated between 0-150km/h.
In the BMW, lane keeping permits hands off steering wheel for up to 25 seconds. While
enabled, the BMW system engages automatically whenever system requirements are met (e.g.
clear lane markings) and allows the driver to provide corrective steering without disabling
the automation. Tesla lane keeping permits 15 seconds of hands free driving and becomes
unavailable for the remainder of a drive when this limit is exceeded 3 times. Tesla’s lane
keeping has to be engaged by the driver and turns off when the driver provides corrective
steering or braking. Lane keeping use with or without ACC enabled. The Tesla only allows lane
keeping use while ACC is on.

Table 3.1: Overview of the data collected with one Tesla (three participants) and four BMWs (seven participants in
total) equipped with supervised automation functionality.

Km
driven

Days baseline: not
using automation

Days experimental:
automation available

Tesla1 18 624 47 64
Tesla2 13 713 34 61
Tesla3 5 417 28 31
Total 37 754 109 156

BMW1 14 746 62 59
BMW2 7 887 37 68
BMW4 8 993 40 61
BMW5 7 843 31 61
BMW6 14 638 49 91
BMW7 20 566 42 94
BMW8 11 988 32 75
Total 94 676 321 552

https://www.rdw.nl/
https://www.rijkswaterstaat.nl/english/index.aspx
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PARTICIPANTS

For two participants (1 BMW, 1 Tesla), the demographic data was not available. The remaining
7 participants were all male, mean age 49 years (σ 5.2 years), had their licence for 29.1 years (σ
6.2 years) and had driven 30,000km to 40,000km in the 12 months prior to the experiment. All
participants indicated they felt “very interested" and “averagely" to “well" informed about the
latest technological developments in the vehicle sector. Prior to the experiment, all but one
participant normally used a vehicle equipped with cruise control, zero with adaptive cruise
control or lane keeping assistant and three with lane departure warning. One participant
(Tesla group) indicated to frequently use a lane keeping assistant.

INSTRUMENTATION

Each vehicle was retrofitted with eight cameras observing the driver, instrument cluster,
exterior in forward, left, right and rear directions, pedal bay and a top-down view towards the
driver seat. The drivers were observed with a 325x288 resolution at 10Hz. The Tesla instrument
panel was observed with a 720x576 resolution at 25Hz. Figure 3.1 provides an overview of the
available video feeds.

Figure 3.1: Overview of the eight camera perspectives recorded by the TNO instrumentation in the time-
synchronized visualisation by SWOV for each vehicle. In reading order: right mirror view, forward view, left
mirror view, driver face, instrument panel, rear view, driver seat, pedal bay. Driver is not occluded in actual footage.
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CAN-bus data was collected, from which we derived:

• velocity

• steering wheel angle

• brake and accelerator pedal

• turn indicator

• lights (front and back)

• wind screen wipers

• steering torque

• accelerations (3-axis)

• ACC reference distance and speed*

• ACC and LK status*

• LDW and collision warning*

* retrieval was successful for BMW only.

A smart camera system (MobilEye) was specifically installed for the study, recorded lane
position and surrounding road users. For map-matching, GPS and IMU data were collected
at 1Hz and 10Hz respectively. All signals except video were time-stamped. Video recordings
were not synchronised but were watermarked with a human-readable timestamp before being
stored with lossy compression.

RECORDING QUALITY

A number of challenges were unveiled after data collection. Some videos were corrupted
and had to be omitted from the analysis. Reverse engineering of CAN bus data identifying
automation status or automation interactions (button presses) was successful for the BMW
but not for other vehicle types. For the BMW, automation status was available for only 12%
of the trips at the time of analysis, limiting the analysis of the BMW to 22 trips from one
participant during baseline and 344 trips from 3 participants during the experimental phase.
The missing BMW data is being retrieved by TNO and will be analysed in the future. For the
Tesla automation status was inferred from camera images of the instrument panel as described
below.

3.2.2. DATA PREPARATION

TIME SYNCHRONISATION

While numeric data is time-stamped, videos only tracked the number of frames since the
start of a recording. Since the data logger did not start all recordings simultaneously, a delay
between first log time from the data logger and first frame of the video occurred, which could
be as large as 5 seconds. Dropped frames introduced additional offsets. Inspection of several
datasets indicated that the delay due to dropped frames was typically limited to a few seconds
per 30 minutes. To correct for the delay between first frame and first log time, timestamp
watermarks present in the video were interpreted using template matching, providing the
first frame where the watermark increments by a second. While the same method could be
used to identify and correct for frame drop, this has not yet been performed at the time of
writing. The results reported here have thus been corrected for initial offsets, but assume a
constant frame rate without frame drop. To account for the possibility that video derived data
(automation status for the Tesla and head pose estimates) may be somewhat out of sync, the
analysis avoids timing-critical analysis like reaction time.
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AUTOMATION STATUS FOR THE TESLA VEHICLE

For the Tesla, automation system status was retrieved from the instrument cluster videos
through icon template matching and a simple neural net classifier. This approach was not
needed for the BMW as automation status was retrieved from CAN data. This approach was
deemed infeasible for the other vehicles due to poor icon visibility in the recordings (which
were challenging to discern even for manual annotation). In the Tesla four icons could be
displayed to indicate system status: ACC-on, ACC-available, LK-on and LK-available. Only
one icon for ACC and one for LK could be available at any time. System unavailability is
communicated by an absence of icons. For each icon, three template images were selected to
represent different light conditions and camera perspectives. Maximum confidence values
were obtained for each template once every 12 frames (2.1 Hz) through OpenCV template
matching performed on a 150 by 245 px subspace to account for camera movement. The
required subspace was estimated by overlaying one frame from the middle of each video
and visually inspecting where icons occurred. Since logistic regression and manual threshold
tuning did not yield accuracies above 70% , these confidence values were presented to a simple
neural network consisting of two hidden layers and leaky ReLu activation functions with a 0.1
negative slope. The full network and template icons (relative size differed as depicted) are
illustrated in Figure 3.2.
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Figure 3.2: Illustration of the classifier setup. Template matching was performed with 12 icon samples. The max-
imum normalized correlations were used as the input features of a neural network with two hidden layers (leaky
ReLu activation functions with a negative slope of 0.1)

To train the classifier, 1628 status transitions were manually annotated among 121 randomly
sampled recordings. This resulted in 206,653 frames for training. A test set with 445 transitions
was annotated on an additional 27 videos, resulting in 108,396 frames for testing. Annotations
were limited to the (disjoint) classes manual, ACC and ACC+LK. System availability was not
classified since it would disproportionally increase annotation efforts due to its high transition
rate. Classification performance on the test set is shown in Table 3.2 and resulted in an overall
accuracy of 99.33% , which was considered sufficient for the current analysis.

Since performance on the test set was used as a stopping criterion for classifier design efforts,
performance of the final classifier was verified on another set of 69 randomly sampled videos
through visual inspection. Among these, 1342 minutes of manual, 57 minutes of ACC and 257
minutes of ACC+LK use were observed. Approximately 3 minutes (0.2% ) worth of frames were
misclassified among these videos. Misclassification occurred when the icons were particularly
challenging to detect from the video. Common artefacts include rolling image, occluding
specular reflection and intensity overflow, as illustrated in Figure 3.3. Specular occlusion
typically resulted in momentary misclassification of a single frame. Pixel overflow could last
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Table 3.2: Confusion matrix comparing automation status between manual labelling and NN classifier on the test set.
Accuracy is 99.33%.

Predicted

Manual ACC ACC+LK

Manual 54 347 55 100
Annotated ACC 195 10 592 101

ACC+LK 55 218 42 733

for several seconds but was found to have negligible impact on classification performance.
When rolling images occurred, they affected an entire recording. Out of 100 randomly sampled
videos, 28 had pixel overflow, and 6 had rolling images.

Figure 3.3: Examples of glitches in video data on which icon recognition may fail. Left: rolling image of the instrument
panel as result of lost vertical sync. Middle: specular reflection of a hand occludes the ACC icon. Right: intensity
overflow turns over exposed white areas black in the in the LK icon.

Recordings with rolling images resulted in a high status change frequency whenever ACC or
ACC+LK was available. Based on spectral power diagrams, the 100 most suspect videos were
manually checked for tearing and 45 videos with rolling images were removed from further
analysis based on this check.

HEAD MOTION TRACKING & REGIONS OF INTEREST CLASSIFICATION

Dedicated head or eye tracking technology was not considered during instrumentation design.
Hence, head motion was tracked using the low-end driver facing camera footage using Open-
Face 2.0, an open-source facial behaviour analysis toolkit. It maintains a mean absolute error
of 3o under various light conditions and facial expressions (Baltrusaitis et al., 2018). While
OpenFace can also estimate eye gaze direction, its intended application is gaze tracking under
relatively small angles (laptop screens) and was found to perform poorly on our database.
Possible causes are the videos resolution, compression and the angle between the camera and
the driver’s forward facing direction (∼ 30o). Gaze estimation was therefore not extracted. This
also reduced computation time to one month for extracting head position and orientation on
the current dataset.

Several studies have suggested that head pose can be an acceptable gaze substitute when
classifying attention into relevant regions of interest. Lee et al. (2018) have demonstrated
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that attention classification from head pose is feasible for on-road driving and obtained
classification accuracies in the order of 83% and higher. Similarly, Braunagel (2017) used head
pose as a fall back for eyes-on-road classification when gaze data was unavailable. Henni
et al. (2018) showed that eye based features and head based features can achieve a similar
classification performance for on-road drowsiness detection.

We attempted to classify attention allocation in the Tesla to the regions of interest (ROI) defined
in Figure 3.4. Regions were selected for their functional purpose during driving; Left, right,
windshield and instruments represent regions that are relevant for the driving task while
distracted and centre console are not relevant to the driving or monitoring task.

Figure 3.4: Illustration of the approximate head pose regions of interest (ROI).

Since OpenFace estimates head pose relative to the driver-facing camera, association of these
head poses to regions of interest requires calibration. Unfortunately, the camera tends to move
considerably among recordings, making static ROI definitions impractical. Instead we used
typical driver behaviour to correct for camera displacement. A common approach is to create
a histogram of all head poses and assume that the distribution modes (the most frequent
direction) corresponds to facing the road centre on a straight road. One challenge with this
approach is that it does not account for momentary postural changes, which may alter the
relation between head pose and gaze direction. To account for this, (Ahlstrom et al., 2012)
identified multiple peaks as road-centre facing poses, amongst other refinements. In this
paper, we adopted a geometric solution in which the head heading and pitch are compensated
for movement of the head’s location. While the ideal solution would be to calculate where the
facing direction intersects the vehicle’s internal geometry, this becomes impossible when the
interior’s location relative to the camera is not known or changing across drives. We therefore
determine the facing direction’s intersection with a sphere with a 2 m radius centred at the 50th

percentile head origin. This origin is determined for each trip and uses periods of highway
driving if available, or all data otherwise. We then express this intersection in polar coordinates
to retrieve a heading and pitch compensated for head location. These angles can then be
centred to the forward facing reference angle, for instance using the 50th percentile head pose.
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This last step has however not yet been performed, which means that the classification analysis
has been performed with correction for changes in camera orientation. This correction was
applied to the head deviation analysis described in the results section.

To create a ground-truth classification of head poses, we manually labelled 10,552 images
from the driver-facing camera into six attentive and distractive regions following the scheme
in Annex A. To balance the distribution of samples across regions, frames were sampled to
obtain a uniform distribution of head poses. For the second half of the annotations, we filtered
to only annotate stationary head poses since we found transitions between regions were often
hard to classify. Since only very few poses were labelled as attending the instruments, this
class was merged with windshield-forward, with which the samples overlapped best. Figure
3.5 shows a scatter of all annotated head poses for sphere-projected heading and pitch angles.

Figure 3.5: Scatter of all annotated head poses. Values are compensated for head location through sphere projec-
tion, but orientations have not been corrected for camera placement. Hence zero heading is directed towards the
camera and a heading around –35° is forward. Positive pitch represents facing upward.

PERFORMANCE OF ROI CLASSIFICATION

Head pose was classified using a radial basis function support vector machine. 60% of the
annotations were used for training and 40% for testing. Table 3.3 shows the confusion matrix of
the classifier on the test set. While accuracies between windshield-forward and other regions
(Left: 92.7% , console: 86.4% and 95.7% ) are similar to those reported by Lee et al. (2018)
under similar conditions and methods, our overall accuracy is only 69% . Despite balancing
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head poses through uniform sampling, windshield forward received 6 times more annotations
during manual labelling compared to the other categories on average. As a consequence, the
classifier is biased towards this category and inflates accuracy for paired comparisons with
that category. The intersection over union rates indicates performance without rewarding
true negatives and thus provide a better indication of classification performance per category.
Even a binary classification between driving related and unrelated attention does not perform
well. Grouping the interior-facing categories (distracted and centre console) results in an
intersection over union of 41.3% which is insufficient for reliable distraction identification.
The main source of confusion is the ambiguity between head facing direction and direction of
gaze, which is especially large in pitch but also in heading for angles further away from road
centre.

Due to the disappointing ROI classification performance we will not analyse attention distri-
bution or transitions over these regions as function of automation use, driving environment,
and experience in using automation. Instead we will use head pose deviation as an indicator
of attention.

Table 3.3: Confusion matrix and intersection over union (IOU) for head pose classification, comparing human
annotations to RBF SVM classifier over 4214 test images in the Tesla. Each cell indicates the number of images (top),
percentage of ground truth annotated class (bottom left) and percentage of predicted class (bottom right)

Predicted

Windshield
forward

Left Right
Windshield

other
Centre

console
Distracted

other
IOU

A
n

n
o

ta
te

d

Windshield forward 2200 30 12 3 74 11 69.8%
Left 152 124 0 0 1 2 39.9%
Right 29 0 199 7 68 4 49.5%
Windshield other 234 1 44 6 87 4 1.5%
Centre console 318 1 23 11 285 29 29.8%
Distracted 90 0 16 0 60 89 29.2%

3.2.3. DATA AVAILABILITY
In order to perform our analysis, the various information sources had to be filtered, synchro-
nised and re-sampled. This process is detailed in Annex B and the resulting data availability is
described in Table 3.4.

3.3. RESULTS

3.3.1. AUTOMATION USAGE
For automation use during the experimental condition, we first describe the distributions for
both the Tesla and BMW and then provide a statistical analysis for the Tesla. Statistics for the
BMW will be added in future versions of this manuscript adding data of more participants.
Automation status is observed with respect to road type, road speed limit, driving speed, time
since the start of a trip and time of day. When a data point misses required information to
contribute to a particular image, this data is omitted only for that particular visualisation or
analysis.
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Table 3.4: Data availability among the trips used for analysis after resampling and filtering.

Tesla1 BMW2

Data successfully
matched with system

status (if any)

Proportion of trips
with data available

Average data used
per trip (if any)

Proportion of trips
with data available

Automation status 100% 12.0%3

Speed km/h 80.3% 76.0% 99.9% 38.3%
Allowed speed km/h 65.9% 76.0% 80.7% 38.3%
Road type 63.4% 76.0% 75.1% 38.3%
Gearstick 83.1% 76.0% - -
Head pose 72.4% 75.5% 95.6% 37.5%

Note1: considers all trips for which automation status has been extracted
Note2: this includes all available trips
Note3: more BMW Automation status data will be retrieved for future versions of this manuscript

During the experimental condition, Tesla users drove manually 55.8% of the time, 8.9% with
ACC and 35.3% with ACC+LK. BMW users drove 58.4% manually, 1.2% ACC, 33.7% ACC+LK
and 6.7% with LK. Speed limiting was not used by the participants examined so far. Figure 3.6
illustrates automation use by speed limit and road type. For both vehicles, most driving time
is spent on the highway, and full automation (ACC+LK) is used most here (Tesla: 63.0% , BMW:
69.9% ). Manual driving is however preferred when negotiating highway links. Automation
is used very little on roads with speed limits below 70 km/h. In both vehicles, whenever
automation is used, preference seems to be towards longitudinal and lateral automation
(ACC+LK) over longitudinal only (ACC) or lateral only (manual + LK).
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Figure 3.6: Automation use for road speed limit (top) and road type (bottom). Road type was obtained by map-
matching using OpenStreetMap. Type descriptions can be found on https://wiki.openstreetmap.org/wiki/Key:
highway.

https://wiki.openstreetmap.org/wiki/Key:highway
https://wiki.openstreetmap.org/wiki/Key:highway
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Figure 3.7: Automation use for both vehicle models as a function of vehicle speed for all road types (top) and highways
(bottom). Any speed between -1 km/h and 1 km/h is considered stationary. Time where vehicle gear is known to be in
“park" is excluded (tesla only).

Figure 3.7 shows how automation use changes with driving speed. Usage is generally low for
driving speeds below 70 km/h. However during highway driving, automation use remains
high at all speeds, with peak usage during slow stop-and-go traffic (0-30 km/h) and at higher
speeds (>80 km/h). At higher speeds a sudden drop in automation use can be observed for
the Tesla. This drop corresponds with the upper limit at which the vehicle makes automation
available. According to the manuals, the Tesla allows ACC + LK use for speeds up to 150 km/h
while the BMW allows ACC use at speeds up to 180 km/h and LK with speeds up to 210 km/h.

Figure 3.8 shows how automation use changes over the duration of a drive. After the first 10-20
minutes, Automation use appears relatively steady. The scatter at later times is an artefact
resulting from the low number of trips with long durations. Note that the BMW in particular
represents a relatively small number of long trips. Additionally, there is a sharp drop in BMW
observations after exactly 30 minutes, suggesting a data availability problem related to the
separation of trips into 30 minute recordings. Figure 3.9 shows that automation use also
appears to be uniform across the day for both vehicle types.
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Figure 3.8: Automation usage over time since the start of a trip for all road types (top) and highways (bottom).
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Figure 3.9: Automation use over time of day (Amsterdam DST) for all road types (top) and on highway (bottom).

STATISTICS OF AUTOMATION USE

To evaluate if automation use is influenced by ‘time in trip’, ‘time of day’ and ‘driving speed’, we
performed between-trips multilevel ANOVAs with participant as random factor. Only highway
driving is considered for this analysis. Since BMW data is incomplete at this time, statistical
analyses are only presented for the Tesla. While this means that the analysis represent a
small number of participants, it may support the identification of large and consistent effects
which should be considered for further analysis. Table 3.5 provides the means and standard
deviations for each category and variable. It should be noted that table 3.5 and the histograms
of figures 3.9, 3.8 and in particular 3.7 suggest different distributions. This is caused by the
histograms showing total usage whereas table 3.5 uses average usage per trip and thus does
not account for trip duration. Therefore, the histograms represent exposure whereas table 3.5
is indicative of how often the decision is made to use automation under a given circumstance.

Time of day was split into five categories: night (23:00-4:59 hrs), morning (5:00-9:59 hrs), day
(10:00-15:59 hrs), afternoon (16:00-18:59 hrs) and evening (19:00-22:59 hrs). Night time driving
was omitted from the statistical analysis due to low sample size. A between-trips ANOVA for
time of day while on highway was not significant for ACC+LK use F(3, 231.3)=0.639, p=.591 or
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Table 3.5: Estimated percentage of time automation use on highway; mean and standard deviation over experimental
trips

Time of day (hour) Time in trip (min) Speed (km/h)

23-4 5-9 10-15 16-18 19-22 0-30 30-60 60-90 0-10 10-60 60-100 >100

nr. trips 3 45 97 60 34 212 103 43 95 155 160 155

Te
sl

a

Manual
µ 72.9% 47.3% 57.1% 55.3% 47.4% 52.2% 36.5% 38.4% 74.1% 79.0% 42.1% 29.2%
σ 34.7% 37.8% 37.6% 40.8% 39.7% 38.9% 35.2% 35.0% 40.1% 32.4% 34.1% 33.4%

ACC
µ 27.1% 10.8% 9.9% 8.2% 10.5% 9.6% 17.7% 13.5% 3.5% 3.9% 13.9% 16.3%
σ 34.7% 13.7% 14.7% 14.6% 17.5% 15.4% 26.4% 22.5% 16.8% 12.9% 19.9% 20.6%

ACC+LK
µ 0.0% 41.9% 33.0% 36.5% 42.1% 38.2% 45.8% 48.2% 22.3% 17.1% 44.0% 54.5%
σ 0.0% 32.9% 31.8% 35.6% 36.0% 34.4% 34.3% 35.4% 37.6% 29.6% 30.9% 33.6%

nr. trips 19 53 55 50 27 194 60 12 121 191 196 193

B
M

W

Manual
µ 29.6% 28.5% 39.8% 28.2% 52.2% 33.4% 39.9% 52.8% 56.6% 64.5% 50.5% 27.2%
σ 29.8% 31.6% 31.4% 35.0% 35.9% 34.2% 34.5% 32.6% 46.7% 42.5% 38.4% 33.1%

ACC
µ 0.4% 1.2% 1.3% 1.2% 0.2% 0.9% 0.8% 3.2% 0.5% 0.7% 1.4% 0.9%
σ 0.6% 2.9% 2.9% 2.3% 0.3% 2.3% 2.7% 7.7% 2.8% 4.3% 5.6% 3.0%

ACC+LK
µ 69.0% 59.9% 53.6% 57.2% 44.8% 57.8% 54.1% 41.2% 31.2% 24.3% 39.5% 64.0%
σ 29.8% 32.4% 30.0% 36.7% 37.1% 34.6% 34.2% 31.7% 41.8% 36.9% 34.9% 35.4%

LK
µ 0.8% 10.3% 5.3% 13.5% 2.7% 7.9% 5.2% 2.8% 11.7% 10.5% 8.6% 7.8%
σ 1.3% 18.7% 10.9% 25.6% 8.2% 18.2% 13.1% 3.4% 27.0% 24.2% 18.2% 20.0%

lim
µ 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
σ 0.6% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2%

lim+LK
µ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
σ 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%

ACC use F(3,231.4)=0.312, p=.817.

