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Abstract

The paper presents a generative design process based on topology optimization methodology for
configuring masonry structures. In this approach, structures consisting of stackable interlocking blocks
are modelled as discrete elements using the Discrete Element Method, approximating their mechanical
behaviours. A process is devised to result in funicular structures that can be built using a limited set of
modular masonry blocks with the aim to lower the environmental costs in terms of embodied carbon,
monetary costs, and construction labour. Additionally, this process aims to increase the reuse and
reconfigurability potential of the stackable blocks by seeking utmost modularity in the topological design
of the underlying 3D tiling/tessellation.

Topology optimization is widely known as a methodology for generating geometrically elaborate
structures, which typically minimize the use of the material. These approaches typically use the Finite
Element Method to formulate and solve the governing di↵erential equations for computing their objective
functions, assuming that the structure to be designed is a virtually continuous distribution of material
that is refinable within a continuum. However, at a more general level, the idea of topology optimization
can also be applied to inherently discrete problems by creating algorithms based on the Discrete Element
Modelling approach (O’Sullivan, 2011), or a particle system at a quasi molecular level. The proposed
approach is applicable in the design of funicular structures, with the potential for form-finding of waste-
free and reconfigurable, structural geometries that are constructible using a limited stock of modular
blocks.

The paper introduces a discrete topology optimization process in three steps: 1) defining a space-
filling 3D tiling/tessellation consisting of interlocking blocks as a graph colouring of a voxel grid; 2)
defining the objective function of a topology optimization problem based on a Discrete Element Modeling
approach; 3) assembling a topology optimization algorithm using the gradient-based Optimality Criteria
method adapted to work with the DEM-based governing equations, deriving an objective function and
related gradient equations(O’Shaughnessy et al., 2021).

The proposed methodology allows designers to find static equilibrium configurations for funicular
structures defined by their desired space by minimizing potential energy between blocks. The method
is validated for simply designing space discretized as interacting particles, whose optimum solutions
compare to those from a typical continuum-based algorithm(Bendsøe & Sigmund, 2004).
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3. Design

3.1 Design methodology

Figure 14

Design methodology

The following section of the report is aimed at presenting the proposed design methodology and
preliminary results. The design framework consists of three main parts:
- The exploration of the space-filling system;
- The implementation of topology optimization;
- The topology design for the block unit (Liu.).

3.2 Space-filling system

The first part cooperates with Liu. The start point of this part is to develop a topological interlocking
system that can fill the space.

The topological interlocking system

The topological interlocking system is a term meaning the elements within this system depend on its
neighbour element. In this way, high bending forces are resisted, and even no additional binding material
like mortar is needed. This can be achieved by designing a unique geometry and specific arrangement of
the blocks.
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Two fundamental principles of the interlocking system are introduced before stepping into the design
process. The osteomorphic topological assembly is one of the approaches. Another method is a layer-like
hexagon-based or square-based structure. The first interlocking assembly of this kind was a plate-like
square-based structure of tetrahedra (Dyskin et al., 2005). However, current generative logic can only
use in designing 2.5D structures, like shell structures, which means it cannot fill the three-dimensional
space.

Figure 15

A design process for a layer-like hexagon-based structure (Wang et al., 2019)

3.2.1 Space-filling system design

The topological interlocking system provides an idea to design the space-filling system. Several three-
dimensional tessellations are developed with the help of voxels.

Figure 16

3 types of block unit

The middle one is sound promising for compression-only structures without considering interlocking.



26 Q.CHEN

The generating logic behind the left one is the plane-like hexagon-based structure, where the third
dimension square grid is added to achieve space-filling. The right one is developed by combining the
previous two selections.

A general comparison between these three systems is made to understand their advantages and dis-
advantages better. First of all, systems 1 and 3 are preset interlock; consequently, they have an advantage
under horizontal loads. According to the load path of these three systems, system 3 is structurally
e�cient and perform well in compression-only structures. Moreover, the load path of system 2 follows
the edges of the trigonal trapezohedron, which is a space-filling geometry. Also, system 3 can refer to
the rhombic dodecahedron.

