
Supervised Learning in
Spiking Neural Networks

M. B. Büller

Supervised Learning in
Spiking Neural Networks

by

M. B. Büller
to obtain the degree of Master of Science
at the faculty of Aerospace Engineering,
Department of Control & Simulation

Delft University of Technology

Student number: 4166566
Project duration: April 08, 2019 – May 25, 2020
Thesis committee: Prof. dr. G. C. H. E. de Croon TU Delft, supervisor

MSc F. Paredes Vallés TU Delft, supervisor
Dr. O.A. Sharpanskykh TU Delft
Ir. C. de Wagter TU Delft

Acknowledgments
First, I would like to thank my supervisors Guido de Croon and Federico Paredes Vallés. Not only
did you provide invaluable guidance during my thesis, but you also inspired challenged me to look
for creative and new solutions. My time with you has been very valuable and educational, and I am
thankful for that.

I would also like to thank my dear friends and family for their unwavering support and patience.
You have helped me through the emotional ups and downs during my thesis. I might not have always
shown it, but know that I am grateful for it.

Most importantly, I would like to give a special thank you to my parents. You have always supported
my choices in life, and you have made it possible for me to get to where I am now.

M. B. Büller
Heemstede, May 16፭፡ 2020

iii

Abstract
Spiking neural networks are notoriously hard to train because of their complex dynamics and sparse
spiking signals. However, in part due to these properties, spiking neurons possess high computa-
tional power and high theoretical energy efficiency. This thesis introduces an online, supervised, and
gradient-based learning algorithm for spiking neural networks. It is shown how gradients of temporal
signals that influence spiking neurons can be calculated online as an eligibility trace. The trace rep-
resents the temporal gradient as a single scalar value and is recursively updated at each consecutive
iteration. Moreover, the learning method uses approximate error signals to simplify their calculation and
make the error calculation compatible with online learning. In several experiments, it is shown that the
algorithm can solve spatial credit assignment problems with short-term temporal dependencies in deep
spiking neural networks. Potential approaches for improving the algorithm’s performance on long-term
temporal credit assignment problems are also discussed.

Besides the research on spiking neural networks, this thesis includes an in-depth literature study on
the topics of neuromorphic computing and deep learning, as well as extensive evaluations of several
learning algorithms for spiking neural networks.

v

Contents

Acknowledgments iii

Abstract v

List of Symbols ix

List of Acronyms xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation and Research Question . 2
1.2 Structure of This Work . 2

I Scientific Paper 5

II Literature Study 29

2 Deep Learning 31
2.1 Artificial Neural Networks . 31

2.1.1 Fundamentals . 31
2.1.2 Basic Architectures . 34
2.1.3 Neuromorphic Artificial Neural Networks . 36
2.1.4 Deep Learning Frameworks and Hardware . 37

2.2 Spiking Neural Networks . 38
2.2.1 Biological Background . 38
2.2.2 Neuron Models . 39
2.2.3 Learning Rules . 41
2.2.4 Supervised Learning Comparison . 45
2.2.5 STDP and Back-Propagation . 46
2.2.6 Neuromorphic Hardware and Software . 47

3 Reinforcement Learning 49
3.1 Basics . 49
3.2 Credit Assignment Problem . 52
3.3 SNN and RL . 53

4 Literature Synthesis 55
4.1 Neuromorphic Computing . 55
4.2 Reinforcement Learning . 56
4.3 Designing a Learning Rule . 56

III Preliminary Experiments 59

5 Methodology 61
5.1 Datasets . 61
5.2 Event Discretization Kernel . 62
5.3 Phased LSTM . 64
5.4 Spike Layer Error Reassignment in Time . 66
5.5 Reward Modulated Spike Timing Dependent Plasticity . 68

vii

viii Contents

6 Experimental Results 71
6.1 Even Discretization Kernel . 71
6.2 Phased LSTM . 72
6.3 Spike Layer Error Reassignment in Time . 74
6.4 RSTDP for classification . 77

7 Experiments Discussion 81
7.1 Datasets . 81
7.2 Artificial Neural Networks . 81
7.3 Spiking Neural Networks . 82

Bibliography 85

A Results for SLAYER Experiments 93

List of Symbols

Greek Symbols
𝛾 Learning rate
𝜂 Activation of eligibility trace
Θ Spiking threshold of spiking neuron
𝜂, 𝜖, 𝜅 Kernel functions for the influence of spikes on a neuron’s membrane voltage
𝜏 Time constant in a decaying function

Roman Symbols
𝐴 Action of agent
𝐴ዄ/ዅ Scaling factor of voltage difference due to a presynaptic or postsynaptic spike
𝑏 Bias vector for the connections between two layer of a neural network
𝐸 Error value for neural network performance
𝑓።/፣ Spike during of discrete timestep
𝐺 Expected return
𝐼 Electrical current flowing into a spiking neuron membrane
𝑃።/፣ Trace of presynaptic or postsynaptic spiking activity
𝑅 Electrical resistance of of a spiking neuron membrane
𝑟 Reward value
𝑅 Reward of agent
𝑆 State of agent
𝑣 Membrane voltage of a spiking neural network neuron
𝑣፫፞፬፭ Resting membrane voltage of a spiking neural network neuron
𝛿𝑤 Weight update value
𝑊 Weight matrix for the connections between two layer of a neural network
𝑤።፧።፭ Initialization value of synaptic weight
𝑥, 𝑦 Pixel coordinates in an image
𝑦 Network output
𝑦̂ Desired network output
𝑧 Eligibility trace

Subscripts
𝑖 Postsynaptic neuron index
𝑗 Presynaptic neuron index

Superscripts
𝑓 Presynaptic spike index
𝑛 Postsynaptic spike index

ix

List of Acronyms

ANN Artificial Neural Network
API Application Programming Interface
ATIS Asynchronous Time Based Image Sensor

BP-STDP Backpropagation Spike-timing-Dependent Plasticity
BPTT Backpropagation Through Time

CNN Convolutional Neural Network
CPU Central Processing Unit

DVS Dynamic Vision Sensor

FC Fully Connected

GPU Graphics Processing Unit
GRU Gated Recurrent Unit

IF Integrate-and-Fire Neuron

LIF Leaky Integrate-and-Fire Neuron
LSTM Long Short-Term Memory

MARL Multi-Agent Reinforcement Learning
MAVLab Micro Air Vehicle Laboratory
MDP Markov Decision Process
ML Machine Learning
MLP Multi-Layer Perceptron
MSE Mean Squared Error
MSTDPET Reward Modulated Spike Timing Dependent Plasticity with El-

igibility Traces

N-Caltech101 Neuromorphic Caltech101s
N-MNIST Neuromorphic MNIST
NCars Neuromorphic Cars

ODE Ordinary Differential Equation

PDF Probability Density Function
PLSTM Phased LSTM

R-STDP Reward-Modulated Spike-Timing-Dependent Plasticity
RAM Random-Access Memory
ReLU Rectified Linear Unit
ReSuMe Remote Supervised Method

xi

xii List of Acronyms

RL Reinforcement Learning
RNN Recurrent Neural Network

SGD Stochastic Gradient Descent
SHL Supervised Hebbian Learning
SL Supervised Learning
SLAYER Spike Layer Error Assignment Rule
SNN Spiking Neural Network
SOTA State of the Art
SRM Spike Response Model
STDP Spike-Timing-Dependent Plasticity

TCA Temporal Creddit Assignment
TPU Tensor Processing Unit

UL Unsupervised Learning

List of Figures

2.1 (a): Feed forward multilayer neural network. (b) Back-propagation in feed forward net-
work. Both figures adapted from LeCun et al. [53] . 32

2.2 Sigmoid . 33
2.3 Hyperbolic tangent . 33
2.4 ReLU . 33
2.5 Convolution operation in neural network. Adapted from [101] and [77]. 35
2.6 Single recurrent neuron. Adapted from Olah [75] . 35
2.7 Three step LSTM. The 𝜎 is a sigmoidal activation function, × is a pointwise multiplication,

+ is a pointwise addition, 𝑡𝑎𝑛ℎ is a hyperbolic tangent, an arrow is a vector transfer, 𝐶፭
the cell state, ℎ፭ the hidden state, 𝑥፭ the input activation. Adapted from Olah [75] 36

2.8 Overview of the McCulloch Pitts neuron, it only receives and sends out binary signals.
Adapted from Lagandula [50] . 38

2.10 Neuronal spike. Adapted from Gerstner [26] . 39
2.11 Spike-Timing-Dependent Plasticity (STDP) proportional weight scaling based on relative

timing of pre- and post-synaptic spikes. Adapted from Sjostrom and Gerstner [96]. . . . 42

3.1 The agent-environment interaction in a Markov decision process. Adapted from Sutton
and Barto [99] . 50

5.1 The saccades performed with the ATIS sensor for converting the MNIST dataset to an
event-based format. Adapted from [70] . 62

5.2 An arbitrary spiking rate distribution for a set of six input neurons. 63
5.3 Linear interpolation of an event its contribution to two adjacent discretization points,

which is based on how close the event is to the discretization point in time. 63
5.4 Example of transforming a linear indexing into regular, dimension based indexing for

a three dimensional matrix. Each cell in the matrix is assigned a unique integer in-
dex. Adapted from ℎ𝑡𝑡𝑝𝑠 ∶ //𝑛𝑙.𝑚𝑎𝑡ℎ𝑤𝑜𝑟𝑘𝑠.𝑐𝑜𝑚/ℎ𝑒𝑙𝑝/𝑚𝑎𝑡𝑙𝑎𝑏/𝑟𝑒𝑓/𝑖𝑛𝑑2𝑠𝑢𝑏.ℎ𝑡𝑚𝑙 -
accessed 10-8-2019 . 65

5.5 Training and testing accuracy of the Multi-Layer Perceptron (MLP) for Neuromorphic
MNIST (N-MNIST) classification. Adapted from Shrestha and Orchard [94] 66

5.6 Training and testing accuracy of the Convolutional Neural Network (CNN) for N-MNIST
classification. Adapted from Shrestha and Orchard [94] 66

5.7 SLAYER probability distribution function. The gradient along the curve is used as an
approximate gradient of the non-differentiable spikes within a spiking neural network.
Adapted from Shrestha and Orchard [94] . 67

6.1 Accuracy curves on training and testing datasets for (a) regular 34 layer ResNet trained
on frame-based Caltech101 dataset and (b) event discretization kernel prepended to 34
layer ResNet network trained on Neuromorphic Caltech101s (N-Caltech101) dataset. . 72

6.2 Training and testing accuracies on the event-based N-MNIST dataset during training of
the (a) Phased LSTM (PLSTM) and (b) Long Short-Term Memory (LSTM) network. . . . 73

6.3 Mean of gradients for three layer fully connected Spiking Neural Network (SNN) during
training. 74

6.4 Standard deviation of gradients for three layer fully connected SNN during training. . . . 74
6.5 Mean of gradients for three layer fully connected Artificial Neural Network (ANN) during

training. 75
6.6 Standard deviation of gradients for three layer fully connected ANN during training. . . . 75
6.7 Mean of gradients for four layer convolutional SNN during training. 75
6.8 Standard deviation of gradients for four layer convolutional SNN during training. 75

xiii

xiv List of Figures

6.9 Mean of gradients for four layer convolutional ANN during training. 76
6.10 Standard deviation of gradients for four layer convolutional ANN during training. 76
6.11 Weight distributions after training of the XOR network with (a) regular Reward Modu-

lated Spike Timing Dependent Plasticity with Eligibility Traces (MSTDPET), (b) threshold
MSTDPET, and (c) with threshold MSTDPET and connections not split into predefined
positive and negative weights. 78

6.12 Activity of the hidden neurons during a complete epoch, after training of the XOR network
with (a) regular MSTDPET, (b) threshold MSTDPET, and (c) threshold MSTDPET and
connections not split into predefined positive and negative weights. 78

6.13 Thresholds distribution after training of the XOR with (a) threshold MSTDPET, and (b)
threshold MSTDPET and connections not split into predefined positive and negative
weights. 78

6.14 Activity of the output neurons during a complete epoch, after training of the network (50
input, 30 hidden) with threshold MSTDPET. Figure (a) shows the output of the network
with the best final performance at 89.5% accuracy, (b) shows the worst performing ini-
tialization with an accuracy of 21.5%. 79

6.15 Statistics for a 80 input, 50 hidden network that was trained usingMSTDPET and achieved
12% accuracy. (a) The neuronal activity of the hidden layer, and (b) the weight distribu-
tions after training. 80

6.16 Statistics for a 30 input, 15 hidden network that was trained usingMSTDPET and achieved
60% accuracy. (a) The neuronal activity of the hidden layer, and (b) the weight distribu-
tions after training. 80

A.1 Mean of gradients for 2 layer fully connected SNN during training. 94
A.2 Standard deviation of gradients for 2 layer fully connected SNN during training. 94
A.3 Mean of gradients for 2 layer fully connected ANN during training. 94
A.4 Standard deviation of gradients for 2 layer fully connected ANN during training. 94
A.5 Mean of gradients for four layer fully connected SNN during training. 95
A.6 Standard deviation of gradients for four layer fully connected SNN during training. . . . 95
A.7 Mean of gradients for four layer fully connected ANN during training. 95
A.8 Standard deviation of gradients for four layer fully connected ANN during training. . . . 95
A.9 Mean of gradients for five layer fully connected SNN during training. 96
A.10 Standard deviation of gradients for five layer fully connected SNN during training. 96
A.11 Mean of gradients for five layer fully connected ANN during training. 96
A.12 Standard deviation of gradients for five layer fully connected ANN during training. 96
A.13 Mean of gradients for three layer convolutional SNN during training. 97
A.14 Standard deviation of gradients for three layer convolutional SNN during training. 97
A.15 Mean of gradients for three layer convolutional ANN during training. 97
A.16 Standard deviation of gradients for three layer convolutional ANN during training. 97
A.17 Mean of gradients for five layer convolutional SNN during training. 98
A.18 Standard deviation of gradients for five layer convolutional SNN during training. 98
A.19 Mean of gradients for five layer convolutional ANN during training. 98
A.20 Standard deviation of gradients for five layer convolutional ANN during training. 98
A.21 Mean of gradients for six layer convolutional SNN during training. 99
A.22 Standard deviation of gradients for six layer convolutional SNN during training. 99
A.23 Mean of gradients for six layer convolutional ANN during training. 99
A.24 Standard deviation of gradients for six layer convolutional ANN during training. 99

List of Tables

2.1 Basic neural network components and their relational biases. From [8] 34

4.1 Learning rules for optimizing spiking neural networks and their strengths and weak-
nesses as derived from literature. 58

5.1 Advised standard hyper parameters for the Adam optimization algorithm 64
5.2 Layerwise number of neurons for the fully connected SNNs trained with the SLAYER

algorithm . 67
5.3 Layerwise parameters for the convolutional SNNs trained with the SLAYER algorithm.

Following convention for describing a convolutional layer: k(kernel), s(stride), p(padding,
always even), c(channels). 67

5.4 Network design and hyper parameters for the XOR and classification experiments. . . . 70
5.5 Layerwise number of neurons for the fully connected networks trained with the additive

and multiplicative versions of the MSTDPET algorithm. 70

6.1 Performance comparison of 34 layer ResNet trained on the Caltech101 dataset and the
34 layer ResNet prepended with a learnable discretization kernel trained on the Neuro-
morphic Caltech101 dataset. 72

6.2 Training and testing results for the PLSTM and LSTM experiments performed on a sub-
set of the N-MNIST dataset, the results from the original paper [70], and a reference
experiment on frame-based MNIST data. Event-based = Ev., Frame-based = Fr. 73

6.3 Training and testing results for the three layer fully connected and four layer convolutional
networks. The first two columns show the results for the networks trained on event-based
data with the SLAYER algorithm, the last two columns for the network trained on frame-
based data with regular backpropagation. 76

6.4 Best and worst classification performance for each network and learning rule combination. 79

A.1 Training and testing results for the two and five layer fully connected networks trained
on event-based data with the SLAYER algorith, and trained on frame-based data with
regular backpropagation. 93

A.2 Each network and the reference to the figures containing the statistics (mean and stan-
dard deviation) of its gradients during training. 93

xv

1
Introduction

For a long time, humans have been fascinated by their own ability to learn. Young children start learning
as soon as they are born, whereas experienced adults possess both the ability to reason about their
environment or be guided by their intuition, almost without fault. A good example is an experienced
driver that knows an accident is about to take place before it actually occurs. This ability to learn from
experience and examples is something that many researchers strive to replicate, for example in robots.

The past decade saw a surge of popularity for learning algorithms that can infer patterns in data by
showing it examples together with the desired outcome [49, 53], or even without telling the network what
the desired outcome is [32, 34]. These self-learning methods mostly rely on deep learning, a family of
machine learningmethods that are roughly based on how biological brains process information by using
a large network of interconnected neurons [33], called an Artificial Neural Network (ANN). While deep
learning has been very successful in many pattern recognition tasks like classifying images, or speech
recognition, most of the successful model required immense amounts of computational power. To
illustrate, a small neural network, for modern standards, often requires at least one high-end Graphics
Processing Unit (GPU) to be trained and used effectively. These devices use 250W of power1 or more,
making them highly ineffective for use in low-power applications like small scale robotics.

Combining the learning capabilities of ANNs with energy efficiency is where Spiking Neural Network
(SNN) come in to play [26]. While ANNs are loosely inspired by animal brains, SNNs stay closer to
the way animal brains work. Compared to an ANN, SNNs have the potential of being several orders of
magnitude more energy-efficient because of the differences in the way they encode information. While
ANNs communicate with scalar values and perform many large scale, synchronous matrix multiplica-
tions, SNNs send signals in the form of binary spikes where the time of arrival carries the information.
Each neuron in a SNN performs this operation asynchronously from the others. It is this sparsity of the
spiking signal that makes SNNs more energy efficient.

Due to their design, SNNs can be implemented on neuromorphic hardware. These are chips de-
signed to leverage the sparse and asynchronous signals used in SNNs, and are a large reason for the
reduction in energy usage compared to ANNs. As mentioned earlier, this makes SNNs ideal for low
power applications like robotics. In addition, SNNs work together very well with event-based cameras
[56]. These cameras detect changes in light intensity, instead of absolute values of light intensity. In-
formation is communicated in the form of binary spikes, and each pixel works completely asynchronous
from the other pixels. This is the same data format as used in SNNs. As a result, these cameras can
have a temporal resolution of as little as 2 𝜇𝑠, and do not suffer from any motion blur. Even though
these cameras are not a central topic to this thesis, their suitability for robotics applications and their
synergy with SNNs is in itself a good reason for researching and developing SNNs.

Whereas there are theoretical advantages to using SNNs, they have not reached a point of maturity
where they are truly useable in common applications. The main reason for this is that there currently
exists no algorithm that can solve the credit assignment problem [64] in SNNs as efficiently as super-
vised backpropagation [86] can in ANNs. The credit assignment problem is the problem of determining

1https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/ - accessed on 21-02-2020

1

2 1. Introduction

which of the previous actions lead to a certain outcome, and supervised learning is the process of
finding patterns in data that strongly correlate with the desired output signal.

In contrast to optimizing ANNs where supervised learning is most common, SNNs are mostly trained
with unsupervised learning algorithms. These algorithms work by extracting the most salient patterns
present in the data. The type of method that is mostly used for training SNNs is called STDP [96]. It
finds its origin in how animal brains perform optimization. A clear downside of unsupervised learning
is that it cannot relate an arbitrary target signal to an arbitrary input signal like supervised learning can.
Yet, supervised learning rules are a lot less common for optimizing SNNs, and the ones that do exist
put several constraints on the network and still perform less than ANNs. Efficiently solving the credit
assignment problem in SNNs is one of the largest outstanding challenges in the field of neuromorphic
computing. Because of that, this thesis will focus on contributing to solving it.

To date, there are roughly two ways of solving the credit assignment problem, through supervised
learning, or through Reinforcement Learning (RL). Reinforcement learning is best described as learning
through trial-and-error [99]. By intelligently exploring the possible options and rewarding ones that lead
to the desired result, one eventually can learn to solve complex problems. The reinforcement learning
framework has roots in machine learning, but also in neuroscience [88]. Animal brains make extensive
use of reinforcement learning by modulating its operations with for example neurotransmitters. Besides
in the brain, many animals also make use of reinforcement learning at an organism level. One of the
best examples is young children that learn through playing.

Supervised learning plays a crucial role in modern deep learning. Reinforcement learning is also
a very active research area in the machine learning community, but also has many applications within
neuroscience and biology. In addition, these are the two main methods for solving a credit assignment
problem currently in use. Because of these reasons, this preliminary thesis will explore both methods
as means to solve the credit assignment problem in spiking neural networks.

1.1. Motivation and Research Question
The Micro Air Vehicle Laboratory (MAVLab) at the Delft University of Technology solves fundamental
technological challenges of micro air vehicles to maximize their utility and safety.2 The most impor-
tant factor in achieving this is to make the micro air vehicles autonomous, for which one of the main
research fields is vision-based collision avoidance algorithms. For example, recent work towards this
goal includes learning to predict distance using a monocular camera [16], or to estimate optical flow in
an unsupervised manner using efficient neuromorphic computing [78].

Because SNNs have such a low (theoretical) power consumption they are ideal for low power appli-
cations like micro air vehicles, especially when paired with an event-based camera. In addition, there
is a lot of research and development taking place in designing neuromorphic chips that can be used
to efficiently simulate SNNs. Yet, the main thing that is missing is an efficient algorithm for solving
the credit assignment problem in spiking neural networks. A supervised and online learning algorithm
would be ideal for solving the credit assignment problem because it can be used while the SNN is in
use.

According to this motivation, the main research question for this thesis is as follows:
Can a supervised learning algorithm be designed that can optimize spiking neural networks in

an online manner?

1.2. Structure of This Work
This thesis is divided into three parts. The first part presents the main contribution of this thesis in
the form of a scientific paper. The paper presents a new online, supervised, gradient-based learning
method for SNNs. In addition to the design of the learning method, the paper presents the results of
the experimental analysis of the learning method, as well as discussing several ways of improving it.
Also, this paper can be read as a standalone document.

The second part consists of an in-depth review of literature on deep learning, neurmorphic comput-
ing, and reinforcement learning. Chapter 2 covers deep learning in ANNs and SNNs. For ANNs, this
includes their basic functioning as well as applications in event-based vision processing. The chapter
concludes with information on SNNs, treating their origin in biology, fundamentals of SNNs, and the

2http://mavlab.tudelft.nl/ - retrieved on 21-06-2019

1.2. Structure of This Work 3

current state of network and learning rule design. In chapter 3 the basics of Reinforcement Learning
(RL) are presented with a focus on its relation and applicability to SNNs. Lastly, chapter 4 concludes
this part with a synthesis of the literature presented in the preceding chapters and guidelines for working
with and designing SNNs.

The third part describes experiments that are conducted as part of the preliminary thesis. The objec-
tive was to compare the performance of ANNs and SNNs when processing event-based data. Besides
comparing ANNs and SNNs, the experiments also served as a practical introduction to neuromorphic
computing. Chapter 5 starts with a description of the datasets that were used during the experiments
and concludes with the methodology and setup for each experiment. Next, chapter 6 presents the re-
sults for each of the experiments. Finally, chapter 7 provides a discussion on the datasets, experimental
setups, main results, and the conclusions that contribute towards the main thesis.

I
Scientific Paper

5

Online supervised learning in spiking neural
networks through eligibility traces

Bas Büller∗, Federico Paredes-Vallés†, Guido C.H.E. de Croon†
Control & Simulation Section, Control & Operations Department, Faculty of Aerospace Engineering

Delft University of Technology, Delft, The Netherlands

Abstract—Spiking neural networks are notoriously hard
to train because of their complex dynamics and sparse
spiking signals. However, in part due to these proper-
ties, spiking neurons possess high computational power
and high theoretical energy efficiency. We introduce an
online, supervised, and gradient-based learning algorithm
for spiking neural networks. We show how gradients of
temporal signals that influence spiking neurons can be
calculated online as an eligibility trace. The trace represents
the temporal gradient as a single scalar value and is re-
cursively updated at each consecutive iteration. Moreover,
the learning method uses approximate error signals to
simplify their calculation and make the error calculation
compatible with online learning. In several experiments, we
show that our algorithm can solve spatial credit assignment
problems with short-term temporal dependencies in deep
spiking neural networks. We also address ways to improve
the algorithm’s performance on long-term temporal credit
assignment problems.

Index Terms—spiking neural networks, supervised learn-
ing, online learning, neuromorphic computing

I. INTRODUCTION

Animals are capable of extraordinary feats that artifi-
cial systems have not rivaled yet. For example, humans
are capable of seamlessly transitioning from walking
to running without falling over, almost instantly react
to a car that suddenly appears in the corner of their
sight, or collaborate with thousands of other people to
put a human on the moon. In part, these capabilities
result from their remarkably powerful, yet efficient brain,
nervous system, and senses. For instance, the human
brain performs all its tasks by operating 1011 neurons
with 1015 synaptic connections [1] at just 20W [2].

These astonishing capabilities and numbers can partly
be attributed to the way neurons in the brain operate and
how they communicate with each other. Biological brains
are essentially a large number of interconnected neurons,
called a neural network. By optimizing the strength
of their connections, neural networks are capable of
solving a wide range of tasks. The neurons itself are
characterized by their spiking function [3]. If a neuron is
excited enough by other neurons over time, it generates a
spike and almost instantly resets itself. As a result of this

∗MSc student, †Supervisor.

function, biological neurons communicate through sig-
nals consisting of asynchronous, spatiotemporal, sparsely
distributed spikes [3].

Biological brains have inspired research towards many
types of artificial neural networks [4], and the research
field is called deep learning. The most common neural
networks use a simplified neuron model optimized for
large-scale parallel computing. These networks have
achieved many impressive results in the past decade [5]–
[8] and are generally referred to as Artificial Neural
Networks (ANNs). On the contrary, the field of neur-
omorphic computing researches artificial neural net-
works that closely mimic their biological counterpart.
These are Spiking Neural Networks (SNNs), referring to
the spikes that are the result of the spiking function of
a neuron. Compared to the more common ANNs, SNNs
have a higher computational power per neuron [3], [9],
as well as lower theoretical energy requirements. As a
result, SNNs are often considered the third generation of
neural networks [9]. Besides their theoretical advantages,
SNNs have received increased attention due to recent
advances in SNN related hardware. Especially neur-
omorphic chips [10], [11] for highly efficient simulation
of SNNs, and event-based cameras [12] that communic-
ate with the same spike-based signals as SNNs.

One of the main aspects preventing SNNs from seeing
widespread adoption is the absence of a useful and gen-
erally applicable learning algorithm. There are two main
approaches to training SNNs, gradient-based methods,
and correlation-based methods. The workhorse of deep
learning, Backpropagation (BP) [13], forms the basis for
the gradient-based methods. Gradient-based methods are
state of the art for training SNNs [14], [15] and thus
widely used. However, they come with several practical
disadvantages. Firstly, BP is not directly applicable to
SNNs because the spike generation function is non-
differentiable. Secondly, BP requires completely sep-
arates network operations and updating the network’s
parameters, called offline training.

Correlation-based learning rules [3], [16] are more
readily applicable to SNNs because they do not require
the operations of a network to be differentiable. In gen-
eral, correlation-based methods are based on Hebb’s pos-

1

tulate [17], [18], summarized as follows: "Neurons wire
together if they fire together." As a result, correlation-
based methods put minimal constraints on the neural
network and its applications. In addition to not requiring
differentiable operations, most correlation-based learning
rules can update a network’s parameters while it is active,
called online training [19]. However, correlation-based
methods often have inferior performance compared to
gradient-based methods [14], [20].

Combining the advantageous properties of gradient
and correlation-based methods into a single learning rule
would significantly improve the applicability of SNNs.
Such a new learning rule has to be able to identify
and compare temporal activity patterns online, which
historically has been somewhat difficult [21]. However,
eligibility traces can be used to determine these temporal
relations [22]. Eligibility traces describe a temporal
process in a single scalar value by increasing in value
if the temporal signal is active, and gradually decaying
back to zero in the absence of activity. Used initially
in Reinforcement Learning (RL) applications to perform
online learning in possibly infinite episodes, they were
quickly adopted for use in SNNs [23], [24]. SNNs
often use eligibility traces as a short-term memory of
neuronal activity by discounting (or decreasing) a spike’s
influence as it is more distant in time.

Inspired by the effectiveness of gradient-based meth-
ods, the flexibility and online learning of correlation-
based methods, and the ability of eligibility traces to
capture temporal dependencies, the contributions of this
work are as follows:

• Show that gradients of temporal network operations
can be calculated in the form of eligibility traces.
As a result, these gradients can be calculated while
operating a network.

• An approximate error propagation scheme that is
comparable to backpropagation.

• Trace propagation, a learning algorithm that com-
bines eligibility traces and approximate error
propagation to perform online supervised learning
in SNNs. The method is named trace propagation
because of its extensive use of eligibility traces in
optimizing SNNs.

Section II starts with background information on
SNNs and training methods. This section is followed
by an overview of related works in section III. Next,
trace propagation is presented in section IV. Section V
presents the experiments that have been conducted to
validate the learning rule. Lastly, this paper ends with
its conclusion in section VI.

To the authors regret, a very comparable work [25] has
recently been made available for preprint. The particular
method was published at a time such that we could
have read it before conducting this study. However,

this work was performed independently, and [25] was
only discovered after our study was concluded. So, this
paper presents our findings as if [25] is not published.
The differences between the methods are discussed in
section IV-F.

II. BACKGROUND

This section presents the relevant background inform-
ation for the training of SNNs. Firstly, a description of
SNNs and the dynamics of spiking neurons is presented
in section II-A. Secondly, the basics of gradient-based
learning in SNNs is found in section II-B. Thirdly,
the general working of correlation-based learning can
be found in section II-C. Lastly, eligibility traces and
their use in temporal learning problems are described in
section II-D.

A. Spiking Neural Networks

The dynamics of spiking neurons are primarily in-
spired by those of biological neurons [3]. As a result,
spiking neurons communicate with sparse, spatiotem-
poral signals, and spiking neurons can operate asyn-
chronously from each other. A network of such neurons
becomes an efficient and powerful learning model [9].

SNNs belong to the fields of neuromorphic computing
and deep learning. Compared to regular ANNs [4],
SNNs have a similar architectural topology, but they
greatly differ in their neuron dynamics. Figure 1 visual-
izes the dynamics of a spiking neuron, and is a reference
for the following explanation. Spiking neurons have a
state that at least consists of a membrane potential, which
changes as the neuron receives input. If the membrane
potential surpasses a threshold value, the neuron gener-
ates a binary output, called a spike. After generating a
spike, the membrane potential resets to its resting value.
At this moment, the neuron enters a refractory period
during which the membrane potential cannot change,
and thus, the neuron cannot spike. Because of their state
and spiking signals, spiking neurons always operate in
the temporal dimension, communicate with sparse binary
signals called spike trains, function asynchronously from
each other, and have more computational power per
single neuron [9], [26] than linear artificial neurons.

Roughly two groups of neuron models exist, bio-
physical models and phenomenological models. Bio-
physical models [28] intend to model biological neur-
ons with high accuracy, but this comes at the cost
of high computational complexity. On the other hand,
phenomenological models make a compromise between
accuracy and computational complexity. Because this
work uses phenomenological models the most common
version, the LIF [3], [29], is treated next. This model
builds on the assumption that spike timing captures all
information in a spiking signal, and variations in spike

2

t

j vreset

vi(t)

zi(t)

vthr

zj(t)

trefr

Figure 1: Dynamics of a Leaky Integrate-and-Fire (LIF)
neuron. On the left is an illustration of the neuron
with incoming spikes in color and an outgoing spike
in black. The top row in the diagram on the right shows
the progression of the membrane potential over time.
The middle row shows presynaptic spikes aligned with
the corresponding increase in membrane potential. The
bottom row shows the postsynaptic spike, which aligns
with the moment the membrane potential surpasses the
firing threshold and resets. From [27].

amplitude and shape are unimportant. As a result, the
LIF communicates with binary signals but retains rich
temporal dynamics. Besides the LIF neuron, the Spike
Response Model (SRM) [30] and the Izhikevich neuron
[31] are commonly used.

Neurons can be freely composed into a neural network
by connecting them. It is common practice to group
neurons into layers and then stacking several layers
into a network. Figure 2a shows an example of such
a network. The network processes the input it receives
one layer at a time. Once a layer is done processing,
it communicates its output through its connections to
the next layer. Neurons in a sending layer are called
presynaptic neurons, neurons in a receiving layer post-
synaptic neurons, and the connections between neurons
are called synapses. Besides propagation information
between neurons, synapses also can multiply the signal
with a synaptic weight. The ability for an SNN to
adapt these weights to change its dynamics is referred
to as plasticity. A particular form of plasticity is the
adaptive threshold [3], [21], where the firing threshold
of a neuron temporarily increases every time it emits a
spike. The name of this process is Short-Term Plasticity
(STP), referring to the non-permanent change in neuronal
dynamics.

B. Gradient-Based Learning for SNNs

The state of the art learning methods for SNNs [14],
[15], [32] are based on the BP algorithm [13]. BP was
designed for optimizing regular ANNs and is the go-
to learning method for such networks. However, there
are two issues to overcome when applying BP to SNNs.
The non-differentiable spiking function and the fact that
spiking neurons operate in the temporal domain cause

these issues. BP is explained next, followed by how to
make SNN compatible with BP.

For the purpose of explaining BP, a neural network
like depicted in fig. 2a is used. The neurons in the
network do not have a state like spiking neurons do. Let
i = 1, 2, ..., nl−1 denote a set of presynaptic neurons
in layer l − 1 and j = 1, 2, ..., nl a set of postsynaptic
neurons in layer l. Now, a postsynaptic neuron’s output
zj is a function of the presynaptic output zi and synaptic
weights θij .

