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Summary

Wind and solar energy are often proposed as solutions to the urgent energy challenge the
world faces today. As a consequence of fundamental constraints on conventional wind
turbines new concepts are being explored that are able to harvest the more powerful
and steady winds at higher altitudes. One of these concepts is the pumping cycle kite
power system. It uses a lightweight airborne flying wing connected by a tether to a
drum/generator module at a ground station. During the traction phase the wing flies
figure eight trajectories to obtain a high effective velocity. The tether reels out resulting
in a rotating motion of the drum which can be converted to electrical energy by the
generator. Using a low-traction mode, the wing reels in during the retraction phase using
only a fraction of the power produced. Compared to conventional wind turbines much
less material is required, which indicates the low-cost potential of kite power systems.

To estimate the potential mechanical power generation by pumping cycle kite power sys-
tems a theoretical analysis is preferred to establish the fundamental relationships between
system and operational parameters on the one hand, and the achievable mechanical power
output on the other hand. Such an analysis can also be used to balance the size of var-
ious system components, to set research and development priorities or to optimize the
operation for different wind conditions. In combination with a cost model a business plan
could be set up and the expected low-cost potential of kite power systems might become
more certain, potentially lowering the risks for investors.

Similar to studies by Loyd (1980) and Argatov et al. (2009) it is assumed that the in-
stantaneous flight state of the kite can be approximated by a quasi-steady equilibrium.
Combining existing approaches a compact theory is established which covers the gen-
eral case of controlled flight along an arbitrary, predefined trajectory with varying tether
length. From this theory follows the power harvesting factor ζ which measures the obtain-
able instantaneous traction power relative to the instantaneous wind power covered by the
projected surface area of a wing. It follows that the optimal reeling velocity is one-third
of the wind velocity projection onto the tether This means that when the kite deviates
from the wind centre, the tether reeling velocity should be lower to obtain maximum
instantaneous traction power. It also follows that by optimizing C3

R/C
2
D the aerodynamic

performance for maximum instantaneous traction power can be improved.
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vi Summary

During a straight flight the gravitational and inertial forces are significantly lower than
the aerodynamic force, such that the influence on the force equilibrium is rather small.
However the impact of gravitational and inertial forces on the flight condition and more
specifically on the kinematic ratio κ is significant. The equilibrium flight condition follows
from an iterative solution for the kinematic ratio. Assuming a gravitational force only,
an approximation of the kinematic ratio follows from the force equilibrium in direction
of the kite velocity. A high gravitational force relative to the aerodynamic force greatly
affects the possible operational conditions.

A tether mass can be taken into account by adding a fraction to the kite mass resulting
in an effective gravitational force. In a similar way a fraction of the integral tether drag
can be added to the aerodynamic drag of the kite resulting in an effective drag coefficient.

The theoretical analysis is applied to the specific trajectory of a pumping cycle. The
traction phase is characterized by a figure eight trajectory which can be described by a
parametric equation of a special type of Lissajous figure. It follows for a specific case that
the mean power during a figure eight trajectory is approximately 90% of the instantaneous
power that can be obtained for a horizontal, straight flight at a mean elevation and
azimuth angle.

The retraction trajectory can be described by a differential equation. A simulation of
the retraction phase illustrates the importance of a good depower capability of the kite.
A low lift-to-drag ratio minimizes the required power, but also the kite tends to move
to its equilibrium position which is at a higher elevation angle for a higher lift-to-drag
ratio. It follows that after reeling in the kite to its initial tether length, another transition
phase is required to bring the kite to its initial elevation angle resulting in a characteristic
pumping cycle trajectory.

Kite power systems have a lot of operational freedom. Arbitrary operational conditions
might not illustrate the potential power generation, therefore an optimal operation can
be approximated by some effective assumptions. It follows that the Mutiny kite with a
projected surface area of 16.7 m2 is already too large for the current TU Delft system
and the main constraint is the maximum force given by the ground station size, which
limits the tether force during the traction phase. Using a smaller kite (S = 12 m2) the
kite power system can produce around 9 kW already at a wind velocity of 7 m/s at a
reference height of 10 m. For a potential 50 kW system the maximum system force should
increase to around 20 kN. Increasing the maximum force is inevitable when scaling the
system since the reeling velocity is physically limited by the wind velocity.
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Chapter 1

Introduction

A global transition to sustainable energy is one of the most urgent challenges mankind
faces today. Energy is essential for the welfare of a society, but currently the supply
of energy almost exclusively relies on the combustion of fossil fuels, which are limited.
While at the same time there is a continuous increase in energy demand. The trend of
rising oil prices continues and the energy supply of OECD countries increasingly depend
on the export of autocratic and sometimes politically unstable countries (Colgan, 2011).
Also there is the climate change issue caused by the excessive exhaust of greenhouse gases
exposing people to health and environmental risks (Li, 2005).

Wind and solar energy are often proposed as a solution to the energy challenge. If these
technologies should fill the gap between demand and supply in the future for a plausible
worst-case scenario, the growth rate should be similar to that already achieved for the
global mobile phone systems or the national express way network in China according to
Leggett and Ball (2012). These technologies took respectively 11 and 13 years to grow
from 10 % to 90 % market penetration, which indicates the potential rapid growth of
wind and solar energy technologies in the near future.

The horizontal axis wind turbine (HAWT) is by far the most common wind energy tech-
nology. In the last decades the technology improved enormously and thereby the size
grew significantly. The main incentive to increase its size is to place the rotors in higher,
more energetic and stable winds at greater elevations (Thresher et al., 2007), which leads
to significantly higher capacity factors and an increase in power output. However, the
required volume of material, and therefore its mass and costs increase even faster. At
some point it is not economical beneficial to further increase its size.

As a consequence many new concepts are being explored that are able to harvest wind
energy at higher altitudes. These technologies are referred to as airborne wind energy
(AWE) technologies. One of these concepts is the pumping cycle kite power system (PC-
KPS) currently developed by the Technical University of Delft. It uses a lightweight
airborne flying kite which is connected by a tether to a drum/generator module at a
ground station. During the traction phase the kite flies crosswind such that a high effective
velocity and a high traction force is obtained. The tether reels out resulting in a rotating

1



2 Introduction

motion at the drum which can be converted to electrical energy by the generator. At some
point the kite is reeled in again to create a continuous cycle. This happens during the
retraction phase. The kite is depowered such that less power is required than is produced
during the traction phase. In this way netto power is pumped from the wind during one
cycle. Hence, the pumping cycle kite power system.

The outermost parts of a HAWT’s rotor blades are responsible for the majority of the
energy produced due their high effective velocity. When compared to a PC-KPS one could
say that these are replaced by a crosswind flying kite and that the generator is placed on
the ground. In this way the bulky load-bearing structure is not required, which indicates
a low-cost potential. Also the system can be mobile which might be useful for power
generation on remote locations without electricity services e.g. festivals or developing
countries.

Expectations are that the PC-KPS developed by the Technical University of Delft will get
commercial in the near future. Development in the last five years led to a more defined
idea of what the final product is going to look like. Trade-offs where made, certain
development paths were taken and the time is right to start thinking more commercially.
The current system is around 20 kW, but the next target is a 50 kW system. The MW-
market is probably the largest market out there, but there might be a huge potential on
the 50-100 kW market as well. It would also be a perfect target for a first commercial
introduction. From an engineering perspective it is ideal to slowly scale up the system to
avoid the risk of taking wrong development paths and to fully understand the fundamental
technology.

Kite power technology has the potential to have low costs, especially compared to con-
ventional wind turbines. There is however no hard data on this yet. A research into
the potential power production of kite power systems is essential to present a product to
possible consumers. Also in the current developing phase such a research could help to
involve possible investors and consumers by illustrating the potential of the system.

This thesis presents an theoretical analysis of the mechanical power generation by pump-
ing cycle kite power systems. The objective is to establish the fundamental relationships
between system and operational parameters on the one hand, and the achievable mechan-
ical power output on the other hand. It is assumed that the instantaneous flight state of
the kite can be approximated by a quasi-steady equilibrium. The analysis covers the gen-
eral case of controlled flight along an arbitrary, predefined trajectory with varying tether
length. Also the specific case of the characteristic pumping cycle trajectory is covered to
estimate the mechanical power generation by pumping cycle kite power systems.

The literature study in Chapter 2 provides a background by describing the different
aspects of the energy challenge and the current situation of wind energy technology. The
concept of a PC-KPS is further explained and in detail the system developed by the TU
Delft. Finally existing theoretical models are discussed. Chapter 3 combines existing
approaches and describes a compact fundamental theory for kite power systems. The
effect of gravity and inertia is studied in Chapter 4. Note that the majority of Chapter
3 and 4 is also covered in Schmehl et al. (2013). In Chapter 5 a simplified analytical
tether model is established to complete the theoretical framework, which is applied to the
traction phase, the retraction phase and the total pumping cycle in Chapters 6, 7 and 8
respectively. Conclusions and recommendations follow in Chapter 9.



Chapter 2

Literature study

2.1 Global energy situation

Energy has an important role in our society. Welfare is strongly related to energy con-
sumption. Figure 2.1 illustrates this by comparing the GDP (PPP) per capita to the
energy consumption per capita for different countries.1

Currently the world faces an urgent energy challenge. First of all there is a continuous
increase in energy demand as is shown in Fig. 2.2. Although the energy demand in
OECD countries barely rises, the central scenario in IEA (2012b) shows an increase in
energy demand of one-third over the period to 2035. China, India and the Middle-East
account for 60 % of its increase. In this scenario the use of sustainable energy technologies
increases, but the majority of the energy demand is still met by the combustion of fossil
fuels. Figure 2.3 shows the shares of energy sources in the world total primary energy
supply from 1971 to 2010.

At the same time as demand rises, the energy production almost exclusively relies on
the combustion of limited fossil fuels. When fossil fuels will be depleted is uncertain
(Höök and Tang, 2012). Many different estimation are found in the literature. Sorrell
et al. (2012) states ’more than two thirds of current crude oil production capacity may
need to be replaced by 2030, simply to keep production constant.’ While both scenarios
in Shell (2008) show a more optimistic result: from 2010 to 2030 fossil fuel production
increases. However, it also clearly illustrates peaking of oil production around 2035 and
also BP (2010) projects that the rate of production growth slows before 2030. IEA (2008)
states ’The world’s total endowment of oil is large enough to support the projected rise in
production beyond 2030’ in its reference scenario. Aleklett et al. (2010) in return argues
that the production forecast of IEA (2008) is significantly overstated. Leggett and Ball
(2012) combines a total of 68 plausible worst-case scenario fossil fuel peak estimates. Its
results are shown in table 2.1.

1Iceland is not displayed because its electricity consumption per capita is exceptionally high: 51.4
MWh.

3



4 Literature study

United States

Qatar

Norway

Netherlands

Luxembourg

KoreaItaly

FinlandDenmark
Canada

G
D
P
(P

P
P
)
p
er

C
ap

it
a
[(
20
05

U
S
D

)/
ca
p
it
a]

Electricity Consumption [MWh/capita]
0 5 10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

Figure 2.1: Linear relation between electricity consumption and GDP per capita. The figure
is produced by using data from IEA (2012a).
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Figure 2.2: The world total final energy consumption in Mtoe from 1971 to 2010 by re-
gion. Data prior to 1994 for biofuels and waste final consumption have been
estimated. **Asia excludes China. ***Includes international aviation and inter-
national marine bunkers (IEA, 2012a).