Time in trip was split into three categories of 30 minutes each. A between-trips ANOVA was
not significant for ACC+LK use F(2, 354.0)=1.353, p=.260. but was significant for ACC use
F(2, 355)=5.689 , p=.004. Pairwise comparisons (Table 3.6) show that ACC use was 8% higher
(increased from 9.6 to 17.7% ) during the second 30 minutes of driving compared to the first
30 minutes, while on the highway.

Table 3.6: Paired time-in-trip comparisons for Tesla ACC usage. Time indicates duration into trip while usage only
includes moments of highway driving. See Table 3.5 for descriptives

a - b Confidence Interval
ACC ∆µ (a-b) SE p 5% 95%

0-30 - 30-60 min -8.1% 2.4% .001 -12.8% -3.3%
0-30 min - 60-90 min -3.8% 3.3% .253 -10.4% 2.7%
30-60 min - 60-90 min 4.2% 3.6% .246 -2.9% 11.4%

We divided highway driving speed into the same categories adopted by (Naujoks et al., 2016). A
between-trips ANOVA was significant for ACC+LK use F(3, 559.2)=44.587, p<.001 as well as on
ACC use F(3,561)=18.937, p<.001. Paired comparisons revealed that for ACC+LK, all pairs were
significant except between 0-10km/h and 10-60km. For ACC use, all pairs were significant
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except between 0-10km/h and 10-60km/h and between 60-100km/h and >100km/h (Table
3.7). This suggests that both ACC and ACC+LK are used significantly more often with higher
speeds while on highways. However, from a duration perspective, the overall ACC+LK usage in
figure 3.7 suggests that ACC+LK is used at lower speeds as much as on higher speeds. This
suggests that ACC+LK is especially used during longer periods of slow highway driving, and
less when such speeds are only reached momentarily.

Table 3.7: Paired highway driving speed comparisons for Tesla automation usage. See Table 3.5 for descriptives.

a - b Confidence Interval
ACC+LK ∆µ (a-b) SE p 5% 95%

0-10 km/h - 10-60km/h 4.7% 4.2% .264 -3.5 12.9
0-10 km/h - 60-100 km/h -22.1% 4.1% <.001 -30.2% -12.9%
0-10 km/h - 100 km/h -32.7% 4.2% <.001 40.9% -24.5%
10-60 km/h - 60-100 km/h -26.8% 3.6% <.001 -33.8% -19.7%
10-60 km/h - 100 km/h -37.3% 3.6% <.001 -44.5% -30.2%
60-100 km/h - 100 km/h -10.6% 3.6% .004 -3.5% -17.7%

ACC

0-10 km/h - 10-60 km/h -0.3% 2.3% .886 -4.9% 4.3%
0-10 km/h - 60-100 km/h -10.3% 2.3% <.001 -14.9% -5.8%
0-10k km/h - 100 km/h -12.7% 2.3% <.001 -17.3% -8.1%
10-60 km/h - 60-100 km/h -10.0% 2.0% <.001 14.0% 6.0%
10-60 km/h - 100 km/h -12.4% 2.0% <.001 -16.4% -8.4%
60-100 km/h - 100 km/h -2.4% 2.0% .236 -6.4% 1.6%

3.3.2. ATTENTION DISTRIBUTION
Since region of interest (ROI) classification was unsuccessful, we evaluated if automation
use changed the head pose distribution. While less informative on the quality of monitoring
activity, it can indicate when and to which extent automation use results in substantial changes
in monitoring behaviour. Head heading and pitch distributions were centred to the 50th

percentile of each trip, and the standard deviation was compared across conditions. For the
Tesla, statistical differences were explored by comparing head pose deviation during highway
driving with a multilevel repeated measures ANOVA using participant as a random factor.

Figure 3.10 shows the head heading distribution. While large heading angles generally oc-
curred less during automated compared to manual driving, this is mainly attributed to road
type since heading distributions are more uniform while on the highway. For the Tesla,
highway head heading deviation differs significantly between automation use and baseline
driving after correcting for individual differences by using participant as a random inter-
cept F(3,583)=12.243, p<.001. Pairwise comparisons in Table 3.8 reveal that on the highway,
head heading deviation during ACC use was significantly smaller than in all other conditions.
Heading deviation during ACC+LK did not differ from manual baseline driving, but heading
deviation was larger when the driver decided to drive manually during the experimental phase.
Head heading deviation during manual driving was larger during the experimental phase
compared to baseline.
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Figure 3.11 indicates Tesla users tend to face up more and face down less while using au-
tomation, whereas BMW users tend to have a wider distribution of pitch angles while using
automation compared to manual driving. Highway head pitch deviation differed significantly
among automation usage for the Tesla F(3, 581.2)=8.412, p<.001. Pairwise comparisons in Ta-
ble 3.8 indicate that head pitch deviation during ACC+LK was indistinguishable from manual
driving in both the baseline and experimental phase. Pitch deviation was significantly smaller
for ACC compared to the other conditions.

Figure 3.10: Standard deviation of head heading on all road types (top) and on highway (bottom).
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Figure 3.11: Standard deviation of head pitch on all road types (top) and on highway (bottom). Positive pitch is
upward.

Table 3.8: Pairwise comparisons of highway head heading and pitch deviation for the Tesla during baseline and
experimental conditions (manual, ACC, ACC+LK).

∆µ SE p
Heading baseline - Manual −2.2° 0.6° .001
Heading baseline - ACC 1.5° 0.7° .025
Heading baseline - ACC+LK −0.3° 0.7° .682
Heading Manual - ACC 3.7° 0.6° <.001
Heading Manual - ACC+LK 1.9° 0.6° .003
Heading ACC+LK - ACC 1.8° 0.7° .008
Pitch baseline - Manual −0.1° 0.3° .833
Pitch baseline - ACC 1.1° 0.3° <.001
Pitch baseline - ACC+LK 0.0° 0.3° .945
Pitch Manual - ACC 1.1° 0.2° <.001
Pitch Manual - ACC+LK 0.1° 0.2° .774
Pitch ACC+LK - ACC 1.1° 0.3° <.001
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3.3.3. EFFECTS OF EXPERIENCE
We evaluate how automation experience changes automation usage, and if experience affects
attention as indicated by head pose deviation. The descriptives for automation usage over
experience are given in Table 3.9. Overall, automation usage does not suggest any trends over
time for the Tesla except for a slight decrease in ACC use, while BMW users seem to use less
automation (of any type) over time. Figure 3.12 shows how automation usage varies with time
for each road type. It does show a small amount of automation use in residential areas and
service roads, though the use is incidental rather than habitual on these road types. In case of
the Tesla, ACC+LK also includes use of the auto-park and summon feature. Table 3.10 shows
that there are no significant effects of experience on any road type for the Tesla. This suggests
that duration wise, automation usage does not change much with experience for the Tesla.

Table 3.9: Descriptives of automation use over experience. Automation use during manual baseline of the Tesla is
attributed to misclassification on the video processing.

Baseline day 1 Wk1 wk 1-3 wk 4-6 wk 6-9 wk 9-12
Nr. trips 401 17 105 256 133 69 30

Te
sl

a

manual µ 99.8% 76.5% 77.4% 79.9% 79.2% 72.8% 83.2%
σ 1.5% 27.8% 26.5% 24.9% 25.4% 25.8% 26.8%

ACC µ 0.1% 7.1% 5.1% 4.3% 4.6% 3.5% 1.6%
σ 1.0% 10.1% 8.7% 8.9% 8.4% 6.8% 3.9%

ACC+LK µ 0.1% 16.4% 17.5% 15.7% 16.2% 23.7% 15.2%
σ 1.1% 23.2% 22.1% 20.6% 20.2% 22.5% 24.0%

Nr. trips 22 9 73 150 124 85 4

B
M

W

manual µ 100.0% 59.1% 66.9% 67.9% 72.5% 78.6% 84.5%
σ 0.0% 43.2% 32.6% 31.1% 29.1% 26.5% 23.1%

ACC µ 0.0% 0.5% 1.5% 1.3% 0.5% 0.5% 0.5%
σ 0.0% 1.2% 3.9% 3.7% 1.4% 1.3% 0.9%

ACC+LK µ 0.0% 15.5% 22.2% 24.3% 22.7% 17.2% 13.6%
σ 0.0% 24.3% 26.8% 26.3% 25.2% 22.7% 19.6%

LK µ 0.0% 24.8% 9.4% 6.5% 4.3% 3.1% 1.4%
σ 0.0% 28.5% 18.2% 14.0% 9.1% 7.4% 2.8%

lim µ 0.0% 0.0% 0.0% 0.0% 0.0% 0.7% 0.0%
σ 0.0% 0.0% 0.0% 0.0% 0.1% 6.1% 0.0%

lim+LK µ 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%
σ 0.0% 0.5% 0.2% 0.1% 0.0% 0.0% 0.0%
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Figure 3.12: Automation usage for Tesla (left) and BMW (right) over experience (trip since start of experimental
condition) for various road types. Green=ACC+LK, yellow=ACC, red=LK, (purple=lim and black=lim+LK). Manual
driving represents the remainder proportion.

Table 3.10: Between-trips ANOVA with participant as random factor indicating effect of experience on automation
usage for the Tesla. Experience is represented by 4 bins: wk 1-3, wk 3-6, wk 6-9, wk 9-12. N=number of trips included
in analysis. p-values are not corrected for multiple comparisons.

ACC+LK ACC

N F p F p

Motorway 160 F(3,114.3)=1.001 .395 F(3,156)=1.196 .313
Motorway link 158 F(3,154)=0.982 .403 F(3,109.5)=0.324 .808
Trunk 117 F(3,112.2)=0.620 .604 F(3,112.6)=0.286 .836
Trunk link 54 F(3,44.7)=0.119 .948 F(3,46.9)=0.855 .471
Primary 270 F(3,243.8)=0.114 .952 F(3,260.4)=0.400 .753
Secondary 201 F(3,197)=0.840 .473 F(3,197)=0.606 .612

Attention was affected by experience, as inferred from head pose variance. We analyse highway
driving for the Tesla only. Effects were corrected for individual differences by using participant
as a random intercept. Table 3.11 gives the main effects for head heading and pitch deviation
while on the highway and Table 3.12 provides the pairwise comparisons. The 30 trips in weeks
10 to 12 are all made by one participant.

During manual highway driving, head heading deviation was higher throughout the exper-
imental condition compared to baseline, but did not change significantly over time within
the experimental condition. During ACC use, head heading was not affected by experience.
During ACC+LK use, head heading deviation was not affected significantly by experience at a
5% confidence, though there is a tendency to increase with experience over the first 9 weeks of
experience.

During manual driving, deviation in head pitch did not change over time and remained the
same as for baseline. Pitch deviation over experience was also not statistically significant
during ACC use, though it tended to increase over the first 6 weeks of automation use. A
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significant trend in the same direction is observed during ACC + LK use.

Table 3.11: Main effects of experience (baseline, wk 1-3, wk 4-6, wk 7-9, wk 10-12) on head heading and pitch deviation
for manual, ACC and ACC+LK highway driving with the Tesla. ANOVAs are corrected for individual differences. N
represents the number of trips included in the analysis. Baseline condition is only included for manual driving

Head heading N F p

Manual 322 F(4, 309.0) = 3.659 0.007
ACC 133 F(3, 129) = 2.032 0.113
ACC+LK 132 F(3,121.6) = 2.528 0.061
Head pitch

Manual 322 F(4, 316.1) = 1.329 0.259
ACC 133 F(3, 121) = 2.206 0.091
ACC+LK 132 F(3, 128.0) = 7.611 <.001

3.4. DISCUSSION
In this study, we analysed how SAE2 automation use differs between road types and driving
conditions. We investigated how attention, as reflected by head pose deviation, differs between
manual and automated driving, and we explored how experience with automation changes
automation usage and attention over the first two months of use. We further presented our
methodology and performance for two data enrichment methods on the naturalistic dataset.
We emphasise that the results are preliminary findings obtained from six participants for the
descriptives and only three participants for the statistical analysis. The results should therefore
not yet be regarded as the definitive conclusions of this study, but rather as a direction for
further analysis of the L2 naturalistic dataset. Such further analyses will be pursued before
publication as Journal paper.

3.4.1. AUTOMATION USE
Across all road types, automation usage increases with speed for both vehicle types, with more
than 92.5% manual driving at speeds below 70km/h for the Tesla and 88.6% for the BMW. The
use of map matching for road type classification allowed us to analyse automation use per
road type and discriminate low speed driving in congested highways from low speed driving
related to the allowed maximum speed. Automation is used most on highways, where it is
used across all speeds including slow highway driving, but less during short periods of slow
driving. This suggests that users were generally comfortable using these systems during most
highway traffic conditions. Further analysis on automation use during slow highway driving
is required to explain this behaviour. In terms of exposure time, highway usage occurred
the least near speeds of 50 km/h (Tesla: 44.7% , BMW: 45.2%). ACC+LK appears to be used
more than ACC for all road types. For the BMW, ACC was used less compared to the Tesla,
while usage of LK without ACC was active 6.7% of the time and did not differ proportionately
between road types or driving speeds. These findings suggest automation is mostly used on
road types for which the systems are intended, with very little time spent using the automation
on roads with a speed limit of 50 km/h or less. Automation use on urban roads was limited and
incidental, which suggests that users are aware of the system’s general limitations and typically
act accordingly. This urban use should be examined further with an analysis of activation



3

64 NATURALISTIC DRIVING STUDY ON THE IMPACT OF SAE2 ON DRIVING BEHAVIOUR

Table 3.12: Pairwise comparisons of experience on head heading and pitch deviation for manual, ACC and ACC+LK
highway driving with the Tesla. Baseline only contains manual driving.

Manual ACC ACC+LK
Head heading ∆µ SE p ∆µ SE p ∆µ SE p
Wk1-3 - baseline 1.9° 0.7° .006
Wk4-6 - baseline 3.0° 1.2° .011
Wk7-9 - baseline 2.9° 1.1° .008
Wk10-12 - baseline 0.8° 2.2° .716
Wk4-6 - Wk1-3 1.1° 1.2° .367 3.9° 1.7° .022 1.4° 1.3° .292
Wk7-9 - Wk1-3 1.0° 1.1° .370 1.6° 1.4° .255 2.8° 1.1° .009
Wk10-12 - Wk1-3 −1.1° 2.2° .605 −1.3° 4.5° .767 −0.7° 2.6° .786
WK7-9 - Wk4-6 0.1° 1.4° .961 −2.3° 2.0° .253 1.5° 1.5° .308
Wk10-12 - Wk4-6 −2.2° 2.4° .353 −5.2° 4.7° .272 −2.1° 2.8° .459
Wk10-12 - WK7-9 −2.1° 2.3° .364 −3.0° 4.6° .525 −3.5° 2.6° .183
Head pitch
Wk1-3 - baseline −0.2° 0.3° .571
Wk4-6 - baseline 0.7° 0.5° .136
Wk7-9 - baseline 0.5° 0.4° .270
Wk10-12 - baseline −0.7° 0.9° .432
Wk4-6 - Wk1-3 0.9° 0.5° .073 1.5° 0.6° .018 1.5° 0.5° .004
Wk7-9 - Wk1-3 0.7° 0.5° .153 0.8° 0.5° .136 1.8° 0.4° <.001
Wk10-12 - Wk1-3 −0.5° 0.9° .550 0.2° 1.7° .915 1.2° 1.0° .232
WK7-9 - Wk4-6 −0.2° 0.6° .712 −0.7° 0.7° .335 0.3° 0.6° .580
Wk10-12 - Wk4-6 −1.4° 1.0° .147 −1.3° 1.7° .459 −0.3° 1.1° .779
Wk10-12 - WK7-9 −1.2° 1.0° .215 −0.6° 1.7° .720 −0.6° 1.0° .542

attempts, since experimental use in unsuitable conditions may be of short duration even when
attempted frequently, and thus contribute little to the time-based usage statistics analysed
in this study. In particular, successful and unsuccessful automation engagement attempts
could be analysed, though this would require further efforts in CAN bus extraction or video
annotation. Furthermore, manual inspection of driver attention during these episodes may
indicate if these systems are used responsibly in these situations.

For the Tesla, no significant time in trip, time of day or experience effects were found for
automation usage, except for an 8% increase in ACC use during the second 30 minutes of
highway driving compared to the first 30 minutes of each drive. However the effect is small
compared to its variance and not consistent across all bins. Since the data only represents
three participants, the effect may be a consequence of individual differences in ACC usage
and typical trip length. Data from more participants is needed to evaluate if these findings
can be regarded as generalizable. For this, the BMW data will be analysed once available to
study effects of time on task, time of day and experience.

3.4.2. HEAD POSE DEVIATION DISTRIBUTIONS
While we were unable to classify head pose into attentive driving related and distracted driving
unrelated areas, the analysis of head pose variance did provide some interesting insights.

On the highway, ACC+LK did not differ from baseline manual driving in terms of head head-



3.4. DISCUSSION

3

65

ing or head pitch deviation, but heading deviation was larger during manual driving in the
experimental phase. While the increase in heading deviation during manual highway driving
may be a carryover effect caused by automation use, such effect has to develop quickly since
no longitudinal change was found in manual head heading deviation, and would require an
explanation how carryover can result in increased activity during manual driving whereas
ACC+LK and ACC use suggest either no change or a decrease in heading deviation. It is more
likely the result of strategic automation use: drivers may simply prefer to drive manually in
situations which require more head deviation, such as when changing lanes. This hypothesis
could be tested through selection of lane changes from the available Mobileye data or selection
of highway trips from the experimental condition where automation was not used at any point.
Important to note is that the effect of introducing ACC+LK depends on whether it is com-
pared against baseline-manual (no difference in heading deviation) or experimental-manual
(ACC+LK reduces heading deviation). This may raise caution for studies which compare at-
tention between manual and automated driving without providing an inexperienced manual
baseline.

Comparing to baseline driving, ACC resulted in a reduced head heading and pitch deviation
while ACC+LK did not. However, head pitch deviation increased with experience for ACC+LK,
and while not statistically significant, the same trend was observed for ACC as well as for head-
ing deviation with effect sizes in the order of 1 or 2 degrees over the first 6 weeks. This suggests
that head deviation was initially lower during ACC+LK use compared to baseline, but restored
to normal as the participants became more experienced. These trends indicate at behavioural
adaptation in driver attention during automation use. This adaptation with experience agrees
with Kraft et al. (2018), who found that participants with prior ACC experience spent less time
looking away from the road compared to automation novices in a simulator study on visual
secondary tasks during SAE2 automation.

Collectively, these findings suggest that while initially altered, the amount of attentional
activity in terms of head pose deviation may be similar between ACC+LK use and baseline
manual driving. This differs from Morando et al. (2019), who found that the median percent
at road centre of glances was 3% smaller during SAE2 compared to manual driving. Possible
explanations for this difference include the used metrics (gaze vs. head pose), not controlling
for periods of following a lead vehicle (which increased percent road centre by 4% during
automation use for Morando et al.), and individual differences from the low number of
participants presently analysed.

Whether the lower head pose deviation during ACC and initial ACC+LK should be interpreted
as an increase or decrease in monitoring intensity remains to be investigated. If drivers were
mostly monitoring attentively during automation, increased attentional demand as found
in chapter 2 could be used to interpret lower deviation as an increase in attention to road
centre or cognitive narrowing due to an increased mental demand. However, it can also be
caused by cognitive load from driving-unrelated thoughts (Victor et al., 2005; Wang et al.,
2014), a reduced perceived need for visual scanning, or an increase in mind wandering (He
et al., 2011). Even when gaze had been obtained in addition to head pose, identification
of the correct cause may be challenging since even for gaze dispersion it is not certain if a
wider deviation represents more distraction or a better monitoring strategy (Grüner et al.,
2017). Classification of attention to driving related and unrelated areas may provide better
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insights. While automation of such classification was not successful in the present study, the
observation that automation changes behaviour over time provides a motivation for further
investigation.

3.4.3. DATA ENRICHMENT
We end this discussion with a reflection on our methods for data enrichment. We demon-
strated that extracting automation status from instrument panel recordings can be an effective
solution when this information cannot be extracted from CAN messages, provided that the
icons of interest are easily discernible in the recordings. The two layer neural network im-
proved classification accuracy from 70% obtained from logistic regression to 99.33%, while
template matching prevented the need for training a complete convolutional neural network
which likely would have required a larger training and test set to be annotated manually.

Classifying attended region from head pose proved more challenging. While we obtained
similar per-class accuracies as reported by Lee et al. (2018), the overall accuracy of 69% and
intersection over union metrics smaller than 50% indicated that head pose is not sufficient
for attention classification. While classification performance may improve when preventing
camera movement or by including head dynamics in addition to poses, we recommend to
include eye tracking to infer attention allocation in future studies. Care should also be taken
when using manual labelling of attention allocation, since inter-rater agreement was recently
found to be higher than actual classification accuracy in a similar setting (Jansen et al. 2020).

