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SUMMARY

A universal, large-scale quantum computer would be a powerful tool with applications
of high value to mankind. For example, such a computer could significantly speed up
the search for new medications or materials. However, the error rates of current qubit
designs are simply too large to enable interesting computations. Therefore, both error
correction and improved designs of qubits are needed.

In 2001, Gottesman, Kitaev and Preskill proposed an encoding (GKP code) where a
qubit is stored in a harmonic oscillator — a system that can be controlled and manu-
factured with high precision, and therefore have comparatively high coherence times.
Moreover, the code offers good protection against losses, a simple gate set, and error
correction circuits that are comparatively easy to implement. The drawback is that en-
coding a qubit into a GKP code state is a challenging task. In this thesis, we develop
efficient schemes to encode a GKP qubit.

Bosonic codes, where a qubit is stored in an oscillator, and in particular the GKP
code are still relatively unknown. Therefore, we will start the thesis with an overview
of the field, and provide the reader with the tools to analyze a GKP code, as these are
quite different from standard error correcting codes. A tool which is important to un-
derstand, and that describes a protocol that encodes a GKP qubit is the so-called phase
estimation algorithm. This algorithm allows to measure the eigenvalue of any unitary
operation, and is one of the cornerstones of quantum information. We will show how
phase estimation can be applied to encode a GKP qubit, and what the requirements for
an experiment attempting to do so are.

A major advantage of the GKP code over other encodings is that it can tolerate sig-
nificant photon loss before the encoded information is lost. In addition, states that are
closely related to the GKP qubit can be used to violate Bell’s inequalities (i. e. prove the
presence of entanglement), even in the presence of large noise. Both these applications
make the code particularly interesting in the optical regime, where error correction usu-
ally cannot be done while the signal is travelling. In this thesis, we will analyze an en-
coding protocol originally proposed by H. M. Vasconcelos, L. Sanz, and S. Glancy, Optics
Letters 35, 3261 (2010) that relied on post-selection, and show that any output state can
be used as a GKP code state with a simple change of frame, providing an exponential
speedup.

In 2019, two separate experiments generated a GKP code state for the first time: C.
Flühmann et al., Nature 566, 513 (2019) realized a GKP qubit in the motional mode of
a trapped ion, while P. Campagne-Ibarcq et al., Nature 584, 368 (2020) realized it with a
transmon qubit coupled to a microwave cavity. However, both these experiments em-
ploy phase estimation, which is slow because it requires many measurements in se-
quence. We propose a circuit that allows a single-shot measurement of the GKP sta-
bilizers, and analyze the performance of such a measurement as well as the impact of
noise.
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SAMENVATTING

Een universele, grootschalige kwantumcomputer zou een krachtig hulpmiddel kunnen
zijn met toepassingen die van grote waarde zijn voor de mensheid. Zo’n computer zou
bijvoorbeeld het zoeken naar nieuwe medicijnen of materialen aanzienlijk kunnen ver-
snellen. De foutenpercentages van de huidige qubit-ontwerpen zijn echter gewoonweg
te groot om interessante berekeningen mogelijk te maken. Daarom zijn zowel foutcor-
rectie als verbeterde ontwerpen van qubits nodig.

In 2001 hebben Gottesman, Kitaev en Preskill een codering (GKP-code) voorgesteld
waarbij een qubit wordt opgeslagen in een harmonische oscillator — een systeem dat
met hoge precisie kan worden gecontroleerd en gefabriceerd, en daardoor relatief hoge
coherentietijden heeft. Bovendien biedt de code een goede bescherming tegen energie
verlies, een eenvoudige poortset en foutcorrectie circuits die relatief eenvoudig te im-
plementeren zijn. Het nadeel is dat het coderen van een qubit in een GKP-codetoestand
een uitdagende taak is. In dit proefschrift ontwikkelen we efficiënte schema’s om een
GKP qubit te genereren.

Bosonische codes, waarbij een qubit in een oscillator wordt opgeslagen, en met name
de GKP-code zijn nog relatief onbekend. Daarom beginnen we de scriptie met een over-
zicht van het veld, en geven we de lezer de tools om een GKP code te analyseren, omdat
deze heel anders zijn dan de standaard foutcorrectie codes. Een tool die belangrijk is
om te begrijpen, en die een protocol beschrijft dat een GKP qubit codeert, is het zoge-
naamde “phase estimation” algoritme. Dit algoritme maakt het mogelijk om de eigen-
waarde van elke unitaire bewerking te meten, en is een van de hoekstenen van de kwan-
tuminformatie. We zullen laten zien hoe “phase estimation” kan worden toegepast om
een GKP-qubit te coderen, en wat de vereisten zijn voor een experiment die dat probeert
te doen.

Een groot voordeel van de GKP-code ten opzichte van andere coderingen is dat deze
een significant foton verlies kan tolereren voordat de gecodeerde informatie verloren
gaat. Bovendien kunnen staten die nauw verwant zijn aan de GKP qubit gebruikt worden
om de ongelijkheden van Bell te schenden (d.w.z. de aanwezigheid van verstrengeling te
bewijzen), zelfs in de aanwezigheid van grote ruis. Beide toepassingen maken de code
bijzonder interessant in het optische regime, waar foutcorrectie meestal niet mogelijk is
terwijl het signaal onderweg is. In dit proefschrift analyseren we een coderingsprotocol
dat oorspronkelijk is voorgesteld door H. M. Vasconcelos, L. Sanz en S. Glancy, Optics
Letters 35, 3261 (2010) en dat gebaseerd is op post-selectie, we laten zien dat elke uit-
gangstoestand kan worden gebruikt als een GKP code toestand met een eenvoudige ver-
andering van het referentiekader, waardoor een exponentiële snelheidsverhoging wordt
verkregen.

In 2019 hebben twee afzonderlijke experimenten voor het eerst een GKP-codetoestand
gegenereerd: C. Flühmann e.a., Nature 566, 513 (2019) realiseerde een GKP qubit in de
bewegingsmodus van een gevangen ion, terwijl P. Campagne-Ibarcq e.a., Nature 584,
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368 (2020) het realiseerde met een transmon qubit gekoppeld aan een microgolfholte.
In beide experimenten wordt echter gebruik gemaakt van “phase estimation”, die lang-
zaam verloopt omdat er veel metingen achter elkaar nodig zijn. We stellen een circuit
voor dat een single-shot meting van de GKP stabilisatoren mogelijk maakt, en analyse-
ren de prestaties van zo’n meting en de impact van de ruis.
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1
INTRODUCTION

This chapter provides the context for this thesis. We briefly discuss the importance of quan-
tum error correction and introduce the concept of bosonic error correcting codes. After-
wards, we give an overview of various such codes, in particular the Gottesman-Kitaev-
Preskill (GKP) code, and show some interesting applications of the GKP code. The chapter
ends with an outline of the thesis.

1
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2 1. INTRODUCTION

C OMPUTATIONAL devices have been in use for many centuries and assist humankind
in various tasks, ranging from simple addition of small numbers to weather predic-

tion and video streaming. Although they offer ever increasing power, some important
questions will always be difficult to solve with standard computers. Especially calculat-
ing properties of quantum mechanical systems has proven to be nearly intractable for a
sufficiently “large” system, for example a complex molecule. But it is precisely this type
of system that is often of interest in solid state physics, material science, or medicine. For
example, evaluating the dynamics of a drug candidate would allow to test how it inter-
acts with a certain target protein [1]. As a reference for typical system sizes, the penicillin
class of antibiotics consists of 27 or more atoms.

The underlying problem when simulating a quantum mechanical system is that the
state space of a quantum system scales exponentially with its size. Given a system of
n spins, we would need 2n complex numbers in order to store an arbitrary state. If we
wanted to simulate the dynamics of this system, i. e. apply a Hamiltonian, we would
need to represent this Hamiltonian as a complex 2n ×2n matrix. Around 1980, scientists
suggested to use quantum computers for the simulation of quantum systems to solve
this issue (see e. g. [2]): A computer that acts as a quantum mechanical system obeys
the same rules as the simulated quantum system and has therefore the same scaling of
complexity with the system size.

Figure 1.1: The state space of a qubit, depicted as a Bloch sphere. Reprinted from [3], licensed under CC-BY-SA
3.0 [4] cba.

The smallest computational unit in a quantum computer (the qubit) is a two-dimen-
sional quantum system. While the smallest computational unit in a classical computer
(the bit) is a binary value that can be either 0 or 1, the state of a qubit can be any linear
combination of the form (see Fig. 1.1):∣∣ψ〉= cos(θ) |0〉+eiφ sin(θ) |1〉 .

Moreover, if we have multiple qubits, they can be in an entangled state, i. e. a state that
cannot be written as a product of single qubit states. One example is the so-called Bell
state: 2−1/2(|0〉 |0〉+ |1〉 |1〉). Entanglement is also the reason why it takes so much mem-
ory to store a quantum state. This is in stark contrast to a classical computer, where the
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state of multiple bits is always simply a string describing every bit on its own. Although
the state space of a quantum computer is exponentially large in the number of bits, this
does not necessarily mean that the computational power also scales exponentially be-
cause the measurement of a qubit probabilistically projects the state: A measurement of
state

∣∣ψ〉
in the basis {|0〉 , |1〉} yields |0〉 with probability cos(θ)2 and |1〉 with probability

sin(θ)2.
Quantum computers are not only useful for simulating quantum systems. They also

perform better than classical computers for some computational tasks. Below, two im-
portant quantum algorithms are described: Grover’s algorithm is provably faster than the
best possible classical algorithm. Shor’s algorithm, on the other hand, provides an expo-
nential speedup for factoring large numbers, and is (in)famous for breaking the widely
used RSA (Rivest-Shamir-Adleman) cryptosystem.

Grover’s algorithm [5]: Consider a function f that is defined on N possible inputs, and
returns 1 for a single entry and 0 for all others. Two examples are a search in an unstruc-
tured database of size N or a password check with N possible combinations. With a
standard computer, the best possible algorithm simply checks all elements until it finds
the correct one. Therefore, the runtime on a classical computer is O (N ). Grover’s al-
gorithm, on the other hand, solves the same problem using only O

(p
N

)
queries. This

might not seem like a big speedup — considering that input sizes for quantum comput-
ers are currently tens of qubits, while classical computers routinely handle trillions of
bits. However, if a sufficiently large quantum computer is ever built, this algorithm will
be very useful because it provides a speedup for any problem where no efficient solution
is known.

Shor’s algorithm [6]: This algorithm can be used to retrieve the prime factors of a big
integer stored in n bits that was obtained by multiplying two or more prime numbers.

The best known classical algorithm for this problem has a runtime which scales O
(
e

3pn
)
.

The assumed complexity of factoring such a large number is what secures the RSA cryp-
tosystem, one of the most used cryptography procedures. Shor’s algorithm could factor a
number of n bits using only O (n) qubits and a computing time of O

(
n2 log(n) log(log(n))

)
,

thus breaking RSA encryption. Fortunately, n is typically 2048 or more for encryption,
meaning that the algorithm will probably not be useful for attacking cryptography for
several more decades.

Over the last years, significant progress has been made towards building a quan-
tum computer that solves real world problems. At the end of 2019, Google (Arute et
al. [7]) published the results of a so-called “quantum supremacy experiment”.Quantum
supremacy refers to a computation — any computation, no matter if it is useful or not —
that can be done on a quantum computer, but not on a classical computer [8]. In this ex-
periment, the authors used a chip with 53 superconducting qubits1 and run 20 cycles of
gates on this chip, where each cycle consists of one round of random single-qubit gates
followed by one round of random two-qubit gates. For simulating a large quantum de-

1The chip houses 54 qubits, but one of them was not usable.
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vice such as the one by google, two approaches have been presented so far: Using the
whole secondary storage of the Summit supercomputer2, up to 54 qubits can be simu-
lated with full state simulation in about two and a half days [10]. A tensor network based
approach has recently been presented by Huang et al. (2020) [11], they estimate that the
Summit supercomputer would need 20 days for the task. Although slower, the second
approach does not rely on storing the full state. The memory requirements are vastly
reduced and the second approach can therefore still be used for more than 54 qubits.
Furthermore, the authors claim that their runtime estimate is likely more accurate than
the full state approach by Pednault et al. Taking the peak power consumption of 13 MW
into account, the total power cost would be around 780 MWh or 6200 MWh for the two
simulation approaches, respectively.

The superconducting processors by Google [7] are so-called “Noisy Intermediate-
Scale Quantum” devices (NISQ [12]). Such devices are still far away from the full-scale
quantum computer required for simulating complex quantum systems. As the name
suggests, they are simply too noisy to allow for complex quantum algorithms. In the
quantum supremacy experiment, the circuit had a depth of up to 20 cycles (with 2 gates
each), with an error rate of about 0.93% per cycle. The total runtime of this circuit was
about 200µs [7].

In contrast, a typical algorithm factoring an n = 2048-bit RSA key with Shor’s algo-
rithm takes more than n = 2048 qubits with a depth of at least n2 log(n) log(log(n)) ≈
5× 107 gates. Besides the fact that the output of the algorithm would be almost com-
pletely uncorrelated to the desired result if we assumed similar gate error rates, the run-
time would also be several orders of magnitude larger than even the best superconduct-
ing qubit designs permit. To bridge the enormous gap between realistically achievable
error rates and what would be needed for complex algorithms on a universal quantum
computer, we need quantum error correction (QEC).

1.1. ERROR CORRECTION

E RROR correction describes the idea that a logical qubit is embedded into a larger, but
faulty Hilbert space — usually realized with many physical qubits. In the following,

some of the key aspects of (quantum) error detection and correction will be discussed.

1.1.1. CLASSICAL ERROR CORRECTION

The idea to protect logical information by embedding it into a larger space is not new
to quantum computation. It is widely spread in classical computation and especially in
(wireless) communication.

In classical computation, the error rate is usually very low (in the order of 1 error per
machine and year [13]) so that they can usually be either caught by the operating system
or solved by simply repeating the task.3 In classical communication, errors are much
more common than in computation, but still seldom enough that they can be mitigated
using checksums, like in the specification of the IPv6 protocol [15]. If the checksum
computed from the received data does not match the checksum of the sent data, the

2The Summit supercomputer is currently the most powerful supercomputer available to the public [9].
3In critical applications, Error-Correcting Code memory (ECC) is used to further reduce this rate [14].
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receiver simply asks the sender to transmit the data again. A similar approach is used for
human interaction, for example with the International Bank Account Number (IBAN). It
is designed in such a way that omitting, duplicating, mistyping, or switching of numbers
does not yield a valid account number, thus reducing the risk of erroneous transactions.

ERROR DETECTION

As a simple example to illustrate classical error detection, we consider the following toy
model: We want to send a classical bit x =∈ {0,1}, which will be flipped along the way
with a probability p. Using the simplest possible code, we encode one logical bit in two
physical bits:

0 = 00, 1 = 11,

i. e. we simply send the bit twice. If the receiver measures e. g. x̃ = 01, they know that this
matches neither 0 nor 1 and that an error must have occurred. The protocol succeeds
with a probability of (1−p)2 on the first try. If an error is detected at the receiver, the
sender will need to send the bit again. The protocol fails on the first attempt (both bits
are flipped) with a probability p2. Assuming that at most one bit flip occurs, the number
of bits that need to be sent in order to obtain one logical bit (bandwidth) is on average:
2× (1−p)2 + (2+1+2)×2p(1−p) bits.4

ERROR CORRECTION (BIT-FLIP CODE)
In the setting of wireless communication, error rates reach an appreciable level so that
error correction needs to be used to go beyond a certain range (as done in Bluetooth
v5 [16]). Error correction means that we enable the receiver to correct for a small number
of errors himself, at the cost of some additional bandwidth. In the above toy model, we
now encode one logical bit in three physical bits:

0 = 000, 1 = 111,

i. e. we simply send the bit in triplicate. Now, if the receiver measures e. g. x̃ = 001,
they know again that this matches neither 0 nor 1 and that an error must have occurred.
However, assuming that only a single error occurred, they can simply take a majority
vote and see that the originally sent bit was 0, without further communication with the
sender. The error correction protocol succeeds with a probability of (1−3p2), where fail-
ure (two bits are flipped) occurs with a probability of 3p2, and no further communication
is necessary. Assuming that at most one bit flip occurred, we always need a bandwidth
of 3 bits. When comparing the error detection and correction schemes, we see that error
correction will need a lower bandwidth if the probability of a bit flip is about 25%.

1.1.2. QUANTUM ERROR CORRECTION
When protecting a quantum state against errors, there are several fundamental differ-
ences to the classical case:5

4If the protocol succeeds (with probability (1−p)2), only 2 bits will be sent. If an error is detected (with prob-
ability 2p(1−p)), the receiver will need to inform the sender (+ 1 bit) and the sender will repeat the message
(+ 2 bits).

5This subsection follows Nielsen and Chuang [17, Sec. 10.1.1].
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α |0〉+ β |1〉 • •

|0〉 α |0〉 |0〉 |0〉+ β |1〉 |1〉 |1〉

|0〉





Figure 1.2: Encoding circuit for the quantum bit-flip code. By using the CNOT gate, an arbitrary state can be
encoded without knowledge or measurement of the input. If the control qubit (black dot) is in state |1〉, the
NOT gate is applied to the target qubit (circle with cross), i. e. the qubit is flipped (from |0〉 to |1〉, and vice
versa). Reproduced from Fig. 10.2 in [17].

• Measurement collapses superpositions: Measuring a qubit is usually only allowed
at the end of a quantum computation, otherwise we would simply have a classical
bit. Therefore, we cannot simply measure an encoded state and take a majority
vote, as done in the classical bit-flip code discussed above.

• No-Cloning Theorem: The theorem states that it is not possible to create copies of
an unknown state. This means that we cannot simply store multiple copies of the
same state to encode it without measurement.

• Errors are continuous: In contrast to classical computation, where a bit can only
take two discrete states, there exists an infinite set of valid qubit states. This means
that any unitary operation takes a qubit state to another valid qubit state, and we
have to devise ways to distinguish errors from logical operations.

QUANTUM BIT-FLIP CODE

In order to illustrate quantum error correction with a simple toy model, we modify the
classical bit-flip code such that it can correct for any bit-flip error. The logical codewords
of this quantum bit-flip code are:∣∣0〉= |0〉 |0〉 |0〉 ,

∣∣1〉= |1〉 |1〉 |1〉 .

The set of errors to be corrected are the identity, a single-qubit bit flip acting on any of the
three qubits, or any linear combination thereof. In general, the state we want to encode
is unknown, and due to the no-cloning theorem, we cannot simply produce three copies
of it. In order to encode some unknown state |Ψ〉 = α |0〉+β |1〉 into an encoded state∣∣∣Ψ〉

=α ∣∣0〉+β ∣∣1〉
, we can use the circuit shown in Fig. 1.2.

In order to correct errors, we need a measurement that identifies an error without
obtaining information about the encoded state. To this end, we make use of the fact that
the parities between the first and second, and the second and third qubit are both even
on the code space. However, if a bit-flip error occurs, one or both parities will be odd,
uniquely identifying the faulty qubit. A circuit achieving such a parity measurement is
shown in Fig. 1.3. Assuming that only a single qubit error happened, we can identify the
faulty qubit in the following way: If the measurement of the first (second) ancilla qubit
yields the |1〉 state, the first (third) data qubit will be identified as faulty. If both ancilla
qubits are in the |1〉 state, we can infer that the second data qubit must have flipped.
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•
α |0〉 |0〉 |0〉+ β |1〉 |1〉 |1〉 • •

•
|0〉

|0〉

Figure 1.3: Decoding circuit for the quantum bit-flip code. If the input state is, as depicted, a state encoded in
the bit-flip code (without errors), it is straight forward to see that both ancilla qubits (bottom two lines) will
remain in the |0〉 state, independent of the encoded state. If one of the data qubits (top three lines) is flipped,
one or both ancilla qubits will be in the |1〉 state, uniquely identifying the erroneous data qubit.

We also see that the code is not particularly useful for a realistic setting, as it offers
no protection whatsoever against phase flips: α |0〉+β |1〉 → α |0〉−β |1〉. In fact, we can
see that a phase flip applied to any of the physical qubits acts also as a phase flip on
the logical qubit. This is an important difference to classical error correction: Usually,
there are several types of errors, and a good quantum error correction should provide
protection against all of them.

1.1.3. QUANTUM ERROR CORRECTION WITH SUPERCONDUCTING QUBITS
The basic principle of error correction is that information is protected by encoding it
redundantly. In a standard quantum computing setup, this means that we protect one
logical qubit by using many physical qubits. To give some context, to be able to cor-
rect any single qubit error, one needs to encode the logical information into at least five
physical qubits [18]6, but realistic implementations of an error correcting code usually
require much more qubits.

A popular code in the setting of superconducting qubits is the so-called surface code.
This particular code lends itself well to this type of setup, as it features local connectivity
(physical qubits only interact with neighbors) on a plane (well suited for chip designs)
as well as a high threshold (slightly below 1%) [19]. The threshold is a formal statement
about the asymptotic scaling of a code class: If the error rate of the physical qubits is
below the threshold, the performance of the logical qubits will improve with the number
of physical qubits used.

The smallest surface code that can correct any single qubit error is surface-17,7 using
17 qubits (see Fig. 1.4 for a proposal of a layout that could be used in experiments). In
a simulation by O’Brien et al. (2017) [22], the quality of state-of-the-art transmon qubits
was shown to be sufficient so that a logical qubit encoded in surface-17 would have
a longer lifetime than its components. However, the authors showed that the break-
even point in terms of the number of gates used for any computation requires the even
larger surface-49 code, which is capable of correcting up to two errors. Implementing

6In order to identify errors without measuring the data qubits, we usually need at least one more ancilla qubit,
depending on implementation details. Also, note that the article was only published in 2000, while the origi-
nal proof is from 1995 and published on the arXiv in 1996.

7Note that in contrast to other codes where only data qubits are counted, the size of a surface code is usually
specified by the total number of physical qubits, i. e. both data and ancilla qubits.
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Figure 1.4: Proposed layout for the surface code with 17 qubits (black line), shown as part of a larger lattice.
Circles denote qubits, while the solid white and dashed black lines show the connections. For surface-17, there
are nine data qubits (Da –Di ) and eight ancilla qubits (Xa –Xd ), (Za –Zd ). Reprinted figure with permission
from [20]. © (2020) by the American Physical Society.

Figure 1.5: Chip used in the surface-7 experiment by Andersen et al. (2019) [21] demonstrating repeated error
correction measurements. Note the dimensions of the chip, and that every qubit has a dedicated readout
resonator, which is coupled via a second resonator (Purcell filter) to the readout line. Reprinted by permission
from Springer Nature Customer Service Centre GmbH: Nature Physics, Andersen et al. (2020) [21], © (2020) by
Springer Nature.
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Figure 1.6: Superconducting cavities used for a logical gate between two qubits encoded in the binomial code
defined in Eq. (1.1) [28]. The system accommodates four cylindrical cavities, three of which are used in the
experiment. The two logical qubits are stored in the cavities marked in magenta, the cavity in purple is used
together with a transmon qubit (cyan) to enable the coupling. Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Nature, Chou et al. (2018) [28], © (2020) by Springer Nature.

the surface code experimentally remains a major challenge. Quantum error detection
has already been shown to be useful on the IBM Q Experience 5 qubit chip by C. Vuillot
(2018) [23] and Harper and Flammia (2019) [24]. Multiple rounds of error detection
with the smallest member of the surface code family (7 qubits) have only recently been
demonstrated by Andersen et al. (2019) [21]. The chip used by Andersen et al. is shown
in Fig. 1.5.

1.2. BOSONIC ENCODINGS OF QUBITS

T HE large Hilbert space required to encode logical information does not need to be
comprised of many physical qubits. This is precisely the idea used in bosonic error

correcting codes. The Hilbert space of the harmonic oscillator is infinite, which allows
for encoding of a logical qubit within a single harmonic oscillator and also to perform
error correction.

Of course, things are not quite as simple as simply mapping a code defined on many
qubits into the Hilbert space of a harmonic oscillator. The reason is that the domi-
nant sources of noise of a harmonic oscillator, for example photon loss or anharmonic-
ity, grow stronger with the number of photons in the oscillator, i. e. with the size of the
Hilbert space that is used for the code. Therefore, bosonic codes usually do not feature a
threshold in the same sense as traditional quantum error correcting codes, where we can
simply increase the size of the code in order to reduce noise. In fact, for any particular
bosonic code and parameters of the oscillator, there will be a “sweet spot” for the size
of the code, after which the performance decreases again. This is not a major problem,
however, as the aim is to use this class of codes in order to encode a (very) good qubit,
which can then be used as “physical qubit” in standard error correcting codes (see, e. g.
[25]). A recent experiment has demonstrated about 200µs lifetime in a resonator with
245µs single-photon lifetime [26]. To give a brief overview of the current state of ex-
perimental implementations of bosonic codes, we will follow DiVincenzo’s criteria for a
physical implementation of a quantum computer [27]:
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• Scalability. The harmonic resonators typically used for bosonic codes are not par-
ticularly small, as the dimensions are typically in the order of a centimeter for the
microwave regime (see Fig. 1.6). This is in the same order of magnitude as the
vacuum tubes used in early computers and therefore not a fundamental problem,
provided that the encoded qubits have sufficiently low error rates. However, cur-
rent experimental devices need to be cooled to O (10)mK. To solve this issue, either
the microwave resonators need to be miniaturized, the volume of dilution refriger-
ators needs to be increased, and/or schemes to couple separate refrigerators need
to be developed.

• Initialization. Although preparing a vacuum state in a harmonic oscillator is stan-
dard practice in many quantum experiments, initializing a qubit in a harmonic
oscillator is challenging, depending on the code. If an ancillary qubit is used, any
state in the oscillator could be prepared, although the accuracy is limited by the
performance of the qubits [29]. (In this thesis, the main focus will be to find effi-
cient protocols to initialize the GKP code, see below.)

• Long coherence times. Long coherence times are one of the main selling points
of the harmonic oscillator as a system to realize a qubit. Depending on the spe-
cific oscillator, single photon life times in the order of 200µs to 1ms are routinely
available, in both 2D and 3D architectures [26, 30].

• Universal gate set. The availability of a universal gate set depends very much on the
chosen encoding of a qubit in the oscillator: For the cat code (see below), a uni-
versal gate set is available and has been experimentally implemented [31]. For the
GKP code, many gates (Clifford gates) can easily be implemented, and a scheme
to obtain universality is known [32]. For the binomial codes (see below), more
complicated schemes using an ancilla qubit and optimal control pulses or gate
teleportation are needed [33–35].

• Qubit-specific measurements. Targeting a specific oscillator with a measurement
is not a problem — this capability is a prerequisite for the operation of super-
conducting qubit designs like the transmon, which is measured via an ancilla os-
cillator. Moreover, a wide range of measurement types is available (see Chap-
ter 2): In addition to the standard homodyne and heterodyne8 measurements,
also photon number resolving measurements [29] and direct measurements of the
Wigner function (quasi-probability distribution) at any point in phase space [36]
have been experimentally demonstrated. A non-destructive measurement of code
states remains however challenging, depending on the code in question.

Besides the Gottesman-Kitaev-Preskill (GKP) code, which is the main focus of this
thesis, there are several other interesting bosonic codes. To put the different codes and
experimental progress into context, we use the complexity stages outlined by Devoret
and Schoelkopf [37] as a guideline, see Fig. 1.7. For comparison: The fourth stage, a logi-
cal memory with longer lifetime than the physical qubits, has only recently been partially

8Homodyne measurements measure position or momentum. Heterodyne measurements measure position
and momentum simultaneously.
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Figure 1.7: Complexity stages on the way towards fault-tolerant quantum computation. Bosonic codes are
very competitive in this respect: Error correction, enhanced logical lifetimes, and even logical two-qubit gates
have now been demonstrated for multiple codes. The cost is that the 3D microwave cavities used in these
experiments are harder to scale than e. g. superconducting qubits. On the other hand, a logical qubit with
enhanced lifetime still has to be demonstrated in superconducting qubits (green arrow), seven years after this
figure has been originally made (QND = quantum non-demolition). From Devoret and Schoelkopf (2013) [37].
Reprinted with permission from AAAS.

reached for superconducting qubits [21].9 A more detailed overview of different bosonic
codes and their performance can be found in [38]. In the following, we give an overview
of bosonic codes and their applications, without going into details. (A more detailed
introduction follows in Chapter 2.)

BINOMIAL CODES

A very simple bosonic code family are the so-called binomial codes [34]. Using the pho-
ton number basis, the logical

∣∣+〉
and

∣∣−〉
states are defined as:

∣∣±〉= 2−
N+1

2

N+1∑
m=0

(−1)±m

√√√√(
N +1

m

)
|(S +1)m〉 .

If we choose S = L+G and N = max(L,G ,2D), this code can correct L photon-loss events
(â), G photon-gain events (â†) and D dephasing events (â†â). A simple example de-
signed to protect against photon loss, which usually is the dominant source of errors in
a harmonic oscillator, is given by:∣∣0〉= |0〉+ |4〉p

2
,

∣∣1〉= |2〉 . (1.1)

Neither the state â
∣∣0̄〉 = |3〉 nor â

∣∣1̄〉 = |1〉 has support on the code space. Note that
two photon losses cannot be corrected by this code, as ââ

∣∣0̄〉 = |2〉 = ∣∣1̄〉
and ââ

∣∣1̄〉 =
9The stage has only partially been reached because Andersen et al. used an error detecting code and therefore

had to post-select on no error being detected.
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|0〉 6⊥ ∣∣0̄〉
. We note that the photon number parity of both codewords is even (they are a

superposition of states with even photon number). This means that photon loss can be
detected by a measurement of the photon number parity with an ancilla qubit, using the

qubit-cavity coupling (ei2πσz â† â) [29] and the ancilla qubit initialized in the |+〉 state. Hu
et al. recently demonstrated active error correction and logical gates with this code in an
experiment [39]. In this experiment, the lifetime of the encoded qubit was > 92% of the
single-photon lifetime of the employed oscillator, which is close to break even for error
correction.

CAT CODE

The family of so-called cat codes encodes a qubit into Schrödinger cat states [40]. A cat
code designed to protect against loss of k photons is formed by a superposition of 2(k+1)
coherent states on a circle in phase space. The simplest (k = 0) cat code is defined as:

∣∣0〉= 1

N0
(|−α〉+ |α〉) ,

∣∣1〉= 1

N1
(|−α〉− |α〉) . (1.2)

This code does not protect against photon loss, the annihilation operator â actually acts

as a bit flip. The phase flip is realized by the rotation eiπâ† â . As the resonance fre-
quency of an oscillator is usually very stable, this means that phase flip errors happen
on a much longer time scale than photon loss. In a recent (2019) experiment with this
code, Grimm et al. reported a lifetime around 2.5µs for bit flip errors and about 105µs
for phase flip errors, with a single-photon lifetime of about 3.4µs [31].10 A major ad-
vantage of the cat code is that the code space can be stabilized by engineered photon
loss [41] or with a two-photon drive [31]. Another feature is that only measurements of
the photon-number parity, but no active error correction are needed.

For cat codes, a certain number of losses will act as the identity (depending on the
distance), meaning that tracking photon losses is sufficient and the errors can be cor-
rected by simply changing the reference frame. The cat code protecting against a single
photon loss was the first code where a logical lifetime longer than all constituent systems
could be demonstrated [42].

THE GOTTESMAN-KITAEV-PRESKILL (GKP) CODE

In 2001, Gottesman, Kitaev and Preskill proposed a stabilizer code to encode a qubit into
an oscillator [32], named GKP code after the authors. The code is designed to protect
against small translations in phase space: It is defined as the common +1 eigenspace of
the two commuting displacement operators (stabilizers):

Sp = e−i2
p
πp̂ , Sq = ei2

p
πq̂ .

The logical Pauli operations (see Section 2.1 for definition) are also displacements that
commute with both stabilizers, but not with each other:

X = e−i
p
πp̂ , Z = ei

p
πq̂ .

10The choice of the computational basis varies between papers. Some authors choose the basis as in Eq. (1.2),
in other papers, those states would be the

∣∣+〉
,
∣∣−〉

states.
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The logical qubit states
∣∣0〉

,
∣∣1〉

are infinite combs in the position basis:

∣∣0〉∝∑
n

∣∣q = 2
p
πn

〉
,

∣∣1〉∝∑
n

∣∣q = (2n +1)
p
π
〉

.

The code and code states will be derived in more detail in Sections 2.1.2 and 2.1.3. The
code states as defined above are not normalizable — these are infinite energy states.
For this reason, the code states will always be approximated in a physical system, see
Section 2.2 for details.

Although counter-intuitive — the dominant sources of noise in a harmonic oscillator
are typically photon loss, followed by dephasing and nonlinearity, while displacements
are unlikely — this code performs very well against photon loss [38]. In fact, the code is
“optimal” for both pure loss and a Gaussian thermal loss channel, in the sense that GKP
encoded states are only a constant away from the quantum capacity of such a chan-
nel [43].

Besides good error correction capability, an important group of gates (Clifford gates)
can be implemented in a fault-tolerant way using phase shifting, displacements, beam
splitters, and moderate squeezing [32, 44]. Fault-tolerance means that small errors are
not amplified or spread by the gate. The code has been first implemented in the trapped-
ion setting [45, 46], although this approach required post-selection. In a second experi-
ment, the code was implemented in a circuit-QED (quantum electrodynamics) setting,
achieving a lifetime of about 205µs, in an oscillator with a single-photon lifetime of
245µs [26].

OTHER BOSONIC CODES

For arbitrary bosonic codes in the setting where a transmon qubit is coupled to a su-
perconducting resonator, both a release of encoded states to a transmission line [47]
and a universal entangling gate between two cavities [48] have now been experimen-
tally demonstrated. The cat and binomial codes have been generalized in the common
framework of rotationally symmetric codes by Grimsmo et al. (2019) [35]. This thesis fo-
cuses mostly on the encoding of a GKP qubit. A recent review on decoding, embedding
with other qubit types, and concatenation with the surface code can be found in Ref.
[49].

1.3. APPLICATIONS RELATED TO THE GOTTESMAN - KITAEV -
PRESKILL (GKP) CODE

B ESIDES enabling a very competitive qubit design, the stabilizers of the GKP code are
of interest in multiple other applications.
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1.3.1. MAXIMAL VIOLATION OF BELL INEQUALITIES

Wenger et al. (2003) [50] proposed a scheme for maximal violation of Bell inequalities11,
using only homodyne detection. To this end, they define two resource states:

∣∣ f
〉∝ ∞∑

n=−∞
(−1)n

(∣∣∣∣q = 2n
p
π+

p
π

2

〉
+

∣∣∣∣q = 2n
p
π−

p
π

2

〉)
,

∣∣g〉∝ ∞∑
n=−∞

(−1)n
(∣∣∣∣q = 2n

p
π+

p
π

2

〉
−

∣∣∣∣q = 2n
p
π−

p
π

2

〉)
.

The Bell test is then done using entangled states of the form

|Ψ〉 = 1p
2

(∣∣ f f
〉+eiθ ∣∣g g

〉)
.

As the authors note, these states are very similar to the GKP code states. We can write
these states as a function of the ideal GKP code states:∣∣ f

〉∝ (1+X )
p

Z
p

X
∣∣0〉 ∣∣g〉∝ (1−X )

p
Z
p

X
∣∣0〉

,

where Z , X are the logical Pauli operators and
∣∣0〉

is the ideal code state of the GKP code
(see Section 2.1.2).

An important advantage of this protocol compared to the more common schemes
relying on single photon detection is that it can tolerate photon losses of up to 26% [51].
Apart from the inherent robustness of the states against photon loss, this also stems from
the fact that the detection efficiency of homodyne detection (>98%) is much greater than
single photon detection efficiency.

1.3.2. THE VON NEUMANN LATTICE
The idea to define commuting observables acting on a harmonic oscillator originates
from John von Neumann. In his book “Mathematische Grundlagen der Quantenmecha-
nik”, first published in 1932, he investigated how classical, commuting observables arise
from the non-commuting position and momentum quadratures [52, pp. 214–217]. To
this end, von Neumann proposed to use a particular set of coherent states

|αmn〉 =
{∣∣pπ(m + in)

〉}
, m,n ∈Z,

which are arranged on a rectangular lattice. Note that this is precisely the set of states
generated by the stabilizers of the one-dimensional GKP code acting on the vacuum. A
Gaussian superposition of these states forms a displacement sensor state, see also the
next section and [53]. Von Neumann claimed that these states are linearly indepen-
dent and complete, which “can be proven without greater difficulties”12 — the statement
was proven by Perelomov and by Bargman et al. independently in 1971 [54, 55]. Having
shown that the set of coherent states |αmn〉 is both linearly independent and complete,

11The Bell inequalities can only be violated if entanglement has been achieved in the experiment.
12Translated from German. The original wording is: “Wenn wir sie [The set of coherent states] nach dem E.

Schmidtschen Verfahren ‚orthogonalisieren‘, [. . . ] so kann man für das entstehende normierte Orthogonal-
system ψ′

µ,ν ohne besondere Schwierigkeiten die Vollständigkeit beweisen, . . . ”
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one can then orthogonalize them with the Gram-Schmidt procedure, yielding finally a
complete, orthogonal set of states which are also localized in phase space. In the limit
ħ → 0, the measurement basis defined by these states is continuous, i. e. we recover a
commuting and continuous (i. e. classical) measurement of position and momentum.

Using a lattice of coherent states as measurement basis requires a significantly in-
creased effort compared to standard heterodyne measurements. Therefore, it has little
advantages for experiments because the accuracy in phase space of both measurements
is similar. However, the von Neumann lattice is still useful for numerical simulations.
The fact that the lattice points are localized in phase space, together with the complete-
ness of the lattice, allows to approximate states in an oscillator, see e. g. [56, 57].13

1.3.3. DISPLACEMENT SENSING BELOW THE HEISENBERG LIMIT
One of the fundamental results of quantum mechanics is Heisenberg’s uncertainty prin-
ciple. The combined standard deviation of a simultaneous measurement of two non-
commuting observables A,B is lower bound by the expectation value of their commuta-
tor:

σAσB ≥ 1

2
|〈[A,B ]〉| .

A common example are the position q̂ and momentum p̂ quadratures of a harmonic
oscillator, for which the uncertainty relation reads:

σq̂σp̂ ≥ 1

2
.

Using a similar construction as the GKP code, there is a way around the uncertainty prin-

ciple [53]: Let the operators A,B be the displacements Sq = ei
p

2πq̂ ,Sp = ei
p

2πp̂ . These
two displacements commute, and therefore:

σSqσSp ≥ 0,

where σSq and σSq are the standard deviation of the eigenvalues of Sq and Sp , respec-
tively. The relation between the eigenvalues of q̂ and those of Sq is simply: arg(Sq ) =p

2πq̂ mod 2π, the relation for Sp is analogous. Thus, such a displacement sensor al-
lows to measure q̂ mod

p
2π and p̂ mod

p
2π simultaneously with unlimited accuracy.

This procedure has been demonstrated experimentally in an experiment with trapped
ions by Flühmann et al. (2018) [46].

1.3.4. PROTECTING GAUSSIAN INFORMATION
A well established no-go theorem is that it is impossible to correct against Gaussian er-
rors with only Gaussian operations [25, 58], i. e. it is not possible to protect an arbitrary
state in a harmonic oscillator against photon loss. Noh et al. (2019) showed that it is nev-
ertheless possible to protect arbitrary states against Gaussian noise, by encoding the sin-
gle harmonic oscillator into many harmonic oscillators. They achieve this by using the

13Halverson et al. [57] use a “doubly dense” von Neumann lattice, which is actually the space spanned by the
GKP code stabilizers. They do so in order to ensure locality of the orthogonalized lattice states.
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displacement sensing method from the previous section (which is not a Gaussian oper-
ation) as a resource [59]. As bosonic modes are used as couplers in virtually all quantum
computing and communication settings, this oscillator-into-oscillator code has a wide
range of possible applications.

1.4. OUTLINE OF THE THESIS

A S we have seen, the GKP code is a promising encoding for a qubit in an oscillator.
With this code, one can achieve good protection against photon loss and a set of

gates and error correction schemes that can be implemented with standard techniques.
However, the challenges using this code are “front-loaded”, i. e. especially the initializa-
tion of a GKP qubit is difficult in comparison to other codes. Furthermore, there exists a
wealth of applications which all rely on resource states similar to a GKP code state. Two
examples are sensing beyond the limits set by Heisenberg’s uncertainty principle and
correction of Gaussian noise, both feats long thought to be impossible. If a reliable pro-
cedure to generate GKP qubit states was available, it could be easily amended for these
other applications.

The aim of this thesis is twofold: First, we want to develop efficient schemes to en-
code a GKP qubit. Second, we collect and present the concepts and techniques needed
for this goal, which will also allow us to connect some seemingly unconnected ideas.

CHAPTER 2
First, we discuss the technical background related to the Gottesman-Kitaev-Preskill code.
This chapter serves not only as background for this thesis, but also as a reference for
readers unfamiliar with the code and some of the technical intricacies. The chapter is
also intended as a reference for experts familiar with bosonic codes, as the concepts col-
lected here may be known, but they are spread across multiple papers and only briefly
discussed there. For example, the question how the quality of a GKP code state should be
assessed was still subject of debate at the recent Byron Bay Quantum Workshop (Novem-
ber 2019) which was dedicated entirely to bosonic codes.

CHAPTER 3
In this chapter, we will introduce phase estimation and discuss how this class of algo-
rithms can be used to encode a GKP qubit. Similar in spirit as the second chapter, the
aim is to collect and explain important concepts for the GKP code, even for readers not
interested in the rest of the thesis. As it will turn out, phase estimation is a central theme
of this thesis, even though it is not used directly in the following chapters. (In Chapter 4,
we will improve a known algorithm by mapping it to phase estimation. In Chapter 5,
the developed protocol can be seen as a limiting case of one particular phase estimation
algorithm.) The chapter concludes with a numerical simulation where a GKP code state
is generated taking noise into account.

CHAPTER 4
Here, we discuss a protocol to encode a GKP state using Schrödinger cat states, beam
splitters, and homodyne detection. The experimental setup was originally proposed by
Vasconcelos et al. (2010) [60], but relied on post-selection. By mapping the protocol
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onto phase estimation, we can show that post-selection is not necessary, resulting in an
exponential increase of the probability of success of the scheme. The chapter is divided
into three parts: First, we show the mapping to phase estimation and how the final state
of the protocol can be recovered using classical processing of the results. In the second
part, we prove analytically that the scheme converges to an ideal GKP code state, given a
sufficient number of measurements. Finally, we demonstrate the efficacy of the protocol
numerically.

