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Finite element-based nonlinear dynamic
optimization of nanomechanical resonators
Zichao Li 1✉, Farbod Alijani 1, Ali Sarafraz1, Minxing Xu1,2, Richard A. Norte1,2, Alejandro M. Aragón1 and
Peter G. Steeneken 1,2✉

Abstract
Nonlinear dynamic simulations of mechanical resonators have been facilitated by the advent of computational
techniques that generate nonlinear reduced order models (ROMs) using the finite element (FE) method. However,
designing devices with specific nonlinear characteristics remains inefficient since it requires manual adjustment of the
design parameters and can result in suboptimal designs. Here, we integrate an FE-based nonlinear ROM technique
with a derivative-free optimization algorithm to enable the design of nonlinear mechanical resonators. The resulting
methodology is used to optimize the support design of high-stress nanomechanical Si3N4 string resonators, in the
presence of conflicting objectives such as simultaneous enhancement of Q-factor and nonlinear Duffing constant. To
that end, we generate Pareto frontiers that highlight the trade-offs between optimization objectives and validate the
results both numerically and experimentally. To further demonstrate the capability of multi-objective optimization for
practical design challenges, we simultaneously optimize the design of nanoresonators for three key figure-of-merits in
resonant sensing: power consumption, sensitivity and response time. The presented methodology can facilitate and
accelerate designing (nano) mechanical resonators with optimized performance for a wide variety of applications.

Introduction
Design of mechanical structures that move or vibrate in

a predictable and desirable manner is a central challenge
in many engineering disciplines. This task becomes more
complicated when these structures experience large-
amplitude vibrations, since linear analysis methods fail
and nonlinear effects need to be accounted for. This is
particularly important at the nanoscale, where forces on
the order of only a few pN can already yield a wealth of
nonlinear dynamic phenomena worth exploiting1–5.
Although design optimization of micro and nanomecha-

nical resonators in the linear regime is well-established6, the
use of design optimization for engineering nonlinear reso-
nances has received less attention7. This is because designers
tend to avoid the nonlinear regime, and optimizing struc-
tures’ nonlinear dynamics is more complex, which requires

extensive computational resources. As a result, available lit-
erature on nonlinear dynamic optimization is limited,
although some recent advances have been made that com-
bine analytical methods with gradient-based shape optimi-
zation, to optimize nonlinearities in micro beams8,9. For
nonlinear modeling of more complex structures, several
approaches have been developed based on nonlinear reduced
order modeling (ROM) of finite element (FE) simula-
tions10–12. A particularly attractive class known as STEP
(STiffness Evaluation Procedure)13 can determine nonlinear
coefficients of an arbitrary mechanical structure and can be
implemented in virtually any commercial finite element
method (FEM) package. This, for instance, has been recently
shown by using COMSOL to model the nonlinear dynamics
of high-stress Si3N4 string14 as well as graphene nanor-
esonators15. Since the number of degrees of freedom in the
ROM is much smaller than that in the full FE model, the
nonlinear dynamics of the structure can be simulated much
more rapidly using numerical continuation packages16.
In this work, we present a route for nonlinear dynamic

optimization that is based on an FE-based ROM. The
methodology, which is a combination of Particle Swarm
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Optimization (PSO) with STEP13 (OPTSTEP), has several
beneficial features. First of all, because it uses a derivative-free
optimization routine for approaching the optimal design, it
can be implemented and combined with FEM packages that
are not able to obtain gradients easily. Secondly, the ROM
parameters generated in OPTSTEP can facilitate explicitly
expressing the optimization goals. Finally, as will be shown,
the developed procedure allows using multiple objective
functions to approximate a Pareto front, which can help
designers in decision-making processes when having to bal-
ance performance trade-offs among different objectives.
Considering the outstanding performance as ultrasensitive
mechanical detectors and the mature fabrication proce-
dure17,18, we select high-stress Si3N4 for the experimental
validation of our methodology.
The manuscript is structured as follows. We first

introduce and describe the general OPTSTEP methodol-
ogy. Then we demonstrate the method on the specific
challenge of the optimization of the support structure for
a high-stress Si3N4 nano string, while taking the max-
imization of its Q-factor and nonlinear Duffing constant β

as examples of linear and nonlinear objectives. By com-
paring the PSO results to the Q and β values that result
from a brute-force simulation of a large number of
designs that span the design space, we validate that
OPTSTEP finds the optimum designs much faster with
the same computational resources. Subsequently, we turn
to the problem of dealing with multiple objective func-
tions and focus on simultaneously maximizing both Q and
β, demonstrated by a Pareto front. For validation, the
results are compared to experimental measurements of
fabricated devices. We conclude by demonstrating the
potential of OPTSTEP for optimizing the performance of
resonant sensors by using more complex objective func-
tions that are relevant for engineering their response time,
sensitivity, and power consumption.