3.5. CONCLUSIONS
Automation is mostly used on road types for which the systems are intended. On highways
ACC+LK was used 63% of time in the Tesla and 70% of time in the BMW. On roads with
speed limits below 70 km/h, all forms of automation combined were used less than 8% of
the time, and use on urban roads was incidental rather than habitual, which suggests that
users are aware of the system’s general limitations and typically act accordingly. Head pose
analysis indicated visual scanning to be similar for driving with ACC+LK and baseline manual
driving, though effects of experience suggest the amount of scanning during automation use
to increase over the first six weeks of use.

Scanning activity was larger during manual driving in the experimental condition compared to
manual driving over a one month baseline prior to experiencing automation. This observation
may have implications for studies that evaluate attention in automation with automation-
experienced users, without automation-inexperienced baseline.

We further demonstrated that feature matching combined with a simple neural network can
be effective for extracting automation status from instrument panel recordings. We also
demonstrated that head pose without information of gaze direction may be insufficient for
region of attention classification.

Based on our preliminary findings, we recommend further analysis on activation attempts and
monitoring behaviour during automation use in urban conditions. The identified changes
in monitoring activity warrants further investigation on the quality of driver attention and
distraction during manual and automated highway driving.
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This work will be continued on the remaining participants when this data becomes available.
Recommended next steps include:

• Examine engagement attempts and monitoring strategies during urban automation
use.

• Examine difference automation use between long and short lasting periods of slow
highway driving.

• Interactions of automation use on Circadian and other time effects on driver attention
are unlikely to be uncovered from the present dataset, unless automation status can be
recovered for the other vehicle types.

• Assess if identified head pose differences during highway automation indicate better or
worse attention strategies.

• Test the proposition that attention strategies changed during initial weeks of ACC+LK
use but later recovered.

• Test if the increase in head pose during manual driving is a consequence of strategic
automation use.
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ANNEX A: CODE BOOK FOR ANNOTATING HEAD ORIENTATION IN

THE TESLA
If frame suitable for annotation:

• Is driver present, and is driver’s facing direction clear? No → Space

• Is another person’s face clearly visible? Yes → Space

• Is driver’s head pose hard to classify or exceptional/unconventional?∗ Yes → Space

If driver faces away:

• Is driver facing or glancing through left window or to left mirror? Yes → Left

• Is driver facing or glancing through right window? Yes → Right

• Is driver clearly looking away from any exterior view, mirror or vehicle display?∗∗ Yes →
Distracted

If driver faces forward:

• Does driver glance to instrument panel? Yes → Instruments

• Does driver face/glance well below instrument panel? Yes → Distracted

• Does driver glance towards the rear view mirror? Yes → Windshield other

• Otherwise: Windshield forward

If driver faces towards the camera:

• Does driver glance (just) above the camera’s origin? Yes → Windshield other

• Does driver glance at, slightly below or slightly right of camera?∗∗ Yes → Centre console

• Does driver glance slightly left and slightly below camera? Yes → Distracted

• Does driver appear to glance through right half of windshield or right mirror? Yes →
windshield other

∗ Examples include sneezing, being mid-motion and severe head tilt
∗∗ When holding nomadic device, consider the direction of attention rather than the activity.

https://doi.org/10.1016/j.trf.2014.08.003
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ANNEX B: DATA AVAILABILITY
In order to perform our analysis, the various information sources had to be filtered, synchro-
nised and re-sampled. The information can be classified into three categories, which differ in
how time is referenced. Raw numeric data (vehicle speed, BMW automation status) is indexed
by trip, which can span multiple drives, provided they start within 5 minutes of a previous
drive. The data of each trip is split into 30 minute recordings. Each data point has a time
stamp, consisting of a midnight component (UNIX start of day in ms) and a logtime (Unix
time since midnight in ms). When time passes into the next day during a trip, logtime is kept
monotonically increasing with values beyond 24h. Midnight values are kept constant for the
duration of a recording, but will update at the start of the next recording, which means that its
value may change within a trip, but not necessarily at midnight. Correct time stamps can thus
only be obtained by adding a trip’s first midnight (possibly found in a different recording) to a
datum’s logtime. Video derived data (Tesla automation status and driver head activity) have
no time stamps readily available beyond frame numbers, but are approximated by assuming
a fixed frame rate and adding a recording’s first log time and associated trip’s first midnight.
Some error is introduced through this process as the data logger may start recording footage a
couple of seconds later (not by a constant amount), and data gaps may go unnoticed and could
accumulate a data offset as large as a few minutes before the end of a trip. While time stamps
are theoretically retrievable from a watermark baked into the recordings at a 1s resolution,
automated watermark extraction has not yet been performed. The third data category contains
derived data available on a 10Hz table (road type, maximum permitted speed, gear setting).
Time stamps are available as datetime and time in trip instead of midnight and logtime.

The various data sources were resampled through nearest neighbour selection to a common
reference, which for the Tesla data was the estimated time in trip of the video-extracted
automation status, while for the BMW time in trip according to the 10Hz table was used.
NaN values were adopted whenever time differences spanned more than twice the source’s
sampling rate, when the source did not contain data for the desired variable at the matched
timestamp or when the value was judged as unreliable (e.g. map matching error >50 m). Data
was not included when automation status was unavailable or when not marked as to be used
for this dataset.

Despite best efforts, a couple of faults still persist in the data as presented in this paper. The
datetime stamps of the 10Hz table are calculated incorrectly from the midnight and logtime
values. The 10Hz table also contains large sections of missing data where the same data
is available in the raw tables. Speculations to the possible cause of this include: 1) only
populating the 10Hz table for time stamps where GPS fix was available (GPS availability
adopted the same variable name as the variable indicating if data was allowed to be analysed),
2) mismatched data association due to the incorrect time conversion, 3) 1 or 2 h offsets due
to SQL server’s default assumption of treating date times as system time instead of Unix
time 4) overriding data from multiple data loggers by not ensuring unique trip and recording
identifiers and addressing data by reference instead of by value. Because of these uncertainties,
as little use of the 10Hz table is made as possible. For the BMW, raw automation status data is
incomplete as indicated by an off-balance in data availability of ACC status and LK status. The
suspected reason of this is a data re-structuring on the automation tables that took place at the
time the dataset was exported to SWOV. Finally, many trip continuations appear to be missing
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for the BMW data as indicated by the sudden drop in data availability exactly 30 minutes into
a trip (Figure 3.8). Possible causes are yet to be investigated.
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Abstract

Objective. To investigate how well gaze behavior can indicate driver awareness of individual
road users when related to the vehicle’s road scene perception.
Background. An appropriate method is required to identify how driver gaze reveals awareness
of other road users.
Method. We developed a recognition-based method for labeling of driver situation awareness
in a vehicle with road-scene perception and eye tracking. 13 drivers performed 91 left turns on
complex urban intersections, and identified images of encountered road users among distractor
images.
Results. Drivers fixated within 2◦ for 72.8% of relevant and 27.8% of irrelevant road users and
were able to recognize 36.1% of the relevant and 19.4% of irrelevant road users one minute after
leaving the intersection. Gaze behavior could predict road user relevance but not the outcome of
the recognition task. Unexpectedly, 18% of road users observed beyond 10◦ were recognized.
Conclusions. Despite suboptimal psychometric properties leading to low recognition rates, our
recognition task could identify awareness of individual road users during left turn maneuvers.
Perception occurred at gaze angles well beyond 2◦ which means that fixation locations are
insufficient for awareness monitoring.
Application. Findings can be used in driver attention and awareness modelling, and design of
gaze-based driver support systems.

PRÉCIS
To investigate how well gaze behavior can predict driver awareness of individual road users,
participants drove 91 left turns on urban intersections in a vehicle equipped with road-scene
perception and eye tracking, and identified images of encountered road users among distractor
images.

4.1. INTRODUCTION
Perceptual errors contribute 76% of situation awareness (SA) errors (Jones and Endsley, 1996)
and are among the most frequently reported causes for accidents at intersections, which
represent 20% of European road accidents (European Road Safety Observatory, 2018). Vehicles
are becoming more aware of their surroundings. Machine perception can locate road users
through detection and classification systems (Liu et al., 2016; Kooij et al., 2014). It processes
raw sensor data in a series of filters trained to extract features which collectively capture the
concept of an object category. However, machine perception generally does not outperform
human perception. Since the filters are trained from examples, they only function reliably
in conditions similar to the training set. They also cannot comprehend what is seen, and
only indicate if an object class occupies a particular region in the image. On the other hand,
machine perception has superior attention in detection tasks. It can process the entire road
scene without constraining to a region to attend, and does not suffer from vigilance decrement
or biases from expectations. Machine perception can therefor support drivers in perceiving
relevant road users through auditory and visual notifications. However, our senses receive
more information than we can process with undivided and optimal fidelity, which we only
overcome with a keen ability to be selective in what to attend. Augmentation of this process
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can only complement the driver effectively when it is equally selective, and becomes available
well before the need is evidenced by a driver’s inaction. To achieve this, driver support systems
have to identify discrepancies between what is and what should be attended.

While considerable progress has been made in the development of systems to judge object
relevance (Gao et al., 2019; Gary and James, 2019) or to redirect attention using audio (Ho and
Spence, 2009), augmented reality (Kim et al., 2018) and peripheral displays (Yang et al., 2018),
a key challenge lies in the decision when drivers need to be warned. Current systems rely
on heuristics like “only alert when dangerous, rare or in conflict with common expectation",
which generally limits operation to immediate hazards. Targeted support for developing
hazards or non-critical lapses can only be achieved when driver awareness towards individual
road users is monitored.

Eye tracking seems to be an ideal method to monitor what drivers have seen or overlooked,
since people tend to fixate at what they inquire information from. De Winter et al. (2018)
showed that glance behavior correlated better with supervision performance than the popu-
lar Situation Awareness Global Assessment Technique (SAGAT). Meghanathan et al. (2019)
demonstrated that refixation patterns can discriminate encoding and memorization activity,
and indicate change detection performance. However, fixation location does not always corre-
spond to what is processed cognitively (Endsley, 1988; Rumar, 1990). Peripheral vision can
suffice for lane keeping (Summala et al., 1996) and hazard detection (Huestegge and Böckler,
2016). Conversely we can fail to see things we fixate on (Mack and Rock, 1998), but it is yet
unknown how frequently drivers miss other road users despite fixating upon them, or how to
infer this from gaze behavior.

While aggregate metrics like distraction or fatigue have been inferred from vehicle-fixed
regions of interest or direction independent measures like gaze variance (Rendon-Velez et al.,
2016), gaze-based awareness classification of individual objects remains an open challenge.
Attention prediction models like top-down saliency maps (Xia et al., 2019) or (N)SEEV (Wickens
et al., 2007; Wickens, 2015) can compare current and nominal gaze behavior. When used
to evaluate attention, the assumption is made that modelling what commonly is attended
represents what should be attended. While this is reasonable for normal conditions, it may
fail in error-prone or expectation-defying scenarios.

Hooey et al. (2011) evaluates situation awareness (SA) as a ratio between actual and optimal
awareness among individual situational elements, weighted by their relevance. Aspects of
saliency, expectancy and effort are not incorporated to predict likelihood of gaze, but to esti-
mate difficulty of perception and comprehension. However, this approach often assumes a
simple threshold of fixation eccentricity or duration to signify perception, and lacks quantita-
tive calibration or validation (Fletcher and Zelinsky, 2009; Wickens et al., 2007). To understand
how awareness can be inferred from gaze, large scale ground-truth labeling of SA is needed.

A variety of techniques exist to obtain such SA labeling (Stanton et al., 2013, Chapter 7; Nguyen
et al., 2019). However, we believe that currently there is no suitable method for on-road,
per-object awareness assessment. Physiological measures of SA lack construct specificity. One
possible exception is EEG, which can track attention allocation to audio (Lu et al., 2018) and
detect perception of hazards, conflicts or errors (Spüler and Niethammer, 2015; Wessel, 2012),
but is not sufficiently discriminative to reliably detect single events. Self-rating and observer
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rating techniques are limited to aggregate measures rather than per-object assessments.

Freeze probe techniques like SAGAT measure object specific SA, but can only be used in
simulators and measure recollection instead of awareness (de Winter et al., 2018). Recollection
cannot probe unconscious/implicit awareness and suffers from inaccuracies like forgetting
(Nisbett and Wilson, 1977), limiting it to partial scene probing (Gugerty, 1998). Real-time
probes like SPAM (Durso and Dattel, 2004; Strybel et al., 2016) or verbal protocol methods
(Salmon et al., 2014) circumvent these issues. However, the real-time communication is
intrusive and limits probe rate. Furthermore, non-choreographed scenarios require that
questions are generated real-time, as demonstrated by Sirkin et al. (2017) who automatically
generated questions requiring simple yes/no and touch responses from the driver.

For this study, we build upon this idea of computer generated queries for unchoreographed
on-road driving, and extend it to 1) enable the assessment of all relevant situational elements
as opposed to sampling one at a time and 2) not distract the driver visually or cognitively while
driving, so that it can be applied to complex maneuvers without overloading the driver. It is
applicable to any driving scenario, but we apply it to left turns on urban intersections.

To prevent dangerous distraction, the probing task was performed after crossing the intersec-
tion and parking the car. This delay meant the driver had to memorize what transpired for
longer compared to freeze probe methods, which may lead to memory decay. To minimize
effects of decay, we use a visual recognition task instead of a recall task. Visual detail can be
encoded quite effectively. Brady et al. (2011) reviews that natural scenes can be consolidated
into memory within 100-500 ms while Lyu et al. (2019) and Choe et al. (2017) show that
such encoding occurs incidentally without an attempt to memorize, which supports the idea
that recognition can probe implicit as well as explicit awareness (Campodonico and Rediess,
1996). Working memory tasks have demonstrated that encoding fidelity reduces as demand
increases, and that encoding multiple objects simultaneously is particularly difficult (Brady et
al., 2011). Change blindness tests have demonstrated that changing vehicle presence, location
and orientation is noticed, but subtle color changes are not (Koustanaï et al., 2012). However,
Konkle et al. (2010b; 2010a) also demonstrate that a recognition task allows participants to
identify scenes and objects among similar decoys with high accuracy (87% and up) after briefly
observing 2500 images.

For this study, we designed a simple recognition task, where the driver has to identify images
of encountered road users among distractor images. Successful recognition requires that the
road user was perceived explicitly or implicitly, and thus provides an indicator for Endsley’s
(1995b) Level 1 situation awareness.

4.2. RESEARCH OBJECTIVE
We aimed to gain insight in drivers’ natural viewing at intersections and how well SA can be
predicted from gaze metrics relative to individual road users.
The main research questions addressed were:

1. Can a recognition task be used to asses per-object awareness?

2. Can SA be predicted from gaze metrics relative to individual road users?
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(a) To which extent can gaze metrics predict object relevance and object recognition?

(b) To which extent are foveal and peripheral vision effective in the detection of other
road users?

We developed a new method measuring SA in an urban on-road driving environment, and
evaluated how well a variety of object-related gaze parameters can predict recognition after
left-turn maneuvers. Driver gaze was related to object location, type and relevance for safety,
using the road scene perception of our experimental vehicle. We then assessed the distribution
of central and peripheral detections of safety relevant and irrelevant road users.

4.3. METHOD
We designed an experiment in which participants drove a Toyota Prius instrumented for
automated driving and road scene perception (Ferranti et al., 2019) and eye tracking. The
drivers (manually) performed left turns at multiple crossroads while the vehicle collected gaze
behavior in relation to other road users. After each turn the driver parked the vehicle, and an
object recognition task was performed to measure awareness of other road users encountered
on or near the intersection. In subsequent sections, we detail the tracking of gaze and road
users, the implementation of the recognition task and the experimental procedures.

TRACKING OF GAZE AND OTHER ROAD USERS
We used a 4-camera Smart Eye Pro dx 5.0 eye tracker (software version 8.2) running at 60 Hz
with a gaze accuracy down to 0.5 degrees. The vehicle interior and setup are shown in Figure
4.1.

Figure 4.1: Interior of the vehicle showing the four eye-tracker cameras encircled in red, and the built-in display
used for the post-drive recognition task.
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Figure 4.2: Left: road scene with highlighted detections. Right: 3D visualization of the detected objects. The magenta
ray visualizes the driver’s gaze.

The road was observed at 10 Hz using two forward facing IDS 2.3-megapixel cameras mounted
near the top-center of the windshield and placed 22 cm apart for obtaining a dense stereo
depth image over a visual angle of 62 degrees. Detection of other road users was performed
using a single shot detector (Liu et al., 2016). Using the depth-image, detections were projected
in 3D using the 15 percentile distance of all pixels inside the detection bounding box. Gaze
analysis was limited to the horizontal component to reduce tracking artifacts caused by vehicle
pitch motion at the cost of losing some specificity in the association of gaze angles to road
users. After correcting for vehicle ego-motion, the road users were tracked in 3D space using a
Kalman filter, and up-sampled to 60 Hz using linear interpolation in synchronization with the
eye tracker. For each tracked object, the image with the largest bounding box was stored for
use in the recognition task. Each image was made 20% larger than the bounding box to include
some of the surrounding environment. It was then scaled to 200x200 pixels and normalized
in brightness and contrast to reduce optical differences between real and dummy images.
Information was integrated as visualized in Figure 4.2.

RECOGNITION TASK
After each intersection, the driver parked the vehicle, and the recognition task was performed
on the vehicle centre display. The experimenter first prepared a selection among the road-
user images which the vehicle had collected during the manoeuvre. The procedure was to
avoid parked vehicles and blurry or partial images, and to select the clearest image/trajectory
whenever multiple images were available for the same road user. The pre-selection GUI is
shown in Figure 4.3. Each road user was represented with a colour image, its travelled path
over the intersection and a summary of the road user properties (e.g. type, speed) and gaze
parameters.

The selected images were then presented to the participant. Dummy images from an earlier
session at that same intersection were added to discourage guessing. The participants were
made aware that the task contained both road users they just encountered and dummy objects,
and each dummy image was used once for each participant. The gaze details and vehicle data
were not shown to the participant. The participant GUI is shown in Figure 4.4.
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Figure 4.3: Example image of the pre-selection GUI in which the experimenter selected suitable object images to
be presented to the participant. The GUI allowed scrolling up and down for additional images.

Figure 4.4: Example image of the GUI in which the participants selected images of the objects they recognized.
4 images are selected in this example. The GUI allowed scrolling up and down when more than 8 images were
presented.
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PROCEDURES
The criteria to participate in this study were: being a staff member or student of the department
(for insurance reasons), having a driving license and having driven an automatic transmission
at least once before. Fourteen male drivers participated, of which one was excluded from the
analysis because the drive was not recorded correctly. The remaining 13 were aged between
24 and 57 years (M = 28.8, SD = 8.8). One had a license for 1-5 years, nine for 5-10 years and
three for more than 10 years. Five participants drove less than once a month, four drove once
a week, three drove 1-3 times a week and one participant drove every day. Four participants
did not wear any visual aids, four wore glasses and four wore contact lenses. The research
was approved by the Ethics Committee of the TU Delft. All participants read and signed an
informed consent form prior to the experiment. They received a box of chocolates for their
participation.

All participants were informed on the purpose of this study prior to participation and had
a technical understanding of the used technology, but not of the recognition task or its im-
plementation. Eye tracker calibration typically resulted in 1.2◦ accuracy and was repeated
when accuracy exceeded 2◦ for at least one eye. They were navigated by the experimenter.
Upon approaching each intersection, data recordings were started. The participants were
asked to make a left turn and then safely stop or park the car at the first opportunity. They
were asked (and asserted by the experimenter) to not look at the display while the recognition
task was prepared. Once ready, the participants performed the recognition task without time
constraint. The participants then returned to the main road and the procedure was repeated
for all intersections. The participants returned to the starting location, where they completed
a personal information questionnaire, rated the difficulty of the recognition task and indicated
if they used the images, maps or both for their decisions.

The driven route is shown in Figure 4.5. Five intersections on the Schoemakerstraat in Delft
were selected for their complexity, similarity and presence of traffic throughout the day. Three
intersections were T-junctions that were passed once, and two were crossroads that were
passed two times from opposite directions. The drivers had to give priority to oncoming traffic
on the main road, to cyclists on the two-way bicycle path and pedestrians on the sidewalk. A
typical intersection is shown in Figure 4.6. Maneuver 1 was an additional right turn used to
practice the recognition task and was not analyzed.
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Figure 4.5: Map of the experiment driving route and the locations and order of the maneuvers.

Figure 4.6: One of the intersections. The green line corresponds to maneuver 6. (Google Street-View, 2019)
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FILTERING AND MERGING OBJECTS
After the experiment, the collected data were filtered manually. Split or duplicate tracks of the
same road user were merged. All road users were annotated as being relevant or irrelevant
to the driving maneuver. The second author subjectively judged if a driver would want to
monitor each road user for the purpose of driving at any time during the maneuver. A road
user was considered relevant if the annotator felt that the participant had to give priority or
should obtain priority at the intersection. Road users that left the intersection before the
participant arrived at the intersection or were still well away when the participant left the
intersection were regarded as irrelevant. Road users on the sidewalk or the bicycle lane on the
right side of the intersection were annotated as irrelevant. Road users trying to enter or cross
the main priority road before the participant passed were annotated as relevant. An overview
of the possible road users encountered and how they were annotated is shown in Figure 4.7.

Figure 4.7: Schematic visualization of how objects were annotated according to their position and movement
direction: relevant road users (blue/green) and irrelevant road users (red) and the car driven by the participant
(black).

