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ABSTRACT
Advances in artificial intelligence and machine learning have led
to a steep rise in the adoption of AI to augment or support human
decision-making across domains. There has been an increasing
body of work addressing the benefits of model interpretability and
explanations to help end-users or other stakeholders decipher the
inner workings of the so-called "black box AI systems". Yet, little is
currently understood about the role of modalities through which
explanations can be communicated (e.g., text, visualizations, or au-
dio) to inform, augment, and shape human decision-making. In our
work, we address this research gap through the lens of a credibility
assessment system. Considering the deluge of information available
through various channels, people constantly make decisions while
considering the perceived credibility of the information they con-
sume. However, with an increasing information overload, assessing
the credibility of the information we encounter is a non-trivial task.
To help users in this task, automated credibility assessment systems
have been devised as decision support systems in various contexts
(e.g., assessing the credibility of news or social media posts). How-
ever, for these systems to be effective in supporting users, they
need to be trusted and understood. Explanations have been shown
to play an essential role in informing users’ reliance on decision
support systems. In this paper, we investigate the influence of ex-
planation modalities on an AI-assisted credibility assessment task.
We use a between-subjects experiment (N = 375), spanning six
different explanation modalities, to evaluate the role of explanation
modality on the accuracy of AI-assisted decision outcomes, the per-
ceived system trust among users, and system usability. Our results
indicate that explanations play a significant role in shaping users’
reliance on the decision support system and, thereby, the accuracy
of decisions made. We found that users performed with higher
accuracy while assessing the credibility of statements in the pres-
ence of explanations. We also found that users had a significantly
harder time agreeing on statement credibility without explanations.
With explanations present, text and audio explanations were more
effective than graphic explanations. Additionally, we found that
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combining graphical with text and/or audio explanations were sig-
nificantly effective. Such combinations of modalities led to a higher
user performance than using graphical explanations alone.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
User studies; Graphical user interfaces; • Information sys-
tems→ Decision support systems.
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1 INTRODUCTION
Over the last decade, we have witnessed a surge in the adoption
of AI-assisted decision-making across several domains [9, 18, 62],
including critical domains like medical diagnoses [46], judicial sen-
tencing [5], and hiring [66]. More recently, spurred by the inter-
disciplinary interest across research communities to help humans
rely appropriately on AI systems [23, 28], researchers in the field
of explainable AI (XAI) have proposed different methods to use ex-
planations and aid the interpretability of complex decision-support
systems [39, 40, 42].

Concomitant with this growth in the adoption of AI systems is
the constant need for people to make decisions based on the deluge
of information we are exposed to [41]. The Web provides a plethora
of information and continues to grow in size. Unfortunately, aside
from a large amount of valuable information, the Web is also a
source of false information. The rapid increase in fake news has
become a widespread problem globally [37], and the diffusion of
misinformation online has been shown to harm people’s decision-
making [68]. To make good decisions, we need to be able to assess
or reflect on the credibility of the information we consume online.

Fact checking websites like Snopes1 and Politifact2 aim to pro-
vide reliable sources on the web, decreasing the fact-checking work-
load for individuals. Journalism deals with this at a professional
level, producing and distributing information based on facts, albeit
not devoid of biases [44]. Considering the ever-increasing stream
of information produced on the internet, the task of finding and
filtering information and assessing its credibility is challenging [33].
Scaling the credibility assessments is even harder, given the growth
rate of misleading and false information being produced online [69].
To this end, tools have been developed to (partly) automate this
1https://www.snopes.com/
2https://www.politifact.com/
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process [1, 15, 24, 71]. Crowdsourcing has also helped address scal-
ability issues regarding expert fact-checking. Recent works have
demonstrated that adequately aggregated non-expert crowd worker
assessments correlate well with expert assessments [35, 53].

To make automated credibility assessments comprehensible for
end-users and stakeholders, prior work proposed using explana-
tions alongside such assessments [50–52]. Yet, little is currently
understood about the role of explanation modalities (e.g., text,
visualizations, or audio), to inform, augment, and shape human
decision-making. Addressing this research gap, in this paper, we
investigate the influence of explanation modality on AI-assisted
decision-making through the lens of an automated credibility assess-
ment system. This system assesses the credibility of statements (i.e.,
or claims) made online and subsequently explains this assessment
in different modalities. We explore different explanation modal-
ities’ effectiveness and users’ trust in the automated credibility
assessment system. We set out to answer the following research
questions:

RQ1: How do different explanation modalities corre-
sponding to a credibility assessment system influence
the perceived credibility of statements?
RQ2: How do different explanation modalities corre-
sponding to a credibility assessment system influence
the perceived trust and user engagement with the
system?