After comparing the above grid system, 2 and 3 are chosen for the next step, structural analysis with
Abaqus.

3.2.2 Sturctural analysis

To understand the mechanical behaviours of blocks and to finalize the general space-filling system,
structural analysis is necessary. Besides the modular blocks, material properties, external loads, and the
analysis limits need to be set.

Limits

Several limits of this research are preset.
- The structural loads and safety factors will be based on Eurocode standards.

- Mortar or other connections between two blocks will not be taken into account for formulating and
structural analysis.

- The structural analysis will be a linear static analysis so that the sti↵ness matrix will be constant, and
the solving process is relatively short compared to a nonlinear analysis on the same model.

- The material of masonry blocks is considered as idealized isotropic material, and the block itself is
assumed as a rigid body.

Material properties

The material properties are taken from the experimental result of masonry wall behaviour (Abdulla et al.,
2017), where the friction behaviour between bricks is also considered. Details can be found in the below
table.

Applied loads

In this simulation, applied loads include horizontal load (wind load) and vertical loads (snow load and
live load). Regarding the snow and wind loads related to climate data, a location is assumed to get these
data, where is Paris. The standard of classification and calculation function is based on the Eurocode.
Details of wind load calculation can refer to Appendix B.
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Figure 17

comparison of 3 types of system
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Figure 18

Material properties of block unit

Figure 19

Applied loads of block unit
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Structural analysis and discussion

A structural analysis flowchart is made to show the procedure of working with Abaqus. In between the
procedure, step setting is also worth discussing. This simulation considers three steps, including the
initial, static and dynamic states. Supports are assigned from the beginning, vertical loads apply in static
and dynamic states, and the horizontal load is added in the dynamic step. These can help to understand
better what happens when horizontal loads are taken into account.

Figure 20

Structure anlysis flowchart

The results of the principal stress and the displacement in x and z direction are analyzed (Appendix C).
The displacement in the vertical(z) direction of B is more significant than A when comparing their value
change from vertical load only(max) to vertical and horizontal load(max). However, B performs better
under horizontal load. As for maximum principal stress, although B’s compression is less than A, the
tension change within A is far less than B. Also, considering the material used, B needs more material
to achieve the same height as A. Therefore, A is more e�cient than B in compression-only structures.
However, B can be a good choice when applying to a location where the horizontal load is high.

To sum up, A is selected because it performs more e�ciently in compression-only structures and
uses less material.
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Figure 21

Structure anlysis results(Abaqus)

3.3 DEM-based Topology Optimization

After finalizing the graph network, the next step is to do the numerical implementation. The first step
is to colouring the voxels and constructs the graph. By doing this, we can get the target graph network
based on the general voxel grid. Another thing that has to define before starting the topology optimization
loop is the boundary conditions, including design space, voids, loads and supports. Together with the
structural network, the state of equilibrium can be found by solving a group of linear formulas. The
reason for doing this is mainly to get the displacement of the blocks. Lastly, the compliance, constraints,
penalization scheme and filter are formulated to complete the loop of DEM-based topology optimization.

The described process mainly includes two parts: the mathematical design and the algorithm design.
The mathematical design is related to the theory behind topology optimization and discrete element
modelling technique. Regarding the algorithm design, there is no existing open source built on this
methodology; it is, therefore, vital to make sure all the matrix operations in the mathematical part would
result in desired outputs.



31

3.3.0 Notation

Symbols
↵ numerical damping coe�cient
e edges
E Young’s modulus
f force increment
f rac the target ratio for volume of solid, f rac 2 (0, 1)
g gravitational acceleration
k contact sti↵ness between two blocks
� Lagrange multiplier
Me,v incidence matrix with e rows and v columns
m the number of edges
µ the coe�cient of static friction
n the number of nodes
N total number of blocks
p penalty for the penalization scheme
P centroid of the blocks
r distance increment
re inter-particle(block) distance
re equilibrium distance of two particles(blocks)
U potential energy
v vertices
V sum of the solid volume within the design domain
V0 the whole domain is solid
⌫ poisson ratio
�e design variables