BP performs gradient descent on a network’s loss
function by adjusting the network’s weights. The al-
gorithm does so in two separate phases, the forward
pass and the backward pass. During the forward pass,
the network processes its input, like in fig. 2a. While
processing the input, the gradients of the network’s
operations are stored in memory. Once the network
generates an output, it is analyzed using a loss function
L, at which point the forward pass ends.

Next is the backward pass, where the network’s para-
meters are updated to minimize the loss function. This
phase starts with "backpropagating" information from
the network’s loss to all neurons in the network like
shown in red in fig. 2b. The backward pass accounts
for all paths through which an operation in the network
influences the loss function. The ingenuity of the BP
method is that it uses the chain rule to compute the
error signal δL

δzj
efficiently for each neuron in a network.

For the neurons in the output layer, the error signal δL
δzj

depends on the loss function. However, for a presynaptic
neuron i in a non-output layer l, its error signal δL

δzl
i

is
based on the error signals of all postsynaptic neurons j
in layer l+ 1 it is connected to. BP calculates the error
signal as follows:

δL

δzli
=

∑
j

δL

δzl+1
j

δzl+1
j

δzli
(1)

This process is repeated layer by layer until the algorithm
reaches the input layer.

The backward pass finished by updating the network’s
free parameters θij . To minimize the loss function, the
update is performed in the opposite direction of the
gradient of the loss function with respect to the network’s
parameters:

∆θij = −µ
δL

δzj

δzj
δθij

(2)

Before updating the parameters, the gradients are mul-
tiplied with the learning rate µ << 1. Its value is
considerably smaller than one to prevent abrupt changes
to the network.

As mentioned earlier, there are two issues with apply-
ing BP to SNN. Firstly, the spike generation function
of a spiking neuron is non-differentiable due to the

3

reset of a neuron’s state after spiking. Therefore, most
gradient-based methods for SNNs make use of surrogate
derivatives, some of which are presented in section III-A.

Secondly, the backward pass of regular BP does not
work with explicit or implicit recurrent connections. BP
in recurrent connections leads to self-reinforcing patterns
where the outcome of eq. (1), δL

δzj
, is dependent on

itself. A recurrent-connection is visualized in the left part

Output

Input

(a)

Input

Loss

(b)

Input

Output

(c)

Reward

Input

(d)

Feedforward information

Feedback information

Connection undergoing learning

Reward influence

Figure 2: Visual explanation of the flow of informa-
tion for parameter updates in BP and correlation-based
methods. (a) Propagation of information from a single
connection during the forward pass. (b) The backward
pass of BP corresponding to the forward pass in (a).
(c) Information sources for correlation-based learning
during the forward pass. (d) Information sources for
correlation-based learning with a global reward or error
signal during the forward pass. Adapted from [33].

of fig. 3. Neurons with recurrent-connections use their
output, or state, of the previous timestep t− 1 as part of
their input for the current timestep t. These connections
can be used when the data is sequential; i.e., it consists
of multiple timesteps. Spiking neurons have an implicit
recurrent connection since a neuron’s state at timestep t
depends on their state and output of the previous timestep
t− 1. Backpropagation Through Time (BPTT) [34] was
introduced to deal with these recurrent connections. It
"unrolls" a Recurrent Neural Network (RNN) in its
temporal dimension, effectively creating a single layer
for each timestep, as shown in the right part of fig. 3.
After unrolling regular BP can be applied to the network
to "backpropagate the error through time." Depending on
the number of timesteps involved, unrolling of networks
can lead to deep networks consisting of many layers.

C. Correlation Based Learning for SNNs

A defining property of correlation-based learning rules
is that they do not require the operations in a neural
network to be differentiable, making them well-suited
for training SNNs. In their most elementary form, they
strengthen connections between neurons that share a
synaptic connection and whose signals are correlated,
hence the name correlation-based methods. Besides,
most of these methods are local, meaning they only rely
on information that is directly present in the synaptic
connections of a neuron, as visualized in fig. 2c. Because
all computations required for the weight updates occur
operating a network, there is no backward pass, which
simplifies online learning. More information on differ-
ent variations and existing correlation-based methods is
presented in section III.

The most basic and popular correlation-based learning
rule is Spike-Timing-Dependent Plasticity (STDP) [36],
[37], which forms the basis for most existing and new
correlation-based methods. All STDP rules work based
on a difference in timing between presynaptic and post-
synaptic spikes. Whenever a presynaptic spike arrives at
a postsynaptic neuron before that neuron spikes, the syn-
aptic weight of the connection carrying the presynaptic
spike is increased. If the order of spikes is reversed, thus
presynaptic after postsynaptic, the weight is decreased.

... T21t

Figure 3: Unrolling a recurrent neural network in time.
Adapted from [35].

4

Lastly, the smaller the timing difference between the two
spikes, the larger the absolute weight change.

A common modification of STDP is to use it in a
RL setting with a global reward or error signal. The
global signal modifies the weight updates by changing its
sign. Figure 2d shows a graphical interpretation of this
reward-based learning. One of the main concerns for RL
methods is to account for the time delay between related
events. For example, a reward signal often occurs later
than the action that caused the generation of this reward
[38], [39]. Exact determination of this time difference is
almost always intractable, and how methods deal with it
is one of the main differences between them.

D. Eligibility Traces

One of the difficulties of training SNNs is the need
for learning temporal dependencies, both in the data and
in network activity. Learning temporal dependencies is
especially difficult for online learning without explicitly
storing past activities in memory. To (partly) alleviate
this problem, eligibility traces were designed [22]–[24].
In general, eligibility traces express the activity of a
process within a limited time-window as a scalar value.
While doing so, they emphasize recent activities over
those further in the past. These properties make eli-
gibility traces a primary tool for determining temporal
dependencies in SNNs [23]–[25].

An eligibility trace increases in value when the process
it describes (like the activity of a neuron) is excited or
generates an output, i.e.:

εt+1 = γεt + xt, with γ < 1 (3)

The parameter εt represents the trace at time t, γ is the
decay rate, and signals that increase the trace at time t
are indicated by xt.

The recursive formulation of eq. (3) can be expanded
between an arbitrary previous timestep t′ and current
time t as follows:

εt+1 = γ(γ(...εt
′
) + xt) + xt (4)

Because an eligibility trace decays back to zero, it
has a time-window within which it operates. After a
certain amount of recursive updates, the original input
xt is decreased to a negligible value. The decay rate γ
determines the duration of this time window [22]:

τε ≈
1

1− γ
(5)

III. RELATED WORK

The current section covers learning methods from the
literature that are relevant to this work. Section III-A
describes several existing gradient-based methods for
training SNNs. Next, correlation-based methods are dis-
cussed in section III-B. Lastly, a couple of methods that

researched the importance of accurate learning signals
are presented in section III-C.

A. Gradient Based Learning in SNNs

Many methods have made SNNs compatible with
BP and BPTT. The resulting learning rules depend on
a surrogate gradient for the non-differentiable spiking
function or circumvent it altogether. Some of the more
prominent approaches include linearizing the relation-
ship between neuronal input and output around the time a
neuron spikes [40], replacing the instant spike generation
and reset with a piece-wise smooth curve [15], directly
differentiating on the neuron’s membrane potential [32],
[41], [42], using the gradients of a surrogate function
[14], or using the alpha function te−t for shaping a spike
that allows for deriving exact gradients with respect to
spike times [43].

The advantages of the previously mentioned methods
include that they unlock many of the benefits of BP.
Examples are accurate learning and mature software
frameworks. In part because of these advantages, several
gradient-based methods are state of the art for spatial and
temporal credit assignment tasks for SNNs [14], [15],
[43]. However, these methods perform offline training
and have considerable memory requirements. Moreover,
SNNs often are still outperformed by regular ANNs,
especially with larger and deeper networks [7], [21].
There are two likely reasons for that. The first is the
fact that a surrogate gradient is used. The second is
that "unrolling" an SNN along its temporal dimension
can result in networks of hundreds of layers. Training
such deep networks historically has caused difficulties in
training ANNs [44], [45], and likely also causes troubles
for SNNs.

B. Correlation Based Learning in SNNs

In its basic form, STDP [37] has several limitations.
It is unsupervised, unstable in its performance, and
only applicable in a minimal number of situations. This
section treats several variations of STDP that resolve
the previous issues, grouped in unsupervised, supervised,
and RL based methods.

Basic STDP performs weight updates without ac-
counting for the network output or network performance.
As a result, STDP creates bimodal weight distributions
where the weights take on large absolute values [36] and
making the learning and network performance unstable.
Roughly two types of solutions exist. Using hard bounds
on the weight values [46]–[48], or using soft bounds
that gradually decrease the size of weight updates as the
absolute value of weights increase [27], [49], [50]. These
solutions are relatively simple to implement and place
little to no restrictions on the network or data. However,
the network’s performance does not influence weight

5

updates in any way. As a result, purely unsupervised
STDP is incapable of learning non-trivial input-output
relations [51] and thus unsuited for supervised learning
as well as some unsupervised learning tasks.

There are only a few supervised, correlation-based
learning methods, of which ReSuMe [52] is likely the
most well-known. ReSuMe requires a target spike train
for each neuron in a network. If a connection’s presyn-
aptic signal correlates strongly with the target signal, its
weight is potentiated. On the contrary, if a connection’s
presynaptic signal correlates more strongly with the
neuron’s actual output signal, its weight is depressed.
The downside of ReSuMe is that setting a target spiking
signal for each neuron in a network is complicated and
unfeasible.

What separates most RL methods from each other
is how they correlate network actions with a delayed
reward signal. In [53], the authors use stochastic neurons
that fire with Poisson statistics. These neurons effectively
fire at a constant rate but have a fluctuating time between
consecutive spikes. Fluctuations in the spiking statistics
can now be correlated with the reward signal, indicating
which parts of the network contributed to the desired
output. However, neurons that fire with a fixed, average
rate are considered inefficient because it prevents the
neurons from using sparse signals. In Reward Modu-
lated Spike Timing Dependent Plasticity with Eligibility
Traces (MSTDPET) [23], eligibility traces [22] are used
to represent recent activity of a neuron as a scalar value.
The traces allow for postponing weight updates until a
reward signal is received and also improve the method’s
capability of correlating the reward with the action that
caused it. In [20], [54], a combination of MSTDPET
and regular STDP is used to perform classification of
MNIST images. This combination was the first success-
ful application of MSTDPET to a visual recognition task
of the scale of MNIST.

Reinforcement learning and STDP combine easily and
requires little adjustments to a network or training envir-
onment. Moreover, the combination is relatively flexible
since it can perform both RL and supervised learning.
However, many of these methods suffer from common
RL disadvantages. Sample inefficiency and bad scaling
with network size [22] are the two most important ones.

C. Accuracy of Error Signals

Perpendicular to defining surrogate gradients for the
spiking function is research that focusses on finding an
alternative to the backward pass of BP. This research
is mainly driven by the fact that connections between
biological neurons send information in only one direction
[55], [56]. However, the results that approximate error
signals can effectively train moderately sized ANNs just

as effectively as BP can have exciting implications for
both SNNs and ANNs.

In [57] the precise backward pass of BP is replaced
with random, fixed gradients. Experiments showed that
this replacement resulted in almost no change in the
trained network’s performance. Because the random
feedback gradients are fixed, the network’s forward (reg-
ular) weights approximately aligned with the feedback
gradients. This alignment allowed the network to learn
as effectively as with BP. Random feedback gradients
were tested on only moderately complex ANNs, and no
experiments were performed on a large state of the art
network.

The authors of [58] present a different approach. They
prove that the network’s error signal can be factorized
into a local error signal for each neuron in the network
by separating positive and negative weight connections
from each other. By adding a global error signal like
used in RL, the method minimizes the loss function for
binary classification tasks. As a result, backpropagation
of the error signal is not necessary, yet the method still
achieves performance comparable to that of normal BP.
The downside of this method is that it is only applicable
to binary classification tasks.

In general, these works indicate that supervised learn-
ing in ANNs does not always require precise error
propagation. The results are far from conclusive, but
they stimulate further research and experimentation. Es-
pecially for SNNs, where exact backpropagation is not
possible.

IV. METHODS

As described in section II, gradient-based methods
for training SNNs commonly use BPTT to deal with
the network’s temporal signals and implicit recurrent
connections. However, this requires unrolling of the
network in time, storing of gradients for each timestep,
and offline learning. In this section, we present trace
propagation, a learning rule that performs online and
gradient-based optimization of SNNs. Trace propagation
performs gradient descent on the network’s loss. The
weight updates are based on an adjusted version of
eq. (2) that accounts for a neuron’s state s and the
timestep t of the weight update:

δLt

δθij
=

δLt

δztj

δztj
δstj

δstj
δθij

(6)

Equation (6) is a lot like the version used in BPTT
for training SNNs. However, there are three distinct
differences in the way trace propagation works compared
to BPTT based methods:

6

• Trace propagation performs online training, so it
evaluates the network’s loss function and updates
the network’s parameters update with eq. (6) after
each timestep. As a result, trace propagation can
train networks for any amount of timesteps.

• Trace propagation calculates the gradient
δstj
δθij

on-
line while the network processes its input. A
neuron’s state is dependent on temporal signals,
so the same goes for gradients of that state. Its
online calculation prevents the need for storing the
gradient’s previous values for use with the chain
rule. The online calculation of

δstj
δθij

is possible
because we show how the gradient can be calculated
as an eligibility trace.

• The error signals δL
δzt

j
for each neuron in a network

are approximate values based on the eligibility trace
representing the spiking activity of each neuron.
Therefore, computations are easier than when using
spiking signals.

Also, due to these properties, trace propagation does not
have to unroll an SNN in the temporal dimension. Thus,
it is simpler to use, requires less memory, and is more
flexible than BPTT based methods.

The following sections are based on the neuron model
and network architectures that we use in this work.
However, trace propagation is compatible with a lar-
ger variety of neurons and architectures. Firstly, trace
propagation applies to any neuron model for which
eligibility trace calculation (see section IV-B) is valid.
So, trace propagation works with all neuron models
based on the SRM. Secondly, trace propagation can
be used with and without an adaptive threshold (see
section IV-D), because the threshold does not take part
in the error calculations or error propagation. Thirdly,
trace propagation can be applied to all feedforward and
recurrent network architectures since error propagation
is compatible with both.

The neuron model is often the starting point of an
SNN design and thus the first topic in section IV-A.
Next, section IV-B covers the online calculation of the
gradient of a neuron’s state with respect to its presynaptic
parameters

δstj
δθij

. Section IV-C discusses the surrogate

gradient that is used for the spiking function
δzt

j

δstj
. Ap-

proximate error propagation used to calculate the error
signal δL

δzt
j

for each neuron in a network is discussed in
section IV-D. The loss function L used in this work,
as well as a short discussion of other loss functions
that can be used with trace propagation are presented
in section IV-E. Lastly, an overview of the differences
between trace propagation and the eprop method of [25]
can be found in section IV-F.

A. Neuron Model

This work uses the standard LIF neuron model [3]
because of its rich temporal dynamics, computational
simplicity, and extensive use in practice. The neuron
also uses an adaptive threshold to regularize its spiking
activity.

The LIF model was designed based on the assumption
that the shape and amplitude of a spike do not carry
information. So, the LIF neuron and its purely binary
spikes are sufficient for propagating information while
the neuron retains rich temporal dynamics. Its recursive
dynamics are as follows:

vt+1
j = e−dt/τv (vtj − vrest) + α

∑
i

θjix
t
i (7)

The decay of the voltage of postsynaptic neuron j (indic-
ated by subscript) is determined by its adaptation time
constant τv . The binary-valued xt

i represents incoming
spikes at time t from presynaptic neuron i. Incoming
spikes are multiplied with synaptic weight θij , and
an optional input scaling factor α. At the event of a
postsynaptic spike ztj , the membrane potential is reset to
its resting value vrest. Lastly, the refractory period lasts
for trefr timesteps. During this period, the state of the
neuron is constant, and the neuron cannot spike.

The LIF neuron is extended with an adaptive threshold
[21] as a form of regularization. An adaptive threshold
regularizes a neuron by increasing the neuron’s firing
threshold each time it spikes and prevents it from becom-
ing increasingly active. The adaptive threshold consists
of a lower-bound threshold value vthr and an adaptive
term ζ:

ξt = vthr + ζt (8)

The recursive dynamics of ζt are the same as for a basic
eligibility trace:

ζt+1 = e−dt/τthr ζt + αthrz (9)

B. Online Gradient Calculation

In this section we show how the gradient
δstij
δθij

for
eq. (6) can be calculated online by rewriting the offline
formulation as an online eligibility trace.

The state of a neuron at time t depends on the
neuron’s input at that time, and indirectly on the neuron’s
input from previous timesteps through the neuron’s state.
Figure 4 visualizes a pair of connected neurons over T
timesteps. The grey dotted lines indicate that a signal
from neuron i at time t influences the state of neuron j at
times t′ > t. In addition, fig. 4 shows that an error signal
is provided to the postsynaptic neuron at each timestep.
Because a neuron’s state depends on inputs from an

7

unknown number of previous timesteps, gradients of the
neuron’s state have to take all timesteps into account:

δstj
δθij

=
δstj
δθtij

+
δstj

δst−1
j

δst−1
j

δθt−1
ij

+ ...+
δstj
δs0j

δs0j
δθ0ij

(10)

One can interpret this gradient as the change in the
current neuron state sj due to changing the synaptic
weight θij within the time window τv . The terms where
both the numerator and denominator have a superscript,
like

δstj
δθt

ij
, stand for the derivative of the neuronal state

with respect to its presynaptic parameters at time t.
The term without a superscript in the denominator

δstj
δθij

accounts for the influence of the parameter change at all
timesteps.

Equation (10) consists of two parts. Firstly, the
immediate impact of a parameter change at time t.
Secondly, the indirect impact parameter changes at pre-
vious timesteps have on the neuron state at the current
time. A more compact summation form of eq. (10) is as
follows:

δstj
δθij

=

t∑
t′=0

δstj
δst

′
j

δst
′

j

δθt
′
ij

(11)

Further expansion of the derivative
δstj

δst
′

j

clearly shows

how a neuron’s state at time t′ influences a neuron’s
state at time t:

δstj
δst

′
j

=
δstj

δst−1
j

δst−1
j

δst−2
j

...
δst

′+1
j

δst
′
j

=

t−1∏
k=t′

δsk+1
j

δskj
(12)

i

j

t0

Loss(t=0)

i

j

t1

Loss(t=1)

i

j

T

Loss(t=T)

zt0i zt1i zTi

st0j st1j

zt0j zt1j zTj

Figure 4: Computational graph for a presynaptic neuron
i and postsynaptic neuron j and their connection that is
trained with trace propagation. The dashed grey arrows
represent the indirect influence zti has on later states stj .

The important point is that due to its summation
over all timesteps, eq. (11) can be written in recursive
formulation:

δstj
δθij

=
δstj

δst−1
j

δst−1
j

δθij
+

δstj
δθtij

(13)

Thus, it shows that eq. (13) captures the gradient of a
neuron’s state with respect to a temporal signal.

Evaluating
δstj

δst−1
j

and
δstj
δθij

for the LIF neuron model
in eq. (7) leads to the following:

δstj
δθij

= e−dt/τv
δst−1

j

δθij
+ αxt

i (14)

With the recursive formulation of eq. (14),
δstj
δθij

can be
calculated online at each timestep t without storing all
the gradients of eq. (10) in memory. If postsynaptic
neuron j receives an input spike xt

i from presynaptic
neuron i the gradient increases in value. In addition, the
gradient’s value from the previous timestep decays at
the same rate as membrane potential decay rate e−dt/τv

of neuron j. The form of eq. (14) is almost equivalent
to that of the eligibility trace that describes the output
activity of presynaptic neuron i, as defined in eq. (3).
The only differences are the optional scaling factor α
and the fact that the decay rate e−dt/τv depends on the
postsynaptic neuron’s τv , and not that of the presynaptic
neuron.

C. Surrogate Gradient

The surrogate gradient for a neuron’s output with
respect to its state

δzt
j

δstj
is adapted from [21]:

δztj
δstj

= 0.3 ·max

(
a, 1−

∣∣∣∣vtj − vrest

vrest

∣∣∣∣) (15)

The a parameter is a minimum value for the gradient,
before multiplying it with 0.3. This gradient is also used
in [25], which is the work that is very comparable to this
one (see section IV-F for a comparison of the methods).
However, the gradient itself is introduced in [21]. The
works have the same first author, but [21] trains SNNs
with BPTT. Equation (15) is chosen as the gradient
for the spiking function because of its state of the art
performance. Equation (15) can be calculated online at
each timestep because it only depends on the neuron’s
voltage at that time.

The original derivative in eq. (15) uses a = 0. It has
state of the art performance and is easy to use with
regular LIF models. However, a common phenomenon
in SNNs is that of "dead neurons" [59]. Dead neurons
do not fire and thus do not participate in training. In this
situation where a neuron never gets excited, its gradients
remain zero. As a result, its synaptic weights do not
change. This problem of "non-flowing gradients" is also

8

common in ANNs, where empirical results suggest that
setting the minimum gradient to 0.2 improves learning
[60]. Following this rationale, this work uses a slightly
modified version of eq. (15) with a = 0.2.

D. Error Propagation

Here we introduce approximate error propagation for
SNNs. It calculates an approximation for the error signal
δL
δzj

in eq. (6) at each timestep, for each neuron in a
network. Error signals are propagated from layer to layer,
starting at the output layer of an SNN, just as with BP.
However, three main factors set the current method apart
from BP. Firstly, error signals are based on the eligibility
trace ε representing a neuron’s activity. Secondly, the
gradients for propagating the error signal to neurons are
for use with eligibility traces instead of spiking signals.
Lastly, there is no need for unrolling the SNN along
the temporal dimension like with BPTT. A description
of the logic behind error propagation is presented next,
followed by discussions of the three defining factors of
error propagation in the same order as they were just
presented.

Error propagation works based on the premise that
an increase in presynaptic activity for a connection with
a positive weight results in an increase in postsynaptic
activity. Conversely, an increase in presynaptic for a
connection with a negative weight results in a decrease
in postsynaptic activity. For both situations, the opposite
holds if the presynaptic activity decreases. Lastly, it is
also possible that there is no change in postsynaptic
activity. A constant postsynaptic activity could happen
because the change in presynaptic activity is not signific-
ant enough to cause a change in the postsynaptic spiking
signal, or the postsynaptic neuron is already operating
at its maximum firing rate. Table I extends this logic by
also taking the sign of the loss signal for the postsynaptic
neuron into account, as well as the desired change in the
presynaptic weight’s magnitude.

For this work, it was decided to determine the network
error L and error signals for each neuron based on the
eligibility trace ε representing a neuron’s activity, instead
of using a neuron’s spiking signal z. The first reason
is that eligibility traces express a signal as a scalar
value, which is more convenient in computations. The
second is that eligibility traces are less susceptible to
differences in spike timing than pure spiking signals [22].
The substitution is based on the results where training
ANNs with approximate error signals is just as accurate
as training ANNs with exact BP error signals (see
section III-C). Substituting ε for z in error propagation
means that the error signal in eq. (6) is approximated as
follows:

δLt

δztj
≈ δLt

δεtj
(16)

This approach can be used for applications where the
network encodes information in the intensity of its output
signal, i.e., the number of spikes and how recently the
spikes took place. However, trace-based loss signals are
not suited for exact spike-timing or first-to-spike applic-
ations. Eligibility traces are sensitive to spike timing, but
not in an exact manner.

Communicating error signals to all neurons in an SNN
is done recursively from layer l + 1 to layer l, just like
regular BP. However, it does so with a modified version
of eq. (1) that accounts for the state of spiking neurons
s, the timestep t, and eligibility traces ε instead of the
neuron’s output z:

δLt

δεt,li

=
∑
j

δLt

δεt,l+1
j

δεt,l+1
j

δst,l+1
j

δst,l+1
j

δεt,li

(17)

Equation (17) applies to all layers except for the output
layer. For neurons in the output layer the error signal δLt

δεtj
depends on the loss function. The superscript t denoting
the timestep is omitted for the rest of this section to
improve clarity.

As a result of the loss signal depending on eligibil-
ity traces, the gradients calculated while operating the
network like

δzl
j

δslj
, cannot be used for error propagation.

For example,
δzl

j

δslj
in eq. (15) is related to

δεlj
δslj

. However,
δzl

j

δslj
applies to the generation of a single spike, whereas

error propagation applies to eligibility traces that can
span multiple spikes. Based on the logic in table I, we
decided to set

δεlj
δslj

for error propagation equal to one:

δεlj
δslj

= 1 (18)

The value of one is chosen because of the complexity
of defining a proper non-linear relation between pre and
postsynaptic activity traces. Whereas the size of

δεlj
δslj

is
certainly wrong, the sign of the gradient is valid as long
as the logic in table I holds. For table I (and thus eq. (18))
to hold, the parameters trefr and τv for all neurons in a
network have to satisfy:

trefr
τv

≥ 0.1 (19)

The proof that leads to the condition in eq. (19) can
be found in appendix A. We leave improving δεl

δsl
to

accurately capture the dynamics between pre and post-
synaptic neuron’s eligibility traces, as well as respecting
a neuron’s maximum and minimum firing rates, for
future work.

9

Table I: The general relation between a postsynaptic error signal, the presynaptic weight, and the change in
presynaptic activity and presynaptic weight magnitude required to lower the error signal. Because a spiking signal
can only be zero or positive, the sign of the synaptic weight and the sign of the postsynaptic error signal determines
the sign of the required change in presynaptic activity.

Increase postsynaptic activity εl ↑ Decrease postsynaptic activity εl ↓

Presynaptic activity
change εl−1

Presynaptic weight
magnitude change |w|

Presynaptic activity
change εl−1

Presynaptic weight
magnitude change |w|

Positive presynaptic
weight w+ εl−1 ↑ |w| ↑ εl−1 ↓ |w| ↓
Negative presynaptic
weight w− εl−1 ↓ |w| ↓ εl−1 ↑ |w| ↑

For eq. (17), only
δslj

δεl−1
i

is left to define. The trace
based gradient is related to the spike based gradient
δslj

δzl−1
i

. Evaluating
δslj

δεl−1
i

for the neuron model in eq. (7)
results in the following:

δslj

δεl−1
i

= θij (20)

Now that both
δεlj
δslj

and
δslj

δεl−1
i

are in place, error propaga-
tion can be performed from layer l + 1 to layer l:

δL

δεli
=

∑
j

δL

δεl+1
j

· 1 · wij (21)

The conclusion that the gradients for a neuron’s output
with respect to its state in the forward phase

δzl
j

δslj
, and

error propagation phase
δεlj
δslj

need to be different is also
experimentally tested in section V.

Lastly, error signals are not propagated through re-
current connections because trace propagation does not
unroll recurrent connections. As stated in section II-B,
propagating error signals through recurrent connections
would lead to self-reinforcing patterns with eq. (17).
Unrolling is done by BPTT to propagate the network’s
loss signal back in time. Yet, because trace propagation
evaluates a network’s loss function and weight updates
at each timestep, unrolling is unnecessary.

E. Loss Functions

Trace propagation requires a scalar loss signal. De-
pending on the desired output, readout neurons [61] or
spiking neurons can be used. Readout neurons do not
spike, and their membrane potential represents the output
without any conversion. On the contrary, when using a
spiking neuron, it is necessary to convert the spike train
to an eligibility trace using eq. (3), or a comparable
method.

The experiments in section V are all classification
problems that use the hinge loss with margin [62].
Spiking signals can vary considerably in intensity over
time. A hinge loss with margin was chosen to generate

a relatively steady output trace value, by enforcing a
margin m between the target neuron t and the other
output neuron their traces at all times. For the target
output neuron t, thus the neuron that should be most
active since it represents the class of the input signal,
the loss is as follows:

Lt = max(0,m+max
j 6=t

εj − εt) (22)

and for the non-target output neurons j:

Lj = max(0,m+ εj − εt) (23)

where m is a positive margin between the output eligib-
ility trace εt of target neuron t and the output trace εj
of all other neurons j. The total loss is the sum of the
losses for all output neurons.

The gradient of eq. (22) with respect to the output of
target neuron t is as follows:

δL

δεt
=

{
−1 if εt < m+maxj 6=t εj

0 otherwise
(24)

and the gradient for a non-target neuron:

δL

δεj
=

{
1 if εj > εt −m

0 otherwise
(25)

However, the actual loss function can be any other
commonly used one, like mean squared error or cross-
entropy [19].

F. Comparison Trace propagation and Eprop

As mentioned at the end of section I, the method
presented in [25] closely resembles the method presented
in this paper. Because of that, the main similarities and
differences are discussed next.

Overall, both trace propagation and the method in [25]
are online, supervised, gradient-based learning methods
for training SNNs. The main aspects that are the same
are most of the operations that are performed during the
forward pass of operating the network; these include:

10

• Calculation of δs
δθ as an eligibility trace, thus online

without using BPTT.
• The surrogate gradient for the spike generation

function δz
δs as in eq. (15).

• The basic LIF neuron model.
The most important differences are in how error

signals δL
δz are calculated. The method in [25] compares

several different error propagation schemes, but none is
the same as presented in this work. The differences are
detailed in table II.

V. EXPERIMENTS

The following experiments are designed to test trace
propagation’s ability to train SNNs for spatial and tem-
poral credit assignment problems. Also, the performance
in networks of increasing depth and recurrent networks
is tested.

The experiments were performed with the PySNN
framework1, which was developed during this thesis and
available under an open-source license. Existing SNN
software frameworks are either inflexible since they were
developed for neuroscience research, or difficult to script
with because they are written in C++ and CUDA [27].
With these shortcomings in mind, the PySNN framework
is designed to be modular and easy to use by building
it on top of PyTorch. PySNN makes use of PyTorch its
excellent GPU acceleration, and the ease of scripting
in Python. The PySNN API is kept syntactically as
similar as possible as PyTorch to make learning the new
framework relatively easy.

All of the experiments were performed on a desktop
computer equipped with an Intel 4790K i7 quad-core
processor clocked at 4 GHz per core, 16 GB of RAM,
and an NVIDIA RTX 2070 GPU.

A. Configurations

The experiments in section V-B and section V-C par-
tially share the same configuration. In these experiments,
we tested two versions of δεj

δsj
during error propagation.

The first version is δεj
δsj

= 1 and the second is:

δεtj
δstj

= 0.3 ·max

(
a, 1−

∣∣∣∣vtj − vrest

vrest

∣∣∣∣) (26)

1PySNN is available at https://github.com/BasBuller/PySNN

Equation (26) is simply an adaptation of eq. (15), but for
use during the error propagation phase. Equation (26)
from now on is referred to as Bellec’s derivative. The
two versions are compared to experimentally verify that
the deduction of δzj

δsj
= 1 in section IV-D is valid.

More information about the hyperparameters for the
networks, data, and optimizers is presented in ap-
pendix B.

B. Spatial Pattern Classification

Trace propagation was tested in two spatial credit
assignment problems. The first is about classifying data
where the distribution of firing rates over the input
neurons follows a Gaussian distribution. A Gaussian
was chosen because it allows expressing the difficulty
of separating two samples with the Kullback-Leibler
Divergence (KLD). For the second experiment, spiking
MNIST [63] images are classified because this dataset
is one of the go-to datasets for spatial credit assignment
problems.

Data and Networks

Both a regular Gaussian distribution and MNIST im-
ages are scalar signals instead of spiking. A Poisson
process converts a scalar signal to a spiking signal by
using the scalar signal as its rate. Using a Poisson process
adds variance to the sample and allows for generating a
slightly different spiking signal each time the sample is
used during training.

The Gaussian data samples are created by taking
a Gaussian distribution and multiplying it with the
maximum firing rate. Conversion of this distribution to
a spiking signal was done by sampling the Gaussian
distribution and using that as the rate for the Poisson
process. Next, The KLD between two different samples
was controlled by varying the distance between the mean
of the distributions and their standard deviations. When
doing so, the interval of possible values was fixed to
keep a consistent frame of reference. Each version of
the Gaussian dataset consists of ten classes. The different
stages of this process are shown in fig. 10 and fig. 11 in
appendix C.

For the grey-scale MNIST images, each pixel value
was multiplied with the maximum firing rate and suc-
cessively converted to a spiking signal. Two example of
a spiking MNIST number can be found in fig. 16 and

Table II: Most important differences between the learning methods present in this work and [25].

Difference This paper Method of [25]

Signal used in evaluating loss function Eligibility trace of neuron’s activity Voltage of readout neurons
Error propagation / communication (1) Layer to layer Random feedback gradients
Error propagation / communication (2) - Learned teacher network, or learning to learn
Threshold involved in weight update No Yes
Applied to ANNs No Yes, for improving online gradient calculation in RNNs

11

fig. 17, in appendix C. The dataset consists of 10 classes.
It is worth noting that for the MNIST experiments, a
subset of 30.000 images was used to train the network
over a single epoch. Comparable methods use the entire
dataset of 60.000 images for 10 to 100 epochs [14],
[20]. This sample efficiency is an advantage of applying
weight updates online, at every timestep.

All networks are fully connected, and classification
is done based on the output neuron that generates the
highest number of spikes.

Results

Results for the experiments with the Gaussian can
be found in table III. In general, trace propagation
adequately solves the spatial credit assignment problems,
but its performance declines with increasing network
depth.

In the MNIST results in table IV, the performance
also decreases with increasing network depth. Besides,
there is a noticeable difference in performance in favor
of δε

δs = 1 over Bellec’s derivative. This difference is a
confirmation that the error propagation phase requires a
different δε

δs derivative than the one used during gradient
calculation. However, the difference between δε

δs = 1
and Bellec’s derivative is not present in the Gaussian
results in table III, likely because the data samples are
easier to separate. A relatively small network is enough
to solve the Gaussian classification problem, compared
to the MNIST classification problem. As a result, we
hypothesize that error propagation plays a less important
role in the Gaussian experiments.

In addition to the performance of our experiments,
table IV also shows the results for three related methods
for comparison. Whereas these methods all outperform
our method, all of them use a considerably larger
number of epochs during training. Also, except for the
last method, all use BPTT based learning methods for
training the network. However, it also shows that there
is still room for improvement in trace propagation.