OPTSTEP methodology
An overview of the OPTSTEP method is schematically

shown in Fig. 1. In the current work, we use it for engi-
neering a parameterized geometry. We use nanomecha-
nical string resonators with compliant supports, which are
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Fig. 1 Schematic of the OPTSTEP method. a A device geometry is chosen and parameterized by a set of design optimization variables. In this
specific case a Si3N4 nanomechanical string resonator is chosen for demonstrating OPTSTEP. b All designs in one generation are simulated in parallel
on a high-performance computing cluster. Static analysis is conducted to evaluate the stress redistribution and deformation after etching, followed
by eigenfrequency analysis. Resonance frequencies, mode shapes, Q-factor and the ROM are obtained from the full FE model. c The ROM is simulated
by numerical continuation. d Objective(s) selected from ROM are sent to an optimizer (PSO in this study) to generate design variables for the next
generation
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shown in Fig. 1a, to demonstrate the methodology. We
keep the length L and width w of the central string con-
stant, while varying the width ws, length Ls and angle θ of
the supports, as well as the thickness h of the device. It is
noted that the OPTSTEP methodology might be used
with a larger number of parameters, or even might be
extended towards shape or topology optimization of
nonlinear dynamic structures. However, such extension is
out of the scope of the current work.
For a certain set of geometrical parameters, a ROM for the

parameterized structure is generated using the STEP
method13, which we implemented with shell elements in
COMSOL14. Besides geometric parameters and boundary
conditions (see Fig. 1a), the COMSOL simulation contains
material parameters (see Methods), and the initial pre-stress
distribution is calculated using a static analysis14. We conduct
this static analysis assuming the material is isotropic and pre-
stressed (σ0= 1.06GPa). We then calculate the stress redis-
tribution during the sacrificial layer underetching process,
whereby the high-stress Si3N4 layer releases from the silicon
substrate. Note that in the present study we only consider
θ ≥ 0, such that the central string is always in tension (in
contrast to ref. 14). After the static analysis, an eigenfrequency
analysis is performed to obtain the out-of-plane eigenmodes
ϕi (see Fig. 1b). These eigenmodes, together with the redis-
tributed stress field obtained from the static analysis, are then
used to determine the effective mass meff, resonance fre-
quency f0, andQ-factor. We can calculateQ-factors19,20 of the
ith eigenmode Q(i) based on the stored tension energy W ðiÞ

t

and bending energyW ðiÞ
b :where σxx, σyy and σxy is the stress in

the Cartesian coordinate,Q0 is the intrinsicQ-factor of stress-
free Si3N4

21.
As indicated in Fig. 1b the STEP method generates a set

of coupled nonlinear differential equations13–15, where
the effective nonlinear elastic force acting on the ith mode
is given by the function γ(i) that depends on the quadratic
aij, cubic bijk coupling coefficients, and the generalized
coordinates qi. qi describes the instantaneous contribution
of the corresponding mode shapes ϕi to the deflection of
the structure.
Thus, the finite element model with several thousand or

even millions of degrees of freedom (DOFs) is reduced to
a condensed ROM, that can usually describe the nonlinear

dynamics to a good approximation with less than ten
degrees of freedom. We can visualize the resulting fre-
quency response curves for different harmonic drive levels
by numerical continuation16, as shown in Fig. 1c.
The resulting ROM parameters, including effective mass

mðiÞ
eff ;Q-factor, linear stiffness kðiÞ ¼ mðiÞ

eff ð2πf ðiÞÞ
2
and non-

linear stiffness terms ajk, bjkl, are passed to the PSO optimizer
(see Fig. 1d). The algorithm randomly generates many dif-
ferent initial designs by varying the geometric parameters, as
shown in Fig. 1a. For each of these designs, known as a
“particle” in PSO, a ROM is generated by STEP and the
corresponding objective functions are computed accordingly
and passed to the optimizer. The optimizer then generates a
next generation of particles based on the designs from the
current generation, the objective functions, and the con-
straints, with the aim of improving their design parameters to
optimize the objectives (see Supplementary Note 1). The
optimization loop will iterate until it reaches the predefined
maximum generation. If multiple objective functions are
selected to be optimized, there is an additional step that
selects the nondominated particles according to Pareto
dominance22. Because each particle is evaluated indepen-
dently, PSO enables efficient parallel computing to evaluate
all particles in one generation on a high-performance com-
puting cluster.