CHAPTER 5
Although schemes to encode a GKP qubit using phase estimation are so far the only
proposals that have been verified experimentally [26, 45], they suffer from a major draw-
back: Because the encoding procedure relies on a series of ancilla qubit measurements,
the speed of this procedure is rather limited. In this chapter, we make a proposal to en-
code the qubit with a single-shot measurement, following an idea originally by Gottes-
man et al. (2001) [32], where a Hamiltonian of the type â†

A âA q̂T is used to map the eigen-
value from the stabilizer Sq in the target oscillator T to an ancillary oscillator A. By using
heterodyne measurement of the ancilla oscillator, this eigenvalue can then be retrieved
in a single measurement. In the chapter, we present a circuit that is tailored to the task
and therefore particularly well suited, although any circuit that implements the correct
Hamiltonian can be used. We also discuss noise and imperfections at various stages of
the protocol, and show the requirements needed for an experiment implementing our
scheme.
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2
THEORETICAL BACKGROUND

This chapter lays the theoretical foundations for this thesis. We start with some basic def-
initions and conventions, and define the Gottesman-Kitaev-Preskill (GKP) code. As the
ideal GKP code states are not normalizable, it is necessary to approximate them. We dis-
cuss various representations and bases that are useful when working with GKP code states,
in particular the shifted code states. Finally, we present different quality measures for the
GKP code and introduce the effective squeezing parameters, which will be used through-
out the thesis.

The proof of orthonormality and completeness of the shifted code states in Section 2.2.2 has been published
with minor differences in D. J. Weigand and B. M. Terhal, “Generating grid states from Schrödinger-cat states
without postselection”, Physical Review A 97, 022341 (2018).
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2.1. FUNDAMENTAL DEFINITIONS AND DERIVATIONS
In this section, we will discuss some basic definitions and conventions. We start with
some fundamentals of quantum optics. Then, we present a compact derivation of the
GKP code based on group theory. Of special interest to the reader are Sections 2.1.3
and 2.1.4, where we define shorthands and establish conventions used in the rest of this
thesis.

2.1.1. QUANTUM OPTICS

Consider a harmonic oscillator, with creation and annihilation operators â†, â. The di-
mensionless position and momentum quadrature operators are defined as:

q̂ = 1p
2

(â† + â), p̂ = ip
2

(â† − â), (2.1)

with the commutation relation

[q̂ , p̂] = i. (2.2)

A standard operation on the harmonic oscillator are so-called displacements. In this the-
sis, we will use the standard definition:

D(α) = exp(αâ† −α∗â) = exp(i
p

2(ℑ(α)q̂ −ℜ(α)p̂)),

where ℜ(α) and ℑ(α) denote the real and imaginary parts of a complex number α. Note
that there is a factor

p
2 when we apply displacements to the q̂ and p̂ quadrature eigen-

states1:

D(u)
∣∣q̂ = q

〉= exp(−i
p

2up̂)
∣∣q̂ = q

〉 =
∣∣∣q̂ = q +p

2u
〉

, u ∈R
D(iv)

∣∣p̂ = p
〉= exp(i

p
2v q̂)

∣∣p̂ = p
〉 =

∣∣∣p̂ = p +p
2v

〉
. v ∈R

This factor
p

2 is important to keep in mind when working with the GKP code. Generi-
cally, displacement operators do not commute. For two displacements D(α),D(β) holds:

D(α)D(β) = eiℑ(αβ∗)D(α+β). (2.3)

The coherent states |α〉 are eigenstates of the annihilation operator â. They can be gen-
erated by applying a displacement operator to the vacuum state, and are complete, i. e.
any state can be written as a superposition of coherent states:

D(α) |vac〉 = |α〉 , 1= 1

π

Ï
d2α |α〉〈α|.

PERELOMOV ’S GENERALIZED COHERENT STATES

Perelomov developed a compact derivation of coherent states starting from the Lie alge-
bra of the harmonic oscillator. Here, we will summarize this approach following a review

1Reference [2] uses a convention where D(x)
∣∣q〉= ∣∣x +q

〉
and D(

p
2α) |vac〉 = |α〉.
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by Perelomov (1977) [3]. In the next section, we will present a compact derivation of the
GKP code building upon the same construction.

The Lie algebra of the harmonic oscillator is the Heisenberg-Weyl algebra, with the
generators â, â†,1 and the commutation relations:

[â, â†] =1, [â,1] = [â†,1] = 0.

Any element of the algebra is of the form:

t1+ i(α∗â −αâ†) t ∈R,α ∈C.

In order to obtain the Lie group of the Heisenberg-Weyl algebra, we use the exponential
map and a unitary representation of the Heisenberg-Weyl group with elements

T (t ,α) = eit D(α), D(α) = eα
∗ â−αâ†

,

where we see that D(α) are the displacements defined before. By acting with T (t ,α)
on any fixed state

∣∣ψ0
〉

of the harmonic oscillator, we obtain the generalized coherent
states.2 Acting with T (s,β) on such a (generalized) coherent state maps it to another
coherent state. This representation with elements T (t ,α) of the Heisenberg-Weyl group
is irreducible. Due to the Stone-von Neumann theorem, this is also the only such rep-
resentation [4]. From this follows that the coherent states are complete, and that any
operation on the harmonic oscillator can be written in terms of the translations T (t ,α).

2.1.2. THE GOTTESMAN-KITAEV-PRESKILL (GKP) CODE
The GKP code is a stabilizer code acting on a harmonic oscillator. This means that the
code space is defined as the common +1 eigenspace of a group of operators called sta-
bilizers. In the 2001 paper, Gottesman et al. derive their code by first defining shift-
resistant codes in a qudit3 and then taking the limit d → ∞. Here, we will present a
very compact definition based on group theory.4

As discussed in the previous section, any operation acting on a harmonic oscilla-
tor can be written as a linear combination of displacements D(α), as they are an irre-
ducible representation of the Heisenberg-Weyl group. If we define a code on the har-
monic oscillator, the stabilizer group should be Abelian and finitely generated. From
Eq. (2.3), we see that the condition for two displacements D(α),D(β) to commute is
2ℑ(αβ∗) = 2nπ,n ∈ Z. Without loss of generality, we can assume α ∈ R. If we choose
|α| = ∣∣β∣∣ and ℜ(β) = 0, we see that any group Sk with the generators〈

D(
p
πk),D(−

p
πk),D(i

p
πk),D(−i

p
πk)

〉
, (2.4)

where k is an arbitrary positive integer, fulfills our requirements. Note that we included
not only two displacements but also their inverse, as we also need to include the inverse

2Although arbitrary,
∣∣ψ0

〉
is assumed to be fixed from now on. If we choose the vacuum state

∣∣ψ0
〉 = |vac〉

as reference state, we will recover the standard coherent states, which are a special case of the generalized
coherent states. Because any translation T (t ,0) does not change the state

∣∣ψ0
〉

, we may as well choose t = 0.
3The term qubit refers to a two-dimensional system, qudits are d-dimensional systems.
4A generalization of this approach has recently been published by Albert et al. (2019) [5].
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of our generators of choice in order to form a group. Because the elements of Sk are
commuting unitary operators, they have a common set of eigenstates, and the eigenval-
ues can be measured simultaneously.

For k = 1, we see that there are no displacements outside of the group S1 that com-
mute with the whole group.5 In the case k = 2, the group P2 generated by〈

D(
p
π/2),D(−

p
π/2),D(i

p
π/2),D(−i

p
π/2)

〉
, (2.5)

commutes with S2. We can also easily verify that the generators of P2 have the same
commutation relations as the Pauli group of a qubit, but the group is of course infinite as
the generators do not square to the identity. However, the generators of P2 all square to a
member of the group S2, so they will act as the identity on any subspace of the harmonic
oscillator that is in a common eigenspace of the elements of Sk . The group S2 is the
stabilizer group of the GKP code, and the group P2 includes the logical operators.

GKP HEX AND SQUARE CODE

In the derivation above, we made some choices for the displacements D(α),D(β) to ob-
tain the GKP code. One might ask how these choices change the obtained code and if
other choices are also valid. First, note that the choice α ∈R was without loss of gener-
ality, as it corresponds simply to a choice of reference frame.

The stabilizer group can be seen as a lattice in the (two-dimensional) phase space.
This means that the crystallographic restriction theorem applies: There are only five dif-
ferent types of discrete lattices in the plane, all other choices of unit cell (and therefore
of generators for the stabilizer group) cover the whole plane. Therefore, there are five
equivalence classes of choices for the generators of the stabilizer group such that the
stabilizer group defines a non-trivial subspace of the harmonic oscillator. Furthermore,
we wish the rotational symmetry of the stabilizer group to be as large as possible: On the
on hand, the dominant error channel of typical harmonic oscillators — photon loss —
acts in a radially symmetric way in phase space. On the other hand, the quadratures q̂ , p̂
are always defined with respect to some external drive. In the absence of such an exter-
nal drive, there is typically no preferred direction of displacements in the phase space of
the oscillator. All together, there remain only two “good” choices for the stabilizers:

The square lattice described above, and the hexagonal lattice. In the latter case, the
stabilizer group is generated by:〈

D

(√
2πk/

p
3

)
,D

(
−

√
2πk/

p
3

)
,D

(
eiπ/3

√
2πk/

p
3

)
,D

(
−eiπ/3

√
2πk/

p
3

)〉
.

The performance of this code with respect to photon loss is slightly better than for the
standard GKP code [2, 7, 8]. However, the analysis of the code is slightly more compli-
cated, and all results and techniques derived for the standard GKP code with a square
lattice also hold for the hexagonal GKP code. For this reason, the rest of this thesis will
focus on the square GKP code.

5This is the basis for displacement sensing, see Section 1.3.3 and [6].
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2.1.3. STABILIZERS, LOGICAL OPERATIONS, AND CODE STATES OF THE GKP
CODE

For convenience, we define the following shorthands for the stabilizers and logical Pauli
gates of the GKP code:

Sq = ei2
p
πq̂ , Sp = e−i2

p
πp̂ , (2.6)

Z = ei
p
πq̂ , X = e−i

p
πp̂ . (2.7)

We choose the common +1 eigenspace of the stabilizers as the code space. The logical
state

∣∣0〉
is therefore the common +1 eigenstate of Sp ,Sq and Z .

The projector Π(θ) onto the eiθ eigenspace of a unitary operator U can be formally
written as:

Π(θ) = 1

2π

∞∑
n=−∞

e−iθnU n . (2.8)

To show this, consider the action ofΠ(θ) on an arbitrary eigenstate |ϑ〉 of U :

1

2π

∞∑
n=−∞

e−iθnU n |ϑ〉 = 1

2π

∞∑
n=−∞

ei(ϑ−θ)n |ϑ〉 = δ(ϑ−θ) |ϑ〉 ,

where we used the representation of the Dirac delta distribution as an infinite sum.
Using Eq. (2.8), logical state

∣∣0〉
is given by

∣∣0〉∝ ∞∑
k,m,n=−∞

Sn
p Sk

q Z m ∣∣ψ〉= ∑
m,n

Sn
p Z m ∣∣q = 0

〉=∑
m

∣∣q = 2
p
πm

〉
,

where we made use of the fact that the arbitrary state
∣∣ψ〉

can be chosen to be the po-
sition eigenstate

∣∣q = 0
〉

. These states are not normalizable, meaning that we need to
approximate them for a physical implementation. This question will be discussed in
more detail in Section 2.2.

2.1.4. LOGICAL AND PHYSICAL QUBITS
Throughout this thesis, we usually deal with multiple coupled physical systems. In par-
ticular, it is important to distinguish between operators acting on a physical ancillary
qubit and logical operators that act on a logical qubit encoded in an oscillator space.
Unless the system an operator acts on is obvious from the context, operations on physi-
cal qubits will be expressed in terms of spin- 1

2 operators:

σx = 1

2

(
0 1
1 0

)
, σy = i

2

(
0 −1
1 0

)
, σz = 1

2

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
.

One notable exception are Pauli gates in a circuit (where the system the gate acts on is
well defined). In this case, we write the Pauli gates in the computational basis of the
qubits:

X = eiπσx−iπ/2 =
(
0 1
1 0

)
, Y = eiπσy−iπ/2 =

(
0 −i
i 0

)
, Z = eiπσz−iπ/2 =

(
1 0
0 −1

)
,
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so that for example X |0〉 = |1〉.
For logical qubits encoded in an oscillator, we will use the symbols X ,Y , Z to indi-

cate the logical Pauli gates. For the Gottesman-Kitaev-Preskill code, the logical gates are
defined as

X = D

(p
πp
2

)
= e−i

p
πp̂ , Y = D

(
(1+ i)

p
πp

2

)
= ei

p
π(q̂−p̂), Z = D

(
i
p
πp
2

)
= ei

p
πq̂ ,

with the displacement operator D(α) defined in the previous section.

2.2. REPRESENTATIONS OF GKP CODE STATES

A S the GKP code is defined with respect to unitary stabilizer operators acting on a
harmonic oscillator, there are multiple different representations. In this section, we

present some of these representations, and discuss the advantages and disadvantages of
each representation.

2.2.1. POSITION OR MOMENTUM WAVE FUNCTION
In this section, we follow the derivation by Gottesman et al. [7]. In phase space, we can
construct the ideal GKP code states as follows: Given the definition of the logical opera-
tor Z = ei

p
πq̂ , it is straight forward to see that its ±1 eigenstates are:

Z
∣∣q̂ = 2n

p
π
〉= e2nπi ∣∣q̂ = 2n

p
π
〉= ∣∣q̂ = 2n

p
π
〉

, n ∈Z,

Z
∣∣q̂ = (2n +1)

p
π
〉=− ∣∣q̂ = (2n +1)

p
π
〉

.

As Sq = Z 2, these states are already +1 eigenstates of the stabilizer Sq as well. The sta-
bilizer Sp on the other hand has the action Sp

∣∣q̂ = q ′〉 = ∣∣q̂ = q ′+2
p
π
〉

. Therefore, a si-
multaneous ±1 eigenstate of Z ,Sq and Sp is some superposition of position eigenstates∣∣q̂ = 2n

p
π
〉

that is invariant under translation by 2
p
π:

∣∣0〉∝ ∞∑
n=−∞

∣∣q̂ = 2n
p
π
〉

,
∣∣1〉∝ ∞∑

n=−∞

∣∣q̂ = (2n +1)
p
π
〉

. (2.9)

Using the same approach, we can see that the eigenstates of the logical Pauli X operator
in the momentum basis have the same form:

∣∣+〉∝ ∞∑
n=−∞

∣∣p̂ = 2n
p
π
〉

,
∣∣−〉∝ ∞∑

n=−∞

∣∣p̂ = (2n +1)
p
π
〉

. (2.10)

As also discussed in Section 2.1.3, these states are clearly not normalizable. In order to
obtain physical, finite energy code states, it is necessary to approximate the ideal GKP
code states. To this end, Gottesman et al. first replace the (infinitely squeezed) position
eigenstates by displaced squeezed vacuum states [7]:

∣∣q̂ = 2
p
πn

〉≈ D(
p

2πn)S(∆q )
∣∣q〉= 1

(π∆2
q )1/4

∫ ∞

−∞
e
− (q−2

p
πn)2

2∆2
q dq

∣∣q〉
,
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Figure 2.1: Wigner function and probability distributions in q and p of approximate GKP code states. Left:
Approximate code state

∣∣0̃〉
, Right: Approximate code state

∣∣1̃〉
.

where S(∆) = exp((− ln(∆)â2 + ln(∆)(â†)2)/4) is the squeezing operator. Its action on the
quadrature operators is S(∆)q̂S(∆)† = q̂/∆, and S(∆)p̂S(∆)† = p̂∆. In the limit ∆→ 0,
the squeezed vacuum states go to a Dirac delta distribution and we recover again the
position eigenstates. In the second step, we add a Gaussian envelope to the infinite sum:

∣∣0̃〉= 1

N0

∞∑
n=−∞

e−2π∆2
p n2

∫ ∞

−∞
dq e

− (q−2
p
πn)2

2∆2
q

∣∣q〉
, (2.11)

|+̃〉 = 1

N+

∞∑
n=−∞

e−2π∆2
q n2

∫ ∞

−∞
dp e

− (p−2
p
πn)2

2∆2
p

∣∣p〉
. (2.12)

In order to compute the normalization, we proceed in the following way: First, we as-
sume that the overlap between two different squeezed vacuum states is negligible so
that we can normalize them individually. In order to also normalize the envelope, we
assume ∆p ¿ 1 so that the infinite sum can be approximated as an integral. With these
considerations, the norm N0 can be approximated as:

N 2
sq.vac =

∫ ∞

−∞
dq e

− (q−2
p
πn)2

2∆2
q =∆q

p
π,

N 2
envelope,0 ≈

∫ ∞

−∞
dn exp(−4π∆2

p n2) = 1

2∆p
,

N0 ≈Nsq.vac Nenvelope,0 ≈
√√√√∆q

p
π

2∆p
.

In Fig. 2.1, the Wigner functions and the probability distribution in p and q of the ap-
proximate code states

∣∣0̃〉
,
∣∣1̃〉

defined in Eq. (2.11) are shown.
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2.2.2. SHIFTED CODE STATES
The shifted code states, also called Zak basis, were originally introduced by Zak in 1967 as
a basis associated with the eigenvalues of finite displacements [9]. In the context of the
GKP code, they were first used by Glancy and Knill in order to obtain a “threshold”6 [10].
For the GKP (qubit) code, they are defined as:

|u, v〉 = 1

π1/4
e−iv p̂ e iuq̂ ∣∣0〉= 1

π1/4

∞∑
s=−∞

exp(iu2s
p
π)

∣∣q = 2s
p
π+ v

〉
= 1

π1/4

∞∑
s=−∞

exp(iv(s
p
π+u))

∣∣p = s
p
π+u

〉
, (2.13)

with v ∈ [−pπ/2,
p
π/2) and u ∈ [−pπ/2,3

p
π/2).7 These states form an orthonormal

basis for the Hilbert space of the Harmonic oscillator, which we will prove below.

ORTHONORMALITY AND COMPLETENESS OF SHIFTED GRID STATES

In this section, we show that the shifted code states form an orthonormal basis. The
proof will be split in two parts, showing orthonormality first and completeness after-
wards, see the lemmas below. The proof will be done for a generalized class of shifted
code states, which will be used in Chapter 4 to analyze an optical “breeding protocol”
for GKP states.

In the breeding protocol, phase space will be rescaled between each round m. Fur-
thermore, we would like the proof to be applicable to any qudit (including d = 1, i. e.
the sensor state). To take this into account, we introduce a scaling factor smξ, where ξ=p

2πd for a qudit with d dimensions and sm ∈ (0,1] is the rescaling between rounds. With
these new scaling factors, the distance 2

p
π does not have a special meaning anymore.

Therefore, we also rescale the variables u, v of the shifted code states to u, v ∈ [−π,π).
With these changes, we define the generalized shifted grid states as

|u, v,m〉 =
√

smξ

2π

∞∑
s=−∞

exp
(
iv

(
s + u

2π

))∣∣∣p = smξ
(
s + u

2π

)〉
, (2.14)

with u, v ∈ [−π,π), and m ∈ N0. As the relation between Eq. (2.14) and Eq. (2.13) are
simple rescalings, the proofs of orthonormality and completeness are still valid for the
original definitions by Glancy and Knill.

Lemma 2.2.1. The class of shifted grid states as defined in Eq. (2.14) is orthonormal, i. e.
it holds that

〈
u′, v ′,m|u, v,m

〉= δ(u −u′)δ(v − v ′).

6Usually, the threshold of a code is defined as follows: If the error rate of the constituent (physical) qubits is
below the threshold, the logical error rate will decrease if the number of physical qubits is increased (using
concatenation, increasing the lattice size of the code etc.). The threshold defined by Glancy and Knill is a
statement about error correction of a GKP code state using noisy, GKP encoded ancilla qubits: If the only
noise process are mixtures of small displacements, and the total amplitude per qubit and error correction
cycle is below

p
π/6, the errors are correctable indefinitely.

7In the GKP (qubit) code, the eigenvalues of the stabilizers are twofold degenerate. In order to obtain a set of
linearly independent eigenstates, the shifted code states are the common eigenstates of one logical operator
and one stabilizer. Here, the choices for the two operators are X ,Sq , implying the domain as chosen above.
This choice is arbitrary, one could easily also use Z ,Sp .
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Proof. From the definition of shifted grid states (Eq. (2.14)) and the orthonormality of
the momentum eigenstates it follows

〈
u′, v ′,m|u, v,m

〉= smξ

(2π)2

∞∑
s,t=−∞

exp

(
iv

(
s + u

2π

)
− iv ′

(
t + u′

2π

))
δ

(
smξ

(
s − t + u −u′

2π

))
.

The difference u −u′ needs to be an integer multiple of 2π for the Dirac delta-function
to be non-zero. Since u,u′ ∈ [−π,π), i. e. u−u′ ∈ (−2π,2π), the only solution is u = u′ and
s = t . With δ(x) = |a|δ(ax) and δ(x) = 1

2π

∑∞
s=−∞ exp(isx) the claim follows:

〈
u′, v ′,m|u, v,m

〉= 1

2π

∑
s

exp
(
i(v − v ′)

(
s + u

2π

))
δ(u −u′),

= δ(v − v ′)δ(u −u′).

To complete the proof that the shifted grid states form an orthonormal basis, we also
show their completeness. We do this by showing

∫
du

∫
dv |u, v,m〉〈u, v,m|p〉 = ∣∣p〉

for
any momentum eigenstate

∣∣p〉
.

Lemma 2.2.2. The class of shifted grid states as defined in Eq. (2.14) is complete, i. e. it
holds that

∫
du

∫
dv |u, v,m〉〈u, v,m| =1.

Proof. The wave function of a momentum state in the shifted grid state basis is

〈
u, v,m|p̂ = p

〉=√
smξ

(2π)2

∞∑
s=−∞

exp
(
−iv

(
s + u

2π

))
δ

(
ξsm

(
s + u

2π

)
−p

)
.

Since u ∈ [−π,π), the Dirac delta distribution is only non-zero for a specific value s = s̃
with p̃ := p −ξsm s̃, p̃ ∈ [−π,π). Using δ(x) = |a|δ(ax), we can simplify the wave function
of a momentum state in the basis of shifted grid states to

〈
u, v,m|p̂ = p

〉=√
1

ξsm
exp

(
−iv

(
s̃ + u

2π

))
δ

(
u − 2π

ξsm
p̃

)
.

Using the definition of a shifted grid state (see Eq. (2.14)) and the wave function of a
momentum state in the basis of shifted grid states, we obtain

Ï
du dv |u, v,m〉〈u, v,m|p̂ = p

〉=√
1

ξsm

Ï
du dv e−iv(s̃+ u

2π )δ

(
u − 2π

ξsm
p̃

)
|u, v,m〉

= 1

2π

∫
dv

∑
s

eiv(s−s̃) ∣∣p̂ = smξs + p̃
〉

= ∣∣p̂ = smξs̃ + p̃
〉= ∣∣p̂ = p

〉
.

In the second step, we used the integral representation of the Kronecker delta:
1

2π

∫ 2π
0 dx exp(ix(n −m)) = δmn .
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ANALYTICAL WAVEFUNCTION FOR GKP STATES

Using the basis of the shifted code states, we can define an approximate code state with
a “simple” wave function8:∣∣0̃〉=Ï

du dv
exp

(
∆−2(cos(

p
πu)+cos(2

p
πv))

)
p

2πI0(2∆−2)
|u, v〉 . (2.15)

Here, the wave function is a von Mises probability distribution and I0 is the modified
Bessel function of the first kind of order 0. In the limit ∆→ 0, the von Mises probability
distribution goes to a normal distribution, using Eq. (2.13) we then recover the original
approximate code state Eq. (2.11). In contrast to other definitions of approximate code
states, the norm of the state can be evaluated analytically without approximations. A
hybrid between Eqs. (2.11) and (2.15) will be used in Chapter 4 in order to obtain a class
of states that is closed under multiplication in one quadrature and closed under convo-
lution in the other.

2.2.3. GKP CODE STATES IN THE FOCK BASIS
In numerical simulations, the standard way to represent a state is in the Fock basis. Al-
though not well suited for analytical considerations, the major advantage of this basis is
that it is discrete and therefore better suited for numerics than, for example, the quadra-
ture bases or the shifted code states. However, only a finite number of Fock states can be
stored, meaning that there will always be rounding errors (see Appendix A.1). Therefore,
it is important to analyze the average photon number and variance of approximate GKP
code states.

First, we can show an (approximate) GKP code state has only support on even pho-
ton number Fock states. Consider the approximate code state in Eq. (2.11). It is clearly
symmetric with respect to reflection along the y-axis, i. e. the operation q̂ →−q̂ .9 This

operation is implemented by the unitary operator eiπâ† â . Therefore, we have

eiπâ† â ∣∣0̃〉= ∣∣0̃〉
, =⇒ ∣∣0̃〉= ∞∑

n=0
cn |2n〉 ,cn ∈C.

We can also compute the average photon number and its variance. First, we rewrite

â†â = 1

2
(q̂ − ip̂)(q̂ + ip̂) = 1

2
(q̂2 + p̂2 + i(q̂ p̂ − p̂ q̂)) = 1

2
(q̂2 + p̂2 −1). (2.16)

Because the approximate code states are eigenstates of eiπâ† â , the expectation value of
the p̂ and q̂ operators is zero:〈

0̃
∣∣ q̂

∣∣0̃〉= 〈
0̃
∣∣e−iπâ† â q̂eiπâ† â ∣∣0̃〉=−〈

0̃
∣∣e−iπâ† â/2p̂eiπâ† â/2 ∣∣0̃〉=−〈+̃| p̂ |+̃〉 =−〈

0̃
∣∣ q̂

∣∣0̃〉= 0.

Using Eqs. (2.11) and (2.12) and |0〉 = 1p
2

(|+〉+ |−〉), we can simply evaluate the expecta-

tion values
〈

q̂2
〉

,
〈

p̂2
〉

and obtain (assuming ∆p =∆q =∆) [7, 11]

n̄ =
〈

â†â
〉
≈ 1

2∆2 + ∆
2

2
− 1

2
,

8For a derivation, see later in Section 4.3.4.
9The same argument can also be used to show that a Schrödinger cat state |α〉 + |−α〉 has an even photon

number.
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where the approximation is due to the normalization of the approximate code state, and
we assume∆¿ 1. In order to compute the standard deviation of the photon number, we
use that

〈
p̂4

〉= 〈
q̂4

〉
and p̂ =−i d

dq̂ . We arrive at [11]

σn =
√〈

â†â2
〉−〈

â†â
〉2 ≈ 1

2∆2 +O (∆2),

which is equal to the average photon number n̄ in the leading order of ∆. This means
that, when using approximate GKP states with effective squeezing parameters∆q =∆p =
∆ in numerical simulations, the size of the Hilbert space should be around 2

∆2 for a con-

fidence of 3σ, or about 50 for an effective squeezing of ∆= 0.2.10

In [12], an expression for the normalization constant and the coefficients of a Fock
basis representation of the GKP code states is derived. The authors show that asymptot-
ically in n, the coefficients have the same scaling as a thermal distribution

pn = 1

n̄ +1

(
n̄

n̄ +1

)n

, with n̄ = e−2∆2

1−e−2∆2 .

2.3. QUALITY MEASURES FOR THE GKP CODE

I N contrast to standard qubit codes, quantifying the quality of any particular approx-
imate code state of the GKP code is not straight forward. The issue stems from the

fact that the Hilbert space of the harmonic oscillator is infinite, therefore the space of
correctable states is also infinite. In this section, we will discuss how the quality of any
approximate GKP code state can be quantified.

2.3.1. IDEAL DECODER

The simplest solution to interpret an arbitrary state as an approximate GKP code word
is to evaluate the state with an ideal decoder, and compare the resulting state to a target
state. In the position and shifted code state representations, this decoder is given by

Dq ∝
∞∑

n=−∞

∫ p
π/2+n

p
π

−pπ/2+n
p
π

dq
(|0〉〈q|+ |1〉〈q +p

π|) , (2.17)

Du,v ∝
∫ p

π/2

−pπ/2
du

∫ p
π/2

−pπ/2
dv

(|0〉〈u, v |+ |1〉〈u +p
π, v |) . (2.18)

Note that output of this decoder is not normalized. For an illustration of the ideal de-
coder Du,v , see the sketches in Fig. 2.2. The ideal decoder maps everything in the regions
shaded in yellow to the code state

∣∣0〉
, and all of the region shaded in green to the code

state
∣∣1〉

. As the decoder always gives a binary result, the information one can obtain
using it is very coarse-grained. Below, we will discuss methods that are better suited for
analyzing a GKP code state.



2

34 2. THEORETICAL BACKGROUND

v

0

0
u

√π
2

−√π
2 −√π

2
√π
2

3 √π
2

(a)

v

0

0
u

√π
2

−√π
2 −√π

2
√π
2

3 √π
2

(b)

v

0

0
u

√π
2

−√π
2 −√π

2
√π
2

3 √π
2

(c)

Figure 2.2: Overlap of an approximate GKP code state of interest with a target state. The ideal decoder
(Eq. (2.18)) assigns the region shaded in yellow (green) to the logical

∣∣0〉 (∣∣1〉)
state, respectively. The state

of interest is shaded purple, the target state is shown in blue. (a): The state of interest has support on a larger
region than the target state. The overlap increases the closer the state of interest is to an ideal GKP code state.
(b): If the situation is reversed, i. e. the target state has support on a larger region of phase space the state of
interest. Now, the overlap decreases the closer the state of interest is to an ideal GKP code state, which can lead
to misleading results. (c): In an extreme situation, both the target state and the state of interest have support
on small regions of phase space. Here, these regions are disjoint. This means that the overlap is zero, even if
we take an approximation where both code states go towards an ideal code state.

2.3.2. WHY THE OVERLAP IS NOT A GOOD QUALITY MEASURE
In quantum optics, a standard way to quantify the quality of some state is to compute
the overlap between the state of interest and the target state. For the GKP code, this is
however not a good choice. It is not possible to choose a target state where the overlap
with some state of interest is a monotonic function of the logical error rate of the state of
interest.

As an example, suppose that the target state is an approximate GKP code state of the
form of Eq. (2.15), with some fixed, small squeezing parameter ∆. Now suppose that the
state of interest |Ψ〉 has the same form, but with squeezing parameter

κ= 10x∆, x ≈ 0.

We are interested in the overlap as a function of x (i. e. the relation of ∆ and κ). Ideally,
the overlap increases, the closer the state of interest gets to an ideal code state. For x > 0
(see Fig. 2.2a for a sketch in the basis of shifted code states) this is the case. However,
the overlap decreases again for x < 0, (see Fig. 2.2b for a sketch in the basis of shifted
code states), and it goes to zero for x →−∞, i. e. the ideal GKP code state has negligible
overlap with the target state. For small ∆ and κ ≈ ∆ (and therefore x ≈ 0), the overlap is
approximately

∣∣〈Ψ|0̃〉∣∣≈ 1− ln(10x )2

2
+O

(
x3) .

10This estimation is a minimum. Depending on details of the simulation, a significantly higher number might
be needed.
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Thus, as mentioned before, the overlap decreases if the squeezing parameter of the state
of interest is smaller than the target state, even though that means that the state of inter-
est is a better approximation of the ideal GKP code state.

With these considerations, it seems best to choose the target state with a very small
∆, such that the squeezing parameter of the target state most likely is smaller than that
of a state of interest. However, there is a further complication in this case: For small ∆,
the target state only has support on a small fraction of phase space. This means that
the target state may have very small overlap with a state of interest, even if the state of
interest is a good approximate code state.

Suppose that the target state is again of the form of Eq. (2.15), with small∆. Now sup-
pose that the state of interest is of similar form with squeezing parameter κ& ∆ which
is similar to, but slightly larger than ∆. To construct a (pathological) example, we can
orthogonalize this state with respect to the target state. For an exaggerated sketch, see
Fig. 2.2c. It is easy to verify that both states will become very close to the ideal GKP code
state if both ∆ and κ go to zero. However, by construction, the two states will always be
orthogonal.

This means that the overlap with some target state underestimates the quality of an
approximate code state, in some cases by a large margin. Furthermore, measuring the
overlap requires knowledge of the state of interest. For numerical simulations, this is
feasible, but it can be very challenging in an experiment.

2.3.3. HOLEVO PHASE VARIANCE

One way to interpret a state as an approximate GKP state is using that the ideal GKP code
states are eigenstates of unitary operators (the stabilizers). Any state can be expressed
as some superposition or mixture of eigenstates of the stabilizers. To quantify how close
any state ρ is to an eigenstate of some unitary operator U , one can use the Holevo phase
variance. It is defined as

σH =
√∣∣Tr(ρU )

∣∣−2 −1.

The GKP code space is defined by the common eigenspace of the unitary stabilizers
Sp ,Sq with eigenvalues +1. Displacements by some D(α) will leave any state within the
GKP code space unchanged, they simply change the pair of eigenvalues for Sp ,Sq that
defines the eigenspace. The simultaneous eigenstates of the stabilizers Sq and Sp are
the shifted code states |u, v〉, see Eq. (2.13). These states form a basis for the Harmonic
oscillator, see Section 2.2.2.

We will now evaluate the Holevo phase variance for a typical approximate GKP state.
For simplicity, we discuss only the eigenvalues of the stabilizer Sq , the eigenvalues of the
stabilizer Sp are completely analogous. Consider an approximate GKP code state

∣∣0̃〉
as

defined in Eq. (2.11), with an additional displacement D(µ/
p

2):

|Ψ〉 = D(
µp

2
)
∣∣0̃〉= 1

N0

∞∑
n=−∞

e−2π∆2
p n2

∫ ∞

−∞
dq e

− (q−2
p
πn−µ)2

2∆2
q

∣∣q〉
. (2.19)
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The probability distribution in q is

PΨ(q)
1

N 2
0

∑
n,k

e−2π∆2
p (n2+k2) exp

(
− (q −2

p
πn)2 − (q −2

p
πk −µ)2

2∆2
q

)

≈ 1

N 2
0

∑
n

e−4π∆2
p n2

exp

(
− (q −2

p
πn −µ)2

∆2
q

)
, (2.20)

where the approximation is n = k for ∆q ¿ 1. This approximation is very accurate, the
error is O

(
10−11

)
for∆q = 0.5. Because the state is pure, we can easily evaluate the Holevo

phase variance with a simple integral:

Tr(|Ψ〉〈Ψ|Sq ) =
∫ ∞

−∞
dq ei2

p
πqPΨ(q)

≈ 1

N 2
0

∑
n

∫ ∞

−∞
dq ei2

p
πq e−4π∆2

p n2
exp

(
− (q −2

p
πn −µ)2

∆2
q

)
= ei2

p
πµe−∆

2
qπ (2.21)

Which gives the Holevo phase variance

σH =
√

e2∆2
qπ−1 (2.22)

≈p
2π∆q +

p
2π

3

2
∆2

q +O
(
∆4

q

)
,

where the approximation is for small ∆q .

EFFECTIVE SQUEEZING PARAMETERS

Because we have some knowledge about typical approximate code states, we can im-
prove upon the Holevo phase variance. Namely, typical approximate code states are
close to a superposition of squeezed vacuum states with a Gaussian envelope (i. e. of
the form of Eq. (2.19)). This knowledge allows us to define a different quality measure
that recovers the parameters of these two Gaussian distributions directly.

Thus, we can simply solve Eq. (2.21) for ∆q and µ, defining the mean shifts and the
effective squeezing parameters:

µq (ρ) ≡
arg

(∣∣Tr(Sqρ)
∣∣2

)
2
p
π

, ∆q (ρ) ≡
√√√√ 1

2π
ln

(
1∣∣Tr(Sqρ)

∣∣2

)
, (2.23)

where µp ,∆p are defined analogously and where the subscript q (p) indicates that the
stabilizer Sq (Sp ) was used. When

∣∣Tr(Sqρ)
∣∣ is close to 1, i e. ρ is close to an ideal GKP

code state, one can use ln(1+ x) = x +O (x2) to show that ∆q (ρ) = 1p
2π

√∣∣Tr(Spρ)
∣∣−2 −1,

thus relating the effective squeezing parameter to the Holevo phase variance. For a
squeezed vacuum state

∣∣sq. vac.
〉

in q with squeezing parameter∆q < 1 such that Var(q) =
1
2∆

2
q , one has

〈
sq.vac.

∣∣Sq
∣∣sq.vac.

〉= exp
(
−∆2

qπ
)

from which it follows that ∆q (sq.vac) =
∆q and∆p (sq.vac) = 1/∆q . Each stateρ can thus be characterized by two effective squeez-
ing parameters ∆p (ρ) and ∆q (ρ). For the grid state in Eq. (2.11), one has ∆p ≈∆q =∆.
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2.3.4. CHARACTERIZING WAVE FUNCTIONS IN A QUADRATURE BASIS
The question of characterizing an approximate GKP code state can also be interpreted
as a statistical question: The square absolute wave function of an approximate GKP code
state can be seen as a probability distribution. This probability distribution has multi-
ple modes11, each mode corresponding to a different displaced squeezed vacuum state
(see Eq. (2.11)). The standard deviation of the modes (the initial squeezing ∆) is similar,
and the modes themselves are periodic with known distance (displacement by one sta-
bilizer), but the amplitude of each mode changes (due to the envelope). Therefore, we
can employ methods from directional statistics in order to obtain the properties of the
underlying distribution.

An equivalent alternate point of view is that every approximate GKP code state is
characterized as a probability distribution over the eigenvalues of the stabilizers Sp and
Sq .12 Because the stabilizers are unitary operators, their eigenvalues are complex phases,
and it is therefore appropriate to employ methods from the field of directional statistics.
The derivation of the circular mean and variance in this section follows [13, 14], adjust-
ing the derivations there to continuous variables.

Consider an approximate GKP code state
∣∣0̃〉

as defined in Eq. (2.11). The probability
distribution of the position quadrature for this state is given by:

P0(q) = 1

N 2
0

∑
n,k

e−2π∆2
p (n2+k2) exp

(
− (q −2

p
πn)2 − (q −2

p
πk)2

2∆2
q

)

≈ 1

N 2
0

∑
n

e−4π∆2
p n2

exp

(
− (q −2

p
πn)2

∆2
q

)
, (2.24)

where the approximation is n = k for∆q ¿ 1, see Eq. (2.20). While the mean value of this
probability distribution is

〈
q̂
〉 = 0 as expected, it is obvious that the variance Var(q) =〈

q̂2
〉−〈

q̂
〉2 is misleading and has no relation to ∆q , and only an indirect dependence on

∆p . A simple solution is to capture the periodicity of the distribution by “wrapping it up”.
This means that we cut the domain into pieces of the same length as the desired period
— here

p
π — and then shift all those pieces such that they have the same domain, in

our case [−pπ/2,
p
π/2). With this procedure, we obtain a new probability distribution

P0,W (q) =
∞∑

s=−∞
P0(q +p

πs),

= 1

N 2
0

∞∑
s,n=−∞

e−4π∆2
p n2

exp

(
− (q −p

π(2n + s))2

∆2
q

)
, q ∈ [−pπ/2,

p
π/2)

= 1√
∆qπ

∞∑
s=−∞

exp

(
− (q −p

πs)2

∆2
q

)
, (2.25)

where the approximation is again n = k for ∆q ¿ 1. In the last step, we shifted the sum
over s such that only a single Gaussian remains. The domain of q is now restricted to q ∈
11Note that the “mode” is to be understood as a mode of a probability distribution, and not as a resonance

mode of a physical system.
12This is simply rephrasing of the statement that the shifted code states are a basis for the Hilbert space of the

harmonic oscillator, see Section 2.2.2.
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[−pπ/2,
p
π/2). This wrapped up probability distribution is simply a wrapped Gaussian

distribution, the mean value
〈

q̂
〉 = 0 is still correct. Furthermore, the variance now is

given by Var(q) = ∆2
q

2 , as expected for a squeezed vacuum state.
However, the method above relies on the fact that the initial state is close to the

GKP code space. Suppose that an approximate code state
∣∣0̃〉

is displaced by D(
p
π/8)

(half the displacement implementing a logical Pauli X ). In this case, the corresponding
(wrapped) probability distribution is given by

Pp
π/2,W (q) = 1√

∆qπ

∞∑
s=−∞

exp

(
− (q −p

π(s +1/2))2

∆2
q

)
, q ∈ [−pπ/2,

p
π/2). (2.26)

and the mean and variance are given by

〈
q̂
〉= 0 6=

p
π

2
, Var(q) ≈∆2

q /2+π−2∆q ,

where the variance was approximated for small ∆q . Note that the mean is clearly wrong,
and the variance — although related to the desired value — does not correspond to the
variance of the underlying squeezed states. The reason why the cases behave differently
is that although all points q = n

p
π,n ∈ Z are identified, this unit circle is cut open at

these points when the statistical moments are computed directly. If the cut is in the
middle of a peak located around q ≈ n

p
π,n ∈Z, this will result in the peak being cut in

half so that there are two “virtual” peaks in the distribution that are actually the same.
To see how this dependence on the initial state can be resolved, we first consider the

more general problem of a probability distribution P(θ), where θ = θ+2π is a periodic
variable. We now follow the books [13, 14], extending their analysis to probability distri-
butions over continuous variables.

Usually, the variance and mean are defined with the metric

dL(x, y) = (x − y)2

in mind. However, this metric is not well suited for variables defined on a circle: For
x =π, y =−π, we have dL(−π,π) = (2π)2 6= 0 even though the two points are identical. In
order to take this periodicity into account, one defines a new metric:

dC (θ,ϑ) = 1−cos(θ−ϑ) . (2.27)

This function is non-negative, symmetric and fulfills the triangle inequality. It also cor-
rectly captures the periodic nature of the variables and is therefore a suitable metric for
the circle. Because the metric is periodic, using this metric is equivalent to wrapping up
a probability distribution, as all distances are measured modulo 2π.

Note that there are also multiple other ways to define a metric on a circle, we will
see how this particular choice is motivated in Lemma 2.3.1. To proceed, we first define a
mean:

θ̄ = arctan2
(〈sin(θ)〉 ,〈cos(θ)〉)= arg

(〈
eiθ

〉)
, (2.28)
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where 〈
f (θ)

〉= ∫ π

−π
dθ P(θ) f (θ),

and arctan2 is the inverse function of the tangent that takes the quadrant into account.
For now, this is simply a definition, we will see how it is justified below. Analogous to
the usual variance, one defines the circular variance VC as the expectation value of the
distance to some reference point θ̄, with the circular metric from Eq. (2.27):

VC = 〈
dC

(
θ, θ̄

)〉= 1−〈
cos(θ− θ̄)

〉
. (2.29)

In the following lemma, we show that the circular variance is minimized if θ̄ is chosen
according to Eq. (2.28), analogous to the usual variance and mean.

Lemma 2.3.1. The circular variance VC = 〈
dC

(
θ,µ

)〉
(see Eq. (2.29)) is minimized if µ= θ̄

is the circular mean defined in Eq. (2.28).