To answer our research questions, we designed and deployed
a between-subjects user study (N = 375) with six conditions —
a control condition in which users rate the credibility of a state-
ment without AI-assisted support and five conditions in which
users rate the credibility of a statement with AI-assisted support.
More precisely, while performing the assessments in the latter cases,
users were assisted by a credibility assessment system that included
explanations in different modalities. Users were asked to label a
statement on a scale from ‘1: Not Credible’ to ‘100: Credible’. Addi-
tionally, we gathered information on the participants’ affinity for
interacting with technology, trust in, and usability of the credibility
assessment system.

Our results indicate that explanations play a significant role in
shaping users’ reliance on the decision support system and, thereby,
the accuracy of decisions made. We found that users, when being
presented with explanations, had a higher degree of agreement
and performed with a higher accuracy on the credibility assess-
ment tasks. From the provided explanation types, text and audio
explanations significantly outperformed graphic explanations. Ad-
ditionally, we found that combining graphic with text and/or audio
explanations has a significant positive effect on user performance.
To promote open science, we publicly share all our data and code.3
Our findings have important implications for the broader XAI com-
munity and inform the design of explanations for future decision
support systems.

2 BACKGROUND AND RELATEDWORK
In this section, we review work on aspects related to credibil-
ity assessment and explanations. In Section 2.1, we discuss cred-
ibility assessment approaches. In Section 2.2, we discuss existing
3https://osf.io/rdbz6/?view_only=97d7839f61774b8cb53f529694b45925

explanation-based approaches and their role in credibility assess-
ment. Finally, in Section 2.3, we discuss information modalities to
provide explanations to end-users.

2.1 Credibility Assessment
Credibility entails a multitude of aspects, among which, believabil-
ity, trustworthiness, reliability, accuracy, fairness, and objectivity
[3]. Thus, a credibility assessment can be described as an estimation
of the trustworthiness or believability of something or someone.
Research has shown, however, that people have difficulties in under-
standing and evaluating the veracity of the information they find
online [20, 26, 70]. Thus, to support and augment human decision-
making in terms of credibility assessment, typical solutions focus
on making people reflect on the information they see by providing
credibility markers [6, 30, 32, 49, 74].

In the news domain, Yaqub et al. [74] studied people’s behavior
in sharing news headlines with their social media peers. The news
headlines were augmented with one in four credibility indicators
(i.e., when either fact-checkers, news media, public, or artificial
intelligence techniques dispute the credibility of the headline). Their
large-scale online experiment showed that fact-checking systems
such as Snopes and Politifact are the most effective in decreasing
sharing behavior of false information. A large body of research has
also focused on assessing the credibility of tweets [6, 7, 13, 25]. For
instance, Gupta et al. [25] introduced a semi-supervised ranking
model using SVM-rank to label tweets with credibility scores in
real-time. However, the system only uses the data available for the
single tweet that is being assessed, disregarding historical or data
relevant to the event mentioned in the tweet. Event level credibility
assessment on Twitter usually looked into trending topics, which
have gathered attention from many users within a relatively short
time frame, i.e., users create thousands of posts each minute [1].

Literature identified three main components that affect credi-
bility perception of user generated content [3]: context (i.e., envi-
ronment, topic, and situation); available features of the content;
and traits and cognitive heuristics of the evaluator (i.e., topical
knowledge and the selection of features in making a credibility
judgement). According to AlMansour et al. [3], existing research
focuses more on the content of a tweet and less on the context
and evaluator. Thus, in this paper, we focus on these less explored
factors to augment users with additional information regarding
the tweet and help decide on its credibility. Furthermore, building
on top of the results of Jahanbakhsh et al. [32], we also use fact-
checking services such as Snopes and Politifact to select the tweets
that we assess in our study.

2.2 Explanations
Automatically generated explanations supporting the results of
machine learning models can help users better understand their
output and be more receptive to them [29]. However, most users
of machine learning models are by no means machine learning
experts and can have trouble understanding the way these models
work [56]. While some users may be satisfied with consuming the
results of models or receiving advice from AI systems, influencing
their decision-making, others may want to know the rationale
governing such advice to better understand the outcome — a sound
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understanding can make the model or the advice more likely to
be accepted [17]. There is a growing demand for transparency in
machine learning, as the application of these models is becoming
increasingly common, while at the same time, models are becoming
more complex and are gaining influence [43]. Explanations can
provide this transparency through model-agnostic frameworks that
increase understanding of black-box models [36], providing input
evidence by highlighting words that are key to the decision [38],
or generating automated (natural language) rationale in real-time
[16].

Nunes and Jannach [45] performed a systematic review of expla-
nations in decision support and recommender systems and derived
a taxonomy of explanations. Based on previously proposed expla-
nation purposes in [60], three explanation objectives were derived
regarding stakeholder goals (i.e., acceptance intention, use inten-
tion, among others), user-perceived quality factors (i.e., confidence,
ease of use, perceived transparency, among others), and explanation
purposes (i.e., effectiveness, efficiency, transparency, among others).
This work focuses on four aspects: trust, satisfaction, efficiency,
and effectiveness. Trust and satisfaction are user-perceived quality
factors — trust refers to the system being perceived as trustworthy,
and satisfaction refers to usefulness and usability [60]. Efficiency
and effectiveness are explanation purposes, with efficiency per-
taining to helping users make decisions faster and effectiveness to
assisting users in making good decisions.