Besides a rising energy demand and a decreasing production of energy from fossil fuels
in the future, OECD countries will increasingly depend on oil being produced from auto-
cratic and sometimes politically unstable countries (Colgan, 2011). Figure 2.4 shows the
declining share of oil production by OECD countries. Research by Colgan (2011) states
that a high oil income in revolutionary states are a toxic combination for international
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Figure 2.3: The world total primary energy supply in Mtoe from 1971 to 2010 by region.
*Other includes geothermal, solar, wind, heat etc. (IEA, 2012a).

Fossil fuel type Number of Peak year estimates
estimates

Average Standard
years deviation(years)

Conventional oil 28 2016 12.8
Conventional plus 17 2022 18

unconventional oil
Gas 9 2022 9.4
Coal 7 2049 25.9
All fossil fuels 7 2028 8.5

Table 2.1: Literature fossil fuel peak year estimates Leggett and Ball (2012).

peace and security. To secure supply of oil, OECD countries are involved in many op-
erations in oil-producing regions spending a substantial amount of public wealth. These
should be seen as external costs adding up to the oil price. Incentives for e.g. the Iraq
security operations become clear by IEA (2012b): it projects that Iraq will make the
largest contribution by far to global oil supply growth. Without this contribution the oil
price would rise substantially and the markets would set up for difficult times.

Although there was a large drop in the oil price in 2008, the increasing trend continues
IEA (2012a). Due to higher oil prices the cost of subsidies for fossil fuels increased by 30
% from 2010 to 2011. The costs amount to $523 billion dollar, which is six times more
than for sustainable energy technologies (IEA, 2012b).

Another issue that comes with the almost exclusive reliance on fossil fuels is the excessive
exhaust of greenhouse gases. Measurements published by NOAA (2012) and IPCC (2012)
show an increase in CO2-concentration of 318 ppm in 1960 to over 390 ppm in 2012. IEA
(2012b) states that ’no more than one-third of proven reserves of fossil fuels can be
consumed prior to 2050 if the world is to achieve the 2◦C goal, unless carbon capture and
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Figure 2.4: OECD democracies’ percentage share of the world’s oil production, 1980-2030.
Colgan (2011)

storage (CCS) technology is widely deployed’.

Li (2005) argues that an almost exclusive reliance on a single energy system inevitably
creates a burden on the environment and eventually leads to weakening or even failure of
particular aspects. Thereby it exposes human life to health and environmental risks (Li,
2005), which creates additional external costs to the use of fossil fuels. However these
costs are often long term and difficult to estimate. Without strong environmental policies
the investment in sustainable energy technologies is very likely to be less than would be
socially desirable (Jaffe et al., 2005).

A fully sustainable energy system can be achieved by diversification and localization (Li,
2005). Many energy resources can be used, e.g. solar, wind, geothermal, wave, tidal, such
that the adverse impacts on the environment are small. Diversified and localized energy
systems can also provide security of supply in contrast to the current centralized system.

2.2 Wind Energy

Wind energy together with solar energy are often proposed as substitutes for fossil fuels.
According to GWEC (2010) in 2009 the total installed wind power capacity was almost
200 GW accounting for about 2.5 % of the global electricity production. GWEC (2010)
further estimates this will increase to 573 GW in 2030 in a conservative scenario and to
2342 GW in an optimistic scenario which would correspond to a 5.6 % and 21.6 % of the
global electricity production.

Leggett and Ball (2012) investigates the required growth rate of wind and solar energy
technologies to substitute depleting fossil fuels in a plausible worst-case scenario such
that the energy demand is still met. Figure 2.5 illustrates that the growth rate of wind
and solar energy technology should be much larger than the conventionally projection of
the European Commission in 2006 to meet the energy demand in the future. Leggett
and Ball (2012) found that the required growth rate should be similar to the growth rate
already achieved for the global mobile phone system or the national express way network
in China. These technologies took respectively 11 and 13 years to grow from 10 % to 90
% of market penetration. It shows the potential large growth of wind and solar energy
technologies in the near future.
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Figure 2.5: Energy demand and supply gap (Leggett and Ball, 2012).

Jacobson and Archer (2012) shows that the maximum theoretical wind power potential,
or saturation potential at 100 meter altitude globally is approximately 80 TW over land
and greater than 250 TW in total. So there is no fundamental barrier to obtain the
all-purpose end-user power demand in 2030 from wind power.

In the last decades wind turbine technology improved enormously and thereby its size
grew significantly. Currently typical commercial wind turbines have three bladed rotors
with diameters up to 90-100 meters atop of towers with hub heights around 80 meters
(Fagiano, 2009). Large commercial wind turbines are typically able to produce 1.5 to 3
MW of electricity (Fagiano, 2009). Figure 2.6 shows a power curve of a typical commercial
wind turbine with a cut-in wind velocity around 3.5 m/s at which it starts to produce
energy. At around a wind velocity of 14 m/s the wind turbine reaches its rated power of
2 MW. At a wind velocity above 25 m/s the structural loading becomes too high and the
wind turbine blades are pitched to stop power production.

The main incentive to increase in size is to take advantage of the wind shear, by plac-
ing the rotors in the higher, much more energetic and steady winds at higher altitudes
(Thresher et al., 2007). At these winds, system capacity factors could increase signifi-
cantly (Schmehl, 2012b). However, there are constraints to the continuous growth of wind
turbines. Thresher et al. (2007) roughly explains this by the statement: ’as a wind turbine
rotor increases in size, its energy output increases as the rotor swept area (the diameter
squared), while the volume of material, and therefore its mass and cost, increases as the
cube of the diameter’. Thus although an increase in size is possible, at some point it is
not economical beneficial any more. Besides this, transportation and construction can
become quite challenging. Although Siemens latest offshore wind turbine already has a
rated power of 6 MW (Siemens, 2011), experts do not expect onshore turbines to grow a
lot more than 5 MW (Thresher et al., 2007).
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Figure 2.6: Power curve of a commercial 90 m, 2 MW rated power wind turbine (Fagiano,
2009).

2.3 Pumping cycle kite power system

As a result of the constraints on HAWTs new concepts are explored that are able to
harvest the energy from the wind at higher elevations. These technologies are referred to
as airborne wind energy (AWE) technologies or high altitude wind energy technologies.
Currently more than 40 institutions are active in the research and development of AWE
technology (KitePower, 2013). There is a wide technological diversity between AWE
concepts, but the commonality is that the tower of the conventional wind turbine is
replaced by a tether to which an airborne flying device is attached. These flying devices
can be among others kites, gliders or aerostats. Also a variety of methods exist to transfer
the power or forces to the ground. A clear distinction can be made between concepts with
a generator on the ground and those with an airborne generator (Schmehl, 2012b).

The Wind Energy group of the Technical University of Delft (KitePower, 2013) is de-
veloping a pumping cycle kite power system. Also other companies and institutions e.g.
KiteGen (2013), SwissKite (2013) and EnerKite (2013), are developing a similar system.
The concept is illustrated in Fig. 2.7. Compared to a HAWT the bulky load-bearing
structure is not required. The outermost parts of a HAWT’s rotor blades are responsible
for the majority of the energy produced due their high effective velocity. These are re-
placed by a crosswind flying kite connected by a tether to a drum/generator module at
the ground station, which is able to reach the higher wind velocities at higher altitudes.

The concept of flying crosswind to obtain a high effective velocity was first explored by
Loyd (1980). The analysis indicates a theoretically possible instantaneous traction power
of 6.7 MW using a 567 m2 kite at a wind velocity of 10 m/s. The crosswind concept
is applied by flying figure eight trajectories during the traction phase such that a high
effective velocity and a high traction force is obtained. The tether reels out resulting in
a rotating motion at the drum which is converted to electrical energy by the generator.
At some point the kite is reeled in to create a continuous cycle. This happens during
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Figure 2.7: Kite power system concept (Schmehl, 2012a).

the retraction phase where the generator is used as a motor. Using a low-traction flight
mode of the kite and reeling in at high speed, only a fraction of the energy produced in
the traction phase is consumed (Schmehl, 2012b). This pumping cycle is continuously
repeated.

The two phases of a pumping cycle are illustrated in Fig. 2.8. The characteristic mechan-
ical power and energy output are illustrated in Fig. 2.9 using the example of the PC-KPS
developed by the TU Delft. About 18 kW is produced during the traction phase, while
the consumed power during the retraction phase is 7 kW maximum. The result is an
average mechanical power production around 5.7 kW and an increasing amount of energy
produced (van der Vlugt et al., 2013).

Wind

Reel-out (traction) phase:
energy generation

Reel-in (retraction) phase:
energy consumption

Figure 2.8: Working principle of the pumping cycle kite power system (van der Vlugt et al.,
2013).

A kite power system has a low cost potential, because as a result of an optimal functional
separation little material is required, especially when compared to a HAWT. Also the sys-
tem can be mobile, which makes it possible to generate power at remote locations without
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Figure 2.9: Typical mechanical power and energy output of a pumping cycle kite power
system (van der Vlugt et al., 2013).

electricity services e.g. festival, disaster areas or developing countries. Furthermore a kite
power system has a low visual impact, because the kite flies at high altitudes.

2.4 Kite power system of the Technical University of Delft

The PC-KPS developed by the Technical University of Delft is described in detail in
van der Vlugt et al. (2013). The system components of the 20 kW demonstrator are
illustrated in Fig. 2.10. The kite, the kite control unit, the tether and the ground station

Kite
Sensor
Unit

Bridle Line
System

Kite
Control
UnitTraction

tether

Drum/Generator
ModuleControl

Center
Battery
Module

Power
Electronics Ground

Station

Airborne
Components

180m - 400m

20kW

25m2

¶

·

¸¹

Wind Meter

º

Figure 2.10: System components van der Vlugt et al. (2013).

are discussed in more detail in the subsequent subsections. Figure 2.11 shows the system
operating at its test locations.
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Figure 2.11: The 20kW ground station fitted with the regular 25m2 kite at the Valkenburg
test site (left, photo: Max Dereta) and with a small 14m2 kite for peak wind
speeds up to 17m/s at the Maasvlakte 2 test site (right) (van der Vlugt et al.,
2013).

2.4.1 Kite

An energy producing kite should have a high lift-to-drag ratio to optimize power produc-
tion. Also a structural capacity is required to carry high loads for high reel out tension,
for fast reel in velocities and for withstanding gust load. A good depower capability i.e.
the ability to fly at a low angle of attack is required to minimize power consumption
during the retraction phase. The lifetime should be long to minimize operational costs.
Furthermore the kite ideally should be scalable such that the technological knowledge can
be used for various system sizes. The most frequently used kite is the Mutiny: a 25 m2

supported leading edge tube kite. Its specifications are given in table 2.2.

Property Value Unit

Flat surface area 25 m2

Projected surface area 16.7 m2

Flat aspect ratio 4.6 -
Projected aspect ratio 2.7 -
Number of struts 7 -
Maximum allowed load 5500 N
Mass (incl. bridle) 11.49 kg

Table 2.2: Mutiny kite specifications (KitePower, 2013).

Mutiny is made of flexible structures. Internal pressure is used to maintain its desired
shape. KitePower (2013) lists the following advantages of flexible structures.

• Can crash without having damage to the system
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• More safe to operate for the people on the ground

• Lightweight

• Small in volume for transportation

• Cheap materials

• Cheap in production

and the following disadvantages

• Shorter lifespan

• Modelling the aerodynamic behaviour is challenging

• A lower lift-to-drag ratio compared to a rigid wing in general

Figure 2.12: Swivel together with the tether in the sky(left) and the Mutiny, bridle system
and kite control unit(right) (van der Vlugt et al., 2013).

The Mutiny kite together with its bridle system is shown in Fig. 2.12. The bridle system
takes care of transporting the aerodynamic loads to the tether and maintaining the shape
of the kite.