GAZE METRICS
The following parameters were analyzed

Gaze eccentricity: the angle between the direction of the driver’s gaze and the vector from the
gaze origin to the center of a road user (width of the road user is ignored). Only the horizontal
component is used in this study.
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Minimum gaze angle: the smallest gaze eccentricity towards a road user throughout the
period this road user was tracked by the vehicle. Saccades (angular rates beyond 35 deg./s) are
ignored.

Total glance duration within visual field regions: the summed duration of all fixations occur-
ring while the gaze eccentricity falls within one of the following regions (Duchowski, 2007):
foveal view (<2◦) where highest visual acuity is obtained, near-foveal view (2 - 5◦) in which ob-
jects are commonly recognizable, central view (5 - 10◦) up to which acuity and color sensitivity
degrade linearly, near-peripheral view (10 - 30◦) and far-peripheral view (>30◦)

Huestegge and Böckler (2016) compared saccade behavior during the detection of critical and
moderate hazards in static scenes and found that more critical hazards are detected earlier,
at larger peripheral angles and with shorter fixation durations preceding the first saccade to
these hazards. We therefore evaluated the related metrics:

First saccade angle: the visual angle between start and end of the first saccade that lands
within 2◦ of the object.

First saccade time: the time over which the object has been tracked by the vehicle before a
first saccade lands within 2◦ of the object. Any saccade landing on the object before it was
detected by the vehicle is not observable and thus ignored.

Duration preceding fixation: the duration of the fixation that preceded the first saccade
landing within 2◦ of the object.

We also observed the following parameters that are often considered to assess situation aware-
ness. They were excluded from regression analysis because they are structurally correlated to
the total glance duration within 2◦ . Instead, simple effects are reported.

Number of fixations: the number of fixations occurring while the object is within 2◦ of the
gaze vector. It is equivalent to the number of saccades

Mean glance duration: total glance duration within 2◦ divided by the number of fixations.

BINARY LOGISTIC REGRESSION
Binary logistic regression was performed to test if the gaze parameters can predict the partici-
pants’ selections in the recognition task. We also tested if gaze parameters can predict object
relevance. To account for subject dependencies, both models use participant as a random
variable for the intercept.

We had to address missing values for saccade-related variables, which are defined only when
they land within 2 degrees of an object. List-wise elimination is not desired since we want a
prediction even for objects that were not glanced upon directly. Instead we adopted Cohens’
dummy-variable adjustment (Cohen and Cohen, 1983). This approach is not generally recom-
mended, as it may induce bias from conditional inclusion (Allison, 2009). In our case however,
such a bias is not a concern as the missing values are a structural property of the model. The
model structure thus becomes:

Y = b0 j +b1X1 +Z (b2X2)+e
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Here b0 j represents the intercept which is allowed to vary among participants, X1 are total
glance durations for the 5 eccentricity ranges, X2 are saccade related variables and Z the
dummy variable where Z=1 when saccades are available and 0 otherwise.

RESULTS
In the recognition task, participants had to select images of road users they just encountered.
A total of 91 intersection crossings were collected and 1824 images were presented to the
13 participants in total. On average, there were 8.2 images of real objects and 11.8 dummy
images per intersection per participant. The number of images presented to the driver varied
with a standard deviation of 6 and ranged between 5 and 34. It took 30 seconds on average
to park the car after leaving the intersection, and another 30 seconds for the experimenter
to prepare the recognition task. Participants took approximately 80 seconds to select images.
The questionnaire showed that the participants rated the difficulty of the recognition task as
8.6 on a scale of 1 to 10, with 1 being really easy and 10 being really difficult. Due to dropped
messages in the recordings, 7% of the gaze data could not be re-associated to the recognition
task images and were omitted from the gaze-related analysis.

SELECTION OF IMAGES
Table 1 shows how often participants selected images of real and dummy objects and provides
an indication of response bias and sensitivity. The odds of selecting an image was 5.7 times
higher for real compared to dummy images (CI95%= 4.3, 7.6). Only 29.1% of real images were
selected. Since no unsafe driver behavior was noted, the remaining 70.9% do not necessarily
represent overlooked road users. Hence, recognition rates reported in this study must under-
estimate the actual SA and our recognition task can thus not fully address research question
2.

The 93.3% not selected dummy objects suggest that the participants adopted a select-only-
when-certain philosophy. While the 72 selected dummy images could result from guessing,
some may have been confused with real objects. 13.7% of these dummy images shared a close
resemblance to a real image, similar to Figure 4.8. 24.7% had an approximate resemblance to
a real image of same type, approximately sharing color and/or shape. Jointly this suggests that
selected images indeed represent perceived road users.

Relevant (real) road users were recognized more often (36.1%) than irrelevant ones (19.4%).
This interaction effect is significant (χ2(1)= 26.06, p=<0.001, ϕc=0.186) with an odds ratio of
2.3 (CI95% = 1.7, 3.3).

Table 4.1: Contingency table of the selected images of real objects and dummy objects, as well as relevant and
irrelevant objects.

Selected Not selected

Real images 218 29.1% 532 70.9%
Relevant objects 144 36.1% 255 63.9%

Irrelevant objects 74 19.4% 307 80.6%
Dummy images 72 6.7% 1002 93.3%
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Figure 4.8: Left: an example of a selected dummy image; a silver Volkswagen. Right: a not selected real image
actually encountered; a silver Toyota.

MINIMUM GAZE ANGLE
Table 2 shows the number of real road users divided into the different object classes and
minimum gaze angles. 27.2% of the relevant and 72.2% of the irrelevant road users were never
fixated upon within 2◦. Similarly, 40.1% of the recognized and 53.7% of the not recognized road
users were never fixated upon within 2◦. These values are surprisingly large and indicate that
a considerable number of objects were perceived without ever receiving a direct fixation. Cars
had the lowest recognition rate (26.2%) despite being the most common. Busses are recognized
the most (61.5%), followed by motorcycles (44.4%) and pedestrians (39.0%). When only
considering relevant road users, pedestrians were recognized the most (64.3%). Minimum gaze
angle interacted significantly with recognition (χ2(4)= 16.07, p=.003, ϕc=0.151), suggesting
that higher eccentricity leads to poorer recognition. Minimum gaze angle also interacted with
relevance (χ2(4)= 151.35, p=<.001, ϕc=0.463), suggesting that relevant objects are monitored
more closely compared to irrelevant ones. Road user type also interacted significantly with
recognition (Fisher’s exact test = 15.13, p=.020, ϕc=0.151) and relevance (Fisher’s exact test =
51.58, p<.001, ϕc=0.266).

Figure 4.9 shows the distribution of gaze angles over the duration that an object was tracked
by the car; averaged over all tracked objects. Driver gaze dwelled closer to relevant compared
to irrelevant road users. A similar effect is not as clear between selected and not selected road
users.
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Table 4.2: Number of real road users observed at various minimum gaze angles, for all objects (left) and those selected
during the recognition task (right). The “other” category comprises one dog and two excavators.

All objects (minimum gaze angle) Recognized objects (minimum gaze angle)

N <2◦ 2-5◦ 5-10◦ 10-30◦ >30◦ N <2◦ 2-5◦ 5-10◦ 10-30◦ >30◦

Car 409 257 62 39 40 11 107 76 14 9 6 2
Relevant 241 191 23 15 9 3 81 63 9 6 2 1

Irrelevant 168 66 39 24 31 8 26 13 5 3 4 1

Bicycle 184 67 24 27 57 9 54 31 8 5 8 2
Relevant 83 48 11 9 13 2 39 29 5 3 2 0

Irrelevant 101 19 13 18 44 7 15 2 3 2 6 2

Pedestrian 77 17 12 10 32 6 30 10 7 3 9 1
Relevant 14 7 2 2 3 0 9 5 2 2 0 0

Irrelevant 63 10 10 8 29 6 21 5 5 1 9 1

Bus 13 7 2 2 2 0 8 4 2 2 0 0
Relevant 5 5 0 0 0 0 3 3 0 0 0 0

Irrelevant 8 2 2 2 2 0 5 1 2 2 0 0

Truck 11 3 2 1 4 1 3 1 0 0 2 0
Relevant 6 3 1 0 2 0 2 1 0 0 1 0

Irrelevant 5 0 1 1 2 1 1 0 0 0 1 0

Motor 9 4 1 3 1 0 4 2 1 1 0 0
Relevant 4 3 0 1 0 0 2 2 0 0 0 0

Irrelevant 5 1 1 2 1 0 2 0 1 1 0 0

Other 3 0 0 1 2 0 1 0 0 1 0 0
Relevant 0 0 0 0 0 0 0 0 0 0 0 0

Irrelevant 3 0 0 1 2 0 1 0 0 1 0 0

Total 706 355 103 83 138 27 207 124 32 21 25 5
Relevant 353 257 37 27 27 5 136 103 16 11 5 1

Irrelevant 353 98 66 56 111 22 71 21 16 10 20 4
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Figure 4.9: Distribution of relative gaze angle for (not) selected (left) and (ir)relevant (right) road users over the
period they were detected by the vehicle cameras.

FIXATION PARAMETERS
Table 3 compares fixation parameters for relevant vs irrelevant and selected vs not selected
road users. Figure 4.10 and Figure 4.11 illustrate the distribution shapes for a selection of
gaze parameters comparing relevance and selection in the recognition task. All are right-
tailed. The Kolmogorov-Smirnov tests in Figure 4.11 represent a non-parametric statistic of
similarity between the paired distributions. Only total glance duration with fixation angle <2◦
yielded a significantly different distribution between relevant and irrelevant road users. To
avoid dependencies among participants and reduce non-normality of the distribution of the
residuals, we used participant-averaged paired t-tests. Relevant road users received 1.14 more
fixations compared to irrelevant road users. Selected road users received 0.41 more fixations
compared to not selected road users. Mean fixation duration did not differ significantly in
either case.
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Table 4.3: Fixation parameter mean (µ) and standard deviation (σ) as function of relevance (top) and being selected
(bottom).

Relevant Irrelevant

µ σ µ σ T(12) p
Number of fixations <2° 1.59 0.51 0.45 0.26 9.653 <.001
Total fixation duration <2° (ms) 955 309 237 127 9.318 <.001
Mean fixation duration (ms) 658 264 685 676 −0.134 .895

Selected Not selected

µ σ µ σ T(12) p
Number of fixations <2° 1.34 0.51 0.93 0.33 2.341 .037
Total fixation duration <2° (ms) 833 519 536 197 1.944 .076
Mean fixation duration (ms) 633 272 640 257 −0.113 .912

Figure 4.10: Distribution of fixations (<2◦) per road user, comparing selection in the recognition task (left) and
relevance (right).
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Figure 4.11: Distributions and Kolmogorov-Smirnov tests for a selection of gaze parameters, comparing relevance
and selection in the recognition task.
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BINARY LOGISTIC REGRESSION
Table 4 shows the classification performance for the recognition and the relevance models.
Model accuracy was compared to intercept models, which obtained an accuracy of 70.7%
by simply predicting that no objects were selected, and an accuracy of 50.0% by predicting
that all objects were relevant. Both models differed significantly from their intercept models
(Recognition: χ2(1)=37.64, p<.001, ϕc=0.231. Relevance: χ2(1)=152.49, p<.001, ϕc=0.465),
where accuracy increased by only 2.12% to 72.80% for the recognition model and by a more
substantial 23.09% to 73.09% for the relevance model.

Table 4.4: Classification performance of the logistic regression models.

Intercept models Parameterized models

Relevance Recognition Relevance Recognition

Predicted True False True False True False True False

Observed
True 353 0 0 207 238 115 44 163
False 353 0 0 499 75 278 29 470

Table 4.5: Parameters of the logistic regression models.

Relevant Recognized

Exp(b) t p 5%CI 95%CI Exp(b) t p 5%CI 95%CI

Intercept 0.390 −3.629 <.001 0.234 0.649 0.262 −4.274 <.001 0.141 0.484
Duration <2° [s] 5.452 3.024 .003 1.813 16.398 1.424 1.591 .112 0.921 2.204
Duration 2-5° [s] 2.658 3.273 .001 1.479 4.778 0.956 −0.157 .875 0.544 1.679
Duration 5-10° [s] 2.541 4.188 <.001 1.641 3.934 1.995 3.153 .002 1.298 3.067
Duration 10-30° [s] 1.094 0.741 .459 0.862 1.390 0.946 −0.402 .688 0.720 1.242
Duration >30° [s] 0.693 −1.574 .116 0.439 1.095 0.929 −0.444 .657 0.670 1.288
1st Saccade angle [°] 1.049 2.756 .006 1.014 1.085 1.001 0.132 .895 0.982 1.021
1st Saccade time [s] 0.901 −0.613 .540 0.646 1.257 1.243 1.334 .183 0.903 1.711
Preceding fixation [s] 1.087 0.345 .730 0.677 1.744 1.361 1.217 .224 0.828 2.239

Table 5 provides the exponentials and significance of the model parameters. The odds for a
road user being relevant increases significantly with gaze duration in relative gaze angle ranges
of <2◦, between 2-5◦ and between 5-10◦. Gazes at larger angles do not seem to discriminate
between relevant or irrelevant road users. The odds for a relevant road user also increases
slightly when the first saccade within <2◦ has a larger angle. Timing of the first saccade or the
duration of its preceding fixation do not help to discriminate relevance of road users.

The odds of recognizing a road user increases significantly only when the relative gaze angle
spends more time between 5-10◦ from the road user, and a similar effect for gaze <2◦ does not
reach significance (p=.11). Since this model used 9 parameters to only achieve a 2% accuracy
improvement over the intercept model, the relevance of these results is limited.
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DISCUSSION
This study set out with two objectives: to evaluate if the developed recognition task can provide
useful labeling of per-object situation awareness and to evaluate whether awareness of other
road users can be predicted from gaze behavior in relation to these objects.

SUITABILITY OF THE RECOGNITION TASK
Relevant road users were recognized more often than irrelevant road users, which is in line
with Moore and Gugerty (2010). However, drivers recognized only 29.1% of all road users,
36.1% of the relevant road users and 40.0% of relevant road users that were fixated <2◦. These
unexpected low recognition rates mean that the current implementation of the recognition
task is only partially successful in labeling situation awareness. Below we analyze the limited
recognition rate, and provide suggestions to adapt the task to enhance recognition.

While the vehicle processed all video and gaze measurements in real time, 60 seconds elapsed
between finishing the maneuver and performing the recognition task. This time was needed
for the participant to stop the vehicle and for the experimenters to select images for the
recognition task. This delay may have contributed to the low recognition rate. Humans are
normally poor in remembering details of past events with a rapid decay of information in
working memory which is limited to around 30 seconds (Nisbett and Wilson, 1977). In contrast,
Endsley suggests that SAGAT-like techniques do not suffer much from memory decay up to 3
minutes, provided that the participant is experienced (Endsley, 2019; 1995a). Delays below 30
seconds should be feasible if the selection of suitable images is automated, and a location is
reserved after each intersection for faster parking.

Secondly, it is possible that our image representation differed too much from how situations
are encoded by experienced drivers. Performing a left-turn on a busy priority road is relatively
demanding. Working memory makes trade-offs between the quantity of stored items and their
fidelity. The more road users we encounter, the fewer details about them we can store, and
task-irrelevant features are the first to be dropped (Brady et al., 2011). Our images contained
little task-relevant context. Although the maps provided some spatial context, all participants
reported to primarily base their decisions on the images. A possible improvement would be to
show more environment in the images, and project the travelled paths into the images instead
of the separate map.

SUITABILITY OF GAZE BEHAVIOUR
We parameterized gaze behavior relative to nearby road users. Such gaze parameters may be
useful in driver attention and awareness modelling and driver support system design.

Gaze behavior could predict object relevance with an accuracy of 73%, where relevant objects
were more often fixated <2◦, with larger 1st saccade angles, and with a higher gaze duration up
to 10◦ eccentricity. This illustrates that relevant road users are kept more within the useful
field of view compared to irrelevant road users. Mean 1st saccade amplitude was 12.6◦, with a
strongly skewed distribution well into the 30◦ region. This suggests that peripheral vision was
effectively used to direct gaze to relevant road users.

While the first saccade angle contributed significantly to the relevance model, timing of the
first saccade and duration of the preceding fixation did not. This difference with the findings
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of Huestegge and Böckler (2016) could mean that the usefulness of saccade parameters is
limited to hazards. Saccade related parameters may also become more useful when studied in
relation to events like changes in the road users’ behavior instead of their first appearance in
the driving scene.

Gaze behavior was not very effective in predicting outcomes of the recognition task. One
explanation is that the forgetting aspect could not be captured by our model. We expect that
improved methods and simpler conditions can enhance recognition rate and further clarify
the relation between recognition and gaze. Meanwhile, the recognition task did provide useful
insights. 18% of the road users that never entered the useful field of view (<10◦) were still
selected in the recognition task, highlighting the importance of peripheral vision (Wolfe et al.,
2017). Hence, we strongly recommend that perception models incorporate more than fixation
location in their parameterization. Our findings may also provide guidance for designing
a system alerting drivers towards other road users which may be unseen. From Table 2 we
estimate how frequently such a support system might alert drivers. Our dataset includes 8.2
road users per intersection of which 4.4 are relevant to the maneuver. When a gaze-aware
system alerts to every peripheral (>10◦) road user, the driver receives 1.8 alerts per intersection.
Since drivers recognized 18% of the peripherally observed road users, they would have been
aware of at least 0.33 alerts beforehand. When only responding to relevant peripheral road
users, the driver receives only 0.35 alerts per intersection and would be aware of only 0.07
alerts beforehand.

LIMITATIONS AND FUTURE RECOMMENDATIONS
The recognition task can be improved to obtain complete rather than partial labeling of per-
object situation awareness in complex unstructured maneuvers. The main limitations - delay
before start of the test and task visualization - are likely to be overcome. Better object detection
and especially more robust tracking could circumvent the need for manual preselection of
candidate images, and thus reduce the delay between actual encounters and the recognition
task. Further improvements may be achieved by reducing the number of test images as
recommended by Gugerty (1998) or by associating gazes more selectively to a single road
user, for instance through including the vertical gaze component, or with a Dynamic Markov
random field model (Jiang et al., 2018) or Bayesian likelihood model (Schwehr and Willert,
2017).

After such improvements, the potential of the recognition task as a variant of freeze-probe
methods can be explored. Benefits may emerge in simpler maneuvers or in the better con-
trolled simulator environment. Improvements of the recognition task’s visualization may
better suit the driver’s encoding of situational information. To improve retrieval for recog-
nition, road users could be depicted in the road scene (Hollingworth, 2006), and road-user
motion could be encoded using video, animation or multiple images.

Finally, to more closely examine time-critical attention allocation, it may be interesting to
study gaze behavior relative to road user actions (such as a change in travelled path or speed)
in addition to the aggregate road user parameters used in this study.
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KEY POINTS
• Gaze relative to surrounding traffic was compared to a recognition task during on-road

left-turn maneuvers

• Gaze behavior could predict object relevance where relevant road users were kept longer
in the useful field of view

• Drivers recognized 18% of the peripherally observed road users, which suggests that
perception models should consider more than foveated vision.

• Driver feedback can become more selective when driver awareness of individual road
users is monitored.
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Abstract

We present a novel method for path prediction of vehicle and pedestrian with the aim of collision
risk prediction. The method jointly models the paths of pedestrian and vehicle in a single,
unifying Dynamical Bayesian Network (DBN), consisting of two sub-graphs modeling the vehicle
and the pedestrian. Contextual cues from the pedestrian, driver and environment are used to
extend the prediction horizon. The subgraphs capture the awareness of pedestrian and driver to
anticipate a change of motion, and consider where such stopping is likely to occur. To model
potential motion coupling, the subgraphs share a latent state which observes their potential
collision course. To evaluate the incremental benefits of the proposed model components, we
compare six models with varying access to the proposed context cues, and collected 93 sequences
covering 9 combinations of dynamics and awareness for the driver (driving/braking; (un)aware
of pedestrian) and pedestrian (crossing/stopping; (un)aware of vehicle) using on-board sensors
of an instrumented vehicle. Successively, collision risk is obtained by a probabilistic intersection
operation on the predicted paths.

The experiments show that with prediction horizons of 1.5 s, context-aware models outperform
context-agnostic models in path prediction for scenarios where either traffic participant stops,
while being on par with the baselines for scenarios with continuous movement. Additionally, we
show that driver-attention-aware models improve collision risk prediction capability compared
to driver-agnostic models. This illustrates that driver contextual cues can support a more
anticipatory collision warning and vehicle control strategy.

5.1. INTRODUCTION
While collision prevention and active pedestrian safety systems have provided major safety im-
provements over the past few decades, global fatality rates per unit of population have stayed
constant between 2013 and 2017. According to the World Health Organization, pedestrians
and cyclists present 26% of global traffic deaths (WHO, 2018). According to the European Road
Safety Observatory, more than half of serious crashes that involve pedestrians and cyclists
occur while crossing the road, and 32% occur on crossing facilities (European Commission,
2018; SWOV, 2010).

To make significant improvements in driver assistance systems like collision warning and
automated emergency braking, a better understanding is needed of how the driver and nearby
road users will behave in the near future. Ideally, a prediction horizon of 2.5 s is achieved, at
which point the driver “feels no danger” (Winner, 2016).
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Figure 5.1: The system assesses joint awareness of pedestrian and driver in a scenario of a potentially crossing
pedestrian. Cues about the driver, pedestrian and spatial environment are collected from on-board sensors. A
probabilistic framework based on a Dynamic Bayesian Network (DBN) estimates latent states of awareness of the
driver and pedestrian to predict their future motion. Consecutively, based on the predicted positions, future collision
risk is estimated.