The difference between δε
δs = 1 and Bellec’s deriv-

ative was explored in more detail by comparing how
the two gradients performed error propagation. Error
signals are compared on a layerwise basis by taking
the mean of the error signals of all neurons in a layer.
The layerwise mean of the error signals is inspected
because performance dropped with increasing network
depth. Figure 5 shows that for δε

δs = 1, the mean error
per neuron in a layer tends to grow as more layers
are passed. Conversely, fig. 6 shows that for Bellec’s
derivative the reverse is true. The vanishing of gradients
is likely because in Bellec’s derivative (see eq. (15)),
the gradient takes a value between 0.2 and 1.0. Next,
the gradient is multiplied with a value of 0.3. As a
result, the mean error per neuron shrinks. In the case

0 10 20 30 40 50

−0.5

0

0.5

1

Batch number

L
os

s

Input layer
Hidden layer 1
Hidden layer 2
Output layer

Figure 5: Error signal averaged over all neurons per layer
during training. Data belongs to a four-layer network
trained with δε

δs = 1 in the error propagation phase.

0 10 20 30 40 50

−0.5

0

0.5

1

Batch number

L
os

s
(x
10

−
1
)

Input layer
Hidden layer 1
Hidden layer 2
Output layer

Figure 6: Error signal averaged over all neurons per
layer, during training. Data belongs to a four-layer net-
work trained with δε

δs = 0.3 ·max(0.2, |v−vrest
vrest

|) in the
error propagation phase.

of δε
δs = 1, there is no scaling of the error except for θij

(see eq. (21)). As a result, error per neuron grows with
each layer.

With the vanishing of error signals, learning becomes
slower, or possibly even results in negligible parameter
updates. Exploding error signals are not desirable either,
but at least the network is provided a signal that results
in noticeable parameter updates. We conjecture that the
vanishing of error signals for networks trained with Bel-
lec’s derivative causes lesser performance in the MNIST
experiments compared to networks trained with δε

δs = 1.

12

Table III: Training (first entry) and testing (second entry) accuracy for different network and data configurations
for spatial Gaussian classification. The rows indicate different combinations of the δε

δs gradient used during error
propagation and of network configuration. The last three columns indicate three different versions of the Gaussian
dataset. The datasets differ by the fact that the KLD becomes lower per column; thus, the samples are more alike.
The actual values of the mean and standard deviation only have value when comparing samples with each other.

Error propagation Network configuration Mean sep. 2.0 Mean sep. 1.0 Mean sep. 1.0
Std. 3.0 Std. 3.0 Std. 5.0

KLD 0.22 KLD 0.056 KLD 0.02

δε
δs

: 1
200− 160− 120− 10 100.0%/100.0% 100.0%/100.0% 100.0%/100.0%
200− 160− 120− 80− 10 100.0%/100.0% 100.0%/100.0% 95.0%/75.0%

δε
δs

: Bellec
200− 160− 120− 10 100.0%/100.0% 100.0%/100.0% 100.0%/90.0%
200− 160− 120− 80− 10 100.0%/95.0% 100.0%/95.0% 98.0%/85.0%

Table IV: Training (first entry) and testing (second entry) accuracy on the MNIST dataset for the different δε
δs used

during error propagation. The first column shows the network configuration, whereas the second and third columns
show the δε

δs derivative used in error propagation. The last column presents accuracies achieved by some related
works treated in section III. From the related works SLAYER [14] and Alpha Kernel [43] are BP based methods,
whereas the network in the last related work [54] is trained with correlation-based methods.

Network configuration δε
δs

: 1 δε
δs

: Bellec Other method

784-512-10 95.7%/93.8% 94.4%/93.0% -
784-512-256-10 95.6%/93.0% 91.5%/88.2% -

SLAYER (BP) [14] - - 99.36%/97.0%
Alpha function (BP) [43] - - 99.96%/97.96%
MSTDPET and STDP [54] - - 97.2%

Whereas δε
δs = 1 outperforms Bellec’s derivative in the

MNIST experiments, it is not perfect. Improvements
can be made by designing a gradient that more closely
adheres to the dynamics of eligibility traces and takes
neuronal firing limits into account. The current form
δε
δs = 1 does neither. As a result, the adaptations will
likely prevent exploding error signals.

C. Temporal Pattern Classification

Two temporal classification experiments were de-
signed to test trace propagation. The first experiment
tests the capacity of trace propagation to identify dif-
ferent intensity signals in a single neuron. The second
experiment tests trace propagation to see if it can identify
signals that vary over time according to different pat-
terns.

Data and Networks

The first dataset consists of samples with one of the
following four constant firing rates: 20, 60, 100, 140 Hz.
The second dataset consists of signals where a square
wave x(t) was used to modulate a fixed spike rate:

x(t) = sign(sin 2πft) (27)

The sign of the square wave x(t) determines whether a
spike at time t is assigned to input neuron one or neuron
two. The frequencies f of the waves were: 2, 5, 10, 20
Hz. All of the samples in the square wave dataset share

the same base spiking rate; the only difference lies in the
modulating wave frequency. For both datasets spiking
signals were created using a Poisson process. Examples
of the constant firing rate dataset are shown in fig. 12
and for the square wave signals in fig. 15, in appendix C.

Since the goal is to perform classification based on
the temporal characteristics of the signal, the networks
have a single input node for the constant rate data. For
the square wave modulated signals, the networks have
two input neurons to account for the two halves of a
square wave’s period. In both experiments, the input
layer is followed by either a regular feedforward layer
or a recurrent layer. For the pure feedforward network,
the goal is to see if neuronal dynamics are sufficient
for identifying (simple) temporal signals. If neuronal
dynamics are enough, different neurons in a single layer
should learn to respond to different incoming spiking
frequencies. Classification is performed based on the
total number of spikes.

Results

Table V shows the results for the same learning rule
configurations as in section V-B. Only in the case of
the feed-forward network applied to the constant rate
dataset; some form of learning was achieved, yet it
was far from perfect. Figure 7 shows how neurons in
the hidden layer respond noticeably different to two
different input frequencies for the constant rate dataset.

13

0 200 400 600 800 1,000

0

50

100

Timestep

N
eu

ro
n

in
de

x

60Hz spike rate
100Hz spike rate

Figure 7: Hidden layer activity of a feedforward network
for two different constant rate input signals. The network
was trained with δε

δs = 1 during error propagation.

Whereas there is a difference in the spiking patterns,
the large difference in total spiking activity outweighs
the difference in patterns. Hence, the network is un-
able to classify all different spiking rates accurately.
In contrast, fig. 8 shows the hidden layer response for
two square wave modulated signals. Here no specific
pattern emerged but only overly active hidden neurons,
which is why the network’s performance is only as good
as random guessing. The reasoning for why this might
happen is that trace propagation is unable to capture
long-term temporal dependencies. This inability is likely
because the gradients have the same time-window as the
membrane potential of τv ms (see eq. (5)). So, there is
a limited period within which a signal can influence the
gradient.

Table V: Training accuracy (first entry) and testing
accuracy (second entry) in temporal classification ex-
periments. The results are subdivided based on the
network architecture and δε

δs derivative used during error
propagation. The networks trained with the constant rate
dataset had the following architecture: 1− 100− 4. The
networks trained with the square wave dataset had the
following architecture: 2− 100− 4.

Error
propagation

Dataset Feedforward Recurrent

δε
δs

: 1
Constant rate 100.0/62.5% 50.0/37.5%
square wave
modulation

62.5/25.0% 0.0/0.0%

δε
δs

: Bellec
Constant rate 87.5/75.0% 75.0/25.0%
square wave
modulation

62.5/25.0% 37.5/0.0%

0 200 400 600 800 1,000

0

50

100

Timestep

N
eu

ro
n

in
de

x

2Hz sine
5Hz sine

Figure 8: Hidden layer activity for a feedforward net-
work trained for classifying spiking signals modulated
with a square wave. Because of the highly active neur-
ons, there is almost no difference in the network’s hidden
layer response to the two signals. The network was
trained with δε

δs = 1 during error propagation.

Table V also shows the results for the recurrently
connected networks. Whereas recurrent networks do not
have to rely on neuronal dynamics to capture temporal
dependencies, trace propagation in its current form was
unable to optimize these networks. The "exploding" or
"vanishing" activity of the networks caused a lack of
positive results. A likely cause of these extreme reactions
is the over or underestimation of error signals, as also
described in section V-B.

VI. CONCLUSION

In this paper, we introduced trace propagation, a learn-
ing algorithm that performs online, supervised, gradient-
based learning in SNNs. The algorithm is defined by the
fact that it calculates gradients of temporal signals that
influence spiking neurons as eligibility traces. Moreover,
trace propagation uses approximate error signals based
on eligibility traces instead of pure spiking signals. We
demonstrate that trace propagation is capable of solv-
ing spatial credit assignment problems with short-term
temporal relations, including classification of spiking
MNIST images

We are hopeful that the combination of eligibility
traces and approximate error propagation can form the
basis for more successful learning methods. Research
into using additional eligibility traces with long duration
time windows will likely improve the identification and
learning of long-term temporal dependencies. Moreover,
research into accurately modeling the relation between
the eligibility traces for presynaptic and postsynaptic
neuron’s activity is likely to prevent exploding or van-
ishing error signals.

14

REFERENCES

[1] S. Herculano-Houzel, “The human brain in numbers: A linearly
scaled-up primate brain,” Frontiers in Human Neuroscience,
vol. 3, 2009.

[2] D. Drubach, The Brain Explained. Prentice Hall, 2000.
[3] W. Gerstner, Neuronal Dynamics: From Single Neurons To Net-

works And Models Of Cognition, uk ed. edition ed. Cambridge,
United Kingdom: Cambridge University Press, Sep. 2014.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classi-
fication with Deep Convolutional Neural Networks,” in Advances
in Neural Information Processing Systems 25, F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associ-
ates, Inc., 2012, pp. 1097–1105.

[6] “AlphaStar: Mastering the Real-Time Strategy Game StarCraft
II,” 2019.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding,” arXiv:1810.04805 [cs], Oct. 2018.

[9] W. Maass, “Networks of spiking neurons: The third generation
of neural network models,” Neural Networks, vol. 10, no. 9, pp.
1659–1671, Dec. 1997.

[10] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H.
Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K.
Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,
J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and
H. Wang, “Loihi: A Neuromorphic Manycore Processor with On-
Chip Learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan. 2018.

[11] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik,
R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häf-
liger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur,
K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona,
J. Wijekoon, Y. Wang, and K. Boahen, “Neuromorphic Silicon
Neuron Circuits,” Frontiers in Neuroscience, vol. 5, May 2011.

[12] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128× 128 120 dB
15 Ms Latency Asynchronous Temporal Contrast Vision Sensor,”
Solid-State Circuits, IEEE Journal of, vol. 43, pp. 566–576, Mar.
2008.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323, no.
6088, p. 533, Oct. 1986.

[14] S. B. Shrestha and G. Orchard, “SLAYER: Spike Layer Error
Reassignment in Time,” in Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran
Associates, Inc., 2018, pp. 1412–1421.

[15] D. Huh and T. J. Sejnowski, “Gradient Descent for Spiking
Neural Networks,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc.,
2018, pp. 1433–1443.

[16] T. J. Sejnowski and G. Tesauro, “The Hebb Rule for Synaptic
Plasticity: Algorithms and,” p. 10, 1989.

[17] D. Hebb, The Organization of Behaviour. John Wiley & Sons,
Inc., 1949.

[18] S. Lowel and W. Singer, “Selection of intrinsic horizontal connec-
tions in the visual cortex by correlated neuronal activity,” Science,
vol. 255, no. 5041, pp. 209–212, Jan. 1992.

[19] C. Bishop, Pattern Recognition and Machine Learning, ser.
Information Science and Statistics. New York: Springer-Verlag,
2006.

[20] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-
Dalini, and M. Ganjtabesh, “First-Spike-Based Visual Categoriz-
ation Using Reward-Modulated STDP,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 12, pp.
6178–6190, Dec. 2018.

[21] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and
W. Maass, “Long short-term memory and Learning-to-learn in
networks of spiking neurons,” in Advances in Neural Information
Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran
Associates, Inc., 2018, pp. 787–797.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. MIT Press, Cambridge, MA, 2018.

[23] R. V. Florian, “Reinforcement Learning Through Modulation of
Spike-Timing-Dependent Synaptic Plasticity,” Neural Computa-
tion, vol. 19, no. 6, pp. 1468–1502, Jun. 2007.

[24] W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea,
“Eligibility Traces and Plasticity on Behavioral Time Scales:
Experimental Support of NeoHebbian Three-Factor Learning
Rules,” Frontiers in Neural Circuits, vol. 12, 2018.

[25] G. Bellec, F. Scherr, E. Hajek, D. Salaj, R. Legenstein,
and W. Maass, “Biologically inspired alternatives to back-
propagation through time for learning in recurrent neural nets,”
arXiv:1901.09049 [cs], Jan. 2019.

[26] A. Gidon, T. A. Zolnik, P. Fidzinski, F. Bolduan, A. Papoutsi,
P. Poirazi, M. Holtkamp, I. Vida, and M. E. Larkum, “Dendritic
action potentials and computation in human layer 2/3 cortical
neurons,” Science, vol. 367, no. 6473, pp. 83–87, Jan. 2020.

[27] F. Paredes-Vallés, K. Y. W. Scheper, and G. C. H. E. de
Croon, “Unsupervised Learning of a Hierarchical Spiking Neural
Network for Optical Flow Estimation: From Events to Global
Motion Perception,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–1, 2019.

[28] A. L. Hodgkin and A. F. Huxley, “A quantitative description
of membrane current and its application to conduction and
excitation in nerve,” The Journal of Physiology, vol. 117, no. 4,
pp. 500–544, Aug. 1952.

[29] R. B. Stein, “A Theoretical Analysis of Neuronal Variability,”
Biophysical Journal, vol. 5, no. 2, pp. 173–194, Mar. 1965.

[30] W. M. Kistler, W. Gerstner, and J. L. van Hemmen, “Reduction
of the Hodgkin-Huxley Equations to a Single-Variable Threshold
Model,” Neural Computation, vol. 9, no. 5, pp. 1015–1045, Jul.
1997.

[31] E. Izhikevich, “Simple model of spiking neurons,” IEEE Trans-
actions on Neural Networks, vol. 14, no. 6, pp. 1569–1572, Nov.
2003.

[32] J. C. Thiele, O. Bichler, and A. Dupret, “SpikeGrad: An ANN-
equivalent Computation Model for Implementing Backpropaga-
tion with Spikes,” arXiv:1906.00851 [cs], Jun. 2019.

[33] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and
G. Hinton, “Backpropagation and the brain,” Nature Reviews
Neuroscience, pp. 1–12, Apr. 2020.

[34] P. Werbos, “Backpropagation through time: What it does and how
to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–
1560, Oct. 1990.

[35] J. Kvita, “Visualizations of RNN units,” Apr. 2016.
[36] N. Caporale and Y. Dan, “Spike Timing–Dependent Plasticity: A

Hebbian Learning Rule,” Annual Review of Neuroscience, vol. 31,
no. 1, pp. 25–46, 2008.

[37] J. Sjostrom and W. Gerstner, “Spike-timing dependent plasticity,”
J. Sj, p. 18, 2010.

[38] E. M. Izhikevich, “Solving the distal reward problem through
linkage of STDP and dopamine signaling,” Cerebral Cortex (New
York, N.Y.: 1991), vol. 17, no. 10, pp. 2443–2452, Oct. 2007.

[39] N. Frémaux, H. Sprekeler, and W. Gerstner, “Functional Require-
ments for Reward-Modulated Spike-Timing-Dependent Plasti-
city,” Journal of Neuroscience, vol. 30, no. 40, pp. 13 326–13 337,
Oct. 2010.

[40] S. Bohte, J. Kok, and J. Poutré, “SpikeProp: Backpropagation for
networks of spiking neurons.” in ESANN, vol. 48, Jan. 2000, pp.
419–424.

[41] F. Zenke and S. Ganguli, “SuperSpike: Supervised learning
in multi-layer spiking neural networks,” Neural Computation,
vol. 30, no. 6, pp. 1514–1541, Jun. 2018.

15

[42] A. Tavanaei and A. S. Maida, “BP-STDP: Approximating
Backpropagation using Spike Timing Dependent Plasticity,”
arXiv:1711.04214 [cs], Nov. 2017.

[43] I. M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Ges-
mundo, and J. Alakuijala, “Temporal coding in spiking neural
networks with alpha synaptic function,” arXiv:1907.13223 [cs,
q-bio], Jul. 2019.

[44] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” IEEE Transactions
on Neural Networks, vol. 5, no. 2, pp. 157–166, Mar. 1994.

[45] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,”
Neural computation, vol. 9, pp. 1735–80, Dec. 1997.

[46] R. Kempter, W. Gerstner, and J. L. van Hemmen, “Hebbian
learning and spiking neurons,” 1999.

[47] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian
learning through spike-timing-dependent synaptic plasticity,”
Nature Neuroscience, vol. 3, no. 9, p. 919, Sep. 2000.

[48] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner,
“A neuronal learning rule for sub-millisecond temporal coding,”
Nature, vol. 383, no. 6595, pp. 76–78, Sep. 1996.

[49] M. C. W. van Rossum, G. Q. Bi, and G. G. Turrigiano, “Stable
Hebbian Learning from Spike Timing-Dependent Plasticity,”
Journal of Neuroscience, vol. 20, no. 23, pp. 8812–8821, Dec.
2000.

[50] J. E. Rubin, R. C. Gerkin, G.-Q. Bi, and C. C. Chow, “Calcium
Time Course as a Signal for Spike-Timing–Dependent Plasticity,”
Journal of Neurophysiology, vol. 93, no. 5, pp. 2600–2613, May
2005.

[51] P. Baldi and P. Sadowski, “A theory of local learning, the
learning channel, and the optimality of backpropagation,” Neural
Networks, vol. 83, pp. 51–74, Nov. 2016.

[52] F. Ponulak and A. Kasiński, “ReSuMe learning method for
spiking neural networks dedicated to neuroprostheses control,”
Jan. 2006.

[53] X. Xie and H. S. Seung, “Learning in neural networks by rein-
forcement of irregular spiking,” Physical Review. E, Statistical,
Nonlinear, and Soft Matter Physics, vol. 69, no. 4 Pt 1, p. 041909,
Apr. 2004.

[54] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe,
and T. Masquelier, “Bio-Inspired Digit Recognition Using Spike-
Timing-Dependent Plasticity (STDP) and Reward-Modulated
STDP in Deep Convolutional Networks,” arXiv:1804.00227 [cs,
q-bio], Mar. 2018.

[55] F. Crick, “The recent excitement about neural networks,” Nature,
vol. 337, no. 6203, pp. 129–132, Jan. 1989.

[56] S. Grossberg, “Competitive Learning: From Interactive Activa-
tion to Adaptive Resonance,” Cognitive Science, vol. 11, no. 1,
pp. 23–63, 1987.

[57] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman,
“Random synaptic feedback weights support error backpropaga-
tion for deep learning,” Nature Communications, vol. 7, p. 13276,
Nov. 2016.

[58] D. Balduzzi, H. Vanchinathan, and J. Buhmann, “Kickback cuts
Backprop’s red-tape: Biologically plausible credit assignment in
neural networks,” arXiv:1411.6191 [cs, q-bio], Nov. 2014.

[59] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training Deep Spiking
Neural Networks Using Backpropagation,” Frontiers in Neuros-
cience, vol. 10, 2016.

[60] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Eval-
uation of Rectified Activations in Convolutional Network,”
arXiv:1505.00853 [cs, stat], Nov. 2015.

[61] W. Maass, T. Natschläger, and H. Markram, “Real-time com-
puting without stable states: A new framework for neural com-
putation based on perturbations,” Neural Computation, vol. 14,
no. 11, pp. 2531–2560, Nov. 2002.

[62] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. J. Huang,
“A Tutorial on Energy-Based Learning,” p. 59, 2006.

[63] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[64] X. Glorot and Y. Bengio, “Understanding the difficulty of train-
ing deep feedforward neural networks,” in Proceedings of the
Thirteenth International Conference on Artificial Intelligence and
Statistics, Mar. 2010, pp. 249–256.

16

APPENDIX A
ERROR PROPAGATION PROOF

Deriving the conditions for which table I is always
valid comes down to proving that an increase in a
presynaptic activity trace for a connection with a positive
(negative) weight results in a constant or increased
(decreased) postsynaptic activity. The proof compares
trace values for a set of n spikes and a set of n + 1
spikes. A difference of only one spike is chosen since
this results in the smallest change in the corresponding
eligibility trace value. The goal with these spike sets is
to show that the average and maximum trace values for
any permutation in spike timings of the set of n + 1
spikes are larger than the trace values of the set of n
spikes. This way, the spike set with the larger eligibility
trace always leads to more excitation of the postsynaptic
neuron receiving that signal. In turn, this postsynaptic
neuron becomes more active, and thus its activity trace
increases in value. So, the logic for table I holds.

The eligibility traces for n and n+ 1 spikes have the
following dynamics:

εt+1 = e(−dt/τt)εt + xt (28)

The average trace value for n+1 spikes is always higher
than the average for n spikes. Equation (28) is rewritten
to calculate the trace’s value at any time:

εt =

k∑
i=1

exp

(
− t− ti

τt

)
(29)

The summation in eq. (29) covers all spikes of a set of
k spikes. Spike timing is indicated by ti. Equation (29)
shows that trace increase and decay due to one spike
never influences the gain or decay due to other spikes.
Thus, more spikes always result in a higher average trace.

Determining whether the set of n or n+1 spikes has
the largest maximum trace value is a bit more complic-
ated. The maximum trace value is not only determined
by the number of spikes, but also by the spike timings.
So, the goal is to determine the conditions such that
the maximum trace value for n+1 spikes is always the
highest for any permutation of spike timings. During this
analysis, the spikes take place in a time window of τt ms.
This window is approximately the time window of the
trace (see section IV-B). However, larger time windows
are possible.

The highest possible trace value for any spike set oc-
curs when spikes occur as close to each other as possible
in time. Conversely, the lowest maximum trace value
occurs maximally spread spikes. For the LIF neuron used
in this work, the minimum time between two consecutive
spikes is equal to the refractory duration trefr. So, the
maximum trace for n spikes that are trefr ms apart
(minimum time between spikes) has to be lower than

the maximum trace value for n+1 spikes that are τt/n
ms apart (maximum time between spikes). Comparing
the conditions after substituting them in eq. (29) leads
to the following expression:

n−1∑
i=0

exp

(
− i · trefr

τt

)
≤

n∑
j=0

exp

(
− j · τt
τt · n

)
(30)

The ratio trefr

τt
and the number of spikes n together

determine whether the inequality in eq. (30) is true.
This relation can be interpreted as follows. By increasing
trefr

τt
, either trefr is increased, resulting in larger min-

imum timing difference between spikes. As a result the
eligibility trace is more "flat" and has a lower potential
maximum value. The other option is to decrease τt.
In this situation the decay rate exp(−dt/τt) increases
and the eligibility trace its maximum value decreases.
Since there is no way to nicely solve this equation in
an analytical way for variable n and trefr

τt
, it is solved

numerically. Figure 9 shows the results for the analysis.
The left hand side of eq. (30) has been evaluated for four
different trefr

τt
values, for which the curves are shown in

blue. The evaluation of the right hand side of eq. (30)
is shown in red. It becomes clear that for trefr

τt
≥ 0.1,

the maximum trace value for the least favorable spike
timing permutation of n + 1 spikes is equal or higher
than the maximum value for the most favorable timing
permutation of n spikes, for all values of n. Thus, under
this condition, table I holds.

0 2 4 6 8

0

2

4

6

Number of spikes

E
lig

ib
ili

ty
tr

ac
e

va
lu

e

Max spread
Ratio 0.05
Ratio 0.10
Ratio 0.15
Ratio 0.20

Figure 9: Maximum eligibility trace values for maxim-
ally spread spikes, as well as for minimal spread spikes
for different trefr

τt
values.

17

APPENDIX B
EXPERIMENT CONFIGURATIONS

This appendix contains details about the network
and hyperparameter configurations for the experiments
described in section V. Hyperparameters that are specific
for the Gaussian dataset are found in table VI, the
MNIST dataset in table VII, and the temporal datasets
in table VIII and table IX. Table X contains the hy-
perparameters for the networks, optimizers, and training
configurations for all three experiments.

Table VI: Gaussian data parameters

Parameter Description Value

Firing rate Rate provided to the Poisson
process

50

Mean separa-
tion

Distance between the centers
of the Gaussian distributions

1.0

Standard devi-
ation

Standard deviation of each
Gaussian distribution

1.0, 3.0, 5.0

Interval Interval the Gaussian distri-
butions are sampled from

−5, 15

Duration Duration of a single sample 300 ms

Table VII: MNIST data parameters

Parameter Description Value

Firing rate Rate provided to the Poisson
process

50

Duration Duration of a single sample 300 ms

Table VIII: Constant rate parameters, temporal data

Parameter Description Value

Firing rates Rates provided to the Pois-
son process, one per sample

20, 60, 100, 140

Duration Duration of a single sample 1000 ms

Table IX: square wave parameters, temporal data

Parameter Description Value

Firing rate Rate provided to the Poisson
process, same for all samples

60

Sine
frequency

Frequencies of the modulat-
ing square waves, one per
sample

2, 5, 10, 20

Duration Duration of a single sample 1000 ms

18

Table X: Network, optimizer, and training configurations for all three experithe ments

Parameter Description Gaussian MNIST Temporal

τv Membrane potential adaption time constant 40 ms 40 50
αv Input activation potential scaling factor 1 1 1
τthreshold Threshold adaptation time constant 150 ms 150 300
αthreshold Adaptive threshold input scaling factor 1/30 1/30 1/60
vrest Membrane potential resting value 0 V 0 0
vthreshold Spiking threshold on membrane potential 1 V 1 1
trefr Duration of the refractory period 4 ms 4 ms 5 ms
dt Duration of simulation timestep 1 ms 1 1

weight init Network weight initialization scheme Glorot [64] Glorot Glorot
lr Learning rate 0.0005 0.001 0.0002
βs Momentum parameter for stochastic gradient descent with momentum 0.9 0.9 0.9
hinge loss margin Desired trace difference between target class and most offending output 5.0 5.0 3.0
epochs Number of training epochs 10 1 20
batch size Number of samples in a single batch 20 100 8
samples per batch Total number of samples in a batch 100 30.000 80
testing samples Total number of samples in the testing dataset 20 1000 16

19

APPENDIX C
DATA EXAMPLES

This appendix contains examples of the artificial data-
sets introduced in section V. Figure 10 and fig. 11 show
two different perspectives on the Gaussian distribution
dataset. Figure 12 and fig. 13 show examples of the
constant firing rate dataset, whereas fig. 15 shows a
square wave example. For the temporal signals, there
is only a spiking representation since summing over a
single neuron would provide no information. Lastly, two
examples of the MNIST dataset in spiking format is
shown in fig. 16 and fig. 17.

0 50 100 150 200

0

5

10

15

Neuron index

M
ag

ni
tu

de

Total spike count

Original distribution

Figure 10: Data sample where the firing rate follows
a Gaussian distribution. The continuous line shows the
parametric distribution of the firing rates, whereas the
bars indicate the number of spikes per neuron generated
by a Poisson process.

0 50 100 150 200 250 300
0

50

100

150

200

Timestep

N
eu

ro
n

in
de

x

Figure 11: The blue spikes correspond to the distribution
in fig. 10, but represented in spiking format. The grey
and red distributions are intended to provide an indica-
tion of the minimum and maximum separation between
the mean of two distributions.

0 100 200 300 400 500

0

Timestep

N
eu

ro
n

in
de

x

20Hz

Figure 12: Constant rate sample in spiking format. The
inconsistent spacing between consecutive spikes is be-
cause the spike trains are generated by a Poisson process.

0 100 200 300 400 500

0

Timestep

N
eu

ro
n

in
de

x

60Hz

Figure 13: Another constant rate sample in spiking
format.

0 200 400 600 800 1,000

0

1

Timestep

N
eu

ro
n

in
de

x

2Hz

Figure 14: Square wave sample in spiking format, to-
gether with the square wave that was used to modulate
the spike train.

0 200 400 600 800 1,000

0

1

Timestep

N
eu

ro
n

in
de

x 5Hz

Figure 15: Another square wave sample in spiking
format together with the modulating square wave.

20

0

100
0 5 10 15 20 25

0

5

10

15

20

25

time width

he
ig

ht

Figure 16: A number 0 from the MNIST dataset in its
spiking format.

0

100
0 5 10 15 20 25

0

5

10

15

20

25

time width

he
ig

ht

Figure 17: A number 3 from the MNIST dataset in its
spiking format.

21

II
Literature Study

29

2
Deep Learning

Possibly the most defining and important moment for deep learning to current date took place during
the ILSVRC - ImageNet1 in 2012. It was during this competition that the work of Krizhevsky et al. [49]
blew past its competition in the tasks of classifying images of 1000 different classes, outperforming the
second place by more than 10% accuracy. This marked the moment where deep learning entered the
spotlights and interest in the subject grew quickly. Over time ANNs were being used in many applica-
tions like computer vision, natural language processing, robotics, bioinformatics, weather forecasting,
algorithmic trading, video games and many more. Part of the reason for this wide applicability is the
”universal approximation theorem” [5]. This states that every continuous function can be approximated
by a large enough parallel perceptron [84] (single layer neural network of many parallel neurons) with
arbitrary accuracy, given it has infinite data.

Artificial neural networks are considered state-of-the-art algorithms in machine learning in general.
Yet, they still deal with the issue of being computationally intensive with some models costing several
millions of dollars in energy and hardware to train. Partly as an answer to this problem and partly
because of their biological plausibility SNNs have recently been enjoying increased attention. Spiking
neural networks are largely inspired by how animal brains work. Where modern ANN models achieve
super-human performance on very specific tasks, the human brain is still incredibly efficient at perform-
ing a large set of different tasks while only requiring 20W to operate [19].

This chapter consists of an overview of ANNs in section 2.1, and for SNNs in section 2.2.

2.1. Artificial Neural Networks
A good description of deep learning is quoted from LeCun et al. [53]: ”Deep-learning methods are
representation-learning methods with multiple levels of representation, obtained by composing sim-
ple but non-linear modules that each transform the representation at one level (starting with the raw
input) into a representation at a higher, slightly more abstract level. With the composition of enough
such transformations, very complex functions can be learned.” The large advantage that deep learning
methods provide is not having to hand-craft feature extractors that normally require lots of expertise
and domain knowledge since the neural network can learn them by itself.

Starting, in section 2.1.1 the fundamentals of deep learning are presented. Next, basic architectures
within deep learning are presented in section 2.1.2. This is followed by an overview of ANNs applied
to event-based vision in section 2.1.3. Finally, this section is concluded with an overview of hardware
and software used for deep learning in section 2.1.4. For a more in-depth description of deep learning
the reader is referred to Sze et al. [101] or Goodfellow et al. [33].

2.1.1. Fundamentals
A simple four-layer network composed of an input, two hidden and an output layer is presented in
fig. 2.1a and will be used as a reference. Circles in the figure represent neurons, and the arrows
represent connections between them. At their core, all neural networks are trained (optimized) to

1http://www.image-net.org/challenges/LSVRC/2012/ - accessed 27-07-2019

31

32 2. Deep Learning

minimize a loss function or maximize a reward function. This is done by adjusting the strength of each
of these connections. This is done in two phases between which is consistently altered. The first phase
is called the forward pass and the second the backward pass. The forward pass is the inference phase
in which the network computes its output based on the provided input, ”propagating the input forward
through the network”. During the backward pass, the network performs the actual training by updating
its weights using the back-propagation algorithm, ”propagating the error signal backward through the
network”. Both of these passes will be further elaborated in the following sections.

(a) (b)

Figure 2.1: (a): Feed forward multilayer neural network. (b) Back-propagation in feed forward network. Both figures adapted
from LeCun et al. [53]

To perform the backward pass the learning algorithm needs an error signal (or loss function) to tell
it in which direction it has to update the network’s weights and by how much such that it minimizes the
error. The type of loss function determines the learning mode that is being used. The definitions of
these modes and the requirements they impose on the data and network are as follows:

• Supervised Learning (SL) is the most common learning mode where a network is provided both
training examples and the desired output for that example. The desired output can range from
class labels to image transformations. The weights of the network are adjusted to make the
difference between the network output and the desired output as small as possible. The network
is trained to find patterns in the input data that have the strongest correlation with the target signal.
This often leads to outstanding performance on a test task as long as the inputs after training are
much like the training examples. The clear downside is having to provide the desired outcome
for each input, which often results in humans manually annotating thousands or even millions of
examples.

• Unsupervised Learning (UL) requires only raw training examples. Because of the absence of
a clear target output, the network will try to extract patterns that are most common within the
training data. The advantage of this is that no manual labeling is needed allowing for using large,
automatically gathered datasets. The downside is that it is considerably harder to let the network
learn a very specific pattern.

• Reinforcement Learning (RL) is best described as learning through interaction (See chapter 3
for more information), or trial and error. The interaction can be with a real environment, a simulator
or a mathematical model. During the interaction, the network receives reward signals from its
environment and has as its goal to maximize it. The ability to learn from pure interaction without
supervision is the strong point of this learning method. The downside is that in most cases the
reward signal contains very little information compared to the information required to update the
large number of parameters of the network, thus leading to inefficient learning.