OPTSTEP implementation and validation
Single-objective optimization with OPTSTEP
We implement the presented OPTSTEP methodology

to optimize the support geometry of the string resonator

shown in Fig. 1a. The motion of the fundamental mode of
the resonator can be described with the following non-
linear equation of motion:

€q þ 2πf 0
Q

_q þ ð2πf 0Þ2q þ βq3 ¼ Fexc sinð2πftÞ; ð2Þ

where q is the displacement at the string center, f0 is the
resonance frequency, Q is the Q-factor, β= b111/meff is
the mass-normalized Duffing constant, and Fexc sinð2πftÞ
is the mass-normalized harmonic drive force. To demon-
strate the single-objective optimization capability of
OPTSTEP, we present results for two optimization
objectives, respectively: maximizing the Q-factor (shown

W ðiÞ
t ¼ h

2

Z Z
σxx

∂ϕi

∂x

� �2

þ σyy
∂ϕi

∂y

� �2

þ 2σxy
∂ϕi

∂x
∂ϕi

∂y
dxdy;

W ðiÞ
b ¼ Eh3

24ð1� ν2Þ
Z Z

∂2ϕi

∂x2

� �2
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ð1Þ
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in Fig. 2a, c, d) or maximizing the mass-normalized
Duffing constant β (shown in Fig. 2b, e, f) of the
fundamental mode. We emphasize that a maximum Q
or β does not necessarily result in the best performance
for all applications of nanomechanical resonators. We
choose these optimization objectives as examples to

demonstrate that the OPTSTEP methodology can be
used to find extreme values of a single objective function,
that can be suitably chosen depending on the application
requirements. As design parameters, we use the support
parameters (Ls, ws, θ and h in Fig. 1a). The PSO algorithm
can freely initialize and vary these variables between
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preset constraints 10 μm< Ls < 100 μm, 1 μm<ws < 7 μm,
0 rad < θ < 0.4 rad, and 40 nm < h < 340 nm.

We initialize the PSO algorithm with 10 randomly
generated particles, as indicated by the blue circles at the
first generation in Fig. 2a, b. The Q and β values of the
best performing particle per generation are highlighted by
the red line, which converges towards an optimum.
Simulated response curves at different drive levels of the
initial design (median performance of the initialized par-
ticles) and the optimized design are shown in Fig. 2c, d for
Q and Fig. 2e, f for β. It is obvious that the resonance
peaks become narrower from Fig. 2c to Fig. 2d, indicative
of an increase in Q-factor. From the backbone curves
shown in Fig. 2e, f, we see that the resonance frequency of
the optimized device shifts more at the same vibration
amplitude, which suggests a larger, optimized value of β.

Numerical validation
In order to validate the PSO results, we compare them

to a brute-force parametric study where we simulate a
large number of designs that span the full design

parameter space, and plot the resulting values of Q and β
in the contour plots in Fig. 2g, h. Each of these subfigures
consists of 16 small contour plots, each of which has a
different combination of Ls and h, while along the axes
the parameters ws and θ are varied. The red-colored
regions in the plots contain the optimal values of Q and β,
which are indicated by a triangle and a star. In Supple-
mentary Table S1, we compare the optimized design
parameters from the OPTSTEP method to the best
devices from the parametric study. The close agreement
between both approaches provides evidence that the
OPTSTEP method is able to optimize both linear (Q) and
nonlinear (β) parameters of the ROM. The results in
Fig. 2a are obtained in 30minutes using a high performance
computing cluster, while the parametric study in Fig. 2g
takes over 325 hours on the same cluster with the same
amount of nodes. This illustrates the advantage in
computation time that can be realized with OPTSTEP,
although it is noted that these times strongly depends on
the resolution of the parameter grid and other simulation
parameters.
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Experimental characterization
To compare the OPTSTEP method to experimental