2.4.2 Kite control unit

The kite control unit (KCU) shown in Fig. 2.12 is located between the bridle system and
the tether. It can be controlled manually or automatically from the ground using wireless
communication. The power lines change the angle of attack of the kite. The steering
lines can cause a dissimilarity in the shape of the kite resulting in a yawing motion. Since
controlling the kite’s orientation is taken care of by the KCU, only one tether is required
that connects the airborne system to the ground station. Using multiple lines from the
ground for steering would obviously significantly increase the total tether drag.
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2.4.3 Tether

The tether shown in Fig. 2.12 is a Euroneema High Molucular weight Poly Ethylene
rope produced by Lankhorst Ropes. Specification are given in table 2.3. Due to the little
experience of this material in specific operational conditions of a kite power system the
lifespan is unknown.

Property Value/description Unit

Material Dyneema SK75 -
Construction 16 strands plaited hollow braid -
Diameter 4 mm
Mean breaking load 13.5 kN
Mean breaking strain 3.5 %
Mass 0.91 kg/100 m
Length 1000 m

Table 2.3: Tether specifications KitePower (2013).

2.4.4 Ground Station

The ground station (see Fig. 2.13) consists of the following components

• Motor-generator

• Drum, synchronous belt, gearbox

• Spindle motor with gearbox and worm drive

• Pulleys, force sensor

• Control system

• Electrical power system

• Battery

Its specifications are listed in table 2.4.

Property Value/description Unit

Maximum reeling reel-out velocity 8 m/s
Maximum reeling reel-in velocity 8 m/s
Nominal force 3924 N
Maximum tether length 1000 m
Motor/generator 18 kW
Inverter 240V AC -
Battery 20 kWh LiFePO4 -

Table 2.4: Ground station specifications (KitePower, 2013).
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Figure 2.13: Ground station on trailer with tether running into the sky(left) and
drum/generator module mounted on transverse sled(right) (van der Vlugt
et al., 2013).

2.5 Theoretical models

This section covers several existing theoretical models, starting with a wind shear model
in subsection 2.5.1. In subsection 2.5.2 a basic theory for wing aerodynamics is dis-
cussed. Existing analytical models for kite traction power are discussed in 2.5.3. Finally,
subsection 2.5.4 covers the equation for catenaries. Note that subsection 2.5.2 and the
introduction of subsection 2.5.3 use texts directly from Schmehl et al. (2013).

2.5.1 Wind shear

A wind shear profile can be modelled by the logarithmic wind law

vw = vw,ref
ln(h/z0)

ln(href/z0)
(2.1)

which can be used to approximate the wind velocity vw at height h when a reference wind
velocity vw,ref is known at reference height href (Stull, 2000). The aerodynamic roughness
length z0 is a measure for the surface roughness. Classifications for the aerodynamic
roughness length are listed in table 2.5.

Figure 2.14 illustrates influence of the aerodynamic surface roughness length z0 on the
wind shear model for the example of a reference wind velocity of 5 m/s at a reference
height of 10 m.

2.5.2 Wing aerodynamics

The integral aerodynamic force Fa generated by a flying wing experiencing an apparent
wind velocity va is approximated as the sum of a lift vector L perpendicular to va and a
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Aerodynamic roughness Classification Landscape
length z0 [m]

0.0002 sea sea, paved areas,
snow-covered flat plain,
tide flat, smooth desert

0.005 smooth beaches, pack ice,
morass, snow-covered fields

0.03 open grass prairie or farm
fields, tundra, airports, heather

0.1 roughly open cultivated area with low crops
& occasional obstacles (single bushes)

0.25 rough high crops, crops of varied height,
scattered obstacles such as
trees or hedgerows, vineyards

0.5 very rough mixed farm fields and forest
clumps, orchards, scattered buildings

1.0 closed regular coverage with large size
obstacles with open spaces roughly
equal to obstacle heights, suburban
houses, villages, mature forests

≥ 2 chaotic centres of large towns
and cities, irregular forests
with scattered clearings

Table 2.5: The Davenport-Wieringa roughness length classification Stull (2000).
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Figure 2.14: Logarithmic wind shear model for vw,ref = 5 m/s at href = 10 m.
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drag vector D parallel to va
Fa = L + D, (2.2)

with the magnitudes of these force vectors represented as

L =
1

2
ρCLv

2
aS, (2.3)

D =
1

2
ρCDv

2
aS, (2.4)

where CL and CD are the aerodynamic lift and drag coefficients, respectively, ρ is the air
density and S the surface area of the wing projected in the direction of the lift vector.
The apparent wind velocity is defined as the relative velocity at the wing

va = vw − vk, (2.5)

with wind velocity vw and kite velocity vk.

2.5.3 Kite traction power

Using the traction power of a tethered wing for large-scale electricity generation was first
explored by Loyd (1980). The simplified steady flight analysis is restricted to the down-
wind direction and distinguishes two fundamental modes: the simple kite which is moving
only as a result of the extending tether, and the crosswind kite which is flying transverse
to the wind velocity. Using the terminology introduced by Wellicome (1985), these modes
can also be referred to as the non-manoeuvring kite and the manoeuvring kite. Neglect-
ing mass and assuming a straight tether, Loyd (1980) derives analytic expressions for
the traction power when operating the simple kite at a constant elevation angle and the
crosswind kite in the horizontal ground plane. An often quoted result of this study is the
optimal reeling velocity calculated as 1/3 of the wind velocity.

Wellicome (1985) investigated the use of kites for ship propulsion. Assuming a straight
tether of constant length, the steady flight analysis considers manoeuvring of the kite on
a spherical surface. Wellicome presents results for the amplification of the driving force
by flying the kite in figure of eight manoeuvres. These theories were generalized in sub-
sequent studies, suspending several of the original simplifying assumptions (Houska and
Diehl, 2007; Argatov et al., 2009).

In the remainder of this section, the studies by Loyd (1980) and Argatov et al. (2009)
are discussed in more detail. The result of both studies can be presented by the power
harvesting factor ζ, which its definition is well described in Diehl (2013). It compares the
power P generated by a wing with projected surface area S to the wind power flowing
through a cross sectional area S. It is defined as

ζ =
P

PwS
, (2.6)

with wind power density

Pw =
1

2
ρv3w. (2.7)

The dimensionless parameters that are used throughout this thesis are listed In Appendix
A.
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Loyd (1980)

The non-manoeuvring kite mode illustrated in Fig. 2.15 describes an elevated kite with
reeling velocity vt. The Xw-axis of the wind reference frame points in direction of the
wind velocity and the Zw-axis is directed towards the zenith. The apparent wind velocity
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Figure 2.15: Non-manoeuvring kite

is

va = vw − vt. (2.8)

Assuming a quasi-steady flight condition and neglecting a weight force the following force
equilibrium holds

Ft = L + D. (2.9)

Using the fact that the tether force Ft is aligned with vt, D is aligned with va and L is
perpendicular to D it is derived that

Ft
qS

= CL

[√
1 +G2(1 + f2)− f

]2
√

1 +G2
, (2.10)

with dynamic wind pressure

q =
1

2
ρv2w, (2.11)
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reeling factor

f =
vt
vw

(2.12)

and lift-to-drag ratio

G =
L

D
. (2.13)

Multiplying with the tether velocity results in the power harvesting factor for the simple
kite

ζ = CLf

[√
1 +G2(1 + f2)− f

]2
√

1 +G2
, (2.14)

where the definition of the power harvesting factor given in Eq. (2.6) is used.

The manoeuvring kite mode shown in Fig. 2.16 describes a non-elevated kite flying with
a high tangential kite velocity vk,τ . The apparent wind velocity becomes

Yw

Xw

L

D

Ft

vw − vt

va

vk,τ

Figure 2.16: Manoeuvring kite

va = vw − vt − vk,τ . (2.15)

Again the triangle similarity between the velocity and force diagram is used from which
follows

vk,τ = G(vw − vt) (2.16)
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and when additionally assuming va ≈ vk,τ and Ft ≈ L it follows that

Ft
qS

= CLG
2(1− f)2. (2.17)

The power harvesting factor for the crosswind kite becomes

ζ = CLG
2f(1− f)2. (2.18)

Optimizing with respect to the reeling factor results in

ζopt =
4

27
CLG

2, (2.19)

which occurs at

f =
1

3
. (2.20)

As a conclusion Loyd (1980) shows that the optimal power harvesting factor is much larger
for the manoeuvring kite than for the non-manoeuvring kite, showing the big advantage
of flying crosswind.

Argatov et al. (2009)

Argatov et al. (2009) introduces spherical coordinates and derives equations for a general
case including an elevation angle β and azimuth angle φ. The effect of tether drag is
accounted for by adding a fraction to the aerodynamic drag of the kite resulting in the
effective lift-to-drag ratio

Ge =
L

D +Dt
, (2.21)

where Dt is the aerodynamic drag force acting on the kite, which is approximated as
follows

Dt =
1

8
CD,tρv

2
altdt, (2.22)

with tether drag coefficient CD,t in crosswind direction. The effective lift-to-drag ratio
can be expressed as

Ge =
CL

CD +
CD,tltdt

4S

. (2.23)

This tether drag model is numerically validated in Argatov et al. (2011).

Argatov et al. (2011) refers to Fagiano (2009), which assumes that half of the tether mass
mt adds to the kite mass m resulting in the effective gravitational force acting on the kite

Fg = (m+
1

8
ρtd

2
t lt)g, (2.24)

with tether density ρt, tether length lt, diameter dt and gravitational constant g.

Argatov et al. (2009) describes that the effect of gravity on the flight condition can be
taken into account by considering the gravitational force components in direction of the
aerodynamic drag. However it further states that since this component alternates in a
closed-loop trajectory its contribution to the effective lift-to-drag ratio can be neglected.
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The general expression for the power derived by Argatov et al. (2009) can be presented
using the definition of the power harvesting factor factor

ζ = f

(
CLGe

√
1 +G2

e(cosβ cosφ− f)2 +

∑
Fr

qS

)
, (2.25)

where
∑
Fr is the sum of additional forces acting parallel to the tether. A numerical

example by Argatov et al. (2009) shows that the error by these additional forces e.g.
centrifugal, gravitational and friction forces is less than 1%. It is however stated that this
error will be larger for higher elevation angles.

In a further study (Argatov and Silvennoinen, 2010) the mathematical model developed
in Argatov et al. (2009) is applied to open- and closed-loop trajectories estimating the
efficiency of a pumping cycle kite power system.

2.5.4 Catenary

To model a tether it is common to use a dynamic model where the tether is discretized
in mass elements as in models described by Breukels and Ockels (2007), Noom (2011)
or Williams et al. (2007). However, when an uniform distributed load is considered, e.g.
a gravitational load, the shape of the tether can be analytically solved using equations
for catenaries for which a solution was first published by Christiaan Huygens, Gottfried
Leibniz, and Johann Bernoulli. In the remainder of this section follows the derivation of
the catenary equation according to Math24 (2013).