Changes in behavior make it hard to anticipate the future path of pedestrians, e.g., they
can stop walking or change direction in an instant. This makes it particularly challenging
for the ego-vehicle to deal with pedestrians which potentially cross the road. Current on-
market driver assistance systems generally extrapolate the observed motion and thereby
disregard such changes in their predictions. Camera-based driver monitoring systems can
detect fatigue, drowsiness, distraction, gestures, signs of being drunk and readiness to take
over from automated driving. On-market systems for collision warning have been employed
as early as 2007 (Toyota/Lexus) by monitoring head pose and eye opening. Recent releases
allow for SAE level 2 driving on specially mapped highways (Cadillac Super Cruise, 2018), in
traffic jams with restricted velocity (BMW Extended Traffic Jam Assistant, 2018), or in single-
lane cruising (Nissan ProPilot, 2019). Mercedes-Benz announced that the S-Class released
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in September 2020 employs a driver camera that will monitor driver’s readiness to take over
from automated driving mode on highways in an SAE level 3 system as of autumn 2021. This
will enable the driver to perform non-driving related tasks for up to 10 s. Current collision risk
prevention systems detect driver control actions but do not observe driver state and situation
awareness to predict driver behaviour.

To better predict a possible collision, advanced driver assistance systems can evaluate clues
about whether either the driver or the pedestrian is aware of the developing hazard and
act accordingly. Particularly, a pedestrian with the intention to cross is less likely to do so
dangerously if the pedestrian is aware of the approaching vehicle. Similarly, when the driver is
aware of the crossing pedestrian, he/she is less likely to benefit from a collision warning. Driver
and pedestrian awareness can be evaluated jointly (individual-aware) by simultaneously
considering their awareness of the other’s presence; or mutually (group-aware), e.g., assessing
the driver’s belief about the pedestrian’s awareness of the vehicle. In this work, we focus on
joint awareness. The estimation of driver and pedestrian awareness requires a basic insight
in how they attend and perceive. Unfortunately, awareness is a latent state which cannot be
measured directly, but gaze or head pose may provide clues on the awareness likelihood.

In this paper, we consider the setting of a potentially crossing pedestrian and an approaching
vehicle which has the right of way. We present a method which uses context cues about the
spatial environment, driver-pedestrian joint awareness and potential motion coupling to
estimate the future paths of both participants. Successively, collision risk is assessed in a
probabilistic manner. See Fig. 5.1 for an illustration of the overall system. Specifically, we
extend the DBN method from Kooij et al. (2019), which models an individual pedestrian
in a probabilistic framework based on a Dynamic Bayesian Network (DBN), and we model
the interactive paths of the pedestrian and vehicle based on joint awareness of pedestrian
and driver as well as environmental cues, all obtained by on-board sensors. Driver gaze and
pedestrian head pose are used as awareness cues of the other road-user to anticipate their
future motion dynamics. Based on the predicted situation, we estimate the collision risk which
can successively be incorporated in a robust collision warning/control strategy and can be
deployed in future series vehicles for improved SAE level 0 performance.

In the following section, we provide a brief overview of the components required for path
prediction, including the estimation of road-user awareness, and collision risk prediction.
Section 5.3 describes the context-based prediction model. Sections 5.4 and 5.5 provide a
description of the obtained dataset and procedures for parameter estimation of the mod-
els, whose results are compared in Section 5.6. These results are then used to discuss the
incremental benefits from context-agnostic to the driver-aware models in Section 5.7.

5.2. RELATED WORK
In this section, we discuss existing work on object localization, path prediction and collision
risk prediction.

For intelligent vehicles, localization of scene objects is typically done in a 3D world coordinate
frame. Noisy measurements of pedestrians and the ego-vehicle can be temporally filtered to
estimate the true object state consisting of position and dynamics such as acceleration with
accompanying uncertainties under motion assumptions. Pedestrians are typically localized
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from the ego-vehicle by on-board sensors such as stereo cameras, LIDAR and RADAR, or a
combination of these modalities (Roth et al., 2019; van der Sluis et al., 2020). The ego-vehicle
is usually localized in the 3D world coordinate frame by fusion of multiple modalities such as
GPS, IMU, steering wheel angle and wheel rotation sensors.

Path prediction of traffic participants has seen great attention in the recent years. Vulnerable
road user path prediction is covered in recent surveys (Ridel et al., 2018; Rudenko et al., 2020),
while Lefèvre et al. (2014) cover motion prediction of vehicles. We go in-depth on context cues
for path prediction and motion models.

5.2.1. CONTEXT CUES FOR PATH PREDICTION
Path prediction methods can use context cues to anticipate intentions and future behavior
of traffic participants. These cues include observable gestures, poses or movements that
become meaningful antecedents for behavioral changes when observed in a particular context.
Rudenko et al. (2020) define contextual cues as “all relevant internal and external stimuli
that influence motion behavior”. Context cues can be subdivided into static and dynamic
environmental cues, and object cues.

Static environmental context cues model the effect of the static environment on the agent,
e.g., road topology (Pool et al., 2020, 2017), or expected behaviors such as following traffic
rules and preferred paths, minimizing hindrance to self and others (Wang et al., 2019), and
avoiding hazards.

Dynamic environmental context cues include changes in dynamics due to awareness of
other traffic participants and allow for modeling adaptations in behavior. E.g., Kooij et al.
(2014) model whether the ego-vehicle and a crossing pedestrian are on a collision course, and
Pellegrini et al. (2009) use the expected point of closest approach to model potential collisions
of multiple agents.

Object context cues incorporate features linked to the object of interest, e.g., pedestrian states
like walking or standing and transitions like starting or stopping observed from per-frame
postural features (Quintero et al., 2015) or temporal tracking thereof. Keller and Gavrila (2014)
improve pedestrian path prediction by using dense optical flow features. How pedestrians
approach a crosswalk may indicate if they intend to use it or walk by (Völz et al., 2019).
Other examples include time-to-collision, minimum future distance, relative velocity and arm
gestures, e.g., Kooij et al. (2019); Neogi et al. (2020); Pellegrini et al. (2009); Pool et al. (2020,
2017); Roth et al. (2016).

PEDESTRIAN-RELATED OBJECT CUES

Psychological studies show that various attributes of pedestrians may indicate awareness
of oncoming traffic (Chen et al., 2019): body pose, explicit and implicit gestures, facial ex-
pressions (such as smiling), assertive behavior (such as walking fast towards the crosswalk),
shorter lateral distance (such as stepping on the curb instead of stopping on the sidewalk),
not paying attention to traffic, or being engaged in cellular activities (Rangesh and Trivedi,
2018). Gaze is an important non-verbal cue of pedestrians being aware of on an oncoming
vehicle while intending to cross, and may indicate yielding behavior depending on the vehicle’s
approach (speed, collision course) (Kooij et al., 2019; Rasouli et al., 2018). The duration of
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gaze also correlates with the uncertainty of the opportunity to cross (Brouwer et al., 2016).
However, pedestrian gaze is challenging to observe from a vehicle’s perspective. Head pose
provides a proxy for gaze which is easier to observe. In the intelligent vehicle domain, continu-
ous head pose has been estimated using regression models or by head orientation specific
classifiers (Flohr et al., 2015; Kooij et al., 2019; Ridel et al., 2019).

DRIVER-RELATED OBJECT CUES

While perceptual errors contribute to 44% of driver-caused accidents, driving accidents only
correlate weakly with perceptual ability (Hills, 1980). This means that while perceptual ability
is an awareness prerequisite, situation awareness depends primarily on how we distribute
our attention and how we interpret what we attend. Gaze provides a major cue for inferring
awareness as a latent state (Wu et al., 2005) and allows for driver behavior prediction (Martin
et al., 2018). Other cues indicative for attention include frequency of gaze fixations, dwell
time, pupil size, saccades, smooth pursuit, rate of blinking, fMRI “brain mapping” and head
pose (Siddharth and Trivedi, 2020; Stapel et al., 2020; Wu et al., 2005). Additionally, foot, hand
and upper body movements form cues for driver behavior (Deo and Trivedi, 2020). While
attention estimation can predict driver intention and awareness, behavioral responses provide
confirmatory clues: Fukagawa and Yamada (2013) and Phan et al. (2014) propose methods for
estimating driver awareness of pedestrians from behavioral responses measured from vehicle
signals, such as accelerator pedal position, braking force and steering wheel angle. In our
previous work (Roth et al., 2016), we employ driver head pose to model the driver’s awareness
of a crossing pedestrian.

5.2.2. MOTION MODELS
Motion models differ in the way they represent, parametrize, learn and solve the task of path
prediction. They can be subdivided into physics-based, pattern-based and planning-based
methods (Rudenko et al., 2020). Physics-based methods represent motion by explicitly defined
dynamic equations of one or more underlying dynamical models. Pattern-based methods
approximate arbitrary motion dynamics from training data (Alahi et al., 2016; Gupta et al.,
2018; Keller and Gavrila, 2014; Li et al., 2020; Pool et al., 2020; Ridel et al., 2019). Planning-
based methods model long-term motion by finding path hypotheses towards a goal, e.g. the
work of Lee et al. (2017).

In this work, we focus on physics-based models which represent the dynamic state of the road
user probabilistically and allow for interpretation. Simple motion dynamics can be modeled
by Linear Dynamical Systems (LDS), which commonly assume a linear relationship between
states and measurements with Gaussian noise. Under these assumptions, the Kalman Filter
(KF) (Welch and Bishop, 2006) is an optimal filtering algorithm, which has been widely applied
for pedestrian and vehicle tracking (Lefèvre et al., 2014; Schneider and Gavrila, 2013).

In the scope of collision analysis, motion models play a role for predicting paths of targets such
as a potentially crossing pedestrian and the ego-vehicle. The probabilistic models described
here allow to extrapolate observed behaviors into the future while accounting for uncertainties
in the assumed dynamics and observations. Since traffic behavior may change at any time,
a common approach is to treat the complex dynamics by switching between or combining
multiple motion models at each prediction step, e.g., by using Switching LDS (SLDS). SLDS can
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be extended by dynamical models to incorporate contextual cues for path prediction (Kooij
et al., 2019; Quintero et al., 2015). Li et al. (2020) combine the path prediction output of
Kooij et al. (2019) with a sequence-to-sequence trajectory generation method by applying an
adaptive weighting algorithm.

While these methods incorporate contextual cues to the path prediction, they only partially
use cues which capture the nature of pedestrian-vehicle encounters. We now review methods
which specifically model multiple traffic participants. Social force models have been intro-
duced to model the influence of nearby vulnerable road users on each other (Alahi et al., 2016).
Similarly, Wang et al. (2019) resolve courtesy behavior between two vehicles approaching an
intersection by jointly inferring the empathetic intent as respectively observed or demon-
strated approaching behavior (cautious/aggressive). Gupta et al. (2018) model the interaction
of multiple people to predict their collision free paths, based on past trajectories. Lee et al.
(2017) propose a method to predict the paths of multiple traffic participants including static
and dynamic environmental context based on RNNs. Gupta et al. (2019) model negotiation
between pedestrians and vehicle and show in simulation results, that traffic flow improved
compared to best-practice behavior of autonomous vehicles (always stop). Neogi et al. (2020)
model pedestrian-vehicle interaction by incorporating vehicle velocity and distance to the
pedestrian. Braeuchle et al. (2013) combine motion prediction of a pedestrian and a vehicle
by defining the pedestrian state relative to the vehicle. A Bayesian network is used to find
the corresponding motion model for the vehicle and the pedestrian to decide on an evasive
manoeuvre for the vehicle.

These methods model interactive behavior, but neglect joint awareness cues of multiple traffic
participants. Ridel et al. (2019) perform pedestrian path prediction using LSTMs based on
past trajectories of ego-vehicle and pedestrian, and pedestrian head pose. Similarly, Kooij et al.
(2019) use pedestrian head pose to model awareness of the ego-vehicle and influence stopping
behavior. In our previous work (Roth et al., 2016), we argue that interactive behavior benefits
most if awareness of pedestrian as well as driver are jointly considered. This work extends the
method of Kooij et al. (2019) by measuring driver head pose to infer driver awareness of the
pedestrian. Driver awareness is incorporated to predict stopping of the ego-vehicle in case of
an aware driver, or conversely to emit a collision warning in case of an inattentive driver.

5.2.3. COLLISION RISK PREDICTION
Collision risk prediction can be categorized into physical model-based and data-driven meth-
ods (Dahl et al., 2019). The latter estimate collision risk metrics based on training data. Physical
model-based methods incorporate physical knowledge and can further be subdivided into
single-behavior threat metrics (SBTM), optimization-based methods, formal methods and
probabilistic approaches, though these categories can partially overlap (Dahl et al., 2019). Sönt-
ges et al. (2018) present a SBTM method by computing time-to-react from over-approximating
reachable sets. De Nicolao et al. (2007) directly estimate collision risk based on ego-vehicle mo-
tion and a random-walk based pedestrian motion simulation. Collision risk is precomputed
by simulation of pedestrian crossing and looked up during inference based on ego-vehicle
motion model parameters and relative position.

Given predictive distributions, collision risk can be obtained by analytic (Braeuchle et al.,
2013) or discrete (Brouwer et al., 2016) integration. Braeuchle et al. (2013) use a compound
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car-pedestrian geometric model to infer a joint spatial probability distribution. A collision
risk is estimated by integration over predicted distributions for all time steps. The method of
Brouwer et al. (2016) fuses predicted object occurrences from four pedestrian motion models
in a probabilistic fusion grid. A collision risk is estimated by summation over all grid cells
inside the collision corridor. In our previous work (Roth et al., 2016), we estimate a joint spatial
distribution by moment matching of predicted distributions for vehicle and pedestrian. A
collision risk is calculated by integrating the joint spatial distribution over the collision area,
which is defined by all possible intersections between vehicle and pedestrian locations.

5.3. DRIVER AND PEDESTRIAN JOINT AWARENESS FOR COLLISION

RISK PREDICTION
We aim for an accurate path prediction of both vehicle and pedestrian to estimate the collision
risk in a lateral crossing pedestrian scenario. We predict if the pedestrian or driver is likely to
yield in case the other continues in a setting where the driver has the right of way.

Our model builds upon the model by Kooij et al. (2019), who argue that the pedestrian’s deci-
sion to continue walking or to stop is largely influenced by the presence of an approaching
vehicle on collision course, the pedestrian’s awareness thereof, and the position of the pedes-
trian with respect to the curbside. They use this knowledge to model the pedestrian motion by
a context-based SLDS (DBN), which switches between the dynamics of walking and standing
depending on the inferred pedestrian’s intent.

In our previous work (Roth et al., 2016), we argue analogously to incorporate vehicle dynamics,
and that the driver’s intent will be largely influenced by whether the driver has seen the
pedestrian, and whether the vehicle is on collision course with the pedestrian. We extend our
previous work by further vehicle context, i.e., the distance of the vehicle to the pedestrian’s
crossing location, analyze different driver awareness modalities and provide a thorough
analysis on path prediction and collision risk prediction.

The contributions of this work are as follows: We present a probabilistic framework for joint
path prediction of vehicle and pedestrian using observed kinematics, head pose of pedestrian
and driver gaze, as well as context cues of the environment. We provide a comprehensive
analysis of the effect of pedestrian, vehicle and driver context-cues on the situations where an
intervention of either road user is needed to avoid a collision. More specifically, we evaluate
different driver monitoring modalities (invasively measured head pose Roth et al. (2016),
estimated head pose, estimated eye gaze). We employ our framework on looking-in and
looking-out onboard vehicle sensor data to predict forward collision risk.

5.3.1. DBN
We model the behavior of the pedestrian and the vehicle with two SLDSes which are jointly
controlled within a single, unifying DBN. In this way, we can incorporate factors which in-
fluence each participant independently (e.g., awareness of the other), but also capture inter-
dependencies such as being on collision-course, joint awareness or other forms of implicit
communication. In this study, we limit the interdependencies to a shared collision-course
latent state.
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Figure 5.2: Directed graphical model representation of the Dynamic Bayesian Network (DBN). Discrete nodes are
rectangular, continuous nodes are circular. Grey nodes represent observable context variables while the other nodes
represent latent context states. Dashed lines depict temporal connections between latent context states in subsequent
time instances. Driver-related nodes are shaded in green while pedestrian-related nodes are shaded in blue. Context
state description and purpose are provided in Table 5.1.

The DBN structure is shown in Fig. 5.2 while node definitions and their purpose are provided in
Table 5.1. We recapitulate the underlying concepts. For a thorough mathematical foundation
of LDS, SLDS and DBN, we refer to Kooij et al. (2019).

The DBN consists of two subgraphs, one for the pedestrian and one for the vehicle, which will
be described in more detail in Sections 5.3.1 and 5.3.1. The pedestrian subgraph is congruent
with the DBN of Kooij et al. (2019). The vehicle subgraph displays analogous behavior for the
vehicle, by encoding driver awareness by driver gaze and braking manifestation by being close
to the crossing line of the pedestrian.

PEDESTRIAN-RELATED CONTEXT STATES

The pedestrian P can exhibit one of two motion types: walking (M P
t = mw , constant velocity)

and standing (M P
t = ms , constant position). The motion state of the pedestrian contains
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Table 5.1: Latent context states, their associated observation and the purpose within the DBN structure States are
grouped by driver, vehicle, pedestrian and shared contexts.

Latent State Abbr. Observable Abbr. Purpose

driver-sees-pedestrian SP driver-head-orientation (gaze) D HO encodes driver’s awareness of the pedestrian

has-seen-pedestrian HSP - - memorizes driver’s (past) awareness of the pedestrian

vehicle-near-crossing-line NC L distance-to-crossing-line DC L manifests typical location of braking

vehicle-motion-model MV - - switches between driving and braking LDS

vehicle-position-state X V vehicle-position Y V LDS for vehicle state estimation

pedestrian-sees-vehicle SV pedestrian-head-orientation PHO encodes pedestrian’s awareness of the driver/vehicle

pedestrian-has-seen-vehicle HSV - - memorizes pedestrian’s (past) awareness of the driver

pedestrian-at-curb AC pedestrian-distance-to-curb DTC manifests typical location of stopping

pedestrian-motion-model M P - - switches between walking and standing LDS

pedestrian-position-state X P pedestrian-position Y P LDS for pedestrian state estimation

collision-course CC minimum-future-distance Dmi n separates early crossings from critical crossing

two-dimensional positions and velocities: X P
t = [

xt , yt , ẋt , ẏt
]T .This results in the linear state

transformation matrices:

A(mw ) =
[1 0 ∆t 0

0 1 0 ∆t
0 0 1 0
0 0 0 1

]
, A(ms ) =

[1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
(5.1)

The vehicle observes pedestrian world positions Y P
t ∈R2 without velocities, resulting in the

corresponding observation matrix C P = [
1 0 0 0
0 1 0 0

]
.

For the context-based SLDS, the switching state M P
t of the pedestrian motion model is en-

coded in the DBN as a categorical distribution M P
t+1 = Cat

(
M P

t , ACt+1, HSVt+1,CCt+1
)

as
shown in Figure 5.2.

The pedestrian awareness context SVt models whether the pedestrian sees the approaching
vehicle. Head orientation PHOt forms the evidence.

The context variable HSVt memorizes whether the pedestrian has seen the vehicle in the past,
acting as a logical OR between previous HSVt−1 and current SVt .

The environment context ACt models whether the pedestrian is near the curb, thus encoding
where a pedestrian would normally stop to yield for oncoming traffic.

VEHICLE-RELATED CONTEXT STATES

The vehicle motion state is X V
t = [

xt , yt , ẋt , ẏt
]T . It uses a constant velocity model while

driving, and a velocity decay model for braking:

A(md ) =
[1 0 ∆t 0

0 1 0 ∆t
0 0 1 0
0 0 0 1

]
, A(mb ) =

[1 0 ∆t 0
0 1 0 ∆t
0 0 d 0
0 0 0 d

]
(5.2)

The decay parameter d < 1 is selected to represent a velocity half-life of 0.5 s. Also, the vehicle

V observes its own velocity, resulting in the observation matrix C V =
[

1 0 0 0
0 1 0 0
0 0 1 0

]
.
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For the vehicle, the context-based SLDS’ switching state MV is encoded as a categorical
distribution MV

t+1 = Cat
(
MV

t , NC Lt+1, HSPt+1,CCt+1
)

.

The driver awareness context SP models the driver’s awareness of the pedestrian. It is inferred
from the attention eccentricity, i.e., the absolute visual angle difference between the driver’s
center of gaze (or head direction) and the pedestrian, D HOt .

The context variable HSPt memorizes whether the driver has seen the pedestrian analogous
to HSVt .

The static environment context NC Lt indicates whether the vehicle is at a distance from the
pedestrian’s crossing location where the driver can be expected to yield, assuming he/she has
the intention to do so.

SHARED CONTEXT STATE

Both pedestrian and vehicle dynamics depend on CCt , which indicates whether pedestrian
and vehicle are on a collision course. It uses the minimum distance Dmi n

t obtained when
linearly extrapolating the trajectories with their momentary estimated velocities (Pellegrini
et al., 2009).

5.4. PARAMETER ESTIMATION
The model contains parameters for motion dynamics, context variables, such as priors and
transition probabilities, as well as context observation distributions.

We find model parameters by data-driven initialization, followed by gradient based optimiza-
tion. Both use the dataset we introduce in Section 5.5.

