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The merit function space of mirror system for extreme ultraviolet (EUV) lithography is studied. Local
minima situated in the multidimensional optical merit function space are connected via links that contain
saddle points and form a network. We present networks for EUV lithographic objective designs and
discuss how these networks change when control parameters, such as aperture and field, are varied, and
constraints are used to limit the variation domain of the variables. A good solution in a network, obtained
with a limited number of variables, has been locally optimized with all variables to meet practical
requirements. © 2007 Optical Society of America
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1. Introduction

Finding good solutions in multidimensional merit
function spaces is a difficult task, because of the large
number of existing local minima. Commercial optical
design programs contain, nowadays, powerful global
optimization algorithms, such as global synthesis
[1–4], global explorer [5], simulated annealing [6],
and genetic algorithms [7]. However, these algo-
rithms give solutions as single points in the merit
function space, without information about any rela-
tions between them.

It has been shown [8] that the local minima situ-
ated in the multidimensional optical merit function
space are connected via optimization paths that start
from a special type of saddle point (saddle point with
Morse index 1) and form a network. Examples of the
network structure for simple systems (Double Gauss,
Cooke Triplet) have also been given [8–11]. Extreme-
ultraviolet (EUV) lithography [12–16] is a future gen-
eration lithography technique that uses radiation
with a wavelength of 10 to 14 nm to print microchips
with feature sizes below 30 nm. We give examples of
networks for the merit function space of mirror de-
signs for EUV lithography.

We first give a brief description of the network
search method for finding good local minima [9].
Then, we present network graphs for the merit func-
tion space of a six-mirror EUV design problem with
only six variables. We discuss how variations of the
control parameters, such as numerical aperture and
field, and changes of the constraints influence these
networks. A good six-mirror configuration, generated
by our network search method, is then locally opti-
mized for practical demands using all the variables.

2. Saddle Points and Networks

In the neighborhood of a critical point (i.e., a point at
which the gradient of F vanishes), the merit function
F is given by

F�x1, x2, . . . , xN� � F0 � � Hijxixj, (1)

where F0 is the value of F at the critical point and xi

are the (shifted) optimization variables. (The origin
of the coordinate system is placed at the critical
point.) At a critical point, for which the determinant
of the matrix

Hij �
1
2

�2F
�xi � xj

(2)

is nonzero, the coordinate system can be rotated so
that Eq. (1) contains only squares of the new variables
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F�x�1, x�2, . . . , x�N� � F0 � � �ix�i
2, (3)

where �i are the eigenvalues of the matrix Hij [the
barred new variables in Eq. (3) are measured along
the eigenvectors of Hij].

In topology, the number of negative eigenvalues in
Eq. (3) is called the Morse index of the critical point.
A negative eigenvalue means that, along the corre-
sponding eigenvector the critical point is a maximum,
and a positive eigenvalue indicates a minimum along
the corresponding eigenvector direction. Local min-
ima have a Morse index (MI) of 0, local maxima have
a MI of N (the number of variables) and saddle points
have a MI between 1 and N � 1.

For finding the network structure it is sufficient to
consider only saddle points with MI � 1, i.e., saddle
points that are maxima along one direction [9]. In
two dimensions, all saddle points have MI � 1 and
resemble a horse saddle. In variable spaces with
a higher dimensionality, the saddle points with
MI � 1 are those which are similar to two-
dimensional saddle points: the merit function de-
creases on the two sides along the unique maximum
direction. The central element in finding a network
structure is the detection of saddle points with MI
� 1 around known local minima. Saddle point detec-
tion algorithms that have certain similarities with
the one described below are used to study the energy
landscape of systems with many atoms [17–19].