Proof. For the proof, we differentiate
〈

dC
(
θ,µ

)〉
and equate to zero:

0 = d
〈

dC
(
θ,µ

)〉
dµ

=−〈
sin(θ−µ)

〉=−
∫ 2π

0
dθ P(θ)sin(θ−µ)

=−ℑ
(∫ 2π

0
dθ P(θ)ei(θ−µ)

)
=−ℑ

(
r eiθ̄e−iµ

)
, r ∈ [0,1], (2.30)

where P(θ) is some probability distribution over θ and we used Eq. (2.28) for the last
equality. This equation has two solutions, µ = θ̄ and µ = θ̄+π. To check whether the
solutions are a minimum or maximum, we differentiate again:

d2
〈

dC
(
θ,µ

)〉
dµ 2 = 〈

cos(θ−µ)
〉=ℜ

(
r eiθ̄e−iµ

)
, r ∈ [0,1],

where we used the same steps as for the first derivative. Thus we have

d2
〈

dC
(
θ,µ

)〉
dµ 2 > 0 for µ= θ̄, (2.31)

d2
〈

dC
(
θ,µ

)〉
dµ 2 < 0 for µ= θ̄+π,

proving the claim that the variance is minimized if µ= θ̄.

From Eqs. (2.30) and (2.31) follows
∣∣〈eiθ

〉∣∣= 〈
cos(θ− θ̄)

〉
, and therefore

VC = 1−
∣∣∣〈eiθ

〉∣∣∣ (2.32)

where θ̄ is defined as in Eq. (2.28). The quantity

S =
∣∣∣〈e iθ

〉∣∣∣ , (2.33)
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is also called the sharpness, and commonly used as an alternative to the circular vari-
ance defined in Eq. (2.29). We can see that mean value, circular variance and sharpness
are all defined as a simple function of the expectation value

〈
e iθ

〉
, see Eqs. (2.28), (2.32)

and (2.33).
We learned that the circular mean and variance defined in Eqs. (2.28) and (2.32) are

well suited to classify probability distributions over periodic variables. In order to an-
alyze a GKP state in a way that is easy to compare to experimental data, we have two
further adjustments: The mean values should correspond to position and momentum
in phase space, and we want to scale the circular variance VC such that it directly yields
the parameters ∆p ,∆q of an approximate GKP state of the form Eq. (2.11). By change of
variables from θ ∈ [0,2π) to q ∈ [−pπ/2,

p
π/2

)
, we see that both the mean value and the

circular variance are functions of the expectation value of the stabilizer Sq .
To choose the scaling for the mean value and the circular variance, we first compute

the expectation value
〈

Sq
〉

of an approximate code state
∣∣0̃〉

from Eq. (2.11) with an ad-
ditional displacement D(µ/

p
2), i. e. the state given in Eq. (2.19). We already computed

this expectation value in order to compute the Holevo phase variance, it is given by

Tr(|Ψ〉〈Ψ|Sq ) = ei2
p
πµe−∆

2
qπ

see Eq. (2.21). To recover µ and ∆q , we can now simply solve for these variables. As
expected from Eqs. (2.28) and (2.32), they are a function of the argument and absolute
value of

〈
Sq

〉
, respectively. Not surprisingly, we obtain the effective squeezing parameters

∆q ,∆p and the corresponding mean shiftsµq ,µp we also obtained from the Holevo phase
variance:

µq (ρ) ≡
arg

(∣∣Tr(Sqρ)
∣∣2

)
2
p
π

, ∆q (ρ) ≡
√√√√ 1

π
ln

(
1∣∣Tr(Sqρ)

∣∣2

)
, (2.34)

A significant advantage of using either the effective squeezing parameters or the
sharpness is that it is very efficient to evaluate them numerically, and they can also eas-
ily be evaluated experimentally. This is because a measurement of the sharpness is the
same, or a very similar measurement to, the measurement one would do to encode a
GKP state in the first place.

EXPECTATION VALUE OF PAULI OPERATORS

Perhaps the most direct way to measure the quality of a GKP state is to determine the ex-
pectation values 〈X 〉,〈Y 〉,〈Z 〉 of the logical Pauli operators. The measurements required
to obtain these are of the same type as the encoding itself, they are realized by the same
circuit. As both the sharpness and the effective squeezing are a function of these expec-
tation values, relating an expectation value to an effective squeezing is straigt forward. If
the encoded state is symmetric around the vacuum state, i. e. µq ≈µp ≈ 0, the imaginary
part of all these expectation values is close to 0, meaning that they are approximating the
sharpness (up to the sign). In fact, both experimental implementations of the GKP code
use

ℜ〈X 〉,ℜ〈Y 〉,ℜ〈Z 〉
as a quality measure for the generated GKP states [2, 15].
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3
ENCODING A GKP QUBIT USING

PHASE ESTIMATION

In this chapter, we discuss how phase estimation can be used to encode a GKP qubit. First,
we will introduce the standard phase estimation algorithm, as well as several variations
that are useful for encoding a GKP code state. The core piece of all encoding schemes using
phase estimation is a controlled displacement of an oscillator, conditioned on the state
of an ancilla qubit. Therefore, we will discuss how this operation can be implemented
in various physical systems. Finally, we present a numerical simulation of a scheme to
encode a GKP qubit, taking noise and imperfections into account.

Sections 3.1.4 and 3.3 have been published with minor differences in K. Duivenvoorden, B. M. Terhal, and
D. J. Weigand, “Single-mode displacement sensor”, Physical Review A 95, 012305 (2017). Section 3.1.1 fol-
lows Nielsen and Chuang [2]. The discussion of the adaptive phase estimation algorithm by Berry et al. [3] in
Section 3.1.3 follows [4].
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3.1. PHASE ESTIMATION

A S the GKP code is a stabilizer code, encoding and error correction are simply a ques-
tion of fixing the eigenvalues of the stabilizers. Because the stabilizers are unitary,

the task is to fix the eigenvalue of a unitary operator. This problem has been widely stud-
ied, and the quantum algorithm that achieves this is phase estimation. To be more pre-
cise, phase estimation can refer to a whole class of algorithms based on the same com-
putational unit, see Fig. 3.1. In this section, we will discuss various implementations of
phase estimation, their scaling, and the criteria for efficiently encoding GKP code states.

3.1.1. STANDARD PHASE ESTIMATION
The most well known phase estimation algorithm is standard phase estimation, in the
literature often referred to as “phase estimation”. The algorithm uses M ancilla qubits
in order to measure the eigenvalue of some unitary operator U acting on some target
system, see Fig. 3.2. The target system may be a single qubit, but can also be a system
with multiple qubits or an entirely different physical system, like a harmonic oscillator.
The algorithm starts with the target system in some eigenstate |θ〉T with eigenvalue θ of
U and the ancilla qubits all in the |+〉 state. Then, we apply a series of controlled unitaries

U 2M−k
to the target system, where k is the index of the controlling ancilla qubit. Because

the state |θ〉T is an eigenstate of the unitary operator U , the controlling ancilla qubits
simply acquire a phase:

|θ〉T |+〉1 . . . |+〉M → 1
p

2
M

|θ〉T

M∏
k=1

(
|0〉k +ei2M−kθ |1〉k

)
.

Now we represent the eigenvalue θ as a bit string, θ = 2π×0.θ1 . . .θM (assuming that θ
can be expanded exactly with M bits) where θl ∈ {0,1} and 0.θ1 . . .θM is shorthand for∑M

l=1 2−lθl . With this notation, the state can be simplified as

1
p

2
M

|θ〉T

M∏
k=1

(
|0〉k +ei2π0.θk ...θM |1〉k

)
. (3.1)

The quantum Fourier transform acts as

F |θ1〉1 . . . |θM 〉M →
M∏

k=1

(
|0〉k +ei2π0.θk ...θM |1〉k

)
,

where θl ∈ {0,1} is the representation of θ as a bit string. Therefore, a measurement of
the ancilla qubits after the inverse quantum Fourier transform directly yields the desired
eigenvalue, bit by bit, see Fig. 3.2.

SEMI-CLASSICAL PHASE ESTIMATION

If the quantum Fourier transform is followed by a measurement, it can be separated into
a sequence of single qubit measurements, combined with classical control. Consider
again Eq. (3.1). The state of ancilla qubit M is given by

1p
2

(|0〉+e2πi0.θM |1〉) = 1p
2

(|0〉+ (−1)θM |1〉) = H |θM 〉 ,
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target system / U l

ancilla qubit |+〉 • RZ(ϕ) X

Figure 3.1: Phase estimation unit for a unitary operator U acting on some target system. The target system may
be any physical system, for example a single qubit, a collection of qubits, or a harmonic oscillator (symbolized
by the slash). This circuit is repeated for M rounds, with l ,ϕ varying, possibly depending on the measurement
results from previous rounds. If the input state of the target system is an eigenstate of U with eigenvalue eiθ ,
then the probability for outcome 0 for the qubit measurement will be given by P(0|ϕ) = 1

2 (1+cos(lθ+ϕ)).

target system / U2M−1

U2M−2 · · · U

ancilla qubit 1 |+〉 • · · ·

F−1

θM

ancilla qubit 2 |+〉 • · · · θM−1

...
...

ancilla qubit M |+〉 · · · • θ1

Figure 3.2: Standard phase estimation using the inverse quantum Fourier transform for a unitary operator U
acting on some target system. The target system may be any physical system, for example a single qubit, a
collection of qubits, or a harmonic oscillator (symbolized by the slash). If the initial state of the target system
is an eigenstate of U where the eigenvalue is an M-bit string of the form θ = 2π×0.θ1 . . .θM , a circuit with M
ancilla qubits will be sufficient to measure the eigenvalue.

target system / U2M−k

ancilla qubit |+〉 • RZ(−2π × 0.0θk−1 . . . θM ) X

︸ ︷︷ ︸
M rounds

Figure 3.3: Standard phase estimation for a unitary operator U acting on some target system. The target sys-
tem may be any physical system, for example a single qubit, a collection of qubits, or a harmonic oscillator
(symbolized by the slash). This circuit is repeated for M rounds, the integer k indicates the current round. If
the input state of the target system is an eigenstate of U with eigenvalue ei2π×0.θ1 ...θM , then the probability for
outcome 0 for the qubit measurement is θk .
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where H is the Hadamard gate. Thus, the M th bit of θ can be obtained by simply mea-
suring the ancilla qubit in the X basis, i. e. applying a Hadamard gate. The state of ancilla
qubit (M −1) is given by 1p

2
(|0〉+ e2πi0.θM−1θM |1〉). We wish to measure the value of the

(M −1)th bit θM−1. Because we already measured θM , we can map ancilla qubit (M −1)
to the state |θM−1〉, by first applying a rotation around the Z axis by −θM /4, followed by
a Hadamard gate, see Fig. 3.3.

In terms of the number of rounds, standard phase estimation (and also the semi-
classical variant) is clearly optimal: Each measurement yields one bit of the measured
eigenvalue. If the computational cost is measured in the number of applications of the
unitary U , where U k counts as k applications, the cost of standard phase estimation
will be (2M+1 −1) for a measurement of M bits. The latter metric is more important for
many applications, in particular for the GKP code: If the measured unitary operator is a
displacement, each application of the displacement adds a fixed number of photons, so
M rounds of standard phase estimation add O (2M+1) photons to the oscillator [4].

3.1.2. PHASE ESTIMATION BY REPETITION

target system / U U

ancilla qubit |+〉 • X |+〉 • RZ
(
−π2

)
X

Figure 3.4: Phase estimation by repetition for a unitary operator U acting on some target system. The target
system may be any physical system, for example a single qubit, a collection of qubits, or a harmonic oscillator
(symbolized by the slash). This circuit is repeated for M/2 rounds. If the input state of the target system is an
eigenstate of U with eigenvalue eiθ , then the probability for outcome 0 for the first qubit measurement is given
by P(0) = 1

2 (1+cos(θ)), and for the second qubit measurement by P(0) = 1
2 (1+ sin(θ)).

A simple variant of phase estimation that does not require adaptive feedback uses
only the circuit shown in Fig. 3.1. The circuit is repeated M/2 times with l = 1,ϕ= 0 and
M/2 times with l = 1,ϕ=π/2, see Fig. 3.4. The probabilities to obtain outcome 0 are

Pcos ≡P(0|ϕ= 0) = 1

2

(
1+cos(θ)

)
,

Psin ≡P(0|ϕ=π/2) = 1

2

(
1+ sin(θ)

)
,

for ϕ= 0 and ϕ= π/2, respectively. Assuming that θ does not change over time and that
the number of measurements M is sufficiently large, Pcos is the frequency of measure-
ment result 0 for ϕ = 0, and Psin is the frequency of measurement result 0 for ϕ = π/2.
The eigenvalue θ can now be obtained as a function of Pcos and Psin:

θ = arg(2(Pcos + iPsin)− (1+ i)) . (3.2)

3.1.3. ADAPTIVE PHASE ESTIMATION
An important advantage of phase estimation by repetition compared to standard phase
estimation in the context of encoding a GKP code state is the linear scaling of the cost
in terms of the photon number with respect to the number of rounds. Keeping a form
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target system / U

ancilla qubit |+〉 • RZ(ϕ) X

Figure 3.5: Phase estimation unit for a unitary operator U acting on some target system. The target system may
be any physical system, for example a single qubit, a collection of qubits, or a harmonic oscillator (symbolized
by the slash). This circuit is repeated for M rounds, ϕ varying, depending on the measurement results from
previous rounds. If the input state of the target system is an eigenstate of U with eigenvalue eiθ , then the
probability for outcome 0 for the qubit measurement will be given by P(0|ϕ) = 1

2 (1+cos(lθ+ϕ)).

of phase estimation where the only power of the unitary U is 1 (l = 1 in Fig. 3.1), one
can ask about strategies that offer a faster scaling, see Fig. 3.5. Berry et al. developed
a protocol that optimizes1 the feedback phase for the next measurement [3]. This is
also the algorithm that was used in the proposal to encode a GKP qubit using phase
estimation [4]. Even though the asymptotic scaling of the effective squeezing is the same
for this protocol and for phase estimation by repetition, it performs significantly better
in the initial measurements. First, let us define what Berry et al. mean by optimal:

Their quality measure of choice is the sharpness S(ρ), see Eq. (2.33). Both the ef-
fective squeezing parameters and the Holevo phase variance are monotonic functions
of the sharpness, see Eqs. (2.22) and (2.23). Therefore, minimizing the sharpness also
minimizes either quality measure. The objective is to choose the feedback such that the
sharpness after the next measurement is maximized. Suppose that we already did (M−1)
measurements, with a measurement record xM−1 and a history of feedback ϕM−1. Be-
cause the measurement result of the next, M th measurement is of course unknown, we
maximize the sharpness over a weighted average of both possible outcomes:

ϕ= argmax
φ[M ]

∑
x[M ]=0,1

P(x[M ]|ρ(xM ,ϕM ))S
(
ρ(xM ,ϕM )

)
,

where ρ(xM ,ϕM ) is the posterior state after round M with result x[M ] and feedback
phase ϕ[M ].2 To proceed, we need a method to obtain the posterior state.

One way to achieve this is to simply use a brute force approach, simulating every
possible measurement result numerically. In the noiseless case, there is a much more
efficient way, as the post measurement state can be obtained analytically. Assume that
the probability distribution P(θ|xM−1) of eigenvalues in round k with measurement his-
tory xM−1 is known. We can then use a Bayesian update in order to obtain the posterior

1Note that there are many different measures of optimality. Furthermore, Berry et al. only perform a local
optimization for each measurement round and do not claim that their strategy is globally optimal. Although
their strategy could easily be extended to a globally optimal one, the computational cost scales exponentially
with the number of rounds and doing so is computationally unfeasible.

2Because we are taking the weighted average, it does change the result slightly if we optimize the sharpness,
the Holevo phase variance, or an effective squeezing parameter. This is because the scaling of the different
parameters with respect toφ[M ] is different. Taking this change into account is possible for slightly increased
computational cost, but the expected gains are minimal, because these quality measures are asymptotically
equivalent.
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probability distribution:

P(θ|xM ,ϕM ) = P(θ|xM−1,ϕM−1)P(x[M ]|θ,xM−1,ϕM−1,ϕ[M ])

P(x[M ]|xM−1,ϕM−1,ϕ[M ])

= P(θ|xM−1,ϕM−1)P(xM |θ,ϕM )

P(y |xM−1,ϕM−1,φ)P(xM−1|θ,ϕM−1)
, (3.3)

where x[M ] is the measurement result and ϕ[M ] is the feedback used in round M . Re-
call that the sharpness can be written as an integral over the probability distribution
P(θ|xM ). Using the Bayesian update, we can simplify the expression for the optimal feed-
back phase:

ϕ[M ] = argmax
φ[M ]

∑
y=0,1

∣∣∣∣∫ dθ eiθ P(θ|xM−1,ϕM−1)P(xM |θ,ϕM )

P(xM−1|θ,ϕM−1)

∣∣∣∣ ,

Because the measurement results of each round are independent, we can easily obtain
the probability distribution P(xM |θ,ϕM ):

P(xM |θ,ϕM ) =
M∏

i=1
P(x[i ]|θ,ϕ[i ]) =

M∏
i=1

cos2
(
θ+ϕ[i ]+x[i ]

2

)
.

To simplify the optimization further, we use the following proposition:

Proposition 3.1.1. Assuming no prior knowledge about θ, it holds P(θ|xM−1,ϕM−1) ∝
P(xM−1|θ,ϕM−1), where the proportionality constant is independent of both θ and ϕ[M ].

Proof. Using Eq. (3.3) and assuming no prior knowledge, the claim holds for M = 2:

P(θ|x1,ϕ1) = P(θ)P(x[1]|θ,ϕ[1])

P(x[1]|ϕ[1])
= P(x[1]|θ,ϕ[1])

4π
,

which is independent of θ andϕ[2]. Here we used that P(θ) and P(x[1]|ϕ[1]) are uniform
distributions if we assume no prior knowledge. Assuming the claim holds for round M =
m, we have for M = m +1:

P(θ|xm ,ϕm)

P(xm |θ,ϕm)
= P(θ|xm−1,ϕm−1)

P(y |xm−1,ϕm−1,φ)P(xm−1|θ,ϕm−1)
∝ 1

P(y |xm−1,ϕm−1,ϕ[m])
.

The right hand side is independent of both θ and ϕ[m +1], proving the claim by induc-
tion.

Using the proposition, the feedback phase for round M is given as

ϕ[M ] = argmax
φ[M ]

∑
x[M ]=0,1

∣∣∣∣∫ dθ eiθP(xM |θ,ϕM )

∣∣∣∣
= argmax

φ[M ]

∑
x[M ]=0,1

∣∣∣∣∣
∫

dθ eiθ
M∏

i=1
cos2

(
θ+ϕ[i ]+x[i ]

2

)∣∣∣∣∣ .
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3.1.4. MAXIMAL INFORMATION GAIN STRATEGY

Although the number of rounds needed to obtain a good GKP code state using opti-
mized feedback is small [4], the optimization requires a significant amount of (classical)
computational resources. This is not relevant if the optimization of the feedback angle
is done on a classical computer, but might introduce a significant delay between phase
estimation measurements if the feedback is computed during an experiment. As the
feedback angle is unique for every bit string of measurement results, storing feedback in
a lookup table is only possible for a small number of measurements. A simpler strategy
with similar performance is the following maximal information gain strategy [1].

Given a sequence of qubit measurement outcomes x1, . . . , xM−1, assume that one
somehow determines an estimate θ̃M−1 for the phase θ. Given this estimate θ̃M−1, we
will then choose the next circuit with a feedback phase ϕ such that the probability for
qubit outcome 0 and qubit outcome 1 are equally likely. Hence, given the estimate, we
choose our next feedback phase such that we gain maximal information of 1 bit. If the
input to the phase estimation circuits is the eigenstate

∣∣ψθ

〉
, then the probability for out-

come x will equal P(x) = 1
2 (1+ (−1)x cos(θ+ϕ)) so that the maximal-information gain

condition simply reads:3

ϕM = θ̃M−1 + π

2
.

The current estimate θ̃M−1 can be easily obtained using the mean shift, see Eq. (2.23).
For analytical considerations, the state of the system is given by (see Section 3.1.3):

P(xM |θ,ϕM ) ∝
M∏

i=1
cos2

(
θ+ϕ[i ]+x[i ]

2

)
.

For numerical simulations, the algorithm is even simpler: As the state of the system is
already in memory anyway, calculating the expectation value

〈
eiθ

〉
is straight forward.

The description of the state used to obtain the mean shift can also include the noise
in the protocol, e. g. measurement errors, in order to best describe the state that the
protocol produces.

For all algorithms presented in this section, the accuracy with which the eigenvalue θ
is determined scales linearly with the number of photons added by the algorithm, albeit
with different prefactors and different behavior for a small number of measurements.
Standard phase estimation adds one bit of information per round and also adds an ex-
ponential number of photons. For all other strategies presented here, both the accuracy
of the eigenvalue and the number of photons in the oscillator scale linearly with the
number of rounds.

3Note that this strategy can be employed in any phase estimation, using any integer l , which proceeds by
several rounds of circuits of the form in Fig. 3.1: Given the data, one can always get a current estimate of
the phase and make sure that the next measurement with some number of outcomes gives equal probability
to all these outcomes. Standard phase estimation based on the semi-classical quantum Fourier transform
follows this strategy as well, see Fig. 3.3: The lowest significant bit of the phase is estimated with a binary
measurement first, then the feedback phase is adapted such that the next measurement comes out 0 or 1
with probability 1/2, only depending on the next significant bit and so on.
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3.2. IMPLEMENTATIONS OF A CONTROLLED DISPLACEMENT

I N order to be able to use phase estimation to encode a GKP state in an oscillator, it is
necessary to be able to implement a controlled displacement of the oscillator, where

the displacement amplitude is conditioned on an ancilla qubit, i. e. implementing the
controlled-U operation from Fig. 3.1. Such a controlled displacement enables to imple-
ment controlled applications of either stabilizers or logical operations. In this section,
we present various approaches to achieve this goal. There are three requirements for
any such operation: The controlled displacement should be sufficiently accurate, suf-
ficiently fast so that photon loss, for example, is not dominant and, preferably, experi-
mentally viable.

3.2.1. DIRECT CONTROLLED DISPLACEMENT
In a circuit QED setting, the qubit-cavity interaction can be approximated by the Jaynes-
Cummings Hamiltonian [4, 5]:

HJC =−ωqσz +ωr â†â + g (σ−â† +σ+â).

Here, and throughout the rest of this thesis, we will use the convention ħ = 1. If the
detuning ∆=ωq −ωr is chosen to be much larger than the coupling strength g , we can
take the so-called dispersive limit g

∆ ¿ 1.4 In this limit, the effective Hamiltonian is given
by:5

Hdisp =ωr â†â − (
ωq +χ) σz

2
−χâ†âσz +O

(
g 3

∆3

)
, χ≈ g 2

∆
, (3.4)

see [5] for a detailed derivation. Note that this approximation is only valid if the number

of photons in the oscillator is below the critical photon number ncrit = ∆2

4g 2 .

In principle, one could use this Hamiltonian to implement a displacement of the
oscillator, conditioned on the qubit state directly. In the rotating frame of the qubit, the
interaction Hamiltonian is simply

Hint =ωr â†â −χâ†âσz +O

(
g 3

∆3

)
+αeiωd t â† −α∗e−iωd t â,

where we also added a drive at frequency ωd . We can interpret the Hamiltonian as a
change of the resonance frequency of the cavity, depending on the state of the qubit.
This allows to drive the cavity, conditioned on the state of the qubit. A drive at frequency
ωr ∓ χ

2 will be on resonance if the qubit is in the |0〉 or |1〉 states, respectively. As an
example, assume that ωd = ωr +χ/2. In a rotating frame of the oscillator at frequency
ωr +χ/2, we have

Hrot =αeiχ(1/2−σz )t â† +α∗e−iχ(1/2−σz )t â. (3.5)

4As g is typically small (O (MHz)), this is the case unless the system is specifically designed to be on resonance.
5Note that Ref. [5] uses a different convention for the sign of the qubit energy. Here, we use the convention

that the ground state is the lower energy state.
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If the qubit is in the ground state, the phases will cancel, so that the oscillator will be
displaced by D(αt ). If the qubit is in the excited state, on the other hand, the rotating
wave approximation applies and the Hamiltonian is approximately zero.

However, we need to take into account that any drive with a finite duration also has
a finite resolution in the frequency domain. If the time profile of the chosen pulse is a
Gaussian with a standard deviation σt , the width of the pulse in the frequency domain
will be σω = 1/σt , which should be small compared to the dispersive shift χ. If we as-
sume that the total duration of the pulse is tpulse = 2σt and χ> 2σω, we will see that the
duration of the pulse should be at least tpulse > 4

χ , which is several µs in most settings.

Although a controlled displacement implemented by a drive (like Eq. (3.5)) is chal-
lenging, there has been significant progress in the last years to implement a controlled
displacement of an oscillator, depending on the state of the qubit. The coupling is of
interest because it not only enables a measurement of the GKP stabilizers, but also has
the potential to improve the standard dispersive readout of transmon qubits. In 2018,
Touzard et al. could demonstrate such a coupling experimentally [6] (some of their tech-
niques were also used in the simulated photon pressure coupling discussed in Chap-
ter 5). Although a conditional displacement controlled by an ancilla qubit has not yet
been used for the GKP code, it seems promising because the nonlinearity of the oscilla-
tor is O (10MHz)6 while the photon number is, by construction, much lower than that in
the experimental implementation of the GKP code in circuit QED [7].

3.2.2. CONTROLLED DISPLACEMENT BY ROTATION

cavity / D(α cos(θ))

R(−θσz)
D(−2α)

R(−σzθ)
D(α cos(θ))

qubit X X

Figure 3.6: Equivalent circuit for the conditional displacement D(i2αsin(−θσz )) (see Eq. (3.6)), developed by
van Loock et al. [8]. The conditional rotation R(−θσz ) is implemented by the Hamiltonian σz â† â applied for
time θ.

Direct controlled displacements as discussed in the previous section are generally
very challenging to implement. A much more reasonable alternative based on controlled
rotations of the phase space has been proposed by van Look et al. in 2008 [8]. Similar to
the direct controlled displacement discussed in Section 3.2.1, these controlled rotations
are based on the dispersive shift in Eq. (3.4). It is straightforward to check that simply
letting a qubit-oscillator system evolve under the dispersive shift for time t yields the
time evolution operator

R(χtσz ) = exp(−itχσz â†â),

i. e. a controlled rotation. Applied to a coherent state |α〉, such a controlled displace-
ment yields the state(s)

∣∣e−itχσzα
〉

. Using controlled rotations and unconditional dis-

6This value is not given in the paper, it is estimated using the dispersive shiftχqc ≈ 100kHz and the nonlinearity
χqq = 251MHz reported by the authors.
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placements one can show that

D(i2αsin(−θσz )) ≡ D(αcos(θ))e−iθσz â† âD(−2α)eiθσz â† âD(αcos(θ)) (3.6)

= D(αcos(θ))D(−e−iθσz 2α)D(αcos(θ))

= D(2αcos(θ)−2cos(−θσz )− i2αsin(−θσz ))

= D(i2αsin(−θσz )),

see also Fig. 3.6. When using this gate sequence, there are two main limiting factors for
any experimental implementation: On the one hand, the number of photons that can be
used in the oscillator is often limited, enforcing a limit on the amplitude of the displace-
ment α. On the other hand, the strength of the dispersive shift is set by the design of an
experiment, and it dominates the total time needed to implement a controlled displace-
ment.

In the following, we will discuss two limits of these conditions, namely minimiz-
ing the photon number or minimizing the dispersive shift. While the former approach
seemed more promising in 2015 [4], advances in the fabrication and control of 3D cavi-
ties made the latter more advantageous in the experimental implementation of the GKP
code in circuit QED [7].

MINIMAL PHOTON NUMBER

Even in the early circuit QED experiments where transmon qubits are coupled to high
quality 3D cavities, a dispersive shift in the order 1− 20MHz was readily available [9–
11]. However, the photon number was severely limited: As a simple estimate, the criti-
cal photon number for a typical setup of the time with ∆ = 1GHz, χ = 2.5MHz is given
by ncrit = ∆

4χ = 100, see also Section 3.2.1. In an experiment specifically designed to
use superpositions of many photons by Vlastakis et al. in 2013, they estimate the maxi-
mum allowed photon number to be around 300, and demonstrate Schrödinger cat states
|−α〉+ |α〉 up to about 55 photons [10].7 With these parameters in mind, the proposal
to encode a GKP state using phase estimation referred to an implementation of the
controlled displacement where the strength of the unconditional displacements is lim-
ited [4]. To this end, Eq. (3.6) is used with the choice θ = χt = π. The gate sequence to
implement a controlled displacement is then

D(i2ασz ) ≡ e−iπσz â† âD(−α)eiπσz â† â .

Figure 3.7 shows a phase-space sketch of a controlled displacement D(i
p

2πσz ) applied
to a coherent state

∣∣p2π
〉

, with the ancilla qubit in the |+〉 state.
Unconditional displacements are very fast, taking only about 10 ns to complete. This

implies that the amplitude of a controlled displacement does not change the time needed
significantly. Given a dispersive shift of 10–20 MHz, the time needed for the desired con-
trolled rotations is about 200 ns each. If we also take into account that the readout time
for an ancilla transmon qubit is typically 100–300 ns, one round of phase estimation will
take around 600 ns, depending on details of the experiment.

7Note that Vlastakis et al. use an unconventional definition of the photon number: They define the size S of a

Schrödinger cat state
∣∣β1

〉+∣∣β2
〉

as S = ∣∣β1 −β2
∣∣2 and use “photons” as unit for the size. With this convention,

the state
∣∣−p55

〉+∣∣p55
〉

has a size of S = 110 “photons”, even though the average photon number of this state
is n̄ = 55.
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Figure 3.7: Controlled displacement using two controlled rotations. (1) We start with the coherent state
∣∣ip2π

〉
(in purple), and want to apply a controlled displacement D(i

p
2πσz ). The ancilla qubit is assumed to be in the

state |+〉. (2) In the first step, we apply a controlled rotation R(πσz ), creating two coherent states
∣∣±p2π

〉
(in

blue). (3) In the third step, we apply a Pauli X gate to the ancilla qubit, and displace the two coherent states
by D(

p
π/2) to

∣∣−pπ/2
〉

and
∣∣3pπ/2

〉
, respectively (in green). (4) Finally, a second controlled rotation R(πσz )

(now with the state of the ancilla qubit flipped) rotates the states back to the p quadrature, leaving us with an
equal superposition of the two coherent states

∣∣ipπ〉
and

∣∣ip3π
〉

(in yellow), corresponding to the desired state
D(i

p
2πσz )

∣∣ip2π
〉

.
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MINIMAL TIME

Although the GKP code is very efficient for protecting a qubit against Gaussian noise,
and in particular photon loss, it performs poorly if the harmonic oscillator is slightly
anharmonic (see Section 3.3 and [1, 12]). Therefore, making the oscillator used to encode
a qubit as harmonic as possible is crucial to obtain a long-lived GKP state. However,
this comes at a cost: Because the nonlinear interactions and the dispersive shift arise
due to the same qubit-cavity coupling [7, 13], a very harmonic oscillator usually also
implies that the dispersive shift is small, meaning that a controlled rotation with θ =
χt =π would take an unreasonably long time.

1

2

2

4

p

q
i√π

5 i√π

3

3

5

5

√2γ−√2γ

4

3 i√π

Figure 3.8: Controlled displacement using two controlled rotations. (1) We start with the coherent state∣∣i3pπ/2
〉

(in purple) and want to apply a controlled displacement D(i2
p

2πσz ). The ancilla qubit is assumed
to be in the state |+〉. (2) In the first step, we apply an unconditional displacement D(γ), for some γ ∈R. Then,
we apply the controlled rotation R(εσz ) for some small ε ∈R (chosen according to Eq. (3.6)), creating the two
coherent states in blue. (3) In the second step, we apply a Pauli X gate to the ancilla qubit, and displace the
two coherent states by D(−γ) (in turquoise). (4) Then, we again displace by D(−γ) and apply the controlled
rotation R(εσz ) (with the qubit now flipped), creating the two coherent states

∣∣ipπ/2−γ〉
and

∣∣i5pπ/2−γ〉
(in

light green). (5) Finally, an unconditional displacement D(γ) creates the two coherent states
∣∣ipπ〉

and
∣∣ip5π

〉
(in yellow), corresponding to the desired state D(2i

p
2πσz )

∣∣ip3π
〉

if γ and ε are chosen to fulfill Eq. (3.6).

In the experimental realization of the GKP code in circuit QED, Campagne-Ibarcq
et al. solve this issue by improving the cavity such that very large photon numbers can
be used [7]. They approximate Eq. (3.6) in the limit θ ¿ 1, displacing the GKP state to
|α|2 ≈ 1000 photons during the protocol. Neglecting the (very small) time needed for the
unconditional displacements and the finite rise time of the microwave equipment, their
approach can be approximated by the gate developed by van Loock et al. :

D(−i2βσz ) ≈ D(α)e−iθσz â† âD(−2α)eiθσz â† âD(α), β=αθ.

Figure 3.8 shows a phase-space sketch of a controlled displacement D(i
p

2πσz ) applied
to a coherent state

∣∣3pπ/2
〉

, with the ancilla qubit in the |+〉 state. The change of di-
rection between the two controlled rotations is achieved by conjugating one of the two
operations with Pauli X gates applied to the ancilla qubit. Similar to the unconditional
displacement, these operations can be done in about 10 ns. In their implementation,
the dispersive shift between the ancilla qubit and the storage oscillator is only 28 kHz,
and the dispersive shift between the qubit and its readout resonator about 1 MHz [7].



3.3. NUMERICAL ANALYSIS OF NOISE DURING PREPARATION AND MEASUREMENT

3

55

For these reasons, the controlled displacement takes about 1.1µs and the readout of the
qubit about 650 ns, so that each round takes about 1.8µs to complete. Although this is
slower than the approach discussed in the previous section, these choices reduce the
Kerr nonlinearity of the oscillator to only about 1 Hz, in contrast to the O (10) kHz typical
for setups with a large dispersive shift, significantly improving the overall performance
of the protocol.

3.2.3. CONTROLLED DISPLACEMENTS IN TRAPPED IONS
The first experimental realization of the GKP code has been in a trapped ion setup, real-
izing first the sensor state and then a GKP qubit [1, 14]. In this setup, the motional mode
of a trapped ion is used to store a GKP state, and the spin of the same ion is used as an-
cilla qubit. A major drawback of this setup is that the encoding procedure requires post-
selection: If the measurement of the spin projects the ion into the bright state, many
photons will be scattered on the ion, randomizing the state of the motional mode. On
the other hand, the big advantage of the trapped ion setup is that it natively brings the
ability for controlled displacements, the so-called state- (or spin)-dependent force. That
is, in a trapped ion setting, driving the red and blue sidebands simultaneously and sym-
metrically in the rotating frame gives the interaction Hamiltonian [15]

Hi nt =ω(e−iφσ++eiφσ−)(â† + â).

Choosing appropriate phases, this Hamiltonian becomes σz q̂ in the rotating frame, cor-
responding to the desired controlled displacement. A controlled displacement σz p̂ can
be also easily achieved by changing the phases of the employed lasers.

3.3. NUMERICAL ANALYSIS OF NOISE DURING PREPARATION

AND MEASUREMENT

T O better understand how encoding a GKP qubit using phase estimation works and to
see the influence of various error processes, we can perform numerical simulations.

Note that the encoding procedure in this section has been chosen in 2016 with the given
experimental settings of that time in mind and is now outdated. The scheme to stabilize
a qubit with the controlled displacement using large displacements (see Fig. 3.8) is su-
perior to the approach used here. However, it is still educational for understanding the
different noise processes.

A high-coherence superconducting transmon qubit dispersively coupled to a high-
Q microwave cavity is a good candidate for an experimental realization of a grid state
as was argued in [4]. A single round of phase estimation has (almost) identical experi-
mental components as a photon parity measurement performed in [11, 16] (where such
measurement rounds are performed repeatedly). Protocols with M = 4–8 of rounds of
non-adaptive and adaptive phase estimation which save on photon use as compared to
standard phase estimation are described in Section 3.1 (see also [4]). Note that the num-
ber of photons in the sensor state made in M rounds is half that of an M-round encoded
state in [4] as the two displacement operators Sp and Sq for the sensor state are weaker
in strength than the displacement checks which define a code space. An alternative plat-
form could be the creation of a grid state in a microwave cavity by sequentially passing
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Rydberg atoms through the cavity [17] implementing the 4–8 rounds of Ramsey phase
estimation in Fig. 3.5. The advantage of this set-up is that the cavity-atom interaction is
only ‘on’ while the atom is in transit through the cavity, but the feasibility of this scheme
has not yet been analyzed. For superconducting transmon qubits coupled to microwave
cavities, the preparation protocols that we consider may not even be needed as it is pos-
sible to create any state of the cavity by numerically optimizing microwave pulses on
cavity and qubit [18].

In this section, we analyze a phase estimation preparation protocol which is based
on a dispersive qubit-cavity interaction of the formσz â†â. We first introduce our perfor-
mance measure which captures how well one prepares a grid state. We then discuss our
choice of information-gain-optimized phase estimation and present the Hamiltonian
and simulated noise models.

3.3.1. CHOICE OF PHASE ESTIMATION
For phase estimation, we will only use the circuit in Fig. 3.1 with l = 1. Many vari-
ants of phase estimation could be considered, e. g. going beyond Fig. 3.5 by entangling
qubits between rounds or performing joint measurements on qubits, but simplicity is
what we opt for here. Our only choice for optimization is thus the choice of feedback
phase ϕ which can depend on outcomes of previous qubit measurements. A strategy
which is then performing similar to the one that we originally chose in [4], is the follow-
ing maximal-information gain strategy (see Section 3.1.4 for details). Given an estimate
θ̃M−1 for the eigenvalue θ after (M−1) measurements, we choose the feedbackϕM in the
M th measurement as

ϕM = θ̃M−1 + π

2
.

The estimate θ̃M−1 is obtained according to Eq. (2.23). In our simulations, we assume
that the distribution P(θ) of the initial state is uniform, which is warranted for our input
state. The fact that P(xM−1) is independent of θ then allows for the simple expression
θ̃M−1 = arg

∫
dθ P(xM−1|θ)e iθ , which is also what we have used previously [4]. In our sim-

ulations we have found that using the noisyρ(xM−1) to estimate the current phase always
gives slightly better or equal results (depending on the setting, the effective squeezing ∆
of the final state can change up to 0.01).8 Because the improvements are minimal, we
always use the state produced by the noiseless protocol to estimate the current phase in
our plots.

3.3.2. HAMILTONIAN AND NOISE MODEL
A single round of phase estimation can be implemented using the circuit in Fig. 3.5
which uses controlled-displacements (and optionally cavity pre-displacement). We will
assume that the qubit that is measured is again used in the next round. If we imagine
using the qubit-cavity interaction 2χσz â†â, we use the maximal information gain phase
estimation strategy (Section 3.1.4) using the circuit depicted in Fig. 3.9, where the con-
trolled displacement is implemented with a controlled rotation by ±π/2, see Fig. 3.7.

8Doing so would not rely on information that is not available in an experiment. If a good noise model is known,
we can obtain an estimate of the noisy state in numerical simulations in real time, following the results of an



3.3. NUMERICAL ANALYSIS OF NOISE DURING PREPARATION AND MEASUREMENT

3

57

cavity /

eiπâ
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Figure 3.9: Gate sequence and durations used in the numerical simulations. The gates where the duration is
given explicitly are simulated using a Lindblad master equation, see Eq. (3.7). The measurement is modeled as
an instant projection of the qubit, followed by an idling time used for readout.

In order to include nonlinearities, photon loss, qubit decay and measurement errors
in the simulation, we use a simplified model for when these unwanted processes act.
Namely, we let them operate during the operations which take the longest to enact in
practice. We will assume that all gates which act either on the qubit or on the cavity mode
are very fast compared to all other timescales: We approximate them as taking place in-
stantaneously. The conditional rotation gates R(−σzπ) take a time π/(2χ) ≈ 104 ns each
when χ/2π= 2.4 MHz. In the simulation, it is assumed that cavity and qubit can be de-
coupled, i. e. χ can be turned “off” when this interaction should not take place. The mea-
surement process is modeled as an instantaneous (possibly faulty) projection followed
by a finite readout idling time of 150 ns. The outcome of the projection is used to reset the
qubit to |0〉 for the next round (assuming a noiseless instantaneous Pauli X gate). How-
ever, during the measurement idling time, the qubit can still decay from |1〉 to |0〉 which
would imply that we start the next round with the qubit in a wrong state. When we show
data for qubit amplitude damping, we thus include this error process. The time-scale
of a single phase estimation round is thus determined by χ and the measurement time,
both of which are taken to be reasonable values of superconducting transmon qubit ex-
periments [16]. The simulated circuit and gate durations are summarized in Fig. 3.9.

NONLINEARITY

We have previously identified nonlinearities as a possible cause for bad errors for a GKP
state [4]: We thus simulate the effect of two different nonlinearities. One is the cavity
anharmonicity, also called Kerr interaction,

HK c =−Kc

2
(â†)

2
â2.

The other is the nonlinear dispersive shift

HK cq =−Kcq (â†)
2

â2σz .

For both these interactions, we assume that they are only present during the R(−σzπ)
gates (which is roughly 2/3 of the total time duration, assuming the measurement takes
1/3 of the time).

experiment.
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STOCHASTIC ERRORS

The unitary operation generated by H = 2χâ†âσz+HK c+HK cq is simulated using a Lind-
blad master equation for the qubit-cavity system for the duration of the qubit-cavity
gates. In this Lindblad master equation, we can also include stochastic sources such as
photon loss from the cavity and amplitude damping for the qubit. We do not consider
qubit dephasing. We will thus simulate the dynamics of a Lindblad equation of the form

ρ̇ =−i[H ,ρ]+D(
p
κâ)ρ+D(

p
γσ−)ρ (3.7)

with the compactly-defined superoperator

D(A)ρ = AρA† − 1

2
(A† Aρ+ρA† A).

Due to limitations in the accuracy of the employed master equation solver (Python QuTip
package [19]), the study of these types of stochastic errors is limited to M = 8 rounds (see
Appendix A.1.1). Note that stochastic errors also play a role during qubit measurements.

MEASUREMENT ERRORS

We will model two types of measurement errors: imperfect projection and readout er-
rors. A readout error refers to the scenario in which a qubit is projected onto a state |x〉
and we learn x with probability 1− p but x̄ with probability p. Let Πx = |x〉〈x|, i. e. the
projector onto qubit in state |x〉, x ∈ {0,1}. Our lack of information about the qubit out-
come can be modeled as the following map applied to the qubit-cavity density matrix ρ
per round:

ρ→ (1−p)ΠxρΠx +pΠx̄ρΠx̄ .