Figure 2.17 illustrates a small tether element ds subject to a gravitational force

dFg = ρt
1

4
πd2t gds, (2.26)

The equations that follow from the force equilibrium in x- and z-direction respectively
are

d(Ft cosβ) = 0, (2.27)

d(Ft sinβ) = ρt
1

4
πd2t gds. (2.28)

Integration of Eq. (2.27) indicates that the horizontal tether force is constant throughout
the tether:

Ft,x = Ft cosβ. (2.29)

Combining Eqs. (2.28) and (2.29) results in

d (tanβ) =
ρt

1
4πd

2
t g

Ft,x
ds. (2.30)

The length of tether element ds can be expressed as

ds =

√
1 +

(
dz

dx

)2

dx, (2.31)
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β

Figure 2.17: Force equilibrium of a small tether element ds.

such that Eq. (2.30) is equivalent to

d

(
dz

dx

)
=
ρt

1
4πd

2
t g

Ft,x

√
1 +

(
dz

dx

)2

dx. (2.32)

Using separation of variables the following result is obtained

dz

dx
+

√
1 +

(
dz

dx

)2

= e

(
ρt

1
4πd

2
t g

Ft,x
x+C1

)
. (2.33)

Multiplying both sides by the conjugate expression dz
dx −

√
1 +

(
dz
dx

)2
and adding to Eq.

(2.33) results in

dz

dx
=

1

2
e

(
ρt

1
4πd

2
t g

Ft,x
x+C1

)
− 1

2
e

(
− ρt

1
4πd

2
t g

Ft,x
x−C1

)
, (2.34)

which is equivalent to

dz

dx
= sinh

(
ρt

1
4πd

2
t g

Ft,x
x+ C1

)
. (2.35)

Integration results in

z =
ρt

1
4πd

2
t g

Ft,x
cosh

(
ρt

1
4πd

2
t g

Ft,x
x+ C1

)
+ C2. (2.36)
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The tether force follows from

Ft =

√
1 +

(
dz

dx

)2

Ft,x. (2.37)



Chapter 3

Fundamental Theory

The objective of this chapter is to combine the existing approaches discussed in chapter 2
in a compact analytic theory which clearly indicates the influence of problem parameters
and can be used for system level design and optimization. Appendix B lists values for the
specifications of the 20-kW TU Delft kite power system together with default values for
operational parameters and environmental constants. For consistency, the listed values
are used throughout this thesis for example figures unless otherwise stated.

3.1 Problem definition and assumptions

The scope of this chapter is limited to the conversion of wind energy into traction power
using a tethered wing. This mechanical power can be further converted, for example,
into shaft power, by pulling the tether from a stationary drum or used directly to pull a
moving ground vehicle. The basic physical problem is illustrated in Fig. 3.1, depicting
the idealized state of a straight tether. Because of gravity and aerodynamic line drag,
the flexible tether always sags, however, this effect can generally be neglected in power
generation mode with a fully tensioned tether. In practice, the type of wing can range
from highly flexible membrane wing to rigid wing. For the purpose of this analysis the
integral aerodynamic force Fa generated by the flying wing is approximated as the sum
of a lift vector L and a drag vector D as followed from Eq. (2.2). The apparent wind
velocity va is defined as the relative velocity at the wing and follows from Eq. (2.5).

For the purpose of deriving an analytic theory, the wind velocity vw is assumed to be
uniform and constant, parallel to the ground plane. The aerodynamic coefficients are
assumed to be constant properties of the wing, but a distinguish is made between the
traction and retraction phase for which its values are listed in Appendix B. In reality,
however, CL and CD vary with the instantaneous angle of attack of the wing, which is
measured between the mean chord of the wing and va. For the purpose of developing
a closed analytic model this effect is not accounted for. Although tether sag is not
considered in the analysis, the integral contribution of aerodynamic line drag can affect

23
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β

vklt

vw

Xw

Yw

O

Zw

Figure 3.1: A kite flying with velocity vk on a straight tether of variable length lt at an
elevation angle β. The axis Xw of the wind reference frame points in the
direction of the wind velocity vw.

the flight motion of the wing significantly, especially for multi-line tether configurations.
This aerodynamic force contribution can be approximated by adding a fraction of the
integral line drag to the aerodynamic drag of the wing (Argatov et al., 2009). This simple
and effective method is not explicitly described in this chapter, but will be discussed in
Chapter 5.

It is further assumed that the various forces on the wing all act in a single point K
and that the flight manoeuvres of the wing can be approximated as a sequence of quasi-
steady state changes. It is a characteristic feature of the lightweight manoeuvring traction
wing, that the force equilibrium is generally dominated by the aerodynamic force Fa and
the tether force Ft. Steering of the wing is not taken into account for the quasi-steady
analysis, assuming that the wing tracks a predefined flight path.

The effect of the gravitational force Fg increases for lower elevation angles, contributions
of inertial forces Fi are relatively small, at least in the major force axis. Gravitational
and inertial force contributions are not considered within the analytic theory presented
in this chapter. In Chapter 4 both contributions are taken into account in the frame of
the quasi-steady description.

3.2 Apparent wind velocity

The motion of a wing that is operated on a variable length tether can be described in
terms of two fundamental components. A component along the tether, which is controlled
by the deployment of the tether from the ground station, and a component perpendicular
to the tether, which is under the authority of the flight control system of the wing. A
natural choice for the kinematic analysis of such a system are spherical coordinates with
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the origin O located at the tether exit point at the ground station and the radial coordinate
r describing the geometrical distance to the kite K. This configuration is illustrated in
Fig. 3.2, showing the definition of polar angle θ and azimuth angle φ. Alternatively to

Xw

Yw

O

Zw

er

θ

eφ

eθ

φ

vk,r

vk,τ

vk

r

vw

va

χ

K

Z

τ

Figure 3.2: Decomposition of kite velocity vk into radial component vk,r and tangential
component vk,τ , definition of apparent wind velocity va = vw − vk. Course
angle χ is measured in the tangential plane τ , spherical coordinates (r, θ, φ)
defined in the wind reference frame Xw, Yw, Zw.

the polar angle the elevation angle β = π/2− θ can be used. In spherical coordinates, the
kite velocity can be decomposed into a radial component vk,r and a tangential component
vk,τ such that

vk = vk,r + vk,τ . (3.1)

Combining Eqs. (2.5) and (3.1) results in

va = vw − vk,r − vk,τ . (3.2)

The definition of crosswind velocity introduced by Loyd (1980) corresponds to the tan-
gential kite velocity vk,τ only for the special case of φ = 0. If φ 6= 0 the tangential kite
velocity is not perpendicular to the wind velocity, which makes the term crosswind inap-
propriate. Using spherical coordinates (r, θ, φ) as defined in Fig. 3.2 the apparent wind
velocity va can be expressed as follows

va =

sin θ cosφ

cos θ cosφ

− sinφ

 vw −
1

0

0

 vk,r −
 0

cosχ

sinχ

 vk,τ . (3.3)

The straight line approximation of the tether implies the following

vk,r = vt. (3.4)

The reeling factor is defined as

f =
vt
vw
, (3.5)
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which is positive when the tether length increases. Accordingly, the tangential velocity
factor is defined as

λ =
vk,τ
vw

. (3.6)

Using Eqs. (3.4)-(3.6), Eq. (3.3) can be expressed as

va =

 sin θ cosφ− f
cos θ cosφ− λ cosχ

− sinφ− λ sinχ

 vw. (3.7)

The apparent wind velocity can also be expressed in a radial and tangential component

va = va,r + va,τ . (3.8)

From Eq. (3.7) follows the radial component of the apparent wind velocity

va,r = (sin θ cosφ− f)vw. (3.9)

The definition of the lift-to-drag ratio G follows from Eq. (2.13) and the definition of the
kinematic ratio is

κ =
va,τ
va,r

. (3.10)

The fundamental relation between the kinematic ratio and the lift-to-drag ratio,

κ = G, (3.11)

can be derived from the triangle similarity between the force and velocity diagram:

• va and Fa span a plane in which both vectors are decomposed,

• D is aligned with va following the definition of aerodynamic drag,

• va,r is aligned with Fa following from the straight line approximation.

This is illustrated in Fig. 3.3 or for a simplified 2-dimensional case (β = 0◦, φ = 0◦, χ =
180◦) in Fig. 3.4. Equation (3.11) corresponds to Argatov et al. (2009, Eq. (19)), but
also to Loyd (1980, Eq. (11)) for the special case of β = 0◦ and φ = 0◦.

Combining Eqs. (3.8)-(3.11) results in

va
vw

= (sin θ cosφ− f)
√

1 +G2. (3.12)

By definition, the magnitude of the apparent wind velocity cannot be negative, which
leads to the following constraint

f ≤ sin θ cosφ. (3.13)

Physically, this means that the reeling velocity of the kite cannot be higher than the wind
velocity projection onto the tether.
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Figure 3.3: Triangle similarity relating force and velocity diagrams. Fa is aligned with va,r,
D is aligned with va, L is perpendicular to D and va,τ is perpendicular va,r.
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tan−1 κ
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Figure 3.4: Triangle similarity relating force and velocity diagrams for a simplified 2-
dimensional case (β = 0◦, φ = 0◦, χ = 180◦). Fa is aligned with va,r, D
is aligned with va, L is perpendicular to D and va,τ is perpendicular va,r such
that κ is equal to G.
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3.3 Tangential kite velocity

The tangential component of the apparent wind velocity follows from Eq. (3.7)

va,τ = vw
√

(cos θ cosφ− λ cosχ)2 + (sinφ+ λ sinχ)2. (3.14)

Another equation is obtained by combining Eqs. (3.11) and (3.9)

va,τ = (sin θ cosφ− f)vwG. (3.15)

Combining Eqs. (3.14), (3.15) and solving for tangential velocity factor λ results in

λ = a+

√
a2 + b2 − 1 +G2 (b− f)2, (3.16)

with trigonometric coefficients

a = cos θ cosφ cosχ− sinφ sinχ, (3.17)

b = sin θ cosφ. (3.18)

The tangential velocity factor illustrates the coupling of the flight velocity of the wing to
the wind velocity as defined in Eq. (3.6). An equation for the tangential kite velocity
was also derived in Argatov and Silvennoinen (2010, Eq. (3)). The tangential velocity
factor λ cannot be smaller than zero. Analysing Eq. (3.16) for this condition results in
the following constraint

cosβ cosφ <

√
1 +G2 (1− f2) + fG2

1 +G2
, (3.19)

which indicates that there is a maximum azimuth angle φmax and elevation angle βmax
for theoretical possible flight conditions. When assuming horizontal flight (χ = 90◦) at a
zero azimuth angle (φ = 0) Eq. (3.16) simplifies to

λ =

√
G2 (sin θ − f)2 − sin2 β (3.20)

and from Eq. (3.19) follows the maximum elevation angle βmax for this condition

βmax = arccos

(√
1 +G2 (1− f2) + fG2

1 +G2

)
. (3.21)

Fig. 3.5 describes the elevation angle β as a function of the kite course χ and the tan-
gential kite velocity factor λ. At a zero elevation angle the tangential velocity factor is
constant for every kite course. This can be explained by the fact that the tangential kite
velocity is always perpendicular to the wind velocity. It however changes with a non-
zero elevation angle. In this case the tangential kite velocity can have a Xw-component,
which is greatest when flying downwards (χ = 0◦) or upwards (χ = 180◦). When flying
downwards this component is acting in equal direction as the wind velocity, reducing the
effective wind velocity. However Eq. (3.15) reveals that at a fixed elevation angle the
tangential component of the apparent wind velocity va,τ is constant for every kite course.
This is required to maintain a quasi-steady equilibrium at this position. Thus the only
way for this to be possible is that the tangential velocity factor increases when flying
downward such that the apparent wind velocity remains constant.
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Figure 3.5: Elevation angle β isolines as a function of kite course χ and tangential velocity
factor λ.