2.1. Artificial Neural Networks 33

Forward Pass
Many applications of deep learning use feedforward neural network architectures like in fig. 2.1a, which
learn to map a fixed-size input (for example, an image) to a fixed-size output (for example, the network’s
estimate for the probability the image contains an object from a specific class) [53]. Processing in an
ANN is performed layer per layer. To go from one layer to the next, the neurons in a layer compute
a weighted sum of their inputs from the previous layer and pass the result through a non-linear func-
tion, often called the activation function. This process for a single neuron is represented in eq. (2.1),
where 𝑊።፣ , 𝑥። , 𝑦፣ , 𝑏 are the weights, input activation, output before the activation function, and bias
respectively. The non-linear function 𝑓(𝑦) is added after each neuronal computation such that the net-
work is not just a large, linear operator. Some of the most used non-linear activation functions are
the sigmoid (fig. 2.2 and eq. (2.2)), hyperbolic tangent (fig. 2.3 and eq. (2.3)) and Rectified Linear Unit
(ReLU) (fig. 2.4 and eq. (2.4)) [69]. From these activation functions, the ReLU is the most used one as
it has well-defined gradients even when the input 𝑥። gets large. For comparison, the sigmoid’s (fig. 2.2)
gradients go towards zero for high and low 𝑥። values as it has an almost flat slope. The ReLU activation
always has a large slope for positive values of 𝑥። (fig. 2.4), which often results in better performance.

𝑦፣ = 𝑓(
፧

∑
።
𝑊።፣ × 𝑥። + 𝑏) (2.1)

−4 −2 0 2 4
−1

0

1

x

y

Figure 2.2: Sigmoid

−4 −2 0 2 4

−1

0

1

x

y

Figure 2.3: Hyperbolic tangent

−4 −2 0 2 4
−4

−2

0

2

4

x

y

Figure 2.4: ReLU

𝑓(𝑥) = 1
1 + 𝑒ዅ፱ (2.2) 𝑓(𝑥) = 𝑒፱ − 𝑒ዅ፱

𝑒፱ + 𝑒ዅ፱ (2.3) 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.4)

Backward Pass
The form of back-propagation used in most current-day ANNs was popularized by Rumelhart et al. [87]
and its description is the basis for this section. The task of the back-propagation algorithm is to find
the optimal set of connection weights 𝑤። such that the network maximizes its task performance, like
classifying cats in a set of pictures. To achieve this, back-propagation minimizes an error signal 𝐸. In
the case of reconstruction of a signal a suitable loss function is the Mean Squared Error (MSE) loss as
in eq. (2.5). Here 𝑦̂። is the network output and 𝑦። the desired output for each output neuron 𝑖.

𝐸 = 1
2

፧

∑
ኻ
(𝑦። − 𝑦̂።)ኼ (2.5)

Back-propagation minimizes the error signal 𝐸 by optimizing the weights 𝑤። through gradient de-
scent. To do this it is necessary to compute the partial derivative of 𝐸 for each weight𝑤።. This derivative
for the weight is the sum of the derivatives resulting from each possible path along the connections of
the network from the output layer to weight 𝑤።. Calculating the derivative of a single path is done by
applying the chain rule, multiplying the partial derivatives of all consecutive operations with each other.
The resulting weight update is mathematically described in eq. (2.6). The result of the chain rule for
all intermittent steps is collected in the term 𝑛𝑒𝑡።. An example of the calculation process can also be

34 2. Deep Learning

found in fig. 2.1b. Under this formulation, inter-layer connections and connections that go from higher
to lower layers are forbidden, since that would result in an infinite loop in the chain rule.

𝛿𝐸
𝛿𝑤።

=∑
፭

𝛿𝐸
𝛿𝑛𝑒𝑡።

𝛿𝑛𝑒𝑡፭
𝛿𝑤።

(2.6)

In recent years back-propagation grew to be the staple learning rule for current state-of-the-art
ANNs, yet it also brings certain downsides with it of which the biggest two are mentioned next. Firstly,
all operations within a neural network have to be differentiable as otherwise a gradient cannot be cal-
culated. Secondly, due to the separate backward pass for updating the network weights, a network is
traversed twice for each example during training, increasing computational cost.

2.1.2. Basic Architectures
The architectural design of neural networks varies greatly depending on the network’s objective and
the author’s creativity and insight into the task. Even so, most of the current day neural networks make
use of at least one or more of the following architectural components: fully connected, convolutional,
recurrent. Table 2.1 from Battaglia et al. [8] gives an overview of the most important properties of
each type of component. Entities are the input elements to the component, the relation is what type of
information the component extracts, relational inductive bias is the assumption the component makes
on the structure that is present in its input data, and invariance indicates the type of translation the
component is insensitive to. Further explanation of each component follows next.

Table 2.1: Basic neural network components and their relational biases. From [8]

Component Entities Relations Relational inductive bias Invariance
Fully connected Units All-to-all Weak -
Convolutional Grid Elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation

Fully Connected
The Fully Connected (FC) layer is the first and simplest type of neural network as shown in fig. 2.1a,
which are often also referred to as MLP. In a FC layer each output activation is composed of a weighted
sum of all output activations of the previous layer, e.g. all neurons in the preceding layer are connected
to all neurons in the following layer [101]. Because all connections carry a separate weight these layers
require a significant amount of storage and compute. A fully connected layer is the most general type
of layer as it does not make any assumptions about the form or properties of its input. Because of this
property, it is often used as the final layer of a classification network.

Convolution
The CNN was first introduced by LeCun et al. [52]. The convolutional operation detects an instance of
local patterns anywhere in its input plane. The detection of a particular feature is done using the weight
sharing technique introduced in Rumelhart and McClelland [86]. The weighted sum for each output
activation is computed using only a small neighborhood of input activations, and where the same set
of weights are shared for each output as shown in fig. 2.5 [101]. Because the same set of weights
”slides” over the input activations looking for a specific pattern a convolutional layer is invariant to the
translation of features and is naturally suited to applications where the data is known to be ordered
in a grid-like topology. This property is especially powerful for image processing, where convolutional
neural networks are the state of the art [35, 43, 49, 95, 102]. In addition to being translation-invariant the
sharing of weights also greatly reduces the number of weights and thus network size and the required
amount of computing.

2.1. Artificial Neural Networks 35

Figure 2.5: Convolution operation in neural network. Adapted from [101] and [77].

Recurrent
Recurrent neural networks are a family of neural networks for processing sequential data [33, 87]. Just
like a CNN, Recurrent Neural Networks (RNNs) make use of the concept of weight sharing by applying
an operation with the same weights across different parts of the data. The core concept behind a RNN
is the addition of a feedback connection to the cells of a neural network that allow information to persist
over multiple steps, as illustrated in fig. 2.6. It is because of this persistent state (somewhat like a
memory mechanism) that RNNs are very well suited for sequential data processing tasks like natural
language processing, speech recognition, image captioning or sensor data processing. Even though
RNNs have seen great results lately, the basic model in fig. 2.6 has the issue of often exploding or
vanishing back-propagation gradients [9]. As a result, this leads to oscillating weights, long training
times, or entire collapsing of the network [40]. Vanishing or exploding gradients are the results of
multiplying many very small or very large gradients with each other in the chain rule, leading to weights
moving towards zero or becoming very large. To deal with this problem models like the LSTM and
Gated Recurrent Unit (GRU) were designed.

Figure 2.6: Single recurrent neuron. Adapted from Olah [75]

Long Short-Term Memory
The LSTM is the most used, and currently most successful, form of RNN. Its authors state in [40] that
the LSTM is designed to deal with the problem of vanishing or exploding gradients [9] and can learn
to bridge time intervals over 1000 time steps without loss of short period capabilities. A LSTM has
the same structure as a RNN of repeating the same unit over multiple timesteps, but uses a repeating
unit consisting of several neurons instead of one. For a LSTM this unit is called a memory cell and is
composed of 4 neurons as shown in fig. 2.7, all having a dedicated function.

The four neurons in a cell work together to provide a LSTM cell with both long and short-term
memory. Each sigmoidal neuron in fig. 2.7 indicated as 𝜎 acts as a gate. The output of the sigmoid
operation always falls between [0-1] and when multiplied with a scalar or vector determines which
portion of the incoming data is ”passed through” the gate. The key component in a LSTM is the cell-
state 𝐶፭ that flows through the entire chain of cells [75]. Each cell has to ability to scale the incoming
cell-state and possibly perform an addition or subtraction. Both of these operations are modulated
with a sigmoidal gate, which takes the hidden-state ℎ፭ as its input activation. The first gate is called
the ”input gate” and the second the ”forget gate”. These respective operations are presented as the

36 2. Deep Learning

first two gates acting on the cell-state 𝐶፭ flowing through the chain of cells. The third and final gate
modulates the output of a cell and fittingly is called the ”output gate”. This is the rightmost gate shown
in fig. 2.7. The part of the cell-state that will be used as output is determined by the sigmoidal gate,
whereas the hyperbolic tangent is used to force the cell-state between [-1, 1].

It is because of this ability to control which part and how much of the incoming information a cell
remembers while retaining it for many (>1000) timesteps that the LSTM is the go-to RNN module in
networks for processing sequential data. Many small variations of the LSTM exist [70, 107]

Figure 2.7: Three step LSTM. The ᎟ is a sigmoidal activation function, × is a pointwise multiplication, ዄ is a pointwise addition,
፭ፚ፧፡ is a hyperbolic tangent, an arrow is a vector transfer, ፂ፭ the cell state, ፡፭ the hidden state, ፱፭ the input activation. Adapted
from Olah [75]

2.1.3. Neuromorphic Artificial Neural Networks
Recently several ANNs have been designed to perform inference on event-based vision data. This
section focuses on how each network processes event-based data and will not consider design choices
that lead to the paper’s desired inference patterns.

The first work is called the Phased LSTM by Neil et al. [71]. The PLSTM is a LSTM extended with a
time gate. The time gate opens and closes based on a parameterized oscillation. Only during the short
open phase the memory cell can perform updates to its state and weights. Even with only the sparse
update phase, the PLSTM achieves faster convergence than a regular LSTM. Because of the recurrent
structure of a LSTM they can directly operate on asynchronous input data, such as the event stream
of a Dynamic Vision Sensor (DVS). The downside of using a LSTM based architecture is the fact that
it becomes hard to make use of convolutional architectures. Another downside is the fact that LSTMs
are computationally expensive and processing events in a sequential manner can become expansive
fast.

The second network is designed by Sekikawa et al. [92]. The focus of this research was to process
high rate, event-based data streams that are variable length and spread non-uniform. The authors
decided on a two-module architecture, where the first module updates an internal state every time an
event is fed into the network. This updating of the state (or latent space) is performed based on the
incoming event and its current internal state, making this module recurrent. The actual processing
is done using a MLP. The second module is the read-out module which computes the output of the
network on-demand, again using a lightweight MLP. To speed up the network at inference time the first
event processing module is replaced with an efficient lookup table. This split of event-processing and
on-demand output results in a lightweight network that can process up to 10ዀ events per second on a
standard Central Processing Unit (CPU).

The third network is introduced in Zhu et al. [111]. In this work, data from an event-based camera is
used to predict depth, optical flow, and ego-motion in an unsupervised manner. To infer the three types
of information the event-based feed is discretized into a frame-based representation. Discretization
is performed along the temporal dimension through linear interpolation. This divides the weight of an
event that falls between two discretization points based on its distance to each of these points. This
method was a step forward from simply binning events over the temporal domain. The code for this
work is not available, but for the predecessor of this network, it is available on github2.
2https://github.com/daniilidis-group/EV-FlowNet - accessed 04-08-2019

2.1. Artificial Neural Networks 37

The last work is presented in Gehrig et al. [23]. Where the work of Zhu et al. [111] performed linear
interpolation during discretization, the networks of Gehrig et al. [23] learn the discretization as part of the
network. Discretization is still done with equidistant spacing, but the amount an event contributes to the
discretization point directly before or after its time of occurrence is a learned non-linear function. The
interpolation kernel consists of a two-layer MLPs of 30 units each. This MLP kernel is applied to each
event to determine its contribution to the nearest discretization points. After training the MLP is replaced
by a look-up table for efficiency. The authors state performance improvements of approximately 12%
on optical flow and classification tasks over state-of-the-art event-based networks.

2.1.4. Deep Learning Frameworks and Hardware

A big reason for the improvement in the performance of neural networks was the increasing availability
of cheap computational power and large datasets. When implementing an ANN it is in its simplest form a
sequence of linear algebra or matrix operations that are very well suited for parallel computation. Due to
the rising interest in video games, the computing power of Graphics Processing Units (GPUs) increased
significantly. This was also convenient for deep learning since GPUs are designed to perform very large
matrix operations in parallel. At the current date especially NVIDIA3 GPUs are well suited for training
ANNs due to mature deep learning libraries relying on their CUDA programming language4. More
recently Google has been putting effort into designing hardware accelerators specifically designed for
deep learning, called Tensor Processing Unit (TPU)5. These TPUs are available in their cloud computing
service.

Besides hardware, the availability of stable and mature software frameworks has also made it pos-
sible for more people to work with deep learning. All of the following frameworks have the Python
language6 as their main scripting Application Programming Interface (API), but often their back-end
is written in more efficient languages like C++ and CUDA. The first and most used is TensorFlow by
Google7. This is the most extended framework providing a large number of tools and predefined func-
tions for writing production-ready ANN and Machine Learning (ML) code. It supports several program-
ming languages including Python, C++, Java, Swift and more. The second most popular framework is
PyTorch by Facebook8. It was designed as a reaction to the release of TensorFlow and quickly gained
traction among both academic and industrial researchers due to its easy and flexible Python API. Built
on top of frameworks like TensorFlow, the discontinued Theano9, Microsoft Cognitive Toolkit10 and
PlaidML11 is the high level framework Keras12. Keras was made to make deep learning accessible
and easy by abstracting away a large portion of the low level and complex operations present in most
frameworks. Besides being intuitive it is also the most flexible by letting its users choose out of the four
previously mentioned frameworks as the engine behind their project. These three frameworks are cur-
rently the most used ones, but besides the frameworks supported by Keras the following are also worth
mentioning: MXNet13 by the Apache software foundation and the preferred deep learning framework
for Amazon Web Services, Chainer14 developed by Preferred Network Inc. and written in pure Python.

3https://www.nvidia.com/en-us/ - accessed 25-07-2019
4https://www.geforce.com/hardware/technology/cuda accessed 25-07-2019
5https://cloud.google.com/tpu/ - accessed 25-07-2019
6https://www.python.org/ - accessed
7https://www.tensorflow.org/ - accessed 25-07-2019
8https://pytorch.org/ - accessed 25-07-2019
9http://deeplearning.net/software/theano/
10https://docs.microsoft.com/en-us/cognitive-toolkit/ - accessed 25-07-2019
11https://github.com/plaidml/plaidml - accessed 25-07-2019
12https://keras.io/ - accessed 25-07-2019
13https://mxnet.apache.org/ - accessed 25-07-2019
14https://chainer.org/ - accessed 25-07-2019

38 2. Deep Learning

2.2. Spiking Neural Networks
Spiking neural networks are more closely inspired by how neurons in animals work compared to the
ANNs described in section 2.1 and thus is an interest shared by many neuroscientists as well as ar-
tificial intelligence researchers. Some researchers even consider them the ”third generation of neural
networks” [59]. Spiking neural networks mainly differ from ANNs in that they have a notion of time due
to maintaining an internal state from time step to time step. It is because of this that the theoretical effi-
ciency of SNN neurons is higher than that of an ANN [59]. Yet, in practice ANNs still outperform SNNs
on most tasks. The second important difference is that SNNs neurons communicate data between
each other by sending trains of discrete spikes (also called action potentials), in contrast to the scalar
values send between neurons from ANNs. There is still a discrepancy between the theoretical and
practical power and efficiency of SNNs and ANNs, which is mainly caused by the fact that SNNs are
harder to train. Because SNNs communicate through discrete spikes the network operations are not
differentiable and the back-propagation algorithm from section 2.1 cannot be used for training. Thus,
searching for stable learning rules is one of the main priorities in this field of research.

Firstly, a more in-depth biological background on SNNs is provided. Secondly, the most common
and important neuron models are discussed. Thirdly, the most used learning rules are presented.
Lastly, the chapter is concluded with an overview of neuromorphic hardware that can be used to effi-
ciently simulate SNNs.

2.2.1. Biological Background
The first mathematical model (and generation) of a neuron was presented in McCulloch and Pitts [62],
its graphical representation can be found in fig. 2.8. This simple neuron sends out a binary signal
of either 0 or 1, depending on whether its summed input signal has a value that surpasses its firing
threshold. The McCulloch Pitt neuron was inspired by the binary signals of animal neurons. These
started the so-called ”first generation of neural networks models”.

Figure 2.8: Overview of the McCulloch Pitts neuron, it only receives and sends out binary signals. Adapted from Lagandula [50]

As previously mentioned, SNNs are sometimes considered the third generation of neural network
models. Out of all the three generations, the SNNmodels are the most biologically plausible. A general
description of the biological origin of SNNs is adapted from the thorough overviews and explanations
in Gerstner [26].

A biological spiking neuron consists of three distinct parts as seen in fig. 2.9a, the dendrite (input
device), the soma (cell body or computing node) and the axon (output device). Connections between
an axon and a dendrite are called synapses as in fig. 2.9b. The neuron that is sending a signal is
called the pre-synaptic cell, the neuron that is receiving the signal is called the post-synaptic cell. The
soma’s main characteristic is its membrane potential 𝑣(𝑡), which is the voltage difference between
the cell’s internals and its surroundings. If the cell receives no input signals it is at a constant resting
potential 𝑣፫፞፬፭. Once the soma receives enough input signals such that its membrane potential exceeds
a threshold called the firing threshold 𝜃 the neuron generates an output action potential (or spike) and
propagates it through its dendrites to the connected post-synaptic neurons. After a neuron has emitted

2.2. Spiking Neural Networks 39

a spike it enters a refractory period during which it cannot spike and resets its cell voltage to its resting
state. A short period after its refractory state a neuron enters a phase of relative refractoriness where
it is more difficult to excite. Each neuronal connection (synapse) can either have a positive or negative
impact on the membrane potential of its post-synaptic neurons. These synapses are accordingly called
excitatory or inhibitory synapses.

The neuronal signal consists of short electrical pulses as seen in fig. 2.10, called an action potential
or spike. Each spike has an amplitude of about 100𝑚𝑉 and a width of about 1 − 2𝑚𝑠, and the form of
the pulse does not change while propagating along an axon. Since the shape of the spikes does not
differ, all information is carried in the time of arrival at the post-synaptic neuron. Multiple consecutive
spikes are called a spike train. Spikes within a single output spike train never overlap even in case
of a very active neuron. All ANNs (”second generation”) make use of a rate-encoding scheme, where
the values passed between neurons represent the firing rate instead of the exact firing time as in real
neurons [2, 3]. Spiking neural networks have the option of using both a rate and/or timing encoding
scheme.

(a) Schematic representation of a single spiking
neuron. Adapted from Gerstner [26]

(b) Schematic representation of a signal passing
between two neurons. Adapted from Gerstner [26]

Figure 2.10: Neuronal spike. Adapted from Gerstner [26]

2.2.2. Neuron Models
Choosing a neuronal model for use within a SNN often is one of the first to make and can have a
large impact on the functioning of the network, as well as which learning rule should be applied (see
section 2.2.3). Most of the properties that biological neurons exhibit have been adapted into several
mathematical models. Depending on the model, certain properties have been left out and the repre-
sentation of each property can differ too.

Themost biologically precise and general neuronmodel is the ”Hodgkin-Huxley model” [41]. Named
after its authors, they performed experiments on the giant axon of a squid and were able to both mea-
sure and influence the action potentials running through the axons. Besides measuring, they captured

40 2. Deep Learning

the dynamics in a set of differential equations that to date are still considered the most accurate model
out there. For their work, Hodgkin and Huxley received the Nobel prize in Physiology or Medicine in
1963. Despite its accuracy, the model is too complex to be feasible for use in large scale simulations.
Because of these characteristics, this model serves as the starting point for most neuron models that
try to retain as much of its dynamics while lowering the computational burden.

This section first covers the mathematically simplest leaky integrate-and-fire model. This is followed
by the spike response model, and the section concludes with the Izhikevich model. For more uncon-
ventional models the reader is referred to the following works: Ahmed et al. [4], Florian [21], Nessler
et al. [72], Shrestha et al. [93]

Leaky Integrate-and-Fire Model
The most commonly used neuron model is the Leaky Integrate-and-Fire Neuron (LIF). Its predecessor,
the integrate-and-fire, was introduced by Brunel and van Rossum [14]. The defining assumption in
the model is that real neuronal spikes have a consistent shape and their information is encoded in the
exact timing or absence of a spike. The simplest way to still encode information is then to model spikes
as single events using the Kronecker-delta function 𝛿(𝑡). As the name integrate-and-fire suggests,
the model integrates incoming spikes until its membrane potential surpasses the firing threshold 𝜃
from below, it fires a spike, resets its membrane potential to 𝑣፫፞፬፭, and enters a refractory period.
Equation (2.7) shows an addition of a decay term to the Integrate-and-Fire Neuron (IF) model by Stein
[98] based on elementary electrical laws. 𝐼 is the incoming current from the pre-synaptic neurons, 𝑅 is
a linear resistor, 𝐶 is a capacitor modeling the capacity of the membrane and 𝜏፯ = 𝑅𝐶 is the voltage-
time decay constant. Because of the formulation of the membrane potential as a linear differential
equation, over time the membrane potential will exponentially move towards its resting potential 𝑣፫፞፬፭.
Additionally, the model may incorporate an absolute refractory period during which the neuron cannot
change its state or fire (described in section 2.2.1).

𝜏፯
𝑑𝑣
𝑑𝑡 = −[𝑣(𝑡) − 𝑣፫፞፬፭] + 𝑅𝐼(𝑡) (2.7)

Spike Response Model
Gerstner and van Hemmen [28] introduced the Spike Response Model (SRM) as a generalization of
the LIF. It differs from the LIF in two ways. Firstly, the model makes use of a different mathematical
description, instead of the differential equations as in the LIF model the SRM makes use of parametric
functions of time called signal response functions or kernels. All pre and post-synaptic spikes in the
past time are convolved with a separate kernel respectively before their influence on the membrane
potential is calculated. Secondly, a SRM can include a phase of relative refractoriness (described in
section 2.2.1). Each post-synaptic spike influences the membrane potential of the signaling neuron by
convolving it with a refractory kernel 𝜂. Action potential generation in a SRM is the same as with a LIF,
where an action potential is generated when the membrane potential crosses a firing threshold from
below.

Equation (2.8) describes the membrane potential of a SRM neuron 𝑖 at time 𝑡, with the neuron’s
last post-synaptic spike at 𝑡̂. To determine the influence of presynaptic spikes over time the SRM sums
over all past pre-synaptic spikes from pre-synaptic neurons 𝑗 and convolves them with kernel 𝜖, after
which it multiplies the spikes from each synapse with their respective synaptic weight 𝑤።፣. Next, the
model expresses the influence of its post-synaptic spikes on its membrane potential through kernel 𝜂.
This kernel can capture both the absolute and relative refractory periods (section 2.2.1), allowing for
non-spiking periods and periods of increased spiking difficulty. This is what sets the SRM apart from
the LIF. Lastly, the model allows for the incorporation of external stimulation of the membrane potential
in the form of the integral over 𝐼 convolved with the kernel 𝜅. For most simulations, this term is likely
zero. The response functions (or kernels) 𝜂, 𝜖, 𝜅, can take many forms and are open to its user to
decide on which form suits their needs best. It is because of these additions that the SRM is the most
general linear neuron model.

𝑣።(𝑡) =∑
፟
𝜂(𝑡 − 𝑡(፟)።) +∑

፣
𝑤።፣∑

፟
𝜖።፣(𝑡 − 𝑡̂። , 𝑡 − 𝑡(፟)፣) + ∫

ጼ

ኺ
𝜅(𝑡 − 𝑡̂። , 𝑠)𝐼(𝑡 − 𝑠)𝑑𝑠 + 𝑣፫፞፬፭ (2.8)

2.2. Spiking Neural Networks 41

Izhikevich Neuronal Model
The Izhikevich neuronal model [44] is a biologically plausible and precise neuron model that is heavily
inspired by the Hodgkin-Huxley model, yet its computational complexity is comparable to that of the LIF
model. Due to these properties, this neuron model is well suited for high-fidelity simulations of animal
brains. Izhikevich [44] reduces the complex Hodgkin-Huxley model to a 2D system of Ordinary Differ-
ential Equations (ODEs), as in eq. (2.9) and eq. (2.10). Here, 𝑣 and 𝑢 are dimensionless variables, and
𝑎, 𝑏, 𝑐, and 𝑑 are dimensionless parameters. The variable 𝑣 represents the membrane potential and 𝑢
represents a membrane recovery variable. After the spike reaches its peak (+30𝑚𝑉), the membrane
voltage and the recovery variable are reset according to the eq. (2.11). Synaptic currents, or injected
dc-currents, are delivered via the variable 𝐼.

𝑑𝑣
𝑑𝑡 = 0.04𝑣

ኼ + 5𝑣 + 140 − 𝑢 + 𝐼 (2.9)

𝑑𝑢
𝑑𝑡 = 𝑎(𝑏𝑣 − 𝑢) (2.10)

if 𝑣 ≥ 30𝑚𝑉, then {𝑣 ← 𝑐𝑢 ← 𝑢 + 𝑑 (2.11)

The parameter 𝑎 describes the time scale of recovery variable 𝑢, smaller values result in slower
recovery. The parameter 𝑏 describes the sensitivity of the recovery variable 𝑢 to the subthreshold
fluctuations of the membrane potential 𝑣. Greater values couple 𝑣 and 𝑢 more strongly resulting in
possible subthreshold oscillations and low-threshold spiking dynamics. The parameter 𝑐 describes the
after-spike reset value of the membrane potential 𝑣. Lastly, the parameter 𝑑 describes the after-spike
reset of the recovery variable 𝑢.

2.2.3. Learning Rules
Possibly the most important algorithm in making a neural network perform well is the learning algorithm.
Whereas for ANNs backpropagation (section 2.1.1) is the staple algorithm for almost every implemen-
tation, for SNNs there is no clear go-to algorithm. As mentioned in section 2.2, signals in the forms of
spikes are non-differentiable and thus derivative-based algorithms are not usable without certain as-
sumptions or modifications to spiking neurons. This forces its users in the direction of correlation-based
learning rules. First, the unsupervised learning algorithm STDP is treated. This is followed by a discus-
sion of an augmented form called Reward-Modulated Spike-Timing-Dependent Plasticity (R-STDP),
and the section is concluded with an overview of supervised learning rules for SNNs.

Spike-Timing-Dependent Plasticity
The most used learning algorithm for SNNs is called Spike-Timing-Dependent Plasticity (STDP), which
is based on Hebb’s postulate:

”Let us assume that the persistence or repetition of a reverberatory activity (or ”trace”) tends to induce
lasting cellular changes that add to its stability. ... When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased. [37]”

The following description of STDP has been adapted from Sjostrom and Gerstner [96]. For more
information, reviews, and overviews of STDP the reader is referred to Abbott and Nelson [1], Sejnowski
and Tesauro [91], Sjostrom and Gerstner [96].

STDP is an unsupervised and local learning rule. The concept of unsupervised learning is described
in section 2.1.1. Local means that the weights update Δ𝑤 is purely based on information present in
and between the pre- and post-synaptic layers of neurons. The weight changes Δ𝑤፣ of a synapse from
a pre-synaptic neuron 𝑗 depends on the relative timing between pre-synaptic spike arrivals and post-
synaptic spike times. A connection weight is increased (decreased) if the pre-synaptic spike arrives
at the post-synaptic cell just before (after) the pre-synaptic spike takes place. The further the spikes
are apart in time, the smaller the weight update in absolute value. Because the weight update trends
towards zero for large separations in time the update is also called the learning window. Pre-synaptic

42 2. Deep Learning

Figure 2.11: STDP proportional weight scaling based on relative timing of pre- and post-synaptic spikes. Adapted from Sjostrom
and Gerstner [96].

arrival times at synapse 𝑗 are indicated as 𝑡፟፣ where 𝑓 = 1, 2, 3, ... is the count of pre-synaptic spikes
and similarly 𝑛 is the count of post-synaptic spikes. Such a set of spikes for a single synapse is also
called a trace. The total weight change Δ𝑤 is determined by eq. (2.12), where 𝑊(𝑥) denotes one of
the STDP functions illustrated in fig. 2.11. The x-axis depicts the difference in time between the post
and pre-synaptic spike 𝑡፟፣ − 𝑡፧። , positive values mean the pre-synaptic spike occurred after the post-
synaptic spike. As mentioned previously, this should result in a negative weight update, as is shown
on the y-axis. The weight updates are strongest when the spikes occur near each other in time. Also,
positive and negative weight updates can be of different magnitude.

Δ𝑤፣ =
ፍ

∑
፣዆ኻ

ፍ

∑
፧዆ኻ

𝑊(𝑡፧። − 𝑡
፟
፣) (2.12)

A popular choice for the STDP function is shown in eq. (2.13) and eq. (2.14), which has been used
to fit experimental data [109]. The parameters 𝐴ዄ and 𝐴ዅ can be dependent on the synaptic weight
𝑤፣ and the time constants 𝜏ዄ, 𝜏ዅ are in the order of 10ms. Equation (2.13) and eq. (2.14) are the most
common learning window functions, but other forms can be used.

𝑊(𝑥) = 𝐴ዄ𝑒ዅ፱/Ꭱዄ 𝑓𝑜𝑟 𝑥 > 0 (2.13)

𝑊(𝑥) = −𝐴ዅ𝑒፱/Ꭱዅ 𝑓𝑜𝑟 𝑥 < 0 (2.14)

Many variations and extensions to the basic STDP formulation above exist. An interesting and often
made addition is to make the algorithm perform online weight updates. This is based on the assumption
that each presynaptic spike arrival leaves a trace 𝑥፣(𝑡) which is updated by an amount 𝑎ዄ(𝑥) at the
moment of spike arrival and decays exponentially in the absence of spikes according to eq. (2.15). The
same logic holds for the post-synaptic trace 𝑦, the trace increases by an amount 𝑎ዅ(𝑦) at the moment
of a post-synaptic spike according to eq. (2.16).

𝜏ዄ
𝑑𝑥፣
𝑑𝑡 = −𝑥 + 𝑎ዄ(𝑥)∑

፣
𝛿(𝑡 − 𝑡፟፣) (2.15)

𝜏ዅ
𝑑𝑦
𝑑𝑡 = −𝑦 + 𝑎ዅ(𝑦)∑

፣
𝛿(𝑡 − 𝑡፧) (2.16)

2.2. Spiking Neural Networks 43

The total weight change is given by eq. (2.17). This shows that the weight is increased by an amount
proportional to the pre-synaptic trace 𝑥 and depressed proportional to the post-synaptic trace 𝑦.

𝑑𝑤፣
𝑑𝑡 = 𝐴ዄ(𝑤፣)𝑥(𝑡)∑

፧
𝛿(𝑡 − 𝑡፧) − 𝐴ዅ(𝑤፣)𝑦(𝑡)∑

፟
𝛿(𝑡 − 𝑡፟፣) (2.17)

There is a relatively large number of variations of STDP, but the most important discerning factor
between different rules is whether the rule is multiplicative or additive [29, 105]. Additive STDP, as
shown in eq. (2.18), is mathematically the simplest form where the weight update Δ𝑤 only depends on
the relative timing of the pre- and post-synaptic spikes. The advantage of this method is its ability to
quickly change synaptic weights in the desired direction, but with the downside that this causes bi-modal
distributions. Since STDP reinforces already strong connections and depresses already weak ones it
forces the weights to their upper or lower boundaries. In comparison, multiplicative (also called weight
dependent) STDP, takes the current strength of the connection into account in its weight updates. An
example of such a rule is taken from Paredes-Vallés et al. [78] and simplified for illustrative purposes.
The resulting weight update is shown in eq. (2.19). Here the 𝑒ዅ|፰፭ዅ፰።፧።፭| term scales Δ𝑤, with 𝑤።፧።፭
acting as the reference weight value. Weight updates for already strong connections are smaller than
for weak connections under the assumption that all other variables are equal. This causes the method
to converge slower, yet it can satisfy a uni-modal distribution and thus it is better at guaranteeing
convergence by keeping the synaptic weights bounded. It should be noted that more advanced versions
are possible. For example, an adaption can be made where weight update towards 𝑤።፧።፭ are large, but
small in the other direction.

𝑤፭ዄኻ = 𝑤፭ + Δ𝑤፭ (2.18)

𝑤፭ዄኻ = 𝑤፭ + Δ𝑤፭𝑒ዅ|፰፭ዅ፰።፧።፭| (2.19)

As a last note, almost all of the modern implementations of STDP within an engineering setting only
allow for adjusting synaptic weights. Parameters that have a significant influence on the functionality
of a network like the transmission time or firing threshold of a cell are almost always considered to be
fixed or tuned through hyperparameter optimization. It appears that these parameters in animal brains
can be learned just like the synaptic weights. Research providing evidence for the adaptive learning
of firing thresholds in the human brain can be found in Daoudal and Debanne [17], Zhang and Linden
[110]. Further research on this topic might result in improved learning performance.

Reward Modulated Spike-Timing-Dependent Plasticity
One of the biggest outstanding problems within training SNNs is the fact that STDP is purely unsuper-
vised, while there are no stable and reliable algorithms that allow supervised learning without gradient-
based techniques. Luckily, progress is being made towards this goal in the form of Reward-Modulated
Spike-Timing-Dependent Plasticity (R-STDP), which in its simplest form is a combination of reinforce-
ment learning and STDP. In its essence reinforcement learning can be defined as goal-directed learning
from interaction [99], or put even simpler, learning through trial and error. This interaction can be with
other humans, animals, complete environments, simulations or even single reward functions. More
information on reinforcement learning can be found chapter 3.

One of the first successful and well known scientific experiments towards organism level reinforce-
ment learning is research done by Pavlov [79]. Besides behavioral experiments research has also been
conducted towards the presence of reinforcement learning like operations in animal brains. The works
of Bartlett and Baxter [7], Reynolds and Wickens [83], Schultz [88], Schultz et al. [90] show experimen-
tal support for the presence of R-STDP in the brain. It currently is widely accepted by researchers that
R-STDP plays an important role in the learning of animals and for an overview of the modern view of
biological R-STDP the reader is referred to [80, 89]. The precise functioning of R-STDP in the brain is
still unknown, and from an engineering perspective, no algorithm is considered precise and effective.
Because of this, there is a lot of room for improvement, and improvements might open up ways of im-
plementing both reinforcement learning and supervised learning methods in SNNs. For the remaining
of this work, the focus will be on R-STDP from an engineering perspective.