We start at an arbitrary minimum. To detect sad-
dle points with MI � 1 around it, a set of directions is
defined, each characterized by a unit direction vector
s � �s1, s2, . . . , sN�. In the implementation of the
method used in this work, these directions are those
of the eigenvectors of Hij, computed numerically at
the given minimum. Previously [11], we have de-
scribed in full detail our method to compute all these
eigenvectors by using the local optimization capabil-
ity of optical design software. It follows from Eq. (3)
that, around local minima, the surfaces along which
the merit function is constant have the shape of el-
lipsoids. The eigenvectors at Hij correspond to the
directions of the half-axes. A set of hyperplanes or-

thogonal to a given direction s is selected:

s1x1 � s2x2 � · · · � sNxN � t, (4)

where t is the distance between the local minimum
and the hyperplane [see Fig. 1(a)]. For a given value
of t, the saddle point detection algorithm computes
the local minimum of F in the hyperplane defined by
Eq. (4). The curved line in Fig. 1(a) shows symboli-
cally the position of the constraint minimum as a
function of t. The merit function value at the con-
straint minimum is denoted by Fs�t�. We start at the
local minimum (where t � 0) and then increase t
gradually. The merit function Fs�t� increases at the
beginning [Fig. 1(b)]. At a certain t � tmax, Fs�t�
reaches a maximum value (point S), after which it
decreases. The constraint minimum at t � tmax is then
a saddle point with MI � 1.

From such a saddle point, two distinct local minima
are obtained by letting the optimization go down on
the two sides of the saddle. (All eigenvector directions
are tried out, and for a direction s that has led to
successful saddle point detection, one of these two
minima is the one that has been used for detecting
the saddle point.) The optimization paths, together
with the saddle point with MI � 1, form a link in the

Fig. 1. Illustration of the saddle point detection algorithm: (a)
constraint local minimization in a set of hyperplanes orthogonal to
s; (b) one-dimensional maximization along s.

Fig. 2. Flow chart for the network search method.

Fig. 3. Six-mirror microlithographic projection system with ob-
ject heights between 114 and 118 mm, a numerical aperture of
0.16, and a magnification of 0.25. The aperture stop is placed at the
second surface.
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optimization space between the two minima. The lo-
cal minima that are connected together in this way
form a network.

A network search method based on saddle-point
detection has been developed [8–11] (see Fig. 2). For
a given local minimum, the algorithm attempts to
detect all saddle points with MI � 1 that are con-
nected with it. Via local optimization performed on
the other side of each saddle point, new minima are
obtained. At each new minimum a saddle point
search is performed to find the remaining part of the
network. At the last stage the best solutions (i.e., the
solutions for which the imaging quality is satisfac-
tory) are selected.

The algorithm has been implemented in our pro-
gram NETMIN, which for local optimization calls the
commercial optical design program CODE V [20]. The
two programs communicate via the operating system.

Finding saddle points is computationally more ex-
pensive than finding local minima. Therefore, the
network search method can be successfully applied if
the number of local minima is not excessively large.

3. Topography of the Merit Function Space of Extreme
Ultraviolet Mirror Systems

We have used the algorithm described above on sev-
eral EUV ring-field configurations that consist of four,
six, or eight mirrors. The patent literature shows that

Fig. 4. Network structure of a six-mirror system search with the specifications of the system shown in Fig. 3, where s represents saddle
points, and m represents minima. The value of the merit function is also shown.
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these types of system are of significant interest
[21–29]. We present results of the network search for a
six-mirror configuration. (A system with the specifica-
tions that have been used is shown in Fig. 3.) Since, for
EUV systems, in certain domains of the merit function
space even local optimization tends to become unstable
[30], we did not attempt to detect the entire network,
but we focused on regions of interest containing stable
domains of the merit function space, i.e., the domains
in which the systems continue to exist when changes of
the optimization constraints or the control parameters
(numerical aperture and field) are made, as shown in
what follows. All surfaces are aspheric, with aspheric
coefficients going up to the tenth order on each surface.
However, because network explorations with all vari-

ables (37 in this case: six curvatures, 24 aspheric coef-
ficients, and seven distances between surfaces) is very
time consuming, in all our searches only the six surface
curvatures have been used as variables, while the as-
pheric coefficients have been kept constant with non-
zero values. (Curvature changes generate much more
local minima than changes of distances and aspheric
coefficients.) The default CODE V merit function, which
is based on transverse aberrations, has been used.