3.4 Traction force

The tether force Ft is assumed to be balanced by the resultant aerodynamic force Fa only

Ft = −Fa. (3.22)

Combining Eqs. (3.22) and (2.4) results in

Ft =
1

2
ρCRv

2
aS, (3.23)

with the resultant aerodynamic coefficient

CR =
√
C2
D + C2

L. (3.24)

Substituting Eq. (3.12) for the apparent wind velocity into Eq. (3.23) results in

Ft
qS

= CR
(
1 +G2

)
(sin θ cosφ− f)2, (3.25)

where q is the dynamic wind pressure which follows from Eq. (2.11). Equation (3.25)
corresponds to Argatov et al. (2009, Eq. (48)).

3.5 Traction power

The traction power is equal to the tether force times the reeling velocity

P = Ftvt. (3.26)
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Using the definition of the reeling factor f defined in Eq. (3.5) this becomes

P = Ftfvw. (3.27)

Combining Eqs. (2.6), (3.25) and (3.27) results in the power harvesting factor of a kite
power system

ζ = CR
(
1 +G2

)
f(cosβ cosφ− f)2. (3.28)

The optimal reeling factor fopt for a maximum power harvesting factor can be found by
differentiating Eq. (3.28) with respect to the reeling factor f and finding the points at
which it is zero, which happens for

fopt =
1

3
cosβ cosφ. (3.29)

Equation (3.29) corresponds to the result found in Argatov et al. (2009, Eq. (49)), but
also to Loyd (1980, Eq. (17)) for the special case β = 0◦ and φ = 0◦.

The optimal instantaneous power follows from substituting Eq. (3.29) into Eq. (3.28)

ζopt =
4

27
CR
(
1 +G2

)
cos3 β cos3 φ. (3.30)

Equation (3.30) corresponds to Argatov et al. (2009, Eq. (51)) and Loyd (1980, Eq.
(16)). It follows that for a given position (θ,φ) the power harvesting factor is maximized
by optimizing the following term

CR
(
1 +G2

)
, (3.31)

which is equal to
C3
R

C2
D

. (3.32)

Figure 3.6 shows traction power P and tangential velocity factor λ isolines as a function of
reeling factor f and elevation angle β. Power increases when the elevation angle decreases
because the projection of the wind velocity onto the tether becomes larger resulting in a
higher apparent wind velocity. The optimal reeling factor fopt as shown in Eq. (3.29) is
indicated by the dashed line. The tangential kite velocity decreases as the elevation angle
increases. Since the tangential kite velocity cannot be smaller than zero by definition, the
λ = 0 isoline indicates the theoretical maximum elevation angle βmax.
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Figure 3.6: Instantaneous traction power P and tangential velocity factor λ for φ = 0◦,
χ = 90◦ and vw = 7 m/s.

3.6 Non-manoeuvring wing

When terminating the flight manoeuvres transverse to the tether the wing can be moved
to constant angular positions (φ, β) at which the only motion is due to the reeling of the
tether. In Loyd (1980) this flight mode is denoted as simple kite. For constant tether
length the kite assumes a stationary position which is practical for lifting payload. Setting
vk,τ = 0, the apparent wind velocity given by Eq. (3.7) reduces to

va =

sin θ cosφ− f
cos θ cosφ

− sinφ

 vw, (3.33)

with a normalized magnitude

va
vw

=
√

1− 2f sin θ cosφ+ f2. (3.34)

Combining Eqs. (3.34) and (3.12) results in a relation

sin θ cosφ =

√
1 +G2 (1− f2) + fG2

1 +G2
, (3.35)

which is illustrated in Fig. 3.7 for different values of G. Each G-isoline is characterized
by the maximum achievable elevation angle βmax and azimuth angle φmax. Combining
Eqs. (3.35) and (3.12) to eliminate the trigonometric coefficients leads to

va
vw

=

√
1 +G2 (1− f2)− f√

1 +G2
. (3.36)
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Figure 3.7: Quasi-steady equilibrium positions for different values of G at a constant f =
0.37

Combining Eqs. (3.23) and (3.36) results in

Ft
qS

= CR

[√
1 +G2 (1− f2)− f

]2
1 +G2

. (3.37)

Combining Eqs. (3.27) and (3.37) results in

ζ = CR
f
[√

1 +G2 (1− f2)− f
]2

1 +G2
, (3.38)

which corresponds to the result of the analysis in Loyd (1980). It has to be noted, though,
that the equilibrium positions described by Eq. (3.35) are not necessarily stable flight
dynamic states of the real wing (Breukels, 2011; Terink et al., 2011).

3.7 Traction of a ground vehicle

A kite system can also be used for ground vehicle propulsion. In this case the apparent
wind velocity can be defined as follows

va = vw − vg − vk, (3.39)

where vg is the additional ground vehicle velocity, which is assumed to be constant in
magnitude and direction such that additional inertial terms do not occur. The kite is
assumed to fly with a fixed tether length, so the radial kite velocity vk,r is zero. Using a
spherical coordinate system moving with the ground vehicle, the apparent wind velocity
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can be expressed as follows

va =

sin θ cosφ

cos θ cosφ

− sinφ

 vw −
sin θ cos(ψ − φ)

cos θ cos(ψ − φ)

− sin(ψ − φ)

 vg −
 0

cosχ

sinχ

 vk,τ , (3.40)

where the ground vehicle course angle ψ is measured between ground vehicle velocity vg
and wind velocity vw. Using the definition of the tangential kite velocity factor λ as in
Eq. (3.6) and the ground vehicle velocity factor

ξ =
vg
vw
, (3.41)

the apparent wind velocity can be expressed as

va =

 sin θ cosφ− ξ sin θ cos(ψ − φ)

cos θ cosφ− ξ cos θ cos(ψ − φ)− λ cosχ

− sinφ+ ξ sin(ψ − φ)− λ sinχ

 vw. (3.42)

It shows that the radial component of the apparent wind velocity is

va,r = [sin θ cosφ− ξ sin θ cos(ψ − φ)] vw. (3.43)

Combining Eqs. (3.8) , (3.11) and (3.43) results in

va = [sin θ cosφ− ξ sin θ cos(ψ − φ)] vw
√

1 +G2, (3.44)

which corresponds to (Dadd et al., 2011, Eq. (3)) when the ground vehicle velocity is
neglected. Combining Eqs. (3.23) and (3.44) the tether force magnitude becomes

Ft
qS

= CR
[
1 +G2

]
[sin θ cosφ− ξ sin θ cos(ψ − φ)]2 . (3.45)

Taking the component in direction of the ground vehicle velocity results in the ground
vehicle traction force

Ft,g = Ft sin θ cos(ψ − φ). (3.46)

Combining Eqs. (3.45) and (3.46) results in

Ft,g
qS

= CR
(
1 +G2

)
[sin θ cosφ− ξ sin θ cos(ψ − φ)]2 sin θ cos(ψ − φ), (3.47)

with the restriction

ξ <
cosφ

cos(ψ − φ)
, (3.48)

which means that the projection of the ground vehicle velocity onto the tether cannot be
larger than that of the wind velocity.

Figure 3.8 shows the traction force versus azimuth angle for a specific ground vehicle
course ψ = 45◦. There is clearly an optimal azimuth angle φopt for which a maximum
ground vehicle traction force Ft,g is obtained. When the ground vehicle velocity increases,
the optimal azimuth angle shifts more to the side. This makes sense since the ground
vehicle velocity reduces the wind velocity component parallel to the ground vehicle ve-
locity. A similar effect is illustrated in Fig. 3.9 which shows the traction force versus
ground vehicle course at optimal azimuth angles. It shows that when the ground vehicle
velocity increases the optimum ground vehicle course ψ shifts to the side. This effect is
also obtained by numerical simulations in Williams et al. (2008).
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Chapter 4

Gravity and inertia

In the previous chapter the effect of gravity and inertia on the wing is neglected. Intro-
ducing a kite mass m introduces gravitational and inertial forces. The effect in the frame
of a quasi-steady analysis is studied in this chapter.

4.1 Gravitational and inertial force

The gravitational force expressed in spherical coordinates becomes

Fg = m

− cos θ

sin θ

0

 g, (4.1)

with kitemass m and gravitational constant g. The inertial force becomes

Fi = −m

 r̈ − rθ̇2 − rφ̇2 sin2 θ

rθ̈ + 2ṙθ̇ − rφ̇2 sin θ cos θ

rφ̈ sin θ + 2ṙφ̇ sin θ + 2rθ̇φ̇ cos θ

 , (4.2)

where
r = lt (4.3)

and the first derivatives can be expressed as follows

ṙ = fvw, (4.4)

θ̇ =
λvw
lt

cosχ, (4.5)

φ̇ =
λvw
lt

sinχ

sin θ
. (4.6)
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Following the assumption of a quasi-steady motion the time derivatives of the radial and
tangential kite velocity are small such that the second derivatives can be expressed as
follows

r̈ = 0, (4.7)

θ̈ = −θ̇
(
ṙ

lt
+ χ̇ tanχ

)
, (4.8)

φ̈ = −φ̇
(
ṙ

lt
− χ̇ 1

tanχ
+ θ̇

1

tan θ

)
. (4.9)

4.2 Gravity and inertia within the quasi-steady analysis

The gravitational and inertial force both have components in the tangential plane. The
sum of these components can only be balanced by the aerodynamic force, which will
therefore not act solely in radial direction any more. The triangle similarity between the
force and velocity diagram is lost. This is illustrated in Fig. 4.1 and for a simplified
2-dimensional case in Fig. 4.2. Equation (3.11) no longer holds i.e. the kinematic ratio

Xw

Yw

O

Zw

va

va,τ

va,r

Fa L

D

Z

θ

r

φ

Fg

Figure 4.1: Steady force equilibrium with gravitational effect

κ does not necessarily equal lift-to-drag ratio G, such that the apparent wind velocity as
expressed in Eq. (3.12) becomes

va
vw

= (sin θ cosφ− f)
√

1 + κ2, (4.10)
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Figure 4.2: Force and velocity diagrams with gravity for a simplified 2-dimensional case
(β = 0◦, φ = 0◦, χ = 180◦). Fa is not aligned with va,r such that κ does not
equal G.

the tangential kite velocity factor as expressed in Eq. (3.16) becomes

λ = a+

√
a2 + b2 − 1 + κ2 (b− f)2, (4.11)

with the trigonometric coefficient defined in Eqs. (3.17) and (3.18), and the aerodynamic
force as expressed in Eq. (3.25) becomes

Fa
qS

= CR
(
1 + κ2

)
(sin θ cosφ− f)2. (4.12)

4.3 Exact iterative solution for the kinematic ratio

For a quasi-steady equilibrium to be possible there has to be a solution for the kinematic
ratio for which the aerodynamic force exactly balances the tangential components of
the gravitational and inertial forces while at the same time the decomposition of the
aerodynamic force in lift and drag components corresponds to the lift-to-drag ratio. A
force equilibrium requires the tether force Ft to balance the sum of the aerodynamic force
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Fa, gravitational force Fg and inertial force Fi

Ft = −Fa − Fg − Fi. (4.13)

The tether force Ft solely acts in radial direction, so the aerodynamic force Fa has to
balance the tangential components of the gravitational and inertial force

Fa,θ = −Fg,θ − Fi,θ, (4.14)

Fa,φ = −Fi,φ. (4.15)

From Eqs. (4.12), (4.14) and (4.15) follows the radial component of the aerodynamic
force

Fa,r =
√
F 2
a − F 2

a,θ − F 2
a,φ. (4.16)

Drag is the projection of the aerodynamic force onto the apparent wind velocity

D =
Fa · va
v2a

va. (4.17)

Combining Eqs. (2.2) and (4.17) results in

G =

√(
Fava

Fa · va

)2

− 1, (4.18)

which can be used to find an exact iterative solution for the kinematic ratio. Results
are shown in Fig. 4.3. For a massless wing κ = G as stated in Eq. (3.11). However, a
gravitational force will have a large component acting in the same direction as the drag
force when flying upwards χ = 180◦ and in opposite direction when flying downwards
χ = 0◦. As a result the kinematic ratio decreases when flying upwards and increases
when flying downwards. Also notice that the kinematic ratio is slightly lower than the
lift-to-drag ratio during horizontal flight and that the mean kinematic ratio decreases for
a higher mass. The effect of an inertial force is relatively small, but it should be noted
that for this case a straight flight (χ̇ = 0 s−1) is considered.