Imperfect projection of the qubit refers to the scenario where a measurement of the an-
cilla qubit leads to us learning result x while the cavity-qubit system undergoes the map:

ρ→ AxρA†
x , Ax =√

1−pΠx +p
pΠx̄ .

These models are not identical in the sense that there are coherent cross error terms of
the form ΠxρΠx̄ in the latter model while these are absent in the first. Note that both
these errors will not only affect the current round, but also change the qubit input state
of the next measurement if the ancilla is reset by a X flip depending on the measurement
outcome.

3.3.3. SIMULATION RESULTS

When simulating phase estimation for Sp for M rounds, all possible 2M measurement
results are simulated, each giving rise to a state ρ(xM ). We then calculate the aver-
age squeezing parameter 〈∆p〉 = ∑

M P(xM )∆p (ρ(xM )), this is labeled as ∆ on the verti-
cal axis in Figs. 3.10 to 3.13. Note that this average does not depend on the value of
θ̃M = arg(Tr(Spρ(xM ))). The numerical simulations are discussed in more detail in Ap-
pendix A.1.1.

We start each simulation with a squeezed vacuum state in q with ∆ = 0.2, hence
∆q = ∆ and ∆p = 1/∆. By performing the M-round phase estimation circuits for Sp , ∆p
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Figure 3.10: Effective squeezing after M rounds, starting with a squeezed state,∆= 0.2. Solid Lines: ∆p . Dashed

lines: ∆q . Left: H = χa†a 2σz +HK c , Right: H = χa†a 2σz +HK cq . Reprinted figure with permission from K.
Duivenvoorden, B. M. Terhal, and D. J. Weigand, “Single-mode displacement sensor”, Physical Review A 95,
012305 (2017). © (2020) by the American Physical Society.

Figure 3.11: Effective squeezing after M rounds of interleaved phase estimation with Kerr interaction, starting
with the vacuum state. Solid Lines: ∆p . Dashed lines: ∆q . Odd round numbers represent a measurement of
Sp , even rounds a measurement of Sq . Reprinted figure with permission from K. Duivenvoorden, B. M. Terhal,
and D. J. Weigand, “Single-mode displacement sensor”, Physical Review A 95, 012305 (2017). © (2020) by the
American Physical Society.

Figure 3.12: Effective squeezing after M rounds, starting with a squeezed state,∆= 0.2. Solid Lines: ∆p . Dashed
lines: ∆q . Left: Photon loss, Right: Amplitude Damping. Reprinted figure with permission from K. Duivenvoor-
den, B. M. Terhal, and D. J. Weigand, “Single-mode displacement sensor”, Physical Review A 95, 012305 (2017).
© (2020) by the American Physical Society.

https://doi.org/10.1103/PhysRevA.95.012305
https://doi.org/10.1103/PhysRevA.95.012305
https://doi.org/10.1103/PhysRevA.95.012305
https://doi.org/10.1103/PhysRevA.95.012305
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Figure 3.13: Effective squeezing after M rounds, starting with a squeezed state,∆= 0.2. Solid Lines: ∆p . Dashed
lines: ∆q . Left: Imperfect projection, Right: Readout Errors. Reprinted figure with permission from K. Duiv-
envoorden, B. M. Terhal, and D. J. Weigand, “Single-mode displacement sensor”, Physical Review A 95, 012305
(2017). © (2020) by the American Physical Society.

is gradually shrinking, but ∆q will be gradually increasing due to photon loss and non-
linearities if no phase estimation measurements for Sq are performed. This decrease in
Sp and increase in ∆q is visible in all the data plots, see Figs. 3.10 to 3.12. One can thus
roughly take the increase in ∆q as a measure of how the grid state deteriorates passively
under photon loss or nonlinearities in time.

What is noticeable is that in the presence of nonlinearities, say the Kerr nonlinear-
ity, ∆p starts increasing after a certain number of rounds, implying that applying more
rounds of phase estimation in fact decreases the quality of the state. Already a Kerr inter-
action of the order Kc /2π= 500Hz is sufficient to limit the procedure to 4 rounds. For the
nonlinear anharmonicity, the situation is slightly better, i. e. Kcq /2π= 2kHz can be toler-
ated. As the typical rates for both effects in an experimental setting are O (1)−O (10)kHz,
treating them as systematic errors and correcting for them [16] is very relevant.

This effect is clearly not present for photon loss and amplitude damping of the qubit
(see Fig. 3.12), where the quality of the state gets better with the number of rounds. The
highest amplitude damping rate of 20 kHz corresponds to a reasonable qubit decay time
of 50µs. The effect of amplitude damping is small since qubit and cavity are only coupled
for a short amount of time per round, about 200 ns. However, note that if the qubit jumps
from |1〉 to |0〉, the state will suffer a large stochastic displacement.

The robustness against photon loss, amplitude damping, and measurement errors
also suggests that a wider range of experimental settings could be explored for this type
of encoding. For example, photon loss rates of the order 5kHz are achievable in 2D mi-
crowave cavities [20].

Since Sp and Sq commute, one can alternate or interleave the single round circuits
in Fig. 3.5 for Sp and Sq , so that both ∆p and ∆q decrease or remain low. Since we ac-
tually use the circuit in Fig. 3.9 which contains a qubit-independent pre-displacement,
e. g. S−1/2

p which does not commute with Sq , one needs to correct for these additional
displacements when estimating the phase θ. Since the number of possible results is
squared for alternating measurements, it is no longer possible to simulate all possible
outcomes. Instead, the measurement process of the ancilla qubit is simulated, i. e. we
take a total of 2000 samples from the distribution of outcomes P(xM ). Afterwards, the

https://doi.org/10.1103/PhysRevA.95.012305
https://doi.org/10.1103/PhysRevA.95.012305
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results are weighed and averaged as before.
In Fig. 3.11, we show how interleaving the measurement of Sp and Sq , starting from

the vacuum state, leads to a grid state. Without the Kerr effect, the quality of the state im-
proves with the number of measurement rounds. Including the Kerr effect gives rise to
an optimal number of rounds. Essentially, we expect that for a larger number of rounds
(which means effectively a larger number of photons in the state), the Kerr effect intro-
duces larger errors (see also the discussion in [4]). It is not visible from this numerical
data whether or when the same saturation occurs in the presence of photon loss.

The preparation protocol by multiple consecutive rounds of phase estimation is in-
herently robust against measurement errors. This is because all measurements contain
some information of the whole eigenvalue distribution of the target state. Thus, if a sin-
gle measurement result is flipped, it will be overridden after some number of additional
measurements. In fact, we expect that this form of phase estimation is much more ro-
bust to read-out noise than standard phase estimation and could thus more generally be
a preferred phase estimation protocol on partially-coherent qubits.

The preparation protocol is robust against photon loss, amplitude damping, and
readout errors. Even large rates do not prohibit the generation of grid states, while addi-
tional measurements always improve the state in the cavity for all presented numerical
simulations. Some robustness against photon loss can be understood by expanding low-
strength photon loss in terms of small displacements (see [4]).
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4
GENERATING GRID STATES FROM

SCHRÖDINGER CAT STATES

WITHOUT POST-SELECTION

Grid states (also called comb or GKP states) are an interesting class of bosonic states intro-
duced by Gottesman, Kitaev and Preskill [1] to encode a qubit into an oscillator. A method
to generate or “breed” a grid state from Schrödinger cat states using beam splitters and
homodyne measurements is known [2], but this method requires post-selection. In this
chapter, we show how post-processing of the measurement data can be used to entirely
remove the need for post-selection, making the scheme much more viable. We bound the
asymptotic behavior of the breeding procedure and demonstrate the efficacy of the method
numerically. In the analytical discussion of breeding in Section 4.3, we derive a class of
states that is closed under the breeding operation, so that we can make statements about
the asymptotic behavior of the protocol. This section has a lot of lengthy calculations and
may be skipped. The rest of the chapter only relies on the result of the section, but not on
details of the derivation.

This chapter has been published with minor differences in D. J. Weigand and B. M. Terhal, “Generating grid
states from Schrödinger-cat states without postselection”, Physical Review A 97, 022341 (2018).
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T HE grid states — also called comb or GKP states — are a class of bosonic states with
various interesting possible applications. Grid states were introduced in [1] as si-

multaneous eigenstates of two commuting displacement operators. In this scheme, grid
states can be used to encode a qubit (or qudit) into an oscillator or bosonic mode so that
small displacement errors can be corrected. As outlined in [1], universal quantum com-
putation can be achieved using grid states: Clifford gates can be implemented via linear
optics while one may invoke magic-state-distillation techniques to get to universality.
Grid states also play a crucial role in fault-tolerant continuous-variable computation us-
ing cluster states [4].

First proposals to generate grid states use, e. g. , the coupling between a micro-mirror
and an optical mode [1], the oscillatory motion of a trapped atom [5, 6], or a Kerr interac-
tion between two bosonic modes [5]. Recent ideas on generated grid states in an atomic
ensemble using squeezed light can be found in [7], while an optical breeding protocol
for cat states was considered in [8]. In earlier work, we have shown how grid states can
be generated without post-selection using phase estimation and a qubit-bosonic mode
coupling of the form Z a†a [9], focusing on a circuit-QED setting. Very recent experi-
ments [10, 11] show how a grid state can be constructed in the motional mode of an ion
using post-selection.

In the linear optics setting, Vasconcelos et al. [2] and Etesse et al. [12] have indepen-
dently developed a breeding protocol to generate grid states from Schrödinger cat states,
using linear optics and homodyne post-selection [2]. A similar breeding protocol, used
to generate Schrödinger cat states from Fock states, has been demonstrated in an ex-
periment by Etesse et al. [13]. However, the protocol has an important drawback: The
success probability of post-selection diminishes rapidly with the number of rounds.

In this chapter, we show that classical post-processing can be used to correct the
grid state generated by a breeding protocol. This allows the use of any state generated
by breeding, independent of the measurement results, showing that no post-selection
is necessary. Our understanding of the protocol is formed by showing that a breeding
protocol has identical action as a phase estimation protocol of multiple rounds, with
specific (known) feedback phases and measurement results. Through this identifica-
tion, the breeding protocol implements a particular phase estimation protocol which
by definition gradually projects onto a grid state (since one is gradually learning bits of
the phase). The feedback phases used and bits obtained in phase estimation inform us
about the grid state that we have obtained, namely the information gives us an estimate
of the eigenvalues of the commuting displacement operators thus fixing the eigenstate.

By describing a toy model, the so-called slow breeding protocol, we can show how
breeding can be related to phase estimation. However, this slow breeding protocol is
non-optimal in its requirement for very large cat states. We then examine an efficient
breeding protocol, which is the protocol in [2], and show how the measurement record
can be used to correct any final state to a good grid state. Proving convergence of this
breeding protocol towards a good grid state by invoking phase estimation is not simple.
Instead, by using a new class of approximate grid states which is closed under the effi-
cient breeding step, we can bound the asymptotic behavior of the protocol. Finally, we
confirm the performance of the protocol with numerics.

We will first review some background concepts concerning grid states, squeezing pa-
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rameters, and phase estimation in Section 4.1. In Section 4.2, we show how a breeding
protocol can be mapped onto a phase estimation scheme, giving some intuition how a
protocol works without post-selection. Then we focus on analyzing the efficient breed-
ing protocol by Vasconcelos et al. [2] without post-selection. In Section 4.4, we introduce
a very useful class of approximate grid states and present some bounds on the probabil-
ity of improving the state in a breeding round using these approximate states. We close
the chapter with a numerical simulation of the breeding protocol in Section 4.5 and a
Discussion (Section 4.6).

4.1. BACKGROUND
In this section, we give a short review of previous results and the formalism needed in the
rest of this chapter. We start in Section 4.1.1 with a short introduction of grid states, fol-
lowing mostly the paper by Gottesman et al. [1]. In Section 4.1.2, we review the effective
squeezing parameters, a versatile metric for the quality of a grid states which we intro-
duced in [14]. In Section 4.1.3, we introduce a formalism which enables the construction
of a map between breeding and phase estimation in an efficient manner.

4.1.1. GRID STATES

Consider a bosonic mode with dimensionless quadrature operators q̂ = 1p
2

(a + a†) and

p̂ = ip
2

(a† − a) obeying [q̂ , p̂] = i. A grid state in this mode is a simultaneous, approxi-

mate, +1 eigenstate of two commuting displacement operators Sp = eiup̂ and Sq = eiv q̂

where u ·v mod 2π= 0 ensures commutativity of Sp and Sq . Note that it is not necessary
that the displacements Sp ,Sq form a square lattice in phase space. In fact, grid states can
be defined on any two dimensional lattice where the area of the unit cell is a multiple of
2π [1].

In this chapter, we will investigate grid states with a symmetric choice u = v = ξ. For
example, for the choice ξ=p

2π, the space fixed by Sp =+1,Sq =+1 is one-dimensional.
This state will be referred to as the sensor state[14].

Whenever a choice for ξ is necessary (e. g. for the numerical analysis or the Wigner
function of a state), we investigate protocols generating this sensor state. In case of the
choice ξ = 2

p
π the +1 eigenspace of Sp and Sq is two-dimensional and thus encodes

a qubit [1]. From here on, we will refer to ξ as the spacing of a grid state. For both the
wave function in quadrature space and the Wigner function of a grid state, the spacing
corresponds to the distance between the sharp peaks in these functions. We use the
notation for displacement D(α) = exp(αa†−α∗a) so that Sp = D(

p
π) for the sensor state.

Spacing ξ thus corresponds to the action of a displacement with coherent amplitude
ξ/
p

2.
Since a perfect eigenstate of these displacement operators (i. e. an ideal grid state)

has infinite energy, it is only possible to generate approximate grid states. One possible
approximation is a grid state of the form

|Ψ〉∝
∞∑

t=−∞
e−πκ

2t 2
S t

p S(∆) |vac〉 , (4.1)

where S t
p corresponds to the displacement D(tξ/2) and S(∆) is the squeezing operator
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a b c d e

Figure 4.1: An example of breeding of the approximate +1 eigenstate of Sp = ei
p

2πp̂ and Sq = ei
p

2πq̂ (sensor
state). Top row: Panels (a) to (d) show the Wigner functions of states generated by resp. N = 1,2,3,4 measure-
ment operators M (as in Eq. (4.3) with some particular choice of phasesϕ j which provide a good illustration of
how the grid is shifted) where the horizontal axis is the q-coordinate and the vertical axis is the p-coordinate.
Panel (a) is the Wigner function of a squeezed cat state with squeezing parameter ∆ = 0.2. The grid state is
gradually built by displacements (translations) to the left and right with S−1/2

p and S1/2
p . For the state with

N = 4 in panel (d), we show the same state after applying the correction Dcorrect in panel (e). Bottom row:
Shown are the same Wigner functions, zoomed in around the origin. The yellow dots mark the “center” of the
state, for a +1 eigenstate of Sp it lies at the origin. Reprinted figure with permission from D. J. Weigand and
B. M. Terhal, “Generating grid states from Schrödinger-cat states without postselection”, Physical Review A 97,
022341 (2018). © (2020) by the American Physical Society.
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which has the action q̂ → q̂∆, p̂ → p̂/∆, so that

〈vac|S†(∆)Var(q)S(∆) |vac〉 =∆2 〈vac|Var(q) |vac〉 = ∆
2

2
.

The squeezing parameter ∆ < 1 and the width of the Gaussian envelope can be chosen
to be the same, i. e. κ=∆ [1].

In this form, the squeezed vacuum can be understood as an approximate +1 eigen-
state of Sq , while the weighted sum over powers of Sp is an approximation of the pro-
jector onto the +1 eigenspace of Sp . Essentially, the ideal grid state is invariant under
the two translations Sp and Sq (and their inverses) in phase space, hence a +1 eigenstate
of these operators. Any finite-photon number version of this state occupies a bounded
volume in phase space and cannot be fully translationally-invariant, but a Gaussian en-
velope allows the non-translational invariance of the tails to play a relatively small role.

4.1.2. EFFECTIVE SQUEEZING PARAMETERS
In order to characterize the quality of an approximate grid state we have introduced so-
called effective squeezing parameters for both quadratures in [14], see Section 2.3.4 for a
detailed derivation. A “squeezing” parameter can be generally used for capturing how
well a state ρ is an approximate eigenstate of a unitary operator U . The idea is based on
the fact that a state ρ is an eigenstate of the operator U iff |Tr(ρU )| = 1. For such a state
the mean phase θ ∈ [−π,π) equals θ(ρ) = arg(Tr(ρU )). Because of the 2π-periodicity of
the phase, the variance should not be taken to be the standard variance, but can be cho-
sen as a phase variance equal to Var(ρ) = ln(|Tr(ρU )|−2) [14]. This variance is identical
to the more commonly used Holevo phase variance [15] for small |Tr(ρU )|.

For a displacement D := D(ueiφ) with φ,u ∈R, the variance should be rescaled by u,
i. e. we define the mean phase θD and the effective squeezing parameter ∆D as:

θD := arg(Tr(ρD)), ∆D := 1

u

√
ln(|Tr(ρD)|−2). (4.2)

As grid states are defined with respect to the displacement Sp (Sq ) along the real (imagi-
nary) axis in phase space, it is convenient to use the short-hand ∆p :=∆Sp and ∆q :=∆Sq

for the two effective squeezing parameters. The squeezing parameters of an approxi-
mate grid state as defined in Eq. (4.1) are ∆q = ∆, ∆p ≈ κ. For a squeezed vacuum state
S(∆) |vac〉, one has ∆q = ∆ = 1/∆p . The effective squeezing parameter and mean phase
have a very natural relation to grid states:

Protocols to generate an approximate eigenstate of Sp and Sq will produce a state ρ
with certain values for θp := θSp , θq := θSq , ∆p and ∆q . The effective squeezing param-
eters then give a direct measure of the quality of the state ρ. In case of the sensor state,
they directly relate to the measurement precision that can be achieved using ρ as a sen-
sor [14]. In case of the GKP code, the probability of a logical X (or Z) error in the encoding

can be bounded as Perror < 2∆
π e−π/(4∆2) with ∆=∆q =∆p [1].

The mean values θp and θq which are extracted from the protocol can be used to cor-

rect the resulting state by displacing this state by Dcorrect, i. e. ρ→ ρ′ = DcorrectρD†
correct

such that θp (ρ′) ≈ θq (ρ′) ≈ 0. For example, to shift the mean phase θp back to 0, we
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Bosonic mode D(α)

qubit |+〉 • RZ (φ) X

Figure 4.2: Single round of an adaptive phase estimation protocol which estimates the eigenvalue of D(α).
The output state goes back into the next round of the protocol and the feedback phase φ can be chosen de-
pending on earlier rounds. The collection of bits obtained, together with the chosen feedback phases, will
gradually project the input state onto an approximate eigenstate of D(α) as the approximate eigenvalue is
learned. Reprinted figure with permission from D. J. Weigand and B. M. Terhal, “Generating grid states from
Schrödinger-cat states without postselection”, Physical Review A 97, 022341 (2018). © (2020) by the American
Physical Society.

choose α in Dcorrect = exp(iαq̂) such that Sp Dcorrect = exp(−iθp )DcorrectSp . A simple vi-
sual representation of this procedure is that the positive parts of the Wigner function
form a grid in phase space for grid states and this grid is aligned with the p = 0, q = 0
axes for a +1 eigenstate of Sp ,Sq (see Figs. 4.1 and 4.4).

The final state is then an approximate +1 eigenstate of Sp and Sq . However, it will
not be necessary to perform such a correcting displacement if one uses the concept of a
phase or displacement frame [9] (in analogy with a Pauli frame for qubits).

Clearly, approximate grid states are not unique. For example, two grid states for
which the grid envelope is displaced or translated by one unit cell can have the same val-
ues for θp ,θq and∆p ,∆q but contain a different mean number of photons. Similarly, one
can note that the corrective displacement is not unique: In practice, one may opt for the
smallest displacement shifting the grid envelope to the correct position, see Fig. 4.1(e).

4.1.3. ADAPTIVE PHASE ESTIMATION
Phase estimation refers to a whole class of algorithms that measure the eigenvalue of
a unitary operator U . A recent overview of some of these schemes can be found e. g.
in [16]. All phase estimation procedures, including textbook phase estimation [17], Ki-
taev’s phase estimation [18], and variants thereof can be executed in an iterative form
with a single-qubit applying controlled-U k gates. An in-depth analysis of some adaptive
schemes can be found in works by Berry et al. [19]. We are interested in this case when
the unitary operator to be measured is some displacement and we consider performing
such a measurement by repeating a circuit of the form of Fig. 4.2.

A convenient formalism to describe such adaptive phase estimation uses the follow-
ing “measurement” operator:

M
(
ϕ,α

)
:= 1+eiϕD (α) ,

with ϕ ∈ [0,2π) and α is a coherent amplitude. In all what follows, we focus on breed-
ing an approximate eigenstate of Sp = D(ξ/

p
2) and assume that α is real, but the same

method can be used for complexα. With this operator, a squeezed Schrödinger cat state,
i. e. a single application of the measurement operator onto a squeezed vacuum state plus
an additional displacement, has the form D(−α/2)M (0,α)S(∆) |vac〉.

One can also see that the circuit shown in Fig. 4.2 acts on an input state |Φ0〉 as
M

(
φ+πx,α

) |Φ0〉where x ∈ {0,1} is the measurement result, i. e. it applies one additional
measurement operator to the initial state. Thus, any state generated by a sequence of N

https://doi.org/10.1103/PhysRevA.97.022341
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∏N1
j=1 M

(
ϕ j ,α j

) |Φ0〉
50:50 BS

∏N1+N2
j=1 M

(
ϕ̃ j , α̃ j

) |Φ0〉∏N2
j=1 M

(
ψ j ,β j

) |Φ0〉 p

Figure 4.3: Single round of a breeding protocol. The round takes approximate grid states defined by N1 and
N2 measurement operators M as inputs. It returns an approximate grid state with N1+N2 (possibly changed)
measurement operators. The second output port is subject to a homodyne measurement of the p̂ quadrature.
The initial state |Φ0〉 is chosen to be invariant under the action of a beam splitter, e. g. a squeezed vacuum
state. Reprinted figure with permission from D. J. Weigand and B. M. Terhal, “Generating grid states from
Schrödinger-cat states without postselection”, Physical Review A 97, 022341 (2018). © (2020) by the American
Physical Society.

of these circuits is of the form

|Ψ〉∝
N∏

j=1
M

(
ϕ j ,α j

) |Φ0〉 , (4.3)

where |Φ0〉 is the initial state and ϕ j = φ j + x jα j with measurement outcome x j , feed-
back phase φ j of round j and α j possibly varying per round.

It can be observed that the class of states which is described by fixing the outcome
to be x = 0 and letting the feedback phase vary captures all states in Eq. (4.3) since φ j ∈
[0,2π) can be freely chosen. We will show that the state obtained by a breeding protocol
is identical to a state obtained by such a phase estimation protocol with all outcomes
x j = 0 and with varying φ j = ϕ j . A (trivial) example is that a squeezed Schrödinger cat
state is equivalent to a single round of phase estimation with x = φ = 0 applied to a
squeezed vacuum state. This map gives some intuition why breeding gives rise to a grid
state. Using the form of the state allows one to estimate the mean phase and the effective
squeezing parameters of the state using Eq. (4.2).

As mentioned before, even given θp and ∆p , a grid state is not unique since it can
be shifted by any Sp without affecting these parameters. Thus, to place the grid state
symmetrically around the vacuum state and minimize photon number, it is better to
perform a pre-displacement by D(−α/2) in each phase estimation round in Fig. 4.2 and
similarly use the measurement operator D(−α/2)+ eiϕD(α/2). Since our analysis does
not depend on these shifts, we have opted to not include them.

4.2. BREEDING
Breeding protocols refer to a procedure where a grid state is gradually constructed from
input (squeezed) Schrödinger cat states. These input states can be regarded as a very
poor approximation (panel (a) in Fig. 4.1) to a grid state and the goal is to gradually im-
prove these states. The circuit in Fig. 4.3 shows a single round of breeding. We will de-
note the number of breeding rounds by M , while N , which is a function of M , refers
to the number of measurement operators acting on some initial state as in Eq. (4.3).
In a single breeding round, partially bred grid states that will be of the same form as
Eq. (4.3) are fed into a beam-splitter. After the beam-splitter, the p-quadrature of one of
the states is measured (for breeding of a Sp eigenstate). For N2 = 1 in Fig. 4.3, the input
of the bottom port (port 2) plays the role of squeezed cat state modulo the additional

https://doi.org/10.1103/PhysRevA.97.022341
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pre-displacement, i. e. (D(−β/2)+D(β/2)) |Φ0〉 = D(−β/2)M
(
0,β

) |Φ0〉. The aim of the
Breed operation is to map the measurement operators in port 2 to port 1, i. e. the state at
the output port is still of the form of Eq. (4.3), but with N1 +N2 measurement operators.

Since we would like to produce a state which is both an approximate eigenstate of
Sp and Sq , we choose the input state |Φ0〉 as a squeezed vacuum state |Φ0〉 = S(∆) |vac.〉
providing an approximate eigenstate of Sq . It is important that the effective squeezing
parameter ∆q is approximately preserved under the breeding operation so that the out-
going state is both an approximate eigenstate of Sp and Sq : We will verify this at the end
of Section 4.2.2.

The rounds of this breeding procedure could be repeated in at least two ways. In
the first manner, which we call slow breeding, we always use a squeezed cat state at in-
put port 2 and input port 1 contains the state that came out of port 1 in the previous
breeding round. This protocol can be seen as a toy model in the sense that it has several
drawbacks, but we describe its functionality in order to understand how breeding works
and how it maps onto phase estimation. In Section 4.2.2, we describe a parallelized dis-
tillation protocol in which 2M squeezed cat states are fed into beam-splitters, leading to
2M−1 output states, which are subsequently used to produce 2M−2 states etc., eventually
extracting one grid state after M breeding rounds, i. e. the setting proposed in [2, 12].
Then, we will show how a map to phase estimation can be constructed for this protocol,
removing the need for post-selection.

4.2.1. SLOW BREEDING
Making use of the fact that the action B of the beam splitter is given by

q̂1 → (q̂1 − q̂2)/
p

2, p̂1 → (p̂1 − p̂2)/
p

2,

q̂2 → (q̂1 + q̂2)/
p

2, p̂2 → (p̂1 + p̂2)/
p

2,
(4.4)

one can show that the output state of a breeding round in Fig. 4.3 equals

N1∏
j=1

N2∏
k=1

M̃1(ϕ j ,α j )M̃2(ψk ,βk )B |Φ0,Φ0〉 . (4.5)

Here M̃i (ϕ,α) = BMi (ϕ,α)B†. For the input states |Φ0,Φ0〉, we use the invariance un-
der beam-splitting, i. e. BS1(∆)S2(∆) |vac,vac〉1,2 = S1(∆)S2(∆) |vac,vac〉1,2. For realα, we
have M̃1(ϕ,α) = I +eiϕD1(α/

p
2)D2(−α/

p
2) and M̃2(ψ,β) = I +eiψD1(β/

p
2)D2(β/

p
2).

When mode 2 is then measured via homodyne measurement of p̂ with outcome p, we

can replace D2(α) by e−iα
p

2p (for real α). This implies that the output state of the proto-
col is as claimed in Fig. 4.3, i. e.

N1∏
j=1

N2∏
k=1

M1(ϕ̃ j , α̃ j )M1(ψ̃k , β̃k ) |Φ0〉 , (4.6)

ϕ̃ j =ϕ j +α j p, α̃ j =
α jp

2
, ψ̃k =ψk −βk p, β̃k = βkp

2
.

The probability to find outcome p for the homodyne measurement depends in detail on
the state of the form Eq. (4.3) that goes into the beam-splitter, but the variance of this
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probability distribution in p scales as ∼ 1/∆2. Hence, the more the input state |Φ0〉 is
squeezed in q (by ∆), the larger the spread of measured values for p will be and hence
the greater the need for not using post-selection on the outcome p = 0.

Consider now the slow breeding case where the state at input 2 is always a squeezed
cat state i. e. N2 = 1, and the output state is fed into port 1 of the next round. In order
to breed a grid state, we take α1 = β1 = α and ϕ1 = ψ1 = 0 for the first breeding round,
meaning that the inputs in both ports are squeezed cat states.

In the second breeding round, one takes β2 = α/
p

2,ψ2 = 0 and in the M th round
βM = α/

p
2M−1,ψM = 0 so that the final state has spacing ξ = α/

p
2M−1. The evolution

of mode 1 under the slow breeding protocol without post-selection and M = 3 rounds is
shown in Fig. 4.1(a-d).

By post-selecting the measurement result onto p = 0, it is apparent from this choice
for the βi and Eq. (4.6) that M rounds of this procedure generate a binomial distribution
of displacements, since all the phases are zero. Thus, clearly, when we post-select on
outcome p = 0, one obtains a grid state with a binomial envelope (similar to the proto-
cols shown in [2, 12]).

From Eq. (4.6), it follows immediately that M rounds of breeding in this setup with a
final spacing ξ=α/

p
2M−1 can be mapped to N = M+1 rounds of phase estimation with

the choice ϕm = α(
∑M

k>m 2−k/2pk −2−m/2pm) for the feedback phase and measurement
result xm = 0, where pm is the homodyne measurement result of p̂2 in round m = 1, . . . , M
and p0 = 0 to fix the initial state (m = 0) to the squeezed cat state ∝ (I +D(α)) |Φ0〉. It is
noteworthy that the feedback phase depends on the outcomes of many “later” rounds:
One can thus only construct the corresponding phase estimation protocol after the last
homodyne measurement is done. This suggests that instead of post-selecting on p = 0,
one can simply process the measurement information to infer the values of θp in Eq. (4.2)
of the final state. This correction is demonstrated in Fig. 4.1(e), where a correcting dis-
placement is applied to the final state of the protocol.

However, the slow breeding protocol suffers from a different problem. To get a grid
state with final spacing ξ=p

2π after M rounds, the number of photons in the squeezed
cat state used in the first round n̄cat ≥ 2Mπ. This is exponentially larger than the mean
photon number of the final grid state which scales as n̄grid ∼ M [1, 9], i. e. the procedure
is inefficient in its use of photons.

4.2.2. EFFICIENT BREEDING

A much better scheme is to use a partially-bred grid state in the ancilla mode as proposed
in [2, 12], effectively performing a grid state distillation scheme. In this scheme, one
starts with two cat states (N1 = N2 = 1), leading to a state with Nout = 2. Then, one takes
two such states (N1 = N2 = 2) and feeds them into the beam-splitter to get a state with
Nout = 4 etc. With Eq. (4.6), one can see that we have N = 2M for M repetitions of this
scheme.

In this scheme, one will always have β j = α j for the two input ports, but the phases
can vary depending on measurement results and do not need to be the same for both
inputs. This parallelization leads to a much faster built-up of the grid state. For a fi-
nal grid state with N = 2M applications of M , one requires M rounds of beam-splitters
in sequence. For the final grid state to have spacing ξ, one starts the protocol with cat
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states with amplitude ξ2(M−3)/2 = ξ
p

N
2
p

2
, thus n̄cat ∼ n̄grid ∼ N . For example, generating a

sensor state with M = 2 rounds would require n̄cat = π
2 + n̄sq photons, where n̄sq is the

additional number of photons due to squeezing.

In order to estimate the effective squeezing after M rounds as well as the phase
θp , one needs to describe the final state in terms of the measurement outcomes. A
concise description of the output state of an M-round protocol is as follows. We label
all 2M ingoing modes of the protocol with a bit-string x[M ] of length M . Two modes
x1 . . . xM−1xM and x1 . . . xM−1xM which differ only on the last bit xM will enter into one
beam-splitter and so the outgoing single mode can be labeled by the remaining M − 1
bit string x1.. . . . xM−1 = x[M −1]. The outcomes of these 2M−1 measurements of the first
round forms a vector p1 with 2M−1 entries p1

x[M−1] which are labeled by the bit strings

x[M −1]. The final measurement in round M is then pM with a single entry labeled by
a bit string of length 0. An example of this labeling can be seen in Fig. 4.4. With this
notation, the initial state is thus a product state proportional to∏

x[M ]
Mx[M ](0,2(M−1)/2ξ) |Φ0〉x[M ] .

Similarly, the state of the system after the first round of breeding is the product state∏
x[M ]

Mx[M−1]

(
ξ(−1)xM 2

M−2
2 p1

x[M−1],2
M−2

2 ξ
)
|Φ0〉x[M−1] ,

where each state now gets two measurement operators applied to it since we are taking
the product over all bit-strings of length M . After all 2M −1 measurements, the final state
is given by 2M measurement operators acting on a single mode, i. e.

∣∣Ψout(p1, . . .pM )
〉= ∏

x[M ]
Mx[0]

(
ξ

M∑
j=1

(−1)x j 2
j−2

2 pM− j+1
x[ j−1] ,

ξp
2

)
|Φ0〉x[0] . (4.7)

with normalizationP(p1, . . . ,pM ) = 〈Ψout|Ψout〉.
In order to evaluate the expected eigenvalue of Sp , θp = arg〈Ψout|Sp |Ψout〉

〈Ψout|Ψout〉 for a given

series of outcomes pall : = p1, . . . ,pM , it is convenient to write down the initial state as a
wave function in p and use that Sp

∣∣p〉 = eiξp
∣∣p〉

. The effect of this correction is shown
in Fig. 4.4. Similarly, one can evaluate the average 〈∆p〉 =∑

pall
P(pall)∆p (pall). Note that,

if minimizing the run-time of this procedure is crucial (e. g. for feedback in an experi-
ment), the mean phases could be approximated using the mode of the probability dis-
tribution in p corresponding to the final state.

While the map between breeding and phase estimation derived in the previous sec-
tion suggests that 〈∆p〉 will decrease rapidly with breeding rounds, it is in fact not simple
to use this mapping to analytically prove this. The difficulty is that since the phases
can vary per round (depending on the homodyne measurement outcomes), arguments
which use laws of large numbers, which apply when identical experiments are repeated,
are not directly applicable.

In order to understand the outgoing state in terms of the initial squeezing, we note
that the final state of the breeding protocol after M rounds consists of applying powers of
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⟨ p̂01⟩=p0

50:50 50:50

00 01 10 11

0 1

〈 p̂11〉= p1

50:50

Correct
D(α) , α≡α( p0, p1, p)〈 p̂1〉= p

00

0

Final Final (corr.)

Final

Final (corr.)

Figure 4.4: Left side: Efficient breeding protocol as proposed in [2, 12], with M = 2 rounds but without post-
selection. The labeling of modes is according to the scheme introduced in Section 4.2.2: The initial 2M = 4
Schrödinger cat states are labeled by the 2-bit strings {00,01,10,11}. Those are put pairwise into beam splitters,
resulting in the states and measurement results labeled by the 1-bit strings {0,1}. The phases and final state
of the corresponding phase estimation setup are determined using Eq. (4.7), the correcting displacement is
then obtained with Eq. (4.2). Right side: Shown are the Wigner functions of modes {00,0,Final} and the final
state after applying the correction, zoomed in around the origin. The yellow crosses mark the “center” of the
state, for a +1 eigenstate of Sp they lie at the origin. Reprinted figure with permission from D. J. Weigand and
B. M. Terhal, “Generating grid states from Schrödinger-cat states without postselection”, Physical Review A 97,
022341 (2018). © (2020) by the American Physical Society.
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Sp = D(ξ/
p

2) (with phases) to the initial state |Φ0〉 and Sq commutes with Sp . However,
the input state is not an exact eigenstate of Sq . Furthermore, the full description of the
unitary evolution involves the beam-splitter and the measured ancilla modes and the
full action does not commute with Sq .

This means that a few steps are required to show that the expectation value of Sq of
the output state is close to the expectation value of Sq of the input state. The output

state of any breeding protocol will be |Ψout〉 = A |Φ0〉 and A = ∑∞
j=−∞α j S j

p (where the
number of non-zero coefficientsα j ∈C is determined by the protocol). We can compute
the normalization of |Ψout〉 by writing the initial squeezed state as a wave function in∣∣q〉

:

〈Ψout|Ψout〉 =
∞∑

j ,k=−∞

α jα
∗
kp

π∆2

Ï
dq dq ′ e−

q2

2∆2 e−
(q′−( j−k)ξ)2

2∆2
〈

q |q ′〉
=∑

j ,k

α jα
∗
kp

π∆2

∫
dq e−

(q−( j−k)ξ/2)2

∆2 e−
ξ2( j−k)2

4∆2

=∑
j ,k
α jα

∗
k e−

ξ2( j−k)2

4∆2 .

For small ∆ . 0.5, the last term vanishes for j 6= k (ξ is at least
p

2π), i. e.
∑

j |α j |2 ≈
〈Ψout|Ψout〉 = 1. Using the same method one obtains:

〈Ψout|Sq |Ψout〉 =
∑
j ,k

α jα
∗
kp

π∆2

∫
dq eiξq e−

(q−( j−k)ξ/2)2

∆2 e−
ξ2( j−k)2

4∆2 ,

=∑
j ,k

α jα
∗
kp

π∆2
e−

ξ2( j−k)2

4∆2 e−
i( j−k)ξ2

2

∫
dq eiξq e−

q2

∆2 ,

=∑
j ,k
α jα

∗
k e−

ξ2( j−k)2

4∆2 e−
i( j−k)ξ2

2 〈Φ0|Sq |Φ0〉 ≈ 〈Φ0|Sq |Φ0〉 ,

where we used the normalization condition obtained before. This implies that the squeez-
ing in q̂ for the final state, ∆q (Ψout) ≈ ∆q (Φ0) = ∆ for initial squeezing ∆ . 0.5 (which
corresponds to large squeezing in q). The effective squeezing parameter of a squeezed

Schrödinger cat state ∝ (D(−pπ/2)+D(
p
π/2)) |Φ0〉 is

√
∆2 − 2

π ln(tanh( π
4∆2 )), which dif-

fers from a squeezed vacuum state |Φ0〉 by O (10−17) for ∆= 0.2. This is also expected, as
∆q =∆ for a squeezed vacuum state and ∆q ≈∆ for an approximate grid state as defined
in [1].

4.3. ANALYTIC DISCUSSION OF BREEDING
In this section, we derive probability bounds for the breeding protocol showing how the
effective squeezing parameter changes round-by-round. The known class of approxi-
mate grid states, which are described by a perfect grid state to which a Gaussian distri-
bution of shift errors is applied [1], is not closed under a round of breeding, the same
holds for squeezed Schrödinger cat states. Thus, analyzing the effect of the breeding
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map for many rounds is a nontrivial problem when using either class of states. In this
section, we discuss the breeding protocol analytically and derive a class of states that is
closed under the breeding operation. This class of states will be used as initial states in
Section 4.4 to investigate the asymptotic behavior of breeding.

To this end, we first analyze the action of breeding on a superposition of shifted grid
states |u, v,m〉 (see Eq. (2.13) for details on these states) in Section 4.3.2, and simplify
the state obtained after measurement. Then, we show in Section 4.3.3 that the action of
breeding on the v shifts is that of a convolution of the ingoing wave functions, and that a
Gaussian error model for these shifts is preserved under breeding. There, we also see that
the action on the u shifts is that the ingoing wave functions of these shifts are multiplied.
Finally in Section 4.3.4, we show that for the u shifts, an error model using the von Mises
distribution is preserved under breeding, yielding the states used in Section 4.4.

4.3.1. SCALE-DEPENDENT SHIFTED GRID STATES
Since the breeding protocol changes the spacing of an approximate grid state round-
by-round, the spacing of these states is round-dependent. To this end, we first define
scale-dependent shifted grid states as

|u, v,m〉 =
√

smξ

2π
ei v

smξ
p̂ ei smξu

2π q̂ |Ψm〉 , (4.8)

where u, v ∈ [−π,π), see also earlier in Section 2.2.2. The parameter sm is some scale
parameter that we will choose below, ξ is the spacing of the final grid state, and |Ψm〉∝∑∞

s=−∞
∣∣p = sξsm

〉
. With the choice sm = 1,ξ = 2

p
π, one obtains the shifted code states

introduced by Glancy and Knill in the context of the GKP code [20]: The states above can
be viewed as an extension of this concept. For any choice of m and smξ, it can be verified
that the class of states |u, v,m〉 forms an orthonormal basis of the whole Hilbert space of
the oscillator, i. e.〈

u, v,m|u′, v ′,m
〉 = δ(u −u′)δ(v − v ′) and

∫ π

−π
du

∫ π

−π
dv |u, v,m〉〈u, v,m| =1,

see Section 2.2.2 for the proof.
If we extend the definition of these basis states so that u → x, v → y with x, y ∈ R,

then we can observe that
∣∣x +2π, y,m

〉 = ∣∣x, y,m
〉

and
∣∣x, y ±2π,m

〉 = e±ix
∣∣x, y,m

〉
. In

this section, we will only consider states of the form

|Ψ〉 =
∫ π

−π
du

∫ π

−π
dv Θ(u, v) |u, v,m〉 ,

where the functionΘ(x, y) is such thatΘ(x+2π, y) =Θ(x, y) andΘ(x, y±2π) = e∓ixΘ(x, y).
For such a choice, we observe that Θ(x, y)

∣∣x, y,m
〉

is 2π-periodic in both arguments,
allowing us to write∫ π

−π
dx

∫ π

−π
dy Θ(x, y)

∣∣x, y,m
〉= ∫ π+zx

−π+zx

dx
∫ π+zy

−π+zy

dx Θ(x, y)
∣∣x, y,m

〉
. (4.9)

for any zx , zy ∈R.
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For our application in the breeding protocol, we will choose sm =
p

2m−M and one
can confirm that this choice yields a shifted grid state with spacing ξ for m = M . Note

that |Ψm〉 is a +1 eigenstate of the rescaled operators Ssm
q and S2π/(ξ2sm )

p , i. e. the spacing
of the states is rescaled round by round since each beam-splitter will change the spacing
by

p
2. We can see this by writing

|Ψm〉∝ lim
∆→0

ΠSsm
q =1S(1/∆) |vac〉 , since lim

∆→0
S(1/∆) |vac〉 = ∣∣p = 0

〉
andΠSsm

q =1 ∝
∑∞

t=−∞ S t sm
q is the projector onto the +1 eigenspace of Ssm

q .