In our research, we followed two directions. We
analyzed the change in the merit function space
when

(a) the control parameters, numerical aperture,
and field are modified;

Fig. 5. Network structure at reduced numerical aperture and field.
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(b) at fixed values of numerical aperture and
field, constraints (telecentricity at the image plane,
quasitelecentricity at the object plane, freedom of
obstruction, and distortion within certain limits)
are used to limit the variation domain of the vari-
ables.

A. Influence of the Control Parameters on the Merit
Function Space of Extreme Ultraviolet Mirror Systems

In our first example, we discuss the topography of the
merit function space corresponding to the six-mirror
system presented in Fig. 3. The system has been
constrained to be paraxially telecentric on the image

side, i.e., the paraxial chief ray leaving the last mirror
must be parallel to the optical axis. The magnification
was kept constant at a value of 0.25. A region of
interest in the network, as detected with the present
version of NETMIN, is presented in Fig. 4. In this graph
each node represents either a local minimum or a
saddle point with MI � 1 in the merit function space,
and the lines connecting the nodes show to which
minima the two optimization paths that start at
saddle points should go. This graph allows us to
determine the relationships between different local
minima independently of the dimensionality of the
merit function space.

Fig. 6. Network structure with real telecentricity requirement in the image space.
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The part of the network presented in Fig. 4 pro-
vides useful information. For example, we observe
that, in addition to the minimum with the lowest
merit function �m10.8575�, there are two other solu-
tions in this space that have low values of the merit
function. These two solutions and the best minimum
are underlined with solid lines in Fig. 4. The three
solutions are connected via saddle points that have
slightly higher values of the merit function. There-
fore, along the entire network path between these
three solutions in the merit function space, the vari-
ations of the merit function are small compared to
the variations in the rest of the merit function land-
scape.

The connections between the best systems in the
network, and the fact that outside the region where
they were found the merit function increases drasti-
cally, are consistent with Isshiki’s conjecture accord-
ing to which the minima with nearly the lowest merit
function value are situated in a “string winding
through the merit function space” [31].

Analyzing the configurations situated outside the
network path connecting the best three solutions, we
observe that many of them are situated either in an
obstructed space (at this stage freedom of obstruction
has not been imposed as constraint) or in a space
where they are not real telecentric at the wafer side
(i.e., because of aberrations, the real chief ray deviates
from the paraxial one and is not parallel to the optical
axis). As mentioned above, here we have imposed the
paraxial telecentricity constraint. However, if the free-
dom of obstruction is also imposed as constraint during
the network search, some previously obstructed local
minima, e.g., minimum m24.8711 (underlined with a
dotted line), become unobstructed. Typically, a slight
obstruction can be corrected individually in later de-
sign stages, if necessary. A similar approach is suc-
cessful when a violation of the real telecentricity
requirement is encountered.

When examining the network link by link, one ob-
serves that the system shapes change gradually. For
instance, on the path starting at m24.8711 (dotted
line), that goes via s1406.11 (on the left side of the
drawing), m209.258 and s256.207 to m23.9199 (solid
line), we observe how a succession of small changes
accumulate. Whereas the first configuration in this
sequence has a slight obstruction (caused by the po-
sition of the third mirror), the last configuration is
free of obstruction (the third mirror has shifted below
the rays reflected by the fourth mirror and collected
by the fifth one). Local minimum m23.9199 has a
modified new configuration. The same applies for
the path from m24.8711 to m14.1696 (solid line) via
s738.994, m565.349 and s1277.71.

The results obtained by NETMIN and shown in Fig. 4
have been compared with those of GLOBAL SYNTHESIS, the
algorithm included in the commercial optical design
program CODE V. The same optimization conditions
have been used as in Fig. 4. All solutions found by
GLOBAL SYNTHESIS have also been found by NETMIN.
Both programs have found the three good solutions
(solid line).