Subscript
e the e-th edge
f fixed nodes
i, j the i-th and j-th node
n normal direction
t tangential direction
x, y, z the x, y, z directions

Superscript
s strong connection between two blocks
w weak connection between two blocks

Vector Operations
a + b move a block a to specific location b in the coordi-

nate plane

Matrix Operations
a a m ⇥ 1 matrix
A a m ⇥ m diagonal matrix belongs to a

AT Transpose matrix
A�1 Inverse matrix
A � B Hadamard product
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3.3.1 Colouring voxels and constructing network

Based on the space-filling system defined in the previous section, the next step is to implement it
as a colouring voxel (or pixel) and generate its dual network for structural simulation and topology
optimization purposes.

The algorithm started with defining the based voxel (or pixel) unit, the design space domain and
the aggregation pattern, which was achieved by computing the translation vectors. The algorithm in this
part is expected to generate a graph with nodes and edges as the centroids and the links of blocks.

Figure 22

proposed network system

First of all, the design space domain is filled with zeros. Based on the setting, a block consists of four
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voxels (or pixels) and the translation vectors, which in the 2D case are (2, 0), (�1, 2) and (1, 2). By
operating vector addition, blocks can be translated to given positions.

Figure 23

proposed network system

Considering this pattern as a group, the batch translation vectors can be easily obtained by dividing the
design space on each axis. Then, the design domain is coloured by the setting pattern with the element
id and batch id assigned.

The centroids of blocks can get from calculating the means of the grouped batch index, which represents
each voxel’s (or pixel’s) centroid.
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Based on the configuration of blocks, an adjacency matrix can be built. This can be achieved by
identifying the specific di↵erence between blocks’ centroids.

Weighted adjacency matrix

In a traditional masonry system, the units are laid in mortar, and the areas between units are called mortar
joints. The areas that form the vertical connections between each block (unit) are called head joints,
while the bed joints create the horizontal connections. According to experiment results, the horizontal
flexural strength can be assumed as approximately three times higher than vertical flexural strength
when having clay as bricks and mortar as connections (Rita Esposito, 2016). The sti↵ness of the head
and bed joints depends on the mortar properties, and if no mortar is considered, it is influenced by
the surface roughness of the blocks. In our structural mechanics approximation with no mortar being
considered between block units, two types of connections are defined following the same approach: 1)
strong connections representing the bed joints, and 2) weak connections identifying the head joints. The
relation of sti↵ness for these two types of connections can be assumed as:

kw = ↵ks (1)

where kw and ks correspond to the sti↵ness of the weak and strong joints respectively, and ↵ is the
linear relationship between two connections. In this case, all connections are assigned a weight. After
constructing the adjacency matrix in coo matrix form, the graph is generated with NetworkX, a Python
library for graphs and networks. A graph G(E,V) with vertices V and edges E information is obtained.

Figure 24

proposed network system



35

3.3.2 Discrete Element Analysis

Incidence matrix

Figure 25

Incidence matrix example

Starting with the network graph G(E,V) developed in the last section, an incidence matrix Mv,e,
which encodes the relation of nodes and edges, can be generated for later application. The directed
incidence matrix is defined by

Mv,e =

8>>>><
>>>>:

+1, e[0] = v
�1, e[1] = v
0, in the other case

(2)

where v 2 V, e 2 E. Therefore, the incidence matrix is a n ⇥m matrix, and m equals the number of edges
and n the number of nodes.Then we define the vertex with M(+) = +1 is called source and M(�) = �1
called target.

(
M(+)

s := (Ms > 0)
M(�)

s := (Ms < 0)
(3)

In the force density method, the incidence matrix M, together with the diagonal matrix Q which contain
the force-length ratios can operate the Gaussian transformation MT QM (Schek, 1974). Considering the
contact sti↵ness as a force density, this operation can obtain the sti↵ness matrix. Here we define Ms as a
edge-node matrix. Therefore, it is a m⇥ n matrix.Supported by the first layer of blocks, its corresponding
nodes need to be fixed on the floor. Then the free and fixed nodes are distinguished. Based on the
classification of free and fixed nodes, we define the matrices Ms =

h
M Mf

i
.