5.4.1. MODEL PARAMETER INITIALIZATION

LDS PARAMETERS

The underlying motion models of MV and M P are represented by LDSes which model process
noise Q and observation uncertainty R.

Process noise Q of vehicle and pedestrian are set for both position and velocity states and are
limited to the main diagonal. Values were selected to reflect model uncertainty under typical
velocity changes of drivers and pedestrians (Nazir et al., 2014; Saptoadi, 2017).

Observation noise R is set to reflect typical variance of measurement noise for pedestrian
detection and vehicle movement observed in our research platform, see Section 5.5.

CONTEXT STATES AND TRANSITION PROBABILITIES

The relations between binary context states Z are described by transition probabilities while
the influence of continuous context observations et depends on the likelihoods derived from
the distributions P (et |Zt = True) and P (et |Zt = False). These distributions and transition
matrices need to be estimated. As in Kooij et al. (2019), the distributions are not learned
through training, but found through fitting on the database of Section 5.5. The annotation
value of each context state (Zt = True or Zt = False) is defined by scenario (PHO, D HO),
manual event annotation (DTC , DC L) or manually setting a parameter threshold guided by
distributions (Dmi n).
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The resulting distribution parameters are obtained by Maximum-Likelihood-Estimation of
Gaussian (DTC , DC L), Gamma (Dmi n , D HO) or von-Mises distribution (PHO). The context
observation distributions fitted on our dataset (Section 5.5) are illustrated in Fig. 5.3.

(a) Dmi n : Minimum distance
along approach (m)

(b) DT C : Pedestrian distance
to curb (m)

(c) DC L: Vehicle distance to
crossing line (m)

(d) PHO: Pedestrian head ori-
entation (deg)

(e) D HO: Attention eccentric-
ity (measured head pose) (deg)

(f) D HO: Attention eccentric-
ity (estimated head pose) (deg)

(g) D HO: Attention eccen-
tricity (estimated eye gaze)
(deg)

Figure 5.3: Histograms and the fitted distributions of the context observations. The histograms represent the
observation in the dataset for the respective ground truth class. The distribution functions are fitted on the underlying
data. See Section 5.4.1.

For the collision-course context variable CC , we chose a minimum future distance value of
Dmi n < 2.6m for being on a collision course, based on the histograms of Figure 5.3a.

Context transition probabilities are found through enumeration. There are two exceptions
on this procedure: (a) estimated absolute driver attention eccentricity (Fig. 5.3g), where the
histograms suggest a stricter discrimination criterion of 4◦ compared to 8◦ as suggested by
the fitted distribution. (b) pedestrian head orientation (Fig. 5.3d), where attentive sequences
contained many observations where head pose was incorrectly classified in the direction of
walking. Attentive poses were thus limited to head angles directed towards the vehicle in a
range from -30◦ to 30◦.

5.4.2. MODEL PARAMETER OPTIMIZATION
To optimize model parameters, we employed the parameter estimation method of Pool et al.
(2020), which makes use of error back propagation. We maximize the observation log likeli-
hood of the vehicle and pedestrian under their respective predicted Gaussian distributions,
see Eq. (5.4). All intermediate time-steps up to the prediction horizon are incorporated into
the loss function to enforce a consistent path. Measurements with time-to-event (T T E)
∈ [−2.5s,3.0s] are considered for optimization, to cover periods of typical motion dynamics.
Missing intermediate measurements are ignored for optimization. T T E is defined in section
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5.5.

Optimization has been performed while enforcing properties of the DBN variables to keep
the state representation interpretable, such as probabilities residing in [0..1] and process
and observation noises remaining positive definite. We also enforce the latter to be diagonal
matrices with variability along elements of main direction of travel to reduce degrees of
freedom and obtain more stable convergence in the optimization process.

The model parameters chosen for optimization are: LDS process noises (Q) of pedestrian and
vehicle, transition probabilities, and context observation distribution parameters.

5.5. DATASET
The dataset comprises of an approaching vehicle which has the right of way and a potentially
crossing pedestrian. It contains scenarios with the following expected behaviors:

• An aware pedestrian will yield to the vehicle. Pedestrian awareness is inferred from
pedestrian head pose.

• An aware driver brakes for an inattentive pedestrian approaching the curb. Awareness is
inferred from driver head or gaze orientation.

• In non-collision-course crossing scenarios, both participants continue walking/driving.

• Unaware participants continue walking/driving.

Further, it contains an anomalous scenario where the pedestrian does not comply with the
above attributes, by crossing while being aware of the approaching vehicle on collision course.

5.5.1. SCENARIOS
For the purpose of model parameter estimation and evaluation, vehicle-pedestrian encoun-
ters were staged on two empty public roads. Each encounter consisted of a single pedestrian
with the intention to cross the street in front of the approaching vehicle. The encounters
represented nine disjoint scenarios with different combinations of situation criticality (col-
lision course/sufficient time to cross), pedestrian behavior (stop at curb/cross), pedestrian
awareness of the approaching vehicle (aware/unaware), vehicle behavior (brake/continue)
and driver awareness of the approaching pedestrian (aware/unaware). The included scenarios
are listed in the left of Table 5.4.

Scenarios 1 to 4 represent non-collision-course scenarios, meaning the pedestrian has suf-
ficient time to cross. Scenario 8 represents a collision where both driver and pedestrian
are unaware of each other’s presence. Scenario 9a represents an anomalous scenario: the
pedestrian crosses despite being aware of the approaching vehicle. The anomalous scenario
is not considered for model parameter optimization. The remaining scenarios (5-8) are safe
through a change in behavior by either the driver or pedestrian due to awareness of the other
participant.

A total of 93 sequences were recorded with 4 trained drivers and 4 pedestrians. Each scenario
was captured by 8 to 20 sequences, see Table 5.2. The time between the first pedestrian
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detection and the pedestrian reaching the curb is (min / max / mean = 1.3 s / 3.2 s / 2.9 s). In
that period, the pedestrian detection recall was 83 %.

Table 5.2: Number of sequences per scenario.

Scenario 1 2 3 4 5 6 7 8 9a

# sequences 8 13 8 8 10 8 20 10 8

5.5.2. INSTRUMENTATION
All data was collected with a TU Delft experimental vehicle, whose instrumentation is de-
scribed in further detail in Ferranti et al. (2019). Vehicle position, orientation and velocity
are obtained from an odometry system which fuses differential GPS with GNSS, IMU, visual
odometry from stereo vision, steering wheel angle and wheel ticks. The GPS maintains a
position accuracy of 4 cm while drift between GPS updates is limited to 0.8% per unit of dis-
tance traveled. The road was observed at 10 Hz using a forward-facing stereo camera (baseline
22 cm, 10 fps, 1936× 1216px) mounted near the top-center of the windshield to obtain a dense
stereo depth image of the scene in front of the vehicle.

Driver head pose and gaze was recorded with two systems. Estimated eye gaze and head pose
were recorded with a high-end commercial off-the-shelf eye tracker (Smarteye: 4-camera
Smart Eye Pro dx 5.0, software version 8.2, running at 60 Hz with a gaze accuracy down to
0.5°). Secondly, measured head pose is obtained by a head-worn infrared-reflective marker
tracked by an optical marker tracking system (Smarttrack) mounted on the rear seat head
rest (Roth et al., 2016; Roth and Gavrila, 2019). Additionally, the driver was observed by a
camera mounted above the speedometer for visual verification purposes. All sensor data was
spatially calibrated and resampled to a target rate of 20 Hz.

3D pedestrian positions were obtained by three successive steps: (1) 2D pedestrian bounding
boxes were estimated from the forward facing camera by the Single-Shot-Multibox-Detector
(SSD) of Braun et al. (2019). (2) Depth was found by median stereo disparity (Hirschmüller,
2008) of the 2D bounding box. (3) 3D positions were gained by ego motion compensation
of the vehicle. To obtain an indication of depth sensing noise, we manually annotated the
pedestrian’s path and calculated the standard deviation of the difference between the depth
estimate and the detection’s projection onto the annotated path. This resulted in a standard
deviation of 1.79 m on the used dataset (Section 5.5).

Similarly to Kooij et al. (2019) and Roth et al. (2016), we infer pedestrian’s focus-of-attention
from pedestrian head orientation. We apply the method of Braun et al. (2016) to obtain a
single yaw angle representing pedestrian head orientation.

In order to temporally compare prediction performance among the various scenarios, a
semantically meaningful event was manually annotated for each sequence. For scenarios
where the pedestrian crosses, it represents the first frame where a pedestrian’s foot crosses
the curb. For scenarios where the pedestrian stops, it represents the moment where the last
foot is placed on the ground near the curb. This implicitly defines T T E , for each time-step of
each sequence (negative T T E : before event). We employ map information and ego-vehicle
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localization to estimate the location of the curb side.

5.5.3. PROCEDURES
Pedestrians were instructed to either “continuously observe the vehicle” or to “keep facing
forward and don’t look at the vehicle”. Drivers were instructed to either “keep looking at the
pedestrian” or to “avoid looking at the pedestrian” while approaching the pedestrian.

While scenarios 8 and 9a represent collisions, no actual collision took place during data
collection. Instead, the vehicle was brought to a full stop before colliding with the pedestrian.
The vehicle’s velocity and position data were artificially replaced with a constant velocity
model starting just before the onset of braking.

To ensure safety, the road was overseen to halt the experiments when other traffic entered the
testing area. A co-driver provided verbal instructions on when to brake. Target driving speed
was 20 km/h and pedestrians adopted their preferred walking pace.

5.6. RESULTS
To evaluate the incremental benefits of the DBN model components for an intelligent collision
warning system, we compare six models with varying access to the used context cues on their
joint prediction performance of vehicle and pedestrian behavior and collision risk.

We adopt two evaluation metrics: the ability to predict driver and pedestrian location 1.5 s
into the future, and collision risk across multiple prediction horizons. To accommodate the
small size of the database, evaluation is performed using 5-fold cross validation.

5.6.1. EVALUATION METRICS

For each time t , each model creates a predictive Normal distribution P̃t→t+tp (X t ) for state
X t and prediction horizon tp . Based on the predictive distributions of both vehicle and
pedestrian, we evaluate path prediction performance and collision risk.

PATH PREDICTION PERFORMANCE

Two performance metrics are used to evaluate path prediction performance: (a) Euclidean
distance error between predicted expected position and future position estimation X̃ t+tp :

error
(
tp |t

)= ∣∣∣E[
P̃t→t+tp (X t )

]
− X̃ t+tp

∣∣∣ (5.3)

and (b) the log likelihood of the future position estimation X̃ t+tp under the predictive distribu-
tion:

loglik
(
tp |t

)= log
[

P̃t→t+tp

(
X̃ t+tp

)]
(5.4)

loglik encapsulates both the spatial error and certainty about the position observation. Larger
loglik values denote better prediction performance.

COLLISION RISK

We determine the probability for a collision by taking the integral of the predictive distribu-
tions over a collision area, which is defined by all possible intersections between vehicle
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and pedestrian locations. Let P̃t→t+tp (X t ) = N (µt→t+tp ,σ2
t→t+tp

) be the predictive posi-

tion of either pedestrian P or vehicle V. The combined predictive position is then defined

as P̃φ
t→t+tp

(Xφ
t ) =N (µP

t→t+tp
−µV

t→t+tp
, (σP

t→t+tp
)

2 + (σV
t→t+tp

)
2

). The collision risk predicted

from t for t + tp is given by:

CR
(
tp |t

)= ∫
Aφ

P̃φ
t→t+tp

(Xφ
t ) (5.5)

with Aφ being the combined spatial extent of vehicle and pedestrian dimensions combined.
This resembles the collision risk estimation method of Braeuchle et al. (2013).

For the application of collision risk warning, collision probability has to be classified into
collision or no collision, and classification performance requires a ground truth for collision
outcome. We define a collision as any instance where (1) the scenario represents a collision
scenario and (2) the LDS estimates the momentary (i.e., tp = 0) collision risk to be 5% or larger.
In order to assess the collision risk prediction performance at various prediction horizons, we
select a fixed false positive rate (FPR) and find the attainable true positive rate (TPR) for each
prediction horizon tp .

5.6.2. MODEL VARIANTS
We evaluate four context-aware models including the method of Kooij et al. (2019) which
differ in their access to pedestrian, vehicle and driver context, and compare them to two
context-agnostic models. An overview of the used context cues of the models is given in
Table 5.3. All models were optimized individually as described in Section 5.4.

CONTEXT-AGNOSTIC MODELS

LDS. Both linear dynamical systems for pedestrian and vehicle path prediction are instantiated
by constant velocity motion models.

SLDS. Vehicle and pedestrian motion are both modeled by context-agnostic SLDSes with
the same underlying motion models as the context-aware models (driving/braking, walk-
ing/standing) described below.

CONTEXT-AWARE MODELS WITH VARYING PEDESTRIAN/VEHICLE/DRIVER CONTEXT

We analyze four variants of the model presented in Figure 5.2 which take different amounts of
context into account: DBN.p represents the context-based pedestrian path prediction method
of Kooij et al. (2019). The method is driver-agnostic and models the vehicle dynamics as
a context-agnostic SLDS. DBN.pv is vehicle-aware and extends DBN.p with vehicle static
environment cues but remains driver-agnostic. It includes proximity of the vehicle to the
crossing line of the pedestrian (NC L). DBN.pvh additionally uses driver head pose as an
awareness cue (SP ). DBN.pvg uses driver eye gaze instead of driver head pose.

5.6.3. PATH PREDICTION
Table 5.4 depicts loglik and Euclidean distance error of both pedestrian and vehicle for pre-
diction horizon tp = 1.5s averaged over periods where typical changes in dynamics occur
(pedestrian: TTE ∈ [−0.5s,2.0s], vehicle: TTE ∈ [−0.5s,3.0s]; TTE ranges define times where
predictions are made for).
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Table 5.3: Context cues and number of motion models per road user used in the models. DBN suffixes denote used
context: p: pedestrian (Kooij et al., 2019); v: vehicle (NC L); h: driver head pose; g: driver gaze.

Context cue LDS SLDS DBN.p DBN.pv DBN.pvh DBN.pvg

Ped. at-curb - - x x x x
Ped. awareness - - x x x x
Collision course - - x x x x
Veh. near-cross - - - x x x
Driver awareness - - - - head pose eye gaze

# Ped. motion models 1 2 2 2 2 2
# Veh. motion models 1 2 2 2 2 2

Scenarios 1 to 4 represent non-collision course scenarios where there is no risk of collision
when driver and pedestrian continue their paths. All models show similar loglik and Euclidean
distance error for both the pedestrian and the vehicle. This is to be expected, as they denote
no change in dynamics of either road user. One exception is the SLDS model which achieved
generally lower pedestrian loglik performance on all scenarios. Inspection of individual runs
revealed that the pedestrian observation noise causes multiple switches between walking and
standing motion model, leading to erroneous predictions.

In scenarios 5 and 6, the pedestrian stops to prevent a collision. Both context agnostic models
(LDS, SLDS) show poor pedestrian path prediction performance. Introducing pedestrian
awareness context (all DBN models) raises the pedestrian loglik by approximately 2.9 com-
pared to the LDS on scenario 6, which corresponds to an increased likelihood by a factor of
e2.9 > 18 and reduces positional error by approximately 13 cm. The effect of adding vehicle
context (DBN.pv) and driver context (DBN.pvh, DBN.pvg) for the pedestrian is negligible,
as those contexts do not affect motion dynamics of the pedestrian. Vehicle path prediction
drops in performance for scenario 5 when vehicle context and driver context is added. This is
because the driver-aware DBN variants also consider the option that an aware driver might
yield despite having right of way.

In scenario 7, the aware driver slows down for an unaware crossing pedestrian. The LDS
model wrongly predicts the vehicle to continue, resulting in low vehicle loglik. The SLDS
model adapts more quickly to the change of vehicle motion dynamics leading to a loglik
of 3.0. The DBN variants further increase the loglik of the vehicle, and manifest in a 32 cm
smaller Euclidean error for DBN.pv compared to the SLDS and a larger loglik when including
driver awareness (DBN.pvh and DBN.pvg vs. DBN.pv). There is no practical difference in path
prediction performance between DBN.pvh and DBN.pvg. Figure 5.4 shows a temporal analysis
of vehicle path prediction performance for sequences where the vehicle stops (scenario 7).
While the vehicle approaches the pedestrian with constant velocity (T T E <−0.5s), the three
models show similar performance. As the vehicle slows down, both LDS and SLDS increase in
spread over various runs (shown by the standard deviations) and gradually decrease in vehicle
loglik. The SLDS model adapts more quickly to the change of dynamics (switch from driving
to stopping) compared to the LDS. The DBN.pvg model anticipates the change in motion
dynamics resulting in a higher loglik and less uncertainty than the context-agnostic models.
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Table 5.4: Scenario decomposition (left), mean path prediction performance in terms of loglik (center) and Euclidean
distance error (right) of various models for a prediction horizon of tp = 1.5s. The top half of the table captures
prediction performance for the pedestrian while the bottom half displays vehicle path prediction performance.
See Section 5.6.2 for model definitions. Higher loglik and lower Euclidean distance error denote better prediction
performance. Bold numbers denote best-performing model per scenario. Grey rows denote scenarios with a change
in dynamics of the respective traffic participant.

Scen. CC
Ped.
stops

Ped.
SV

Veh.
stops

Driver
SP

LDS SLDS
DBN

p
DBN

pv
DBN
pvh

DBN
pvg

LDS SLDS
DBN

p
DBN

pv
DBN
pvh

DBN
pvg

Pedestrian 1.5 s loglik Pedestrian 1.5 s Euclidean error (cm)

1 0 0 0 0 0 −3.7 −4.3 −4.1 −4.1 −4.1 −4.2 251 214 243 243 242 243
2 0 0 0 0 1 −3.9 −7.9 −4.8 −4.8 −4.8 −4.8 289 256 292 292 293 292
3 0 0 1 0 0 −4.1 −6.3 −4.6 −4.6 −4.6 −4.6 256 246 279 279 279 279
4 0 0 1 0 1 −3.3 −3.3 −3.9 −3.9 −3.8 −3.9 170 177 192 191 182 192
5 1 1 1 0 1 −7.3 −7.9 −3.6 −3.7 −3.7 −3.7 202 180 170 173 173 174
6 1 1 1 0 0 −6.3 −6.1 −3.4 −3.4 −3.4 −3.4 164 168 151 152 151 151
7 1 0 0 1 1 −3.1 −9.3 −3.7 −3.7 −3.7 −3.7 140 146 155 155 155 156
8 1 0 0 0 0 −3.1 −5.1 −3.7 −3.7 −3.7 −3.7 158 156 173 173 173 174
9a 1 0 1 0 0 −3.2 −10.1 −3.9 −3.9 −3.9 −3.9 201 201 215 215 215 215
all non-anomalous CC = 1 (5 to 8) −4.0 −7.1 −3.6 −3.6 −3.6 −3.7 155 155 158 159 159 160

Vehicle 1.5 s loglik Vehicle 1.5 s Euclidean error (cm)

1 0 0 0 0 0 −1.1 −1.2 −1.4 −1.1 −1.1 −1.1 55 55 47 55 53 51
2 0 0 0 0 1 −1.1 −1.2 −1.4 −1.1 −1.1 −1.1 61 63 50 61 61 60
3 0 0 1 0 0 −1.0 −1.2 −1.4 −1.0 −0.9 −1.0 49 53 40 50 48 46
4 0 0 1 0 1 −1.1 −1.3 −1.4 −1.2 −1.1 −1.1 64 67 56 64 63 63
5 1 1 1 0 1 −1.0 −1.2 −1.4 −1.7 −1.6 −1.6 50 55 50 122 108 117
6 1 1 1 0 0 −0.9 −1.1 −1.4 −1.5 −1.0 −1.1 44 52 41 106 52 51
7 1 0 0 1 1 −8.3 −3.0 −2.8 −2.8 −2.7 −2.7 248 191 196 159 156 160
8 1 0 0 0 0 −1.0 −1.1 −1.4 −1.3 −1.0 −1.0 46 47 41 80 46 45
9a 1 0 1 0 0 −0.9 −1.2 −1.4 −1.3 −0.9 −1.0 38 45 36 79 41 41
all non-anomalous CC = 1 (5 to 8) −4.9 −2.2 −2.1 −2.2 −2.0 −2.0 154 126 125 130 113 115

Scenario 9a is anomalous as the pedestrian crosses despite seeing the vehicle. For pedestrian
path prediction performance, the DBN variants show a slightly lower loglik, as they take into
account that the pedestrian might stop due to seeing the vehicle. With respect to vehicle path
prediction, scenario 9a shows a similar performance to scenario 8 for all models.

5.6.4. COLLISION RISK PREDICTION
We first compare how collision risk estimates evolve over time for the LDS, SLDS and DBN.pvg
models on two exemplary sequences with changing vehicle dynamics (scenario 7) and collision
(scenario 8), followed by an assessment of overall collision risk prediction performance as
function of prediction horizon.

SCENARIO-BASED COLLISION RISK PREDICTION

Figure 5.5a shows collision risk prediction for a sequence from scenario 7, where the vehi-
cle brakes due to an aware driver. Thus, a low predicted collision risk is expected. For a
prediction horizon tp = 0.75s, all models predict a negligible collision risk (dashed lines).
Predicting tp = 1.5s into future, the LDS and SLDS models anticipate a collision risk of 76%
and 49% respectively while the DBN.pvg model keeps a collision risk below 20% throughout
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Figure 5.4: Loglik and standard deviation over time for a braking vehicle (scenario 7) for a prediction horizon tp = 1.5s,
and drawn at the moment for which the prediction was created. The vehicle initiates braking for the crossing
pedestrian between −1.8 s and 0.6 s, with most vehicles braking from 0.0 s onward.

the sequence.