Furthermore, the work by Nunes and Jannach [45] and Tintarev
and Masthoff [61] showed that the result, its decisive features (most
influential features for the given result), and the confidence (in
the result) are associated with better performance of explanations.
To this end, the explanations provided in our task consist of: (1)
indicating whether the statement is believed to be credible or not
credible (i.e., result); (2) showing the aggregated sentiment and
stance of Web articles on this statement, and the article attention
words (i.e., decisive features), and (3) showing the percentage of
true/false and Web source credibility (i.e., confidence).

A few credibility assessment tools employ explanations as part of
their user experience. The FeedReflect tool [7] is used as a browser
extension that provides visual cues (content highlighting and dim-
ming content from non-mainstream sources) to nudge people to
reflect on the feed items credibility. Popat et al. [50] automated the
assessment of credibility in emerging claims on the internet while
providing suitable, user-interpretable explanations from selected
sources. The CredEye system [51] assesses the credibility of a claim
by analyzing relevant Web articles. Explanations are provided as
snippets from considered Web sources combined with their trust-
worthiness. The neural network model DeClarE [52] aggregates
signals from external evidence articles to assess the credibility of
natural language claims and generates explanations by means of
decisive features. However, to the best of our knowledge, these
systems and explanations have not been assessed from the users’
perspective. Thus, in this paper, we study the influence of the expla-
nations generated by the CredEye [51] and DeClarE [52] tools on
the accuracy of human decision-making for credibility assessment.

2.3 Information and Explanation Modality
Information modality refers to how information is presented and,
consequently, its effect on how people process this information. In
the context of decision-support systems such as recommender sys-
tems or classification models, the most common explanation modal-
ities are textual and visual (graphical) [8, 31, 54, 59, 63, 64, 72, 73].
Tran et al. [63] used textual explanations to justify recommended
restaurants to groups of people. Yang et al. [73] studied user’s per-
ception of trust in a classification model when augmented with
various visualization designs and found that while each visual expla-
nation increased user trust, they could also persuade users to accept
wrong classification outcomes. Tsai and Brusilovsky [64] compared
three textual explanations and twelve visual explanations for three
similarity-based people recommendation models. They found that
visual explanations are preferred over textual ones and lead to bet-
ter representation of explanation goals, such as scrutability and
persuasiveness, among others.

A long-standing line of research in this area is the Cognitive
Load Theory (CLT) and the Modality Effect [57, 58]. According to
the available models of multimedia learning, cognitive processing
of related text and pictures involves selecting and organizing the
relevant elements of visual and auditory information. The result is
a coherent, unified representation of all aspects processed in the
learner’s working memory. In essence, CLT argues that limited
working memory can be effectively expanded by using more than
one presentation modality [57, 58].

Cao et al. [11, 12] studied the effect of different modalities (i.e.,
text, image, speech, and sound) on people’s cognitive load and per-
formance in a high-load information presentation scenario. The
users played the role of crisis managers after an earthquake. Their
task was to communicate the location of victims to rescue workers.
The experiment showed that combining text and speech modalities
provides the optimal way to present information. In a study on
multimodal and interactive explanations in the context of visual
question answering (VQA) [2], the authors showed that participants’
prediction accuracy improved significantly in the presence of expla-
nations when the system was incorrect. Furthermore, participants’
explanations ratings indicated their effectiveness in an AI-assisted
human-machine collaboration task. Similarly, Park et al. [48] found
that visual and textual explanations generated by a VQA model
were complementary, and in some cases, visual indicators were
more explanatory than textual ones and vice versa. Additionally,
the authors showed that providing explanations enables humans
to assess more accurately whether a system assessment is correct.

The advantages of combining modalities in information presenta-
tion have also been shown in the context of in-vehicle information
systems [10]. Participants scored better at driving and secondary
tasks, had faster reaction times, and lower cognitive load while
presented with multimodal information. The study affirmed the
advantages of combining modalities, such as enhanced communica-
tion robustness due to redundant or complementary use of modali-
ties. Similarly, Szymanski et al. [59] showed that even though study
participants preferred graphical explanations, their performance in
correctly identifying the reading time of a news article was better
when augmented with textual explanations.
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To the best of our knowledge, audio explanations have not been
explored in the context of decision support systems. However, work
in both Cognitive Load Theory and multimedia principles for learn-
ing showed that graphics combined with audio designs performed
better than graphics combined with text. Thus, based on this insight,
we experiment with several explanation modalities (text, graph-
ics, audio) and combinations of those (graphics + text, graphics +
audio).