Contact sti↵ness
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Figure 26

Interaction between two blocks

The first important aspect in the Discrete Element Method is to determine the contact state. The
contacts happen when two particles interact with each other. Note that as rigid blocks are used in this
procedure, all system deformability is assumed to be concentrated in the interfaces (contacts) between
them. This deformability is accounted for via the contact springs, which also model the interaction (i.e.
force transfer) between blocks. For the blocks made of the same material, we consider that the springs of
two connected blocks are in series implicitly when calculating the spring sti↵ness in the edge term.

1
ke
=

1
ki
+

1
k j

(4)

8>><
>>:

ki =
EiAi

li
k j =

E jAj

l j

(5)

From the pre-selected/pre-defined 3D tessellation pattern, it is known that the contact area between the
blocks is the same, i.e. Ai = Aj = A, while the blocks are also made of the same material, and con-
sequently have the same Young’s modulus Ei = E j = Ee. Therefore, the contact sti↵ness for a pair of
blocks can be formulated as:

ke =
EeAe

re
(6)

where re is the distance between two blocks’ centroids. Together with Eq. (1), the contact sti↵ness for

strong and weak connection ks
e,kw

e can then be obtained.
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Static equilibrium

Interpreting the nodes as the centroid Pi 2 R3 of blocks, where i = 1, ..., n. The fixed points with
coordinates (x f i, y f i, z f i), i = 1, ..., nf , therefore x, y, z is a n-vectors and xf , y f , z f is a nf -vectors. The
length re form the m-vector re. The edge vector ei j 2 R3 with coordinates u, v,w can be written as

u = Mx +Mf x f

v = My +Mf y f

w = Mz +Mf z f

(7)

u, v,w are therefore m-vectors.

The load vectors f x, f y, f z are the forces that act on the nodes, including external load and self-
weight, each load vector is therefore a n ⇥ 1 matrix. With the diagonal matrix U,V,W that belongs to
u, v,w. The equilibrium state achieve when the net force for each blocks equal zero.

MT Uke = f x

MT Vke = f y

MT W ke = f z

(8)

Referring to Eq.6, ke is a m ⇥ 1 matrix form by scaler E and the m-vector re.

ke =
EeAe

re
(9)

With the identities

Uke = Keu
Vke = Kev
W ke = Kew

(10)

Therefore, Eq.5 becomes

MT KeMx +MT KeMf x f = f x

MT KeMy +MT KeMf y f = f y

MT KeMz +MT KeMf z f = f z

(11)
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Set K = MT KeM and Kf = MT KeMf, we have the equilibrium equation in the form

Kx = ( f x � Kfx f )
Ky = ( f y � Kfy f )
Kz = ( f z � Kf z f )

(12)

The equation is now in a common form Ax = b. With the given external forces and the fixed points, the
problem can be solved.

x = K�1( f x � Kfx f )
y = K�1( f y � Kfy f )
z = K�1( f z � Kf z f )

(13)

3.3.3 Discrete Element Topology Optimization

The Compliance

The displacement of the blocks under external and internal forces can be solved by minimizing the total
potential energy of the systemUtot =

P
Ui j. Based on the formula of interaction potential energy, we

rewrite the equation in edge terms. The elastic potential energy for each pair of blocks is

Ue =
1
2

ker2 (14)

where

r := re � re (15)

The displacement calculated in the previous step can generate the new centroids of the blocks, and then
it can easily compute the distance re based on the incidence matrix and the new centroids Pi.

To apply SIMP topology optimization to described Discrete Element Method, the first thing is to
define the design variable �e as per block quantity. To minimize the potential energy in the system, with
the Eq.14, the minimization problem becomes:

min
�e

: c(�e) =
1
2

NX

e

ker2 (16)

Another critical change in the DEM framework proposed by O’Shaughnessy et al. (2021) is the
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penalization scheme. In the DEM context, the sti↵ness k is associated with pairs of element instead of a
single element. Therefore, the penalization scheme is modified as

ke = �
p
e,i�

p
e, jke (17)

where ke is a constant sti↵ness, and �e,i 2 M(�) and �e, j 2 M(+) are the design variables of two
interacting blocks.The penalty p = 2 provides a good convergence between the optimality of the
solution, solid-void only result and numerical performance is indicated through numerical experiments
done by O’Shaughnessy et al. (2021).