4.3.2. BREEDING SHIFTED GRID STATES
Recall that the action B of a beam splitter is given by

q̂1 → (q̂1 − q̂2)/
p

2, p̂1 → (p̂1 − p̂2)/
p

2,

q̂2 → (q̂1 + q̂2)/
p

2, p̂2 → (p̂1 + p̂2)/
p

2,

where mode 1 is the target mode and mode 2 is the control mode (c. f. Eqs. 4.4).
Using conjugation one can see that two shifted grid states are transformed as

B
∣∣x1, y1,m

〉
1

∣∣x2, y2,m
〉

2 =

=B
smξ

(2π)2

∑
s,t

ei
(
y2(s+ x2

2π )+y1(t+ x1
2π )

)
eiq̂2ξsm (s+ x2

2π )eiq̂1ξsm (t+ x1
2π )B†B

∣∣p = 0
〉

1

∣∣p = 0
〉

2 ,

= smξ

(2π)2

∑
s,t

ei
(
y2(s+ x2

2π )+y1(t+ x1
2π )

)
e

i
q̂1+q̂2p

2
ξsm (s+ x2

2π )
e

i
q̂1−q̂2p

2
ξsm (t+ x1

2π ) ∣∣p = 0
〉

1

∣∣p = 0
〉

2 ,

= smξ

(2π)2

∑
s,t

ei
(
y2(s+ x2

2π )+y1(t+ x1
2π )

) ∣∣∣∣p = ξsmp
2

(
t + s + x2 +x1

2π

)〉
1

∣∣∣∣p = ξsmp
2

(
s − t + x2 −x1

2π

)〉
2

.

The invariance of the formal state
∣∣p = 0

〉
1

∣∣p = 0
〉

2 under beam-splitting can be under-
stood from writing lim∆→0 S(1/∆) |vac〉 = ∣∣p = 0

〉
and conjugating the squeezing opera-

tors by beam-splitters.
Now, we can easily compute the action of a measurement of mode 2 with result pout:〈

p̂2 = pout
∣∣B ∣∣x1, y1,m

〉
1

∣∣x2, y2,m
〉

2 =
smξ

(2π)2

∑
s,t

ei
(
y2(s+ x2

2π )+y1(t+ x1
2π )

)

×δ
(

pout − ξsmp
2

(
s − t + x2 −x1

2π

))∣∣∣∣p = ξsmp
2

(
t + s + x2 +x1

2π

)〉
1

. (4.10)

As a warm-up, we consider the effect of the breeding step on two input modes both in a
state of the form

|Ψin〉 =
∫ π

−π
du V (u) |u, v,m〉 ,

where V (u) is a wave function with normalization
∫ π
−πdu |V (u)|2 = 1 that will be chosen

in Section 4.3.4. In order to simplify the notation from now on, we define

p̃ = 2πpout

ξsm+1
, (4.11)
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using that sm+1 = p
2sm . In order to compute the output state |Ψout〉 obtained after

breeding two modes with input states of the form |Ψin〉, we transform Eq. (4.10): First,
we switch to variables x and y , and then substitute x̃2 = x2−2p̃. The output state is then
given by

|Ψout〉 = smξ

(2π)2

∫ π+2p̃

−π+2p̃
dx̃2

∫ π

−π
dx1 V1(x1)V2(x̃2 +2p̃)

∑
s,t

e
i
(

y2(s+ x̃2
2π+

p̃
π )+y1(t+ x1

2π )
)

×δ
(
ξsmp

2

(
s − t + x̃2 −x1

2π

))∣∣∣∣p = ξsmp
2

(
t + s + x̃2 +x1 +2p̃

2π

)〉
1

.

We can move the integration region for x̃2 back to [−π,π) as described in Eq. (4.9). Then,
note that the Dirac delta distribution will only be non-zero if s = t and x̃2 = x1:

First, note that the Dirac delta distribution can only be non-zero if x̃2−x1
2π is integer. In

the case where this fraction is an integer k, the delta will be non-zero if and only if t = s+
k. After moving the integration region for x̃2 back, we have xi , x̃2 ∈ [−π,π) and therefore
x̃2 − x1 ∈ (−2π,2π). Thus, we only need to consider the cases x̃2 = x1 and x̃2 − x1 =±2π.
The solutions x̃2−x1 =±2π are a null set: After applying the Dirac delta distribution, the
second integral vanishes for these two solutions. Using δ(x) = |a|δ(ax) we obtain:

|Ψout〉 =
p

2

2π

∫ π

−π
dx̃2

∫ π

−π
dx1 V1(x1)V2(x̃2 +2p̃)

×∑
s

e
i
(

y2(s+ x̃2
2π+

p̃
π )+y1(s+ x1

2π )
)
δ(x̃2 −x1)eipout q̂

∣∣∣∣p = ξsmp
2

(
2s + x̃2 +x1

2π

)〉
1

=
p

2

2π

∫ π

−π
dx1 V1(x1)V2(x1 +2p̃)

∑
s

exp

(
i

(
(y2 + y1)

(
s + x1

2π

)
+ y2

p̃

π

))
×eipout q̂

∣∣∣∣p = ξsmp
2

(
2s + 2x1

2π

)〉
1

.

(4.12)

4.3.3. CHOICE OF WAVE FUNCTION Θ(u, v)
We now take the input states in both modes with a wave function Θ(x, y) (obeying the
conditions set forth previously), namely we choose

Θ(u, v) = 1

N
V (u)

∞∑
s=−∞

eiusGsm∆(v +2πs), (4.13)

where V (u) is again the normalized wave function to be chosen in Section 4.3.4, and
Gsm∆ is a Gaussian distribution

G∆(v) = 1√
∆
p
π

exp

(
− v2

2∆2

)
.

The wave function’s dependence on v is thus that of wrapped Gaussian distribution and
the eius factor in Eq. (4.13) is required for the 2π-periodicity of the states as explained
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below Eq. (4.8). The normalization constant N is given by

N 2 =
∫ π

−π
du

∫ π

−π
dv |V (u)|2

∞∑
s,t=−∞

eiu(s−t )Gsm∆(v +2πs)Gsm∆(v +2πt )

=
∫ π

−π
du |V (u)|2

∞∑
s,t=−∞

1

2
eiu(s−t )e

− π2(s−t )2

(sm∆)2

×
(
erf

(
π

sm∆
(s + t +1)

)
−erf

(
π

sm∆
(s + t −1)

))
sm∆¿1−−−−−→ 1. (4.14)

In the limit sm∆¿ 1, the exponential e
− π2(s−t )2

(sm∆)2 enforces s− t = 0, while for the difference
of error functions to be non-zero, we need s + t = 0, hence together one has s = t = 0.
Note that sm ∈ (0,1], i. e. if ∆¿ 1, then also sm∆¿ 1.

Using this wave function we can write the input state in one of the modes as

|Ψin〉 = 1

N

∫ π

−π
du

∫ π

−π
dv V (u)

∞∑
s=−∞

eiusGsm∆(v +2πs) |u, v,m〉

= 1

N

∫ π

−π
dx

∫ ∞

−∞
dy V (x)Gsm∆(y)

∣∣x, y,m
〉

.

We will assume that the Gaussian wave function of both modes has the same variance,
and mean equal to 0. This choice will be justified if the outgoing Gaussians only depend
on the round m, which we will show below.

From the result for breeding states with arbitrary superpositions of shifts in p̂, see
Eq. (4.12), it follows that:

|Ψout〉 =
p

2

2πN 2

∫ π

−π
dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 V1(x1)V2(x1 +2p̃)Gsm∆(y1)Gsm∆(y2)

×∑
s

e
i
(
(y1+y2)

(
s+ x1

2π

)+y2
p̃
π

)
eipout q̂

∣∣∣p = ξsm+1

(
s + x1

2π

)〉
=

p
2

2πN 2

∫ π

−π
dx1

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2 V1(x1)V2(x1 +2p̃)Gsm∆(ỹ − y2)Gsm∆(y2)

×∑
s

e
i
(

ỹ(s+ x1
2π )+y2

p̃
π

)
eipout q̂

∣∣∣p = ξsm+1

(
s + x1

2π

)〉
=

√
2sm+1∆

p
π

2πN 2 e
− p2

out∆
2

2ξ2

∫ π

−π
dx1

∫ ∞

−∞
dỹ V1(x1)V2(x1 +2p̃)Gsm+1∆(ỹ)

×∑
s

e
i
(

ỹ(s+ x1
2π )+ỹ p̃

2π

)
eipout q̂

∣∣∣p = ξsm+1

(
s + x1

2π

)〉
.

Here, we used sm+1 =
p

2sm and the substitution ỹ = y1 + y2 to write the integral over y2

as a convolution of Gaussian wave functions. Comparing this state with the definition of
shifted grid states, Eq. (4.8), we see that the outgoing state has a “simple” expression in
terms of the shifted grid states with extended parameters:

|Ψout〉 =
√

2∆
p
π√

ξN 2
e
−

(
pout∆

ξ
p

2

)2 ∫ π

−π
dx1

∫ ∞

−∞
dỹ V1(x1)V2(x1 +2p̃)Gsm+1∆(ỹ)

∣∣x1 + p̃, ỹ ,m +1
〉

.
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With x̃ = x1 + 2πpout
ξsm+1

and Eq. (4.9), we finally have

|Ψout〉 =
√

2∆
p
π√

ξN 2
e
−

(
pout∆

ξ
p

2

)2 ∫ π

−π
dx̃

∫ ∞

−∞
dỹ V1(x̃ − p̃)V2(x̃ + p̃)

×Gsm+1∆(ỹ)
∣∣x̃, ỹ ,m +1

〉
(4.15)

=
√

2∆
p
π√

ξN 2
e
−

(
pout∆

ξ
p

2

)2 ∫ π

−π
du

∫ π

−π
dv V1(u − p̃)V2(u + p̃)

×
∞∑

s=−∞
eiusGsm+1∆(v +2πs) |u, v,m +1〉 (4.16)

Hence, we conclude that the outgoing state has the same wave function dependence
in v as the ingoing states. The only change is sm → sm+1. From this last equation, we
can also immediately see the action of breeding on the wave function V (u), i. e. V (u) →
V (u + p̃)V (u − p̃).

4.3.4. CHOICE FOR WAVE FUNCTION V (u)
As can be seen in Eq. (4.16), the output state depends on a product of the form V1(u)V2(u).
For some choices for the ingoing wave functions, one can simplify V1(u)V2(u) =Vout(u),
where all Vi are in the same class of functions. One such class of functions is the set of
von Mises distributions, which is closed under multiplication. Let

V (x −µ)κ =
exp

(
κ
2 cos(x −µ)

)
p

2πI0(κ)
. (4.17)

Assuming a von Mises wave function in u and a wrapped (signed) Gaussian wave func-
tion in v , the initial state of the system is thus chosen as

|Ψin〉 = 1

N

∫ π

−π
du

∫ π

−π
dv Vκ(u −µ)

∞∑
s=−∞

eiusGsm∆(v +2πs) |u, v,m〉

= 1

N

∫ π

−π
dx

∫ ∞

−∞
dy Vκ(x −µ)Gsm∆(y)

∣∣x, y,m
〉

, (4.18)

where Vκ(u) is the distribution defined in Eq. (4.17). The normalization constant N

has the same form as Eq. (4.14), with the von Mises wave function defined above taking
the role of V (x). This is also the initial state used in Eq. (4.20). Using the result for a
Gaussian error model in q̂ and an arbitrary wave function for p̂, Eq. (4.15), the state after
measurement is

|Ψout〉 =
√

2∆
p
π√

ξN2N1

e
−

(
pout∆

ξ
p

2

)2 ∫ π

−π
dx̃

∫ ∞

−∞
dỹ Vκ2 (x̃ + p̃ −µ2)Vκ1 (x̃ − p̃ −µ1)

×Gsm+1∆(ỹ)
∣∣x̃, ỹ ,m +1

〉
, (4.19)

where N1,N2 are the normalization constants of the initial state of modes 1 and 2, re-
spectively. This expression can be simplified with the following lemma.
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Lemma 4.3.1. For a product of von Mises wave functions as defined in Eq. (4.17), it holds
that

Vκ1 (x −µ1)Vκ2 (x −µ2) =
√

I0(κ)

2πI0(κ1)I0(κ2)
Vκ(x −µ),

with

µ=−arctan2
(
κ1 cos(µ1)+κ2 cos(µ2),κ1 sin(µ1)+κ2 sin(µ2)

)
,

κ2 = κ2
1 +κ2

2 +2κ1κ2 cos(µ1 −µ2).

Proof. We can use the properties of linear combinations of trigonometric functions to
show that the set of von Mises distributions is closed under multiplication. We have

V (x −µ1)κ1
V (x −µ2)κ2

= exp
(κ1

2 cos(x −µ1)+ κ2
2 cos(x −µ2)

)
2π

p
I0(κ1)I0(κ2)

.

For the exponent on the right-hand side, it holds that

κ1 cos(x −µ1)+κ2 cos(x −µ2) =
= (

κ1 cos(µ1)+κ2 cos(µ2)
)

cos(x)+ (
κ1 sin(µ1)+κ2 sin(µ2)

)
sin(x)

=
√
κ2

1 +κ2
2 +2κ1κ2 cos(µ1 −µ2)cos(x −µ) := κcos(x −µ),

withµ,κ as in the claim. In the first step, we used cos(x−y) = cos(x)cos(y)+sin(x)sin(y).
In the second step, we used a cos(x)+b sin(x) =

p
a2 +b2 cos(x +arctan2(a,b)).

Using this lemma, the outgoing state is given by

|Ψout〉 =
√

I0(κ)∆p
πI0(κ1)I0(κ2)ξN 2

2 N 2
1

e
− p2

out∆
2

2ξ2

∫ π

−π
du

∫ π

−π
dv Vκ(u −µ)

×
∞∑

s=−∞
eiusGsm+1∆(v +2πs), |u, v,m +1〉 ,

with

µ=−arctan2
(
κ2 cos(µ2 − p̃)+κ1 cos(µ1 + p̃),κ2 sin(µ2 − p̃)+κ1 sin(µ1 + p̃)

)
,

κ2 = κ2
2 +κ2

1 +2κ2κ1 cos(µ2 −µ1 −2p̃).

This state is not yet normalized. However, we can use Eq. (4.14) to obtain Nout and both
normalize this state and obtain the probability distribution of measurement results pout.

4.4. ASYMPTOTIC BEHAVIOR
In general, a basis of shifted grid states can be used to write down an approximate code
state as a Gaussian superposition of states with different shifts [1, 9]. Here, we will simi-
larly use these states but the filter for the quadrature on which we apply the breeding will
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not be Gaussian but determined by a von Mises probability distribution. We thus define
the class of approximate shifted grid states (for general ξ) as:

∣∣Vκ,µ,m
〉

:= 1

N

∫ π

−π
du

∫ π

−π
dv V (u −µ)κ

∞∑
s=−∞

eiusG(v +2πs)sm∆ |u, v,m〉 , (4.20)

V (u −µ)κ := 1p
2πI0(κ)

exp
(κ

2
cos(u −µ)

)
,

G(v)σ := 1√
σ
p
π

exp

(
− v2

2σ2

)
. (4.21)

In the limit of large initial squeezing ∆¿ 1, the normalization constant N goes to 1.
Note that Pσ(v) =G(v)2

σ is a Gaussian distribution with mean 0 and standard deviation
σ/

p
2 so that when m = M , the standard deviation of P∆sm (v) is ∆/

p
2. The choice of

probability distribution on u and v is different because the breeding protocol acts dif-
ferently on the p̂ and q̂ quadratures of the initial states. This choice ensures that the
class of states

∣∣Vκ,µ,m
〉

is closed under breeding, see Eq. (4.23). The probability distribu-
tionPκ(u −µ) =V (u −µ)2

κ is the von Mises distribution and Iν(κ) is the modified Bessel
function of the first kind of order ν. The von Mises distribution Pκ(u −µ) which mod-
els a Gaussian distribution for a circular phase variable u has mean µ. In the limit κÀ
1, the probability distribution becomes Gaussian by approximating exp(κcos(u −µ)) ≈
exp(−κ(u −µ)2/2)exp(κ) with standard deviation 1/

p
κ.

The index m = 0, . . . , M will refer to the number of breeding rounds applied to be-
ing the initial state, with m = 0 the initial state and m = M , sM = 1 the final state. Note
that the shift error distribution in v gets rescaled each round: The standard deviation of
G(v)2

∆,m=0 is increasing in each round, but given a v , the shift induced in each round in
Eq. (4.8) gets smaller, so that effectively the spread in p stays the same. Thus, ∆q ≈ ∆
where ∆ is the initial squeezing.

For the approximate state with m = M , i. e.
∣∣Vκ,µ,M

〉
, the mean phase θp is simply the

mean µ of the distribution while the effective squeezing parameter ∆p equals

∆p =
√

ln(I 2
0 (κ)/I 2

1 (κ))/π, (4.22)

which for large κ becomes 1/
p
πκ, hence directly connecting to the standard deviation

of the Gaussian distribution.

Using the formula for linear combinations of trigonometric functions with a phase
shift, one can show that the distribution over u of the outgoing state after a round of
breeding is again a von Mises distribution (see e. g. [21, 22] in the context of the convo-
lution of von Mises distributions). Using the convolution property of Gaussian distribu-
tions, one can show the same for the v shifts. Combining these two properties, one can
show that a round of breeding with measurement outcome pout maps two input states
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of this form with label m onto an output state of the same form with label m +1:∣∣Vκ1,µ1,m
〉∣∣Vκ2,µ2,m

〉 breeding→ ∣∣Vκout,µout,m+1
〉

,

κ2
out = κ2

1 +κ2
2 +2κ1κ2 cos(µ1 −µ2 −2p̃),

µout =−arctan2[κ1 cos(µ1 − p̃)+κ2 cos(µ2 + p̃)

,κ1 sin(µ1 − p̃)+κ2 sin(µ2 + p̃)], (4.23)

with p̃ = 2π
ξsm+1

pout. The details of this derivation can be found in Section 4.3.
Thus, if the two states fed into round m have the error model of Eq. (4.20), the out-

going state will be of the same type, with new parameters κout,µout which depend on
measurement outcome pout and the round m. Since the ingoing states are normalized,
the probability of finding outcome pout can be obtained by evaluating the norm of the
outgoing state, see Section 4.3, and we obtain the oscillatory function

P(pout) =
∆I0(κout)N 2

outp
πξI0(κ1)I0(κ2)N 2

1 N 2
2

e
− p2

out∆
2

ξ2 . (4.24)

Defining the variable x = µ1 −µ2 −2p̃ mod 2π gives a concise description of the effect
of one breeding round. The probabilityP(x) can be simplified in the limit of large initial
squeezing, sm∆¿ 1 from Eq. (4.24). Since x is 2π-periodic, we can use that the limit of
a wrapped normal distribution with large variance is simply a circular uniform density
of 1/(2π). Together with the fact that the normalization constants N all go to 1 for large
initial squeezing, one obtains

κout(x) =
√
κ2

1 +κ2
2 +2κ1κ2 cos(x) = (κ1 +κ2)λ, (4.25)

P(x) = I0(κout(x))

2πI0(κ1)I0(κ2)
, (4.26)

where we defined λ :=λ(x,κ1,κ2) with 0 ≤λ≤ 1.
Not surprisingly the growth of κ (or shrinking of ∆p ) with the number of rounds is

upper bounded as κM ≤ 2Mκ0 for any protocol with M rounds and initial states all with
equal κ0.

To get insight into the probabilistic behavior, we would like to bound the probability
so that λ≤ 1−ε for some ε, assuming κ1 ≥ 1/(1−ε) and κ2 ≥ 1/(1−ε) in a given round m.

LetA= {x|λ≤ 1−ε}, i. e. the set of all events for which λ≤ 1−ε. Then:

P(λ≤ 1−ε) =
∫
A

dx
I0 ((κ1 +κ2)λ)

2πI0(κ1)I0(κ2)
,

≤ I0 ((κ1 +κ2)(1−ε))

I0(κ1)I0(κ2)
,

where we used that I0(x) < I0(y) for x < y .

It has been shown by Pal’tsev that 1p
2πκ

eκ−
1

2κ ≤ I0(κ) ≤ 1p
2πκ

eκ+
1

2κ , where the lower

bound holds for κ > 0 and the upper bound was only proved for κ > (
p

7+ 2)/3 [23].
The range for the upper bound is limited because Pal’tsev derived the bounds for Iν(κ)
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with ν,κ ∈ R+
0 . In the special case of I0(κ), it is simple to show that the bound holds

for all κ > 0: 1p
2πκ

eκ+
1

2κ is minimal for κ = 1 and I0(κ),0 ≤ κ ≤ (
p

7+2)/3 is maximal for

κ = (
p

7+2)/3. The bound holds because 1p
2π

e
3
2 > I0((

p
7+2)/3). Using these bounds,

we get

P(κout ≥ (κ1 +κ2)(1−ε)) ≥ δ. (4.27)

with

δ≡ 1−
√

2πκ1κ2

(κ1 +κ2)(1−ε)
exp

(
−ε(κ1 +κ2 +1)+ 5

4

)
. (4.28)

For any choice of ε > 0, this probability is exponentially close to 1 for large κ1 or κ2.
As a simple example of this bound one can take κ1 = κ2 = κin and ε= 1/2. Then we have

P(κout ≥ κin) ≥ 1−
√

2πκin exp

(
−κin + 3

4

)
.

What we see in these bounds is that for sufficiently largeκin, the protocol produces states
with larger κout with high probability. For example, the probability that κout ≥ κin is at
least 0.92 forκin = 5 (squeezing parameter roughly∆≈ 0.25). Forκin = 10, the probability
that κout ≥ 3

2κin is at least 0.88.
Alternatively, one can phrase Eq. (4.27) for largeκ, hence Gaussian-distributed states,

in terms of the variance of the Gaussian distribution of shift errors: In this case, the vari-
ance of the outgoing state obeys with a probability larger than δ in Eq. (4.28):

Varout ≤
Var1,inVar2,in

(1−ε)(Var1,in +Var2,in)
. (4.29)

For a grid state with Gaussian-distributed shift errors and spacing ξ, one has ∆p ≈ Var/ξ
so we can see how Eq. (4.29) expresses the stochastic improvement of the effective squeez-
ing parameter per round.

These bounds are not tight, the probability δ scales more favorably in practice than
these bounds would suggest. In the next section, we examine how the mapping of the
von Mises distributed states works out numerically as compared to an actual simulation
of the protocol with squeezed cat states.

4.5. SIMULATION
To demonstrate the use of classical post-processing, we simulate the breeding of a grid
state numerically. All the simulated breeding protocols aim to generate an eigenstate
of Sp = D(

p
π), using M rounds with the efficient breeding protocol. The breeding is

simulated by sampling each measurement result randomly from the state generated by
the previous rounds. This is done for protocols with M = 0, . . . ,6 rounds, each protocol
leading to an approximate grid state with the required spacing

p
2π (M = 0 means just

having a squeezed cat state). More details on the numerical simulations can be found in
Appendix A.1.2.

In Fig. 4.5, we show the mean and standard deviation of the effective squeezing pa-
rameter∆p over 1000 simulated breeding experiments with M rounds. In this figure, the
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Figure 4.5: Simulated breeding of a sensor state (Sp = D(
p
π)) with initial squeezing ∆= 0.2. Shown is the (di-

mensionless) effective squeezing parameter ∆p (averaged over the homodyne measurement outcomes) ver-
sus the number of rounds M of the protocol. “Post-select” refers to the protocol by Vasconcelos et al. [2],
with squeezed Schrödinger cat states as input and post-selected onto the result pi = 0 for all measurements.
“Breeding” refers to the efficient breeding protocol without post-selection. “Mises” is the same efficient breed-
ing protocol, but with von Mises distributed initial states, see Eq. (4.20). The error bounds in both Mises and
Breeding are asymmetric, i. e. both the variance of all the data above the mean as well as the variance on all the
data below the mean are plotted separately. “Lower” is the lower bound for the effective squeezing parameter,
namely at round M ∆(κM ) =∆(2Mκ0) where ∆(κ) is given in Eq. (4.22). Reprinted figure with permission from
D. J. Weigand and B. M. Terhal, “Generating grid states from Schrödinger-cat states without postselection”,
Physical Review A 97, 022341 (2018). © (2020) by the American Physical Society.

line “Breeding” shows the efficient breeding protocol using finitely-squeezed Schrödinger
cat states, with ∆q ≈∆= 0.2. This corresponds to states with n̄ ≈ 2Mπ/2+25 photons in
all rounds (where 25 is the contribution from initial squeezing by S(∆)).

In addition, we simulate the same protocol using the von Mises states (with infi-
nite squeezing, corresponding to lim∆→0 in Eq. (4.20)) as initial states, starting at a κ

and µ = 0 which gives the same ∆p as the squeezed cat states in the real protocol. For
comparison, we also show the effective squeezing achieved by post-selecting onto p = 0
(“Post-select”) and the lower bound (“Lower”) on the decrease in the squeezing param-
eter for the von Mises states as follows from κout ≤ κ1 +κ2. Since the lower bound has
been derived only for von Mises distributed states and not for squeezed cat states as ini-
tial states, it does not necessarily hold for the latter. However, it gives a good estimate
for the asymptotic behavior because grid states and the von Mises distributed states get
arbitrarily close for small ∆p .

As can be seen, the effective squeezing that is achieved on average is lower both for
Breeding and Mises than for the post-selected protocol. Furthermore, the two lines are
almost parallel after some rounds, showing that the von Mises error model is a good
approximation after a small number of rounds. All lines show similar scaling with M
which we asymptotically expect to be ∼ 2−M (this scaling is hard to verify for M ≤ 6).

https://doi.org/10.1103/PhysRevA.97.022341
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4.6. DISCUSSION
In this chapter, we have shown that classical post-processing, combined with the breed-
ing protocol by Vasconcelos et al. [2] yields an efficient method to generate grid states.
By providing a map between breeding and phase estimation, we have argued that any
state generated by breeding results in an approximate eigenstate of the commuting dis-
placement operators, i. e. a grid state with an additional known displacement. We have
introduced a new class of approximate grid states which are mapped onto themselves by
the application of breeding and allow one to bound the success of the stochastic process
implemented by breeding. In numerical simulations, we could confirm that the proto-
col discussed in this chapter generates grid states reliably, showing scaling close to the
asymptotic behavior, even for a small number of rounds.

As we have observed, the action of each round of beam-splitting reduces the spacing
of the grid, requiring one to use cat states with large spacing at the beginning of the pro-
tocol. An alternative solution is to squeeze the outgoing mode after each beam-splitter
so one does not lose a

p
2 factor in each round, see e. g. the use of beam-splitting andp

2-squeezing in [20]. However, this precisely counteracts the initial squeezing in the q-
quadrature, hence requires more initial squeezing by ∆. We thus expect that the average
number of photons in the initial squeezed cat states scales the same in this alternative
protocol, making it a slightly different but not necessarily better alternative.

In any real set-up, the measurement of the p-quadrature will have some variance,
determined for example by the duration of the measurement. Using the mapping onto
phase estimation, one can understand this as a spread or uncertainty in the circuit which
has been applied to the state, leading to uncertainty of an estimate for the eigenvalue
phase. In the efficient breeding protocol, the spread in p also leads to the preparation of
a noisy state which contains additional shift or displacement errors.

While generating optical squeezed Schrödinger cat states on demand is a hard task,
squeezed cat states with sufficient amplitude to generate the sensor state have been ex-
perimentally demonstrated in [13, 24]. The amplitudes of cat states demonstrated there
are sufficiently large for 1–2 rounds of breeding with beam splitters only. Multiple rounds
could be possibly achieved using additional squeezing in between rounds as suggested
in the previous paragraph above. It might also be of interest to analyze the concrete im-
plementation of this scheme for microwave cavities coupled to superconducting qubits
where all components, i. e. the preparation of cat states [25, 26], beam-splitters, and
homodyne measurement read-out are readily available. The scheme would lend itself
well to a set-up in which cat states are prepared in microwave cavities and are then re-
leased [27, 28] onto transmission lines which couple via beam-splitters and allow for
homodyne read-out.
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5
REALIZING MODULAR

QUADRATURE MEASUREMENTS VIA

A TUNABLE PHOTON-PRESSURE

COUPLING IN CIRCUIT-QED

One of the most direct preparations of a Gottesman-Kitaev-Preskill qubit in an oscillator
uses a tunable photon-pressure (also called optomechanical) coupling of the form q̂b̂†b̂,
enabling to imprint the modular value of the position q̂ of one oscillator onto the state
of an ancilla oscillator. We analyze the practical feasibility of executing such modular
quadrature measurements in a parametric circuit-QED realization of this coupling. We
provide estimates for the expected GKP squeezing induced by the protocol and discuss the
effect of photon loss and other errors on the resulting squeezing.

This chapter has been published with minor differences in D. J. Weigand and B. M. Terhal, “Realizing modular
quadrature measurements via a tunable photon-pressure coupling in circuit QED”, Physical Review A 101,
053840 (2020).
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B OSONIC quantum error correction encoding quantum information into oscillator
space(s) has gained much experimental interest in the last few years (e. g. [2–7]).

A good reason to use a single oscillator instead of multiple qubits to encode quantum
information redundantly is that control, manipulation, and fabrication of a single oscil-
lator can be easier than that of multiple oscillators or qubits. In other words, bosonic
error correction can be a hardware-efficient way [8] of producing novel qubits which
hopefully have longer coherence versus gate times than current popular members of the
qubit family, such as the transmon qubit in superconducting devices. The GKP code [9] is
a promising code for encoding a qubit into a single oscillator. It has the ability to correct
small shifts in phase space, but has also been shown to be very competitive, as compared
to other code contenders, with respect to photon loss errors [10, 11]. For an encoded
qubit such as the GKP qubit, important aspects of its performance will be determined by
the ability to reliably prepare or measure the qubit in the Z and X -basis, perform single-
and two-qubit gates on it (CNOT, Hadamard and T gates), as well as execute quantum
error correction in a fault-tolerant manner. Theoretical methods and circuits to obtain
these components have been discussed, for example, in [9, 12, 13] and [14].

In particular, as the GKP qubit states are highly non-classical “grid” states, one can
ask about the best method to prepare such states from the vacuum, given a coupling
with an ancilla system which is subsequently measured. The original GKP paper [9]
briefly suggested that a photon-pressure coupling between the target oscillator — in
which the state is to be prepared — and an ancilla oscillator would be useful in this
respect. Through such an interaction, the ancilla oscillator acquires a frequency shift
which depends on the quadrature q̂T = 1p

2
(b̂T + b̂†

T ) of the target oscillator T . Instead

of measuring this frequency shift, the aim is then to measure just the effective rotation
that it induces on an initial state in the ancilla oscillator after a specific interaction time.
Eigenvalues for q̂ which differ in the ancilla oscillator state being rotated by a full pe-
riod are thus not distinguished. This means that the interaction can be used to realize
modular measurements of q̂ and p̂. Such modular quadrature measurements commute
when the product of the moduli is a multiple of 2π. It is precisely these modular quadra-
ture measurements which are required to prepare a GKP qubit: They can also be used to
stabilize a GKP qubit [5] or perform quantum error correction.

Modular quadrature measurements [15] are of fundamental interest since commut-
ing quadrature measurements allow one to measure both quadratures without the fun-
damental Heisenberg uncertainty, with possible applications in displacement sensing
in the microwave domain [16]. The use of such modular variables directly gives rise to
a mixed position-momentum representation of a state in phase space: Zak first formu-
lated this idea, giving a mixed momentum-position state of electrons in solids, see the
review [17] and references therein.

In this chapter, we present a circuit-QED setup for coupling two (close to harmonic)
oscillators via a tunable photon-pressure coupling with the aim of realizing a modular
quadrature measurement in one of the oscillators, see Section 5.3. This measurement
requires a full measurement of the ancilla oscillator state, which in circuit-QED can be
obtained by releasing this state, via a lossy oscillator, to a transmission line where the sig-
nal gets amplified and finally read-out at room temperature. In Section 5.3.4, we briefly
discuss previous work on such release or “switch” mechanism which can be turned on
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and off to high approximation. Prior to this, we provide an overview of our modular
quadrature measurement scheme in Section 5.2. Other and related means to obtain a
photon-pressure coupling in circuit-QED are reviewed in Section 5.3.1.

In Section 5.5, we estimate the expected performance of the modular quadrature
measurement: This is expressed in terms of how much squeezing in a GKP qubit can
be obtained through this measurement. The squeezing effectively captures how close
a state is to an eigenstate of the operator which is measured. The aim here is to do a
strong modular quadrature measurement, unlike some of the previous work [4, 5, 13] in
which the measurement is built up from a sequence of weak measurements via coupling
to ancilla qubits. In the latter approach, the strong measurement — which is effectively
a phase estimation or eigenvalue measurement of a unitary displacement operator —
is obtained through a sequence of weak ancilla qubit measurements, each contributing
at most 1 bit of phase information. The strength of the modular quadrature measure-
ment proposed in this chapter will be governed by the number of photons in the ancilla
oscillator used to perform the measurement: the more photons, the stronger the mea-
surement.

We will compare our new proposal with a scheme of sequential measurements [13]
using a transmon qubit [5] or Kerr-cat qubit [6, 18] in Section 5.8.2, also with respect to
error feedback to the target oscillator. As the preparation protocol will inevitably suffer
from imperfections, we discuss several noise mechanisms and their effect in Section 5.8.
We end the chapter with a final discussion in Section 5.9, summarizing our findings.

5.1. PRELIMINARIES
This section collects a few conventions and the definition of the GKP code. We use
q̂ = 1p

2
(â+ â†) and p̂ = ip

2
(â†− â) so that [q̂ , p̂] = i1.1 Phase space displacements (trans-

lations) are denoted, in standard form, as D(α) = exp(αâ† −α∗â).
The (square) GKP code is defined by two commuting code stabilizers equal to Sq =

exp(i2
p
πq̂) and Sp = exp(−i2

p
πp̂). These operators act as shift or displacement opera-

tors in phase-space, that is Sq
∣∣p〉= ∣∣p +2

p
π
〉

and Sp
∣∣q〉= ∣∣q +2

p
π
〉

. States which have
eigenvalue 1 with respect to these operators are thus invariant under these translations
in phase space. There are two operators X = exp(−i

p
πp̂) and Z = exp(i

p
πq̂) which both

commute with Sp and Sq , while X Z = −Z X and hence they are the logical Pauli oper-
ators — equal to half-stabilizer shifts — of the encoded qubit. Note that the operators
Sp ,Sq , Z and X only square to the identity in the code space. Measuring the eigenvalue
of a unitary operator such as Sq is equivalent to measuring the value for q modulo

p
π, as

all values q = qmeas +k
p
π for k ∈ Z give the same eigenvalue exp(i2

p
πqmeas) for Sq . In

different words, a modular quadrature measurement is the measurement of the eigen-
value of a unitary displacement operator.

Since the eigenvalue of a unitary operator is a phase, the phase variance of the post-
measurement state captures how precisely the eigenvalue is measured. This phase vari-
ance or uncertainty is expressed by effective squeezing parameters, one for the mea-

1In some texts, the quadrature operators are defined as X̂ = 1
2 (â + â†) and P̂ = i

2 (â† − â) instead, see e. g. [19].
The latter convention has the advantage of connecting directly to the real and imaginary part of a coherent
state |α〉, while our choice is used by [9] so we adhere to this convention.
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surement of Sp , and one for the measurement of Sq . These squeezing parameters can
be chosen (see details and relation with Holevo phase and regular quadrature variance
in [16] and Section 2.3.4) as

∆p =∆p (ρ) =
√

1

2π
ln

(
1

|Tr(Spρ)|2
)
,

∆q =∆q (ρ) =
√

1

2π
ln

(
1

|Tr(Sqρ)|2
)
.

(5.1)

To get some intuition, note that 0 ≤ |Tr(Sqρ)| ≤ 1 in general. If ρ is an eigenstate with a
particular eigenvalue for Sq , we have |Tr(Sqρ)| = 1. If ρ is a superposition of many eigen-
values of Sq , e. g. a momentum eigenstate

∣∣p〉
, we have |Tr(Sqρ)| = 0. Thus, |Tr(Sqρ)|

expresses the sharpness or concentration of ρ around an Sq eigenstate.
Classically, the topic of circular statistics is well-established, see e. g. [20]: For a prob-

ability distribution P(θ) over an angle θ ∈ [0,2π), the circular standard deviation is de-

fined as
√
−2ln(|∫ dθ P(θ)exp(iθ)|). The squeezing parameters in Eqs. 5.1 are thus a di-

rect application of the circular standard deviation. With the convention in Eqs. 5.1, the
vacuum state has ∆p = ∆q = 1 showing that it is not squeezed. A ∆-squeezed vacuum
state (in q) has variance

〈
sq.vac.

∣∣ (q −〈q〉)2
∣∣sq.vac

〉=∆2∆2
vac with ∆=∆q and ∆vac = 1

2 .2

For a Gaussian model wave function of an approximate GKP state holds that n̄ ≈ 1
2∆2 −

1
2 [9, 13]. In this model, an approximate GKP state equals∣∣ψ̃〉=E

∣∣ψ〉
,

E= 1p
π∆2

Ï
R2

du dv exp

(−(u2 + v2)

2∆2 − iup̂ + iv q̂

)
,

where
∣∣ψ〉

is a perfect GKP code state, i. e. a +1 eigenstate of Sp and Sq .

5.2. OVERVIEW OF MEASUREMENT PROTOCOL
We will refer to the oscillators as target and ancilla oscillators, with resonance frequen-
cies ωT resp. ωA and ωA À ωT . The reason for this choice of frequencies is that the
instantaneous potential of the ancilla oscillator depends on the current state of the tar-
get oscillator while the potential of the target oscillator is unchanged, which enables the
photon-pressure interaction.

We will use â, â† (resp. b̂, b̂†) as annihilation and creation operators of the ancilla
(resp. target oscillator). Targeted values of coupling strengths and oscillator decay rates
are summarized in Table 5.1. The aim is to describe a set-up allowing for the measure-
ment of both stabilizers Sp ,Sq and/or the logical shifts X , Z . For example, one can pre-
pare a GKP grid state in the target oscillator from the vacuum by performing a modular
measurement of both p̂ and q̂ , i. e. measure Sp and Z in sequence.

2We remark that Ref. [5] uses a standard deviation σ as the absolute standard deviation of a squeezed peak
while the∆parameter is the relative enhancement of the standard deviation as compared to the vacuum state.
This implies that we have the correspondence σ2 =∆2/2 since the vacuum has variance 1/2 by definition.
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target |vac〉
UPP

ancilla |vac〉 D(α)

Release

lossy osc. + TL Q, I

tcoupl tmeas
time

O(10 ns) O(1µs) O(1µs)

Figure 5.1: Timeline of the measurement protocol. First, the ancilla oscillator is initialized to a coherent state
|α〉. Then, the parametric drive is turned on for time tcoupl, coupling the target and ancilla oscillators with the
unitary UPP. Finally, the parametric drive is turned off and the ancilla oscillator is coupled to a lossy oscillator.
From this lossy oscillator, the state is released into a transmission line, where it is amplified and measured.
Previously published in D. J. Weigand and B. M. Terhal, “Realizing modular quadrature measurements via a
tunable photon-pressure coupling in circuit QED”, Physical Review A 101, 053840 (2020), licensed under CC-
BY 4.0 [21] cb.

The sequence of events to enact a single modular quadrature measurement of, say
Sq , is shown in Fig. 5.1. We start both oscillators in the vacuum state. First we create
a coherent state |α〉 in the ancilla oscillator by driving this oscillator with a short (O(10)
ns) pulse. Now we turn on a strong photon-pressure coupling between target and ancilla
oscillator for time tcoupl: We discuss this in detail in Section 5.3.3. In the rotating frame
of both oscillators (ancilla oscillator at ωA and target oscillator at ωT ), we thus turn on
the Hamiltonian

HPP = g â†â(b̂† + b̂) =p
2g â†âq̂T , (5.2)

for some time tcoupl. Here and throughout the rest of this chapter, we use the convention
ħ= 1. From now on, we will drop the subscript T in the stabilizers Sq,T ,Sp,T , the logicals
ZT , XT , and the quadrature operators q̂ , p̂ as all these operators always act on the target
oscillator. We note that the fact that this Hamiltonian is time-independent in the rotating
frame of target oscillator is non-trivial: A parametric drive by a classical field, i. e. a pump
or a flux-drive is required to accomplish this. By changing the phase of this classical field
we can change the coupling to be proportional to â†â p̂ enabling to perform a modular
measurement of p̂ (or any other rotated quadrature).

If the interaction in Eq. (5.2) is turned on for the time tcoupl =
p

2π/g , it will imple-
ment the following unitary between target and ancilla oscillator:

UPP = exp(i2
p
πq̂ â†â) = S â† â

q , (5.3)

where Sq is a stabilizer of the GKP code acting on the target oscillator.
It follows that the coherent state |α〉 in the ancilla oscillator rotates by an amount

that depends on the eigenvalue phase of Sq . Thus, measuring the angle over which the
state |α〉 rotates corresponds to measuring the eigenvalues of Sq . A coherent state |α〉
naturally has an angle uncertainty which gets larger with smaller amplitude |α|, putting

https://doi.org/10.1103/PhysRevA.101.053840
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anα-dependent bound on the accuracy with which one can project onto an eigenstate of
Sq . Clearly, the larger the coherent amplitude is, the better one can resolve its phase and
thus the more bits of information one gets about the eigenvalue phase of the measured
operator Sq .

After the photon-pressure interaction is turned off and the oscillators no longer inter-
act, the state of the ancilla oscillator has to be converted to a traveling signal so that the
quadratures of the rotated coherent state can be read out via the standard “heterodyne”
measurement chain [22], allowing one to determine the phase of the coherent state. We
do not claim any original contribution for such a release mechanism, but discuss known
previous work in Section 5.3.4.

In Section 5.5.1, we formally model the effect of the whole measurement protocol:
In Fig. 5.2, we show the effect of the protocol using a coherent state with mean photon
number n̄ = 3. When integrating the Wigner function of the outgoing state over the p-
coordinate, we obtain the probability distribution over q which is clearly peaked, with
periodicity 2

p
π.

Note that the support of these peaks lies within the uncertainty of the original vac-
uum state: The measurement of Sq does not enlarge the q-support of the input wave-
function, it only applies a modular structure to it. The measurement of Sq does enlarge
the p-support of the input wave-function as is visible from the Wigner function of the
outgoing state. Thus, if we were to follow the measurement of Sq by a measurement
of Sp , we would obtain the signature grid-like Wigner function of an approximate GKP
state. Alternatively, we start with a squeezed state (squeezing in p) and only measure Sq ,
see the bottom row in Fig. 5.2, to obtain a grid-like GKP Wigner function.

5.2.1. GKP QUBIT READOUT
The preparation of a GKP grid state should also be accompanied by a mechanism for
measuring the GKP qubit in the Z or X -basis. A useful fault-tolerant Z -measurement is
a measurement in which the quadrature q is measured so that finding the quadrature
q closer to an even (resp. odd) multiple of

p
π leads to inferring the state

∣∣0〉
(resp.

∣∣1〉
).

A simple method is to use the photon-pressure coupling and replace Sq by the logical
operator Z to nondestructively measure Z . If tcoupl is turned on for half the time, such
that the ancilla oscillator is either not rotated (Z ≈ 1) or rotated by π (Z ≈ −1), then
subsequent release and measurement of the state of the ancilla oscillator will reveal the
eigenvalue of Z . Readout of the Pauli X operator could proceed analogously.