results, we also perform an experimental parametric study
on 15 string resonators with varying support design
parameters. For this, we fabricated a set of devices with
10 μm< Ls < 90 μm and 0 rad < θ < 0.2 rad, while keeping
h= 340 nm and ws= 1.0 μm fixed. Figure 3a shows a
Scanning Electron Microscope (SEM) image of an array of
nanomechanical resonators with varying support designs
made of high-stress Si3N4 (see “Methods” for more
details). To characterize the nonlinear dynamics of the
devices, as shown in Fig. 3b, we fix the chip to a piezo
actuator that drives the resonator by an out-of-plane
harmonic base actuation in the out-of-plane direction.
We use a Zurich Instruments HF2LI lock-in amplifier,
connected to an MSA400 Polytec Laser Doppler vib-
rometer, to measure the out-of-plane velocity at the
center of the string resonator as a function of driving
frequency (see Fig. 3c). We use a velocity decoder with a
calibration factor of 200mm/s/V. We perform all mea-
surements in a vacuum chamber with a pressure below
2 × 10−6 mbar at room temperature.
Figure 3c shows the frequency response at the center of

the string at various drive levels for a device with
Ls= 90 μm, ws= 1 μm, θ= 0.20 rad and h= 340 nm. We
estimate the linear resonator parameters of all devices by
fitting the measured frequency response curves at various
drive levels with the following harmonic oscillator func-
tion14 (see Supplementary Note 2):

qdðf Þ ¼
qmax;l=Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f =f 0ð Þ2� �2 þ f 2=ðf 0QÞ2
q ; ð3Þ

where qd(f) is the measured amplitude, qmax;l is set equal
to the maximum measured amplitude qmax;nl as the peak
amplitude of the linear oscillator, and f is the drive
frequency. To determine the nonlinear stiffness, we
measure the resonator’s frequency response at increasing
drive levels, construct the backbone curve, and use the
relation between the nonlinear peak amplitude qmax,nl and
the peak frequency f max to fit and obtain the mass-
normalized Duffing constant β using the following
equation23,24:

f 2max ¼ f 20 þ
3

16π2
βq2max;nl: ð4Þ

To compensate for small drifts in f0 during the experi-
ments, before fitting with Eq. (4), we plot the frequency
response curves along the f− f0 axis14. The fitting
procedure to obtain f0, Q and β using Eqs. (3) and (4) is
explained in more detail in Supplementary Note 2.

In Fig. 3d–f, we compare the dynamical properties
between FE-based ROMs (dots) and measurements on 15

string resonators (diamonds) as a function of Ls and θ. It
is evident that the fundamental resonance frequency f0, Q-
factor, and the mass-normalized Duffing constant β of the
fabricated devices, are all well predicted by FE-based
ROMs. It can also be seen that for short support lengths
Ls the device performance is similar, whereas increasing Ls
allows tuning f0, Q and β as we studied in more detail
earlier14,19. In the next section we will compare these
experimental results to multi-objective optimization as
further validation of OPTSTEP.

Multi-objective optimization with OPTSTEP
For actual device design there are often multiple per-

formance specifications that need to be met. It might
sometimes be possible to condense these performance
specifications into a single figure of merit, like the f0 ×Q
product for nanomechanical resonators. However, to
make the best design decisions, it is preferred that the
optimizer works with two (or more) objective functions
like enhancing f0 and Q, simultaneously. To enable this,
we implement OPTSTEP with a multi-objective particle
swarm optimization (MOPSO), which is an extension of
single-objective PSO. After multi-objective optimization,
the nondominated particles in the swarm are used to
determine an approximation of the Pareto front, which is
the set of designs for which improving one of the objec-
tives will always lead to a deterioration of the other
objective(s). By performing MOPSO, we aim at finding
the Pareto front in the design space for multiple objec-
tives, that represents the boundary on which all optimized
designs reside for the chosen variables. As the red dots
show in Fig. 1d illustrate, the Pareto front represents the
boundary between feasible and unfeasible combinations
of objectives and thus allows the designer to make the
best trade-off among different objectives.
To demonstrate that multi-objective optimization can

be combined with OPTSTEP, we use it to simultaneously
maximize Q and β. Devices with high quality factor and
nonlinear stiffness can be of interest in cases where we are
looking for designs that can drive a string into the non-
linear regime with a minimum driving force and power
consumption.
The resulting Pareto fronts are shown in Fig. 4a. Since we