The alternating kinematic ratio is one reason why intuitively is chosen to fly a figure
eight trajectory in a specific direction. The kite flies upwards with a moderate angle in
the middle and flies downwards during the corners. In this way the kite operates within
the centre part (−135◦ > χ > 135◦) of Fig. 4.3 such that low kinematic ratios are avoided.
When the mass becomes high enough a quasi-steady flight condition might even become
impossible, which happens relatively soon at these upward flying regions.
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Figure 4.3: Kite mass as a function of kite course χ and kinematic ratio κ for β = 25◦,
φ = 0◦, f = 0.37 and vw = 7 m/s.

4.4 Approximation of the kinematic ratio

Argatov et al. (2009) describes that the kinematic ratio can be approximated by evaluating
the force equilibrium in kite course direction. In this section follows an approximation for
the kinematic ratio which is compared to the iterative solution described in the previous
section.

Inertial forces are assumed to relatively small and are therefore neglected. The force
balance in kite course direction becomes

1√
1 + κ2

L− κ√
1 + κ2

D − Fg sin θ cosχ = 0. (4.19)

Using the expressions of L, D and Fg as in Eqs. (2.3), (2.4) and (4.1) respectively, results
in

κ = G− mg sin θ cosχ

CDqS(sin θ cosφ− f)2
1√

1 + κ2
. (4.20)

Solving for κ when assuming
√

1 + κ2 ≈ κ results in

κ

G
=

1

2
+

1

2

√
1− 4mg sin θ cosχ

CDqS(sin θ cosφ− f)2G
. (4.21)

A comparison of the exact iterative solution and its approximation, both neglecting iner-
tial forces, is illustrated in Fig. 4.4. It should be noted that during a horizontal flight the
kinematic ratio equals the lift-to-drag ratio according to the approximation, but in reality
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Figure 4.4: Approximation of the kinematic ratio compared to the iterative solution for
m = 20 kg, β = 25◦, φ = 0◦, f = 0.37 and vw = 7 m/s.

this is not the case. For the exact solution the mean kinematic ratio in Fig. 4.4 is lower
than the lift-to-drag ratio when a kite mass is considered. In general the approximation
gives a higher result than is actually the case. However, the approximation becomes more
accurate for higher lift-to-drag ratios.

4.5 Traction power

The radial component of the aerodynamic force is expressed in Eq. (4.16). Subsequently,
the tether force is determined as follows

Ft = Fa,r + Fg,r + Fi,r. (4.22)

Multiplying with the tether velocity results in the instantaneous traction power. Since
Ft ≈ Fa,r, Fa,r ≈ Fa and Fa ∝ κ2 it follows that the power is mainly affected by the
changing kinematic ratio.

Argatov et al. (2009) states that the kinematic ratio alternates in a closed-loop trajectory
and its effect on the mean power can therefore be neglected. This is arguable for the
following reasons. Firstly, from Fig. 4.3 it follows that the mean kinematic ratio along a
closed-loop trajectory is lower than the lift-to-drag ratio. Secondly, when the kinematic
ratio is lower, the kite velocity is lower. This means that the upward flying regions of a
closed-loop trajectory will take longer to cover than the downward flying regions. Further-
more, the influence might be significant since the aerodynamic force scales quadratically
to the kinematic ratio as follows from Eq. (4.12).
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Using the iterative solution of κ the impact on the instantaneous power for a straight
horizontal flight is visualized in Fig. 4.5. The obtainable optimum power is slightly lower
than for the massless case shown in Fig. 3.6 and the optimal reeling factor decreases
such that fopt < (1/3) sin θ cosφ. Another effect of a kite mass is the decrease in possible
operational conditions. If the radial component of the apparent wind velocity va,r, or
more specifically the term (cosβ − f), becomes small, the impact on the kinematic ratio
κ quickly grows. This effect becomes clear in Fig. 4.2 when imagining what happens if
Fa is decreased while Fg remains constant. Vector Fa rotates upwards, as well as L and
D, because the lift-to-drag ratio G remains the same. From the triangle similarity of the
force and velocity diagram follows that the kinematic ratio κ will decrease. As a result
the apparent wind velocity va decreases, such that the aerodynamic force Fa is further
decreased. This effect results in a significant reduction of operational conditions for a
quasi-steady flight condition.
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Chapter 5

Tether

5.1 Problem description and approach

In general a higher operating altitude is favoured because the wind power density increases
with altitude. However, to reach higher altitudes the tether length has to increase. The
tether is subject to gravitational, inertial and aerodynamic forces inducing an additional
load on the kite, effecting its flight behaviour. Also it will cause the magnitude of the
tether force to change along the tether. At some point these adverse effects might become
large enough such that a higher altitude will not result in a higher power output.

When an uniform distributed load is considered, e.g. a gravitational load, the shape of the
tether can be analytically solved using equations for catenaries derived in Section 2.5.4
and are applied in Section 5.2. However, an inertial or aerodynamic load distribution sig-
nificantly increases the complexity of such an exact analytical approach. More convenient
would be to use a dynamic model where the tether is discretized in mass elements as in
models described by Breukels and Ockels (2007), Noom (2011) or Williams et al. (2007).
Such a model is however beyond the scope of this analysis. For the purpose of providing
a complete analytical framework a simplified analytical approach is proposed in Section
5.3 assuming a straight tether and a linear distributed load. This is applied to the grav-
itational and the aerodynamic distributed load in Sections 5.4 and 5.5 respectively. The
inertial distributed load is assumed to be relatively small compared to the gravitational
force. Its contribution is therefore ignored. Results are presented in Section 5.6 from
which follows an optimal operational tether length.

5.2 Catenary model

The shape of a catenary under a gravitational load follows from

z =
lt
ct

cosh

(
ct
lt
x+ C1

)
+ C2, (5.1)
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with tether loading constant

ct =
ρt

1
4πd

2
t ltg

Ft,x
. (5.2)

The boundary conditions follow from the position of the ground station z(0) = 0 and the
kite z(xk) = zk. The integration constants follow to be

C1 = ln


ct
lt
zke

ct
lt
xk +

√
e

3ct
lt
xk +

[(
ct
lt
zk

)2
− 2

]
e

2ct
lt
xk + e

ct
lt
xk

e
ct
lt
xk(−1 + e

ct
lt
xk)

 , (5.3)

C2 = −ct
lt

coshC1. (5.4)

The sagging of the tether as a result of the gravitational field is shown in Fig. 5.1.
Typically ct < 0.1 during a pumping cycle assuming Ft,x > 500 N and lt < 800 m.
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Figure 5.1: Tether sag for different tether loading constants.

5.3 Simplified analytical tether model

The approach of equations for catenaries described in Section 5.2 becomes too complex
when non-uniform distributed loads are introduced. A simplified analytical approach
assumes a straight tether and a linear distributed load i.e. a distributed load that is
constant regardless the shape of the tether. The total distributed load can be decomposed
in a radial distributed load qr and a tangential distributed load qτ as illustrated in Figs.
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Figure 5.2: Tether loading decomposed into a radial and tangential distributed load.

5.2a and 5.2b respectively. The radial distributed load results in a difference in magnitude
of the radial force at the kite FK

r and the radial force at the tether exit point at the ground
station FO

r as follows

FK
r = FO

r +

∫ lt

0
qr(r)dr, (5.5)

where FK
r ≥

∫ lt
0 qr(r)dr such that FO

r ≥ 0, since the tether only supports tensile forces.
Setting FO

r = 0 reveals that the total radial distributed load is supported at the kite’s
end and FO

r is the tension in the tether present without a radial load distribution. The
additional force experienced at the kite as a result of the radial distributed load is therefore

FK
r =

∫ lt

0
qr(r)dr, (5.6)

which should be taken into account when determining the equilibrium flight condition.
When the total radial tether force at the kite its end FK

t,r is determined using the theory

in previous chapters, the radial tether force at the ground station FO
t,r follows from

FO
t,r = FK

t,r −
∫ lt

0
qr(r)dr. (5.7)

To support a tangential distributed load qτ as shown in Fig. 5.2b, the tether deflects
such that the supportive forces at both ends have tangential components FO

τ and FK
τ .

The fraction of the distributed load qτ that is supported at the attachment point of the
kite is determined as follows

FK
τ =

1

lt

∫ lt

0
rqτ (r)dr, (5.8)

which also should be taken into account when determining the equilibrium flight condition.
The total tangential tether force at the ground station follows from

FO
t,τ = −

∫ lt

0
qτ (r)dr. (5.9)
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The amount of deflection depends on the magnitude of the tangential force relative to the
radial force. If the radial force becomes large relative to the tangential distributed load
the tether will be almost straight. In Fig. 5.2b a radial distributed load is absent, such
that the radial force is equal at every point on the tether and FO

r = FK
r . Subject to a

uniform tangential distributed load, the tether will then deflect symmetrically. Figure 5.1
however shows a non-symmetrical deflection although it is subject to a uniform tangential
load distribution. This is the effect of the decreasing radial force along the tether caused
by the radial load distribution.

5.4 Gravitational distributed load

For a round tether element dr with diameter dt and density ρt the mass is

dmt = ρt
1

4
πd2tdr. (5.10)

Integrating over tether length lt results in the total mass of the tether

mt = ρt
1

4
πd2t lt. (5.11)

The constant gravitational distributed load qg acting on tether element dr is

qg =
mt

lt

− sinβ

cosβ

0

 g, (5.12)

which has components in both the radial and tangential direction. According to Eqs.
(5.6) and (5.8) the additional gravitational force experienced by the kite is

Fg,t = mt

− sinβ
1
2 cosβ

0

 g. (5.13)

Adding Eq. (5.13) to Eq. (4.1) results in the effective gravitational force acting at the
kite

Fg,e =

−(m+mt) sinβ

(m+ 1
2mt) cosβ

0

 g, (5.14)

which corresponds to the approximation in Argatov et al. (2011) and Fagiano (2009) only
for the special case of β = 0◦.