The penalization scheme in Eq.17 imposes that the interaction sti↵ness depends on �e,i and �e, j.
When �e,i or �e, j equals zero, the connection between two blocks would be damaged. Then Eq.26 can be
rewritten as

min
�e

: c(�e) =
1
2

NX

e

�p
e,i�

p
e, jker2 (18)

sub ject to :
( V(�e)

V0
= f rac

0 < �min  �e  1
(19)

The f rac in the first constraint is a ratio that fixed the target volume of solid blocks, where f rac 2 (0, 1).
V0 represents the whole design domain is solid with full �e = 1, and V(�e) equals the sum of the target
volume. The second constraint sets a bound to �e from a minimum value to 1. The minimum value �min
could be 0 in principle, but a non-zero value, like 10�3, is needed when applying filtering.

With the m ⇤ n matrix M(�) and M(+) belonging to �e,i and �e, j, the sum of potential energy can be
easily represented with matrices. The objective function then simply becomes

c(�) = r
T (M(�)�)p � (M(+)�)p � k � r (20)

where k is not the global sti↵ness matrix but a m ⇥ 1 constant sti↵ness matrix in the edge term, and r is a
m ⇥ 1 matrix.

Optimality Criteria

The optimization problem in Eq. 22 can be solved with various approaches, and the Optimality Criteria
method is the most popular one among those. This method provides a update scheme to update the design
variable �e in each iteration. To minimize the compliance, an analytical expression of the sensitivity � is
formulated by combining the objective function with penalization scheme.

� =

"
@c
@�i

#

n⇥1
= �p�p�1 � ((M(+))T (k � r2 � (M(+)�))) (21)
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After the sensitivity is computed, the algorithm can proceed to update the design variable �e. However, in
the typical topology optimization algorithm, a process called filtering is often added to smooth the density
between neighbouring blocks. To achieve this, an hth-order neighbourhood graph needs to be imposed,
which can be obtained by computing the hth-order adjacency matrix, eA = Ah.

e� = eA(� � �) ↵ (� � (eA1
T

)) (22)

Figure 27

filtering

In Eq. (22), Ą represents the weighted factor that linearly reduces depending on the path length from
each block e to its neighbouring blocks. In the smoothing scheme, the constraint for design variable
�e = 10�3 is set as in Eq. (19).

The last step of the DEM-based optimization loop is to update �e by using the smoothed sensitivity.

e� = �e� � � (23)

Additional care needs to be taken to guarantee that the updated design variable �e still falls between �min
and 1. This includes three steps: relativize, equalize and softening.

b� =
(1 � �)m(0)

1
T (e� � V)

e� (24)

This step relates the design variable �e to the target mass fraction. Since there are three types of blocks
which are full, half and quarter, mass di↵erences for each block need to be taken into account. V is a
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n ⇥ 1 vector represented mass for each block, m(0) is total mass and � is a removing fraction for every
iteration.

To equalize, a softmax function is introduced. The softmax function takes a vector z as input and
normalizes it into a probability distribution. After applying softmax, each component will be in the
interval (0, 1), and the components will add up to 1 (“Softmax function. Wikipedia.” n.d.). So that a
equalize the distribution is obtained.

ez =
1

1
T

z
z (25)

where

z := exp(b�)

The target mass fraction for each iteration also being considered a scalar. In this case, the total design
mass is guaranteed.

bz = (1 � �)nez (26)

However, there is still a possibility that some of the design variables are larger than 1. Another step called
softening needs to be done to make sure all design variables are between (0, 1].

while max(bz) > 1 :

bz =
1

T (bz � min(1,bz))
n

· 1 + min(1,bz) (27)

This step is set as a while loop which would help with keeping �e in range (0, 1].