When we reduce both the numerical aperture and
the field by one third, our algorithm finds the network
shown in Fig. 5. Again, three solutions (underlined in
Fig. 5) having the best performance are observed. If
we reset the numerical aperture and the field of these
three solutions to their initial values and then we
locally reoptimize them, we observe that they con-
verge to the three best solutions in Fig. 4: m1.23439
becomes m23.9199, m5.10904 becomes m14.1696,
and m1.70821 becomes m10.8575. Note that the best
minimum at lower numerical aperture and field
(m1.23439) is not the one that becomes the best min-
imum at the original values of these control param-
eters. However, it still corresponds to one of the good
solutions in Fig. 4.

We made several network runs for the six-mirror
system with different values of the control parame-
ters. Comparing the results, we observed that small
changes in the control parameters do not change the
networks significantly. However, especially when the
changes are large, parts of the networks tend to appear
or disappear. For instance, two minima and a saddle
point in between [m1.23439, s110.259, and m109.579
in (Fig. 5)] found at low numerical aperture and field
become a single minimum [m23.9199 in (Fig. 4)] when
the values of the two parameters are increased. The
network structure (i.e., the number of nodes and the
connections between them) changes, but the best so-
lutions remain in the structurally stable part of the
network. In fact, similar behavior is observed for many
other types of system as well. For instance, for the
Cooke Triplet, if the aperture is low enough, we have
two minima having the well known Cooke Triplet
shape and a saddle point between them, but when the
aperture is increased beyond a threshold value, only
one minimum remains [11].

B. Influence of Constraints on the Merit Function Space
of Extreme Ultraviolet Mirror Systems

We also analyzed the merit function space of the same
six-mirror system (Fig. 3), but with different constraints.
First, we replaced the paraxial telecentricity with a
real telecentricity requirement, (i.e., the real chief ray
at the wafer stage must be parallel to the optical axis).

Despite significant differences in the network (Fig.
6), (which are either real or are caused by the limita-
tions of the present version of NETMIN), the three good
solutions mentioned earlier are found again. When

Fig. 7. Optimized six-mirror projection system for EUV lithogra-
phy. The aperture stop is situated at the second mirror. The system
is unobstructed. At the wafer side the system is telecentric, i.e., the
chief ray is (approximately) perpendicular on the image plane.
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reoptimizing them with paraxial telecentricity con-
straint at the image plane they converge to the three
best solutions of the network detected under these
conditions: the local minimum m15.0369 (in Fig. 6)
becomes m14.1696 in (Fig. 4), and local minimum
m33.927 becomes m23.9199. Interestingly, the best
minimum m8.77179 corresponds to the best minimum
(in Fig. 4), m10.8575.

The same sort of network analyses have also been
made with other constraints: paraxial and real quasi-
telecentricity on the object side (i.e., the upper parax-
ial, respectively, real marginal ray must be parallel to
the optical axis), freedom of obstruction, and distor-
tion control. Because we had only six variables, we
did not use all the constraints at the same time, but
we used different combinations of them.

In addition to the merit function space of the sys-
tem presented in Fig. 3, we studied the merit function
space of a number of different six-mirror configura-
tions, as well as for a four- and several eight-mirror
systems [32]. In all cases, we have observed that,
when constraints are modified, the same system re-
mains the best one (i.e., after reoptimization the best
system in one run becomes the best system in the
other run). Surprisingly, this happens even when dis-
tortion is controlled (within limits that were not very
tight), but we believe that this result is specific to our
systems. For other types of system, distortion con-
trol may change the best system. We have compared
the results obtained by our program NETMIN with
those generated by GLOBAL SYNTHESIS. In virtually all
cases, both programs detect the same good local
minima.