5.5 Aerodynamic distributed load

In contrast to the gravitational force both the aerodynamic force its magnitude and
direction change along the tether. The tangential velocity of the tether at position r can
be approximated by

vt,τ (r) =
r

lt
λvw(r). (5.15)
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The wind velocity vw as a function of r follows from Eq. (2.1), where the height can be
expressed as

h = r cos θ, (5.16)

following the straight tether approximation. The apparent wind velocity experienced at
the tether at position r can be expressed as

va,t =

 sin θ cosφ− f
cos θ cosφ− (r/lt)λ cosχ

− sinφ− (r/lt)λ sinχ

 vw(r). (5.17)

In order to simplify Eq. (5.17) it is, equal to approach proposed in Argatov et al. (2009),
assumed that

1. the apparent wind velocity experienced at the tether va,t increases linearly along
the tether from zero at the ground station to the magnitude of the apparent wind
velocity va at the kite,

2. the direction of va,t is constant along the tether and equals the direction of va at
the kite,

such that

va,t(r) =
r

lt
va. (5.18)

The aerodynamic distributed load can be expressed as

qD(r) = CD,t
1

2
ρ

(
r

lt
va

)2

dt, (5.19)

where the tether drag coefficient CD,t is assumed to be constant. From Eq. (5.8) follows
the fraction of the total tether drag that is supported at the attachment point of the kite

Dt = CD,t
1

2
ρ

1

4
dtltv

2
a. (5.20)

Adding Eq. (5.20) to Eq. (2.4) results in the total drag experienced at the kite

D =

(
CD + CD,t

1

4

dtlt
S

)
︸ ︷︷ ︸

CD,e

1

2
ρv2

aS, (5.21)

from which follows the definition of the effective drag coefficient CD,e. The effective
lift-to-drag ratio is defined as follows

Ge =
CL

CD + CD,t
1
4
dtlt
S

, (5.22)

which corresponds to the result found in Argatov et al. (2009).
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5.6 Optimal operational tether length

The wind power density increases with altitude, but the effects of an increasing tether
length will result in a limited altitude for optimal power. This is illustrated in Fig. 5.3
which shows that, for the specific parameter values listed in Appendix B, the optimal
operational tether length is between 500 and 1000 meters. When the tether length is
increased further the adverse effects become greater than the increase in wind power
density and the instantaneous power will gradually decrease. Figure 5.3 also indicates
that an elevation angle around 20◦ optimally balances the advantage of the wind shear
and the powerzone of the windframe.
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Figure 5.3: Instantaneous power versus tether length for different elevation angles.



Chapter 6

Traction phase

Flying crosswind results in significantly higher apparent wind velocities. A repeatable
trajectory e.g. a circle or a figure of eight enables the kite to fly continuously with high
tangential kite velocities during the traction phase. In this chapter the fundamental
theory described in previous chapters will be applied to such a figure eight trajectory.

6.1 Problem description and approach

A lying figure eight trajectory can be described by a special case of a Lissajous figure. The
following parametric equation describes a general Lissajous figure with free parameter s

[
θ

φ

]
=

[
θ0 −Aθ sin(Bθs+ Cθ)

φ0 +Aφ sin(Bφs+ Cφ)

]
s ∈ [0, 2π], (6.1)

where θ0 and φ0 are the mean polar and azimuth angle respectively. Parameters A, B
and C can be varied to create a substantial amount of trajectories. However, for this
analysis only a non-distorted lying figure of eight is considered. Such a trajectory is also
used to determine the desired path for the developed automatic controller described in
Jehle (2012). The parametric equation simplifies to[

θ

φ

]
=

[
θ0 −Aθ sin(2s)

φ0 +Aφ sin(s)

]
s ∈ [0, 2π], (6.2)

which is visually represented in Fig. 6.1. The derivative of Eq. (6.2) is[
dθ

dφ

]
=

[
−2Aθ cos(2s)

Aφ cos(s)

]
. (6.3)
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Figure 6.1: Representation of a lemniscate in the spherical domain with θ0 = 25◦, φ0 = 0◦,
Aθ = 5◦ and Aφ = 20◦ (Jehle, 2012).

The kite course χ is determined as follows

χ =


π
2 + arctan

(
−dθ
dφ

)
, if 0 ≤ s < π

2

−π + arctan
(
−dθ
dφ

)
, if π

2 ≤ s < 3π
2

π
2 + arctan

(
−dθ
dφ

)
, if 3π

2 ≤ s < 2π

(6.4)

and its derivative as follows

dχ

ds
=

AθAφ(2 cos2 s+ 1) sin s

4A2
θ cos4 s+A2

φ cos2 s− 4 cos2A2
θ +A2

θ

, (6.5)

which are both represented in Fig. 6.2. The kite course time derivative is determined as
follows

χ̇ =
dχ

ds

ds

dt
, (6.6)

where
ds

dt
=

λvw

r
√

(dθ)2 + (dφ)2
. (6.7)

The tangential velocity factor λ is however unknown. From Eqs. (3.6) and (3.15) follows
the approximation

λ =
2

3
Ge sin θ cosφ, (6.8)

assuming vk,τ ≈ va,τ and f = 1
3 sin θ cosφ during the traction phase. For every point on

the figure eight trajectory the velocity, forces and instantaneous power can be determined
by the theory provided in previous chapters. The mean traction power P̄ over the complete
figure eight trajectory can be determined as follows

P̄ =
1

t

∫ 2π

0
P

dt

ds
ds, (6.9)

where

t =

∫ 2π

0

dt

ds
ds. (6.10)
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Figure 6.2: Kite course during one figure of eight.

6.2 Flight conditions along a figure eight trajectory

Figure 6.3 illustrates the change in forces and velocities during one figure eight trajectory.
Figure 6.3a shows that the contribution of the radial gravitational and inertial force are
very small compared to the radial aerodynamic force. The radial aerodynamic force
is therefore approximately equal to the tether force. The θ- and φ-component of the
gravitational and inertial forces are balanced by the aerodynamic force as shown in Figs.
6.3b and 6.3c. This affects the kinematic ratio as described in Chapter 4. As a result the
kite velocity along a figure eight trajectory fluctuates as shown in Fig. 6.3d.

The θ-component of the inertial force shows a peak at the beginning of the turn and a
higher peak at the end. At the end of the turn the elevation angle is smaller and the
kinematic ratio is higher as a result of the gravitational force. The θ-component of the
gravitational force is almost constant. There is no φ-component of the gravitational force,
so the aerodynamic force has to balance only the inertial force in this direction. Which
mainly happens at the sides of the figure eight trajectory.

To individually illustrate the influence of gravitational forces, inertial forces and the figure
eight trajectory, Fa,r and vk,τ are compared to a case without gravitational or inertial
forces and to a case only without inertial forces. The first case shows a fluctuation only
as a result of the changing elevation and azimuth angles along the figure eight trajectory.
A gravitational force mainly shows an increase/decrease when flying downwards/upwards
as described in Chapter 4. The significant drops and peaks in the kite velocity as a
result of the inertial force rise the question if a quasi-steady equilibrium is a reasonable
assumption. A comparison to flight test data or simulations of a dynamic model might
give insight in this. Yet this is beyond the scope of this thesis.
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Figure 6.3: Forces and velocities during a figure eight trajectory for θ0 = 20◦, φ0 = 0◦,
Aθ = 5◦, Aφ = 15◦ and lt = 600 m. The reeling factor is set to its near
optimum f = 1/3 sin θ cosφ.

6.3 Power generated during the traction phase

Figure 6.4 compares the mean power during a figure eight trajectory to the instantaneous
power for a horizontal, straight flight at a mean elevation and azimuth angle. In this case
the mean power is approximately 90% of the instantaneous power during horizontal flight.
Similar, but slightly higher efficiencies for a lying figure eight trajectory are obtained in
Argatov and Silvennoinen (2010). Notice that for lower tether lengths the aerodynamic
force is not high enough to balance the inertial forces during a figure eight trajectory,
such that no quasi-steady equilibrium is possible.
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Figure 6.4: Instantaneous power horizontal, straight flight versus mean power during figure
eight trajectory for θ0 = 20◦, φ0 = 0◦, Aθ = 5◦ and Aφ = 15◦. The reeling
factor is set to its near optimum f = (1/3) sin θ cosφ.
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Chapter 7

Retraction

7.1 Problem description and approach

During the traction phase the kite reels out and the tether length increases. At some point
the kite has to be manoeuvred back to the starting position of the traction phase in order
to create a continuous cycle. This happens during the retraction phase. The trajectory
is assumed to be in the r-θ plane only with χ = 180◦ such that the kite position can be
expressed as

r =

rθ
0

 (7.1)

and its time derivative as

ṙ =

 f

−λ/r
0

 vw. (7.2)

A new position after a small time step dt can be approximated as follows

r(t+ dt) = r(t) + ṙ(t)dt. (7.3)

Repeating Eq. (7.3) results in an approximation of the entire trajectory for which the
corresponding required power can be determined.

7.2 Reel-in phase and transition phase

Just before retraction the kite is depowered such that the aerodynamic coefficients are
minimized. In general mainly the lift coefficient decreases such that also the lift-to-drag
ratio is lower. The effect of depowering on the trajectory and the corresponding tether
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Figure 7.1: Tether force and trajectory during the reel-in phase for different lift-to-drag
ratios. With a constant drag coefficient CD = 0.07 and a constant reeling
factor f = −1.5 from lt = 900 m, θ = 20◦ to lt = 600 m.

force is illustrated in Fig. 7.1. From Eq. (3.25) and Fig. 7.1a follows that the tether force
scales more than linearly with the lift-to-drag ratio.

Figure 7.1b illustrates that for higher lift-to-drag ratios the kite finds itself at a higher
elevation angle at the end of the reel-in trajectory than normally is preferred for the
traction phase. The kite tends to manoeuvre towards an equilibrium elevation angle at
which λ = 0 as is discussed in Section 3.6. After the kite is reeled in to its initial tether
length an additional transition phase is required to manoeuvre the kite to a lower elevation
angle. For this phase a constant tether length is assumed resulting in a typical pumping
cycle trajectory as shown in Fig. 7.2.
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Figure 7.2: Pumping cycle trajectory (Fechner and Schmehl, 2013).
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7.3 Constant tether force

In practice it makes sense to reel in with a constant tether force. Results are shown in
Fig. 7.3 for a constant tether force of 400, 1200 and 2000 N. It shows there is a trade-off
to make. On the one hand a higher tether force reduces the duration of the reel-in phase,
but on the other hand it will increase the required power. Also higher tether forces result
in higher elevation angles at the end of the reel-in phase such that a longer time is required
for the transition phase.

The transition phase can be simulated in a similar way as the reel-in phase. It follows
that the times required for the transition phase are 6.3, 11.0 and 12.1 seconds for the
cases with a constant tether force of 400, 1200 and 2000 N respectively.
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Figure 7.3: Reeling factor and trajectory during the reel-in phase for different constant tether
forces from lt = 900 m, θ = 20◦ to lt = 600 m.
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Chapter 8

Pumping Cycle

8.1 Problem description and approach

A kite power system has a lot of operational freedom which can be used to its advantage.
Different wind velocities might require different operational conditions for optimal power
production. The mean mechanical power production during one pumping cycle follows
from the mean power and duration of each phase

Pm =
Poto + Piti + Ptrttr

to + ti + ttr
, (8.1)

where sub-indices o, i and tr denote the reel-out, reel-in and transition phase respectively.
Optimizing Eq. (8.1) for all variables is beyond the scope of this research. However, choos-
ing arbitrary operating conditions might not illustrate the potential power production of
a kite power system. In this chapter the following approach is used to approximate an
optimal operation for different reference wind velocities using the TU Delft kite power
system as an example:

1. The wind velocity as a function of altitude is determined by a logarithmic wind
shear model as in Eq. (2.1) with an aerodynamic roughness length of z0 = 0.1 m.
and reference height href = 10 m.

2. The operational tether length lt is between 600 and 900 meters to optimally balance
the advantage of the wind shear and the disadvantage of increased tether weight
and drag as discussed in Chapter 5.

3. During the traction phase the elevation angle is constant at β = 20◦ to balance
the advantage of wind shear and the powerzone of the windframe as discussed in
Chapter 5.

4. During the traction phase the reeling factor is near optimal: f = (1/3) sin θ cosφ.
However if the tether velocity tends to exceed its maximum velocity vt,max of 8 m/s,
the reeling factor is set to f = vt,max/vw.
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5. Given the ground station size, the maximum tether force Ft,max is assumed to
be 4200 N. If it is exceeded the aerodynamic lift and drag coefficient are linearly
decreased first and when its minimum is reached the elevation angle is increased.