Figure 5.5b shows collision risk over time for one sequence from the collision scenario (sce-
nario 8), where both the vehicle and the pedestrian continue their respective motion, being
unaware of each other. The collision window represents all instances labelled as a collision
in accordance with Section 5.6.1. All compared models (LDS, SLDS, DBN.pvg) depict similar
maxima of collision risk within the collision window for both prediction horizons. With in-
creasing prediction horizon, each model becomes less certain, resulting in a lower predicted
collision risk value. The maxima are above 30% within the collision window for the exemplar-
icly depicted sequence. Figure 5.5 further shows that only for DBN.pvg, there exists a range of
collision risk thresholds (20%–33%) for which a collision warning is triggered in the collision
sequence (Figure 5.5a) but not in the non-collision sequence (Figure 5.5a).

OVERALL COLLISION RISK PREDICTION

To examine how collision risk prediction performance changes with prediction horizon tp , we
select a FPR of 1% and evaluate the attainable TPR as a function of tp . Figure 5.6 shows that
for a prediction horizon up to 0.8s, all models except the LDS achieve a TPR close to 1.0. At
prediction horizons > 1s, the TPR of the LDS drops below 20%.

Adding context successively results in better collision prediction for larger prediction horizons.
The DBN.pvh and DBN.pvg models maintain the highest TPR for larger prediction horizons.
The vehicle-agnostic DBN.p and driver-agnostic DBN.pv models perform in between the
driver-aware (DBN.pvg, DBN.pvh) and the context-free (LDS, SLDS) models. At a prediction
horizon of 1.5 s, The pedestrian-aware model DBN.p of Kooij et al. (2019) maintains a 30%
TPR while DBN.pvg achieves 59%.
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(a) Sequence from scenario 7. Lower collision risk denotes
better performance.

(b) Sequence from collision scenario 8. Higher collision
risk denotes better performance. The collision window
CW is shaded in red.

Figure 5.5: Collision risk predictions obtained from different models for a braking vehicle (top) and collision (bottom)
sequence. TTE indicates the time for which the predictions were made. Values are shown for prediction horizons tp
of 0.75s and 1.5s.

5.6.5. DRIVER MONITORING MODALITY
While driver gaze monitoring may provide a sensitive context cue for attention, accurate
eye tracking can be expensive. More affordable systems such as head pose trackers may
provide sufficient discrimination for collision warning support. Figure 5.7 shows a comparison
between driver gaze (DBN.pvg) and driver head pose (DBN.pvh) as contextual cue for SP
(sees-pedestrian). For SP = 1, driver gaze provides higher classification confidence in HSV
(has-seen-vehicle) compared to head pose. For SP = 0, both models incorrectly believe
that the driver has seen the pedestrian for a small fraction of sequences, though DBN.pvg
has fewer of such sequences at all times, thus maintaining a better accuracy compared to
DBN.pvh. However, this classification accuracy did not yield a better vehicle path prediction
performance when comparing DBN.pvg to DBN.pvh in Table 5.4. Both models yielded better
vehicle path prediction performance compared to the driver-agnostic model (DBN.pv).

Measured driver head pose (Smarttrack) provided virtually identical results to estimated head
pose (Smarteye) on all scenarios, and was therefor excluded from analysis.

5.7. DISCUSSION
The evaluated DBN variants perform joint path prediction and collision risk prediction for
a pedestrian and vehicle in scenarios with a laterally crossing pedestrian. To evaluate the
incremental benefits of the DBN model components, we compare six model variants with
varying access to the used context cues.

Overall, our findings show that in scenarios with motion transitions of either the vehicle or
the pedestrian, the context-aware models (DBN.p, DBN.pv, DBN.pvh, DBN.pvg) outperform
the context-agnostic baseline models (LDS, SLDS) in terms of vehicle and pedestrian path
prediction performance (cf. Table 5.4 pedestrian scenarios 5 and 6; vehicle scenario 7). The
context-aware models perform on-par or better for non-anomalous collision course scenarios
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Figure 5.6: Collision risk TPR of different models obtained under a 1% FPR for various prediction horizons. Higher
values denote better performance.

(cf. Table 5.4 bottom row of pedestrian and vehicle). Pedestrian context (DBN.p), vehicle con-
text (DBN.pv) and driver awareness (DBN.pvh, DBN.pvg) provided incremental improvements
in collision risk prediction performance.

When integrating pedestrian context (DBN.p), pedestrian path prediction performance im-
proved (cf. Kooij et al. (2019)). Providing knowledge about crossing location NC L (DBN.pv)
improved vehicle path prediction Euclidean error. The loglik did not improve, likely because
the moment of braking onset varied by 2.4 s across sequences, which limits the accuracy gain
from NC L. DBN.pv resulted in better collision prediction performance compared to DBN.p.
Incorporating driver awareness (DBN.pvg, DBN.pvh) yielded a further increase of both vehicle
path prediction and collision risk prediction performance (cf. Table 5.4 and Figure 5.6).

In contrast to our expectations, measuring driver gaze yielded similar path prediction and
collision prediction performance compared to measuring driver head pose. This might suggest
that cheaper monitoring techniques may be sufficient to achieve the prediction advantages
of Figure 5.6. However, when multiple road users or driving distractions are introduced, it is
likely that driver awareness will be disambiguated more accurately from gaze compared to
head-pose. Other fixation-related metrics may provide further insights in driver awareness,
such as number of fixations, total fixation duration and angle of first saccade landing within
2° of the pedestrian (Stapel et al., 2020), though such evaluations would require natural as
opposed to instructed viewing behavior, and other spatial regions competing for attention.

The driver-aware models perform joint path prediction of two road users with interaction
encoded in part via a shared latent state. This indicates that using CC (collision-course), which
captures joint but not mutual awareness, cannot explicitly disambiguate situations where
both driver and pedestrian are attentive. The models encode the following: if one road user
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Figure 5.7: Classification performance of DBN.pvg and DBN.pvh on the hidden HSP state on sequences where driver
is instructed to be attentive (SP = 1) and inattentive (SP = 0).

A is aware of the other B, it induces a change in dynamics of A which influences the shared
collision course context node, which in turn participates to change in motion dynamics of B.
The limitations of the current structure lie in modeling a direct path of influence of awareness
of A to the change of dynamics of B. Considered further, mutual awareness as suggested by
Wang et al. (2019) and negotiations over the right of way would involve further aspects of
game theory, i.e., modeling the others awareness of oneself. The underlying DBN provides a
versatile structure to model expert knowledge. To that end, it can be extended by additional
cues, such as adding a stronger structural coupling to the make motion model switches of
road user A also dependent on road user B’s awareness of A.

Anomalous situations which defy the anticipated behaviors, but still occur in real-world traffic
(e.g., scenario 9a), also provide a challenge to a context-aware system. They might contradict
the expert knowledge encoded by design choices such as topology and choice of context. For-
tunately, the probabilistic modeling allows for softer decisions, despite favoring the designed
observations: the switch of motion dynamics not only depends on the preconditioning con-
text, but also on the current positional observations. RNNs (Pool et al., 2020) might mitigate
the problem of imprecise expert knowledge by learning representations from data. There is
still the problem of availability of scarce data and the bias of parameter optimization towards
more prominent situations in supervised learning.

In many real-world pedestrian-vehicle encounters, no transition in behavior takes place,
e.g., the pedestrian has sufficient time to cross or does not have the intention to cross. The
interesting and challenging part are the few time instances with sudden changes in dynamics,
which a robust model needs to anticipate in order to provide a good prediction. This poses an
imbalance of data toward situations where no interaction is needed. Care should be taken to
deal with this imbalance when training and evaluating. E.g., we evaluated the path prediction
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performance over a subset of time where changes in dynamics might take place to emphasize
the effect on more challenging instance of time.

Our method models joint awareness of two traffic participants. In principle, the model can
incorporate an arbitrary number of traffic participants. However, the shared latent states
increase polynomially by the number of road users, which makes modeling a large number of
interactive behaviors computationally intractable, especially when mutual awareness is the
goal (see above). Additionally, the underlying motion models are restricted to linear dynamics
which might not hold true for longer prediction horizons and do not consider preferred paths.
Pattern-based motion models like social forces (Alahi et al., 2016) or trajectory matching (Keller
and Gavrila, 2014) could be incorporated to encounter for that shortcoming. We see a gap
between methods which analyze joint awareness, like the present work, and methods that
deal with groups, social interactions and preferred paths. As a solution, we believe a useful
model considers social interactions, as well as context cues which reflect mutual awareness.
Both social interactions and preferred paths could be integrated into the DBN framework by
adding context cues and altering motion models to respect preferred paths.

We estimate collision risk from predictive state distributions of the vehicle and the pedestrian.
This poses the dilemma of deciding on a collision warning strategy based on the predicted
collision risk value. The concrete choice gives a trade-off between having a ‘safe’ system (high
TPR) and a ‘conservative’ system (low FPR). The prediction horizon analysis of Figure 5.6
allows for selecting the system which fits the application’s needs. Having collision risk analyti-
cally defined based on the predictive distributions allows for integration into other collision
avoidance schemes, such as evasive maneuvers, which evaluate different future paths of the
ego-vehicle to base a decision for evasive trajectory. Contrary, methods which directly estimate
a collision risk value based on past motion, e.g., De Nicolao et al. (2007), make the integration
into a collision avoidance system more complex, as they do not allow for evaluating of different
future paths of the road users.

5.8. CONCLUSIONS
We presented a novel method for path prediction of vehicle and pedestrian with the aim
of probabilistic collision risk prediction in scenarios with a lateral crossing pedestrian. The
method modeled the behavior of pedestrian and the vehicle with two Switching Linear Dynam-
ical Systems (SLDS) which were jointly controlled in a single, unifying Dynamical Bayesian
Network (DBN) using different pedestrian, vehicle and driver context cues. Successively,
collision risk was computed by a probabilistic intersection operation. Overall, this work closed
the loop between on-board sensors up to collision warning.

We evaluated the incremental benefits of pedestrian, vehicle and driver context in six models
with varying access to the used context cues, namely Linear Dynamical System (LDS, one mo-
tion model), SLDS (two motion models), DBN.p (pedestrian aware), DBN.pv (driver-agnostic),
DBN.phg (driver-gaze as awareness cue) and DBN.pvh (driver head pose as awareness cue).

For a prediction horizon of 1.5 s, the driver-aware model DBN.pvg outperformed context-
agnostic LDS and SLDS for scenarios with a stopping pedestrian with a pedestrian loglik of
−6.3/−6.1/−3.4 (LDS/SLDS/DBN.pvg) while being on-par for vehicle path prediction. Simi-
larly, for the scenario with a braking vehicle, LDS/SLDS/DBN.pvg yielded vehicle path pre-
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diction logliks of −8.3/−3.0/−2.7. For scenarios of continuing motion, the models compared
on-par. The collision risk warning TPR was raised from 30% (pedestrian-aware model DBN.p
of Kooij et al. (2019)) to 59% for DBN.pvg for a prediction horizon of 1.5 s and a false positive
rate (FPR) of 1% over the dataset.

Pedestrian context (DBN.p) and driver awareness (DBN.pvh, DBN.pvg) provided incremental
improvements in path prediction and collision risk prediction performance in scenarios
where either the driver brakes or the pedestrian stops. We take this as an evidence of the
superior capability of anticipating future paths from joint awareness compared to simpler
individual-aware and context-free baselines.

Future work involves extensions to path prediction of multiple traffic participants and mutual
awareness, e.g., assessing the driver’s belief about the pedestrian’s awareness of the vehicle.
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This chapter summarizes the main findings from each chapter and discusses implications
for the objectives and questions detailed in Chapter 1. Unanswered and newly identified
questions are proposed for future work.

6.1. EFFECTS OF REAL-WORLD AUTOMATION ON ATTENTIONAL RE-
SOURCES

Chapter 2 set out to quantify how cognitive load differs between real-world manual and
attentively supervised SAE2 automated driving, and compared this in a Tesla model S on
two highways of different traffic complexity (a quiet, monotonic highway and a more en-
gaging round-way of Amsterdam) and between automation-experienced Tesla owners and
automation-inexperienced drivers. Changes in workload were monitored with the NASA RTLX,
an auditory detection-response task (DRT) and cardiovascular activity. Additional ratings for
driver trust and sleepiness were collected.

The subjective and secondary task measures for workload differed between driving conditions,
but no interaction between automation use and environment emerged. This suggests that
drivers remain sensitive to changes in task demand, and that automation does not affect this
sensitivity.

When using the automation, automation-experienced drivers perceived a lower workload,
while automation-inexperienced drivers perceived their workload to be similar to manual driv-
ing. Automation-experienced drivers also reported a higher trust in the automation compared
to automation-inexperienced drivers. This indicates that a workload benefit is only perceived
by automation-experienced users. It also suggests that no control is relinquished during first
two hours of use before asserting the automation’s basic capabilities. This experience and
trust prerequisite for reduced perceived workload was not observed in simulator studies (de
Winter et al., 2014), but has an important implication. It suggests that early encounters with
automation limitations are more likely to be resolved safely compared to later encounters.
System capabilities and limitations may therefore better be demonstrated during the first
drives rather than later, such that expectations reflect system’s actual rather than desired
capabilities, and automation surprises become less likely to arise later, as also demonstrated
by Ebnali et al. (2019). This does not mean that early encounters of automation limitations are
guaranteed to be safe. Victor et al. (2018) found that 21% of participating drivers allowed their
automated vehicle to crash into a stationary object after 30 minutes of automated driving in
a test track study despite attentive monitoring and having reasonable time to intervene (5
seconds or 14 seconds when noticing an early cue on the object’s presence). Crash rates did
not reduce when informing or demonstrating the possibility of automation failure prior or
during the drive. Such demonstrations are therefore preferably provided in a safe format, such
as with video, simulation or under guidance of a safety driver.

A range of experimental studies (de Winter et al., 2014) reported that supervised automation
gives a lower workload compared to manual driving. In these studies a reduced workload
was found using both subjective rating on the NASA-TLX and rating scale mental effort,
and using objective evaluation measuring performance on a non-driving task. Our study
found a workload reduction only in experienced users, and only for their subjective RTLX
ratings. Attentional demand as measured with the DRT suggests workload was higher while
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supervising automation for both participant groups. These observations indicate a miss-
match between perceived and objective load. There can be several underlying reasons for this
dissociation (Hancock and Matthews, 2018). Low driver demand from lane keeping and speed
regulation and increased demand from monitoring extrinsic instead of intrinsic performance
were proposed explanations for the objective workload increase. We also highlighted that the
small sample size and incentives to monitor attentively prevent these findings to generalize to
the full population for all driving conditions. However, this does not negate the observation
that at least some users can obtain a higher average workload from supervising automation
compared to manual driving, and it is thus possible for automation to be used as remedy
against underload under engaging and monotonic traffic conditions. The results therefore
demonstrate that attentive supervision of SAE2 can result in a healthier workload compared
to manual driving, but the low perception of workload could discourage attentive monitoring
if this perception is attributed to a low monitoring need. An implication is that the ironies of
automation reside in our experiences and beliefs rather than being a limitation of physiology,
and while these are by no means easy to alter, suggests it may be possible for automated driving
to improve driver attention. The focus should therefore be directed to problems related to
driver understanding and expectation of automated vehicles; Neuhuber et al. (2020) found in
a 100 participant on-road study that within each age group, more than 50% of participants
made at least one remark suggesting a fault in their mental model of the system, despite
trusting the automation. Similarly, Farah et al. (2020) indicate that drivers often assume a
larger operational design domain than what is described in the vehicle manual when it comes
to automation capabilities.

Future work should test the generalizability of these workload findings, and consider calibrat-
ing workload perception and system limitation understanding rather than actual task demand
when attempting to encourage attentive supervision. It should also be examined how much
further automation can progress towards apparent autonomy before this potential benefit of
strategic supervision on energetic state disappears. With SAE3 systems, the driver will have the
choice to monitor or take the eyes off the road. It is unlikely that continuous monitoring of an
SAE3 system will be as engaging as supervising today’s SAE2 automation. On the other side of
the spectrum, Scallen et al. (1995) found that alternating between 15 s manual driving and 15 s
automation use raises workload and performance compared to longer periods, though users
reported this transition rate to be distracting, and may not be desired for longer periods of
use. There may be a sweet spot between SAE2 and SAE3 where reliability is consistent enough
for the user to develop a clear understanding of the operational design domain, while the
need for intervention remains frequent enough for strategic supervision to remain engaging
and thus provide the intrinsic compulsion needed to stay attentive (Hancock, 2013). Lu et al.
(2019) and Zhang et al. (2019b) demonstrate in a monitoring and takeover request study where
automation dynamically transitioned between SAE3, SAE2 and manual driving, that the rate
at which drivers motorically prepare to intervene while using SAE2 automation depends on
how recently a need to intervene occurred, with more and earlier motoric preparation when
such events occurred more recently. It should be examined how much further automation
can progress towards apparent autonomy before this potential benefit of strategic supervision
on energetic state disappears, and how the need for supervision can be maintained as its
reliability progresses.
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6.2. NATURALISTIC AND LONGITUDINAL EFFECTS OF AUTOMATION
Chapter 3 explored how experience with automation changes automation usage and atten-
tion over the first two months of use in comparison to a one month manual baseline. We
further presented our methodology and performance for two data enrichment methods on
the naturalistic dataset.

WHICH CONDITIONS AFFECT WHEN AUTOMATION IS USED?
Automation was mostly used on road types for which the systems are intended (motorways
and highways), and use on urban roads was incidental rather than habitual, which suggests
that users are aware of the system’s general limitations and typically act accordingly. These
observations of usage are in line with the distribution of activations across road types as found
in a one month, 120 participants naturalistic study conducted in the Washington DC region
(Russel et al., 2018), but the suggested implication of users being aware of system limitations
contradicts the findings from Farah et al. (2020) where a city road with unmarked road edges
was correctly considered to be outside the automation’s ODD of a Tesla model S by only 31%
of their participants, which included frequent users of this system. This suggests that drivers
may limit their SAE2 automation use to highway conditions even when convinced that urban
settings are within the capabilities of the automation. Monitoring behaviour during moments
of urban automation use and urban activation attempts could be inspected to investigate
whether urban usage (attempts) are performed responsibly. Highway ACC+LK usage across
driving speed suggests that users were generally comfortable using these systems during most
highway traffic conditions, but did not use automation in brief periods of slow highway traffic.
This distinction between short and longer periods of slow highway driving should be examined
further.

No significant time in trip, time of day or experience effects were found for automation usage.
While such effects may still exist, they at least are too subtle to emerge on the examined data
from the plethora of factors which influence when automation is used. There is therefore no
indication that automation is used more often at a particular time, and usage increases nor
diminishes across the first two months of use, which suggests that drivers are generally willing
to use automation regardless of time or experience. Whether automation use interacts benefi-
cially or concernably with the circadian effects of performance remains to be investigated, as
also emphasised by Kaduk et al. (2020).

HOW DOES AUTOMATION USE AFFECT ATTENTION BEHAVIOUR?
On the highway, head heading and pitch deviation during SAE2 automation use did not differ
from manual baseline driving. No large differences in monitoring activity during SAE2 automa-
tion compared to manual driving were thus identified, which suggests that drivers generally
remained attentive during automated driving, though more subtle differences in attention
allocation cannot be ruled out. Both head heading and pitch deviation were however smaller
during ACC use compared to baseline, and head heading deviation was larger for periods of
manual driving in the experimental phase. Head pitch deviation also increased over the first
6 weeks of automation use for ACC+LK use and head heading deviation tended to increase
during ACC and ACC+LK, which hints at behavioural adaptation. Further research is needed
to assess if these changes in head deviation indicate better or worse monitoring behaviour. If
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drivers were mostly monitoring attentively during automation, increased attentional demand
as found in Chapter 2 could be used to interpret lower head pose deviation (as found during
ACC and initial ACC+LK use) as an increase in attention to road centre or cognitive narrow-
ing due to an increased mental demand. However, it can also result from driving-unrelated
tasks or thoughts (Victor et al., 2005; Wang et al., 2014), a reduced perceived need for visual
scanning, or an increase in mind wandering (He et al., 2011). Classification of driver attention
to driving-related and -unrelated areas may provide additional insights. While automation
of such classification was not successful in the present study, the identified changes in head
pose deviation provide a motivation for further investigation, preferably using eye tracking
rather than head pose.

The increase in head heading deviation from baseline-manual to experimental-manual high-
way driving may indicate that automation use can have an influence on attention patterns
during manual driving. We deem it unlikely that the increase in head heading deviation
from manual-baseline to manual-experimental indicates a carry-over effect, and this is more
likely a consequence of strategic automation use. This hypothesis could be tested through
selection of moments where strategic (dis)use is likely to emerge such as during lane changes
as available from the Mobileye system, which records lane position and the location of other
vehicles, or by testing if the higher head heading deviation also occurs for highway trips from
the experimental condition where automation was not used at any point.