5.2.2. WHY PROBING THE ANCILLA OSCILLATOR’S FREQUENCY REVEALS

THE WRONG INFORMATION
Our scheme is demanding in requiring a high-Q ancilla oscillator (low κc ) whose state
should be measured through a tunable release or switch mechanism (switching to higher
κopen) followed by a circuit-QED heterodyne measurement. The photon-pressure cou-
pling induces a frequency shift in the ancilla oscillator which depends on the quadrature
of the target oscillator. We could imagine measuring such a frequency shift by probing
the ancilla oscillator with a microwave tone as it is done in the standard dispersive mea-
surement in circuit-QED [23], without switching the effective decay rate of the ancilla
oscillator from low to high for state release. Here, we briefly comment on the fact that
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Figure 5.2: Wigner functions of states in the target and ancilla oscillators and probability distribution P(β) over
measurement results of the heterodyne measurement of the ancilla oscillator mode. The initial state of the
ancilla oscillator is the coherent state

∣∣α=p
3
〉

. The measurement result is the one with maximum likelihood
with respect to P(β) (marked by a yellow cross). Top row: Starting with a vacuum state (∆q = ∆p = 1) in the
target mode, a measurement of Sq results in an effective squeezing of the final state of ∆q = 0.18, while ∆p = 1
is unchanged. The final state is most like the GKP |−〉 state for the following reason: We start with a vacuum
state — which is closest to the +1 eigenstate of X . Besides, the measurement result gives an eigenvalue of
Sq close to +1 so we are in the GKP code space. In order to center the outgoing state, we apply an additional

unconditional displacement equal to Z−3 which changes the initial eigenvalue +1 of X to −1. Bottom row: The
initial state in the target mode is a squeezed vacuum state with ∆q = 3 and ∆p = 1/3. The effective squeezing
of the final state ∆p = 1/3 is again unchanged, while ∆q = 0.18 for the outgoing state. The resulting state is
squeezed with respect to both quadratures. Now the final state is close to a GKP |−〉 displaced by half a logical,
i. e. X−1/2, for the following reason. Again, we started with a squeezed vacuum state, which is closest to the
+1 eigenstate of X and the unconditional displacement is Z−3, which changes the eigenvalue to −1. However,
the measurement result now gives an eigenvalue of Sq close to −1, indicating that the state is shifted out of
the code space, by half a logical X . Previously published in D. J. Weigand and B. M. Terhal, “Realizing modular
quadrature measurements via a tunable photon-pressure coupling in circuit QED”, Physical Review A 101,
053840 (2020), licensed under CC-BY 4.0 [21] cb.

this method will not work as we will obtain direct rather than modular information about
the target oscillator quadrature q̂T .

Imagine we would weakly apply a microwave drive to the ancilla oscillator (decay
rate κ) at some frequency ω, starting at some initial time t = 0. Also at time t = 0, we
have turned on the photon-pressure coupling so that the resulting Hamiltonian of an-
cilla and target oscillator is HPP = (ωA + g q̂)â†â in the rotating frame of the target os-
cillator at angular frequency ωT . We can thus view the photon-pressure coupling as an
effective change in the resonance frequency of the ancilla oscillator, which leads to a
phase change of the outgoing field as compared to the incoming field. For simplicity, we
take the weak drive to be modeled by a plane-wave input field bin[ω] at frequencyω. The

https://doi.org/10.1103/PhysRevA.101.053840
https://doi.org/10.1103/PhysRevA.101.053840
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input-output formalism (see e. g. [24, 25]) gives the phase of the reflected output field as

b̂out[ω] = eiϕ(q̂ ,ω)b̂in[ω],

exp(iϕ(q̂ ,ω)) = κ/2+ i(ωA + g q̂ −ω)

κ/2− i(ωA + g q̂ −ω)
.

If we chooseω=ωA , i. e. drive the ancilla oscillator at its resonant frequency, then we will
see that the phase shiftϕ(q̂ ,ωA) goes from −π at large negative eigenvalues q of q̂ to π at
large positive eigenvalues q and displays no periodicity in q since ϕ = 2arctan(2g q̂/κ).
These considerations imply that the modular measurement of q̂ should take place in a
very non-steady state regime where the ancilla resonator is first excited to create the state
|α〉 and decay of this state should be strongly suppressed during the photon-pressure
interaction, as this decay will leak information about q̂ . We discuss the effect of photon
loss in the ancilla oscillator during the interaction in Section 5.8.1.

5.3. CIRCUIT-QED SETUP
In this section, we discuss how a modular quadrature measurement can be realized. We
start with a short review of previous work that realizes a photon-pressure or longitudinal
coupling. We then introduce and analyze an electric circuit that achieves strong cou-
pling. Finally, we discuss how the state in the ancilla oscillator can be released into a
transmission line for readout.

5.3.1. PREVIOUS CIRCUIT-QED WORK ON PHOTON-PRESSURE AND LON-
GITUDINAL COUPLING

When the â-mode of a photon-pressure coupling of the form q̂ â†â is very anharmonic
and is used to represent a qubit, the photon-pressure coupling can be recognized as a
longitudinal coupling q̂(I −Z )/2 with Pauli Z of the qubit. In this incarnation, the qubit
induces a state-dependent displacement on the target oscillator which can be used for
(improved) qubit read-out [26–28]. Note that in such settings the roles of ancilla and
target are reversed as compared to the setting of the GKP code, i. e. the target oscillator
is used for information gathering about the qubit instead of the target oscillator being
used to store a GKP state.

In optomechanical systems, the coupling q̂ â†â, with q̂ the position of the mechani-
cal oscillator and â the annihilation operator of an optical cavity field, is arrived at nat-
urally. In the rotating frame of these oscillators, this coupling averages out without fur-
ther time-dependent driving. In a linearized regime where one expands around a driven
optical field 〈â〉 = α(t ), the coupling can be used to generate an effective beam splitter
interaction with a strength depending on |α|2 [29, 30]. Although there has been a wide
range of experimental setups and studies, the so-called single-photon coupling regime,
g À κA ,κT , i. e. the bare coupling strength exceeds the photon loss rate of both oscilla-
tors, has so far not been achieved [29]. One difficulty is that in a traditional optomechan-
ical setting, the loss rate of the optical oscillator is relatively large, while the mechanical
oscillator, being low in frequency, is susceptible to thermal excitations. Working with two
oscillators both at some middling frequency (GHz range) can resolve this conundrum.
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A good candidate to achieve a single-photon coupling at microwave frequencies is
the so-called simulated optomechanical coupling, where a SQUID loop is used to cou-
ple two oscillators. The coupling of two co-planar waveguide resonators via a SQUID
loop has been analyzed by Johansson et al. [31], two lumped element circuit variants
have been implemented experimentally [30, 32]. We note that the experimental cou-
pling achieved is not in the so-called single photon regime, i. e. the photon loss rate of
the ancilla oscillator is larger than the coupling strength, κ≥ g . It will be necessary to be
in this regime for our use of this coupling.

5.3.2. MECHANICAL ANALOGUE

mT

qT qA

mAkT knl kA

(a)

mT

qT qA

mAkT kA(qT )

(b)

Figure 5.3: Mechanical approximation of a photon-pressure Hamiltonian. The system consists of two (mostly)
independent harmonic oscillators, implemented by the masses mT (mA ) at positions qT (qA ), connected to
immovable walls by springs with constant kT (kA ). (a): The two harmonic oscillators are coupled by a third,
weak and nonlinear spring with a force proportional to knl. (b): In the limit where mT À mA with kT ≈ kA ,
the resonance frequency of harmonic oscillator T is much lower than that of oscillator A. This allows us to
solve the instantaneous potential of oscillator A dependent on the state of oscillator T . If we also assume that
knl ¿ kA ,kT , oscillator T is mostly independent, but the effective spring constant kA (qT ) is now a function of
the position of oscillator T .

The first step to obtain a Hamiltonian of the form of Eq. (5.2) is to achieve a strong
photon-pressure coupling. To illustrate the strategy we use to this end, consider the
sketches in Fig. 5.3. We start with two independent harmonic oscillators, implemented
by the masses mT (mA) at positions qT (qA), connected to immovable walls by springs
with constant kT (kA).

To obtain a photon-pressure coupling, we need to include a coupling in this setup.
To this end, we add a third, nonlinear spring with a force proportional to knl ¿ kA ,kT

coupling the two masses (see Fig. 5.3). Because the mass mT of the target oscillator is
much larger than the mass of the ancilla oscillator mA ¿ mT , this does not change the
Hamiltonian of the target oscillator much. Instead, we can view this coupling as an ef-
fective potential of the ancilla oscillator, where the spring constant of the instantaneous
Hamiltonian kA(qT ) is now a function of the state of the target oscillator, see Fig. 5.3b.
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EJ

CA LA LT CTΦext(t)

Figure 5.4: Electric circuit realizing the photon-pressure coupling. The target oscillator (label T , right) is cou-
pled to the ancilla oscillator (label A, left) via a Josephson junction. The coupling between the ancilla oscillator
and the readout line is tunable, and only turned on during readout. The loop formed by the Josephson junc-
tion and the inductances L A ,LT is threaded by an external flux Φext(t ), which is a classical, time-dependent
variable. Possible implementations of the readout switch are discussed in Section 5.3.4. Previously published
in D. J. Weigand and B. M. Terhal, “Realizing modular quadrature measurements via a tunable photon-pressure
coupling in circuit QED”, Physical Review A 101, 053840 (2020), licensed under CC-BY 4.0 [21] cb.

5.3.3. CIRCUIT ANALYSIS AND APPROXIMATIONS

To achieve the desired photon-pressure coupling in circuit QED, we start with the elec-
tric circuit shown in Fig. 5.4, neglecting the switchable coupling to the external world.
The GKP state will be encoded in the (low-frequency) target oscillator, shown on the
right in the figure. It is coupled via a Josephson junction to an ancilla oscillator shown
in the left. The two oscillators are almost harmonic, with the parameters chosen such
that the instantaneous potential of the ancilla oscillator depends on the current state of
the target oscillator while the potential of the target oscillator is unchanged. The ancilla
oscillator dynamics is thus tracking the lower-frequency, slow and “heavy”, target oscil-
lator dynamics. The change of potential changes the resonance frequency of the ancilla
oscillator depending on the state of the target oscillator, enabling the photon-pressure
coupling. The concept is similar to the approach used by Johansson et al. , where the
effective length of the ancilla slit line resonator depends on the state of the target oscil-
lator [31].

After the interaction between ancilla and target oscillators is turned off, we envision
that a coupling between transmission line and ancilla oscillator is turned on, enabling
fast readout. We note that this electric circuit has also been analyzed (operated in a
different regime with very different parameters as compared to those in Table 5.1) in [33],
with the aim to control individual Fock states as a qubit.

We envision that this circuit is realized as a superconducting lumped element circuit,
using, for example, plate capacitances for getting a large C A and CT , and wire structures
made of superconducting material as inductance (similar to the circuits in [30, 32]).

https://doi.org/10.1103/PhysRevA.101.053840
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Ancilla Oscillator Target Oscillator
Resonance frequency f (GHz) 10 0.5
Frequency range fmax − fmin (MHz) 500 5–10
Capacitance Cm (pF) 0.1–1 50–1000

Charging Energy
ECm

2π (MHz) 20–200 0.02–0.4
Inductance Lm (nH) 0.2–3 0.2–3

Inductive Energy
ELm
2π (GHz) 50–400 50–400

Third-order nonlinearity (∼ q̂3/g ) negl. 10−3–10−2

Self-Kerr (∼ (â†â)
2

, (b̂†b̂)
2

/g ) 50%–100% 10−3–10−2

Targeted oscillator life time 1/κ 100µs (closed), 1µs (open) 100µs
E J
2π (GHz) 5–40
Capacitance C J C J ¿C A

Photon-pressure coupling g
2π (MHz) 3–15

Cross-Kerr (∼ â†â b̂†b̂/g ) 2%–5%
Interaction time tcoupl (µs) 0.2–1

Table 5.1: Targeted parameters of the two oscillators, strength of the photon-pressure coupling g , and various
error terms. The resonance frequency of the oscillators is dependent on the external flux, it is maximal for
xext = π, and minimal for xext = 0. All frequencies except the frequency range fmax– fmin are given as mean
values, i. e. for xext = π/2. The capacitance C J of the Josephson junction is not particularly important, as long
as it is small compared to the capacitance of the ancilla oscillator C A , which is the case e. g. for the junction
designs of the transmon and charge qubits. The photon-pressure coupling strength g is obtained by fixing
the resonance frequency, inductance and Josephson energy for the two oscillators, choosing the capacitance
accordingly and using Eq. (5.12). The capacitance of the Josephson junction was neglected because it is several
orders of magnitude smaller than the capacitance of both oscillators. The nonlinear terms (third-order, self-
and cross-Kerr) are given as a fraction of the coupling strength g because they are only relevant while the drive
is on. Note that the listed values of the self- and cross-Kerr terms are the maximal values in time (not the
echoed-out values). In our modeling, it is assumed that all losses on the ancilla oscillator are due to coupling
to the transmission line. We denote the closed decay rate of the ancilla oscillator as κc and the open decay rate
as κopen, while the decay rate of the target oscillator is denoted as κT . This choice of parameters meets the

condition κc tcoupl|α|2 ¿ 1, ensuring low photon loss during the modular quadrature measurements easily for
n̄ ≈ 2–4. Previously published in D. J. Weigand and B. M. Terhal, “Realizing modular quadrature measurements
via a tunable photon-pressure coupling in circuit QED”, Physical Review A 101, 053840 (2020), licensed under
CC-BY 4.0 [21] cb.

CIRCUIT ANALYSIS

Consider the circuit in Fig. 5.4. The Lagrangian of the circuit in terms of node flux vari-
ables and their time-derivatives is

L = C A
˙̂Φ2

A

2
+ CT

˙̂Φ2
T

2
+ C J

2

(
˙̂ΦA + Φ̇ext(t )− ˙̂ΦT

)2

− Φ̂2
A

2L A
− Φ̂2

T

2LT
+E J cos

(
2π

Φ0

[
Φ̂T − Φ̂A −Φext(t )

])
.

Here,Φ0 is the magnetic flux quantum andΦext(t ) is a classical, time-dependent flux due
to an external field. Deriving the Hamiltonian from the Lagrangian in the standard way,

https://doi.org/10.1103/PhysRevA.101.053840
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one arrives at

H = 1

2

CT Q̂2
A +C AQ̂2

T +C J
(
Q̂ A +Q̂T

)2 −C J Φ̇ext(t )
(
2CT Q̂ A −2C AQ̂T +C ACT Φ̇ext(t )

)
C J CT +C J C A +C ACT

(5.4)

+ Φ̂2
A

2L A
+ Φ̂2

T

2LT
−E J cos

(
2π

Φ0

[
Φ̂T − Φ̂A −Φext(t )

])
.

When we quantize this Hamiltonian, we have conjugate-variable commutation relations
[Φ̂i ,Q̂ j ] = iδi j (with i , j = T, A) between the flux and charge variables of the target and
ancilla systems. Both flux and charge operators have eigenvalues inR.

In the following, we use that the capacitances of both oscillators are much larger than
the capacitance of the Josephson junction, i. e. CT ,C A À C J . Up to first order in C J , the
Hamiltonian is then given by:

H = Q̂2
A

2C A
+ Q̂2

T

2CT
− C J

2

(
Q̂ A

C A
− Q̂T

CT

)2

−C J Φ̇ext(t )

(
Q̂ A

C A
− Q̂T

CT
+ Φ̇ext(t )

2

)
+ Φ̂2

A

2L A
+ Φ̂2

T

2LT
−E J cos

(
2π

Φ0

[
Φ̂T − Φ̂A −Φext(t )

])
.

We will neglect the terms ∝ Φ̇ext(t ) from now on, as they will be dropped with the rotat-

ing wave approximation: With the drive of interest, see Section 5.4.1, Φ̇ext(t ) ∼ (−1)

⌊
ωT t
2π

⌋
,

such that both Q̂ A ,Q̂T will oscillate quickly and can be neglected, even with a time-
dependent drive. The time derivative of the external flux is simply an energy shift, and
will also be neglected as it does not change the system dynamics. To simplify notation,

we define dimensionless conjugate variables x̂i = 2πΦ̂i
Φ0

, ŷi = Φ0Q̂i
2π , with [x̂i , ŷi ] = iδi j and

a dimensionless variable

xext(t ) = 2πΦext(t )

Φ0
,

for the flux drive. We also define the charging energies ECm = e2

2Cm
and inductive energies

ELm = 1
4e2Lm

for m = T, A, where e is the elementary charge, so that

H = 4EC A

(
1− EC A

EC J

)
ŷ2

A +4ECT

(
1− ECT

EC J

)
ŷ2

T +U (x̂A , x̂T ), (5.5)

with

U (x̂A , x̂T ) = EL A x̂2
A

2
+ ELT x̂2

T

2
−E J cos(x̂T − x̂A −xext(t )) . (5.6)

We note that the effect of the time-dependent flux-drive xext(t ) can also be realized with
a microwave drive, see details in Section 5.4.2. Again, note that this Hamiltonian acts in
the same way on the target and ancilla oscillators (as can also be seen from the circuit
itself). This can be solved with a suitable choice of system parameters, see Table 5.1.
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PHOTON PRESSURE HAMILTONIAN

Next, we expand the potential Hamiltonian, using that both x̂A and x̂T will be close to
the minimum of their respective potentials, because EC A ¿ EL A and ECT ¿ ELT (see
Table 5.1). Furthermore, these minima will be close to zero, (x̂A , x̂T ) = (0,0), because the
inductive energies EL A ,ELT À E J . Note that the minimum of the cos() potential is not
exactly at x̂A = 0, x̂T = 0, as the exact location of the minimum depends on xext(t ). We
discuss this approximation in more detail in Section 5.8.4. This expansion up to fourth
order yields

U (x̂A , x̂T ) ≈ EL A x̂2
A

2
+ ELT x̂2

T

2
+E J sin(xext(t ))

(
x̂T − x̂A + x̂2

T x̂A − x̂2
A x̂T

2
+ x̂3

A − x̂3
T

6

)

+E J cos(xext(t ))

(
x̂A x̂T − x̂2

T + x̂2
A

2
+ x̂2

A x̂2
T

4
− x̂3

A x̂T + x̂A x̂3
T

6
+ x̂4

T + x̂4
A

24

)
.

We can already see the desired coupling term, E J sin(xext(t ))x̂2
A x̂T /2. However, there are

multiple undesired additional interactions. In addition, it is obvious (from the electric
circuit itself) that the Hamiltonian acts the same way on target and ancilla oscillator.
As will be seen in the following, a suitable choice of parameters addresses both these
questions. We first define effective (flux-dependent) inductive and capacitive energies
for both systems:

ẼLm (xext(t )) = ELm −E J cos(xext(t )), ẼCm = ECm

(
1− ECm

EC J

)
≈ ECm , (5.7)

where the approximation comes about as C J ¿ Cm for m = A,T . In addition, we de-
fine the flux-dependent frequency, and creation and annihilation operators for the two
coupled oscillators:

ωm(xext(t )) =
√

8ẼC j ẼLm (xext(t )), ξm =
(

2ẼCm

ẼL j

)1/4

, (5.8)

x̂A = ξA(â† + â), x̂T = ξT (b̂† + b̂),

ŷ A = i
1

2ξA
(â† − â), ŷT = i

1

2ξT
(b̂† − b̂).

All uncoupled quadratic terms in H in Eq. (5.5) can be put together to give a term pro-
portional to ωA â†â +ωT b̂†b̂, setting the oscillator frequencies.

In order to achieve the desired asymmetric coupling, we assume that ξA À ξT . Be-
cause the inductance of both systems is assumed to be comparable, this implies that
ωA ÀωT , see Table 5.1. In the final step, we also go to the rotating frame of both oscilla-
tors (at their frequenciesωm) and use the rotating wave approximation, i. e. we only keep
terms which are inherently time-independent or which are flux-dependent and oscillate
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with frequency ωT :

HRWA = E J cos(xext(t ))

[
ξ2

Aξ
2
T

2

(
â†â + b̂†b̂ +2â†âb̂†b̂

)
+ξ

4
A

4

(
â†a +

(
â†â

)2
)
+ ξ4

T

4

(
b̂†b̂ +

(
b̂†b̂

)2
)]

+E J sin(xext(t ))

[
ξT

(
1− ξ2

A

2
−ξ2

A â†â

)(
b̂†eiωT t + b̂e−iωT t

)
−ξ

3
T

6

(
b̂†eiωT t + b̂†b̂

(
b̂†eiωT t +2b̂e−iωT t

)
+h.c.

)]
. (5.9)

The ξ3
T term comes about by writing x̂3

T in terms of annihilation and creation operators,
and neglecting the parts rotating at frequency 3ωT . We then approximate this Hamil-
tonian using ξA ,ξT ¿ 1, dropping all fourth-order terms in ξi . We also assume that the
system parameters are chosen such that ξA À ξT , allowing to also omit the ξ3

T term. Be-
cause the inductance of both systems is assumed to be comparable, this implies that
ωA À ωT , see Table 5.1. With these approximations, the Hamiltonian coupling on the
target and ancilla oscillators with the drive turned on is given by

HRWA ≈ E J sin(xext(t ))

[
ξT

(
1− ξ2

A

2

)(
b̂†eiωT t + b̂e−iωT t

)
−ξT ξ

2
A â†â

(
b̂†eiωT t + b̂e−iωT t

)]
.

(5.10)

Although the prefactor ξ3
T is small, this term is still relevant because it will be made

resonant by any drive that enables a photon-pressure coupling in the rotating frame.
In Section 5.8.5, we will explicitly discuss the effect of the ξ3

T term. Modulo its time-
dependence, the first term of this final Hamiltonian is a known displacement that com-
mutes with the photon-pressure coupling, the second is the traditional photon-pressure
coupling Hamiltonian ∼ â†â(b̂†eiωt + b̂e−iωt ) similar to the coupling in [30, 31].

If the external flux is set to some constant xext,0, only the time-independent terms
remain in Eq. (5.9) and the resulting Hamiltonian is given by

Hoff ≈ E J cos(xext,0)

[
ξ2

Aξ
2
T

2

(
â†â + b̂†b̂ +2â†âb̂†b̂

)
+ξ

4
A

4

(
â†â +

(
â†â

)2
)
+ ξ4

T

4

(
b̂†b̂ +

(
b̂†b̂

)2
)]

. (5.11)

We note that there is no photon-pressure coupling between the two modes if the external

flux is constant, the only remaining non-linear terms are self-Kerr (∼ (â†â)
2

, (b̂†b̂)
2

) and
cross-Kerr (∼ â†âb̂†b̂). The dependence of the Hamiltonian on xext,0 means that these
unwanted interactions can be turned off by setting xext,0 = π/2 i. e. Φext = Φ0/4. When
the photon-pressure coupling should be on and xext is changing over time, we do not
wish to have these self-Kerr and cross-Kerr terms. We will take a flux drive so that xext(t )
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oscillates periodically around π/2 and this then directly leads to the terms proportional
to cos(xext(t )) averaging out, see Section 5.4.1 and Fig. 5.5.

To turn the photon-pressure coupling on, we assume a drive such that sin(xext(t )) =
cos(ωT t )3. At first glance, such a drive seems to be difficult to achieve, as it would require
a steadily increasing flux. However, one can use the symmetry of the sine around π/2 to
obtain an oscillating function. The drive is in fact a triangle wave with frequencyωT /2 ∼
250MHz, an excellent approximation can easily be generated with standard equipment,
see details in Section 5.4.1. We insert this drive choice in Eq. (5.10) and drop all terms
which remain time-dependent to obtain the desired Hamiltonian

Hon ≈ E J

2
ξT

(
1− ξ2

A

2

)
(b̂† + b̂)− g â†â(b̂† + b̂). (5.12)

where we defined the photon-pressure coupling strength g = 1
2 E JξT ξ

2
A . We note that,

besides the photon-pressure coupling, the Hamiltonian contains an additional displace-
ment on the target oscillator. Since the displacement commutes with the coupling, it
does not alter the effect of the coupling and can be seen a systematic error on the target
oscillator which can be undone by a counter-displacement.

The Hamiltonian in Eq. (5.12) can be easily adjusted to a photon-pressure coupling
with any rotated quadrature by choosing an appropriate offset between external flux and
the target oscillator. For example, the choice xext,sin(t ) = xext(t + π

2ωT
) generates a Hamil-

tonian of the form H ∼ iâ†â(b̂† − b̂).
The Hamiltonian Hon realizes UPP = S â† â

q (modulo the unconditional displacement),
where the photon number operator only has non-negative eigenvalues. Therefore, if we
view this interaction as an ancilla-oscillator dependent displacement on the target os-

cillator, all displacements S â† â
q point in the same direction, and the post-measurement

state in the target oscillator will be off-center in phase space and contain an unnecessar-
ily high number of photons.

In order to reduce the photon number, one can apply a displacement drive such that

the unconditional displacement during the interaction is S
−〈

â† â
〉

/2
q = Z−〈

â† â
〉
. The idea

is the same as for phase estimation when using qubits as ancillas, see [13]. We use such a
counter-displacement in all numerical simulations in this chapter. One thing to observe
is that the frequency of the ancilla (and to a lesser amount the target) oscillator depends
on the flux drive through Eq. (5.8). Hence, we are working in a flux-dependent rotating
frame which has to be carefully tracked (in order to read out the phase of the ancilla
oscillator and do additional counter-displacements on the ancilla oscillator). In some
settings, it might be desirable to use a drive

sin(xext)(t ) = 1−δ+δcos(ωT t ),0 < δ≤ 1.

It is possible to do so, and a drive with δ< 1 is easier to generate, but this costs some cou-
pling strength, see Section 5.4.1 for details. We will use the maximal possible coupling
strength i. e. δ= 1 unless mentioned otherwise.

3In principle, ωT also depends on the external drive. This dependence is quite small, but it is also possible to
include this effect in the external drive xext(t ).
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The values for resonance frequency, coupling strength and the leading order error
terms for a typical setup are given in Table 5.1. In order to maximize the coupling strength,
it is beneficial to reduce the Josephson energy while simultaneously increasing the in-
ductances of both circuits in order to keep E J ¿ ELm . Furthermore, it is beneficial to
make the inductance of the target oscillator smaller than that of the ancilla oscillator:
The ratio between the third-order nonlinearity and the photon-pressure coupling strength
is proportional to the ratio of the inductances. For a Josephson energy around 10 GHz
and an inductance of the ancilla oscillator around 2 nH, a coupling strength g /(2π) well
above 10 MHz can be achieved. Note that the Kerr and cross-Kerr effects on both os-
cillators might be large during the interaction due the cos() term in Eq. (5.9), however
the term oscillates in sign due to the drive and will therefore be echoed out (see Sec-
tion 5.4.1).

5.3.4. RELEASE OF ANCILLA OSCILLATOR STATE

In order to meet both the demands of fast read-out and low photon loss, it is desirable to
be able to effectively turn the ancilla oscillator decay rate from low to high. There are a
few ways to achieve this, for example with a tunable inductive coupling [34], a frequency
tunable oscillator [35] a pump-tunable beam splitter to a lossy oscillator [36] or a para-
metric coupler [37]. Note that most of these references work towards catch and release
schemes, hence if the tunable coupling is simply used for readout the achieved fideli-
ties can be expected to be larger. In particular, the Q-switch scheme in [36] in which a
pump mode is used to temporally frequency-match the ancilla oscillator with a lossy os-
cillator seems attractive. In this work, the ratio between the closed and open decay rates
is about 1000: The authors decrease the effective life-time of an oscillator from about
0.5ms to 0.5µs, with efficiency exceeding 98%. The paper reports that the coherence and
phase of oscillator states with up to 5 photons can be well resolved.

In the protocol presented here, it is also possible to use the fact that the ancilla os-
cillator has a tunable frequency. If a lossy fixed-frequency oscillator is placed between
transmission line and ancilla mode, the ancilla mode can be brought into resonance
with it, increasing its decay rate. Note that this idea is as in Ref. [35], but reversing the
roles of the frequency-tunable and fixed-frequency oscillator. The lossy oscillator thus
needs to be off-resonant with ancilla mode, effectively acting as a Purcell filter, except
during readout. An advantage of this approach is that it does not require any further
circuit elements. As an example, consider an ancilla oscillator with properties as in Ta-
ble 5.1. In this case, the resonance frequency is between f (xext = 0) = 9.75 GHz and
f (xext = π) = 10.25 GHz. If the lossy resonator has resonance frequency 9.75 GHz and
we want lossy oscillator and ancilla oscillator to be separated by at least 250 MHz, we
require that π/2 ≤ xext ≤ π. This can be achieved by modifying the drive during the in-
teraction, see Section 5.4.1. After the interaction time, we set the external flux to xext = 0
in order to bring the ancilla oscillator into resonance with the lossy oscillator.

5.4. PARAMETRIC FLUX DRIVE

A key component to achieve a photon-pressure coupling in the rotating frame is a suit-
able flux drive that cancels the time-dependence of a Hamiltonian in the rotating frame.
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In the following, we discuss how this drive can be achieved, and show how a microwave
drive could be used instead of a flux drive.

5.4.1. PARAMETRIC FLUX DRIVE
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Figure 5.5: Left: The external drive xext(t ) required to obtain a photon-pressure coupling in the rotating frame,
see Eq. (5.13). As can be seen, the lowest frequency component of xext(t ) isωT /2. The starting point of xext(t =
0) =π/2 corresponds to the “off” setting where the target and ancilla oscillators are completely decoupled. The
solid and dashed lines correspond to choosing the drive with a positive or negative sign, xext,±(t ), respectively.
Right: The prefactor cos(xext(t )) of the self- and cross Kerr terms in Eq. (5.9). The function is periodic and
changes sign with frequency ωT . Purple: Drive required to obtain the maximum coupling strength i. e. δ = 1.
The drive corresponds to a triangular wave. Green: The coupling strength is reduced to δ= 0.5. In this case, the
drive is close to a simple cosine. Previously published in D. J. Weigand and B. M. Terhal, “Realizing modular
quadrature measurements via a tunable photon-pressure coupling in circuit QED”, Physical Review A 101,
053840 (2020), licensed under CC-BY 4.0 [21] cb.

To achieve the desired photon-pressure coupling from Eq. (5.2), it is necessary to de-
sign an appropriate time-dependence of xext(t ) in Eq. (5.10) such that the phases e±iωT t

in that equation cancel. The idea is similar to the case of qubit readout, [26–28], but here
we can use that the frequency of the target oscillator is relatively small in order to maxi-
mize the coupling strength, which is not the case for qubit readout. Furthermore, we can
use a flux drive with an amplitude of 2π, cancelling the anharmonicity of both oscillators
(something which is undesired in the case of qubit readout).

To this end, we consider a flux drive such that sin(xext(t )) = (1−δ)+δcos(ωT t ), where
0 < δ < 1 is a freely chosen constant which serves to reduce the amplitude of the flux
drive. Scenarios where this is desirable are, for example, if a lossy resonator is used to
implement the tunable coupling, or if the range of resonance frequencies should be lim-
ited. One can easily verify that either drive

xext,±(t ) = π

2
± (−1)

⌊
ωT t
2π

⌋
arcsin(1−δ+δcos(ωT t )) (5.13)

satisfies that condition. For δ= 1, we can also see that

cos(xext,±(t )) =±(−1)

⌊
ωT t
2π

⌋
|sin(ωT t )|,

https://doi.org/10.1103/PhysRevA.101.053840
https://doi.org/10.1103/PhysRevA.101.053840
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Figure 5.6: Amplitude |bn | of the first four harmonics with frequency ωn of the Fourier series of either drive
xext,±(t ), see Eq. (5.13). Purple: Maximal coupling strength (δ = 1), Blue: δ = 0.5, Green δ = 0.1. For δ = 0.5,
it is sufficient to use only two harmonics in order to achieve a relative error below 1%. Previously published
in D. J. Weigand and B. M. Terhal, “Realizing modular quadrature measurements via a tunable photon-pressure
coupling in circuit QED”, Physical Review A 101, 053840 (2020), licensed under CC-BY 4.0 [21] cb.

corroborating the claim that the even order terms in Eq. (5.10) cancel. Although this
drive seems to be very complex, this function can be easily synthesized with a small
number of harmonics. In fact, the most complex possible drive (using the full flux range
for maximal coupling strength, δ = 1) yields a triangular wave which rolls off with the
inverse harmonic number squared:

xext,+(t ) = π

2
− 8

π

∞∑
n=0

(−1)n

(2n +1)2 sin

(
2n +1

2
ωT t

)
.

Although the Fourier series of the drive does not have such a simple solution for δ< 1, it
can be well approximated numerically, using xext,±(t ) =π/2±∑∞

n=0 bn sin((2n +1)ωT t/2).
The amplitude |bn | of the Fourier series of the drive is shown in Fig. 5.6. As can be seen
there, the roll off is fast, such that two harmonics are in many cases a sufficient approxi-
mation. In addition, the period 4π

ωT
of this drive is rather long, as the resonance frequency

ωT is typically in the regime ∼ 500 MHz, see Table 5.1. Due to the requirement that the
resonance frequency of the ancilla oscillator should not exceed ∼ 10 GHz, while there
needs to be a separation of scales ωA À ωT and ωT should not be too small to avoid
thermal excitations, this frequency range is not expected to change much for different
setups. As an estimate for the most complex case with δ= 1, the total error for a standard
arbitrary waveform generator with 2.4 Gigasamples per second without any corrections
to the signal is expected to be around 0.5%. Using either drive from Eq. (5.13), neglecting
all terms rotating with frequency ωT or above, the effective Hamiltonian from Eq. (5.10)
yields the desired interaction:

Hon ≈ δE JξT

2
(b̂† + b̂)− g (b̂† + b̂)(2â†â +1), (5.14)

with the coupling strength g = δ
2 E JξT ξ

2
A .

https://doi.org/10.1103/PhysRevA.101.053840
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5.4.2. USE OF A MICROWAVE DRIVE
In most experimental settings, it is preferable to use a microwave drive instead of a time-
dependent flux. Here, we show how such a microwave drive can be used, employing a
similar method as Touzard et al. in [26].

Consider again the Hamiltonian from Eq. (5.5), with the potential from Eq. (5.6) and
a classical field yext(t )eiωd t capacitively coupled to the ancilla oscillator. Here, the phase
eiωd t indicates the lowest frequency term of the external drive, see Section 5.4.1 for de-
tails. The system Hamiltonian is then given by

HCC = 4EC A

(
1− EC A

EC J

)
ŷ2

A +4ECT

(
1− ECT

EC J

)
ŷ2

T + i

2
ŷ Aℑ

(
yext(t )eiωd t )

+ EL A x̂2
A

2
+ ELT x̂2

T

2
−E J cos(x̂T − x̂A −π/2) ,

where the flux xext has been set to a constant value of π/2. If we express this in terms of
annihilation and creation operators, and collect all uncoupled quadratic terms into the
harmonic part of the Hamiltonian, we have

HCC =ωA â†â +ωT b̂†b̂ −E J ˜cos
(
ξT (b̂† + b̂)−ξA(â† + â)−π/2

)
− 1

4ξA
(â† − â)

(
y∗

ext(t )e−iωd t − yext(t )eiωd t ) .

Here, we use a notation analogous to Touzard et al. [26] and ˜cos indicates that the second

order terms ξ2
A(b̂† + b̂)

2
/2 and ξ2

T (b̂† + b̂)
2

/2 of the cosine have already been absorbed in
the harmonic part of the Hamiltonian. Using the substitution â′ = â + 1

4ωAξA
yext(t )eiωd t ,

we get

HCC =ωA â′†â′+ωT b̂†b̂ − 1

4ξA

(
â′† y∗

ext(t )e−iωd t + â′yext(t )eiωd t
)

−E J ˜cos

(
ξT (b̂† + b̂)−ξA(â′† + â′)−π/2− 1

2ωA
ℜ(

yext(t )eiωd t )) .

The potential is again of the same form as Eq. (5.6) (if we were to write HCC in terms
of x̂m , ŷm again), where the microwave drive ℜ(yext(t )eiωd t )/(2ωA) takes the role of the
flux drive xext(t ). Note that there is an additional displacement acting on the ancilla
oscillator (â′†, â′). If we go to a rotating frame and use the rotating wave approximation,
this drive will vanish because it is very far off resonant (see Section 5.4.1). Note that this
step means that a microwave drive can only be used to obtain an oscillating drive, in
order to obtain a constant offset, it is still necessary to use a (constant) flux drive, hence
why we set xext =π/2 in the beginning.

5.5. MODELING THE MODULAR QUADRATURE MEASUREMENT
In this section, we derive the effective squeezing due to the measurement protocol, av-
eraged over all possible measurement outcomes, as a function of the number of photons
in the ancilla oscillator. Our measurement model could be made more precise by in-
cluding a description of the release mechanism discussed in Section 5.3.4, but this does
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not change the main idea as long as the coherent state is heterodyne-measured at the
end. In Section 5.6, we look at another aspect of the actual measurement as it is per-
formed in the circuit-QED lab, namely the measurement outcome is only obtained as a
time-integrated process on outgoing radiation which is leaking out of the lossy oscillator
(which is in turn coupled to oscillator A via the switch discussed in Section 5.3.4). We
verify that using the correct time-integration filter leads to no additional noise resulting
in the same effective squeezing.

5.5.1. EFFECTIVE SQUEEZING
We will analyze a measurement of the Sq stabilizer using the photon-pressure interac-
tion UPP in Eq. (5.3). A similar measurement of Sp will commute with the measurement
of Sq and will have identical features.

After the photon-pressure interaction with the target oscillator the goal is to measure
the Husimi Q-function Q(β) = 1

π

〈
β
∣∣ρ ∣∣β〉

of the ancilla oscillator in single-shot fash-
ion [22]. Such a “heterodyne” measurement of an oscillator can be modeled as a pro-
jective measurement in the overcomplete basis of coherent states [24]. The resulting
coherent amplitude β has a real ℜ(β) (∝ “I”) and imaginary part ℑ(β) (∝ “Q”) and will
leave some target oscillator state ρβ. Using this measurement outcome β = |β|exp(iϕ),
one infers that the eigenvalue of Sq is exp(iϕ). The uncertainty in this phase is captured
by the phase variance which relates directly to the effective squeezing of Sq .

We assume that the initial state of the ancilla oscillator is a coherent state |α〉 with
α ∈ R. If we would apply a heterodyne measurement directly to a coherent state |α〉, we
expect that its outcome β ∈C will be concentrated around α. In our scenario, when we
apply such a measurement after the interaction UPP, we obtain a measurement operator
Mβ ≡ Mβ(α) corresponding to measurement result β as

Mβ(α) = 1p
π

〈
β
∣∣

A UPP |α〉A .

We can evaluate the measurement operator explicitly, using that
〈
β
∣∣α〉 = exp(− 1

2 |α−
β|2)exp( 1

2 (β∗α−βα∗)), giving

Mβ =
1p
π

〈
β
∣∣αei2

p
πq̂T 〉

= 1p
π

exp

(
α

2

(
β∗ei 2

p
πq̂ −βe−i2

p
πq̂

)
− 1

2

∣∣∣αei2
p
πq̂ −β

∣∣∣2
)

.

When we apply this to an initial input state ρin in the target oscillator, the output state
will be ρβ = MβρinM †

β
/P(β). The probability for outcome β with the state

ρin =
Ï
R2

dq dq ′ ρin(q, q ′)|q〉〈q ′|

as input is given by

Pρin (β) = Tr
(
M †
β

Mβρin

)
=

∫
R

dq ρin(q, q)exp
(
−|αe i2

p
πq −β|2

)
, (5.15)
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showing that β is concentrated around the rotated α. Figure 5.2 shows this probability
Pvac(β), starting with n̄ = |α|2 = 3 and ρin the vacuum state. It also shows the Wigner
function of the resulting state ρβ for which Pvac(β) is maximal. Using the definition ϕ≡
arg(β), an alternative way of writing Mβ is

Mβ =
1p
π

e−
1
2 (|α|2+|β|2) exp

(
K|β|

2
ei(2

p
πq̂−ϕ)

)
, (5.16)

defining the concentration parameter

K|β| = 2|αβ|. (5.17)

This leads to

M †
β

Mβ =
1

π
e−|α|

2−|β|2 exp
(
K|β| cos(2

p
πq̂ −ϕ)

)
. (5.18)

Because the measurement outcome is random, we are interested in the mean effective
squeezing of the final state ρβ, averaged over all possible outcomes β. This is hard
to compute in the general case, although it can easily be evaluated numerically, see
Fig. 5.7. The details of the numerical simulations and an error analysis are presented in
Appendix A.1.3. Analytically, even for a vacuum state input, the computation of the mean
effective squeezing 〈∆q 〉 =

∫
Cd2β∆q (ρβ) is non-trivial. For this reason, we consider the

mean or average sharpness which equals |Tr(Sqρβ)| averaged over different outcomes β,
that is, we focus on estimating

〈|Tr(Sq )|〉 ≡
∫
C

d2βP(β)|Tr(Sqρβ)|. (5.19)

It should be observed that
∫
Cd2β |Tr(Sqρβ)| 6= |∫Cd2β Tr(Sqρβ)| = |Tr(Sqρin)| as Tr(Sqρβ)

is complex.
For the special case where the initial state is the vacuum state, it is possible to evalu-

ate Eq. (5.19) explicitly. In this case, we have

〈|Tr(Sq )|〉 ≈
∫ ∞

|β|c
d|β| e−π

π
√

2K|β|π
e−(|α|−|β|)2

×
∫ π

−π
dϕ

∣∣∣ϑ3

(
iπ− ϕ

2
,e−π−1/(2K|β|)

)∣∣∣ , (5.20)

see Section 5.7 for the derivation. Combining this result with the expression for ∆q , we
obtain the blue curve in Fig. 5.7.