3 STUDY DESIGN
The goal of our study is to understand the effects different expla-
nation modalities have on users’ perceived credibility of online
statements. To achieve this goal and address our research questions,
we conducted a between-subjects user study. Thus, in this section,
we describe the data (i.e., the statements or claims), the procedure,
and the measures of the study.

3.1 Task data
For our study, we curated 40 statements (i.e., claims) from the train-
ing sets of the CredEye [51] and DeClarE [52] credibility assessment
systems, which have been gathered from Snopes and PolitiFact.
Each statement was labeled with a credibility label or stance. We se-
lected the statements such that they were equally divided into four
credibility bins, each credibility bin corresponding to a credibility
label, i.e., not credible, somewhat not credible, somewhat credible, and
credible, resulting in ten statements per credibility bin. We cluster
the selected statements into these four bins because it has been
shown that more coarse-grained truthfulness scales are preferred
in crowdsourcing settings [35]. The list of all selected statements
can be checked in our repository4.

Each statement was assigned a set of values, in line with the
credibility bin it belongs to (ground-truth). These values are the
parameters used for building the explanations. The following pa-
rameters are used in the explanations, based on existing research
(see Section 2.2) and the output of the CredEye [51] and DeClarE
[52] credibility assessment systems:

• credibility bin or credibility label: not credible/somewhat not
credible/somewhat credible/credible - systems classification
regarding the statement;

• credibility percentage: [0:25, 26:50, 51:75, 76:100]% - refers to
the system probability of the statement to be not credible,
somewhat not credible, somewhat credible, or credible;

• number of articles considered, number of supporting articles,
and number of opposing articles: refers to the total number of
web articles that are consulted to check the credibility of the
statement, and how many out of these support or oppose
the statement;

• average source credibility: [1:100] - indicates the average
credibility rating of the consulted articles.

Thus, we design our explanations based on the template below
(explanation parameters are shown in italics between brackets). An
example of such an explanation is shown in Figure 1.
4https://osf.io/rdbz6/?view_only=97d7839f61774b8cb53f529694b45925

The system believes this claim to be <credibility bin/label>.

According to consulted web-sources the probability of
this claim to be true is <credibility percentage>. In total
<number of articles considered> articles were considered
of which <number of supporting articles> indicating this
statement is credible and <number of opposing articles>
indicating this statement is not credible. The consulted
sources have an average credibility rating of <average source
credibility>%.

3.2 Independent variables
We have a single independent variable, the explanation modality,
with six conditions: text, audio, graphical, combination 1 (text +
graphical), combination 2 (audio + graphical), and no explanation
(i.e., a control group for which no explanation is provided).

The text explanation is based on the template shown in Section 3.1.
Figure 1 shows a screenshot of the task user interface that users in
this condition received.

The audio explanation is generated by first generating the text
explanation for that statement the exact same way as for the text
explanation described above, and then using the Mozilla TTS 5 tool
to generate the audio version of the text explanation. Mozilla TTS is
an open-source Text-to-Speech tool that provides pre-trained, high-
quality models. We selected the pre-trained Tacotron2 model with
the LJSpeech dataset (English), which has good performance on
both long and short sentences, given that our explanations contain
a mix of those. Figure 3 shows a screenshot of the task user interface
that users in this condition received.

The graphical explanation is generated by using the same credi-
bility assessment parameters (shown in Section 3.1) of the statement
to generate graphs with the ChartJS library.6 The graphs were de-
signed with accessibility in mind, using a colorblind-friendly color
scheme. The explanation consists of three components; a bar chart
depicting the credibility percentage; a pie chart depicting the num-
ber of articles considered, number of supporting articles, and number
of opposing articles; and a bar chart depicting the average source
credibility. Figure 2 shows the graphical explanation which was
shown to the participants in this condition.

The text+graphical condition consists of the exact contents of the
text and graphic explanations and was created by combining the
text and graphic components described above.

The graphical+audio condition consists of the exact contents of
the audio and graphic explanations and was created by combining
the audio and graphic components described above.

3.3 Measured Variables
Statement credibility. The participants rate the credibility of each

statement on a range from 1: Not Credible to 100: Credible. We used
this scale to align with the output of the credibility assessment
tools.
5https://github.com/mozilla/TTS
6https://github.com/chartjs/Chart.js
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Figure 1: UI text explanation.

Figure 2: UI graphic explana-
tion.

Figure 3: UI audio explanation.

Affinity for technology. The Affinity for Technology Interaction
(ATI) scale was used to assess user propensity towards interacting
or engaging with technology. The 9-item ATI questionnaire is seen
as "a core personal resource for users’ successful coping with tech-
nology" [4, 21]. Each item was annotated on a Likert scale, from 1:
Completely Disagree to 6: Completely Agree.