Till here, the DETO loop is completed. The optimization loop would repeat until the di↵erence
between the new iteration and the precious iteration for each particle is small enough, for example 10�3.
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3.3.4 Algorithm design

The implementation of the DEM-based Topology Optimization is developed mainly based on scipy,
numpy and networkX, and visualized through pyvista. The algorithm will be described with pseudocode.

User input

The algorithm starts with user input including the dimension of voxel unit in x,y,z direction and the
design space. The material properties can also be defined by user, such as density, Young’s modulus and
friction coe�cient. Also, the parameters that related to topology optimization loop, likes penalization
power and volume fraction, can also be decided. After the user inputs all these values, the algorithm
would translate useful information and generate a graph network with all the necessary matrices that
would be applicable in the following stages.

Based on the default aggregation pattern, the centroids of blocks can be generated. Another advantage is
that with the coloring voxel, the number of unit voxel that consist a block can be easily obtained, which
is useful in the later displacement calculating process. Then the graph can be built with the adjacency
matrix and the blocks position index (pseudocode01).

Figure 28

user input

Figure 29

pseudocode01: generating network

The value ne is created as the number of nodes and the chi is a design variable vector with the target
volume fraction volfrac.
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Figure 30

generating blocks based on the default pattern
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Figure 31

pseudocode02: supports and load case

The node IDs chosen by the user for applying supports and external loads would be used to get
the small displacement of the nodes and solve the DEM-based minimization problem. The total force
includes external force and self-weight applied on each node. A list of supports is chosen as a fixed
vector and therefore the nodes in this list would not move during the structural analysis. Those nodes in
the free list are free to move in x,y,z directions(pseudocode02).

Figure 32

The structural network (dual network)

One of the most important matrix in this algorithm is the incidence matrix and the order of the nodes
index needs to reorder based on the support IDs selected by user(pseudocode03).

Calculating displacement

The next step is to get the displacement values. Based on the proposed mathematic methodology, the
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Figure 33

pseudocode03: incidence matrix

contact sti↵ness for the strong connection can be calculated and the rest of the sti↵nesses are a linear
relationship with it. Now, all the necessary matrices and vectors are ready. The displacement of blocks
can be calculated by using the preset scipy function sp.linalg.solve(A,b).

Optimization loop

Figure 34

the optimization loop example

After all the matrices are known and compute in the right form, the topology optimization loop can start.
To find the lowest compliance, the objective function is used and achieve with the set volume fraction.
The gradient of the cost function is calculated for each pair of blocks. The solver is built based on the
proposed method, which would return a new chi for the next loop until the convergence.
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Figure 35

the optimization result for this example
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3.3.5 Toy problems

This section will elaborate on the results obtained from proposed DETO method. Since there is no
existed commercial software that can be used to check the validity of the results, the results would be
compared with the vault generated by using the force density method in COMPAS (Mele & many others,
2017-2021).

Toy problem 1

The lattice domain for the first toy problem is 0.8 ⇥ 0.6 ⇥ 0.4m which generated by 0.1 ⇥ 0.1 ⇥ 0.1m
voxel unit. The material properties include density and Young’s modulus is based on the standard brick
properties. The external load applied in this example is the snow load. Details for the inputs can be found
in fig.36.

Figure 36

Toy problem 1: material properties, design domain and applied load

Fig.37 shows the area for supports and applying external load. The blocks at the four bottom corners
are fixed. Also, the penalty and mass fraction are determined at the beginning. Numerical experiments
demonstrated that p = 3 provides a good compromise.
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Figure 37

Toy problem 1: inputs of the design space, support areas and load region

The output of the algorithm is a list of nodes that can be visualized by using the script developed
in GHpython. The result for this test case is obtained after 9 iterations. Although the result is not
symmetrical, it seems logical. And the compliance got minimized.
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Figure 38

Toy problem 1: input geometry

Figure 39

Toy problem 1: output geometry and its section
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Figure 40

Toy problem 1: compliance outputs
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Toy problem 2

In order to further develop the algorithm that can be used in architectural design, the void needs to be
added. Similar to previous test, the material properties are the same. For the external load, live loads is
also added in this case. The design domain is 2 ⇥ 1 ⇥ 1m in this case.