44 2. Deep Learning

As mentioned before, R-STDP can theoretically be used to perform both reinforcement learning
and supervised learning in spiking neural networks. Using RL in a SL setting can be as simple as
restating the reward signal to have a target reward value it has to attain. Xie and Seung [106] where
the first to formally state R-STDP’s usefulness in doing so. One of the first formulations of R-STDP for
an engineering application was presented in Florian [20] and is to the current date still quite influential.
This work together with Gerstner [26] will be taken as a reference and used to explain the basics of
R-STDP.

Reward-modulated STDP, as its name suggests, is simply modulating STDP based on a reward or
error signal such that the network learns based on maximizing (minimizing) its reward (error) signal.
Regular STDP weight updates are based on a Hebbian correlation term 𝐻(𝑝𝑟𝑒፣ , 𝑝𝑜𝑠𝑡።) between the
pre- and post-synaptic trace, like in eq. (2.12), eq. (2.13) and eq. (2.14). As an addition to the Hebbian
term, R-STDP adapts the weight update according to a modulation signal 𝑀, resulting in eq. (2.20).
One of the more common modulation signals is ’reward minus expected reward’ as in eq. (2.21). This
signal has the nice property of ”forcing” the network’s output towards the desired output, analogous to
weight updates done by backpropagation in ANNs.

Δ𝑤፣ =
ፍ

∑
፣዆ኻ

ፍ

∑
፧዆ኻ

𝑀 ⋅𝑊(𝑡፧። − 𝑡
፟
፣) (2.20)

𝑀(𝑡) = 𝑅(𝑡) − 𝐸𝑅 (2.21)

Within literature, variations on this algorithm exist [20, 67, 68]. As far as the author’s knowledge
goes, these implementations make changes in the Hebbian correlation function, but the scaling of the
Hebbian correlation through multiplication with the modulation signal 𝑀 is retained in all these works.

Changing the actual impact of the modulation signal on the weight updates could be an interesting
research avenue since research in the field of neuroscience shows that the functioning and shape of the
STDP window are changed through reward modulation with e.g. the neuromodulator dopamine15 [80].
Also, Frémaux et al. [22] showed that a reward signal that on average is not zero (e.g. there is a baseline
reward value that the network will receive) will induce a bias in the R-STDP rule towards performing
regular STDP. This originates from the fact that R-STDP guides regular STDP weight updates Δ𝑤።፣
in the correct direction based on a reward signal. As long as the average reward is around zero the
method has an equal capability of potentiating (positive reward) or depressing (negative reward) the
synaptic connections. The further the average reward shifts away from zero, the more the general
orientation of the weight updates due to high and low rewards remains the same. This means that the
variations in the weight updates are mostly due to differences in the STDP term, thus expressing a bias
towards unsupervised weight updates even when using R-STDP. Multiple methods exist to alleviate
this problem, which can be as simple as subtracting the average reward. This is only possible for a
single task as the reward might differ per task. A more robust and elegant solution would be to use an
actor-critic algorithm. In this case, the critic learns to predict the expected reward for the next time step.
In place, the critic tells the network which weight updates it has to perform. This intermediate step of
the critic both removes the bias towards unsupervised learning updates and reduces the variance in
the weight updates [22].

Gradient Based Learning
Multiple methods exist that approximate gradient based learning in SNNs [13, 94, 103, 104, 108]. In or-
der to obtain an approximate derivative of a spiking signal there are generally two kinds of assumptions
made in literature [108].

The first is to perform optimization based on the membrane voltage of a neuron instead of the
spiking signal it generates. The voltage is relatively easy to approximate with a differentiable function.
A good example of this are BP-STDP [103], and SpikeGrad [104]. Both of the works approximate the
membrane voltage of an IF neuron as the activation value of the ReLU (eq. (2.4)) operation. This relies
on the fact that a non-leaky IF neuron integrates its incoming action potentials. Because the neuron
always needs an equivalent amount of incoming potential its output activity over time scales linearly
with the incoming potential, as long as it surpasses its firing threshold.
15https://www.medicinenet.com/script/main/art.asp?articlekey=14345 - retrieved 18-07-2019

2.2. Spiking Neural Networks 45

The second type of method does perform optimization based on the output signal of a neuron, by
approximating the spike generation mechanism with a differentiable function. The first work to do this
was SpikeProp [13] by linearizing the relationship between the postsynaptic input and the resulting spike
timing. The Spike Layer Error Assignment Rule (SLAYER) algorithm [94] approximates the gradient of
a spiking signal as the gradient of a Probability Density Function (PDF) that expresses the probability
of the neuron changing its firing state based on its current membrane potential. The work of Zenke and
Ganguli [108] combines both a stochastic firing neuron to generate a differentiable distribution over the
spike timing and optimization directly on the membrane voltage of the neuron.

In order to try and leverage the hardware and algorithms available for ANNs completely, several
works have converted a fully trained ANN to a SNN in order to gain the efficiency and energy benefits of
a SNN [18, 74]. This was done by replacing the activation function (section 2.1.1) with spiking neurons
and performing parameter optimization. These types of algorithms will not be discussed further.

2.2.4. Supervised Learning Comparison
Finding a supervised learning rule for SNNs that is somewhat comparable to backpropagation is highly
desired by the SNN community. Two main approaches currently allow for supervised learning. The
first allows for using backpropagation by using approximations and assumptions to make the blocking
SNN operations differentiable. The second is based around designing a supervised, correlation-based
learning function. This section will go over and compare the available supervised learning algorithms
for SNNs.

The first supervised learning rule to be considered is Remote Supervised Method (ReSuMe) [81].
ReSuMe is based on the concept of Supervised Hebbian Learning (SHL), extensively analyzed in Leg-
enstein et al. [54]. SHL revolves around stimulating neurons through the injection of an external voltage
to make the neurons spike at desired times. The downside of this method is that it does not depress
connections leading to unwanted activations. To resolve this ReSuMe potentiates synaptic connec-
tions that show a correlation between pre-synaptic spikes and a pre-defined desired post-synaptic
spike train. To account for unwanted post-synaptic spikes ReSuMe always depresses connections that
show a correlation between pre-synaptic spikes and the actual post-synaptic spikes generated by the
neuron. The potentiation (based on the desired signal) and depression (based on the actual signal)
cancel each other out when the signals match, resulting in a weight update equal to zero. The biggest
shortcoming of the ReSuMe algorithm is that it needs a pre-defined desired signal for every neuron in
the network. This often is impossible to determine as only the output for the final layer is known.

A different and more recent work from Mozafari et al. [68] applies a combination of R-STDP and
STDP for supervised classification. The authors use a convolutional encoding network for image clas-
sification. Each class is assigned a single output neuron and the first output neuron to spike indicates
the network’s prediction. The network uses regular STDP for its first layers (2 in the experiments) and
R-STDP for the final layers (1 in the experiment). R-STDP weight updates are only applied to the out-
put neuron that spikes first, ignoring the other neurons, and performs potentiation (depression) in case
of a correct (incorrect) classification. The work is quite simple and shows the possible efficiency and
capabilities of R-STDP in supervised learning by outperforming STDPmethods. On the other hand, the
presented implementation is quite simplistic and restricted to just classification as it performs R-STDP
based on just the first output spike.

Asmentioned in section 2.2.3, the first real R-STDP formulation was presented in Florian [20] (called
modulate spike timing dependent plasticity) and is still considered one of the better performing algo-
rithms. The algorithm used eligibility traces (see chapter 3 for more information) as a kind of memory
for recent neuronal activity. Weight updates were a summation of two correlations, the pre-synaptic
trace 𝑃፩፫፞ and a post-synaptic spike 𝑓፩፨፬፭, and the post-synaptic trace 𝑃፩፨፬፭ and a pre-synaptic spike
𝑓፩፫፞. Furthermore, regular modulation of the weight updates with a reward signal 𝑟 of +1 or -1 was
used. Equation (2.22) shows the definition of the weight update.

Δ𝑤 = 𝑟(𝑃፩፫፞𝑓፩፨፬፭ − 𝑃፩፨፬፭𝑓፩፫፞) (2.22)
Within the available gradient-based methods several variations exist in how many assumptions and

approximations are made. From the perspective of keeping the algorithm mathematically sound and
general the lesser is assumed or approximated, the better. Both from this perspective, as well as
published performance quantitatively and qualitatively the SLAYER algorithm presented in Shrestha
and Orchard [94] as discussed in section 2.2.3, seems like the best choice to the author. Aside from

46 2. Deep Learning

the approximation of the spike gradient with the slope of a suitable PDF, the algorithm does not make
any further assumptions. It can assign errors back through time and its source code is available as
a library built on PyTorch (see also section 2.2.6). Other methods like Backpropagation Spike-timing-
Dependent Plasticity (BP-STDP) [103], SpikeProp [13], SpikeGrad [104], or SuperSpike [108] are more
confined in their possible applications. The first two works are restricted to using purely non-leaky IF
neurons, whereas the last work is more flexible in the type of neurons but makes multiple assumptions
about the generation of a spiking signal and its derivative. Both are reasons to favor the SLAYER
algorithm.

2.2.5. STDP and Back-Propagation
Regardless of the incompatibility of back-propagation with SNNs (see section 2.2.3), many researchers
have been trying to reconcile the two through approximations or adjustments to SNNs. The reason for
this is very well explained by the following quote from Lillicrap and Santoro [57]:

”Ultimately we expect that agents and animals alike will not adhere to strict formulations of
Backpropagation Through Time (BPTT). This does not imply that BPTT should not remain a canonical

guide to Temporal Creddit Assignment (TCA); even when full differentiation through time is not
possible, innovation should be guided towards its approximation, and progress should be gauged with

the bar set by its hypothetical possibility.” [57]

The ideal situation would be to provide the power of back-propagation through an algorithm that
is directly applicable to SNNs. Whether that is even possible remains an open question, yet some
research indicates that the methods share certain similarities. The first is that STDP resembles a
temporal derivative filter [46], providing its user with the time derivative of its signal. This exact concept
is also used in back-propagation, but in that case, it is for the error signal. In the presentation of Hinton
[39] it is stated that the inspiration for back-propagation was attained from exactly this concept. A more
mathematical approach to comparing STDP with back-propagation is presented in Bengio et al. [11].
The work is still very exploratory but might provide an interesting avenue for future research.

Possibly the most important difference between the two methods is also stated by Lillicrap and
Santoro [57]. It is the fact that back-propagation makes use of explicit computations that are highly
precise. The influence of a single parameter is exactly known due to the deterministic functions used.
On the other hand STDP is a correlation based method which can have high variance, especially if
the network becomes large. Under the assumption of having enough samples, the correlation can be
computed quite accurately, converging to the actual and thus desired value. In that case, the correlation
can be a decent expression of how much a parameter influences the error signal. The concept of
minimizing variance is also used in modern variations of the back-propagation algorithm, specifically
all methods based on Stochastic Gradient Descent (SGD). The batching of weight updates originating
frommultiple training samples lowers the variance of the combined weight updates. This makes it more
likely that the update is performed in the desired direction within the parameter space of the network,
and thus speeding up the convergence of training.

The second important difference is that performing supervised learning within a SNN is consider-
ably less reliable than with a ANN. Propagating an error derivative, or a surrogate, in a SNN is still
an active research field and can currently only be done indirectly. This includes tuning firing thresh-
olds of presynaptic neurons (see section 2.2.3), or multiple forms of R-STDP (see section 2.2.3). In
Baldi and Sadowski [6] it was shown that purely local STDP cannot learn to extract specific or desired
patterns. For correlation-based methods to be able to do so they require some form of a backward
channel that tells each neuron in which direction its weights should move to reduce its contribution to
the error. Preferably this also includes the magnitude of the weight update, in which case the rule starts
to converge to acting like backpropagation.

One of the biggest downsides of back-propagation (and even more so recurrent networks) are
exploding or vanishing gradients often occurring after many successive steps of the chain rule. As dis-
cussed in section 2.1.2, there are many methods that try to deal with this issue through smart architec-
tural design. Another good example that has not been mentioned before is the use of skip-connections
that were first successfully used in He et al. [35]. The resulting Resnet is still considered a State of
the Art (SOTA) network since its introduction in 2015. The local property of STDP based learning rules
(see section 2.2.3) makes it that they do not suffer from this problem as the weight updates are only
dependent on the activity of the pre and post-synaptic layers.

2.2. Spiking Neural Networks 47

It can be concluded that back-propagation through time and STDP share certain important charac-
teristics, mainly the fact that they use the temporal derivative in their computations. But, for STDP to
achieve performance comparable to that of back-propagation, researchers need to do two main things.
Find methods that can consistently assign errors to the correct neurons in previous layers and achieve
low variance weight updates while remaining relatively sample efficient.

2.2.6. Neuromorphic Hardware and Software
To date most of the simulations and implementations of SNNs are performed on von Neumann archi-
tecture machines, which is the architecture used in most modern-day computers [85]. Even though
some interesting results have been produced, this architecture is not well suited for simulating SNNs
because of the limited number of processing units compared to neurons in a network and the trans-
ferring of data between the Random-Access Memory (RAM) and CPU/GPU. Inspired by animal brains
and their enormous amount of separate computational units in the form of neurons (the human brain
contains about 10ኻኻ neurons [45], and about 10ኻ኿ synapses), researchers have set out to design chips
closer to how animal brains function. These chips are naturally very well suited for running SNNs while
also being several orders of magnitude more efficient when it comes to power consumption per calcu-
lation. On top of all this, most of these chips also support asynchronous, parallel operations. In short,
they are an ideal candidate for running SNNs.

A non-exhaustive list of some of the most well known neuromorphic chips follows:

• Loihi16 is a neuromorphic chip designed and made by Intel.

• TrueNorth17 is a neuromorphic chip designed and made by IBM.

• SpiNNaker18 is a neuromorphic chip designed by the University of Manchester.

• Braindrop19 is a neuromorphic chip designed by Stanford university.

• DYNAP20 is a neuromorphic chip designed and made by aiCTX.

Several different software frameworks and simulators are freely available to construct, train, and
simulate SNNs. There are quite some differences between many of them, some support GPU acceler-
ation, some are intended to precisely simulate biological processes in brains, while others are intended
as an extendable engineering framework. In the current context a simulator is considered to be high
level, allows for easy and fast implementation of conventional neural network architectures but on the
downside is not very flexible and does not support the implementation of novel concepts out of the
box. An engineering framework, on the other hand, requires more effort to define a complete neural
network due to exposing mainly low-level functionalities and operations to its user. This does provide
the advantage of having fine-grained control over the neuron and network design, making it well suited
for experimentation through implementing novel concepts and fine-tuning the efficiency of each net-
work. The following is a list of some of the most used simulators and frameworks and their defining
characteristics:

• BindsNet: BindsNet21 is based on the PyTorch22 deep learning platform. BindsNet is a SNN sim-
ulation library that is geared towards machine learning and reinforcement learning applications.
It supports simulation on both CPU and GPU. BindsNet places itself between a simulator and an
engineering framework, making it relatively quick at simulating small-scale networks and making
use of some of the benefits PyTorch provides. The downside is that implementing networks that
don’t fit well to the predefined simulation pipeline can require quite some modifications to the
source code.

16https://www.intel.com/content/www/us/en/research/neuromorphic-computing.html
17http://www.research.ibm.com/articles/brain-chip.shtml
18http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
19https://neuroscience.stanford.edu/events/braindrop-mixed-signal-neuromorphic-system-presents-clean-abstractions-
kwabena-boahen

20https://aictx.ai/technology/
21BindsNet documentation at https://bindsnet-docs.readthedocs.io/
22PyTorch documentation at https://pytorch.org

48 2. Deep Learning

• Brian: The Brian simulator23 is written in pure Python and designed to be an easy to use and
accurate simulator of spiking neural networks. Because it is a simulator it is more suited towards
research on biological SNNs and less so for ML research towards SNNs. Also, the lack of GPU
acceleration is a downside in the case of large datasets.

• SpykeTorch: SpykeTorch24 is a SNN framework built on top of the PyTorch deep learning frame-
work. Compared to BindsNet, SpykeTorch is more a framework and makes more use of PyTorch
conventions and GPU acceleration. This allows its users more freedom in designing their net-
works. A big downside of the framework is the infrequent updates and the immature state of the
package, limiting its current use cases.

• cuSNN: The cuSNN library25 is a C++ library for the design and simulation of SNNs introduced
in Paredes-Vallés et al. [78]. It separates itself from the other frameworks in that it is written in
the potentially highly efficient CUDA26 platform. This allows for strong GPU acceleration that
is specifically tailored towards SNN simulation, whereas the PyTorch based frameworks rely on
functions optimized for regular deep learning. One of the downsides of the library is that it is
written using the C++ language (same language used in CUDA). Even though the language is
known for its speed, it is a low-level language compared to Python, requiring more lines of code
for the same result and its user has to be aware of potential memory and runtime issues.

• SLAYER: The SLAYER framework27 was introduced accompanying the Shrestha and Orchard
[94] paper. The framework was originally written in C++/CUDA, but currently also supports a Py-
Torch wrapper. The library is aimed at training SNNs using the well-established backpropagation
algorithms present in PyTorch by making a SNN differentiable by approximation, as is done in the
paper.

23Brian documentation at http://briansimulator.org/
24SpykeTorch framework documentation at https://github.com/miladmozafari/SpykeTorch
25cuSNN framework documentation at https://github.com/tudelft/cuSNN
26https://developer.nvidia.com/cuda-zone
27SLAYER documentation at https://github.com/bamsumit/slayerPytorch

3
Reinforcement Learning

Learning by doing is something everyone is familiar with and for many people even the preferred way of
learning. A young child learns to coordinate its body while playing, an athlete perfects his movements
over thousands of hours of practice, and a chess grandmaster can judge a board state in the blink of
an eye based on the millions of situations he or she has seen and played before. Besides using rein-
forcement learning on the scale of a complete entity, the human brain also makes use of reinforcement
learning on a micro-scale. In the case where a specific condition is fulfilled the brain can release neuro-
modulators that can alter the learning performed by STDP, resulting in R-STDP (see section 2.2.3). In
general, reinforcement learning plays an important role in the human brain by allowing it to perform both
reinforcement and supervised learning, in contrast to the purely unsupervised learning regular STDP.

Reinforcement learning can prove useful for training SNNs for two reasons. Firstly, the frame-
work does not enforce differentiability and thus applies to SNNs. Secondly, reinforcement learning is
concerned with performing credit-assignment over long time periods and delays, which can act as a
reference and provide inspiration for dealing with the time-delays in SNNs.

The current chapter will focus on theoretical RL that can be applied specifically to SNNs. Firstly, RL
basics will be treated in section 3.1. Secondly, the (temporal) credit assignment that is central to RL
problems will be covered in section 3.2. Lastly, the possible use cases and parallels for RL and SNN
design are considered in section 3.3. For an excellent reference work on RL the reader is referred to
Sutton and Barto [99], this work will be used as a reference for most of the current chapter. For more
information on RL in neuroscience and biological systems the reader is referred to Bartlett and Baxter
[7], Pawlak et al. [80], Reynolds and Wickens [83], Schultz [88, 89], Schultz et al. [90].

3.1. Basics
This section is largely an adaption of the work of Sutton and Barto [99]. The two most important
characteristics (and also problems) of RL are trial-and-error search and delayed reward. As such,
a rigorous mathematical/computational model is needed for both of those, which is what this section
will deal with. A more in-depth analysis of the delayed reward is provided in section 3.2.

Central to any reinforcement learning application is the ability to (partly) perceive the state of the
environment, interact with and influence the state through actions, and lastly, to have a goal or goals
relating to the state space. All of these characteristics are captured in a Markov Decision Process
(MDP) [42], and any algorithm that is suited to solve it can be considered a reinforcement learning
algorithm. The learner and decision-maker is called the agent. This is limited to anything that can be
arbitrarily controlled by the agent. The thing it is interacting with is called the environment. Think of
an action like the electrical current sent to an engine of a drone, this is part of the agent. The rotor
blades can be considered part of the environment since it will respond to the current but also the air
surrounding it.

To completely describe and solve a RL problem three things are needed: a MDP describing the
interaction between the agent and the environment which includes the reward function, a value function
indicating the expected reward the agent can receive from each state, and a policy for determining which
action an agent will take in each state it is in. The final result of reinforcement learning is a policy, as

49

50 3. Reinforcement Learning

this can be applied to new situations that are comparable to one the agent has been trained in, but the
MDP and value function are prerequisites for completing the training.

Markov Decision Process
The simple goal of an agent is to maximize the total reward it receives. Thus maximizing immediate
reward is not the task, but the cumulative long-term reward. To obtain a reward the agent is continuously
interacting back and forth with its environment in an iterative process which is explained in fig. 3.1.
Based on its current state 𝑆፭, the agent performs an action 𝐴፭ and as a result of that will move to state
𝑆፭ዄኻ. At this point, the environment provides the agent with a reward 𝑅፭ዄኻ, which is a numerical value.

Figure 3.1: The agent-environment interaction in a Markov decision process. Adapted from Sutton and Barto [99]

As mentioned before, this process can be captured by a MDP. In the case of a finite MDP the sets
of states, actions, and rewards all have a finite number of elements. In this case, the random vari-
ables 𝑅፭ and 𝑆፭ have well defined discrete probabilities dependent only on the current state and action.
This is best viewed not as a restriction on the decision process but on the state, it must contain all
needed information of previous states. Under this assumption, the state satisfies the Markov property
[61], which will be assumed true for the rest of this chapter. Equation (3.1) expresses this relation
between the current state and action with the future state and reward. Equation (3.1) completely de-
fines the dynamics of the system and thus summing over all its possible parameter values results in
eq. (3.2). Equation (3.1) is the central equation for a MDP process and can be used to compute any
other information about the environment.

𝑝(𝑠ᖣ, 𝑟|𝑠, 𝑎)=̇𝑃𝑟 [𝑆፭ = 𝑠ᖣ, 𝑅፭ = 𝑟|𝑆፭ዅኻ = 𝑠, 𝐴፭ዅኻ = 𝑎] (3.1)

∑
፬ᖣ∈ፒ

∑
፫∈ፑ

𝑝(𝑠ᖣ, 𝑟|𝑠, 𝑎) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠) (3.2)

Reward Function
In order to maximize cumulative reward a mathematical formulation of this objective is needed. This
objective is called the expected return and is a function of the reward sequence 𝑅፭ዄኻ, 𝑅፭ዄኼ, 𝑅፭ዄኽ, ...
generated by the interaction of the agent with its environment. Its recursive formulation is found in
eq. (3.3). The equation expresses its current expected return 𝐺፭ as the sum of its reward for the next
time time step 𝑅፭ዄኻ, plus the expected return of the next time step 𝐺፭ዄኻ multiplied by a discount factor 𝛾.
The discount factor lies within the range [0, 1] and makes sure the expected reward remains bounded
in the situation of an infinite number of time steps 𝑇 = ∞, under the assumption the 𝑅፭ is bounded too.
The expected return remains bounded according to the limit in eq. (3.4) for a constant reward value of
+1. A more general expression for eq. (3.3) is found in eq. (3.5) as it expresses the expected return
for every desired time step with respect to the initialization time 𝑡ኺ and is agnostic to the duration of the
episode.

𝐺፭=̇𝑅፭ዄኻ + 𝛾𝐺፭ዄኻ (3.3)

3.1. Basics 51

𝐺፭ =
ጼ

∑
፤዆ኺ

𝛾፤ = 1
1 − 𝛾 (3.4)

𝐺፭=̇
ፓ

∑
፤዆፭ዄኻ

𝛾፤ዅ፭ዅኻ𝑅፤ (3.5)

Equation (3.3) and eq. (3.5) express the relationship between current and future rewards. They
express a preference for instant reward in favor of future rewards by discounting them with 𝛾. A gamma
value close to 0 states that future rewards are non-important, whereas a value close to 1 puts an equal
emphasis on instant and future rewards. A common value for 𝛾 is 0.99.

Policies and Value Functions
To complete the RL model both a value function and policy is required. A value function is an estimation
of how good (or desirable) it is for an agent to be in a given state (or state-action pair). The value function
expresses how good the current state is in terms of the expected return that can be achieved. The way
an agent selects which action to take in each respective state is what is called the policy. Formally, a
policy is a mapping from a state to the probabilities of selecting each possible action. Reinforcement
learning methods specify how the agent’s policy changes due to its experience.

The agent has to learn to estimate the value function over time. The mathematical formulation is
found in eq. (3.6). It expresses the expected return of a state 𝑠 under the current policy 𝜋. Estimating
the value function is an important task and often the most complicated part of solving a RL problem.

𝑣᎝(𝑠)=̇𝔼[𝐺፭|𝑆፭ = 𝑠] = 𝔼᎝ [
ጼ

∑
፤዆ኺ

𝛾፤𝑅፭ዄ፤ዄኻ|𝑆፭ = 𝑠] , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 (3.6)

The expectation in eq. (3.6) is a function of the random variables of the reward 𝑅 and state 𝑆 and
indirectly of the action variable 𝐴. Its expression can be expanded to more clearly express the rela-
tionship between the policy, the dynamics of the environment, and the received rewards. This is done
in eq. (3.7) and it is called the Bellman equation. It expresses a relationship between the value of a
state and the values of its successor states as a sum of the rewards for each state weighted by the
total probability of reaching that state and reward. It takes into account the probability of moving into a
specific state under a specific action as 𝑝(𝑠ᖣ, 𝑟|𝑠, 𝑎) and the probability of selecting each action under
the current policy as 𝜋(𝑎|𝑠). The Bellman equation plays a central role in RL since its properties need
to be accurately estimated.

𝑣᎝(𝑠) =∑
ፚ
𝜋(𝑎|𝑠)∑

፬ᖣ ,፫
𝑝(𝑠ᖣ, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣፩።(𝑠ᖣ)], 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 (3.7)

Solving Reinforcement Learning Problems
Solving a reinforcement learning task roughly comes down to finding a policy that obtains a lot of reward
over the time it is active. A policy 𝜋 is considered better than policy 𝜋ᖣ if its expected return is equal or
greater for every state than the other policy, e.g. the following holds 𝜋 ≥ 𝜋ᖣ if and only if 𝑣᎝(𝑠) ≥ 𝑣ᖣ᎝(𝑠)
for all 𝑠 ∈ 𝑆. The best policy of all is called the optimal policy denoted as 𝜋∗, although there might
be more than one optimal policy. All optimal policies share the same optimal value function 𝑣∗ as in
eq. (3.8). Once the optimal value function is found it is relatively easy to find an optimal policy, meaning
the problem generally revolves around optimally solving the Bellman’s equation for the value function
in eq. (3.7).

𝑣∗(𝑠)=̇max
᎝

𝑣᎝(𝑠) (3.8)

The last thing that is needed to complete a RL problem is a function that can represent the dynamics
of the value function and policy, and that can also be learned from experience (trial and error with
the environment). There are two main approaches to solve this problem, of which the first is tabular
methods that work on discrete problems or continuous problems that have been discretized. In order

52 3. Reinforcement Learning

to optimize these functions Monte Carlo methods [12] are used. These methods rely on visiting each
state as often as possible and averaging the rewards it receives for each state, resulting in an estimate
of the value function. These methods greatly suffer from the curse of dimensionality and thus scale
badly as the number of states increases. The other methods consists of parameterized functions like
Gaussian mixture models [12] or neural networks (see chapter 2). These methods are optimized using
algorithms like maximum-likelihood estimation, backpropagation, or STDP, which indirectly minimize
the error of the model whereas Monte Carlo methods do so directly. In this work RL will be used in
conjunction with parameterized models, specifically, ANNs or SNNs, and thus from now on will be the
only methods considered.

3.2. Credit Assignment Problem
An important problem within RL that is also especially relevant for SNNs is the credit assignment prob-
lem. This can be stated as follows: ”In case of a successful period how does one assign credit (or
discredit in case of failure) for the success among the multitude of decisions [64]?”. Especially in a
SNN where many synapses take part in obtaining the reward it becomes a hard problem to assign
credit to the correct synapses. To add to this the signals sent out by synapses and neurons have
varying time delays before they actually impact the final result and might also influence multiple re-
ward signals due to the persistent voltage in neurons. In short, a large number of free parameters in
the synaptic weights and the varying time delay before signals reach the final layer makes the credit
assignment problem in SNNs a rather difficult one.

Many approaches to try and solve the credit assignment problem make use of the concept of eligi-
bility traces. An eligibility trace can be seen as a temporary record of the occurrence of an event, like
spiking activity of a specific neuron, or the reward received in the past couple of time steps. This way
the traces work as a memory that marks a specific event, weight or object as eligible for assigning credit
or blame for the received reward or error. Thus eligibility traces are a basic mechanism for temporal
credit assignment. Many neuron models in SNNs make use of this concept by expressing the recent
activity of a neuron or synapse as a single scalar value trace (see section 2.2.2).

As a mathematical example, the application of an eligibility trace to a reward signal will be provided,
but the concept can just as easily be applied to any temporal signal. The general formulation of an
expected reward 𝐺 eligibility trace can be found in eq. (3.9). The important factor in eq. (3.9) is the term
𝜆, which should fall within the range [0, 1] to make sure the trace remains bounded. The 𝜆 expresses
with how much the trace from the previous timestep will decay. By doing so it indirectly expresses
the temporal window that is considered as relevant within the trace. In case of 𝜆 = 0 only the current
timestep 𝑡 is considered. In the case of 𝜆 = 1 the trace is equivalent to the Monte Carlo result where
the trace is tracked from the initiation till the end of the period. The term (1 − 𝜆) is used to ensure that
the weights of the 𝜆 terms sum to 1 in the case of infinite duration.

𝐺᎘፭ =̇(1 − 𝜆)
፭

∑
፧዆ኺ

𝜆፧ዅኻ𝐺ኺ∶፧ (3.9)

Some of the advantages of eligibility traces include that they are incremental. They can be applied
in an online learning algorithm like R-STDP. The method is bootstrapped, meaning that it uses its
previous estimate to improve the accuracy of its estimate in the following time step.

Actor-Critic
As mentioned in section 3.1, solving a RL problem revolves around maximizing reward and one of the
hardest parts in this is accurately estimating the value function (eq. (3.6)). Once the value function
is approximated well enough it is relatively easy to find a decent working policy. Many methods try
and combine estimating both of these functions into a single model, or simply perform greedy action
selection based on the value function. A set of more advanced methods is called actor-critic methods
[48, 100]. The main concept behind this is that the critic learns the value function and ”teaches” the
actor what actions to perform in each state.

Several of the advantages of an actor-critic method are as follows. The algorithm most of the time
outperforms just an actor or just a critic method in accuracy, time till convergence and success rate of
converging. It reduces variance in the performed weight updates. It allows for learning a parametric

3.3. SNN and RL 53

representation of both the value function and the policy. After training, just the policy can be used for
interacting with an environment. An actor-critic algorithm also comes closer to a form of supervised or
self-supervised learning (see section 2.1.1) since the critic is used to predict what will be the expected
reward for the next state. It is actively trying to minimize a loss with a clear lower bound of an error
of zero. This differentiates itself from more regular RL algorithms that just try to maximize their total
reward that has no clear upper bound.

Besides these practical advantages, there is also ample evidence in neuroscience literature that
suggests that parts of the human brain make use of an actor-critic learning model [22, 73, 88]. This
should not be a reason in itself to make use of actor-critic algorithms, but it is an indication that there
might be value in using these methods to train SNNs.

3.3. SNN and RL
From a biological perspective, there is an obvious link between RL and SNNs as it is widely used in the
human brain. From an engineering perspective, there is also an important link between the two subjects
that many forms of R-STDP try to capture. This is the fact that by using RL one can perform a form
of supervised learning in SNNs without using differentiable (and thus back-propagation) operations.
Reinforcement learning would provide the weights of synaptic connections with information about their
performance concerning a common goal like classifying images. This is a form of the backward channel
described in section 2.2.5 [6].

An important factor in this approach is the fact that each neuron can be considered a single RL agent,
thus making this into a Multi-Agent Reinforcement Learning (MARL) [15], specifically, a cooperative one
where all agents try to maximize the same reward function. It is this fact together with the time delay
between an input signal and the output signals of each neuron that makes RL in SNNs a structural
credit assignment problem. E.g., credit has to be assigned to both each specific neuron and also to
its action at a specific time. Luckily, even though many separate agents cannot observe the complete
state of the environment (all other neurons and the reward function), as long as all agents work towards
maximizing the same reward signal and each agent is equipped with an algorithm that allows it to learn
to increase the reward signal, the collective will also learn to increase the total reward [99].

An important note when using RL in SNN learning is that the design of the reward function and
definition of the expected reward (see eq. (3.5)) is paramount and differs greatly between a continuous
control task and a classification task. During a classification task, there is a clear number of steps to
be taken, which is the number of discrete time steps in the input sample. Because of this, the reward
can be guaranteed to be bounded without a discount 𝛾. This would also imply that every instance of
classification is valued just as important, which is a valid assumption for most classification tasks. On
the other hand, during a control task, it is desirable to implement a discount factor in the expected
reward formulation. Otherwise, the reward could become infinite, but this also takes into account that
immediate reward is more desirable than a reward that has a large delay (see section 3.1).

Pure reinforcement learning that is using a single reward signal is highly unlikely to solve a complex
problem like optimizing even a medium-size SNN. This is due to the vast number of free parameters
and only a single scalar value reward telling the network if it is performing well or not. Even so, RL
might be able to play a role in solving the SNN problem by combining it with other learning algorithms.
The first example is simply R-STDP that combines RL with STDP. One could also think of using RL to
optimize a critic function or perform online hyperparameter tuning. One thing is clear though, there is
likely a role for RL within optimizing SNNs, as it is naturally fit to solve credit assignment problems and
humans are the living proof of its capabilities.