User engagement. We used the User Engagement Scale (UES)
questionnaire to measure self-reported user engagement with the
credibility assessment task interface across various dimensions [47].
We used the short version of the questionnaire, UES Short Form,

to evaluate the following factors: (1) the focused attention (feel-
ing absorbed in the interaction and losing track of time) and (2)
the perceived usability (negative effect experienced as a result of
the interaction and the degree of control and effort expended). We
evaluated these two factors because they are directly related to the
explanation goals we are interested in, namely satisfaction, effi-
ciency, and effectiveness, for which we are evaluating the different
explanation modalities. The questionnaire consists of a 6-item list
annotated on a Likert scale from 1: Strongly Disagree to 5: Strongly
Agree.

User trust in automation. We used the Trust in Automation (TiA)
questionnaire [34] to measure the level of trust in an automated
solution (in this case, the system’s credibility assessment). It consists
of 19 items annotated on a Likert scale from 1: Strongly Disagree to
5: Strongly Agree.

3.4 Task Setup and Procedure
We used the Prolific7 crowdsourcing platform to publish our task
and collect data. When participant decided to take part in our study
by clicking the "Open study link in a new window" button, they
would be taken to a website where we deployed our task as a web
application. The link contains a unique and anonymous identifier
for the participant and session, to identify successful submissions.

The participants were first greeted with a brief introductory text
explaining their task and an informed consent. Then, participants
were first asked to answer three non-mandatory demographic ques-
tions related to their age, gender, and education level and rate the
items in the Affinity for Technology Interaction (ATI) scale.

Upon completing the ATI questionnaire, the participants were
asked to assess the credibility of four statements. For each par-
ticipant, the statements were randomly selected from our dataset
(see Section 3.1, one statement from each credibility bin. Then,
each participant was assigned to one of our six conditions (control
group, text explanation, audio explanation, graphic explanation,
text+graphic explanation or audio+graphic explanation). For each
statement, the participant had to rate the credibility of the state-
ment by setting a slider (with steps of 1) to a value between 1 (not
credible) and 100 (credible). A single statement was presented at
a time, with the next one showing after the previous assessment
was submitted. The statements appeared in random order for each
participant.

After rating the credibility of the statements, the participants
were asked to complete the User Engagement Scale (UES) and then
the Trust in Automation (TiA) questionnaire. Finally, the participants
were shown the completion page and given the option to submit
their submissions.When the submit buttonwas clicked, participants
were taken back to the Prolific pagewith a completion codemarking
the successful completion of the task.

To ensure submission quality, three attention checks were in-
cluded in the task, one each in theATI, UES, and TiA scales/questionnaires.
These attention checks were questions indicating they were atten-
tion checks and telling the participant which answer to provide.
7https://www.prolific.co/
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3.5 Participants
We calculated the required sample size (N=324) by performing an
apriori power analysis using the G*Power [19] tool. To ensure
high-quality study submissions, we required participants on the
Prolific platform with an approval rate of at least 90% and English
as primary language. In total, 418 people participated in our study,
and 375 were approved (24 stopped before completing and 19 were
rejected). Approved participants received payment in line with
£7.56/hour.

3.5.1 Demographics of approved participants. Of the participants,
292 identified as female, 71 as male, and 12 as other. Participants are
distributed across all age ranges, but the majority of the participants
are between 18 and 27 years old, namely 233 (62%) (28-37: 86, 38-47:
36, 48-57: 13, 58+: 5, no answer: 2). The majority of our participants
had either a high school (37%) or a bachelor’s degree (39%). A smaller
fraction of participants had a master’s degree (13%) or vocational
training (6%), while 5% had either less than a high school degree, a
doctoral degree, or chose not to respond.

3.6 Pilot
A pilot study was set up with the following goals in mind: (1) to de-
termine the time needed for participants to complete the survey and
set up appropriate payment [14], (2) to receive early participant
feedback [22], and (3) to test our task system. The pilot experi-
ment procedure followed the procedure in Section 3.4. A total of 10
participants (2 per condition) with English as first language were
recruited on Prolific. All 10 participants successfully completed
the study without any errors, so no significant changes to the task
or system were deemed necessary. To make the system clearer to
interact with, small changes regarding the presentation of the user
controls on the task interface were made.

3.7 Statistical Tests and Analysis
During initial data exploration, we perform linear regressions on
metrics of interest. We used the non-parametric Kruskal-Wallis test
because our data fails the normality assumption. A significant test
result for the Kruskal-Wallis test only indicates whether at least
one sample is statistically significantly different than the rest, but
does not indicate which. To identify the statistically significant dif-
ferences, we perform a post-hoc analysis using the Mann-Whitney
U test. We apply the Bonferroni and Holm-Bonferroni corrections
(with p < α/m being p < 0.0033, wherem refers to the number of
repeated measures, namely 15) to account for repeated measures.
For our statistical analysis we used the NumPy [27], SciPy [67],
statsmodels [55], and Pingouin [65] Python packages.