Figure 41

Toy problem 2: material properties, design domain and applied load

After filling the design space with the tessellation pattern, the next is to compute the void. This needs to
be done before constructing the dual graph. The centroid of blocks are detected and if they locate within
the void region, the blocks would be delected. Then the network can be built.

With penalty equals 3 and 0.7 as mass fraction, the result seems reasonable. This is achieved by fixing
ceiling and the area that applying external load. The compliance is convergence at the 13rd iteration. As
it was shown in the horizontal sections, at the lower level where normally consider as columns, still not
symmetric. This can probably caused by the tessellation pattern.

However, since the ceiling is fixed in this case, those blocks that above the void height can not be
removed. When trying to release the fixed ceiling, the design variables �e result in almost the same
density except for the fixed blocks. And it is not reasonable to remove the blocks with lower density
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Figure 42

Toy problem 2: inputs of the design space, void, support areas and load region

Figure 43

Toy problem 2: horizontal sections through the topology optimization result
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Figure 44

Toy problem 2: output geometry

Figure 45

Toy problem 2: output geometry elevation



54 Q.CHEN

Figure 46

Toy problem 2: compliance outputs

when the density is really closed with each other. The reason why this situation occur might be the last
step of the topology optimization loop, namely softening after using the softmax function. The last part
of the mathematical theory needs to be redeveloped to avoid this sort of problems.

Also, the traditional OC method that used in SIMP was tried. However, this result in a worse situation
including the compliance increasing and the design variable can not be controlled between 0 and 1. The
result for this happened still can not be figured out.
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4. Conclusion

The graduation topic is Topology Optimization for Discrete Funicular Structure, within the scope of
the Genesis Lab topic Structural Topology Optimization. It is part of the research framework of Chair
Design Informatics, within the track of Building Technology. This graduation project seeks to use
the computational method to bridge structure mechanics, architecture design and computer science.
It proposes a method for architects to generate funicular structures by providing a more e�cient and
integrated workflow. The aim of this project is to develop a topology optimization methodology as a
generative design process for configuring masonry structures consisting of stackable interlocking blocks
modelled as discrete elements using the Discrete Element Method by approximating its mechanical
behaviours.

Topology optimization is widely known as a methodology for generating geometrically elaborate
structures, which typically minimize the use of the material. These approaches typically use the Finite
Element Method to formulate and solve the governing di↵erential equations for computing their objective
functions, assuming that the structure to be designed is a virtually continuous distribution of material
that is refinable within a continuum. However, at a more general level, the idea of topology optimization
can also be applied to inherently discrete problems by creating an algorithm based on Discrete Element
Modelling.

The relationship between research and design

The first phase is broad research on topology optimization applied in structural design and understanding
discrete element modelling. From these initial studies, the topic is able to narrow down and have a
potential method to formulate the mechanical behaviours of the block. Since topology optimization was
born for continuous material, most papers are based on it. The DEM-based topology optimization is state
of the art, with very little research done so far. The Discrete element topology optimization provided a
framework for combining DEM and topology optimization. However, applying to building scale has not
been explored before, which makes this graduation topic full of challenges and experimental. Therefore,
it is essential to understand convex optimization algorithms and find a proper solver for this project.
Also, the mathematics and algorithms of Discrete element modelling need to be studied in order to
approximate the mechanical behaviours between pairs of particles.

Method and argumentation

In achieving the objective of this, several sub-objectives are created. The first sub-objective is about
how to configure the interlocking blocks. Several network systems are explored with the concept of the
topological interlocking system for designing the space-filling system. Then, structural analysis is done
to understand the mechanical behaviours of blocks and to finalize the general space-filling system. A
connected cloud of particles represents a redefined structural network to discretize space by colouring the
voxel grid. The current colouring method considered all the blocks to have the same dimension, which
might cause structural ine�ciency. The way to colour voxels can have a better solution to improve the
structural performance. For example, the height of blocks at the lower layer could be larger.
In the numerical implementation process, the main target is to find the displacement value and sti↵ness

matrix. Various methods to formulate the function are explored, and in the final version, a method
developed based on the force-density method is used. The benefit of this method is that the self-weight
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Figure 47

improve colouring voxel configuration

can easily be added to the nodes, which is usually a complex problem to solve in the FEM-based
Topology Optimization method. To apply discrete element modelling, the formulation of the sti↵ness
matrix is separated into three degrees of freedom, which might make the code more complicated. Another
approach based on FEM to get the three-dimensional sti↵ness matrix can be explored to simplify the code.