are also interested in the effect of the constraints on the
optimum solutions, we include Pareto fronts with: no con-
straint (purple), a thickness constraint of h= 340 nm (gray),
and with thickness and support width constraint (multi-
colored). These three Pareto fronts show that there is a clear
trade-off between Q and β, with higher Q-factor leading to
lower nonlinearity β. The experimental devices share the
same constraints (ws= 1 μm and h= 340 nm) as the multi-
colored Pareto and are plotted as the hollow diamonds with
error bars in Fig. 4a (see Supplementary Table 2). We
observe that all experimental points reside in the region on
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the left hand side of the Pareto front, confirming the area
enclosed by the Pareto front indeed captures the feasible
devices, and experimentally strengthening the confidence in
the OPTSTEP approach for multi-objective designs. The
color of the points links the points in the Q− β graph in Fig.
4a to the corresponding design parameters in Fig. 4b. In Fig.
4b the schematic support geometries are shown as insets for
both maximum β (dark blue) and maximum Q (dark red).
We choose some of the fabricated devices close to the Pareto
front to show typical measured frequency response curves
and microscopic images in Fig. 4c–f, which correspond to the
star, triangle, circle and square data markers in Fig. 4a, b.
Together with the microscopic images, it is apparent that
with minor alterations in the support region, the response of
the string resonators can be largely tuned. To further explore
the effect of other design parameters numerically, we release
the constraint on ws, keeping only h= 340 nm constrained,
and conduct MOPSO (see the gray Pareto front). We can see
from the comparison between the gray and multicolored

fronts that the performance gain from changing ws is not
very large. In contrast, if we further relax the constraint on
h= 340 nm, which shares the same design space in Fig. 2g, h,
we obtain the purple Pareto front. The thinner h pushes the
Pareto front to have much higher Q. The long plateau at
fixed β is mainly attributed to the increase in Q that results
from the dependence of the intrinsic quality factor Q0 on h
(see Methods). Besides validating the MOPSO approach by
comparing with experimental data, we also use the data from
the parametric study in Fig. 2 to extract and generate refer-
ence Pareto fronts that are shown as black solid, dotted, and
dashed lines in Fig. 4a (see Supplementary Note 3), with
constraints that match those from the MOPSO optimization.

Discussion
The OPTSTEP methodology that is presented in this

work enables the optimization of the nonlinear dynamic
properties of resonant structures using standard FEM
software, since it is based on the STEP and uses a
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derivative-free optimization method. The exclusive reli-
ance on FEM outputs, without requiring information
from the full mass and stiffness matrices, increases its
generality and allows multi-physics optimization, includ-
ing also e.g., electromagnetic or thermodynamic phe-
nomena. We note that although derivative-free
techniques like PSO are able to efficiently find near-
optimal values of design parameters, optimality guaran-
tees can typically not be given, and the techniques are
therefore also called metaheuristic optimization techni-
ques. Here, in order to validate the OPTSTEP metho-
dology numerically and experimentally, we have focused
on β and Q maximization of the fundamental mode of a
string resonator by geometric support design. After hav-
ing established the methodology, it is now of interest to
apply it to explore performance parameters that are more
relevant to applications. For example, as shown in Fig. 5,
our methodology can directly be extended to optimize the
power consumption P, sensitivity (the limit of detection
expressed in Allan Deviation, assuming averaging time
τ= 1s) σy and response time τr of resonant sensors

25,26,
since these figure-of-merits can be directly expressed in
terms of meff, f0, Q and β (see Supplementary Note 4). In
Fig. 5, 1000 nondominated particles are found by OPT-
STEP to form a 3D surface that approaches the Pareto
frontier with the objective of minimizing P, σy and τr
simultaneously. The particles have the same design con-
straints as in the example in Fig. 2 and the purple Pareto

front in Fig. 4a, which are 10 μm< Ls < 100 μm,
1 μm<ws < 7 μm, 0 rad < θ < 0.4 rad, and
40 nm < h < 340 nm. The competing design trade-offs
between these three objective functions are obtained
from OPTSTEP, and are visualized in Fig. 5 by showing
four typical designs near the Pareto frontier. As demon-
strated by the designs at the upper right corner of the
Pareto frontier, we can conclude that the devices with
shorter response time are more likely to have thicker
supports, which lead to a higher resonance frequency f0
combined with a low Q, thus resulting in a smaller Q/f0
ratio. At the same time, these thicker supports also con-
tribute to a larger onset of nonlinearity a1dB