4 RESULTS
We now present the results of our study. Participants were assigned
an explanation modality at random, in a balanced manner (we had
between 57 and 80 participants per condition, with the maximum
number of participants in the control condition) (see Figure 4 for
exact numbers). We recall here that perceived credibility was mea-
sured on a scale from 1 to 100, divided into 4 bins: “not credible”
[1,25], “somewhat not credible” [26,50], “somewhat credible” [51,75],
and “credible” [76,100].

Modality χ̃2 Statistic p −value

t vs. c 9.49 0.002
a vs. c 24.57 7.15e−07

g vs. c 0.99 0.32
g+a vs. c 23.57 1.20e−06

g+t vs. c 13.19 0.0002

Table 1: Results from chi-square tests of independence to
examine the relation between different explanation modal-
ities with respect to the control condition. Statistically sig-
nificant p-values after Bonferonni correction are indicated
in bold for p < .001.

Credibility Effect Significance

Credible

text > control p < 0.05
audio > control p < 0.005
g+a > control p < 0.01
g+t > control p < 0.05

Somewhat credible audio > control p < 0.001
Table 2: Significant effects of explanation modality on per-
ceived credibility.

The statements used in our study were balanced with respect
to their credibility bins. One would, therefore, expect the mean
credibility score across all tasks to be around 50. However, as shown
in Figure 4a, we found that the highest mean credibility score across
all explanation modalities was well below 50. This suggests an
overall tendency for participants in our study to label the statements
as less credible across all conditions. We also observed that the
audio explanation modality corresponded to the highest average
credibility rating, 43.9, while the graphic modality corresponded to
the lowest average credibility modality.

Looking at the accuracy of decisions made by users on assessing
the statement credibility, the percentages of correctly labeled state-
ments for each modality were found to be: text 47.2%; audio 55.6%;
graphic 38.6%; graphic+text 49.6%; graphic+audio 55.3%; control
34.1%. We carried out multiple chi-square tests of independence to
examine the relation between the explanation modalities and the ac-
curacy of the decision reached. The results from the corresponding
chi-square tests are presented in Table 1.

We found a significant difference in the assessments between
the explanation modalities used for the "Credible" (p < 0.0005),
"Somewhat credible" (p < 0.01), and "Not credible" (p < 0.05)
statement groups using Kruskal-Wallis tests (see Table 2).

Figure 4c depicts the credibility ratings for the statements in
the overall not credible range [1-50] and Figure 4b for those in the
overall credible range [51-100]. Aside from the control group, we
observe a clear division in credibility scores between credible and
not credible statements. The box spread for the control group in
both Figures 4c and 4b indicate users had a harder time agreeing on
the credibility of statements when explanations were not provided.

The results of the Kruskal-Wallis test for the overall credible state-
ments group (separated by condition) (H-statistic 38, p < 3.7e-7) and
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(a) All statements (b) (Somewhat) Credible (c) (Somewhat) Not credible

Figure 4: Box-plots of credibility values given by participants, grouped by explanation modality. Means shown as white dots
andmedians shown as horizontal lines inside the boxes. t: text (N = 62), a: audio (N = 58), g: graphic (N = 57), g+a: graphic+audio
(N = 57), g+t: graphic+text (N = 61), c: control (N = 80).

the overall not credible group (separated by condition) (H-statistic
17.5, p < 0.005) indicated significant differences exist between the
explanation types. Post-hoc analysis with the Mann-Whitney U
test revealed significant differences with the control group for: au-
dio (p < 0.000001, Cohen’s d 0.68), text (p < 0.0005, Cohen’s d
0.55), graphic+audio (p < 0.0005, Cohen’s d 0.6), and graphic+text
(p < 0.005, Cohen’s d 0.51). Only the graphic explanations did
not result in significantly better credibility assessments. In addi-
tion, the audio explanations significantly outperformed the graphic
explanations (p < 0.05, Cohen’s d 0.39).

For the overall not credible statements, only the graphic+text
explanations significantly improved credibility assessments com-
pared to the control group (p < 0.05, Cohen’s d 0.51), a notable
result is text explanations (p = 0.55, Cohen’s d 0.49).

4.1 Agreement with the System
Initial analysis shows there is a positive correlation between system
credibility assessment and user perceived credibility in the presence
of explanations. The control group showed the same correlation
although to a much lesser extent. User perceived credibility also
converged with system assessment as users were exposed to more
statements/explanations, i.e., users tended to have a higher chance
of agreeing with the system the more statements they were rating.
The overall accuracy of the users’ decision while rating the first
statement was 35.5%, rising to 63.2% by the fourth statement. This
phenomenon was strongest for users who initially were more skep-
tical of the system, i.e., their first assessment differed a lot from the
system, while by their fourth assessment, they tended to mostly
agree.

4.2 Perceived Credibility
We now analyze whether the explanation modality influences per-
ceived credibility. We compare user assessments using the Kruskal-
Wallis test, Bonferroni corrected for multiple comparisons. We are
going to look at each credibility bin separately, starting with the

"credible" bin. The H-statistic of 24.7 with a p-value of 0.00015 in-
dicates there is a significant difference between the explanation
types. An overview of the data can be found in the first box-plot of
Figure 5.