6. The mean power P̄ during a figure eight trajectory is assumed to be 90% of the in-
stantaneous traction power during a horizontal, straight flight at the mean elevation
angle β = 20◦ and azimuth angle φ = 0◦ as followed from Chapter 6.

7. Using a simulation with small time steps the mean power P̄ during figure eight
trajectories is determined along the traction trajectory from which follow the mean
power during the traction phase Po and the duration to.

8. The retraction phase is simulated using a constant tether force Ft as described in
Chapter 7 from which follow Pi, ti, Ptr and ttr.

9. The retraction simulation is repeated to find the optimal constant tether force Ft
for which maximum mechanical power is achieved according to Eq. (8.1).

10. During the transition phase the tether length lt is constant unless the maximum
tether force Ft,max of 4200 N is exceeded.

11. When the maximum force is exceeded during the reel-in phase or transition phase
the reeling factor is increased.

12. The mean mechanical power Pm produced during one pumping cycle is determined
using Eq. (8.1).

8.2 Power curve for the TU Delft kite power system

The power curve presented in Fig. 8.1 shows the mean mechanical power that can be
produced by the TU Delft PC-KPS (S=16.7 m2) for different wind conditions. Also the
effect on the power curve is illustrated for variations in the projected surface area size.
Details of the power curve of the TU Delft PC-KPS are presented in Fig. 8.2. Figure 8.2a
shows the mean power generated/consumed per phase. At a reference wind velocity of 15
m/s and higher the system operates both at its maximum tether force Ft,max and at its
maximum reeling velocity vt,max resulting in the maximum power that can be produced
during the traction phase. In contrast the power required for the retraction phase keeps
increasing. Notice that there is a little power produced in the transition phase as a result
of reeling out to prevent the maximum force to be exceeded.

Figure 8.2b shows the maximum tether force during the traction phase which already
reaches the maximum force of the system at a wind velocity of 5 m/s. It also shows the
optimal tether force during the retraction phase which increases for higher wind velocities.

The duration of the traction phase rapidly decreases as shown in Fig. 8.2c. This is a
result of operating at fopt = 1

3 sin θ cosφ, such that the reeling velocity increases with
wind velocity until the maximum reeling velocity is reached at a wind velocity of 15 m/s.

Figure 8.2d shows that to prevent the maximum force to be exceeded the kite is depowered
rapidly already after a reference wind velocity of 6 m/s. Notice that depowering the kite
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Figure 8.1: Power curve for the TU Delft pumping kite power system with the Mutiny
kite (S=16.7 m2) and for kites with other projected surface areas. *Maximum
reeling velocity vt,max is set to 10 m/s instead of 8 m/s.

is enough to prevent the maximum force to be exceeded such that increasing the elevation
angle is not required.

It might be more optimal to increase the elevation angle instead of depowering the kite
such that the optimal reeling velocity decreases and the duration of the traction phase is
longer. Also retracting the kite will become easier, because the kite is already positioned
further away from the powerzone of the windframe. Another reason would be that in
practice the kite can withstand higher forces when fully powered. However, for the simu-
lation this is a more complex process. When the elevation angle is increased with a fixed
operational tether length, the altitude is increased and therefore also the wind velocity
at the kite. As a result the tether force will increase and the elevation angle further
increases. In this way the maximum elevation angle is already reached at lower reference
wind velocities. In practice a solution would be to decrease the operational tether length
at higher reference wind velocities, such that kite operates at lower altitudes.
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Figure 8.2: Power, forces, durations and aerodynamic coefficients for different wind veloci-
ties.

8.3 Sizing the projected surface area

Figure 8.1 illustrates that an increase in the projected surface area S will have a negative
impact on the power curve. While a higher surface area will not produce more energy
at higher wind velocities during the traction phase as a result of the maximum force
constraint given by the ground station size, it will significantly increase the energy required
during the retraction phase.

A kite with a smaller surface area will however produce less power at lower wind velocities.
The kite with a 12 m2 projected surface area starts to produce power only after a reference
wind velocity of 5 m/s. In reality this is not necessarily the case. In the simulation the
kite is always completely depowered just before retraction. At lower wind velocities the
kite will fall downwards as a result of its weight. In practice not fully depowering the kite
would be an obvious solution. The 12 m2*-curve shows a similar effect by increasing the
maximum tether velocity to 10 m/s.
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The current kite might be too large for the TU Delft kite power system as a kite with a
12 m2 projected surface area seems better suited. Using the power curves in combination
with wind statistics it can be determined how much energy can be produced in time with
different kites. In this way an optimal size can be chosen.

8.4 A potential 50 kW kite power system

Figure 8.3 shows a power curve of a potential 50 kW system by increasing the maximum
tether force to 20 kN. Increasing the maximum force when scaling the system is inevitable
since the maximum reeling velocity is limited by the wind velocity. The tether diameter
is set to 6 mm such that its cross-sectional area is more than doubled. To produce more
power at lower wind velocities the projected surface area can be increased, which might
also be required to reduce the wing loading. Another option is to increase the maximum
aerodynamic coefficients.
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Figure 8.3: Power curve for a potential 50 kW system.
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Chapter 9

Conclusions and recommendations

Using the approximation of a quasi-steady flight condition, the fundamental relationships
between system and operational parameters on the one hand and the achievable mechani-
cal power on the other hand are determined. The general case of controlled flight along an
arbitrary, predefined trajectory with varying tether length is covered as well as the effects
of gravity, inertia, aerodynamic tether drag and tether mass. The theory is applied to
the specific case of a typical pumping cycle trajectory to estimate the mechanical power
generation by pumping cycle kite power systems and specifically the system developed by
the Technical University of Delft.

In Chapter 3 several existing analytical approaches are combined into a compact fun-
damental theory for kite traction power. The power harvesting factor was found to be

ζ = CR
(
1 +G2

)
f(cosβ cosφ− f)2, (3.28)

which measures the obtainable instantaneous traction power relative to the instantaneous
wind power flowing through a cross sectional area equal to the project surface area of the
wing. It followed that the optimal reeling factor fopt is one-third of the normalized wind
velocity projection onto the tether

fopt =
1

3
cosβ cosφ. (3.29)

This means that when the kite deviates from the powerzone of the windframe, the tether
reeling velocity should be lower to obtain maximum instantaneous traction power. It also
follows that the aerodynamic performance for maximum instantaneous traction power
can be improved by optimizing the following term

C3
R

C2
D

. (3.32)

In Chapter 4 it was found that during a straight flight the gravitational and inertial
force are significantly lower than the aerodynamic force, such that the influence on the
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force equilibrium is rather small. However the impact on the flight condition and more
specifically on the kinematic ratio κ has found to be significant. An exact iterative solution
for the kinematic ratio is proposed as well as an approximation given by

κ

G
=

1

2
+

1

2

√
1− 4mg cosβ cosχ

CDqS(cosβ cosφ− f)2G
, (4.21)

taking into account a gravitational force only. A high gravitational force relative to the
aerodynamic force greatly affects the possible operational conditions.

From Chapter 5 it followed that the effect of a tether mass mt can be taken into account
by adding a fraction to the kite mass m such that the effective gravitational force becomes

Fg,e =

−(m+mt) sinβ

(m+ 1
2mt) cosβ

0

 g. (5.14)

Making considerable assumptions equal to the approach proposed by Argatov et al. (2009)
the integral tether drag is added to the aerodynamic drag of the kite resulting in an
effective drag coefficient

CD,e = CD + CD,t
1

4

dtlt
S
. (5.20)

In Chapter 6 the theory is applied to figure eight trajectories. For typical operating
conditions of the TU Delft kite power system, the mean power during a figure eight
trajectory has been estimated to be approximately 90 % of the obtainable instantaneous
traction power for a horizontal, straight flight condition at a mean elevation and azimuth
angle. However, it was also found that at the corners of a figure eight trajectory the
inertial forces become significant resulting in high kite velocity peaks. It is questionable
whether a quasi-steady analysis is appropriate for studying figure eight manoeuvres. A
more detailed dynamic model or empirical data from test flights could relate the mean
power during a figure eight trajectory to the obtainable instantaneous traction power for
a straight flight condition.

In Chapter 7 the retraction trajectory is described by the following differential equation

ṙ =

 f

−λ/r
0

 vw, (7.2)

which is approximated by a simulation with small time steps. It might be possible to
simplify and solve the presented differential equation such that a simulation is not required
and fundamental relationships can be derived.

The analysis of the retraction phase emphasizes the importance of a good depower ca-
pability of the kite. A low lift-to-drag ratio minimizes the required power, but also the
kite tends to move to its equilibrium position which is at a higher elevation angle for a
higher lift-to-drag ratio. It follows that after reeling in the kite to its initial tether length,
another transition phase is required to bring the kite to its initial elevation angle resulting
in a characteristic pumping cycle trajectory.
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The power curve for the kite power system of the TU Delft is presented in Chapter
8. It was found that the Mutiny kite with a projected surface area of 16.7 m2 is already
too large for the current system. The main constraint is the maximum force Ft,max = 4200
N given by the ground station size, which limits the obtainable power during the traction
phase. Using a smaller kite (S = 12 m2) the kite power system can produce around
9 kW already at a wind velocity of 7 m/s at a reference height of 10 m. A potential
50 kW system is presented, for which the maximum system force should increase to 20
kN. Increasing the maximum force is inevitable when scaling the system since the reeling
velocity is physically limited by the wind velocity.

The presented theoretical analysis is suited to estimate the mechanical power generation
by pumping cycle kite power systems. The analysis can be used to balance the size of
various system components, to set research and development priorities or to optimize the
operation for different wind conditions. In combination with a cost model a business plan
could be set up and the expected low-cost potential of kite power systems might become
more certain, potentially lowering the risks for investors.

More detailed dynamic models or flight test data could be used to validate and com-
plement the theoretical analysis. The analysis presented in this chapter is limited to
mechanical power, however a complete system analysis should also include the conversion
to electrical power.
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Appendix A

Dimensionless parameters

Symbol Description Definition

ct tether loading constant
ρt

1
4
πd2t ltg

Ft,x

f reeling factor
vk,r
vw

G lift-to-drag ratio L
D

κ kinematic ratio
va,τ
va,r

λ tangent kite velocity factor
vk,τ
vw

ξ ground vehicle velocity factor
vg
vw

ζ power harvesting factor P
PwS

Table A.1: Non-dimensional parameters

73



74 Dimensionless parameters



Appendix B

Default parameter values
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Property Symbol Value Unit

Kite

projected surface area S 16.7 m2

lift coefficient CL,o 1.0 -
drag coefficient CD,o 0.2 -
lift-to-drag ratio Go 5 -
lift coefficient (depowered) CL,i 0.14 -
drag coefficient (depowered) CD,i 0.07 -
lift-to-drag ratio (depowered) Gi 2 -
mass (incl. KCU) m 20 kg

Tether

diameter dt 0.004 m
density ρt 724 kg/m3

Operation

(mean) azimuth angle φ, φ0 0 ◦

(mean) elevation angle β, β0 25 ◦

lemniscate parameter (width/2) Aφ 15 ◦

lemniscate parameter (height) Aθ 5 ◦

reeling factor f 0.37 -
kite course χ 90 ◦

kite course time derivative χ̇ 0 ◦/s
tether length lt 600 m
maximum reeling velocity vt,max 8 m/s
maximum force Ft,max 4200 N

Environment

gravitational acceleration g 9.81 m/s2

air density ρ 1.225 kg/m3

wind velocity (constant) vw 7 m/s
reference wind velocity vw,ref 5 m/s
reference height href 10 m
roughness length z0 0.1 m

Table B.1: Default parameter values
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