5.5.2. MEASUREMENT SQUEEZING STRENGTH
If the initial state in the target oscillator is arbitrary, it is not possible to analytically eval-
uate the mean sharpness in Eq. (5.19). Moreover, we are interested in a quality measure
of the measurement protocol which is independent of the initial state. To address this,
we can use that the parameter K|β| has a very simple relation to the effective squeezing.
If we assume an (unphysical) uniform distribution over q as initial state, then the final
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Figure 5.7: Purple: We numerically simulate the average amount of squeezing ∆q (see Eqs. 5.1) obtained using

a coherent state |α〉 with n̄ = |α|2 photons to measure Sq on a vacuum input state. In more detail, we generate
a β and ρβ and calculate ∆q (ρβ), the error bars indicate the standard deviation over different measurement
results β. Blue: Mean effective squeezing estimate according to Eq. (5.20), using the Villain approximation to
evaluate the expectation value for the sharpness on a vacuum state. Green: A simple approximate expression

for the mean effective squeezing is
〈
∆q

〉 ≈ 1/
√

4π|α|2. Yellow: A lower bound on the green curve which re-

places the average value 〈|β|〉 by
√
〈|β|2〉. Overall, the mean squeezing parameter goes down as 1/

p
n̄ where n̄

is the average number of photons in the ancilla state used to implement the modular q-measurement. Previ-
ously published in D. J. Weigand and B. M. Terhal, “Realizing modular quadrature measurements via a tunable
photon-pressure coupling in circuit QED”, Physical Review A 101, 053840 (2020), licensed under CC-BY 4.0 [21]
cb.

state of the protocol will be of the form
∣∣ψβ

〉∝ ∫
Rdq Mβ

∣∣q〉
. Using Eq. (5.18), we see that

the outgoing wave function has probability distribution P(q) ∝ M †
β

Mβ, proportional to

a von-Mises probability density PV M (x) with angle variable x = 2
p
πq mod 2π, mean

ϕ and concentration K|β|. The variance of the von-Mises distribution is approximately
1/K|β| for large K|β|. If we convert this to an effective squeezing in q , we therefore have
∆q ≈√

1/(2πK|β|).
Because the average concentration is given by 〈K|β|〉 = 2α〈|β|〉 due to Eq. (5.17), com-

puting the expected value for |β| gives a measure of how effectively squeezed the outgo-
ing state will be. To estimate 〈 f (|β|)〉 where f (x) is some function, we note the following
useful property which we prove as a lemma:

Lemma 5.5.1. The input state in the target cavity ρin does not influence the expectation of
any function f (|β|) whereβ is the outcome of (heterodyne)-measuring in the ancilla mode
in an overcomplete coherent basis.

Proof. For a general input state ρin, we have:

〈 f (|β|)〉 =
∫
C

d2βPin(β) f (|β|)

=
∫ ∞

0
d|β| |β| f (|β|)

∫ π

−π
dϕPρin (|β|eiϕ)

=
∫ ∞

0
d|β| |β| f (|β|)

∫ π

−π
dϕ Tr(M †

β
Mβρin).

https://doi.org/10.1103/PhysRevA.101.053840
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We can use the Jacobi-Anger expansion

exp(iz cos(θ)) = ∑
n∈Z

in Jn(z)e inθ

= J0(z)+2
∞∑

n=1
in Jn(z)cos(nθ),

where Jn(z) is the Bessel function of the first kind and using J−n(z) = (−1)n Jn(z). The
modified Bessel function of the first kind In(z) is defined as In(z) = i−n Jn(iz) and it fol-
lows that exp(b cos(x)) =∑

n∈Z In(b)exp(inx) where In(b) is the modified Bessel function
of the first kind of order n. We can then use Eq. (5.18) to write∫ π

−π
dϕ Tr(M †

β
Mβρin) = 1

π
e−|α|

2−|β|2

× ∑
n∈Z

∫
dq ρin(q)In(Kβ)ein2

p
πq

∫ π

−π
dϕ e−inϕ. (5.21)

The integral over ϕ leads to n = 0 being the only surviving term in
∑

n∈Z, thus removing
all dependence on ρin in the integral over q . Hence

〈 f (|β|)〉 = 2e−|α|
2
∫ ∞

0
d|β| |β| f (|β|)e−|β|

2
I0(Kβ), (5.22)

independent of ρin.

Equation (5.22) allows us to get an expression for 〈|β|〉 as

〈|β|〉 = 2e−|α|
2
∫ ∞

0
d|β| e−|β|

2 |β|2I0(2α|β|)

=
p
π

2
e−|α|

2/2
[

I0

( |α|2
2

)
+ α2I0

( |α|2
2

)
+α2I1

( |α|2
2

)]
, (5.23)

which for α ≥ p
2 is virtually indistinguishable from 〈|β|〉 ≈ α, as expected. Therefore,

the expected effective squeezing can be approximated as 〈∆q 〉 ≈ 1/
√

4π|α|2 as plotted in
Fig. 5.7. Fluctuations around this expected value are determined by

〈|β|2〉 = 2e−|α|
2
∫ ∞

0
d|β| e−|β|

2 |β|3I0(2α|β|)

= 1+|α|2, (5.24)

so that Var(|β|) = 〈(|β|−〈|β|〉)2〉 ≈ 1. Since 〈|β|〉 ≤
√
〈|β|2〉, we can also use a squeezing

lower bound which reads
√

1/(4π|α|
√

1+|α|2) using that 〈|β|2〉 = 1+|α|2.
As expected, these statistics are identical to that of a direct overcomplete measure-

ment in the coherent basis applied to a state |α〉, i. e. without any coupling to a target
oscillator. The only dependence on ρin is found in the phase ϕ. Figure 5.7 shows that
these state-independent bounds are in good agreement with numerics as well as our
analytical approximation when the input state is the vacuum state. In conclusion, the
amplitude of the measurement result |β| correlates with the accuracy of the measure-
ment, the phase gets more precisely resolved the larger the measured coherent state is.
Thus, the expectation value

〈|β|〉 gives an indirect, but easily accessible way to estimate
the effective squeezing by the measurement.
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5.6. HETERODYNE MEASUREMENT VIA RELEASE OF COHERENT

OSCILLATOR STATE INTO A TRANSMISSION LINE

Here, we model the gradual release of the cavity state into a mobile wave packet traveling
over a 1D transmission line or waveguide by an effective model. Our goal is to verify that
the integration of a heterodyne measurement signal on small coherent states released
over time can effectively give the same measurement operator as the direct heterodyne
measurement of Section 5.5.1. This is not immediately obvious. Given a long enough
measurement time tmeas, even if all photons in the oscillator are eventually measured to
determine the angle, there are two combining features which could make such a mea-
surement fundamentally more noisy than a direct heterodyne measurement and hence
leading to less effective squeezing. Firstly, the instantaneous measurement is applied
to a small coherent state, i. e. the one that arrives during a small interval in time, which
has large angle uncertainty. Secondly, the overall output of the measurement is only a
weighted integration of the heterodyne signal obtained from each small coherent state,
i. e. we assume that we gain no knowledge of the individual trajectory of outcomes, but
only integrate (using a filter) their values in time, see Eq. (5.25) below (although one
could go beyond this and look at full trajectories, see [38, 39]). Note that in this effective
model we do not include additional losses nor the amplification step in the measure-
ment chain as we discuss their effect in Section 5.8.3. Naturally, due to the sequence of
amplifiers and bringing the signal up to room temperature electronics, the actual states
which are measured are not small coherent states, but classical voltage signals, but their
quantum fluctuations are frozen in as classical noise.

In our analysis, we also do not include a spurious photon-pressure coupling (and
hence a possible rotation) to the target oscillator during the release of the state in the
ancilla oscillator. Naturally, if the oscillator state is further rotated while it is also being
released, then this is likely to lead to additional noise in the measurement as the to-be-
measured-phase is changing in each of the weak measurements in sequence.

Our model is that of a sequence of N beam splitter interactions with coupling strength√
δt ×κopen between the ancilla oscillator and individual “measure” modes j = 0,1, . . . ,

J − 1 which are each initialized in a vacuum state. For a non-tunable fixed set-up, the
decay rate κopen is determined by the capacitive coupling between ancilla oscillator and
transmission line and enters a more complete Hamiltonian description of such an inter-
action, see e. g. Appendix A in [25]. When one uses a switch mechanism as in [36], one
can use an effective decay rate κopen = 4λ2/κout when λ¿ κout where λ is the strength
of the beam-splitter coupling to the lossy oscillator and κout is the decay rate of the lossy
oscillator (set by its coupling strength to some transmission line, co-planar wave guide
or co-axial cable hosting 1D continuous traveling modes).

The idea is that one has a beam-splitter interaction between oscillator mode and
transmission line mode localized at a point in space: This interaction puts some of the
coherent amplitude in this spatial mode which due to the transmission-line Hamiltonian
propagates away at (speed of light) velocity v , returning the local spatial mode to the
vacuum, see Appendix E, Section 2 pp. 73–77 in [40] for this perspective of the interaction
of a (cavity) oscillator with the bath modes on the transmission line. Hence, the measure
mode j will model the state that one can measure at time t = jδt at a fixed spatial point
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on the transmission line where the detector sits: A new measure mode is arriving at the
detector after each time-step δt . We will take the continuum limit δt → 0 and J →∞ in
our expressions while keeping the total measurement time tmeas = δt J finite. Note that
we could include thermal noise in this model by having each measure mode initialized
in a thermal state instead of a vacuum state. We will assume that each measure mode j
undergoes a complete heterodyne measurement, providing an outcome β j . In addition,
we omit any time-dependence of the ancilla oscillator or the measure modes, i. e. our
expressions assume that we work in a rotating frame at the ancilla oscillator frequency.

The outcome of the measurement is an estimate of the time-integrated (dimension-
less) quadratures Iout and Qout which we define as

Iout =
√

2κopen

∫ tmeas

0
dt f (t )ℜ(β(t )),

Qout =
√

2κopen

∫ tmeas

0
dt f (t )ℑ(β(t )), (5.25)

where f (t ) = exp(−κopent/2). For now, this choice of integration weight is arbitrary, we
will show its justification in the following. The function β(t ) is the continuum limit of
the outputs β j detailed below. To make contact with the usual input-output formal-

ism in which we have an outgoing field b̂out(t ) = p
κopenâ(t ) for the cavity field â [40]

(represented here by the ancilla oscillator), we observe that the expected value 〈Iout〉 =∫ tmeas
0 dt 〈q̂out(t )〉where q̂out(t ) = 1p

2
(b̂out(t )+b̂out(t )) (and similarly 〈Qout〉 =

∫ tmeas
0 dt 〈p̂out(t )〉).

The superoperator represented by this measurement is thus given as

SQout,Iout (ρin) =
∫

Qout,Iout
dβMβρinM †

β

Tr
(∫

Qout,Iout
dβM †

β
Mβρin

) ,

where a sequence of outcomes β j , j = 0, . . . , J − 1 is collectively denoted as a vector
β, and the integral goes over all β leading to integrated signal Qout and Iout. Based
on Iout and Qout, the measurement estimates the eigenvalue exp(iϕ) of Sq as ϕout =
arctan(Qout/Iout). If we were to use a Q-switch and a lossy oscillator, the temporal profile
of the outgoing field would not be the exponentially-decaying function f (t ) as the ancilla
oscillator first has to build up some amplitude in the lossy oscillator before leaking out
of it, and one could use such a compensated time-filter as in Eq. (S6) of [36].

Now let us consider the details of this measurement. Our expressions will depend
on κopentmeas which we assume to be large, capturing the fact that we measure until the
coherent state has (almost) entirely leaked out of the ancilla oscillator. Each beam split-
ter interaction B applies a simple transformation on a coherent state

∣∣β〉
in the ancilla

oscillator and a measure mode j :

B
∣∣β〉

A ⊗|0〉 j =
∣∣∣βcos

(√
κopenδt

)〉
A

∣∣∣βsin
(√

κopenδt
)〉

j

≈
∣∣∣β√

1−κopenδt
〉

A

∣∣∣β√
κopenδt

〉
j

.

Let us write down the heterodyne measurement operator Mβ as a function of β. Note
that the state of the ancilla oscillator and the measure modes after J beam splitters
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equals

B J−1 . . .B2B0 |α〉A |0〉J−1 . . . |0〉2 |0〉0 =
∣∣α(1−κopenδt )J/2〉

A

J−1∏
j=0

∣∣α j
〉

j ,

α j ≡α(κopenδt )1/2(1−κopenδt ) j /2 ∈R.

As the measure modes j = 0, . . . , J − 1 do not couple, the total measurement operator
on the measure modes is simply a product over all modes. The measurement operator
equals (using

〈
β
∣∣α〉 = exp(−(|α|2 +|β|2)/2)exp(β∗α)):

Mβ =
1

πJ/2

J−1∏
j=0

〈
β j |exp

(
i2
p
πq̂

)
α j

〉
= 1

πJ/2
exp

(
−1

2

J−1∑
j=0

(|α j |2 +|β j |2)

)
exp

(
J−1∑
j=0

α jβ
∗
j exp(i2

p
πq̂)

)

= 1

πJ/2
exp

(
−1

2

J−1∑
j=0

(|α j |2 +|β j |2)

)
exp

(
J−1∑
j=0

K|β j | cos(2
p
πq̂ −ϕ j )/2

)

×exp

(
i

J−1∑
j=0

K|β j | sin(2
p
πq̂ −ϕ j )/2

)
, (5.26)

using K|β j | = 2α j |β j |. Not surprisingly, we see that the measurement operator has the
same form as in Eq. (5.16). If we take the continuum limit, we note that the q̂-dependent
part in Mβ does not explicitly depend on the measurement results β, but on a time-
integrated average over the results as follows. We have

J−1∑
j=0

α jβ
∗
j =

J−1∑
j=0

δt α
√
κopen(1−κopenδt ) j /2

β∗
jp
δt

→
∫ tmeas

0
dt α(t )β∗(t ),

where we have definedβ(t ) =
√

β j

δt andα(t ) =αpκopene−κopent/2. Note thatα(t ) andβ(t )

have dimension t−1/2. Thus, the q̂-dependent part of Mβ is — in the continuum limit —
proportional to

exp

(∫ tmeas

0
dt α(t )β∗(t )Sq

)
= e

αp
2

(Iout−iQout)Sq .

Since
∑

j |β j |2 →
∫ tmeas

0 dt |β(t )|2 and

∑
j
|α j |2 → κopen|α|2

∫ tmeas

0
dt exp(−κopent )

= |α|2(1−exp(−κopentmeas)) ≈ |α|2,

the prefactor in Mβ does depend on
∫ tmeas

0 dt |β(t )|2, not only on Qout and Iout. The
conclusion is that by using an exponentially-decaying filter on the measured data as in
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Eq. (5.25) , one can ensure that a single measurement operator is applied on the input
state given the measurement output Iout,Qout and this measurement operator does not
depend on the specific temporal noisy sequence β0, . . . ,βJ−1. Hence, we expect that the
effect of this integrated measurement in time does not lead to a more noisy outcome
than one in which we record the entire sequence of values β0, . . . ,βJ−1.

We can make this explicit by estimating the effective squeezing as we have done in
Section 5.5.1 for the direct measurement. We can find

M †
β

Mβ∝ exp

(
α

√
2(Q2

out + I 2
out)cos(2

p
πq̂ −ϕout)

)
,

which defines an effective concentration Keff =α
√

2(Q2
out + I 2

out). Hence, in analogy with
the direct measurement where the effective squeezing is estimated by considering 〈|β|〉,
here the goal is to estimate the expected value of Keff. Translating back to the discrete
representation, this requires estimating 〈|∑ j α jβ

∗
j |〉. Instead of estimating this quantity

directly, we evaluate
√

〈|∑ j α jβ
∗
j |2〉 ∝

√
〈Q2

out + I 2
out〉 and obtain a lower bound on the

effective squeezing in this manner.

Using the discrete sequence-of-measurements representation, it can be observed
that the entire measurement is a simple product of individual measurements, each with
outcome β j , applied to a product state. Similar to the proof of Lemma 5.5.1, we first
observe that

〈∣∣∣∣∣∑
k
αkβ

∗
k

∣∣∣∣∣
2〉

=
∫

dβ Pin(β)
∑
k,l
αkαl |βk ||βl |exp(i(ϕk −ϕl ))

=∑
k,l
αkαl Tr

J−1∏
j=0

∫
d|β j | |β j ||βk ||βl |

∫ π

−π
dϕ j M †

β j
Mβ j ρin exp(i(ϕk −ϕl ))

with

M †
β j

Mβ j =
1

π
e−|α j |2−|β j |2 exp

(
Kβ j cos(2

p
πq̂ −ϕ j )

)
= 1

π
e−|α j |2−|β j |2 ∑

n j ∈Z
In j (Kβ j )S

n j
q exp(−in jϕ j ).

When k = l , we see that the integrals over ϕ j lead to delta-functions at n j = 0 and the
dependence on ρin drops out as we can use Tr(ρin) = 1. For k 6= l , we project onto nl =−1
and nk = +1, picking up I−1(2αl |βl |)S−1

q and I1(2αk |βk |)Sq factors. For k 6= l , we thus

always apply a product Sq S−1
q = 1 and again the dependence on ρin drops out. Using

that I−1(x) = I1(x), we get
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〈∣∣∣∣∣∑
k
αkβ

∗
k

∣∣∣∣∣
2〉

= 2J
J−1∑
k=0

|αk |2
∫ ∞

0
d|βk | |βk |3e−|αk |2−|βk |2 I0(2αk |βk |)

×
J−1∏

j=0: j 6=k

∫ ∞

0
d|β j | |β j |e−|α j |2−|β j |2 I0(2α j |β j |)

+
J−1∑

k 6=l=0
αkαl

∫ ∞

0
d|βk | |βk |2e−|αk |2−|βk |2 I1(2αk |βk |)

×
∫ ∞

0
d|βl | |βl |2 exp(−α2

l −|βl |2)I1(2αl |βl |)

×
J−1∏

j=0: j 6=k, j 6=l

∫ ∞

0
d|β j | |β j |e−|α j |2−|β j |2 I0(2α j |β j |).

The integrals can be simplified using
∫ ∞

0 dx x exp(−x2 − y2)I0(2y x) = 1, Eq. (5.24) and
2
∫ ∞

0 dx x2 exp(−y2 −x2)I1(2y x) = y to〈∣∣∣∣∣∑
k
αkβ

∗
k

∣∣∣∣∣
2〉

=∑
k
|αk |2(1+|αk |2)+ ∑

k 6=l
|αk |2|αl |2 =

∑
k
|αk |2 +

(∑
k
|αk |2

)2

→|α|2(1−e−κopentmeas )(1+|α|2(1−e−κopentmeas )).

Thus, when the measurement time is long enough so that the entire state has leaked out,
κopentmeas À 1, we can upper bound the expected Keff ≤ 2|α|

√
1+|α|2, resulting in a

lower bound on ∆q equal to 1/
√

4π|α|
√

1+|α|2. For long enough tmeas, this is identical
to our result for the direct measurement, which we have shown is closely related to the
actual amount of squeezing in Fig. 5.7.

5.7. EFFECTIVE SQUEEZING WITH VACUUM INPUT STATE
In Section 5.5, we derived approximations for the effective squeezing after the measure-
ment protocol because the average sharpness as in Eq. (5.19) is hard to evaluate.

Since Sq commutes with Mβ we have

〈|Tr(Sq )|〉 =
∫
C

d2β | 〈vac|Sq M †
β

Mβ |vac〉 | (5.27)

= 1

π
p
π

∫
C

d2β e−|α|
2−|β|2

∣∣∣∣∫
R

dq e−q2+i2
p
πq+K|β| cos(2

p
πq−ϕ)

∣∣∣∣ . (5.28)

At b ≥ 2, one can use the convenient Villain approximation [41]:

exp(b cos(x)) ≈ ∑
n∈Z

exp(b)exp

(
−b

2
(x −2πn)2

)
.

For large K|β|, the dominant contribution comes from small values of |n|: For K|β| ≥ 2,
one can restrict the sum to n = 0,±1,±2 with −π≤ϕ≤π.
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If we assume that the outcomes of β are concentrated around values where the Vil-
lain approximation holds (which is reasonable since we know that P(β) is concentrated
around |β| =α from Eq. (5.15)), then one can apply this approximation and evaluate the
resulting Gaussian integral to get

〈|Tr(Sq )|〉 ≈
∫ ∞

|β|c
d|β| e−π

π
√

2K|β|π
e−(|α|−|β|)2

×
∫ π

−π
dϕ

∣∣∣ϑ3

(
iπ− ϕ

2
,e−π−1/(2K|β|)

)∣∣∣ . (5.29)

Here, ϑ3(z, q) = ∑
n∈Z qn2

e2inz is the theta function and |β|c is a lower cut-off to allow
for the Villain approximation. The lower cut-off |β|c is chosen such that firstly P(|β| <
|β|c ) ¿ 1, and secondly |αβ|c ≥ 1 to allow for the Villain approximation with K|β| ≥ 2.
We take |β|c = 1/|α| so that for n̄ ≥ 5 the probability for such |β|c is low (suppressed by

exp(−(
p

5−1/
p

5)
2

) ≈ 0.04). The function ϑ3(z, q) is oscillatory with n, but contributions
beyond n = 0,±1,±2 are negligible. Inserting the mean sharpness with its approximation
in Eq. (5.29) in the expression for ∆q , we obtain the purple curve in Fig. 5.7.

We can also consider the eigenvalue phase of Sq of the output state ρβ, i.e.

arg
(〈

Sq
〉)= arg

(∫
R

dq ρin(q, q)Sq eK|β| cos(2
p
πq−ϕ)

)
. (5.30)

When ρin(q, q) is a uniform distribution, i. e. there is no prior bias for q̂ (or Sq ), the inte-
gral over q results in exp(iϕ), confirming that the best choice for inferring the eigenvalue
of Sq is indeed exp(iϕ). If we have prior information on the input state to the measure-
ment, e. g. it is the vacuum state, then one can use Eq. (5.30) as the outcome of the mea-
surement.

As a sanity check we examine 〈|Tr(Sp )|〉 (or 〈|Tr(X )|〉) after the modular q-measure-
ment. First of all, note that the expectation

∫
Cd2β Tr(Spρβ) is unchanged, since Sp com-

mutes with the Sq -measurement, so
∫
Cd2β Tr(Spρβ) = Tr(Spρin). Thus for the output

state, the squeezing of Sp (or X ) is unchanged as expected. In addition, if we consider
the mean sharpness we can also see it is preserved when we start with the vacuum state:

〈|Tr(Sp )|〉 =
∫
C

d2β | 〈vac|Sp M †
β

Mβ |vac〉 |
= 〈vac|Sp |vac〉 = exp(−π).

Here, we used the fact that
〈
ψ

∣∣Sp M †
β

Mβ

∣∣ψ〉
is nonnegative for any state

∣∣ψ〉
whose wave

function is nonnegative in the q-basis, i. e. ψ(q) ≥ 0, so we can omit the absolute value
and use

∫
Cd2βM †

β
Mβ = I . One should observe that the preservation of the mean sharp-

ness does not automatically follow from the commutation of Sp with Mβ or M †
β

.

5.8. NOISE AND IMPERFECTIONS
As compared to a perfect heterodyne measurement of the rotated coherent state in the
ancilla oscillator, there will be several sources of loss and imperfections in the modular
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quadrature measurement. In the sections below, we discuss the effect of photon loss on
the ancilla and target oscillators as a change in the effective squeezing parameters. Im-
portantly, photon loss on the ancilla oscillator during the photon-pressure coupling is an
immediate cause for feedback dephasing errors, similar as when preparing a grid state
via coupling to a transmon ancilla qubit [13]. Loss during read-out in the heterodyne
measurement chain simply reduces the effective α that is used in the protocol, dimin-
ishing the strength of the measurement.

After the discussions on photon loss, we investigate the leading nonlinear term act-
ing on the target oscillator in Section 5.8.5. As the nonlinear term only acts during the
interaction of the target and ancilla oscillators, it acts as an additional unitary operation.
We discuss and numerically simulate its effect as a change of the effective squeezing pa-
rameters.

Finally, we investigate the effect of flux noise during the interaction, as the coupling
Hamiltonian between the target and ancilla oscillators depends on an external flux. A
small, quasi-static flux offset has the effect that the measured quadrature is slightly ro-
tated, i. e. a flux offset ε means that the photon-pressure Hamiltonian is changed to
H̃PP ∼ â†â(cos(ε)q̂ ± isin(ε)p̂). We will see that the parametric drive already provides a
first order correction to this type of noise because the sign in the modified Hamiltonian
H̃PP changes with frequency ωT , which is large compared to 1/tcoupl.

5.8.1. PHOTON LOSS IN ANCILLA OSCILLATOR DURING PHOTON-PRESSURE

INTERACTION
Imagine that prior to the heterodyne measurement to measure Sq , but during the action
of the photon-pressure coupling UPP, photon loss occurs from the ancilla resonator at
rate κc . This error will feedback to the target oscillator as a dephasing error in the

∣∣q〉
basis and such a dephasing error will affect∆p . In addition, photon loss affects the qual-
ity of the Sq measurement itself by effectively reducing the amplitude of the coherent
state which is used in the measurement.

We assume that we are in the targeted regime, in which there is at most a single
photon loss error in a time tcoupl, or κc tcoupl|α|2 ¿ 1. Let γ = κc tcoupl. The no-photon
loss operator E0 = 1−γn̂/2 ≈ exp(−γn̂/2) commutes with the evolution of HPP, but the
single-photon loss operator E1 = p

γa does not. Hence, the state of ancilla and target
oscillator at time t is

ρ(t ) = e−γn̂/2−i2
p
πq̂n̂ρin ⊗|α〉〈α|e−γn̂/2+i2

p
πq̂n̂

+κc

∫ tcoupl

0
dt A(t )ρin ⊗|α〉〈α| A†(t ),

A(t ) = e−i(2
p
π−t

p
2g )q̂n̂ ae−it

p
2g q̂n̂ . (5.31)

When we apply the heterodyne measurement to the ancilla oscillator and obtain out-
come β, we thus transform ρin as

ρin → ρβ = (1−α2γ)Mβ(αe−γ)ρinM †
β

(αe−γ)

+ α2γ

tcoupl
Mβ(α)

[∫ tcoupl

0
dt e−i

p
2g q̂tρinei

p
2g q̂t

]
M †
β

(α).
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The last term can be viewed as applying, with probability ∼ α2γ, a mixture of shift er-
rors with an average shift of strength

p
2g tcoupl/2 =p

π. This dephasing feedback error
tends to localize the q-quadrature, hence affecting the extent to which the state can be
an eigenstate of Sp or X . The average feedback shift error upon photon loss is a logical
shift Z , immediately leading to the loss of the logical information.

To gain a better intuition, we explicitly look at the effect of photon loss in the initial-
ization measurement when ρin = |vac〉〈vac|. Since the expression for Tr(Sqρβ) for any
input state ρin only involves diagonal terms

∣∣q〉〈
q
∣∣, the dephasing in the q-basis due to

photon loss has no effect. This means that we can view such loss as occurring after the
interaction, simply leading to |α〉 → ∣∣αexp(−γ/2)

〉
. This loss affects the measurement

quality in the same way as any readout loss, see Section 5.8.3.
We can consider the effect of the feedback error on the effective squeezing in p̂,∆p as

follows. After the Sq measurement with outcome βwe consider the expected eigenvalue
sharpness of Sp (or, similarly X ). Ideally, it will stay unchanged. For this, we need to
evaluate:∫

C
d2β |Tr(Spρβ)| =

∫
C

d2β
∣∣∣(1−α2γ)Tr

(
Sp M †

β
(αe−γ)Mβ(αe−γ)ρin

)
+ α2γTr

([
1

tcoupl

∫
dt ei

p
2g q̂t Sp e−i

p
2g q̂t

]
M †
β

(α)Mβ(α)ρin

)∣∣∣∣ . (5.32)

The commutation relation

exp(iuq̂)exp(−i2
p
πp̂) = exp(−i2

p
πp̂)exp(iuq̂)exp(i2

p
πu)

can be used to do the averaging integral over t which leads to the contribution from
the single-photon loss term to be zero. This essentially means that upon the loss of an
actual photon the eigenvalue of Sp is fully randomized. The expected value for X , i. e.∫
Cd2β |Xρβ| suffers similarly, i. e. upon the actual loss of a photon the eigenvalue of X

gets fully randomized. The randomization leads to∫
C

d2β |Tr(Spρβ)| = (1−α2γ)
∫
C

d2β
∣∣∣Tr

(
Sp M †

β
(αe−γ)Mβ(αe−γ)ρin

)∣∣∣
= (1−α2γ)|Tr(Spρin)|,

where the last equality follows immediately when the wave function of ρin is real in
the q-basis (for example the vacuum state). One can also observe that |∫Cd2β Spρβ| =
(1−α2γ)|Tr(Spρin)|, since Sp no longer commutes with the Sq measurement due to the
photon loss.

Using Eqs. 5.1 and approximating the logarithm for the case where the effective squeez-
ing of the initial state is ∆p < 1, we can show that the feedback error due to photon loss

will reduce the effective squeezing to ∆̃p ≈
√

α2γ
π +∆2

p >∆p .

5.8.2. COMPARISON WITH SEQUENTIAL-QUBIT PHASE ESTIMATION MEA-
SUREMENT AND PHOTON LOSS ON TARGET OSCILLATOR

Previous work has analyzed how to measure the eigenvalue of Sq (or Sp ) via coupling
the target oscillator with a sequence of qubits, using a qubit-controlled displacement
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interaction, followed by qubit measurement. In this scheme, each qubit measurement
(via a read-out oscillator) provides at most 1 bit of information. For this sequential qubit
read-out, one can use a tunable longitudinal interaction between transmon qubit and
storage cavity of the form

p
2g I−Z

2 q̂ . This form of the coupling implies that the inter-
action time tcoupl is the same value as in the photon-pressure protocol with a large co-
herent state. If the ancilla oscillator is harmonic, one can use the vacuum state |0〉 and
Fock state |1〉 as the two qubit states. Hence, the longitudinal interaction is merely the
photon-pressure coupling applied to these Fock states. However, the input state of this
sequential scheme and the subsequent measurement of the qubits cannot be directly
mapped onto the photon-pressure scheme using a coherent state.

To compare the sequential qubit scheme with the proposed modular quadrature
measurement, we have to separately discuss the two dominant sources of error, pho-
ton loss on the ancilla oscillator and photon loss on the target oscillator. With respect
to photon loss on the ancilla oscillator: An important possible advantage of the photon-
pressure scheme proposed is that a single oscillator-measurement is used instead of a
sequence of qubit measurements, making it possible that the photon-pressure scheme
is much faster. This would lead to lower photon loss error rate on the target oscillator
(as it is waiting while the ancillary system is being measured). To compare times, in [36]
the release and measurement take time O(1)µs while in the same set-up the high-fidelity
single transmon qubit measurement took a similar amount of time. If we use a coherent
state with n̄ = 3, Fig. 5.7 shows that one can obtain ∆q ≈ 0.18 assuming no losses. Data
from [16] show that one needs at least M = 12 rounds to get to ∆q = 0.2. Also, in [5] a
grid state was stabilized after about 20 rounds of qubit measurements of duration 600 ns
(including losses) to σ= 0.16 which corresponds to ∆= 0.22 here.

With respect to photon loss on the ancilla qubit or oscillator, one can make the fol-
lowing observations. First, note that in the sequential execution of a protocol using an-
cilla qubits, arguments can be made that the squeezing parameter ∆q will decrease as

1/
p

M where M is the number of rounds in phase estimation protocol [13, 16]. Then,
similar as in the photon-pressure protocol, there is a probability γ = κc tcoupl for ampli-
tude damping (i. e. photon loss) and hence a feedback error which fully randomizes the
eigenvalue of Sp or X for each qubit measurement. Hence, after M such rounds, the
probability for a Z error scales as ∼ γM ∼ γ/∆2. In our proposed strong measurement
scheme, the error probability is γn̄ ∼ γ/∆2, showing that both schemes effectively have
the same tradeoff. It is thus a matter for what n̄ one has κc tcoupln̄ ¿ 1 which determines
whether a strong measurement with n̄ > 1 is more effective.

In this context, it should also be noted that it is not the aim for a GKP state prepa-
ration protocol to necessarily prepare the highest possible ∆. Photon loss on the target
oscillator during the protocol and during measurement of the ancillary system will lead
to drift and diffusion of the coordinates of the Wigner function W (q, p): a GKP state
with smaller∆ has more photons, incurring a larger error probability due to photon loss.
Based on the interplay between these two mechanisms, Appendix S4.1 in [5] suggests

that σ = 1
2

√
κc T

2 , with T the total duration of the Sp and Sq measurement protocol, is a

target value for squeezing (in our convention corresponding to ∆ = 1
2

p
κc T ). A shorter

cycle time T can thus allow for a smaller ∆, leading to a GKP qubit with a lower logical
error rate.
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We can compare our scheme with the proposed fault-tolerant syndrome detector of
a GKP qubit in [18]. In that paper, it is proposed that a Kerr-cat qubit with |0〉 ≈ |α〉 and
|1〉 ≈ |−α〉, is used for sequentially extracting bits of phase information of Sq instead of
a transmon ancilla qubit as in [5]. The advantage of using a Kerr-cat qubit is that unlike
the transmon qubit or the scheme proposed here, there is little feedback error since the
X -error rate on the Kerr-cat qubit is purposefully low, with photon loss leading only to Z -
errors which do not feed back. Note also that in [18] the required coupling between the
Kerr-cat qubit and the target (GKP) oscillator is not directly a photon-pressure coupling
but a tunable beam splitter interaction ∼ â†b̂ + âb̂†.

5.8.3. READOUT LOSS
After the interaction of the target and the ancilla oscillator — during the release and het-
erodyne measurement of the state of the ancilla oscillator — one expects losses, and
possibly thermalization, due to coupling to extraneous modes in the co-planar or co-
axial waveguide, circulators or the amplifier, affecting the total coherent amplitude of
the ancilla oscillator state to be read out. Since these losses result from various (par-
tially unknown) sources, a common approach to model them is as a process mapping
the coherent amplitude α onto αeff < α, i. e. Uloss |α〉A |0〉env → |cos(θ)α〉A |sin(θ)α〉env

with cos2(θ)α2 = α2
eff where

∣∣γ〉
env is some environment mode. We thus assume that

these losses do not further influence the phase of the state |α〉. The cumulative effect of
losses is not expected to be small, for example in [36] ηeff = (αeff/α)2 ≈ 0.43. It should
be noted that it is crucial that a near quantum limited amplifier is used, the readout effi-
ciency with transistor based amplifiers is much lower. We also note that photon loss and
thermal noise are used as interchangeable effective models in the literature: The ampli-
fier design used in [36] for example was previously characterized by a noise temperature
TN about 125 mK [42]. The following analysis is based on a model of photon loss during
readout, however a model of two mode squeezing with an idler in a thermal state (see
for example [43]) is analogous and gives the same results.

The effect of these losses is that some of the information about Sq ends up in the
environment and is not observed, leading to noise. We can simply modify the analy-
sis in Section 5.5.1 by inserting Uloss after UPP of Eq. (5.3) and prior to the heterodyne
measurement action with outcome β, tracing over the environment mode. We get

ρin → ρβ =
1

π

Ï
R2

dq dq ′
〈
αSq ′

√
1−ηeff|αSq

√
1−ηeff

〉
×〈β|αeffSq 〉〈αeffSq ′ |β〉〈q

∣∣ρin
∣∣q ′〉∣∣q〉〈

q ′∣∣ , (5.33)

where Sq and Sq ′ are understood to be phases not operators. Let us again analyze the
two possible effects of loss. First, for the diagonal elements of ρin in the

∣∣q〉
-basis, the

effect of the measurement is to apply the measurement operator Mβ(αeff). Since the
expected value for ∆q only depends on the diagonal elements

〈
q
∣∣ρin

∣∣q〉
, this results

in a higher expected value for ∆q simply due to α → αeff: It is as if one executes the
Sq -measurement with a smaller coherent state with amplitude αeff. Secondly, is there
additional dephasing effect in the q-basis? Note that the measurement with subsequent
loss in the ancilla oscillator still commutes with the operator X or Sp , similar as the ideal
measurement that we examined previously. This directly means that |Tr(Sp

∫
Cd2βρβ)| =
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|Tr(Spρin)| and the same for X , i. e. the average state has the same sharpness. We can also
examine the sharpness averaged over different outcomes, that is,

∫
Cd2β |Tr(Xρβ)|.Using

that
〈

q
∣∣ X

∣∣q ′〉= 〈
q
∣∣q ′+p

π〉 = δ(q −q ′−p
π) and that Sq is

p
π periodic (corresponding

to the commutation of Sq with X and Sp ) we can write∫
C

d2β |Tr(Xρβ)| =

=
∫
C

d2β

∣∣∣∣∫
R

dq |〈β|αeffSq 〉|2
〈

q
∣∣ρin

∣∣q −p
π
〉∣∣∣∣

=
∫
C

d2β

∫
R

dq |〈β|αeffSq 〉|2
〈

q
∣∣ρin

∣∣q −p
π
〉

= Tr(Xρin),

whenever
〈

q
∣∣ρin

∣∣q −p
π
〉 ≥ 0. Similarly, when

〈
q
∣∣ρin

∣∣q −2
p
π
〉 ≥ 0, the mean sharp-

ness
∫
Cd2β |Tr(Spρβ)| = Tr(Spρin), is also unchanged by the Sq -measurement. These

conditions are clearly fulfilled for the vacuum state.
The upshot of these considerations is that noise further down in the measurement

chain only changes the effective strength of the coherent state that is used: If the mea-
surement efficiency is such that ηeff = 50% and we use n̄ = 4, we will effectively get the
squeezing as if n̄ = 2, but there is no other extra noise or feedback error affecting the
quality of the squeezing with respect to Sp and Sq .

5.8.4. EXPANSION OF THE CIRCUIT HAMILTONIAN
In the circuit analysis in Section 5.3.3, we expand the potential part of the circuit Hamil-
tonian Eq. (5.6) around the approximate minimum x̂A = x̂T = 0 of the potential term. In
this section, we discuss this approximation in more detail as this point is not exactly the
minimum of the potential.

Although the minimum of Eq. (5.6) is not soluble analytically, we can find an upper
bound on the errors made. We do this by investigating the maximal possible shift in the
position of the minimum as a function of xext(t ). First, we expand the potential exactly
using the addition formula of the cosine:

E J cos(x̂T − x̂A −xext(t )) = E J sin(xext(t ))sin(x̂T − x̂A)−E J cos(xext(t ))cos(x̂T − x̂A) .

Because E J < ELT ,EL A , we can see that the potential always has a unique minimum, and
because the cosine is an even function, the location of that minimum only depends on
the sine part of the equation. Therefore, the maximal shift of the position of the min-
imum away from x̂T = x̂A = 0 occurs at xext(t ) = ±π/2. That is, we can upper bound
the error made by expanding the potential around x̂A = x̂T = 0 by investigating the case
where xext(t ) =±π/2.

If we set xext = π/2 and expand the potential to first order around x̂A = x̂T = 0, we
have:

U (x̂A , x̂T ) ≈ EL A x̂2
A

2
+ ELT x̂2

T

2
+E J (x̂T − x̂A)

= EL A

2

(
x̂A − E J

EL A

)2

+ ELT

2

(
x̂T + E J

ELT

)2

−
E 2

J

2ELT

−
E 2

J

2EL A

. (5.34)
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Thus, for xext(t ) = ±π/2, the minimum of the potential term Eq. (5.6) is located around

x̂T =∓ E J
ELT

and x̂T =± E J
ELT

. By defining x̂ ′
T = x̂T ± E J

ELT
, x̂ ′

A = x̂A ± E J
ELT

, we can absorb this

correction into the external flux drive xext(t ):

U (x̂ ′
A , x̂ ′

T , xext(t ) =±π/2) = EL A x′2A
2

+ ELT x′2T
2

−E J cos

(
x̂ ′

T − x̂ ′
A ±2

E J

ELT

∓π/2

)
,

where the minimum of the potential is now to first order given by x̂ ′
A = x̂ ′

T = 0. Because
the sine is monotone between 0 and π/2, we know that the location of the true mini-
mum of the potential is also monotone between 0 < xext(t ) < π/2. From the structure of
Eq. (5.34), we can also see that the shift of the minimum for x̂T is also always opposite to
that of x̂A and that the sign of this minimum changes for −π/2 < xext(t ) < 0:

U (x̂ ′
A , x̂ ′

T ) = EL A x′2A
2

+ ELT x′2T
2

−E J cos
(
x̂ ′

T − x̂ ′
A +2ε+xext(t )

)
,

where |ε| . E J
ELT

is the true location of the minimum of U (x̂ ′
A , x̂ ′

T ) and the sign of ε de-

pends on the sign of sin(xext(t )). The expansion around x̂A = x̂T = 0 made in Section 5.3.3
is therefore similar to the effect of oscillating flux noise. Furthermore, just like for flux
noise, there is an echo effect reducing any contributions from this offset because the
offset changes sign with frequency ∼ωT .

In summary, the problem that arises is that the external drive changes the potential
for both variables, which follow the change of minimum, with some delay. Due to this
delay, the instantaneous potential is not quite what we expect, but the error is small, as
it scales as E J /EL ¿ 1. Note that this effect is deterministic, so it could be counteracted
by a change in the external drive.

5.8.5. THIRD-ORDER NONLINEARITY
In this section, we examine what happens when we include a leading-order correction in
the Hamiltonian obtained from the circuit analysis from Section 5.3.3 and Section 5.3.3.
The most important term neglected in the circuit analysis is the term

ξ3
T

(
b̂†eiωT t + b̂e−iωT t

)3
,

as this term is partially made resonant by the drive xext(t ). We will see that it is crucial
that any device fulfills ξ2

T /ξ2
A ¿ 1 (which can be approximated as ECT EL A ¿ EC A ELT ) be-

cause this ratio sets the strength of the unwanted unitary operation due to the leading-
order correction compared to the desired unitary evolution UPP . We start with the orig-
inal Hamiltonian in the rotating frame, see Eq. (5.9), but also keep the terms in the sin()
part ∝ ξ3

T :

H̃on ≈ E J

2

[
−ξT ξ

2
A â†â(b̂† + b̂)+ ξ3

T

6

((
b̂† + b̂

)3 − (b̂†)
3 − b̂3

)]

= E Jp
2

[
−ξT ξ

2
A â†âq̂ + ξ3

T

6
p

2

(
2
p

2q̂3 − (b̂†)
3 − b̂3

)]
.
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Figure 5.8: Wigner functions and probability distribution P(β) over measurement results using the heterodyne
measurement of the ancilla oscillator, including the leading nonlinear term. The initial states are a squeezed
vacuum state with ∆q = 3 and ∆p = 1/3 in the target oscillator and the coherent state

∣∣α=p
3
〉

in the ancilla
oscillator. The measurement result is the one with the maximum likelihood with respect to P(β). The strength

of the third order term is set to
ξ2

T
ξ2

A
= 10−3, compare Table 5.1. Top: Original third-order nonlinearity according

to Eq. (5.35). The effective squeezing of the final state is ∆p = 0.42,∆q = 0.2. Bottom: Third-order nonlinearity
with a modified drive, see Eq. (5.37). The effective squeezing of the final state is ∆p = 0.41,∆q = 0.18, demon-
strating that ∆q is unchanged compared to the ideal measurement in Fig. 5.2. Previously published in D. J.
Weigand and B. M. Terhal, “Realizing modular quadrature measurements via a tunable photon-pressure cou-
pling in circuit QED”, Physical Review A 101, 053840 (2020), licensed under CC-BY 4.0 [21] cb.