14, so the
resonators are able to work at much larger amplitudes in
the linear regime, which provides a better sensitivity σy.
However, the larger a1dB and meff will require more
energy to sustain the oscillation at resonance that causes
higher power consumption P. In contrast, the devices with
much lower power consumption P while maintaining
comparably high sensitivity σy, which are shown at the
lower left corner in Fig. 5, are equipped with more slender
supports. With only a slight increase of support angle θ
from 0, the low torsional stiffness of supports is main-
tained while the stress in the central string can be sig-
nificantly increased19, leading to a higher Q, which can be
confirmed by Fig. 2g. Consequently, when aiming at
designing a resonant sensor with relatively low power
consumption P, high sensitivity σy and short response
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Fig. 5 Trade-offs among the power consumption P, sensitivity σy(τ= 1s) and response time τr of a string resonator with four design
parameters. The insets show the geometries and design parameters of supports of four representative designs on the Pareto frontier. The gradual
change of color from dark blue to dark red marks the increasing in power consumption P when operating the nanoresonator at the onset of
nonlinearity a1dB to guarantee the maximum sensitivity
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time τr with compliant supports, a pair of slender and
slightly angled supports, together with a medium thick-
ness of Si3N4 layer is generally favored.
In other cases, like approaching the quantum regime

with a nonlinear nanomechanical resonator27, it is bene-
ficial to maximize Q and β simultaneously. The OPTSTEP
methodology can also be used for more complex design
problems that involve multiple modes5,8,14,28, for avoiding
or taking advantage of mode coupling, for instance by
optimizing nonlinear coupling coefficients (ajk and bjkl in
Fig. 1b) and resonance frequency ratios. Since OPTSTEP
generates the ROM parameters at each generation, it is
particularly suited for dealing with cases where the device
specifications can be expressed in terms of these para-
meters. Interesting challenges include increasing fre-
quency stability by coherent energy transfer29,30, signal
amplification31 and stochastic sensing4,32. Moreover,
intriguing paths for further research involve inclusion of
nonlinear damping or extension to full topology optimi-
zation6. Also the use of alternative optimization strategies,
like binary particle swarm optimization (BPSO)33, that
could generate radically new geometries, is an interesting
direction.

Conclusions
To sum up, we presented a methodology (OPTSTEP)

for optimizing the nonlinear dynamics of mechanical
structures by combining an FE-based ROM method with
a derivative-free optimization technique (PSO). We
demonstrated and validated the methodology by opti-
mizing the support design of high-stress Si3N4 nano-
mechanical resonators. The method was verified
numerically by comparing its results to a brute-force
parametric study, for both single- and multi-objective
optimization. Experimental data on the Q-factor and
Duffing nonlinearity were in correspondence with the
OPTSTEP results. The capability of the method was also
demonstrated by multi-objective optimization of the
support for the nanomechanical resonator, targeting
improvements in power consumption, sensitivity and
response time in resonant sensing. We thus conclude that
the method can be applied to a wide range of complex
design challenges including nonlinear dynamics, and is
expected to be compatible to most FE codes and
derivative-free optimization routines. It holds the poten-
tial to facilitate and revolutionize the way (nano)dyna-
mical systems are designed, thus pushing the ultimate
performance limits of sensors, mechanisms and actuators
for scientific, industrial, and consumer applications.

Methods
Sample fabrication
We produce our nanomechanical resonators using elec-

tron beam lithography and reactive ion etching techniques

on high-stress Si3N4 layers, chosen for their reliability and
precision in achieving design specifications20. These layers
are deposited via low pressure chemical vapor deposition
(LPCVD) onto a silicon substrate. Following this, the devices
undergo suspension through a fluorine-based deep reactive
ion underetching process. The mechanical properties of the
high-stress Si3N4 are characterized in our previous works14,
with an initial isotropic stress σ0= 1.06GPa, Young’s mod-
ulus E= 271GPa, Poisson’s ratio ν= 0.23, mass density
ρ= 3100 kg/m3. The intrinsic quality factor is a function of
thickness h21, which is Q�1

0 ¼ 28000�1 þ 6 ´ 1010hð Þ�1
.
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