Both the mean and median statement credibility are the lowest
in the control group, falling in the "somewhat not credible" bin,
indicating that without an explanation present, credible statements
are more likely to be perceived as not being credible. In contrast,
credible statements with audio explanations present have the high-
est credibility rating at 66.7, with text, graphic+text, graphic+audio
very close. For all explanation types, the lowest credibility rating
given is 1, and as stated earlier, both graphic and graphic+audio
have not scored above 98 and 95, respectively. Additionally, the
average credibility rating for none of the explanation types is in
the "credible" bin, they are all below 76, with the average being the
lowest for the group without an explanation.

When performing post-hoc analysis with the Mann-Whitney
U test, these findings were solidified with a significant difference
shown between the control group and the text (p < 0.002, Cohen’s
d 0.66), audio (p < 0.005, Cohen’s d 0.71), graphic+text (p < 0.05,
Cohen’s d 0.62), and graphic+audio (p < 0.01, Cohen’s d 0.67)
groups.

Moving on to the somewhat credible bin, for which the data
overview can be found in the second box-plot displayed in Figure
5. All group means are within the ground-truth credibility bin
(somewhat credible), except for the control group, which has a
mean credibility score in the somewhat not credible group. This
indicates that explanations are helping users make more accurate
decisions for somewhat credible statements, which is in line with
the accuracy numbers mentioned at the beginning of this section.
The Kruskal-Wallis results for the somewhat credible statements
grouped by explanation type are H-statistic of 15.7 with a p-value
of 0.008, indicating there is a significant difference between the
explanation types.
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Figure 5: Box-plots of credibility values given by participants for the different credibility bins, grouped by explanation modal-
ity. Means shown as white dots and medians shown as horizontal lines inside the boxes.

Comparing the credible and somewhat credible graphs in Figure
5, we note a few differences. The credibility scores for the text ex-
planations have a lower mean and median, which is to be expected
as the ground-truth expects scores on the interval [51-75] while the
credible bin interval is at [76-100]. However, for the somewhat cred-
ible statements the spread in credibility scores also seems larger,
indicating users were less sure about the credibility of somewhat
credible statements vs. the credible statements. The inverse, how-
ever, seems true for the audio explanations and the control group,
where there is a smaller spread on the somewhat credible state-
ments. The graphic, g+a, and g+t explanations show similar data
on both the credible and somewhat credible, albeit with a slightly
lower mean/median for the somewhat credible statements (which
is to be expected).

Post-hoc analysis with the Mann-Whitney U test revealed that
only the audio explanations were significantly different from the
control group (p < 0.005, Cohen’s d 0.66).

The Kruskal-Wallis results for the somewhat not credible and not
credible statements grouped by explanation type indicated there
is no statistical significance difference between groups (somewhat
not credible: H-statistic = 8.8, p = 0.12, not credible: H-statistic =
13.4, p = 0.02).

4.3 Trust in Automation
Initial analysis shows there is a positive correlation between user
agreement with the system and their trust scores. Users with a
higher trust score in the TIA questionnaire converged with the
system assessments. For the control group, however, the correlation
is less stronger.

Next, we applied the Kruskal-Wallis test on the questionnaire
answers separated in 6 groups (5 modality types and 1 control
group). The results indicate that there is no statistically significant
difference between the explanation types and the total TiA score
(H-statistic = 7.05, p-value = 0.22). We then did an analysis of only
the trust score component of the TIA questionnaire. Again, we
found no statistically significant difference between the modality
groups (H-statistic = 6.56, p-value = 0.26). These results indicate
that users’ trust is not affected by the explanation modality.

4.4 User Satisfaction, Efficiency, and
Effectiveness

We analyzed the results of the User Engagement questionnaire for
user satisfaction, efficiency, and effectiveness. Our analysis shows
that there is a positive correlation between user agreement with
the system and their UE scores, but only for audio explanations.
The control group, along with the text, graphic, and graphic+text
groups showed a slight negative correlation in this regard, with no
apparent correlation for the graphic+audio explanation.

We found no statistically significant difference between the ex-
planation types and the total User Engagement score (H-statistic
= 3.93, p-value = 0.56). Performing the Kruskal-Wallis test on the
perceived usability component resulted in an H-statistic of 2.5 with
a p-value of 0.78, again showing no significant difference between
the modality groups.

5 DISCUSSION
We studied the role of explanation modalities in informing, aug-
menting, and shaping human decision-making in a credibility as-
sessment setting. The overall results show that user accuracy in-
creases significantly in a credibility assessment setting when expla-
nations are provided.