4
Literature Synthesis

The first part of this document provided a literature study on the topic of supervised learning in spik-
ing neural networks. Attention was paid to three specific subjects: deep learning and neuromorphic
computing (see chapter 2), and reinforcement learning with a focus on spiking neural networks (see
chapter 3). These subjects were chosen as they provided valuable information in deciding whether
ANNs or SNNs should be chosen for modeling, but also in the design of a learning rule for SNNs. A
direct comparison between the methods was hard since they provide different strengths and weak-
nesses. This is due to their different computational paradigms where ANNs are highly sequential and
based on large, synchronous matrix operations, whereas SNNs are highly parallel and asynchronous
in nature. Each of the following sections provides a summary of the literature and concludes with a
synthesis of the relevance of the related findings towards the goal of this thesis. Combined with the
experimental results presented in chapter 5, chapter 6, and chapter 7 a decision was made between
ANNs and SNNs to focus on SNNs. After the overview sections, this chapter will end with a collection
of relevant conclusions, points of attention, and ideas for developing a supervised learning rule for a
SNN.

4.1. Neuromorphic Computing
Neuromorphic computing is seen as the field of research that focuses on implementing artificial neural
networks that are biologically inspired. These networks are called spiking neural networks and posses
advantages like asynchronous operations, sparse signals, and low power consumption [59]. Whereas
there is an increasing amount of knowledge on the functioning of the human brain, the actual reproduc-
tion of a large scale artificial brain-like architecture is still to be achieved. The key factor in SNNs is that
information is communicated in the form of discrete spikes. Using SNNs for processing event-based
data is a natural fit, yet it currently lacks the learning capabilities of the more common ANNs. This leads
to an important goal within the SNN community to find learning algorithms comparable in power to the
back-propagation algorithm.

Artificial neural networks form the state-of-the-art in most machine learning and deep learning ap-
plications. They perform powerful sequential pattern matching [53] for many tasks like classification
and data generation while using varying architectures like convolutional and recurrent networks. Yet,
for neuromorphic computing, they seem sub-optimal because of the mismatch between their sequen-
tial and matrix operation based processing paradigm when applied to sparse and asynchronous data
streams. Some works exist that process event-based data using a regular ANN like Gehrig et al.
[24], Sekikawa et al. [92], Zhu et al. [111], or through converting an ANN to a SNN like [18]. Information
is lost during the conversion process of either the event-based to frame-based format or the network
from ANN to SNN. There is also the inconvenience of not being able to train these networks on ac-
tual neuromorphic chips. Although ANNs are not the most suited for neuromorphic computing, they
do offer insight in devising learning rules as back-propagation is considered the upper limit of learning
efficiency [6, 57]. Together with a rich amount of architectures that currently outperform SNNs in most
tasks, and a large and active research community, ANNs can provide a wealth of information for the
SNN community.

55

56 4. Literature Synthesis

As mentioned before, SNNs are inherently suited for processing event-based data. There are sev-
eral (theoretical) advantages to using SNNs like greater computational power per neuron and more
efficient energy usage. Currently, these have not yet been achieved due to a lack of mature hard-
ware acceleration and software frameworks, and stable supervised learning rules. In the search for
better supervised learning rules, two main approaches exist, correlation and gradient-based (network
conversion not considered). Correlation-based learning methods are biologically inspired and (mostly)
biologically plausible. Its most basic form is local and unsupervised STDP [96]. Several extensions
exist that try to add a supervision signal through reinforcement learning techniques, called R-STDP
[20, 68]. Some interesting and promising first results were generated using these algorithms, but none
of them seem to have a thorough mathematical justification. Other works try to configure their network
in such a way that the desired patterns emerge while using STDP [78, 81]. Although they succeed
at their respective tasks, the algorithms are not very flexible and cannot learn arbitrary input-output
mappings, for that a specific error or reward signal moving back through the network is needed [6].

The second approach is to apply gradient-based methods to SNNs. This requires making approxi-
mations and/or assumptions on how the SNN behave because of the non-differentiable spiking signals.
The currently most effective algorithm, called SLAYER [94], makes a single assumption on the spike
generation mechanisms of a neuron. The limited amount of assumptions makes it that SLAYER uses
a lot of the power of the back-propagation algorithm. It integrates into the PyTorch framework and
performs well on at least smaller networks. It does require an even larger amount of GPU memory
compared to regular ANNs due to the added time dimensions to the input tensors. It also has the
added downside of only being able to train a network offline.

A trade-off between correlation and gradient-basedmethods for training SNNs shows that correlation-
based methods are outperformed by gradient-based methods on both accuracy and applicability to dif-
ferent network architectures. They do have a natural fit to SNNs resulting in a high theoretical ceiling
in both accuracy and efficiency of resources. An overview of the learning rules mentioned in this work,
together with their most important pro and con, and an example of an implementation of the method is
found in table 4.1.

4.2. Reinforcement Learning
Only a limited part of reinforcement learning was covered in this work. The basics of estimating a value
function and policy through long term reward maximization were treated [99]. The focus was on the
applicability of RL in training SNNs, both for reinforcement and supervised learning tasks. There is a
large correspondence between the two subjects (both in the theoretical/mathematical and biological
sense). Both heavily make use of traces as a memory for the recent activity of a (stochastic) variable
and reward-based modulation of the training algorithm to solve a (temporal) credit assignment prob-
lem. Practically this means that eligibility traces can be used to express pending weight updates for
synapses, recent activity in neurons, and recently received reward signals. This is a large number of
applications compared to regular deep RL where traces are only really applied to the reward signal
itself. The best example of RL in SNNs is R-STDP, the RL based learning rule that is also used in hu-
man brains for learning arbitrary and precise spiking patterns. An interesting direction of research is to
take more inspiration from the extensive body of computational neuroscience literature on the subject
of R-STDP since there are multiple works on showing and proving the stability of R-STDP. It seems
that there has been relatively little work translating those results to the engineering of SNNs.

4.3. Designing a Learning Rule
Based on previously presented literature and the research question for this thesis (see chapter 1), three
parts for designing a supervised learning rule in SNNs have been identified. The three parts consist of
neuronal dynamics, plasticity updates, and credit assignment. Each of the parts their scope, reference
work, and some ideas on how to address the corresponding difficulties in a supervised learning rule
are treated next.

• Neuronal dynamics: This contains the dynamics of both neuron cells and their synapses like cell
voltage, refractory period or spike transmission delays. There is quite an extensive list of math-
ematical neuron models that can be used like the IF, LIF, SRM and more [25, 27, 45]. Neuronal
dynamics are quite well known from both an engineering and neuroscience perspective allowing

4.3. Designing a Learning Rule 57

for a large variety and inspiration.

• Plasticity updates: This includes the algorithm for updating synaptic weights. Both from an
engineering and neuroscience perspective there is decent amount of work on this topic [20, 78,
96, 99]. An important focus point should be assuring that synaptic weights remain bounded and
ideally also follow a uni-modal distribution [29, 105]. Updating parameters other than synaptic
weights are also an interesting research avenue for their influence on the stability of a learning
rule, as it might add instability or bias to an otherwise stable STDP rule [22].

• Credit assignment: This is the problem of correctly assigning credit (or discredit) to operations
causing a reward (or error) signal. Compared to the other two points, this is the hardest problem
to solve since there is no clear theory on how the human brain does this. Besides the inability of
directly differentiating SNN operations, this problem also becomes harder due to the time delay
between a signal entering a network and it influencing the output layer. Solving this problem
can use a lot of creativity by for example using RL methods, evolutionary methods, reciprocal
connections (connections feeding back to previous layers) or even random feedback weights
[58]. In the end, this problem comes down to feeding reward/error information back to earlier
layers in the network.

58
4.Literature

Synthesis

Table 4.1: Learning rules for optimizing spiking neural networks and their strengths and weaknesses as derived from literature.

Sub-classification Positive Negative Example

STDP

Additive Fast weight adaptations Bi-modal weight distributions Song et al. [97]
Multiplicative Uni-modal weight distributions Slow weight updates Paredes-Vallés et al. [78]
Local in time Aggresive weight adaptations No delayed weight updates Song et al. [97]
Eligibility Traces Delayed weight updates/rewards Trace decay needs tuning MSTDPET [20]
Reward modulation Supervised form of STDP Learning based on trial-and-error Mozafari et al. [68]

Gradient methods Cell voltage based Small approximations Converges to rate based weight updates SpikeGrad [104]
Event based Can learn specific spike timings Assumes Kronecker delta derivative SLAYER [94]

Conversion Methods and tools available for ANNs Limited to ANN designs Diehl et al. [18]

III
Preliminary Experiments

59

5
Methodology

This preliminary research acts as a precursor to the main research question: ”Can a supervised
learning algorithm be designed that can optimize spiking neural networks in an online man-
ner?”. Because this problem is rather complicated and too large for a preliminary analysis the scope
is decreased to: ”How do supervised learning rules for event-based ANNs and SNNs compare
against each other in both training time and testing accuracy?” This question is rather qualitative
and no decisive answer can likely be given at the end of these experiments.

In order to compare ANNs and SNNs roughly two types of experiments are performed. The first set
tries to indicate the trade-off between network accuracy and computational overhead while using ANNs
for processing event-based data. This is done by looking into discretization methods and sequential
processing methods. The second set of experiments tries to provide insight into the performance of
supervised learning rules applied to SNNs. Both a gradient-based and a correlation-based method will
be tested.

Section 5.1 will first provide an overview of the event-based datasets that have been used during
the experiments. This is followed by a description of the four experiments in section 5.2, section 5.3,
section 5.4, and section 5.5 respectively.

5.1. Datasets
During the experiments three datasets have been used, the N-MNIST dataset, the N-Caltech101
dataset, and a simple spiking intensity distribution dataset. Each of the datasets is an event-based
dataset and does not contain any further data except for labels. A description of the data in terms of
dimensions, the number of samples and the purpose of the datasets are provided next.

N-MNIST
The N-MNIST dataset was made and presented by Orchard et al. [76]. It is based on the MNIST dataset
[51], which is a staple dataset within the computer vision community for fast prototyping and testing of
vision algorithms. The original dataset consists of approximately 60.000 training and 10.000 test images
of handwritten numbers of 0 to 9. To convert the MNIST dataset to an event-based representation an
ATIS event-based camera [82] camera was placed in front of an LCD screen which displayed theMNIST
images. To make the camera register events it was mounted on a robotic arm that performed three
small saccades to move the camera in a predefined pattern as shown in fig. 5.1. Each saccade lasted
for about 100 ms. Using this automated process, all MNIST images were converted into event-based
representations of 34𝑥34 pixels, with a duration of 300 ms, and polarity dimension of 2.

N-Caltech101
The N-Caltech101 dataset was presented in the same work as the N-MNIST dataset [76]. This dataset
is based on the more complex Caltech101 dataset [55]. The original dataset contains images of 101
different classes, all of about 300𝑥200 pixels. Each class consists of 40−800 images with an average
of about 50 per class. Conversion of the original images to their event-based representation was

61

62 5. Methodology

Figure 5.1: The saccades performed with the ATIS sensor for converting the MNIST dataset to an event-based format. Adapted
from [70]

done using the same method as for the N-MNIST dataset. The N-Caltech101 images are also roughly
300𝑥200 pixels in size, have a duration of 300 ms, and polarity dimension of 2.

Spike Rate Distributions
The spiking intensity dataset is a simple dataset that defines the spike rate per second for each neuron
in the input layer of a network. Each of the neurons then generates spikes according to a homogeneous
Poisson process [38]. This means a neuron generates spikes with a constant probability of spiking at
each time step. On average, the total amount of spikes generated by a neuron is constant, yet the time
between consecutive spikes varies.

All variations of the dataset share the fact that they are one-dimensional and small to keep the
datasets simple. Datasets differ in their spiking rates and how the spiking rates are distributed among
different neurons. The firing rate for the input neurons varies relatively smoothly from neuron to neuron,
and each sample has its highest spike rate placed at a different input neuron. An example is found
in fig. 5.2. This dataset can easily be adapted to a various number of classes, and also vary in the
number of neurons that are present in a single sample. Each time a sample is drawn from the dataset
it is generated based on the Poisson process. Because of this, each sample varies slightly from the
previous ones.

5.2. Event Discretization Kernel
One of the more intuitive ways of using event-based images in regular ANNs is by converting the event
voxel (height x width x time) to a frame-based image. This requires the discretization of the time axis
into a small number of channels, like discretizing a 300𝑚𝑠 event-based sample into a 4 channel frame-
based image. Most methods do this by simply assigning an event to the closest time discretization
point, or through a form of simple interpolation [60, 66, 111]. Figure 5.3 shows an example of linear
interpolation where the event’s contribution to the discretization points is based on how close the event
is to each point in time. All values are normalized for ease of interpretation. In Gehrig et al. [23],
a method for learning to discretize an event-stream into a frame-based representation is presented.
The novelty lies in the fact that the discretization kernel is learned together with the downstream ANN,
making the discretization kernel task and network specific.

In their work, the author presents classification performance for the Neuromorphic Cars (NCars)
dataset of 92.5% accuracy, and for the N-Caltech101 of 81.7% accuracy. The network used during these
experiments consisted of the discretization kernel followed by a 34 layer ResNet [36]. The 152 layer
ResNet architecture holds the crown as the best performing network on the ImageNet competition. The
34 layer ResNet showed an accuracy of 78.5% on the ImageNet dataset, which is very comparable to

5.2. Event Discretization Kernel 63

0 1 2 3 4 5 6
0

10

20

30

Input neuron

Sp
ik
in
g
ra
te
pe
rs
ec
on
d

Figure 5.2: An arbitrary spiking rate distribution for a set of six input neurons.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized time

Ac
tiv
at
io
n

Interpolation lines
Interpolation values
Event

Figure 5.3: Linear interpolation of an event its contribution to two adjacent discretization points, which is based on how close the
event is to the discretization point in time.

the performance of the event-based network which runs on a dataset of 101 classes. Next, the authors
mention replacing the discretization kernel with a hash-map after learning to increase the inference
time of the network. Whereas inference time decreases, the network becomes rather rigid since the
hash-map is a fixed representation. Also, a decrease in performance might occur.

The following experiment has got two focus points. The first is to provide insight into the increase
in inference time by adding the learnable kernel to a network (not the hash-map). The second is to
gain insight into the possible loss of information/performance of this method compared to performing
inference using a regular frame-based data representation. This will be done by comparing a 34 layer
ResNet trained on the frame-based Caltech101 datasets and a 34 layer ResNet prepended with the
learnable event discretization trained on the event-based N-Caltech101 dataset.

Experiment Setup
The experiment consists of two parts. The first is setting up the reference test for the regular frame-
based dataset and network. For this experiment the Caltech101 [55] dataset is used together with a
pre-trained 34 layer ResNet. To fit the pre-trained network to the new Caltech101 dataset the final fully

64 5. Methodology

connected layer was replaced with a new layer consisting of the 101 necessary nodes for classification.
During training, only the final layer of the network was optimized to speed up training and make optimal
use of the extensive training performed by the creators of the network. This concept where a large part
of a pre-trained network is reused while only retraining a small set of layers is called transfer learning
[10].

The second part consists of testing the classification and duration performance of the learnable
discretization kernel followed by a pretrained 34 layers ResNet, repeating the experiment from [23].
This time the dataset is the N-Caltech101 and for the ResNet both the first convolutional layer as well
as the final fully connected layer are replaced and trained from scratch. The first convolutional layer has
to be retrained since the number of channels for the input image is increased from 3 to 18 to not lose too
much information from discretizing the time dimension of the event-based images. The discretization
kernel follows the design presented in the original paper and thus consists of two fully connected layers
of 30 nodes each. After processing each event with the kernel the result is folded into an image of the
following dimensions: ”channel: 18, height: 224 and width: 224”. In this representation, the polarity
dimension of the spike tensor is unfolded along the new channel dimension. This means that both the
sets of positive and negative polarity spikes are discretized at 9 points along the time axis.

The following settings and/or algorithms are shared by both the experiments. Cross entropy is used
as the loss function since this is a multi-class classification problem [33]. For optimization, the Adam
algorithm [47] is used. During the frame-based experiment standard hyperparameters for the Adam
algorithm are used, which can be found in the first column of table 5.1. For the event-based experiment
the hyperparameters as presented in Gehrig et al. [23] are used and can be found in the last column
of table 5.1.

Table 5.1: Advised standard hyper parameters for the Adam optimization algorithm

Standard parameters Discretization task

Learning rate 𝛼 1ዅኽ 1ዅ኿
Running average coefficient 𝛽ኻ 0.9 0.9
Running average squared coefficient 𝛽ኼ 0.99 0.99
Denominator addition (prevent division by zero) 𝜖 1ዅዂ 1ዅዂ

5.3. Phased LSTM
The PLSTM [70] was mentioned in section 2.1.3 and is an extension of the LSTM by adding a time gate.
This gate allows for sparse updates of the weights of a cell which results in improved performance. The
PLSTM was introduced in Neil et al. [70] where one of the experiments consisted of classifying (event-
based) N-MNIST images. As mentioned in section 2.1.3, the biggest advantage of using variations of
RNNs is that it allows an ANN to directly process event-based data without first discretizing the time
dimension like in section 5.2. A clear downside is that this forces the user to process the data as an
event-stream, thus losing the spatial representation of an image. Even so, the paper’s results show an
improved sample efficiency compared to networks that use regular LSTMs, with an accuracy of 97.3%.
The goal for the PLSTM experiment is the same as for the event discretization kernel in section 5.2, to
gain insight in the classification accuracy and inference time when applying the PLSTM to event-based
and frame-based data.

Experiment Setup
This experiment consists of two parts. Firstly, the PLSTM is used to perform classification on the event-
based N-MNIST dataset, complemented with a control experiment. Secondly, the PLSTM is applied
to the frame-based MNIST dataset, again with an added control experiment. First, the architecture as
presented in Neil et al. [70] is covered. This will act as a reference for both experiments. Differences
in architecture for each experiment will be covered after explaining the original network.

The network consists of three layers, an embedding layer, a layer of 110 PLSTM cells, and a fully
connected layer of 10 nodes as the final layer. In the first layer, each event is fed into an embedding

5.3. Phased LSTM 65

operation [63] which outputs a 40 element long embedding vector. The embedding is a learnable hash-
map that maps a high dimensional, discrete input to a set of unique lower-dimensional vectors, one
for each possible input. This operation is performed to decrease the dimensionality of the input data.
Embeddings were originally developed for high dimensional language datasets. Besides now being
of a lower dimension, the words are also represented as scalar values and thus can be processed by
ANNs. An added benefit is that semantically similar words end up close to each other in the vector
space, like king and queen. This property might make it that the sequential network retains some of
the spatial order of the images. To apply an embedding to a spiking image containing events, this
image first has to be converted to a vector. Each element stands for a unique combination of indices
along the pixel height, pixel width, time, and polarity dimensions of the spiking image. This assumes
the event-based image is already discretized at a very high temporal resolution by the camera, e.g.
a temporal spacing of 10𝜇𝑠. The indexing is equivalent to linear indexing of a tensor where each
point in the height x width x time x polarity voxel of a spiking image is converted to an embedding
integer id according to eq. (5.1). In this equation 𝑖 indicates a single pixel (or cell) in a four-dimensional
tensor. A graphical explanation is shown in fig. 5.4. The three-dimensional tensor on the left shows
linear indexing, whereas the tensor on the right shows regular dimension based indexing. The vector
resulting from the embedding operation is a latent space representation of each event, which then gets
passed to a 110 cell PLSTM. Afterward, the output of the PLSTM cell is processed by a fully connected
layer of 10 elements, the output of which is considered the classification output of the network.

𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑖𝑑 = (𝑖፩፨፥ፚ፫።፭፲ ⋅ 𝑖፭።፦፞ ⋅ 𝑖፡፞።፠፡፭ ⋅ 𝑖፰።፝፭፡)(𝑖፭።፦፞ ⋅ 𝑖፡፞።፠፡፭ ⋅ 𝑖፰።፝፭፡)+(𝑖፡፞።፠፡፭ ⋅ 𝑖፰።፝፭፡)+𝑖፰።፝፭፡ (5.1)

Figure 5.4: Example of transforming a linear indexing into regular, dimension based indexing for a three di-
mensional matrix. Each cell in the matrix is assigned a unique integer index. Adapted from ፡፭፭፩፬ ∶
//፧፥.፦ፚ፭፡፰፨፫፤፬.፜፨፦/፡፞፥፩/፦ፚ፭፥ፚ፛/፫፞፟/።፧፝ኼ፬፮፛.፡፭፦፥ - accessed 10-8-2019

The first experiment tries to reconstruct the original PLSTM experiment. For its control experiment,
the only difference was that PLSTM cells were replaced with regular LSTM cells. This indicates the
possible increase in performance due to using a PLSTM. In the second experiment, the PLSTM is
applied to the frame-based MNIST dataset, the embedding layer is removed from the architecture and
just the PLSTMand the fully connected layers remain. Since theMNIST images are grayscale (meaning
only one channel) and 28x28 pixels each, there is no need to represent them in a lower-dimensional
space. For the control experiment, the same reasoning applies as with the event-based data, just the
PLSTM cells are replaced with LSTM cells.

Implementations of the PLSTM in multiple frameworks exist. For this experiment, the Keras imple-
mentation was used1. All the networks were trained using the same hyperparameters, which follow
next. Training was performed on a subset of the N-MNIST dataset consisting of 1000 training images
and 100 test images. This was used instead of the 60.000 training images to keep the training duration
within two to four hours. Training lasted for 100 epochs, with a batch size of 100 images to maximize
GPU usage. For the optimizer, the Adam algorithm [47] was chosen with standard hyperparameters
since these were used in the original experiment. The parameters again are as shown in table 5.1.

1https://github.com/fferroni/PhasedLSTM-Keras - accessed 10-08-2019

66 5. Methodology

5.4. Spike Layer Error Reassignment in Time
The SLAYER algorithm [94] is the state of the art when it comes to applying back-propagation to SNNs,
which makes it relevant for performing supervised learning. In the paper (and on github as well2) three
experiments are shown. Out of these the MLP and CNN used for classifying N-MNIST data will be
discussed briefly. The accuracy of the two layer MLP during training and testing is presented in fig. 5.5
and shows an average testing accuracy of about 94% and peaks at around 97%. The accuracies for
the four layer CNN can be found in fig. 5.6. It shows an average testing accuracy of about 60% and
peaks at about 70%. This is remarkable since a CNN is inherently better suited for computer vision
tasks. This difference in performance will be explored next.

0 20 40 60 80 100
0.7

0.8

0.9

1

Epoch

Ac
cu
ra
cy

Training
Testing

Figure 5.5: Training and testing accuracy of the MLP for
N-MNIST classification. Adapted from Shrestha and Or-
chard [94]

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Epoch

Ac
cu
ra
cy

Training
Testing

Figure 5.6: Training and testing accuracy of the CNN for
N-MNIST classification. Adapted from Shrestha and Or-
chard [94]

Besides the difference that one network is a MLP and the other a CNN, another significant difference
is in the number of layers. The MLP consists of just two densely connected layers, whereas the CNN
consists of four-layers, out of which 3 are sparsely connected (the convolutional layers) and a single
fully connected layer. This raises the question of how viable the SLAYER algorithm is for training deeper
and/or sparsely connected networks. Back-propagation is known for having issues with vanishing
and/or exploding gradients, which is especially true for deep networks and RNNs. This is because in
those types of networks there is the possibility of multiplying many small (or large) gradients with each
other, either causing them to vanish or blow up. This gradient issue occurs more often within ANNs
that use of the sigmoid activation function (see section 2.1.1 and fig. 2.2) where the gradient of the
sigmoid activation is practically zero in either of its tails. To solve this problem the ReLU (see fig. 2.4)
was introduced [31]. Figure 5.7 shows the PDF which the SLAYER algorithm uses to approximate
the gradient of the non-differentiable spikes of a SNN. It is clear that the gradient of this PDF also
approaches zero as the cell voltage moves away from the firing threshold at the vertical line. These
observations resulted in the following hypothesis:

The SLAYER algorithm suffers from vanishing gradients when applied to moderately sized and/or
sparsely connected networks.

Experiment Setup
To test the hypothesis of section 5.4 a set of experiments with progressively increasing network depths
has been performed. Just as in the paper [94], a set of MLPs and a set of CNNs is used. For the MLPs
four networks are compared, the original two-layer network, and three networks with each consecu-
tive network having an extra layer compared to the previous one. An overview of the fully connected
2https://github.com/bamsumit/slayerPytorch/tree/master/example - accessed 06-09-2019

5.4. Spike Layer Error Reassignment in Time 67

Figure 5.7: SLAYER probability distribution function. The gradient along the curve is used as an approximate gradient of the
non-differentiable spikes within a spiking neural network. Adapted from Shrestha and Orchard [94]

networks can be found in table 5.2. For the CNNs, also four different networks are compared. In this
situation, only the number of convolutional layers varies while the final fully connected layer stays the
same. The four networks include a three-layer network, the original four-layer network, and a five and
six-layer network. As a control experiment, for each of the SNNs an ANN counterpart with the same
architecture will be trained. An overview of the convolutional architectures is shown in table 5.3. During
all these experiments the N-MNIST dataset will be used for the SNNs, and the MNIST dataset will be
used for the ANNs. For optimization, the Adam optimizer with standard parameter (as in table 5.1) is
used, and training will last for 100 epochs.

Table 5.2: Layerwise number of neurons for the fully connected SNNs trained with the SLAYER algorithm

2 Layer MLP 3 Layer MLP 4 Layer MLP 5 Layer MLP

Layer 1 (neurons) 512 512 512 512
Layer 2 (neurons) 10 256 256 256
Layer 3 (neurons) − 10 128 128
Layer 4 (neurons) − − 10 64
Layer 5 (neurons) − − − 10

Table 5.3: Layerwise parameters for the convolutional SNNs trained with the SLAYER algorithm. Following convention for
describing a convolutional layer: k(kernel), s(stride), p(padding, always even), c(channels).

Layer/Network 3 Layer CNN 4 Layer CNN 5 Layer CNN 6 Layer CNN

Convolutional 1 k5x5 s1 p1 c16 k5x5 s1 p1 c16 k5x5 s1 p1 c16 k5x5 s1 p1 c16
Convolutional 2 - - k3x3 s1 p1 c32 k3x3 s1 p1 c32
Pool 1 k2x2 s2 k2x2 s2 k2x2 s2 k2x2 s2
Convolutional 3 k3x3 s1 p1 c32 k3x3 s1 p1 c32 k3x3 s1 p1 c64 k3x3 s1 p1 c64
Convolutional 4 - - - k3x3 s1 p1 c64
Pool 2 - k2x2 s2 k2x2 s2 k2x2 s2
Convolutional 5 - k3x3 s1 p1 c64 k3x3 s1 p1 c64 k3x3 s1 p1 c64
Fully connected 1 10 10 10 10

After each epoch of training the network’s accuracy is measured on the testing set. To confirm or
reject the hypothesis several basic statistics about the gradients of each layer are tracked at eachweight
update. Specifically, the mean of all the gradients in a single layer, together with its standard deviation

68 5. Methodology

will be used to provide information on how gradients propagate through the networks. Besides the
gradients the networks their performances during training will also be useful for a qualitative indication
of the performance of the SLAYER algorithm in progressively deeper networks.

5.5. Reward Modulated Spike Timing Dependent Plasticity
Asmentioned in section 2.2.3, R-STDP is the correlation-based learning rule that gets closest to training
SNNs in a supervised manner. Since this thesis’ focus is on supervised learning, the R-STDP from Flo-
rian [20] (called MSTDPET) will be used as a reference for the following experiments. In section 2.2.3,
section 2.2.5, and section 4.3 two important points of critique for correlation-based learning rules were
mentioned. Firstly, using additive STDP learning rules results in bi-modal weight distribution, whereas
multiplicative learning rules tend to be slow at converging. Secondly, correlation-based learning rules
currently do not have an effective way of dealing with the credit assignment problem, also referred to
as lacking an effective backward channel for the error or reward function. Two experiments will be
performed in which the performance of MSTDPET concerning these two points will be tested, as well
as applying some changes to try and improve its performance.

Next, the basics of MSTDPET will be covered. As the name suggests, the rule combines STDP
based weight updates with reward modulation to determine the sign of the weight updates. It also
makes use of traces (see section 3.2) to act as a memory for the recent activity of neurons. It is an
additive rule, meaning weight updates are performed without taking the current value of the weight into
account, as in eq. (5.2). Here 𝑖 is the index of the post-synaptic neurons, 𝑗 is the index of the pre-
synaptic neuron, 𝛿𝑡 is the duration of a single discrete time step, 𝛾 is the learning rate, 𝑟 is the reward,
and 𝑤።፣ and 𝑧።፣ are the weight and eligibility trace of a single synaptic connection. Equation (5.3) shows
the dynamics of the eligibility trace 𝑧።፣, which are defined by a recursive formula where 𝑧።፣ decays over
time due to 0 < 𝛽 < 1. Excitation of the eligibility trace due to neuronal activity is captured in 𝜂።፣ and
scaled by the time scale constant 𝜏፳, which is discussed next.

𝑤።፣(𝑡 + 𝛿𝑡) = 𝑤።፣(𝑡) + 𝛾𝑟(𝑡 + 𝛿𝑡)𝑧።፣(𝑡 + 𝛿𝑡) (5.2)

𝑧።፣(𝑡 + 𝛿𝑡) = 𝑒(ዅ᎑፭/፭ፚ፮፳)𝑧።፣(𝑡) + 𝜂።፣(𝑡)/𝜏፳ (5.3)

The dynamics of 𝜂።፣ are described in eq. (5.4), which in its essence multiplies the pre-synaptic
trace 𝑃ዄ፣ with the post-synaptic activity of the last time step 𝑓።. Next, it subtracts the product of the
post-synaptic trace 𝑃ዅ። with the pre-synaptic activity 𝑓፣. Both 𝑓። and 𝑓፣ are either 0 or 1, depending on
whether the neuron spiked or not. The synaptic traces 𝑃ዅ። and 𝑃ዄ፣ are updated after every time step
according to eq. (5.5) and eq. (5.6). Again, this is a recursive and decaying function, but this time the
decay is modulated by the exponential function 𝑒(᎑፭/Ꭱዄ/ዅ), where the terms 𝜏ዄ/ዅ are time constants.
The last part of the equations covers the excitation of the traces, which at each time step only happens
if target neuron 𝑖/𝑗 has spiked. The increase of the trace is scaled by the scalar terms 𝐴ዄ/ዅ. The
traces 𝑧።፣, 𝜂።፣, 𝑃ዄ፣ , and 𝑃ዅ። are updated after every time step, whereas the actual weight updates are
performed only when the network receives a reward signal.

𝜂።፣(𝑡) = 𝑃ዄ፣ (𝑡)𝑓።(𝑡) − 𝑃ዅ። (𝑡)𝑓፣(𝑡) (5.4)

𝑃ዄ፣ (𝑡) = 𝑃ዄ፣ (𝑡 − 𝛿𝑡)𝑒᎑፭/Ꭱዄ + 𝐴ዄ𝑓፣(𝑡) (5.5)

𝑃ዅ። (𝑡) = 𝑃ዅ። (𝑡 − 𝛿𝑡)𝑒᎑፭/Ꭱዅ + 𝐴ዅ𝑓።(𝑡) (5.6)

To test the limits of MSTDPET for classification tasks while also trying to alleviate the credit assign-
ment problem two experiments will be conducted. During these experiments two learning rules will be
used, regular MSTDPET, while the second rule is an extension of MSTDPET that also updates spiking
thresholds. One of the issues with MSTDPET is that for the final layer of the network, each neuron can
be provided with a separate reward. But, earlier layers all have to share the same, single scalar reward
value. This situation suffers from the curse of dimensionality, a single scalar value for learning possibly
thousands of weights. To (partly) try and alleviate this problem, MSTDPET will be extended to also
learn the spiking thresholds for the pre-synaptic neurons of each connection, except for the thresholds

5.5. Reward Modulated Spike Timing Dependent Plasticity 69

of the input layer. Inspiration for this mechanism was found in biological experiments [17, 110], as pre-
viously mentioned in section 2.2.3. The reasoning behind this is as follows. Regular weight updates
only make changes in the scaling of spikes arriving at the post-synaptic set of neurons, but it cannot
directly adjust the number of spikes arriving. Thus, the learning rule is only able to adjust the activity
of the post-synaptic neurons, yet the pre-synaptic activity remain unchanged. As an example, let’s as-
sume that for the final layer 𝐿 an increase of its weights is performed, but the spiking threshold and thus
the pre-synaptic activity remains unchanged. When moving to the layer before the final layer, 𝐿−1, the
original pre-synaptic activity is now the post-synaptic activity for the current layer 𝐿 − 1. Since this is
unchanged, no information from the upper layer is reaching the current layer 𝐿 − 1. The weight update
for layer 𝐿 − 1 then only depends on the change in activity in its pre-synaptic neurons. However, in the
situation where the spiking threshold of the pre-synaptic neurons is updated based on the correlation
between the pre- and post-synaptic activity, the pre-synaptic activity changes along with the weights.
This then also changes the post-synaptic activity of layer 𝐿−1, and information from the weight updates
of the final layer indirectly ”flows back through the network”.

The implementation of this learning rule is rather simple. In case the weights of a synaptic con-
nection are increased, the spiking threshold of the pre-synaptic neurons is decreased. This leads to
increased pre-synaptic activity, thus reinforcing the connection. The mechanism is reversed in case of
decreasing weights. Increasing weights and pre-synaptic activity of a connection is a self-reinforcing
concept, meaning that both will likely increase the tendency of the learning rule to generate bi-modal
distributions. The actual spiking threshold updates are performed according to eq. (5.7).

Θ(𝑡 + 𝛿𝑡) = Θ(𝑡) − 𝛾𝑟(𝑡 + 𝛿𝑡)𝑧።፣(𝑡 + 𝛿𝑡) (5.7)

Experiment Setup
Both the regular MSTDPET and the version that also adapts thresholds are tested on the same set of
classification experiments. The first experiment consists of the exclusive OR (XOR) problem. Here the
network has to predict the output of the XOR logic gate based on two binary inputs. If only one of the
two inputs is true, the output of the network should also be true [0, 1] → 1; [1, 0] → 1. If neither or both
of the inputs are true, the output of the network should be false [0, 0] → 0; [1, 1] → 0. This is a common
and small, yet not trivial, experiment [65]. It was also used as an experiment in the original MSTDPET
publication [20]. Because it was used in the original paper, the XOR experiment is mainly intended as
a sanity check to test whether the adaptation of learning spiking thresholds does not break the learning
rule and if there are any clear differences directly showing up.