After the numerical implementation, where each particle stores geometrical and mechanical data of
blocks, the second phase is to assemble a topology optimization algorithm, using the gradient-based
method adapted to work with the DEM-based governing equation and objective function and related
gradient equation. The K matrix in compliance with Eq.20 only accounts for the sti↵ness acting on
the edge direction, which is the normal sti↵ness. It would be better to take the shear sti↵nesses in the
perpendicular direction of the normal vector into account to have a more accurate result. Also, the
constraints for the topology optimization process are standard operations. It is also possible to consider
the friction and shear constraints since, in reality, the blocks are interlocking. According to the limit
analysis of masonry, friction and shear constraint applied at block interfaces provides better insight into
what happens in the contact area and give a better result.

The gradient-based method proposed in this research has a issue that the design variables might
end up to the same value that related to the volume fraction. The mathematical function still needs
to improve to avoid this problem. Another topology optimization solver in the typical SIMP method
is the most popular and fundamental one, called Optimality Criteria, with a shorter calculation time.
This technique is also be tested by changing part of the algorithm to adapt to proposed DETO method.
However, OC method also fail in minimizing the compliance.

Discussion
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Since the scale of toy problem 1 is too small to have a comparable with other results, we compare the
result of toy problem 2 with a case that similar to this, which generated by using a commercially available
softeware Ansys based on SIMP method. This case was done by Ivan during her thesis (Avdić, 2019).
Although the design domain is slightly di↵erent, it is easily to tell that the geometry is similar. The
loaded area remained unchanged, which is almost the same as toy 2 result. The columns is visible and
the upper half of the geometry seems alike. However, the lower part seems have more material removed
around the ceiling, which is also what I expect to happen. Therefore, for the mathematics and algorithm
design, it is fair to say that still have to be improved.

Figure 48

toy problem 2 output

Figure 49

Ansys results for the case generated by Ivan (Avdić, 2019)

Applicability

The main research question was "How to implement discrete building blocks into the topology optimiza-
tion to design funicular structures for architecture applicable for later construction processes?". This
thesis provides a solution to it. The proposed methodology allows designers to find static equilibrium
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configurations for funicular structures defined by their desired space by minimizing interaction energy
between blocks. The masonry structure can be constructed basically following the configuration of each
layer, which is the output of the Discrete Element Topology Optimization. Designers can also optimize
the blocks’ shape to decrease further the material used.

Figure 50

application

The objective of this research is to design a topology optimization method based on the DEM approach.
The process is devised to result in funicular structures that can be built using a limited set of modular
masonry blocks with the aim to lower the costs of production in terms of embodied carbon, monetary
costs, and construction labour on the one hand and to increase the reuse and reconfigurability potential
of the stackable blocks by seeking utmost modularity in the topological design of the underlying 3D
tiling/tessellation.

It is urgent to transit the construction industry toward a more sustainable future in this era. This
graduation topic from the Building Technology track gave me an opportunity to explore such a novel
and experimental topic, which is full of challenges and unknowns. I am full of passion for developing
an approach that can provide a more sustainable solution for masonry structural design. Since this topic
has not been explored on the building scale, it is important to first understand the theory behind both
Topology Optimization and Discrete Element Method technique. Before this thesis, I knew nothing about
topology optimization, graph theory, DEM, FEM and the relevant mathematical operations. Also, there
is no python code I can refer to, so I learned all the necessary python libraries to achieve my objective.
To sum up, I really learned a lot during my thesis project and still have deeply interested in this topic. As
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I discussed in the previous part, there are many places that can be improved; I think I would continue
working on it to enhance the mathematical design and have a simpler code.
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