4. Fully Optimized Designs

In order to satisfy practical requirements, the best
minimum in Fig. 6 (m8.77179) has been further im-

proved with traditional design techniques, using all
surface curvatures, distances between surfaces, and
aspheric coefficients as optimization variables. The
resulting design, shown in Fig. 7, has very good im-
aging qualities. Some of the system’s specifications
and performances are shown in Table 1. All surfaces
are aspheric. The angle of incidence of the chief ray at
the mask is 4.4°. For multilayer compatibility, the
angular spread (i.e., the difference between the max-
imum and the minimum angle value) at each surface
has been kept smaller than 7° (see Table 2).

The numerical aperture of the system shown in
Fig. 7 has been increased to 0.3. During the local
optimization process, the freedom of obscuration con-
straint [33] was temporarily removed so that the
third mirror can change its position. Further optimi-
zation with all required constraints of the new con-
figuration leads to the six-mirror system shown in
Fig. 8 (See Table 3. Full specifications can be found in
[32].) The design requirements, in terms of distortion,
telecentricity at the wafer, quasi-telecentricity at
the mask, and freedom of obscuration, are satisfied.
The angular spread of each surface is smaller than
8°. The rms wavefront aberration is smaller than
31 m� (see Table 4).

Thus, from the same network system, used as the
starting design configuration, we obtained two six-
mirror systems with good imaging qualities: one with
a wavefront aberration of 16 m� at a numerical ap-
erture of 0.25, and the second one with a wavefront
aberration of 31 m� at a numerical aperture of 0.3.
For the second configuration, the same rms wave-
front aberration as for the first one �16 m�� is
obtained at a value of the numerical aperture of
0.29.

Table 1. Specifications for the Optimized EUV Mirror System
Presented in Fig. 7

Specifications Value

NA 0.25
Field 28.5–29.5 mm
Wavelength 13 nm
Magnification 0.25
Distortion �1 nm per field
Strehl ratio �0.986
RMS Wavefront aberration �16 m�

Table 2. Chief-Ray Angles of Incidence and the Angular Spread in the
EUV Mirror System Shown in Fig. 7

Mirror Angle Angular Spread

1 12.17° 0.93°
2 20° 2.75°
3 11.62° 0.98°
4 6.88° 1.86°
5 12.88° 6.96°
6 4.39° 0.84°

Table 3. Specifications and Performance of the Optimized EUV Mirror
System Shown in Fig. 8

Specifications Value

NA 0.3
Field 28.5–29.5 mm
Wavelength 13.5 nm
Magnification 0.25
Distortion �1 nm
Strehl ratio 0.944
RMS Wavefront aberration �31 m�

Fig. 8. 0.3 numerical aperture six-mirror projection system for
EUV lithography.
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5. Conclusions

We have illustrated the idea that local minima form
a network with examples of EUV mirror systems, and
we have shown how networks can be used to indicate
good starting configurations for subsequent tradi-
tional design.

When control parameters are modified, the net-
work structure changes, but the good systems tend to
remain as nodes in a certain part of the network. We
call such parts of the network stable regions. Present
experience with EUV and other types of design sug-
gests that systems from stable regions in the network
are the candidates for further design. When, at con-
stant values of the numerical aperture and field, con-
straints are modified, the same node in the network
tends to remain the best minimum.

We have also shown that a relaxed use of con-
straints in the network search is sufficient for the
purpose of generating starting points for further tra-
ditional local optimization. Moreover, we have shown
that starting from a solution found by our network
detection algorithm in a low-dimensional search, we
have obtained high-quality six-mirror systems with
performances that make them suitable for practical
applications (a Strehl ratio larger than 0.986 at a
numerical aperture of 0.25, and a Strehl ratio larger
than 0.944 at a numerical aperture of 0.3).

The projection system presented in Fig. 8 has a
configuration similar to that used in existing EUV
lithographic tools with a numerical aperture of 0.25
[34,35]. However, our result shows that high-quality
imaging can be obtained at the higher numerical ap-
erture of 0.3 as well.

O. Marinescu gratefully acknowledges the finan-
cial support from ASML Holding NV. We also thank
Eco van Driel for programming NETMIN.
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