The network is a two-layer network with 16 input neurons, 16 hidden neurons, and a single output
neuron. For the 16 input neurons, the first 8 are assigned to represent the first binary input, whereas
the other 8 represent the second binary input. An input of 1 is represented by a Poisson spike train
of 40Hz, and an input of 0 with a spike train of 4Hz. At the initialization of the network, halve of the
input neurons are randomly selected for which all outgoing synapses are assigned to only negative
weights, thus ranging in weight between [−5, 0]. The other 8 neurons are limited to have only positive
outgoing weights in the range [0, 5]. This is done to support the learning rule in training the inhibitive
weights that are needed to solve the problem. Weights in the final layer are all initialized as positive.
Weight updates are performed each time the network generates an output spike. In the situation where
the output is supposed to be true, the network is rewarded with a positive reward of 1. If the output
is supposed to be false but the network does spike, it is rewarded with a negative reward of -1. After
training, the network output is considered correct if the network presented at least 10 more spikes for
true inputs ([0, 1] and [1, 0]) than for the false inputs ([0, 0], [1, 1]). The network and hyper-parameters
can all be found in table 5.4. A second experiment is performed, where instead of actively splitting
weights of all connections in the first layer in positive and negative weights, the weights are initialized
randomly. This should result in a harder task for both the regular and the threshold MSTDPET rules.

As the third experiment, each learning rule will be tested on a small set of fully connected architec-
tures of increasing complexity. Here the task is to perform classification on a set of spiking intensity
distributions from section 5.1. The distributions have a maximum Poisson spiking rate of 40Hz and
a linear decay away from the maximum intensity neuron. The different architectures, as well as the
number of samples the network has to classify, can be found in table 5.5. To compare regular MSTD-
PET with the version that also learns thresholds, all networks are two layers deep such that the set of
hidden neurons’ their thresholds can be adjusted. Input layers do not have variable thresholds since

70 5. Methodology

Table 5.4: Network design and hyper parameters for the XOR and classification experiments.

Parameter XOR Classification

Spiking threshold 2 2
Minimum spike thresh. 1 1
Maximum spike thresh. 3 2
Minimum weight −5 −5
Maximum weight 5 5
Refractory duration 10𝑚𝑠 10𝑚𝑠
Spike trace time constant (𝜏ዄ/𝜏ዅ) 20𝑚𝑠 20𝑚𝑠
Eligibility trace time constant (𝜏፳) 25𝑚𝑠 25𝑚𝑠
Input spike rate 40𝐻𝑧 40𝐻𝑧
Sample duration 500𝑚𝑠 250𝑚𝑠
Epochs 200 250
Learning rate 0.1 0.1

they directly forward the input to the following layer.
Weight updates are done in the same manner as for the XOR experiment, once the network gen-

erates an output a weight update is initiated. The main difference is the fact that for classification the
network has multiple output neurons, instead of one. For each neuron it is known whether it is desirable
for it to spike, so each output neuron is provided a separate reward. If the neuron that indicates the
class of the input is spiking it is rewarded with a positive reward of 1. Each other neuron that might also
be spiking is provided a negative reward of -1. Assigning neuron-specific rewards is not possible for
layers that are not the output layer. For those layers, a single scalar reward is provided, which is pos-
itive in case the network correctly classifies the input, and negative otherwise. The hyperparameters
for training are presented in table 5.4.

Table 5.5: Layerwise number of neurons for the fully connected networks trained with the additive and multiplicative versions of
the MSTDPET algorithm.

Network 1 Network 2 Network 3

Input neurons 30 50 80
Hidden neurons 15 30 50
Number of input samples 5 5 5

6
Experimental Results

The current section presents the results for the experiments described in chapter 5 together with the
conclusions that can directly infer based on these results. The experiments are treated in the same
order as in chapter 5. All of the experiments were performed on a desktop computer equipped with an
Intel 4790K i7 quad-core processor clocked at 4 GHz per core, 16 GB of RAM, and an NVIDIA RTX
2070 GPU.

6.1. Even Discretization Kernel
The first part of this experiment consisted of training a 34 layer ResNet on the Caltech101 dataset as a
reference experiment. Only the final layer had to be trained since a pretrained network was used, which
resulted in rather fast training times of an average of 46 seconds per epoch. Accuracy results during
training can be found in fig. 6.1a. The network converged to a consistent accuracy of approximately
93.2% after 50 epochs, with an average inference time of 2.3 milliseconds. The inference time was
averaged over the entire training dataset. A summation of these results can be found in table 6.1.

The second part of this experiment revolved around training another 34 layer ResNet, yet this
time it was prepended with an event discretization kernel such that the network could process the
N-Caltech101 dataset. Training and testing accuracies are shown in fig. 6.1b for comparison with the
frame-based ResNet. The accuracies show that the event-based network never generalizes to good
results on the test set. The final performance in both classification and inference time is presented in
table 6.1, with a training accuracy of 96% and testing accuracy of 28.2%. For clarity, the results from the
original paper with 81.7% testing accuracy are shown in column 3. In addition to training performance,
the number of epochs is added to the last row. The number of epochs of the original paper is not
mentioned explicitly, but since the authors mention adjusting the learning rate twice after 10.000 and
20.000 iterations an approximate number of epochs can be deduced. The authors use a batch size of
60 for the N-Caltech101 dataset which consists of roughly 7000 images, assuming an 80-20 train-test
split. This means that after roughly 10.000/(7000/60) ≈ 85 epochs the learning rate is adjusted, and
this is repeated after again 85 epochs. This makes it likely that the network in the original paper was
trained for about 3 ⋅ 85 ≈ 250 epochs.

Reproducing the original results as published in Gehrig et al. [23] was unsuccessful as can be
seen in the contrast between the results published in Gehrig et al. [23] and the results of the author’s
experiment. For comparison with the frame-based results, the results for event-based data from Gehrig
et al. [23] is used. Classification accuracies on the test set differ by about 12%, which is a considerable
gap in performance. This difference in performance is likely because the ResNet architecture was
designed for frame-based images and some information losses occur in the event discretization. The
difference in the number of training epochs (50 for frame-based and an estimated 250 for the event-
based) provides a skewed image since the ResNet that was used was extensively pretrained, meaning
the effective number of training epochs is a lot higher than 50.

Regarding inference times, there is a considerable difference. The frame-based network’s inference
time is about 3 times faster than that of the event-based network. A difference in favor of the frame-
based network was evident due to the addition of the event discretization step and the 18 channel

71

72 6. Experimental Results

image being fed into the ResNet. It must be noted that the inference times are based on different
hardware, where the event-based network was trained on a faster NVIDIA 2080 Ti GPU and a lower
clocked 2.7GHz Intel i7 CPU of which the number of cores is unknown. Both of the systems used 16GB
of RAM. Since most of the computations performed in training ANNs rely on the speed of the GPU, it
is reasonable to assume that the inference time of the frame-based network on the desktop equipped
with the NVIDIA 2080 Ti GPU would be comparable or faster than the inference time mentioned in
table 6.1.

0 10 20 30 40 50

0.8

0.85

0.9

0.95

1

Epoch

Ac
cu
ra
cy

Training
Testing

(a)

0 10 20 30 40 50
0.2

0.4

0.6

0.8

Epoch
Ac
cu
ra
cy

Training
Testing

(b)

Figure 6.1: Accuracy curves on training and testing datasets for (a) regular 34 layer ResNet trained on frame-based Caltech101
dataset and (b) event discretization kernel prepended to 34 layer ResNet network trained on N-Caltech101 dataset.

Table 6.1: Performance comparison of ኽኾ layer ResNet trained on the Caltech101 dataset and the ኽኾ layer ResNet prepended
with a learnable discretization kernel trained on the Neuromorphic Caltech101 dataset.

Frame-based Event-based Results from paper

Training Accuracy 100 % 96.0 % −
Testing Accuracy 93.2 % 28.2 % 81.7 %
Average inference time 2.3 𝑚𝑠 14.7 𝑚𝑠 6.85 𝑚𝑠 (with hashmap)
Training time 38 𝑚 238 𝑚 −
Epochs 50 50 ~250

6.2. Phased LSTM
The accuracy progression for both training and testing of the PLSTM network trained of the event-
based N-MNIST dataset is presented in fig. 6.2a. The accuracy progression for its LSTM based control
experiment is shown in fig. 6.2b. In addition, table 6.2 provides an overview of the most important
results for both experiments and the respective control experiments mentioned in section 5.3 and the
testing accuracy as stated in Neil et al. [70]. There are three important observations that will follow
next.

Firstly, it is observed that in both experiments the PLSTM network performed better than its LSTM
counterpart in classification accuracy. For the event-based experiments this is seen in a training accu-
racy of 97% for the PLSTM and 23% for the LSTM, whereas for the performance on the test dataset
the differences are absent with 20% accuracy for both networks. For the frame-based experiment the
PLSTM network outperforms the LSTM both on the train (99% for the PLSTM and 15% for the LSTM)

6.2. Phased LSTM 73

and test (87% for the PLSTM and 11% for the LSTM) datasets. This confirms the observation in the
original paper that the PLSTM is more sample efficient, and even by a large amount. In both situations
the LSTM networks’ their performance is slightly better than random guessing for 10 classes.

Secondly, it can be seen that the inference time per sample for the PLSTM is higher than that for
the LSTM. This was expected since the PLSTM requires more computational steps to evaluate. When
comparing these inference times to the convolutional networks of section 6.1 as shown in table 6.1, it
is clear that computational time for both of the recurrent networks is very high. Even the frame-based
LSTM, which has the lowest inference times, takes 0.2 seconds to evaluate. This is an important aspect
to take into consideration when using any form of LSTM, since the networks presented here consisted
of only two to three layers.

Thirdly, the author was unable to reproduce the performance presented in the original paper as
seen in 77% difference in classification accuracy. Looking at fig. 6.2a, the event-based PLSTM net-
work shows that it can learn on the training data by achieving 97% training accuracy yet is not able to
generalize to new data. It is likely that to increase performance on the test dataset the network has to be
trained for more epochs. Another explanation could be a mistake in the implementation, even though
this seems less likely because of the good performance on the frame-based dataset. Because there
is no clear reason to doubt the original results, further comparisons of the PLSTM with other methods
will be based on the original paper’s results.

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

Epoch

Ac
cu
ra
cy

Training
Testing

(a) PLSTM

0 20 40 60 80 100

0.1

0.2

0.3

Epoch

Ac
cu
ra
cy

Training
Testing

(b) LSTM

Figure 6.2: Training and testing accuracies on the event-based N-MNIST dataset during training of the (a) PLSTM and (b) LSTM
network.

Table 6.2: Training and testing results for the PLSTM and LSTM experiments performed on a sub-set of the N-MNIST dataset, the
results from the original paper [70], and a reference experiment on frame-based MNIST data. Event-based = Ev., Frame-based
= Fr.

Ev. PLSTM Ev. LSTM Fr. PLSTM Fr. LSTM Paper

Training Accuracy 97 % 23 % 99 % 15 % −
Testing Accuracy 20 % 20 % 87 % 11 % 97.27 %
Average inference time 3.6 𝑠 2.0 𝑠 0.3 𝑠 0.2 𝑠 −
Training time 146 𝑚 97 𝑚 17 𝑚 10 𝑚 −
Epochs 100 100 100 100 −

74 6. Experimental Results

6.3. Spike Layer Error Reassignment in Time

Experiments as presented in section 5.4 revolved around tracking gradients of all layers during training.
Firstly, a description of the type of results is provided that applies to both the fully connected and
convolutional network experiments. Secondly, the results of the fully connected networks are analyzed,
followed by the convolutional networks’ results. Thirdly, this section finishes with a conclusion about
the hypothesis and a comparison between the two types of networks.

In total four different fully connected, and four different convolutional networks were trained for this
experiment. Only the results for a three-layer fully connected network and four-layer convolutional
network will be shown since these networks gave the clearest impressions of the results. Results for
the other networks showed the same patterns in their gradients. The results for the other networks can
be found in appendix A. Results for the SNNs will be compared with the results of their ANN counterpart.

Fully Connected Networks

All of the following plots concern the statistics of layer-wise gradients during training. The means and
standard deviations of the two-layer, fully connected SNN can be found in fig. 6.3 and fig. 6.4. The
mean and standard deviation for its ANN counterpart are shown in fig. 6.5 and fig. 6.5. The gradients
for the SNN and ANN follow a comparable pattern over time, but the gradients of the SNN are several
orders of magnitude larger than for the ANN. The mean moves towards zero in just a few iterations for
the SNN, and for the ANN it starts very close to zero and stays around it. This indicates that the weights
converge towards a consistent value. Another observation is the fact that the standard deviation for
the gradients of the final layer is higher than those of the earlier layers throughout the entire training
process, while for the earlier layers the magnitude of the gradients is very comparable. This makes
sense from the perspective that final layers can be adjusted more aggressively since no other layers
depend on their output statistics. For earlier layers, it is thought to be important to not move its weights
too aggressive, as this can change the input distribution for the following layers and thus decrease
performance.

0 20 40 60 80 100

0

0.5

1

1.5

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3

Figure 6.3: Mean of gradients for three layer fully con-
nected SNN during training.

0 20 40 60 80 100
0

20

40

60

80

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3

Figure 6.4: Standard deviation of gradients for three layer
fully connected SNN during training.

6.3. Spike Layer Error Reassignment in Time 75

0 20 40 60 80 100

−4

−3

−2

−1

0

1
⋅10ዅ኿

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3

Figure 6.5: Mean of gradients for three layer fully con-
nected ANN during training.

0 20 40 60 80 100
0

2

4

6

8
⋅10ዅኼ

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3

Figure 6.6: Standard deviation of gradients for three layer
fully connected ANN during training.

Convolutional Networks

The following plots cover the statistics of the gradients of the convolutional neural networks during
training. For the SNN, the means and standard deviations can be found in fig. 6.7 and fig. 6.8. For the
ANN counterpart the means are presented in fig. 6.9 and the standard deviations in fig. 6.10. Just as
with the fully connected networks, the gradients follow the same pattern during training (both the mean
and standard deviation), but the gradients of the SNN are several orders of magnitude larger. A clear
difference compared to the fully connected networks is the fact that for convolutional networks the first
layer has the largest gradients over time, instead of the final layer. Also, these gradients of the first
layer never seem to stabilize, visible from the consistently high standard deviations in fig. 6.8.

0 20 40 60 80 100

−100

0

100

200

300

400

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 1

Figure 6.7: Mean of gradients for four layer convolutional
SNN during training.

0 20 40 60 80 100
0

2,000

4,000

6,000

8,000

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4

Figure 6.8: Standard deviation of gradients for four layer
convolutional SNN during training.

76 6. Experimental Results

0 20 40 60 80 100

−4

−2

0

2

4

⋅10ዅኾ

Epoch

[-]
Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 4

Figure 6.9: Mean of gradients for four layer convolutional
ANN during training.

0 20 40 60 80 100
0

1

2

3

4
⋅10ዅኼ

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4

Figure 6.10: Standard deviation of gradients for four layer
convolutional ANN during training.

General Results

To complement the previous results, the networks’ accuracies after training are shown in table 6.3. It
is interesting to see that the fully connected SNN outperforms the ANN on the test data, but for the
convolutional networks, it is the other way around.

Table 6.3: Training and testing results for the three layer fully connected and four layer convolutional networks. The first two
columns show the results for the networks trained on event-based data with the SLAYER algorithm, the last two columns for the
network trained on frame-based data with regular backpropagation.

Event-based Frame-based

Training Acc. Testing Acc. Training Acc. Testing Acc.
3 Layer Fully Connected 100% 93% 100% 90%
4 Layer Convolutional 100% 66% 100% 96%

Based on these results the following hypothesis is rejected: The SLAYER algorithm suffers from
vanishing gradients when applied to moderately sized and/or sparsely connected networks. The gra-
dients of the convolutional networks show the opposite pattern of what was expected, which is true for
both SNNs and ANNs. All results together do show consistent patterns when comparing SNNs and
ANNs, the gradients show similar patterns for equal architecture designs. The clear difference is the
considerably larger magnitude gradients in SNNs. These very large (often called exploding gradients)
might be the cause for the underperforming of the spiking CNN.

6.4. RSTDP for classification 77

6.4. RSTDP for classification
As described in section 5.5, two R-STDP experiments were performed focused at comparing regular
MSTDPET and an adaptation which also adjusts thresholds based on learning performance. The first
experiment was to learn a network to act as a logic XOR gate, and the second experiment concerned
learning to classify a small set of spiking intensity distributions. The results from these experiments will
be presented next, followed by a general conclusion.

XOR
As mentioned in section 5.5, the XOR experiment was mainly performed to see if the adjustment of
learning both weights and spiking thresholds would not break the learning rule. Hyperparameters were
set such that the experiment converged to a decent performance of 98.5% accuracy using regular
MSTDPET (not learning thresholds) and halve of the connections limited to positive weights, and the
other halve to negative weights. See table 5.4 for the hyperparameters values. Next, the same settings
were applied to the threshold learning rule, which resulted in an accuracy of 97.2%. For the third
experiment, with all random weights, the accuracy of the network did not surpass 75.0% accuracy.
This is a trivial result, since the network is now acting like a regular OR gate, resulting in the following
pattern: [0, 0] → 0; [0, 1] → 1; [1, 0] → 1; [1, 1] → 1. It always responds with an output once it gets at
least one input, and remains silent if it receives no input. As a side note, there was decent variability in
performance between multiple runs, with final accuracies deviating up to 15%. For brevity, results for
the best performing iterations are shown here.

Figure 6.11a and fig. 6.11b show the distributions of the weight values for both layers of the network
after training with regular MSTDPET (fig. 6.11a) and the threshold MSTDPET (fig. 6.11b). Both figures
show results for the networks where the weights are split into positive and negative weights before
training. The distributions show very comparable shapes and densities for both the first and second
layers, which indicates that they converged to comparable solutions. This is also visible in their accura-
cies. A last important point is that the weight distributions for the first layer (the blue distributions) show
a slight bi-modal behavior. This is expected because of the split into positive and negative weights, and
desirable, as this split is needed to represent an XOR gate. The activity of the hidden neurons during a
single epoch, where each of the four inputs is shown once, can provide extra insight into the possible
differences between the two learning rules. A summation of the total number of spikes emitted during
an epoch for regular MSTDPET is found fig. 6.12a, and for threshold MSTDPET in fig. 6.12b. Same as
for the weight distributions, the hidden layer neuron activity is very comparable for the two networks.
From this, it can be concluded that learning spiking thresholds did not significantly impact training or
final performance in the XOR experiment, compared to using regular MSTDPET.

In addition to the previous figures, fig. 6.11c shows the weight distribution of the network for which
the weights were initialized at random. Compared to the other two figures the distributions are relatively
flat, especially for the weights of the final layer (orange), and are more spread towards the limits of the
weights. A large spread is an undesirable property since it indicates that the learning rule is defaulting
to simply reinforcing (depressing) already strong (weak) connections. This correlates with that this
network was not able to learn the XOR task sufficiently. Figure 6.12c shows the total activity of the
hidden neurons during a single epoch for the randomly initialized network. It shows that the spiking
activity of the hidden layer is about one and a half times as high compared to the successful networks.
The free weight network is also less selective in its hidden layer, meaning more neurons have high
activity in comparison to the other two networks.

For verification, the spiking threshold distributions for the networks trained with threshold learning
MSTDPET are compared. Only the thresholds for the hidden layer were trained. The distribution
for the network with split weights is shown in fig. 6.13a, and for the network with random weights in
fig. 6.13b. The average threshold value is higher and more centered around a single value for the
randomly initialized network. This means the thresholds cannot be the cause of the high activity of
its hidden layer. Thus the weights being more spread towards high values (fig. 6.11c weights range
up to five) may cause the lackluster performance of the network. This indicates that MSTDPET (likely
R-STDP in general) is unable to recover from a bad initialization.

78 6. Experimental Results

−5 0 5
0

0.2

0.4

0.6

Weight value

Layer 1
Layer 2

(a)

−5 0 5
0

0.2

0.4

0.6

Weight value

Layer 1
Layer 2

(b)

−5 0 5
0

0.2

0.4

0.6

Weight value

Layer 1
Layer 2

(c)

Figure 6.11: Weight distributions after training of the XOR network with (a) regular MSTDPET, (b) threshold MSTDPET, and (c)
with threshold MSTDPET and connections not split into predefined positive and negative weights.

0 5 10 15
0

20

40

60

Neuron index

To
ta
ls
pi
ke
s

(a)

0 5 10 15
0

20

40

60

Neuron index

To
ta
ls
pi
ke
s

(b)

0 5 10 15
0

20

40

60

Neuron index

To
ta
ls
pi
ke
s

(c)

Figure 6.12: Activity of the hidden neurons during a complete epoch, after training of the XOR network with (a) regular MSTDPET,
(b) threshold MSTDPET, and (c) threshold MSTDPET and connections not split into predefined positive and negative weights.

1 2 3
0

1

2

3

Threshold value

(a)

1 2 3
0

1

2

3

Threshold value

(b)

Figure 6.13: Thresholds distribution after training of the XOR with (a) threshold MSTDPET, and (b) threshold MSTDPET and
connections not split into predefined positive and negative weights.

Classification
During the classification experiment as described in section 5.5, three different fully connected neural
network architectures were tested (see table 5.5). All networks were trained with regular MSTDPET and
threshold MSTDPET. To account for differences due to weight initialization all classification experiments
were repeated up to five times each. Only results that are most illustrative for the observed patterns
are shown in this section.

During all experiments, only a single network achieved an accuracy of over 80%, at 89.5%. The
best and worst accuracies for each architecture and learning rule combination are shown in table 6.4.
The threshold version of MSTDPET was able to achieve (almost) equal or better accuracies on all three

6.4. RSTDP for classification 79

networks. Yet, it also has the worst performance for each of the networks. In general, the variation
between different initializations was rather large for both methods, and thus might also be the cause
for the differences between regular and threshold MSTDPET. Also, there is a significant difference
in performance between the two smaller networks and the largest network. The following results will
focus on exploring the differences between initializations, followed by an exploration of the difference
in performance for varying network sizes.

Table 6.4: Best and worst classification performance for each network and learning rule combination.

Regular MSTDPET Threshold MSTDPET
Input neurons - Hidden neurons 30-15 50-30 80-50 30-15 50-30 80-50

Best accuracy 60.0% 80.0% 12% 77.0% 89.5% 40%
Worst accuracy 40.0% 59.0% 8.0% 40.0% 21.5% 3.0%

To compare different initializations of a single network, the spiking behaviors over a single epoch
were compared for both the hidden and output layers. A perfect network should have all its output
neurons spike a roughly equal amount of times throughout an epoch. The activity of the output layer of
the best performing network (89.5%) during a single epoch, after training, is shown in fig. 6.14a. This
network consisted of 50 input neurons, 30 hidden neurons, and 5 output neurons (the final layer is the
same for all networks). It was trained using threshold MSTDPET. This was the only network that had
above 80% accuracy and is also the only network where all output neurons spike a considerable amount
of times. For comparison, fig. 6.14b shows the output activity of the same network but initialized with a
different seed. Only a single neuron shows relevant activity, two neurons spiking a few times, and two
neurons not spiking at all. This pattern occurred in each of the experiments where one or more of the
output neurons are almost or completely inactive after training. Once the neuron is dead, the learning
rules are unable to reactivate it. This is a considerable issue since only one out of 30 experiments did
not suffer from a dead output neuron.

0 1 2 3 4
0

20

40

Neuron index

To
ta
ls
pi
ke
s

(a)

0 1 2 3 4
0

20

40

Neuron index

To
ta
ls
pi
ke
s

(b)

Figure 6.14: Activity of the output neurons during a complete epoch, after training of the network (50 input, 30 hidden) with
threshold MSTDPET. Figure (a) shows the output of the network with the best final performance at ዂዃ.኿% accuracy, (b) shows
the worst performing initialization with an accuracy of ኼኻ.኿%.

Lastly, the difference in performance due to network size is explored. The lackluster performance
of most of the large networks (80 input neurons, 50 hidden neurons) is due to an almost complete
absence of output spikes. This is the same pattern as described previously. Figure 6.15a shows the
activity during one epoch of the hidden layer of large network trained with MSTDPET. This network
achieved 12% accuracy. It shows that almost all of the hidden neurons are very active throughout
a single epoch, with on average around 100 spikes per neuron. This is a lot, considering that the
theoretical maximum number of spikes a neuron can emit under the settings used is around 200. For
comparison, fig. 6.16a shows the hidden layer activity for the smallest network trained with MSTDPET.
This network’s accuracy is 60%. Whereas some of the neurons are rather active, it is only a few of them.

80 6. Experimental Results

The over-activity of the hidden layer of the large network might be a cause for the bad performance. To
complement these results, the weights after training for the large network are show in fig. 6.15b, and
in fig. 6.16b for the small network. The weights of the large network are small compared to the other
network, shown by the narrow distribution. The high activity of the hidden neurons is not due to large
weights, but due to a large number of pre-synaptic connections per neuron. For the large network, this
is 80 connections, whereas for the smaller network it is only 30. This is an indication that the weights
should be scaled depending on the number of presynaptic connections to a neuron.

0 10 20 30 40
0

50

100

150

Neuron index

To
ta
ls
pi
ke
s

(a)

−4 −2 0 2 4
0

0.1

0.2

0.3

Weight value

Layer 1
Layer 2

(b)

Figure 6.15: Statistics for a 80 input, 50 hidden network that was trained using MSTDPET and achieved ኻኼ% accuracy. (a) The
neuronal activity of the hidden layer, and (b) the weight distributions after training.

0 5 10
0

50

100

150

Neuron index

To
ta
ls
pi
ke
s

(a)

−4 −2 0 2 4
0

0.1

0.2

0.3

Weight value

Layer 1
Layer 2

(b)

Figure 6.16: Statistics for a 30 input, 15 hidden network that was trained using MSTDPET and achieved ዀኺ% accuracy. (a) The
neuronal activity of the hidden layer, and (b) the weight distributions after training.

General Results
In general, it seems that the learning of thresholds amplifies both the strong and weak performance of
MSTDPET. This is likely because the learning of thresholds further amplifies the tendency of additive
R-STDP to reinforce strong connections and weaken weak ones. These results should be taken as
an indication since the difference in performance might also be caused by MSTDPET its sensitivity to
weight initialization and network size.

7
Experiments Discussion

In this preliminary analysis, experiments were performed to explore and compare the capabilities of
ANNs and SNNs in analyzing asynchronous, event-based data in a supervised learning setting. Be-
sides comparing ANNs with SNNs, the preliminary analysis also included two sub-goals that were
aimed at identifying the best event processing paradigm for ANNs and SNNs respectively. This chap-
ter presents the main findings and discussions for each of these goals, as well as the implications this
preliminary analysis has on the final thesis.

Firstly, a brief discussion on the datasets is provided. Secondly, time discretization and direct event
processing with RNNs in ANNs are treated. Thirdly, gradient-based learning methods and correlation-
based learning methods for supervised learning in SNNs are compared. Lastly, this chapter concludes
with a discussion on processing asynchronous event-based data with ANNs or SNNs and which ap-
proach will be used during the final thesis.

7.1. Datasets
During the experiments three different datasets were used, the N-MNIST dataset, the N-Caltech101
dataset, and a simple spiking intensity distribution dataset. The N-MNIST and N-Caltech101 datasets
can be considered as the current go-to datasets for experimentation with event-based vision. The
reason for this is that these datasets were captured with an actual Asynchronous Time Based Image
Sensor (ATIS) camera. This is more realistic than converting frame-based images to an event-based
representation by using Gabor filters or converting the pixel intensity to a Poisson spike rate. The sec-
ond reason is that these datasets their frame-based representations are heavily used in many computer
vision experiments, resulting in a lot of reference work to compare results with. A possible downside of
these datasets is that they are not designed to challenge an event-based camera its weaknesses, like
identifying smooth and/or large surfaces due to the absence of edges. Whereas this might be worth an
investigation in itself, it is not within the scope of this work.

The spiking intensity distribution dataset proved useful in very small scale experiments. Especially
for testing adjustments to, or entirely new iterations of a learning rule. It allowed for quickly changing
the number of samples, and since the samples were generated using a stochastic process it forced
the network to generalize at least somewhat. Yet, due to its one-dimensionality and very low variance
between the samples it is only really suited for very quick iterations and not for thoroughly testing the
limits of a network or learning rule.

7.2. Artificial Neural Networks
Regarding the experiments with ANNs, the goal was to get insight into the differences between time
discretization techniques and direct processing of events through RNNs. For discretization, the algo-
rithm from Gehrig et al. [23] was used and for direct processing the PLSTM from Neil et al. [70]. The
author was not successful in replicating the results mentioned in either of the original papers as shown
in section 6.1 and section 6.2, so for further analysis, the performances mentioned in the original papers
were used. When doing so it became clear that for both experiments there was a considerable loss in

81

82 7. Experiments Discussion

accuracy and an increase in inference time when processing event-based data instead of frame-based
data. Inference times got as high as 15 milliseconds for the discretization kernel, and 3.6 seconds for
the PLSTM. This difference in performance can have multiple causes, which will be treated separately
for the discretization kernel + ResNet network and the PLSTM network.

For the discretization kernel and ResNet network, the architecture was likely not optimal. Especially
the 34 layer ResNet was designed and pre-trained to process 3 channel (RGB) images and not a 20
channel image based on the feed of an event-based camera. Within these 20 channels, there is likely
a difference between the first and last channel, simply because they represent a set of events that
occurred the furthest apart in time. Since this time dimension is still present within the data, albeit of a
rather short duration of about 300ms, a 3D convolution operation can become valuable because events
close to each other in time are likely more correlated than those far apart. The second point of attention
is that the mechanism for discretizing events into frames may be improved. Using a form of RNN might
be useful since events that are close to each other in time are likely to be related in some way, possibly
requiring a different form of discretization.

In the case of the PLSTM, possible improvements are different. Whereas the recurrent structure
allows it to correlate events along the time dimension, the network discards a lot of spatial information.
The translational invariance of the convolution operation is crucial in most, if not all, computer vision
applications. There is no direct way of adding this to a PLSTM, but as mentioned earlier, the PLSTM
might prove valuable in pre-processing events before feeding them into CNN. Secondly, the PLSTM
was especially slow in inference time at 3.6 seconds per image. This is due to events being processed
sequentially. Adding some kind of batching along the time dimension may speed up the process.

An observation that is shared among both of the networks, and possibly the most important one,
is that both methods show a large increase in inference time compared to frame-based ANN. This
was expected because of the added dimensions to the event network compared to the frame-based
network. Inference times for discretization methods add up to about 14.7 milliseconds, and 3.6 seconds
for the PLSTM in small to moderately sized networks for both types of networks. Unless a method is
designed to take advantage of the sparsity of the event stream in ANNs, this is likely to remain an issue.

The last remark is that the physical phenomenon based onwhich event-based images are generated
is different from that of frame-based images. Since event-based data is generated due to changes
in the observed scene, this type of data is likely more suited for interpreting dynamic properties of
the environment like the direction an object is moving in, the speed of motion, or ego-motion. This
is in contrast to frame-based images which inherently provide rich details of the current state of the
environment, yet have trouble capturing its dynamics. If this turns out to be true, direct performance
comparisons between event-based networks and frame-based networks should be done with care.
Ideally, one type of network excels at both, but this is likely only possible at the cost of a lot of computing
and energy. In general, there remains somewhat of a paradigm mismatch between ANNs and event-
based data, forcing an even larger trade-off between efficiency and accuracy than with frame-based
images.

7.3. Spiking Neural Networks
Experiments with SNNs were intended to generate insight in to, and compare gradient-based and
correlation-based supervised learning rules for SNNs. For gradient-based learning the SLAYER algo-
rithm from Shrestha and Orchard [94] was used, and for correlation-based learning the R-STDP rule
from Florian [20] acted as a starting point. The main observation is that for both methods there is room
for improvement. This results in smaller experiments showing promising results, but the methods tend
to break down for larger and more complex experiments. The SLAYER algorithm was able to train
more complex networks compared to R-STDP. Yet, the fact that part of the experiments converges is
promising and indicates that the methods are worth being researched further.

Gradient Based Learning
As stated in section 5.4, the SLAYER algorithm is the current state of the art when it comes to gradient-
based learning in SNNs. Experiments were performed to test the following hypothesis: The SLAYER
algorithm suffers from vanishing gradients when applied to moderately sized and/or sparsely connected
networks. Based on the results the hypothesis was rejected. Whereas gradients decayed from output
to input layers in fully connected networks, the exact opposite happened in convolutional networks.

7.3. Spiking Neural Networks 83

Even more so, when using the SLAYER algorithm to train SNNs gradients tended to be orders of
magnitude larger than in regular ANNs. It seems that the algorithm might have issues with so-called
exploding gradients. A possible cause for this is the loss function that is used as this directly scales
all gradients if it changes. A different cause could be that the gradient approximation of a spike results
in large gradients. In section 5.4 it was mentioned that the gradient of the PDF of fig. 5.7 has very
small gradients in its tails, yet it also has large gradients towards its peak. According to Shrestha and
Orchard [94], the loss function stimulates infrequent random spiking of otherwise dormant neurons.
This is done to make them easily excitable in case of an infrequent pattern. As a result, most neurons
should be near a change in spiking state, which would result in high gradients due to the peak of the
PDF. Exploring the relation between the loss function and the PDF would make for interesting research.