6.3. SUPPORTING DRIVER PERCEPTION OF INDIVIDUAL ROAD USERS
Automated driving technology provides a wealth of information about the situation surround-
ing the vehicle. This information can be used for additional purposes besides automated
driving. One particular application addressed in this dissertation is its use in driver attention
support. By combining information about surrounding road users with driver state moni-
toring, it may be possible to make specific and contextually relevant inferences about the
driver’s awareness of these road users. The conjecture is that specific support is better than
generic support: being informed that your physiology or driving style indicates a general state
of drowsiness gives little useful information, while being notified about a particular threat you
overlooked can be more beneficial to safety. This specificity may also improve the acceptance
of such support and can provide more opportunities to design for suitable levels of reliance
and compliance by the driver. During manual driving, such support may identify attentional
lapses or prevents attentional bias in expectation-defying scenarios, and whilst supervising
automated driving, it may provide the performance feedback needed to remain attentive
(Norman, 1981).

Chapters 2 and 3 investigated the human interaction with SAE2 automation in highway driving
conditions. We now discuss Chapters 4 and 5 which investigated human perception in relation
to other road users in urban conditions. In these studies participants drove manually and
we investigated how the environment perception of the vehicle can support the driver by
monitoring the driver’s awareness towards individual road users during left turns (4) and using
this cue to provide earlier predictions of collision risk in a crossing pedestrian scenario (5).
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RECOGNITION TASK FOR EVALUATING AWARENESS TOWARD INDIVIDUAL ROAD

USERS
Chapter 4 examines if driving automation technology can interpret the driver’s awareness
towards individual road users. Driver gaze is associated with surrounding road users as
detected by computer vision during left turns on urban intersections. A post-drive recognition
task was performed to assess driver awareness. In a logistic regression model, gaze behaviour
could predict the relevance of road users, but not the driver’s performance on the recognition
task. The recognition task was sensitive to road user relevance and minimum gaze angle, and
yielded a low false positive rate, which demonstrates it can identify awareness of individual
road users during left turn manoeuvres. However, true positive rate was unexpectedly low;
at best 40% for relevant attended road users. The low recognition rate is likely caused by
memorization challenges. The 60 s delay, manoeuvre’s demand on working memory, and
visual encoding deficiencies were suggested as contributing factors which may be partially
alleviated through design improvements. Since the recognition task remained sensitive despite
low recall rate, it warrants further development. Potential improvements include reduction of
time delay and intermittent tasks (e.g. finding parking location), and encoding more driving-
relevant contextual cues in the recall task (e.g. motion, behaviours and spatial context).
Following these improvements, more controlled evaluations in comparison to established SA
measurement techniques will be required to evaluate the potential of the recognition task.

MONITORING SA FROM GAZE METRICS RELATIVE TO INDIVIDUAL ROAD USERS
We parameterized gaze behaviour relative to nearby road users and demonstrated that gaze
duration eccentricity up to 10°, number of fixations and saccade angle were able to discrim-
inate relevant from irrelevant road users with an accuracy of 73%. The gaze metrics could
not predict the outcome of the recognition task. One explanation is that the forgetting aspect
could not be captured by our model. While this prevents us from interpreting gaze patterns
of unrecognized road users, the recognition task did provide useful insights. 18% of the road
users that never entered the useful field of view (<10°) were still recognised, highlighting the
importance of peripheral vision (Wolfe et al., 2017). Hence, we strongly recommend that
perception models incorporate more than fixation location in their parameterization.

To this day, no appropriate method exists to monitor the driver’s awareness towards all individ-
ual road users in complex scenarios like left turns at urban intersections. While the recognition
task’s potential warrants further development, alternative approaches should be explored as
well. One such direction is to see if Steady-State Visual Evoked Potential (SSVEP) could provide
such method. SSVEP is a procedure where multiple flickering stimuli are presented, and the
frequency response in the visual cortex is monitored to deduce which stimuli is attended. It
has been used in brain research for over 50 years (Vialatte et al., 2010) and has proven a reliable
tool in fundamental attention research. The suggestion to use SSVEP for driver attention
research is not new (Reddy et al., 2007) but to my knowledge has never been attempted. If
successful, this method may provide a reliable attention classifier for the perception phase of
obtaining situation awareness.
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CAN AWARENESS MONITORING PROVIDE A PREDICTION BENEFIT FOR COLLI-
SION WARNING AND INTERVENTION SYSTEMS?
Chapter 5 evaluates if driver gaze and head pose eccentricity can provide a temporal advantage
to emergency alerting or intervention systems. A crossing pedestrian collision risk prediction
system is used as a case study to assess the benefits of measuring gaze and various other
contextual cues. We evaluated the incremental benefits of six models with varying access to
contextual cues on collision prediction between a vehicle and crossing pedestrian. By using a
Dynamic Bayesian Network (DBN) structure, these models demonstrate how gaze and head
pose observations influence awareness likelihood.

Contextual cues improved path predictions for scenarios with motion transitions of either
the vehicle or the pedestrian while performing slightly worse on scenarios with unchanged
dynamics. Introducing contextual cues about the pedestrian’s awareness of the vehicle (head
orientation), the position relative to the curb and the notion of a possible collision if both
driver and pedestrian were to continue their present movement improved pedestrian path
prediction as well as collision risk prediction. Similarly, contextual cues about a possible
collision, the vehicle’s distance to the pedestrian’s intended path (NCL) and cues for driver
awareness resulted in better vehicle path prediction, and better collision risk prediction for
prediction horizons between 0.75 s and 2 s. Driver gaze did not provide path or collision risk
prediction benefits over driver head pose, though gaze had better accuracy on the has-seen-
pedestrian (HSP) context state compared to head pose. A performance advantage of gaze
eccentricity over head-pose may emerge in more challenging scenarios when discriminating
awareness towards multiple road users. Such evaluations would require natural as opposed
to instructed viewing behaviour, and the presence of multiple spatial regions competing for
attention.

It was also found that joint awareness (i.e. pedestrian being aware of vehicle and vehicle being
aware of pedestrian) cannot always predict who will yield. In situations where both driver and
pedestrian are aware of each other’s presence, mutual awareness may be more discriminative
as suggested by (Wang et al., 2019) (i.e., estimating the other’s awareness of oneself), and may
benefit from cues on who has right of way.

The results also demonstrated that context-aware prediction models may suffer when out-
comes defy the cue-based expectations. While probabilistic modelling such as provided by
the used DBN framework can incorporate these exceptions in their likelihood estimates, emer-
gency systems should avoid dependence on the correctness of these cues. Accidents after all
tend to occur in situations which defy the expectations. Great care should thus be taken when
selecting the desired likelihood ratio. Awareness monitoring can therefor aid traffic safety by
providing a better likelihood estimate for collision risk, but will not provide certainty.

6.4. IMPLICATIONS CHAPTERS 2 AND 3:
IS CURRENT SAE2 AUTOMATION SAFE?

The findings from Chapters 2 and 3 portray a positive indication that SAE2 can be beneficial
rather than detrimental to the driver’s energetic state when used attentively and that experi-
enced users seem to use these systems responsibly. Unfortunately there are a few nuances
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that warrant caution on the adoption of SAE2 automation. As already mentioned, the benefit
of supervised automation only applies to attentive supervision, and providing an effective
incentive to do so will be challenging. At present, some users of SAE2 automation indicate they
engage in visual secondary tasks during periods of automated driving to prevent boredom (Lin
et al., 2018), and despite improvements through over-the-air updates, currently on-market
automation seems to not support the driver sufficiently in adhering to the monitoring task
(Banks et al., 2018). Even in manual driving, a substantial amount of drivers engage in cogni-
tively or even visually distracting activities, for example Oviedo-Trespalacios (2018) indicates
that over 33% of interviewed Australian drivers engage daily in texting and browsing on their
phone while driving. Furthermore, Young and Stanton (2007) already demonstrated that
drivers respond later to to hazards when supervising SAE1 to SAE3 automation compared to
manual driving. Despite several improvements through careful design of control transition
aids, the response times remain high when using driving automation (Zhang et al., 2019a),
especially when these aids are not fully reliable (Zhang et al., 2019b) as is the case for SAE2 au-
tomation, or when visually distracted with SAE2 automation (Louw et al., 2019). It is for these
reasons that views on whether SAE2 automated driving enhances safety are not unanimous
(Dijsselbloem et al., 2019; Hancock, 2019; de Winter, 2019).

These cautions indicate that while the results of Chapters 2 and 3 demonstrate that beneficial
results from supervised automation are possible, the design space where these benefits are
accomplished may be small. These benefits might also not be achieved for all types of drivers,
since views towards automated driving are diverse (Kyriakidis et al., 2015), and it is possible
that the volunteering participants in Chapter 3 and Russel et al. (2018) represent a relatively
safe category of drivers.

For the success of automated driving, it is imperative to find this design space. Our findings
indicate that the desired safety benefit may already be available in on-market SAE2 automation
and that it can be improved when attentive supervision is encouraged. This also indicates
that there is virtue in continuing the development of effective strategies to improve driver
attention during automated driving. The strategies reviewed and classified by Cabrall et al.
(2019) either give the driver a more active role in the driving task or make it easier for the driver
to stay engaged in the supervisory role. All strategies use the automation to collaborate with
or support the driver, where also the methods and findings from chapters 4 and 5 may find
application.

This also raises the question how automation technology should progress from SAE2 to SAE3
and SAE4, where the objective is to reduce engagement in the driving task. It seems that any
intermediate levels between SAE2 and SAE3 should be avoided, both in design and in intended
use. Ultimately the net traffic safety benefit intended by SAE2 and SAE3 can only be validated
through crash statistics, which are slowly accumulating for SAE2 and SAE3 automation (Boggs
et al., 2020; Dijsselbloem et al., 2019). However, much more data is needed before these
statistics can test this safety benefit (Lindman et al., 2017). In the meantime, surrogate safety
metrics such as time to collision and driving safety field (Mullakkal-Babu et al., 2017), and
on-road studies such as presented in this dissertation may provide indications on how to
guide automated driving to success.
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6.5. IMPLICATIONS CHAPTERS 4 AND 5:
CAN AUTOMATION TECHNOLOGY SUPPORT THE DRIVER’S MON-
ITORING TASK?

Chapters 4 and 5 examine the approach of monitoring the driver’s awareness to other road
users and use it to support the driver; Chapter 4 inferred driver awareness from gaze metrics in
relation to detected road users and focused on improving specificity of awareness monitoring
by evaluating awareness towards individual road users. Chapter 5 implements such inference
for making earlier predictions of intentions and behaviours.

In both chapters strategies were developed which may benefit each other. The deterministic
regression model of Chapter 4 may be replaced by a probabilistic approach for estimating
awareness likelihood as done in Chapter 5. Similarly, the driver-awareness aware models from
Chapter 5 could benefit from the additional gaze metrics which were found to be predictive
in Chapter 4, provided that these models are exposed to naturalistic pedestrian crossing
encounters where multiple road users are competing for the driver’s attention. Both studies
may further benefit from a temporal (as opposed to per-trial) association between gaze and
events, such that they can assess if and when the driver notices the appearance of new road
users, changes in their behaviour, and the contextual cues which may precede such changes.

The findings also demonstrated a limitation of using contextual cues in driver support. While
Chapter 5 showed that access to more contextual cues generally improved prediction perfor-
mance, performance degraded for events which contradicted the learned rules. Similarly in
Chapter 4, drivers occasionally were aware of road users despite never glancing near them.
While using contextual cues improves the interpretation of what the driver is aware of and
what road users may do in the near future, care should be taken to prevent that these cues
(or attention-based architectures in general) introduce expectation bias to the automation’s
perception, at least not to the extent where the automation becomes susceptible to the same
mistakes that human drivers tend to make. This insight forms an important distinction be-
tween the objectives for automated driving and driver support. While both applications will
benefit from making fewer mistakes compared to human drivers, automated driving will find
it easier to appease societal acceptance when the mistakes it makes exclude any that would
have been easily avoided by a human driver Madhavan et al. (2006), whereas the faults by
the driver and the support system ideally form disjoint sets. Ideally, driver support systems
use models of human bias (such as top-down saliency maps, e.g. (Xia, 2019)) to predict when
drivers are prone to overlook a relevant event, but use other methods to obtain their own road
scene understanding. The difference between these three objectives is illustrated in figure 6.1.
This does not mean that contextual cues should be avoided in obtaining system road scene
understanding, but developers should be aware that the extent of its use may depend on the
intended application.
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Figure 6.1: Illustration of three design objectives. Left: super-human system optimized to support the driver in
avoiding errors. It prevents most human error but raises false alerts. Middle: a system with similar performance is
optimized for automated driving, making fewer human-like errors compared to drivers, and avoiding non-human
error. Right: A system attempting to predict human error.

We demonstrated that incorporating detailed scene perception as obtained by automated
driving technology has the potential to infer whether the driver is aware of individual road
users and their behaviour, though further research is needed for its development as well as
how its performance can be evaluated with sufficient accuracy. If this path towards specificity
gets further developed, it will provide a considerable benefit over traffic-agnostic monitoring
techniques which can only indicate an aggregate level of attentiveness. Association of driver
gaze to traffic cues should reasonably be expected to improve models of driver attention
towards specific road users. The applications are not limited to supporting driver attention
during manual driving; it may also provide driver support through early warning and inter-
vention systems as explored in chapter 5, or even be used during supervised automation to
re-introduce feedback on task performance (Norman, 1981) in SAE2 automation. The joint
analysis of driver gaze and road scene can even benefit the development of automated driving
through imitation learning as reviewed by Zhang et al. (2020) and used to identify driving
scenarios where braking is required in Aksoy et al. (2020), or by learning computer vision
to identify "action inducing" road users instead of all instances of a particular object (Xu
et al., 2020). But care should be taken that such systems do not become susceptible to the
same mistakes as drivers tend to make. While promising data-driven (Fang et al., 2019) and
design-driven (Pal et al., 2020) approaches to achieve this are being developed, validation will
ultimately require a reliable way to distinguish between awareness and inattentional blindness
or look but did not see phenomenon.

6.6. USING DRIVING AUTOMATION TECHNOLOGY FOR REAL-WORLD

DRIVER RESEARCH
Chapter 1 argued that human factors research on automated driving should move from the
simulator into the real world, since experience with real-world complications may benefit the
development of systems which work as intended under these conditions. This dissertation
pursued this goal by avoiding the simulator entirely and conducting all research on-road; for
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gaining such experience and to demonstrate that on-road research is becoming more practical
and accessible than ever before, thanks to recent developments in automation. The pursuit
of this demonstration led to both successes, testifying for the feasibility and importance of
on-road driving research, and failures, which provide lessons on the importance for careful
design of on-road experiments.

In Chapter 2, automation-inexperienced drivers did not perceive a lower workload, whereas
simulator studies found such reduction for this participant group (de Winter et al., 2014). We
postulate that driver trust in the automation’s ability to handle the complexities of real-world
traffic (and the risk validity issue in a simulator) accounts for this difference.

In contrast, we were unable to infer any workload changes from cardiovascular activity; the
derived measures (heart rate, sdNN, LF/HF) varied over time without apparent relation to the
conditions or observed events, apart from a small decreasing trend in heart rate over time
for automation-inexperienced drivers which may indicate acclimatization to the vehicle and
automation. While this may partially be attributed to sensor quality, a reasonable conjecture
is that heart rate is not specific enough to provide a reliable mental workload indicator unless
great care is taken to control experimental conditions, in particular anything that involves
physical effort and activities which alter breathing, such as speaking. We therefore recommend
that cardiovascular activity is not used for the measurement of workload in semi-naturalistic
studies, unless the confounding effects can be modelled out. It may however still have practical
use in the measurement of other constructs such as driver drowsiness or anxiety (Kundinger
et al., 2020).

Working with the SAE2 naturalistic dataset in Chapter 3 has provided three important insights.
Firstly, the initially unsuccessful retrieval of automation status from CAN data among four
vehicle types and the additional salvaging efforts that were needed to retrieve (some of) this
information demonstrate the importance of careful design, but also validation of the data
acquisition system. In on-road driving, no information comes for free. Secondly, the automa-
tion status retrieval for the Tesla from image recognition demonstrates that even very simple
implementations of machine learning can make the difference between success and failure of
data retrieval. With only 17 neurons, a simple neural network improved classification accuracy
from 70% obtained from logistic regression to 99.33%, while the use of template matching
prevented the need for training of (and the required annotation for) a complete convolutional
neural network for icon detection. Thirdly, a similar enrichment attempt was unable to reliably
classify attended regions from head pose, demonstrating that head pose without information
of gaze direction may be insufficient for region of attention classification. This provides one
demonstration (among many) that machine learning can only be as informative as the data on
which it is trained. While continued research in using (possibly cheaper and more robustly ob-
tained) head pose for attention inference is to be encouraged, using head pose as an attention
measurement tool without inclusion of gaze data is not recommend for research purposes,
and this requires careful instrumentation and processing design.

Despite these successes and experiences, it cannot be denied that on-road research requires
considerable effort in its preparation to be successful, and that the work and knowledge
required may be prohibitive for many researchers to which the instrumentation forms the
means rather than the end. The key solution is interdisciplinary collaboration on a single
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research platform and maintaining it across multiple generations of researchers to build upon
each other’s work. Within the Intelligent Vehicles group at the TU Delft, this is realized on
an instrumented Prius (Ferranti et al., 2019) through the contributions of several engineers,
researchers, students and collaborating organizations (figure 6.2). The maintainability is
achieved through platforms such as the Robot Operating System (ROS) and GIT, technical
staff and incorporating maintainability practices in education. These efforts have made it
possible to extend its use from a platform for vehicle automation research to one for driver
support research, and from a research platform to a classroom for education, where bachelor
and master students develop driver support systems and experience the practical challenges
of field operational testing first-hand. Additionally, a considerable instrumentation effort can
be avoided when manufacturers collaborate in such research by supporting access to CAN
data and other information readily available in the vehicle.

Figure 6.2: The vehicle, and the team (October 2018).

6.7. CONCLUSIONS

CHAPTER 2: EFFECT OF SAE2 AUTOMATION ON DRIVER WORKLOAD.
Drivers remain sensitive to changes in task demand while supervising automated driving.
In contrast to expectation, SAE2 automation raises workload when monitored attentively.
This can be beneficial for driver attention, but perception of workload during supervision
may be too low for this to occur naturally. Future work should test the generalizability of
these workload findings, and consider calibrating workload perception and system limitation
understanding instead of calibrating the actual task demand when attempting to encourage
attentive supervision. It should also be examined how much further automation can progress
towards apparent autonomy before this potential benefit of strategic supervision on energetic
state disappears.
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CHAPTER 3: NATURALISTIC AUTOMATION USAGE AND HEAD ACTIVITY
Automation is mostly used on road types where its use is generally considered suitable, with
only incidental use on urban roads, which suggests that users are adhering to the operational
design domain of these vehicles. On highways, automation is used at all speed conditions, but
less during short periods of slow driving. No time-in-drive, time-of-day or effects of experience
were found for automation use.

During highway automation use, head pose standard deviation did not differ between SAE2
automation and baseline manual driving, but head pitch deviation increased over the first six
weeks of use, which hints at behavioural adaptation. Head heading and pitch deviation were
smallest during ACC use. Further research is needed to assess if these differences indicate
better or worse monitoring behaviour.

CHAPTER 4: MEASURING DRIVER AWARENESS
The recognition task is sensitive to both road user relevance and gaze behaviour, but could
not be predicted by gaze metrics and requires further development to reduce forget rates.
Further analysis is needed to compare the recognition task to established situation awareness
measures after these improvements are obtained.

Relative gaze metrics such as eccentricity and number of saccades to an individual road user
could predict road user relevance. Temporal association to events and contextual cues are
recommended to improve the specificity of noticing relevant changes in road user behaviour.
At least 18% of road users were recognised while only observed peripherally, suggesting that
peripheral vision should not be neglected in attention monitoring.

CHAPTER 5: PREDICTING COLLISION RISK WITH PEDESTRIAN
In addition to other contextual cues, driver and pedestrian attention monitoring can provide
a better prediction of collision risk with a crossing pedestrian when predicting further than
0.75 seconds ahead. By using a DBN structure, these models incorporated how gaze and head
pose observations influence awareness likelihood. Context-aware prediction models perform
worse when scenario outcomes defy the cue-based expectations.
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accompanying the dissertation

ON-ROAD ASSESSMENT OF DRIVER WORKLOAD AND AWARENESS IN
AUTOMATED VEHICLES

by

Jaap Cornelis Jork STAPEL

1. Supervising SAE2 automation can prevent drowsiness and passive fatigue.
This proposition pertains to Chapter 2.

2. The main obstacle for better attention support is the inability to measure driver aware-
ness.
This proposition pertains to Chapter 4.

3. The lack of specificity makes cardiovascular metrics useless for naturalistic mental
workload monitoring.
This proposition pertains to Chapter 2.

4. Supervised driving automation should be artificially limited.
This proposition pertains to Chapter 6.

5. When training computer vision for road scene interpretation, different objective func-
tions are needed for application in automated driving and driver support.

6. Promovendi need more guidance in placing expectations between aspiration and reality.

7. When plotting predictions against time, predictions should be drawn at the time for
which they were made, not at the time when they were made.

8. Careful design of data collection is more important than careful design of tests or
experimental conditions.

9. While the tower of science is made of ivory, the scaffolding is often not, and does not
always need to be to fulfill it’s purpose.

10. Writing a paper is not the process of transferring new knowledge, but the process of
creating such knowledge.

These propositions are regarded as opposable and defendable, and have been approved as
such by the promotors Dr. ir. R. Happee and prof. dr. D.M. Gavrila.
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