5.1 Perceived Credibility
Our main focus was to study the influence of explanation modal-
ities on the accuracy of user decisions on credibility. Addressing
our first research question of how different explanation modalities
corresponding to a credibility assessment system influence the per-
ceived credibility of statements, we first separated the statements in
two equally divided credibility bins, namely the credible bin (range
[51,100]) - consisting of the credible and somewhat credible state-
ments, and the not credible bin (range [1,50]) - consisting of the
not credible and somewhat not credible statements. The graphs in
Figure 4 shows a clear distinction between the credible and not cred-
ible statements for the users assisted by explanations. The control
group, however, looks very similar, with only a slight shift up or
down with respect to the ground truth credibility, which indicates
that the presence of explanations has a positive effect on the overall
users’ decision accuracy.
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The text, audio, graphic+audio, and graphic+text modalities did
not have people agree with the credible ground truth on average,
however they significantly outperformed both graphic and the
control group. The control group showed participants were mostly
leaning toward labeling the credible statements as being somewhat
not credible, again demonstrating the impact of explanations.

Another thing to note is the fact that the graphic explanations
were significantly outperformed by the other explanations (except
for "not credible" statements), showing the importance of adding an-
other modality to graphic explanations. However, the combinations
of graphic+text and graphic+audio had no significant difference to
the modality added to the graphic explanation (text and audio). A
possible explanation for graphic+audio outperforming the graphic
modality could be an increased trust in the system.

For the statements in the credible bin, the median answer value
in the control group falls into the "somewhat not credible" bin,
while the medians of all treatments that included an explanation
fell into the "somewhat credible" bin. The control groups for the
other credibility bins were already leaning toward their respective
ground-truth credibility bin. This credible bin is also the bin where
we almost exclusively see significant results when zooming in with
pairwise post-hoc tests, possibly explained because here there was
more room for improving the accuracy.

5.2 Perceived Trust and Engagement
We also explored the influence of explanation modalities on the
users’ perceived trust in the system and their engagement with
the system, addressing our second research question. Our results
showed that the presence of audio explanations increased users’
perceived trust and engagement with the system. Consequently,
this led to increased agreement with the system’s assessment. Fur-
ther data analysis, however, revealed that there is no statistically
significant difference for user trust and engagement in our deci-
sion support system, based on explanation modality. This could be
explained by the results found by Wang and Yin [72], who found
that the explanation that is considered to resemble how humans
explain decisions (i.e., counterfactual explanation) does not seem to
improve calibrated trust. A way to test this is by measuring three
levels of support for participants assessing statement credibility:
without a decision-support system; with a decision-support system
but without explanations; with a decision-support system with ex-
planations. Research done by Yang et al. [73] suggests that users
without a decision-support system perform worse than users being
supported by a decision-support system.

5.3 Limitations and Future Work
We have identified several limitations of our approach. First of all,
in our experimental setup, we did not study the influence of expla-
nation modalities in settings where the AI prediction is incorrect.
Second, we did not measure the user perceived credibility in setups
where the AI prediction is given without being augmented with
explanations. However, since our goal was to investigate whether
different explanation modalities improve user decision accuracy
compared to the control group (where no explanation is given), we
only used correct predictions and augmented with explanations.

Future studies could focus on studying the influence of explana-
tions in settings where the predictive model is wrong and mislabels
statements’ credibility. Such studies would also allow us to inves-
tigate how people’s perceived trust changes when the credibility
assessment tool has unpredictable accuracy. In such cases, more
fine-grained assessments on user trust and user engagement (i.e., af-
ter rating the credibility of each statement) would be needed. Third,
we studied the influence of explanation modalities on a single,
straightforward task, namely credibility assessment. Furthermore,
our study participants were fairly educated, which could influence
their assessments. We argue that future studies could study the in-
fluence of various demographic characteristics on human-perceived
credibility.

6 CONCLUSION
In this paper, we investigated the influence of explanation modality
on AI-assisted decision-making, leveraging a credibility assessment
system as a lens for our exploration. This allowed us to better un-
derstand end-users’ perceived credibility and decision accuracy
when relying on the credibility assessment system. We designed
and motivated our study following principles regarding informa-
tion modality from the Cognitive Load Theory. Our results indicate
that explanations have a significantly positive effect on user perfor-
mance in assessing the credibility of statements. This is consistent
with prior works that have explored the potential of explanations.
However, our work expands into understanding the role of modali-
ties of explanations in shaping human decision-making. We found
that text and audio explanations were the most effective in increas-
ing users’ accuracy in assessing statements’ credibility. Additionally,
graphical explanations were only effective when combined with
either text or audio explanations. In relation to decision accuracy,
we found that the accuracy of user decisions increased as they made
more assessments (measured across the 4 different decisions each
user made).

Users reported increased trust levels when explanations were
present and tended to have a higher agreement with the accurate
system assessments, especially for the combination of graphic and
audio explanations. Audio explanations were the only mode of
explanation for which a positive correlation was found between
user perceived engagement/usability and system agreement. Our
work has important implications for the broader explainable AI
(XAI) community, and our findings can inform the future design of
AI systems that aim to augment human decision-making.
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