The second discussion point is more focused on the difference in performance between fully con-
nected and convolutional networks, when implemented as ANNs or SNNs. The far worse performance
of the convolutional SNN compared to the ANN is likely caused by the consistently large and varying
gradients of the first layer, as seen in fig. 6.8. If the problem of the large gradients is solved, the per-
formance of convolutional SNNs might improve. For the fully connected networks it is the other way
around, the SNN outperforms the ANN with a small margin. A possible explanation for this is the fact
that these experiments were performed with a small dataset of just 1000 training images. The added
time dimension for SNNs makes it that there is a larger amount of data per sample to train on. Also,
this added time dimension also likely is noisy, which could act as an important regularizer. Especially
for a fully connected network with a large number of connections per neuron, this difference in data
may cause a difference in performance.

Correlation Based Learning
Correlation-based learning rules, specifically MSTDPET [20], were tested for their ability to perform
supervised learning. A downside of this experiment compared to the others is the fact that it was
performed on very small networks and datasets, so a direct comparison is not possible. Three main
conclusions can be drawn from the results presented in section 6.4. First and foremost is that MSTD-
PET seems to have issues with increasing network size. This was expected, since it quickly starts to
suffer from the curse of dimensionality, due to using a single scalar reward value for updating thousands
of weights.

The second conclusion is that performance is greatly dependent on the initialization of weights. An
”unlucky” initialization can result in that some neurons rarely spike during training. Since reinforcement
learningmethods rely on trial-and-error, meaning they only reinforce a desirable outcome once it occurs,
it is not able to move the network’s weights in the correct direction if these desirable outcomes never
occur. This weakness is further strengthened by the fact that additive formulations of STDP tend to
result in bi-modal distributions, meaning the weakly initialized connections tend to be further depressed
until the connection is almost dead. The solution to this problem knows two sides, having a learning
rule that can actively seek for correct solutions and a good weight initialization scheme. The former will
be treated first. Since it is not known what loss or reward function STDP optimizes for, the first solution
would be to derive a correlation-based update rule that optimizes a known loss function. The second
solution works in the opposite direction, finding a function STDP optimizes by trying many different
loss functions and looking for the best fit. The last solution would be to engineer a feedback channel
that locally influences weight updates, for example through the use of random feedback weights (see
section 2.2.5).

The third and last conclusion is related to the initialization of weights, together with deciding on
the magnitude of the many hyperparameters for training SNNs. Besides that spiking neural networks
require many hyperparameters, several of these parameters also have different optimal values per
layer. A good example is finding a good average initialization weight, which varies from layer to layer
to excite all neurons roughly equally. With the number of pre-synaptic connections per neuron varying
from layer to layer, the optimal average weight per connection also varies, assuming other parameters
like the firing threshold are kept constant. This became clear since the average neuron activity varied
considerably between layers of different sizes. For training regular ANNs the same observation was
made, where the distribution for sampling weights during initialization is based on the dimensions of
the layer [30].

This observation also holds during training, where the optimal average weight still varies from layer
to layer. Setting the hyperparameters that control the weight range per layer (upper and lower bound

84 7. Experiments Discussion

for additive STDP, or a target weight for multiplicative STDP) is undesirable or impossible, even with hy-
perparameter optimization. In many works homeostasis mechanisms are added to control and limit the
activity of neurons, yet these are often network-specific or even layer-specific. Good examples are dif-
ferent firing thresholds or winner-takes-all mechanisms. To partly alleviate this problem it is suggested
to set a reference spiking activity for each neuron. Since it regularizes a single neuron the mechanism
should be insensitive to the layer dimensions. When combined with good weight initialization it should
also be able to deal with a varying number of pre-synaptic connections per neuron. Also, it can act as
a mechanism that keeps neurons from ”dying”. Last but not least, a low reference activity also acts as
regularizing noise.

Conclusions Preliminary Analysis
This preliminary analysis lays the foundation for the research for the thesis following this work by ex-
ploring and comparing the processing processing of asynchronous, event-based data through ANNs
and SNNs. This section presents the most important conclusions and which approach will be used
during the rest of this thesis.

Firstly, because of the novelty and difficulty of processing event-based data with either ANNs or
SNNs, relatively small and simple datasets were used during the experiments. The N-MNIST and
N-Caltech101 [76] datasets are the event-based counterparts of the very common MNIST [51] and
Caltech-101 datasets [55]. It is very likely that the N-MNIST dataset will be used to validate any model
or learning rule during the final thesis, the use of the N-Caltech101 datasets depends on the progress
that is made. The spiking intensity distribution dataset proved easy to work with, yet it will only be used
for initial quick testing of new methods.

Secondly, two forms of ANNs for processing event-based vision data were tested, one based on
discretizing events into a frame-based representation [23], and the other based on directly processing
events with PLSTMs [70]. Themismatch between the frame-based paradigm of ANNs and event-based
data is causing a decrease in accuracy and an increase in inference time compared to networks for
frame-based images. Several improvements were suggested in section 7.2, but the author does not
consider the ease of using ANNs to outweigh the increase in inference time. It is because of these
reasons that ANNs will not be considered during the final thesis.

Thirdly, experiments with SNNs showed mixed results. Small networks showed promising results
for the gradient-based learning rule SLAYER [94], whereas it showed difficulty converging for deeper
networks. It forms the current state of the art, but the problems with exploding and vanishing gradients
make it hard to train more complex architectures.

Fourthly, correlation-based methods in their current form showed lackluster results in simple classi-
fication tasks. Variations of the MSTDPET [20] learning rule were unable to reliably optimize a network
due to a large sensitivity for weight initialization, a lack of proper homeostasis mechanisms, and the
curse of dimensionality most reinforcement learning methods suffer from. The positive side of these
experiments is that several points of improvement have been identified, as well as possible methods
to do so.

Finally, is it decided to go forward with correlation-based methods for the rest of this thesis. Even
though these methods are the least developed, they have a lot of opportunities for improvement and
have fewer limitations compared to gradients based methods. This mostly concerns not requiring dif-
ferential operations and the absence of the vanishing or exploding gradients problem. As a result, a
successful correlation-based learning rule should be able to train a larger diversity of architectures.
Also, correlation-based methods can be used to train SNNs online on a neuromorphic chip. This could
result in greatly improved inference times and energy consumption.

Bibliography
[1] L. F. Abbott and Sacha B. Nelson. Synaptic plasticity: Taming the beast. Nature Neuroscience,

3(11):1178, November 2000. ISSN 1546-1726. doi: 10.1038/81453.

[2] M. Abeles. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press,
Cambridge ; New York, 1 edition edition, February 1991. ISBN 978-0-521-37617-4.

[3] M. Abeles, H. Bergman, E. Margalit, and E. Vaadia. Spatiotemporal firing patterns in the frontal
cortex of behaving monkeys. Journal of Neurophysiology, 70(4):1629–1638, October 1993. ISSN
0022-3077. doi: 10.1152/jn.1993.70.4.1629.

[4] Khadeer Ahmed, Amar Shrestha, Qinru Qiu, and Qing Wu. Probabilistic inference using stochas-
tic spiking neural networks on a neurosynaptic processor. In 2016 International Joint Conference
on Neural Networks, IJCNN 2016, pages 4286–4293. Institute of Electrical and Electronics En-
gineers Inc., October 2016. doi: 10.1109/IJCNN.2016.7727759.

[5] Peter Auer, Harald Burgsteiner, and Wolfgang Maass. A learning rule for very simple universal
approximators consisting of a single layer of perceptrons. Neural Networks, 21(5):786–795, June
2008. ISSN 0893-6080. doi: 10.1016/j.neunet.2007.12.036.

[6] Pierre Baldi and Peter Sadowski. A theory of local learning, the learning channel, and the opti-
mality of backpropagation. Neural Networks, 83:51–74, November 2016. ISSN 0893-6080. doi:
10.1016/j.neunet.2016.07.006.

[7] Peter L. Bartlett and Jonathan Baxter. A Biologically Plausible and Locally Optimal Learning
Algorithm for Spiking Neurons. 2000.

[8] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani,
Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Push-
meet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive
biases, deep learning, and graph networks. arXiv:1806.01261 [cs, stat], June 2018.

[9] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994. ISSN 1045-9227.
doi: 10.1109/72.279181.

[10] Yoshua Bengio. Deep Learning of Representations for Unsupervised and Transfer Learning. In
Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pages 17–36, June
2012.

[11] Yoshua Bengio, Thomas Mesnard, Asja Fischer, Saizheng Zhang, and Yuhuai Wu. STDP-
Compatible Approximation of Backpropagation in an Energy-Based Model. Neural Computation,
29(3):555–577, March 2017. ISSN 0899-7667, 1530-888X. doi: 10.1162/NECO_a_00934.

[12] Joseph K. Blitzstein and Jessica Hwang. Introduction to Probability. Chapman and Hall/CRC,
Boca Raton, 1 edition edition, July 2014. ISBN 978-1-4665-7557-8.

[13] Sander Bohte, Joost Kok, and Johannes Poutré. SpikeProp: Backpropagation for networks of
spiking neurons. In ESANN, volume 48, pages 419–424, January 2000.

[14] Nicolas Brunel and Mark C. W. van Rossum. Lapicque’s 1907 paper: From frogs to integrate-
and-fire. Biological Cybernetics, 97(5):337–339, December 2007. ISSN 1432-0770. doi: 10.
1007/s00422-007-0190-0.

85

86 Bibliography

[15] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent Reinforcement Learn-
ing: An Overview. In Janusz Kacprzyk, Dipti Srinivasan, and Lakhmi C. Jain, editors, Inno-
vations in Multi-Agent Systems and Applications - 1, volume 310, pages 183–221. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-14434-9 978-3-642-14435-6. doi:
10.1007/978-3-642-14435-6_7.

[16] Guido Croon. Monocular distance estimation with optical flow maneuvers and efference copies:
A stability-based strategy. Bioinspiration & Biomimetics, 11, January 2016. doi: 10.1088/
1748-3190/11/1/016004.

[17] Gaël Daoudal and Dominique Debanne. Long-term plasticity of intrinsic excitability: Learning
rules and mechanisms. Learning & Memory (Cold Spring Harbor, N.Y.), 10(6):456–465, 2003
Nov-Dec. ISSN 1072-0502. doi: 10.1101/lm.64103.

[18] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeiffer. Fast-classifying, high-accuracy
spiking deep networks through weight and threshold balancing. In IEEE International Joint Con-
ference on Neural Networks (IJCNN), Piscataway, USA, July 2015. Neural Networks (IJCNN),
2015 International Joint Conference on. doi: info:doi/10.5167/uzh-121702.

[19] Daniel Drubach. The Brain Explained. Prentice Hall, 2000.

[20] Răzvan V. Florian. Reinforcement Learning Through Modulation of Spike-Timing-Dependent
Synaptic Plasticity. Neural Computation, 19(6):1468–1502, June 2007. ISSN 0899-7667, 1530-
888X. doi: 10.1162/neco.2007.19.6.1468.

[21] Razvan V. Florian. The chronotron: A neuron that learns to fire temporally-precise spike patterns.
Nature Precedings, 2010. doi: 10.1038/npre.2010.5190.1.

[22] Nicolas Frémaux, Henning Sprekeler, and Wulfram Gerstner. Functional Requirements for
Reward-Modulated Spike-Timing-Dependent Plasticity. Journal of Neuroscience, 30(40):13326–
13337, October 2010. ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.6249-09.
2010.

[23] Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpanis, and Davide Scaramuzza. End-to-
End Learning of Representations for Asynchronous Event-Based Data. arXiv:1904.08245 [cs],
April 2019.

[24] Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpanis, and Davide Scaramuzza. End-to-
End Learning of Representations for Asynchronous Event-Based Data. arXiv:1904.08245 [cs],
April 2019.

[25] Wulfram Gerstner. Time structure of the activity in neural network models. Physical Review E,
51(1):738–758, January 1995. doi: 10.1103/PhysRevE.51.738.

[26] WulframGerstner. Neuronal Dynamics: FromSingle Neurons To Networks AndModels Of Cogni-
tion. Cambridge University Press, Cambridge, United Kingdom, uk ed. edition edition, September
2014. ISBN 978-1-107-63519-7.

[27] Wulfram Gerstner and Werner M. Kistler. Spiking Neural Models: Single Neurons, Populations,
Plasticity. Cambridge University Press, 2002.

[28] WulframGerstner and J. Leo van Hemmen. Associativememory in a network of ‘spiking’ neurons.
Network: Computation in Neural Systems, 3(2):139–164, January 1992. ISSN 0954-898X. doi:
10.1088/0954-898X_3_2_004.

[29] Matthieu Gilson and Tomoki Fukai. Stability versus Neuronal Specialization for STDP: Long-Tail
Weight Distributions Solve the Dilemma. PloS one, 6:e25339, October 2011. doi: 10.1371/
journal.pone.0025339.

[30] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, pages 249–256, March 2010.

Bibliography 87

[31] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural Networks.
page 9, 2011.

[32] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised Monocular Depth
Estimation with Left-Right Consistency. arXiv:1609.03677 [cs, stat], September 2016.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[34] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia Angelova. Depth from Videos in the
Wild: Unsupervised Monocular Depth Learning from Unknown Cameras. arXiv:1904.04998 [cs],
April 2019.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. arXiv:1512.03385 [cs], December 2015.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. arXiv:1512.03385 [cs], December 2015.

[37] D.O. Hebb. The Organization of Behaviour. John Wiley & Sons, Inc., 1949.

[38] Professor David Heeger. Poisson Model of Spike Generation. page 13, September 2000.

[39] Geoffrey Hinton. How to do backpropagation in a brain. page 22, 2014.

[40] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory. Neural computation, 9:
1735–80, December 1997. doi: 10.1162/neco.1997.9.8.1735.

[41] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application
to conduction and excitation in nerve. The Journal of Physiology, 117(4):500–544, August 1952.
ISSN 0022-3751.

[42] Ronald A. Howard. Dynamic Programming. Manage. Sci., 12(5):317–348, January 1966. ISSN
0025-1909. doi: 10.1287/mnsc.12.5.317.

[43] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt
Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model
size. arXiv:1602.07360 [cs], February 2016.

[44] E.M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14
(6):1569–1572, November 2003. ISSN 1045-9227. doi: 10.1109/TNN.2003.820440.

[45] Eugene M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability and
Bursting. Computational Neuroscience. MIT Press, Cambridge, Mass, 2007. ISBN 978-0-262-
09043-8.

[46] Richard Kempter, Wulfram Gerstner, and J. Leo van Hemmen. Hebbian learning and spiking
neurons. 1999. doi: 10.1103/PhysRevE.59.4498.

[47] Diederik P. Kingma and JimmyBa. Adam: AMethod for Stochastic Optimization. arXiv:1412.6980
[cs], December 2014.

[48] Vijay R. Konda and John N. Tsitsiklis. Actor-Critic Algorithms. In S. A. Solla, T. K. Leen, and
K. Müller, editors, Advances in Neural Information Processing Systems 12, pages 1008–1014.
MIT Press, 2000.

[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep Con-
volutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran As-
sociates, Inc., 2012.

[50] Akshay Chandra Lagandula. McCulloch-Pitts Neuron—Mankind’s First Mathematical Model Of A
Biological Neuron. https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1, 1943.

88 Bibliography

[51] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. ISSN 0018-9219.
doi: 10.1109/5.726791.

[52] Yann LeCun, B Bosker, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and Jackel.
Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1989.

[53] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
May 2015. ISSN 1476-4687. doi: 10.1038/nature14539.

[54] Robert Legenstein, Dejan Pecevski, and Wolfgang Maass. A Learning Theory for Reward-
Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback. PLOS Compu-
tational Biology, 4(10):e1000180, October 2008. ISSN 1553-7358. doi: 10.1371/journal.pcbi.
1000180.

[55] Li Fei-Fei, R. Fergus, and P. Perona. Learning Generative Visual Models from Few Training
Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. In 2004 Con-
ference on Computer Vision and Pattern Recognition Workshop, pages 178–178, June 2004.
doi: 10.1109/CVPR.2004.383.

[56] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128 X 128 120db 30mw asynchronous vi-
sion sensor that responds to relative intensity change. In 2006 IEEE International Solid State
Circuits Conference - Digest of Technical Papers, pages 2060–2069, February 2006. doi:
10.1109/ISSCC.2006.1696265.

[57] Timothy P Lillicrap and Adam Santoro. Backpropagation through time and the brain. Current
Opinion in Neurobiology, 55:82–89, April 2019. ISSN 0959-4388. doi: 10.1016/j.conb.2019.
01.011.

[58] Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, and Colin J. Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications, 7:
13276, November 2016. ISSN 2041-1723. doi: 10.1038/ncomms13276.

[59] Wolfgang Maass. Networks of spiking neurons: The third generation of neural network mod-
els. Neural Networks, 10(9):1659–1671, December 1997. ISSN 0893-6080. doi: 10.1016/
S0893-6080(97)00011-7.

[60] Ana I. Maqueda, Antonio Loquercio, GuillermoGallego, NarcisoGarcia, and Davide Scaramuzza.
Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5419–5427, June
2018. doi: 10.1109/CVPR.2018.00568.

[61] A. A. Markov. Theory of Algorithms. Academy of Sciences of the USSR, 1954.

[62] Warren S. McCulloch and Walter H. Pitts. A Logical Calculus of the Ideas Imanent in Nervous
Activity. Mathetmatical Bulletin of Biophysics, 5, 1943.

[63] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed Represen-
tations of Words and Phrases and their Compositionality. In C. J. C. Burges, L. Bottou, M.Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems 26, pages 3111–3119. Curran Associates, Inc., 2013.

[64] Marvin Minsky. Steps toward Artificial Intelligence. Proceedings of the IRE, 49(1):8–30, January
1961. ISSN 0096-8390. doi: 10.1109/JRPROC.1961.287775.

[65] MarvinMinsky and Seymour A. Papert. Perceptrons: An Introduction to Computational Geometry,
Expanded Edition. The MIT Press, Cambridge, Mass, expanded, subsequent edition edition,
December 1987. ISBN 978-0-262-63111-2.

[66] Diederik Paul Moeys, Federico Corradi, Emmett Kerr, Philip Vance, Gautham Das, Daniel Neil,
Dermot Kerr, and Tobi Delbruck. Steering a Predator Robot using a Mixed Frame/Event-Driven
Convolutional Neural Network. arXiv:1606.09433 [cs], June 2016.

Bibliography 89

[67] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, and M. Ganjtabesh. First-
Spike-Based Visual Categorization Using Reward-Modulated STDP. IEEE Transactions on Neu-
ral Networks and Learning Systems, 29(12):6178–6190, December 2018. ISSN 2162-237X. doi:
10.1109/TNNLS.2018.2826721.

[68] Milad Mozafari, Mohammad Ganjtabesh, Abbas Nowzari-Dalini, Simon J. Thorpe, and Timothée
Masquelier. Bio-Inspired Digit Recognition Using Spike-Timing-Dependent Plasticity (STDP) and
Reward-Modulated STDP in Deep Convolutional Networks. arXiv:1804.00227 [cs, q-bio], March
2018.

[69] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted Boltzmann Ma-
chines. page 8, 2010.

[70] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased LSTM: Accelerating Recurrent Network
Training for Long or Event-based Sequences. arXiv:1610.09513 [cs], October 2016.

[71] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased LSTM: Accelerating Recurrent Network
Training for Long or Event-based Sequences. arXiv:1610.09513 [cs], October 2016.

[72] Bernhard Nessler, Michael Pfeiffer, Lars Buesing, and Wolfgang Maass. Bayesian Computation
Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity. In PLoS
Computational Biology, 2013. doi: 10.1371/journal.pcbi.1003037.

[73] Yael Niv. The Neuroscience of Reinforcement Learning, 2009.

[74] Peter O’Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, and Michael Pfeiffer. Real-time classi-
fication and sensor fusion with a spiking deep belief network. Frontiers in Neuroscience, 7:178,
2013. ISSN 1662-4548. doi: 10.3389/fnins.2013.00178.

[75] Christopher Olah. Understanding LSTM Networks – colah’s blog.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[76] Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and Nitish Thakor. Converting Static
Image Datasets to Spiking Neuromorphic Datasets Using Saccades. Frontiers in Neuroscience,
9, 2015. ISSN 1662-453X. doi: 10.3389/fnins.2015.00437.

[77] Federico Paredes Valles. Neuromorphic Computing of Event-Based Data for High-Speed Vision-
Based Navigation. 2018.

[78] Federico Paredes-Vallés, Kirk Y. W. Scheper, and Guido C. H. E. de Croon. Unsupervised Learn-
ing of a Hierarchical Spiking Neural Network for Optical Flow Estimation: From Events to Global
Motion Perception. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1,
2019. ISSN 0162-8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2019.2903179.

[79] I. P. Pavlov. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cere-
bral Cortex. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral
Cortex. Oxford Univ. Press, Oxford, England, 1927.

[80] Verena Pawlak, Jeffery R. Wickens, Alfredo Kirkwood, and Jason N. D. Kerr. Timing is not Ev-
erything: Neuromodulation Opens the STDP Gate. Frontiers in Synaptic Neuroscience, 2, 2010.
ISSN 1663-3563. doi: 10.3389/fnsyn.2010.00146.

[81] Filip Ponulak. ReSuMe - NewSupervised LearningMethod for Spiking Neural Networks. page 10,
2005.

[82] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. A QVGA 143 dB Dynamic Range
Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-
Domain CDS. IEEE Journal of Solid-State Circuits, 46:259–275, 2011. doi: 10.1109/JSSC.
2010.2085952.

[83] John N. J Reynolds and Jeffery R Wickens. Dopamine-dependent plasticity of corticostriatal
synapses. Neural Networks, 15(4):507–521, June 2002. ISSN 0893-6080. doi: 10.1016/
S0893-6080(02)00045-X.

90 Bibliography

[84] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65(6):386–408, 1958. ISSN 1939-1471(Electronic),0033-
295X(Print). doi: 10.1037/h0042519.

[85] J. Rosenburg. Von Neumann Architecture - an overview. 2017.

[86] D. E. Rumelhart and J. L. McClelland. Learning Internal Representations by Error Propagation.
In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations.
MITP, 1987. ISBN 978-0-262-29140-8.

[87] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533, October 1986. ISSN 1476-4687. doi: 10.
1038/323533a0.

[88] Wolfram Schultz. Predictive Reward Signal of Dopamine Neurons. Journal of Neurophysiology,
80(1):1–27, July 1998. ISSN 0022-3077. doi: 10.1152/jn.1998.80.1.1.

[89] Wolfram Schultz. Dopamine signals for reward value and risk: Basic and recent data. Behavioral
and Brain Functions, 6(1):24, April 2010. ISSN 1744-9081. doi: 10.1186/1744-9081-6-24.

[90] Wolfram Schultz, Peter Dayan, and P Read Montague. A Neural Substrate of Prediction and
Reward. page 8, 1997.

[91] Terrence J Sejnowski and Gerald Tesauro. The Hebb Rule for Synaptic Plasticity: Algorithms
and. page 10, 1989.

[92] Yusuke Sekikawa, Kosuke Hara, and Hideo Saito. EventNet: Asynchronous Recursive Event
Processing. arXiv:1812.07045 [cs], December 2018.

[93] A. Shrestha, K. Ahmed, Y. Wang, and Q. Qiu. Stable spike-timing dependent plasticity rule for
multilayer unsupervised and supervised learning. In 2017 International Joint Conference on Neu-
ral Networks (IJCNN), pages 1999–2006, May 2017. doi: 10.1109/IJCNN.2017.7966096.

[94] Sumit Bam Shrestha and Garrick Orchard. SLAYER: Spike Layer Error Reassignment in Time.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 1412–1421. Curran Associates,
Inc., 2018.

[95] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv:1409.1556 [cs], September 2014.

[96] J Sjostrom and W Gerstner. Spike-timing dependent plasticity. J. Sj, page 18, 2010.

[97] Sen Song, Kenneth D. Miller, and L. F. Abbott. Competitive Hebbian learning through spike-
timing-dependent synaptic plasticity. Nature Neuroscience, 3(9):919, September 2000. ISSN
1546-1726. doi: 10.1038/78829.

[98] Richard B. Stein. A Theoretical Analysis of Neuronal Variability. Biophysical Journal, 5(2):173–
194, March 1965. ISSN 0006-3495. doi: 10.1016/S0006-3495(65)86709-1.

[99] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, second edition, 2018. ISBN 978-0-262-03924-6.

[100] Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In S. A. Solla, T. K. Leen, and
K. Müller, editors, Advances in Neural Information Processing Systems 12, pages 1057–1063.
MIT Press, 2000.

[101] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient Processing of Deep Neural
Networks: A Tutorial and Survey. arXiv:1703.09039 [cs], March 2017.

Bibliography 91

[102] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper With Convolutions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9,
2015.

[103] Amirhossein Tavanaei and Anthony S. Maida. BP-STDP: Approximating Backpropagation using
Spike Timing Dependent Plasticity. arXiv:1711.04214 [cs], November 2017.

[104] Johannes Christian Thiele, Olivier Bichler, and Antoine Dupret. SpikeGrad: An ANN-equivalent
Computation Model for Implementing Backpropagation with Spikes. arXiv:1906.00851 [cs], June
2019.

[105] M. C. W. van Rossum, G. Q. Bi, and G. G. Turrigiano. Stable Hebbian Learning from Spike
Timing-Dependent Plasticity. Journal of Neuroscience, 20(23):8812–8821, December 2000.
ISSN 0270-6474, 1529-2401. doi: 10.1523/JNEUROSCI.20-23-08812.2000.

[106] Xiaohui Xie and H. Sebastian Seung. Learning in neural networks by reinforcement of irregular
spiking. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 69(4 Pt 1):041909,
April 2004. ISSN 1539-3755. doi: 10.1103/PhysRevE.69.041909.

[107] Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin Duh, and Chris Dyer. Depth-Gated LSTM.
arXiv:1508.03790 [cs], August 2015.

[108] Friedemann Zenke and Surya Ganguli. SuperSpike: Supervised learning in multi-layer spiking
neural networks. Neural Computation, 30(6):1514–1541, June 2018. ISSN 0899-7667, 1530-
888X. doi: 10.1162/neco_a_01086.

[109] Li I. Zhang, Huizhong W. Tao, Christine E. Holt, William A. Harris, and Mu-ming Poo. A critical
window for cooperation and competition among developing retinotectal synapses. Nature, 395
(6697):37, September 1998. ISSN 1476-4687. doi: 10.1038/25665.

[110] Wei Zhang and David J. Linden. The other side of the engram: Experience-driven changes in
neuronal intrinsic excitability. Nature Reviews Neuroscience, 4(11):885, November 2003. ISSN
1471-0048. doi: 10.1038/nrn1248.

[111] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. Unsupervised Event-
based Learning of Optical Flow, Depth, and Egomotion. arXiv:1812.08156 [cs], December 2018.

A
Results for SLAYER Experiments

This appendix contains the results for the networks as described in section 5.4, table 5.2, and table 5.3
for which the results were not treated in section 6.3. Because of the large number of figures, the
references for each figure are presented in table A.2. The accuracies during training and testing for
each network are found in table A.1

Table A.1: Training and testing results for the two and five layer fully connected networks trained on event-based data with the
SLAYER algorith, and trained on frame-based data with regular backpropagation.

Event-based Frame-based

Training Acc. Testing Acc. Training Acc. Testing Acc.
2 Layer Fully Connected 100% 93% 100% 89%
4 Layer Fully Connected 100% 91% 100% 91%
5 Layer Fully Connected 100% 85% 100% 86%
3 Layer Convolutional 100% 65% 100% 91%
5 Layer Convolutional 100% 50% 100% 98%
6 Layer Convolutional 100% 56% 100% 96%

Table A.2: Each network and the reference to the figures containing the statistics (mean and standard deviation) of its gradients
during training.

Event-based Frame-based

Mean Standard Deviation Mean Standard Deviation
2 Layer Fully Connected fig. A.1 fig. A.2 fig. A.3 fig. A.4
4 Layer Fully Connected fig. A.5 fig. A.6 fig. A.7 fig. A.8
5 Layer Fully Connected fig. A.9 fig. A.10 fig. A.11 fig. A.8
3 Layer Convolutional fig. A.13 fig. A.14 fig. A.15 fig. A.16
5 Layer Convolutional fig. A.17 fig. A.18 fig. A.19 fig. A.20
6 Layer Convolutional fig. A.21 fig. A.22 fig. A.23 fig. A.24

93

94 A. Results for SLAYER Experiments

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Epoch

[-]

Mean layer 1
Mean layer 2

Figure A.1: Mean of gradients for 2 layer fully connected
SNN during training.

0 20 40 60 80 100
0

10

20

30

Epoch

[-]

Std layer 1
Std layer 2

Figure A.2: Standard deviation of gradients for 2 layer fully
connected SNN during training.

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

⋅10ዅ኿

Epoch

[-]

Mean layer 1
Mean layer 2

Figure A.3: Mean of gradients for 2 layer fully connected
ANN during training.

0 20 40 60 80 100
0

2

4

6

⋅10ዅኼ

Epoch

[-]

Std layer 1
Std layer 2

Figure A.4: Standard deviation of gradients for 2 layer fully
connected ANN during training.

95

0 20 40 60 80 100

0

2

4

6

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 4

Figure A.5: Mean of gradients for four layer fully con-
nected SNN during training.

0 20 40 60 80 100
0

100

200

300

400

Epoch
[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4

Figure A.6: Standard deviation of gradients for four layer
fully connected SNN during training.

0 20 40 60 80 100

−1

−0.5

0

⋅10ዅኾ

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 4

Figure A.7: Mean of gradients for four layer fully con-
nected ANN during training.

0 20 40 60 80 100
0

5 ⋅ 10ዅኼ

0.1

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4

Figure A.8: Standard deviation of gradients for four layer
fully connected ANN during training.

96 A. Results for SLAYER Experiments

0 20 40 60 80 100
−2

0

2

4

6

8

10

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 4
Mean layer 5

Figure A.9: Mean of gradients for five layer fully connected
SNN during training.

0 20 40 60 80 100
0

200

400

600

800

1,000

1,200

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4
Std layer 5

Figure A.10: Standard deviation of gradients for five layer
fully connected SNN during training.

0 20 40 60 80 100

−2

0

2

⋅10ዅኾ

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 4
Mean layer 5

Figure A.11: Mean of gradients for five layer fully con-
nected ANN during training.

0 20 40 60 80 100
0

5 ⋅ 10ዅኼ

0.1

0.15

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4
Std layer 5

Figure A.12: Standard deviation of gradients for five layer
fully connected ANN during training.

97

0 20 40 60 80 100

0

20

40

60

80

100

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3

Figure A.13: Mean of gradients for three layer convolu-
tional SNN during training.

0 20 40 60 80 100
0

200

400

600

Epoch
[-]

Std layer 1
Std layer 2
Std layer 3

Figure A.14: Standard deviation of gradients for three
layer convolutional SNN during training.

0 20 40 60 80 100

−3

−2

−1

0

⋅10ዅኽ

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3

Figure A.15: Mean of gradients for three layer convolu-
tional ANN during training.

0 20 40 60 80 100
0

1

2

3

4

⋅10ዅኼ

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3

Figure A.16: Standard deviation of gradients for three
layer convolutional ANN during training.

98 A. Results for SLAYER Experiments

0 20 40 60 80 100

−4,000

−2,000

0

2,000

4,000

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 4
Mean layer 5

Figure A.17: Mean of gradients for five layer convolutional
SNN during training.

0 20 40 60 80 100
0

0.5

1

⋅10኿

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4
Std layer 5

Figure A.18: Standard deviation of gradients for five layer
convolutional SNN during training.

0 20 40 60 80 100

−4

−2

0

2

4

6

⋅10ዅኾ

Epoch

[-]

Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 4
Mean layer 5

Figure A.19: Mean of gradients for five layer convolutional
ANN during training.

0 20 40 60 80 100
0

1

2

3

⋅10ዅኼ

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4
Std layer 5

Figure A.20: Standard deviation of gradients for five layer
convolutional ANN during training.

99

0 20 40 60 80 100

−1

−0.5

0

0.5

⋅10ኾ

Epoch

[-] Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 4
Mean layer 5
Mean layer 6

Figure A.21: Mean of gradients for six layer convolutional
SNN during training.

0 20 40 60 80 100
0

2

4

6

8
⋅10኿

Epoch
[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4
Std layer 5
Std layer 6

Figure A.22: Standard deviation of gradients for six layer
convolutional SNN during training.

0 20 40 60 80 100

−1

−0.5

0

0.5
⋅10ዅኽ

Epoch

[-] Mean layer 1
Mean layer 2
Mean layer 3
Mean layer 4
Mean layer 5
Mean layer 6

Figure A.23: Mean of gradients for six layer convolutional
ANN during training.

0 20 40 60 80 100
0

1

2

3

4

5

⋅10ዅኼ

Epoch

[-]

Std layer 1
Std layer 2
Std layer 3
Std layer 4
Std layer 5
Std layer 6

Figure A.24: Standard deviation of gradients for six layer
convolutional ANN during training.

	Acknowledgments
	Abstract
	List of Symbols
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Motivation and Research Question
	Structure of This Work

	I Scientific Paper
	II Literature Study
	Deep Learning
	Artificial Neural Networks
	Fundamentals
	Basic Architectures
	Neuromorphic Artificial Neural Networks
	Deep Learning Frameworks and Hardware

	Spiking Neural Networks
	Biological Background
	Neuron Models
	Learning Rules
	Supervised Learning Comparison
	STDP and Back-Propagation
	Neuromorphic Hardware and Software

	Reinforcement Learning
	Basics
	Credit Assignment Problem
	SNN and RL

	Literature Synthesis
	Neuromorphic Computing
	Reinforcement Learning
	Designing a Learning Rule

	III Preliminary Experiments
	Methodology
	Datasets
	Event Discretization Kernel
	Phased LSTM
	Spike Layer Error Reassignment in Time
	Reward Modulated Spike Timing Dependent Plasticity

	Experimental Results
	Even Discretization Kernel
	Phased LSTM
	Spike Layer Error Reassignment in Time
	RSTDP for classification

	Experiments Discussion
	Datasets
	Artificial Neural Networks
	Spiking Neural Networks

	Bibliography
	Results for SLAYER Experiments