This Hamiltonian acts for a fixed time tcoupl = 2
p

2π
E J ξT ξ

2
A

. If we also drop the unconditional

displacement, the target and ancilla oscillators will be coupled by the modified unitary
operator

ŨPP = exp

(
i2
p
πâ†âq̂ + i

p
π

3
p

2

ξ2
T

ξ2
A

(
2
p

2q̂3 − b̂3 − (b̂†)
3
))

. (5.35)

For ε=
p
πξ2

T

3ξ2
A

p
2
¿ 1, we can rewrite and approximate this unitary as

ŨPP ≈UPP exp(i2
p

2εq̂3)exp
(
−iε

(
b̂3 + (b̂†)

3
))

exp
(p
πεâ†â

[
q̂ ,

(
b̂3 + (b̂†)

3
)])

=UPP exp(i2
p

2εq̂3)exp
(
−iε

(
b̂3 + (b̂†)

3
))

exp

(
3
p
πεp
2

a†a
(
(b̂†)

2 − b̂2
))

, (5.36)

where we have neglected the commutators ∝ ε2 and used that [q̂ , b̂3+(b̂†)
3

] = 3p
2

((b̂†)
2−

b̂2). We observe two effects:
First, the incorrect unitary induces a systematic (third-order) error of strength ∼ ε on

the target oscillator, independent of the ancilla oscillator, hence not affecting the out-
come of the Sq measurement itself. This systematic error does however cause a defor-
mation of the Wigner function of a GKP code state. Namely: If one applies to an approxi-
mate GKP state a unitary of the form exp(iδq3) with some parameter δ, it will not change

https://doi.org/10.1103/PhysRevA.101.053840
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its squeezing ∆q , but it does lead to enhanced ∆p . Also, if we apply a unitary of the form

V = exp(iδ(b̂3+(b̂†)
3

)) to a GKP state, it negatively affects the squeezing∆q as V does not
commute with Sq . Both effects are more pronounced the more photons the GKP state
has.

Secondly, we observe that Eq. (5.36) contains an additional coupling of the form

exp(δâ†â((b̂†)
2 − b̂2)) between target and ancilla oscillator4. We can see this as squeez-

ing induced by the ancilla oscillator on the target oscillator which gets stronger the more
photons the ancilla oscillator contains. Alternatively, the heterodyne measurement statis-
tics will be slightly altered by the presence of this additional term.

This photon-number dependent squeezing limits the number of photons that can be
used in the ancilla oscillator. To alleviate this issue and ensure that the effective squeez-
ing∆q is unchanged, one could apply a modified, two-tone drive such that sin(xext(t )) ≈
cos(3ωT )+ cos(ωT ), which has the effect of making b̂3 and (b̂†)

3
terms resonant again.

With the modified drive, the unitary time evolution only depends on q :

Ũ corr
PP = exp

(
i2
p
πâ†âq̂ + i2

p
2εq̂3

)
=UPPei2

p
2εq̂3

. (5.37)

This corrected unitary transformation will then not affect the measurement statistics of
Sq as the additional term commutes with q̂ . The effective squeezing ∆q of the mea-
sured state will be unchanged as compared to using UPP. The effective squeezing ∆p is
still affected by the exp(iδq̂3) deformation. The deformation can be seen as a displace-
ment that has a quadratic dependence on the q̂ quadrature, leading to a “parabola” of
displacements acting on the final state of the target oscillator, see Fig. 5.8.

The upshot is that with additional drive engineering one can mitigate the effect of
the third-order non-linearity. The numerics in Fig. 5.8 show that for sufficiently small
corrections the effect on the squeezing parameters is moderate.

5.8.6. FLUX NOISE

Because an external flux drive is used to enable the coupling, the setup will be sus-
ceptible to flux noise. (Quasi)-static flux noise acts as a constant offset on the drive in
Eq. (5.13). Thus, with a constant flux offset ε, i. e. x̃ext(t ) = xext,±(t )+ε with xext,±(t ) cho-
sen as in Eq. (5.13) and maximal coupling strength (δ = 1), the interaction Hamiltonian
(in the rotating frame) is given by

H̃RWA ≈ E J cos(ε± (−1)kωT )

(
ξT

(
1− ξ2

A

2

)
(b̂†eiωT t +be−iωT t )

−ξT ξ
2
A â†â

(
b̂†eiωT t +be−iωT t

))

= E J

2

(
ξT

(
1− ξ2

Ap
2

)
(q̂ cos(ε)∓ (−1)k p̂ sin(ε))−ξT ξ

2
A â†â(q̂ cos(ε)∓ (−1)k p̂ sin(ε))

)
,

4If we had kept the unconditional displacement interaction in Eq. (5.12), we would also get some ancilla oscil-
lator independent squeezing.
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where the sign ± depends on the chosen drive and k = bωT t
2π c indicates the number of

periods ωt /(2π) that has passed by the time 0 < t < tcoupl. This Hamiltonian is still of the
photon-pressure type, but it no longer couples the q̂ quadrature to the number of pho-
tons in the ancilla oscillator, but a slightly rotated quadrature. However, we can also see
that this rotation is time-dependent due to its dependence on k and changes direction
with frequencyωT . This means that the drive defined in Eq. (5.13) already provides some
protection against such static flux noise. In the case where a drive with reduced ampli-
tude δ< 1 (see Section 5.4.1) is used, the situation is more complicated. We discuss flux
noise for δ< 1 in Section 5.8.7.

Another effect of flux noise is the following. The resonance frequency of both oscil-
lators also depends on the external flux drive xext(t ), see Section 5.3.3 and Table 5.1. In
the presence of static flux noise, it means that the rotating frame will be slightly out of
sync with respect to the true resonance frequency of the oscillators, leading to inaccu-
racy in the phase of the oscillator state. Typically, flux noise is small compared to Φ0

(which is the amplitude of the flux drive xext(t )), suggesting that the difference between
the expected and true resonance frequencies can be neglected.

5.8.7. FLUX NOISE WITH REDUCED DRIVE AMPLITUDE
We have discussed flux noise for the case with maximal coupling strength (δ= 1) in Sec-
tion 5.8.6. Following the discussion there, we now discuss flux noise in the case where the
drive strength is reduced (δ< 1). In this case, the prefactor in the coupling Hamiltonian
is given by

sin(xext,±(t )+ε) = (1−δ+δcos(ωT t ))cos(ε)

± (−1)b
ωT t
2π c

√
1− (1−δ+δcos(ωT ))2 sin(ε). (5.38)

Again, there is some built-in correction for the additional phase, the term ∝ sin(ε) will
approximately cancel over multiple periods (recall that the ideal drive is with zero flux
off-set ε = 0). However, there is an additional effect that the amplitude of the drive also
changes over time, and the change of amplitude is on resonance with the change of the
phase, i. e. the rotation of the measured quadrature no longer completely cancels. In or-
der to alleviate this issue, one could use a similar strategy as the CZ gate used for trans-
mon qubits [44], using the fact that the equation sin(xext,±(t )) = 1−δ+δcos(ωT t ) has
two alternating solutions, xext,+ and xext,− see Eq. (5.13). Because the undesired term
due to flux noise for the two drives always has opposite sign, see Eq. (5.38), it is possible
to restore the echo effect by alternating between the two drives. Although this transition
is not smooth (see Fig. 5.5), it is continuous for all choices of δ. Furthermore, the quick
roll off with high harmonics is preserved, the most complex drive that could be obtained
with the strategy is a triangle wave at frequency ωT , see Fig. 5.5.

5.9. DISCUSSION
In this chapter, we have proposed to use a simple coherent state ancilla to get more than
1 bit of information about the eigenvalue of a unitary displacement operator, effectively
realizing a modular quadrature measurement. These measurements can be used to pre-
pare or read out a GKP code state. We have presented and analyzed an electric circuit
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which generates a strong photon-pressure coupling needed to imprint the eigenvalue
information onto the coherent state of the ancilla oscillator. As we have seen a large
coherent amplitude α makes for a higher-precision stabilizer measurement, but in the
presence of photon loss or unwanted nonlinearities, α should be chosen moderately.
Our results and numerics show that circuit parameters can be chosen which demon-
strate good performance at |α|2 ≈ 3.

It should be noted that the circuit presented in Section 5.3.3 is not the only way to
implement a sufficiently strong photon-pressure coupling to be able to use the GKP sta-
bilizer measurements presented here. In fact, any experimental setup that is sufficiently
far in the single photon regime can be employed to this end, however the circuit we an-
alyze is particularly well suited for the task. One major advantage is that we only require
a single Josephson junction in the loop: This eliminates the experimentally challenging
requirement of symmetric junctions found in more traditional circuit designs.

Although the protocol is susceptible to photon loss in the ancilla oscillator, we still
expect an advantage compared to schemes using a transmon qubit as ancilla because the
loss rate of the ancilla oscillator compared to the interaction time is much more favor-
able than the amplitude damping rate of a transmon qubit over multiple measurement
rounds, while the error mechanism of the two approaches is comparable. Furthermore,
concatenation with an error correcting code in the ancilla oscillator is straight forward:
If a rotationally symmetric code [45] is used as initial state of the ancilla oscillator, it
will be possible to correct photon loss without increasing the number of photons in the
oscillator or reducing the effective squeezing.

As with most implementations of the GKP code, single qubit Pauli and Hadamard
gates can easily be done by a displacement acting on the target oscillator or a change
of rotating frame, respectively [9]. The photon-pressure coupling Hamiltonian is very
versatile, with a simple modification of the flux drive, it can also be used to enable a
beam-splitter between the target and ancilla oscillators [29–31]. If the circuit is extended
such that an ancilla oscillator is shared by two target oscillators, such a beam splitter
could for example be used to swap encoded states. Similar to swapping to distant qubits
via an ancilla qubit, such a scheme would require a sequence of three beam splitting op-
erations: First between target mode one and ancilla mode, then between ancilla mode
and target mode two, and finally between the ancilla mode and the first target mode.
With other configurations of the drive, it is possible to enable either a bosonic CNOT
gate, or a two-mode squeezing between the target and ancilla oscillators. The latter op-
eration is of special interest because it enables to use the GKP-two-mode-squeezing en-
coding [46]. In this encoding, an arbitrary state in the ancilla oscillator can be protected
against Gaussian noise in both quadratures, using a GKP state in the target oscillator as
a resource.

ACKNOWLEDGEMENTS
Our work was supported by ERC grant EQEC No. 682726 and a QuantERA grant for the
QCDA consortium. We thank Alexandre Blais, Daniel Bothner, Alessandro Ciani, Jonathan
Conrad, Ines Corveira Rodrigues, David DiVincenzo and Wolfgang Pfaff for feedback and
discussions.



5

128
5. REALIZING MODULAR QUADRATURE MEASUREMENTS VIA A TUNABLE

PHOTON-PRESSURE COUPLING IN CIRCUIT-QED

REFERENCES
[1] D. J. Weigand and B. M. Terhal, “Realizing modular quadrature measurements

via a tunable photon-pressure coupling in circuit QED”, Physical Review A 101,
053840 (2020).

[2] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frun-
zio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, “Ex-
tending the lifetime of a quantum bit with error correction in superconducting
circuits”, Nature 536, 441 (2016).

[3] L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C. .-L. Zou,
S. M. Girvin, L.-M. Duan, and L. Sun, “Quantum error correction and universal
gate set operation on a binomial Bosonic logical qubit”, Nature Physics 15, 503
(2019).

[4] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, and J. P. Home,
“Encoding a qubit in a trapped-ion mechanical oscillator”, Nature 566, 513 (2019).

[5] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-Geller, N. E. Frattini, V. V.
Sivak, P. Reinhold, S. Puri, S. Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi,
and M. H. Devoret, “Quantum error correction of a qubit encoded in grid states of
an oscillator”, Nature 584, 368 (2020).

[6] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, S. M.
Girvin, S. Shankar, and M. H. Devoret, “Stabilization and operation of a kerr-cat
qubit”, Nature 584, 205 (2020).

[7] B. M. Terhal, J. Conrad, and C. Vuillot, “Towards scalable bosonic quantum error
correction”, Quantum Science and Technology 5, 043001 (2020).

[8] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf, M. H. Devoret, and M. Mir-
rahimi, “Hardware-efficient autonomous quantum memory protection”, Physical
Review Letters 111, 120501 (2013).

[9] D. Gottesman, A. Kitaev, and J. Preskill, “Encoding a qubit in an oscillator”, Physi-
cal Review A 64, 012310 (2001).

[10] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C.
Vuillot, L. Li, C. Shen, S. M. Girvin, B. M. Terhal, and L. Jiang, “Performance and
structure of single-mode Bosonic codes”, Physical Review A 97, 032346 (2018).

[11] K. Noh, V. V. Albert, and L. Jiang, “Quantum capacity bounds of Gaussian thermal
loss channels and achievable rates with Gottesman-Kitaev-Preskill codes”, IEEE
Transactions on Information Theory 65, 2563 (2019).

[12] S. Glancy and E. Knill, “Error analysis for encoding a qubit in an oscillator”, Phys-
ical Review A 73, 012325 (2006).

[13] B. M. Terhal and D. J. Weigand, “Encoding a qubit into a cavity mode in circuit
QED using phase estimation”, Physical Review A 93, 012315 (2016).

[14] Y. Shi, C. Chamberland, and A. W. Cross, “Fault-tolerant preparation of approxi-
mate GKP states”, New Journal of Physics 21, 093007 (2019).

https://doi.org/10.1103/PhysRevA.101.053840
https://doi.org/10.1103/PhysRevA.101.053840
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41567-018-0414-3
https://doi.org/10.1038/s41567-018-0414-3
https://doi.org/10.1038/s41586-019-0960-6
https://doi.org/10.1038/s41586-020-2603-3
https://doi.org/10.1038/s41586-020-2587-z
https://doi.org/10.1088/2058-9565/ab98a5
https://doi.org/10.1103/PhysRevLett.111.120501
https://doi.org/10.1103/PhysRevLett.111.120501
https://doi.org/10.1103/PhysRevA.73.012325
https://doi.org/10.1103/PhysRevA.73.012325
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1109/tit.2018.2873764
https://doi.org/10.1109/tit.2018.2873764
https://doi.org/10.1103/PhysRevA.73.012325
https://doi.org/10.1103/PhysRevA.73.012325
https://doi.org/10.1103/PhysRevA.93.012315
https://doi.org/10.1088/1367-2630/ab3a62


REFERENCES

5

129

[15] C. Flühmann, V. Negnevitsky, M. Marinelli, and J. P. Home, “Sequential modular
position and momentum measurements of a trapped ion mechanical oscillator”,
Physical Review X 8, 021001 (2018).

[16] K. Duivenvoorden, B. M. Terhal, and D. J. Weigand, “Single-mode displacement
sensor”, Physical Review A 95, 012305 (2017).

[17] B.-G. Englert, K. L. Lee, A. Mann, and M. Revzen, “Periodic and discrete Zak bases”,
Journal of Physics A 39, 1669 (2006).

[18] S. Puri, A. Grimm, P. Campagne-Ibarcq, A. Eickbusch, K. Noh, G. Roberts, L. Jiang,
M. Mirrahimi, M. H. Devoret, and S. M. Girvin, “Stabilized cat in a driven nonlin-
ear cavity: a fault-tolerant error syndrome detector”, Physical Review X 9, 041009
(2019).

[19] S. Haroche and J.-M. Raimond, Exploring the quantum: atoms, cavities, and pho-
tons (Oxford University Press, USA, Oxford, 2006).

[20] S. R. Jammalamadaka and A. Sengupta, Topics in circular statistics (World Scien-
tific, 2001).

[21] Creative Commons Attribution-ShareAlike 3.0 Unported License, Creative Commons
Corporation, https://creativecommons.org/licenses/by-sa/3.0/.

[22] C. Eichler, D. Bozyigit, and A. Wallraff, “Characterizing quantum microwave radi-
ation and its entanglement with superconducting qubits using linear detectors”,
Physical Review A 86, 032106 (2012).

[23] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quan-
tum electrodynamics for superconducting electrical circuits: an architecture for
quantum computation”, Physical Review A 69, 062320 (2004).

[24] H. Wiseman and G. Milburn, Quantum measurement and control (Cambridge Uni-
versity Press, Cambridge, 2010).

[25] S. Barzanjeh, D. P. DiVincenzo, and B. M. Terhal, “Dispersive qubit measurement
by interferometry with parametric amplifiers”, Physical Review B 90, 134515 (2014).

[26] S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri, A. Grimm, L. Frunzio, S. Shankar,
and M. H. Devoret, “Gated conditional displacement readout of superconducting
qubits”, Physical Review Letters 122, 080502 (2019).

[27] J. Ikonen, J. Goetz, J. Ilves, A. Keränen, A. M. Gunyho, M. Partanen, K. Y. Tan,
D. Hazra, L. Grönberg, V. Vesterinen, S. Simbierowicz, J. Hassel, and M. Möttö-
nen, “Qubit measurement by multichannel driving”, Physical Review Letters 122,
080503 (2019).

[28] N. Didier, J. Bourassa, and A. Blais, “Fast quantum nondemolition readout by para-
metric modulation of longitudinal qubit-oscillator interaction”, Physical Review
Letters 115, 203601 (2015).

[29] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics”, Re-
views of Modern Physics 86, 1391 (2014).

https://doi.org/10.1103/PhysRevX.8.021001
https://doi.org/10.1103/PhysRevA.95.012305
https://doi.org/10.1088/0305-4470/39/7/011
https://doi.org/10.1103/PhysRevX.9.041009
https://doi.org/10.1103/PhysRevX.9.041009
https://creativecommons.org/licenses/by-sa/3.0/
https://doi.org/10.1103/PhysRevA.86.032106
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevB.90.134515
https://doi.org/10.1103/PhysRevLett.122.080502
https://doi.org/10.1103/PhysRevLett.122.080503
https://doi.org/10.1103/PhysRevLett.122.080503
https://doi.org/10.1103/PhysRevLett.115.203601
https://doi.org/10.1103/PhysRevLett.115.203601
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391


5

130
5. REALIZING MODULAR QUADRATURE MEASUREMENTS VIA A TUNABLE

PHOTON-PRESSURE COUPLING IN CIRCUIT-QED

[30] C. Eichler and J. R. Petta, “Realizing a circuit analog of an optomechanical system
with longitudinally coupled superconducting resonators”, Physical Review Letters
120, 227702 (2017).

[31] J. R. Johansson, G. Johansson, and F. Nori, “Optomechanical-like coupling be-
tween superconducting resonators”, Physical Review A 90, 053833 (2014).

[32] D. Bothner, I. C. Rodrigues, and G. A. Steele, “Photon-pressure strong coupling
between two superconducting circuits”, Nature Physics, https://doi.org/10.
1038/s41567-020-0987-5 (2020).

[33] A. Vrajitoarea, Z. Huang, P. Groszkowski, J. Koch, and A. A. Houck, “Quantum con-
trol of an oscillator using a stimulated Josephson nonlinearity”, Nature Physics 16,
211 (2019).

[34] Y. Yin, Y. Chen, D. Sank, P. J. J. O’Malley, T. C. White, R. Barends, J. Kelly, E. Lucero,
M. Mariantoni, A. Megrant, C. Neill, A. Vainsencher, J. Wenner, A. N. Korotkov,
A. N. Cleland, and J. M. Martinis, “Catch and release of microwave photon states”,
Physical Review Letters 110, 107001 (2013).

[35] M. Pierre, I.-M. Svensson, S. Raman Sathyamoorthy, G. Johansson, and P. Dels-
ing, “Storage and on-demand release of microwaves using superconducting res-
onators with tunable coupling”, Applied Physics Letters 104, 232604 (2014).

[36] W. Pfaff, C. J. Axline, L. D. Burkhart, U. Vool, P. Reinhold, L. Frunzio, L. Jiang, M. H.
Devoret, and R. J. Schoelkopf, “Controlled release of multiphoton quantum states
from a microwave cavity memory”, Nature Physics 13, 882 (2016).

[37] E. Flurin, N. Roch, J. D. Pillet, F. Mallet, and B. Huard, “Superconducting quan-
tum node for entanglement and storage of microwave radiation”, Physical Review
Letters 114, 090503 (2015).

[38] M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. M.
Sliwa, B. Abdo, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret, “Quan-
tum back-action of an individual variable-strength measurement”, Science 339,
178 (2013).

[39] Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-Jáuregui, R. J.
Schoelkopf, M. Mirrahimi, H. J. Carmichael, and M. H. Devoret, “To catch and
reverse a quantum jump mid-flight”, Nature 570, 200 (2019).

[40] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Intro-
duction to quantum noise, measurement, and amplification”, Reviews of Modern
Physics 82, 1155 (2010).

[41] W. Janke and H. Kleinert, “How good is the Villain approximation?”, Nuclear Physics
B 270, 135 (1986).

[42] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio, D. E.
Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret, “Phase-preserving am-
plification near the quantum limit with a Josephson ring modulator”, Nature 465,
64 (2010).

[43] C. M. Caves, “Quantum limits on noise in linear amplifiers”, Physical Review D 26,
1817 (1982).

https://doi.org/10.1103/PhysRevLett.120.227702
https://doi.org/10.1103/PhysRevLett.120.227702
https://doi.org/10.1103/PhysRevA.90.053833
https://doi.org/https://doi.org/10.1038/s41567-020-0987-5
https://doi.org/https://doi.org/10.1038/s41567-020-0987-5
https://doi.org/https://doi.org/10.1038/s41567-020-0987-5
https://doi.org/https://doi.org/10.1038/s41567-020-0987-5
https://doi.org/10.1038/s41567-019-0703-5
https://doi.org/10.1038/s41567-019-0703-5
https://doi.org/10.1103/PhysRevLett.110.107001
https://doi.org/10.1063/1.4882646
https://doi.org/10.1038/nphys4143
https://doi.org/10.1103/PhysRevLett.114.090503
https://doi.org/10.1103/PhysRevLett.114.090503
https://doi.org/10.1126/science.1226897
https://doi.org/10.1126/science.1226897
https://doi.org/10.1038/s41586-019-1287-z
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1016/0550-3213(86)90549-3
https://doi.org/10.1016/0550-3213(86)90549-3
https://doi.org/10.1038/nature09035
https://doi.org/10.1038/nature09035
https://doi.org/10.1103/physrevd.26.1817
https://doi.org/10.1103/physrevd.26.1817


REFERENCES

5

131

[44] M. A. Rol, F. Battistel, F. K. Malinowski, C. C. Bultink, B. M. Tarasinski, R. Vollmer,
N. Haider, N. Muthusubramanian, A. Bruno, B. M. Terhal, and L. DiCarlo, “Fast,
high-fidelity conditional-phase gate exploiting leakage interference in weakly an-
harmonic superconducting qubits”, Physical Review Letters 123, 120502 (2019).

[45] A. L. Grimsmo, J. Combes, and B. Q. Baragiola, “Quantum computing with rotation-
symmetric Bosonic codes”, Physical Review X 10, 011058 (2020).

[46] K. Noh, S. M. Girvin, and L. Jiang, “Encoding an oscillator into many oscillators”,
Physical Review Letters 125, 080503 (2020).

https://doi.org/10.1103/PhysRevLett.123.120502
https://doi.org/10.1103/PhysRevX.10.011058
https://doi.org/10.1103/PhysRevLett.125.080503




6
CONCLUSION AND OUTLOOK

133



6

134 6. CONCLUSION AND OUTLOOK

6.1. CONCLUSION

E NCODING a qubit in an oscillator has proven to be a promising approach for long-
living qubit designs. In particular, the code developed by Gottesman, Kitaev, and

Preskill (GKP code) is very robust against photon loss, has a relatively simple gate set, and
also enables multiple applications beyond quantum computing. However, efficiently
encoding a qubit in this code is a major challenge. In this thesis, various schemes have
been developed to address this issue. The following paragraphs highlight the most im-
portant aspects of this thesis:

• In Chapter 2, we introduced some of the background for working with the GKP
code. As we have seen, there are multiple different representations, which are all
suited for different purposes. The representation as a wave function is useful to
get some intuition about code states and their behavior, but is typically difficult
to work with. The shifted code states introduced by Glancy and Knill are a handy
tool to analyze error correction and similar operations that transform the code
state. The Fock basis representation, although not well suited, remains important
because most numerical simulations are written for this basis.

We also discussed how a GKP code state, obtained e. g. from an experiment or sim-
ulations, can be analyzed. We introduced the effective squeezing parameters and
discussed how they can be obtained analytically from a wave function, but also
directly from experimental data or numerics. The effective squeezing parameters
make the assumption that the underlying approximate code states are Gaussian,
but this is typically a good approximation. The big advantage is that the effective
squeezing parameters are comparatively easy to estimate. In fact, both experi-
mental implementations of the GKP code used the average expectation value of
the Pauli operators as quality measure, which is an approximation of the sharp-
ness, and therefore closely related to the effective squeezing parameters [1, 2].

• In Chapter 3, we introduced the class of phase estimation algorithms, and how it
can be used to encode a GKP code state. We also discussed how a controlled dis-
placement, the central part of any phase estimation scheme, can be implemented
in various physical settings.

The chapter concludes with a numerical simulation of an encoding protocol us-
ing phase estimation. Although the protocol used in the numerical simulations
is now outdated, the main results are still valid: The encoding procedure is quite
robust against readout errors of the ancilla qubit, but a nonlinearity of the oscilla-
tor of more than a few kHz would almost immediately destroy the encoded qubit.
In the recent experiment, the nonlinearity was only 1 Hz — a value that was com-
pletely unreasonable in 2016 [2]. Although the simulations show that the impact
of amplitude damping is not significant on average, a sudden bit flip of the qubit
during a vulnerable time would immediately decohere an encoded qubit. A clever
trick to mitigate this issue has been published by Rosenblum et al. [3]: By using
the transmon as a three level system |0〉 , |1〉 , |2〉, and ensuring that qubit-oscillator
coupling is of the form â†â(|1〉〈1|+ |2〉〈2|), they can mitigate the backaction of am-
plitude damping. This error mitigation technique would also be beneficial for en-
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coding the GKP code. Alternatively, employing a simple bit-flip code would also
be beneficial. In fact, even “simple” error detection would be sufficient to elim-
inate propagation of errors from the ancilla qubit to the oscillator, provided that
the time of an amplitude damping event can be determined with good accuracy.

• Due to its robustness against photon loss, the GKP code is very promising for the
optical regime, because error correction of a flying mode is often simply not prac-
tical. In Chapter 4, we focus on a breeding protocol originally devised to generate
GKP states in the optical regime. The original protocol was developed by Vascon-
celos et al. [4], however, it relied on post-selection. By mapping the protocol to
phase estimation, we could show that almost any result of the protocol yields a
good GKP state, and showed how the necessary corrections can be computed.

We also could show analytically that the protocol converges. Although the calcu-
lations are quite tedious, a nice technique developed to this end was to derive a
class of states that is closed under the protocol, that is, the functional form of the
code states does not change, only the parameters.

A major challenge when using feedback to encode a GKP state is that the feedback
has to be computed and applied before the stored state decoheres [2]. This issue is
exacerbated in the optical regime, where the single-photon life time is often lower
than in the microwave regime. Still, the scheme presented in this thesis has the ad-
vantage that post-processing is only needed at the end of the encoding procedure,
without need to sync different modes during encoding.

• In Chapter 5, we focused on the question how to implement a single-shot eigen-
value measurement of a displacement. The motivation behind such a single-shot
measurement is that, so far, mostly phase estimation schemes, i. e. a series of weak
measurements, has been used. These measurements typically take a considerable
time, and the hope is to speed this process up.

To achieve a single shot measurement, we followed the proposal by Gottesman et
al. to implement a Hamiltonian of the form q̂ â†â between two oscillators. Such
an interaction is nontrivial, and requires both a purpose-designed circuit and a
parametric drive.

A nice feature of the circuit we propose is that it features only a single Joseph-
son junction and uses a small inductance to close the loop, so that it is still flux-
tunable. Although of little consequence for the circuit analysis, this virtually elimi-
nates a source of noise present in many experiments: No two Josephson junctions
are exactly equal, but a fully flux-tunable design usually requires a pair of equal
junctions.

Perhaps surprisingly, the overarching theme of this thesis are applications of the
phase estimation algorithm and variants thereof. Using phase estimation to encode a
GKP qubit is probably not the optimal choice — the measurements take a long time,
feedback is difficult to calculate in real time during an experiment, and the photon num-
ber of the encoded state grows in an uncontrollable manner. However, mapping a pro-
cedure to phase estimation is the key to understand what happens, and to see how one
might improve upon it:
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For the breeding protocol discussed in Chapter 4, the connection is obvious because
a mapping of the protocol to phase estimation is literally the approach taken there. We
can also see the protocol developed by Campagne-Ibarcq et al. [2] as a variant of the
maximal information gain strategy (see Section 3.1.4). In their paper, the authors use a
feedback that centers the state again in phase space, using a fixed feedback strength. If
the state is centered in phase space before the measurement, then the probability to ob-
tain either 0 or 1 as a measurement will be equal. If the state is again centered after the
measurement, the probabilities for the next measurement will be equal, too. Thus, their
feedback strategy is equivalent to the maximal information gain strategy in the steady
state of the protocol. Finally, we can also understand the optomechanical interaction
from Chapter 5 as a phase estimation variant. If we use the Holstein-Primakoff trans-
formation, we can map both the ancilla oscillator and the optomechanical coupling to
an interaction between many qubits and the target oscillator. Then, we can see that
the measurement protocol with an optomechanical coupling is equivalent to phase es-
timation by repetition with multiple ancilla qubits. For the detailed derivation, see Ap-
pendix A.2.

6.2. OUTLOOK

O VER the last years, there have been significant advances for qubits encoded in bosonic
modes, and in particular for the GKP code. Maybe most significant for the scope of

this thesis were the two experiments demonstrating this code [1, 2]. However, there is
still much to be done before the GKP code can be used in a scalable fashion with a large
number of encoded qubits.

• Building upon the analytical results in Chapter 4, one might ask whether the asymp-
totic behavior of other encoding protocols can be proven in a similar way. An in-
teresting candidate for such an analysis is the simplified phase estimation scheme
by Campagne-Ibarcq et al. [2]. One point the authors raised is that it seems neces-
sary to include an artificial “dissipation” channel, which ensures that the number
of photons of the GKP state converges to some constant. Although photon loss
would also ensure that the photon number converges eventually, with current sin-
gle photon life times this would only happen if the encoded state has hundreds of
photons. Because the logical error rate increases again for large photon numbers,
this necessitates another mechanism to keep photon numbers low. They do this
by interleaving measurements of the stabilizers Sp ,Sq with measurements of small
displacements D(ε),D(iε). However, the drawback is that the number of measure-
ments needs to be doubled to generate this dissipative process. An approach to
solve this issue would be to change the stabilizer measurements. If one were to
measure the eigenvalues of D(

p
2π±iε),D(i

p
2π±ε) in an alternating manner, one

might be able to have a converging photon number, and still obtain some stabi-
lizer information with every measurement. Although this protocol remains to be
demonstrated analytically, preliminary numerical simulations show promising re-
sults.

• To be able to use the breeding protocol, a reliable source of squeezed Schrödinger
cat states is required as input. However, generating these states still remains a ma-
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jor challenge. In a recent experiment, Eaton et al. made some progress towards
that goal, by putting a coherent state and a single photon state into a beam split-
ter, followed by number-resolving detection [5]. An interesting avenue of future
research is the question whether photon catalysis protocols such as the one by
Eaton et al. can be made more efficient to encode a GKP code state, in a similar
way as the breeding protocol.

• Numerical simulations of GKP qubits are memory intensive, because the state is
usually represented in the Fock basis. As the GKP code is a stabilizer code, one
open question is if the Gottesman-Knill theorem can be applied to simulate noise.
The generating function of a GKP code is much more efficient than representing
the state explicitly in the Fock basis. Although some noise types (e. g. dephasing)
are clearly not efficiently tractable as a transformation of the stabilizers, it remains
to be seen whether, e. g., photon loss could be simulated in such a way.

Another approach would be to leverage techniques from computational chem-
istry. As the von Neumann lattice technique is used to simulate large Hilbert spaces
of many interacting harmonic oscillators, efficient programs have been developed
for this type of state. The GKP code is defined by the same displacements as the
von Neumann lattice, and has therefore an efficient representation in such a lat-
tice, meaning that any advances made by the computational chemistry commu-
nity should be easily transferable.

• Finally, the one-shot stabilizer measurements developed in Chapter 5 are interest-
ing to either store GKP code states or be used as a source of encoded ancilla qubits.
In the chapter, we briefly discussed how a CNOT gate could work, but a scalable
architecture still needs to be developed. In particular, the question how multiple
storage modes can be coupled is still open.
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A.1. DETAILS OF NUMERICAL SIMULATIONS

A.1.1. STABILIZER MEASUREMENTS USING PHASE ESTIMATION
In this section, we discuss some details of the numerical simulations used in Section 3.3.
The code is built upon the numerical simulations used in earlier work [3], with sig-
nificant changes to enable the simulation of noise. The full code is available under
https://gitlab.com/djweigand/qubit-oscillator.

The simulations are performed in the photon number basis, using a Hilbert space
of finite size N . All operators acting on the system are obtained from truncated creation
and annihilation operators. Thus, the simulation is only accurate if the support of a state
outside of the finite Hilbert space is small. As the simulation of non-stochastic errors is
fairly efficient, we can choose N = 400 for M = 12 rounds. In case of stochastic errors
acting over a finite time (e. g. photon loss), the accuracy of the simulation is also limited
by the employed differential equation solver. As the precision is mostly independent
of the size of the Hilbert space, the cumulative impact grows with its size. A suitable
compromise between errors from the cutoff and errors from the ODE Solver is a Hilbert
space with N = 100 photons, allowing for M = 8 rounds. While the computational cost
for stochastic errors scales much less favorable than in the other cases, this would only
be an issue for N > 100.

A.1.2. SIMULATION OF BREEDING
In this section, we discuss the numerical simulations used in Chapter 4. The source
code is available under https://gitlab.com/djweigand/cat-breeding. Two sepa-
rate approaches were used for the full simulation of the protocol using Schrödinger cat
states and for initial von Mises distributed states.

SCHRÖDINGER CAT STATES

For the numerical simulation of breeding using squeezed Schrödinger cat states as input,
the states are stored and manipulated in the q̂ quadrature basis. The beam splitters are
implemented using the action of a beam splitter in phase space, see Eqs. 4.4. When stor-
ing a wave function in discrete coordinates, an operation like q̂1 → (q̂1− q̂2)/

p
2 changes

the number of points. To keep the memory requirements constant, the wave function
was therefore interpolated to the original coordinates using a cubic spline (see the func-
tion scipy.interpolate.UnivariateSpline in the SciPy package [4] ). The wave
functions are stored using (212 + 1) points, so interpolation should not add significant
errors. In order to switch between the measurement and standard bases, a fast Fourier
transform is used.

VON MISES DISTRIBUTED STATES

The simulation of von Mises distributed states is based on the analytical result for the
output of a breeding round, see Eqs. (4.25) and (4.26). Because the main part of this
simulation is based on analytical results, numerical errors from the simulation itself are
mostly negligible.

We simulate a protocol using M = 6 rounds of breeding, where the initial state is
chosen such that the effective squeezing is ∆q = 0.2. Because the result of all (2M+1 −1)
homodyne measurements within one run of the protocol is continuous, it is infeasible

https://gitlab.com/djweigand/qubit-oscillator
https://gitlab.com/djweigand/cat-breeding
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to use a brute-force approach where all possible measurement outcomes are simulated.
For this reason, we repeat the procedure 1000 times for each M = 1. . .6, obtaining a sin-
gle final state per run.

The implementation has the same structure as Fig. 4.4, see the code below. In order
to improve performance, the states are not stored explicitly. Because the post measure-
ment state only depends on the parameters κ1,κ2 and the rescaled measurement result
x (see Eq. (4.25)), it is sufficient to store only the parameters κ of the von Mises distribu-
tion. The simulation works as follows:

1. (l. 11) Initialize 2M identical states of the form Eq. (4.20), with lim∆→ 0.

2. (l. 15) repeat the following for rounds k = 0, . . . , (M −1):

(a) (l. 17) Assign the 2M−k states pair-wise as input for the 2M−k−1 beam splitters.

(b) (l. 24) For each pair, compute the probability P(x) to measure the rescaled
result x according to Eq. (4.26).

(c) (l. 26) For each pair, randomly choose the rescaled measurement result ac-
cording toP(x).

(d) (l. 30) Given the measurement results, computeκ for all 2M−k−1 output states
according to Eq. (4.25).

3. (l. 33) For the single remaining state, compute the effective squeezing parameter
according to Eq. (2.23).

4. (l. 34) Return the effective squeezing parameter.

0 def mises_breed ( k _ i n i t : f l o a t , M: i n t ) −> f l o a t , f l o a t :
1 """
2 Breed 2**M von Mises distr ibuted s t a t e s with parameter k _ i n i t for M rounds
3

4 Arguments :
5 k _ i n i t { f l o a t } −− i n i t i a l kappa
6 M { i n t } −− number of rounds
7

8 Returns :
9 delta { f l o a t } , weight { f l o a t } −− e f f e c t i v e squeezing , probabi l i ty to obtain

the simulated r e s u l t s
10 """
11 k = np . array ( [ k _ i n i t ] * 2**M)
12 w = np . array ( [ 1 ] * 2**M)
13

14 # Do breeding for M rounds
15 for _ in range (M) :
16 # Assign the s t a t e s pair −wise to the beam s p l i t t e r s
17 k = k . reshape ( 2 , −1)
18 w = w. reshape ( 2 , −1)
19 w = np . product (w, axi s =0)
20 w = w / np .sum(w) # Using in −place divis ion causes TypeError
21

22 x = [ ]
23 # For each beam s p l i t t e r , do a breeding measurement
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24 for i , l i n e in enumerate ( _prob_p ( * k ) ) :
25 l i n e /= np .sum( l i n e )
26 idx = np . random . choice (IDX , p= l i n e )
27 x . append(PHASE_COS[ idx ] )
28 w[ i ] *= l i n e [ idx ]
29 x = np . asarray ( x )
30 k = np . sqrt ( k [ 0 ] * * 2 + k [ 1 ] * * 2 + 2 * k [ 0 ] * k [ 1 ] * p)
31 a s s e r t len ( k ) == 1 # At the end of the protocol , one s t a t e i s l e f t
32 weight = w[ −1]
33 delta = mises_std ( k [ −1]) # Calculate the e f f e c t i v e squeezing , given kappa
34 return delta , weight

A.1.3. SIMULATIONS OF MODULAR QUADRATURE MEASUREMENTS

In this section, we discuss details of the numerical simulations used in Chapter 5. The
full code is available under https://gitlab.com/djweigand/photonpressure.

The numerical simulations were implemented using the Qutip Python package [5].
In the numerics, we apply a counter-displacement drive Z−n̄ , where n̄ is the mean pho-
ton number of the initial state of the ancilla oscillator, in order to minimize the photon
number of the state in the target oscillator. The Hamiltonian for the interaction between
target and oscillator in the ideal case is then

Hnum := g |α|2
2

(b̂† + b̂)− g â†â(b̂† + b̂),

where |α|2 is the number of photons in the initial state of the ancilla oscillator and the
Hamiltonian is turned on for time tcoupl =

p
2π/g , see the end of Section 5.3.3.

All simulations model a direct, perfect heterodyne measurement by projecting the
ancilla oscillator onto a coherent state. The measurement result is chosen by computing
the Husimi-Q function, and drawing 200 randomly chosen samples (unless mentioned
otherwise) with the Husimi-Q function as probability distribution. Because this model
of measurement is very strong, the photon numbers of the post measurement state may
be very large, with some events exceeding 100 photons, see Fig. A.1 on the left. Note that
for GKP states, the distribution of the photon number is very wide, with the standard de-
viation equal to the expected photon number. Therefore, the Hilbert spaces of the target
and ancilla oscillators were approximated using 500 and 20 Fock states, respectively.

To estimate the accuracy of the simulations, we use that the effective squeezing∆p of
the vacuum state should stay constant in the case of a noiseless protocol. The results are
shown in Fig. A.1 on the right. As shown there, errors are negligible up to an initial ancilla
state with n̄ = 3.5 photons, and the relative error for n̄ = 4 photons is still below 1% in
most cases. For these reasons, and because the effective squeezing achieved with |α= 2〉
as initial ancilla state is already very strong, we restrict the simulations to n̄ = 1, . . . ,4.

https://gitlab.com/djweigand/photonpressure
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Figure A.1: Box and whisker plot of the expected number of photons (left) and the effective squeezing ∆p
(right) of the final state after a measurement of Sq . The target oscillator starts in the vacuum state, and the

ancilla oscillator with the coherent state
∣∣α=p

n̄
〉

(compare Fig. 5.7). For every α, a total of 200 samples was
simulated. The orange line indicates the median, the box indicates the 25 and 75 percentiles, the whiskers
the 5 and 95 percentiles, events above or below these thresholds are shown individually. For some events, the
final state of the target oscillator has a mean photon number exceeding 100, therefore a large Hilbert space
is required to faithfully represent those states. From analytical considerations, we know that ∆p = 1 should
be constant, independent of the measurement results. As can be seen, errors are negligible up to n̄ = 3.5,
for n̄ = 4, the relative error for most events is still below 1%. Previously published in D. J. Weigand and B. M.
Terhal, “Realizing modular quadrature measurements via a tunable photon-pressure coupling in circuit QED”,
Physical Review A 101, 053840 (2020), licensed under CC-BY 4.0 [6] cb.

A.2. RELATING A PHOTON-PRESSURE COUPLING TO PHASE ES-
TIMATION

The photon pressure coupling in Chapter 5 can also be interpreted as a variant of phase
estimation. To this end, we will first rewrite the initial coherent state |α〉 of the ancilla
oscillator as a state in a system with sufficiently large spin using the Holstein-Primakoff
transformation. Afterwards, we replace the single large spin by a collection of small spins
(qubits) to obtain a spin coherent state, and see what the action of the photon-pressure
coupling on such a state is.

A.2.1. INITIAL STATE
In the harmonic oscillator, a coherent state |α〉 can be written as a displacement D(α)
acting on the vacuum state:

|α〉 = D(α) |vac〉 = exp(αâ† −α∗â) |vac〉 .

For the Holstein-Primakoff transformation, we identify the spin ladder operators with
those of the harmonic oscillator [7]:

S+ ≡
p

2S

√
1− â†â

2S
â ≈

p
2Sâ, S− ≡

p
2Sâ†

√
1− â†â

2S
≈
p

2Sâ†, Sz ≡ S − â†â, (A.1)

where the approximation is â†â ¿ S and S is the total spin. From the map between Sz

and the photon number operator â†â, we can see that the “vacuum state” in the spin

https://doi.org/10.1103/PhysRevA.101.053840
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is defined as the eigenstate Sz |vacs〉 = S |vacs〉, where the subscript s indicates that the
state is defined on a spin. In Chapter 5, we argued that α can be assumed to be real
without loss of generality. For real α, we can define

|αs〉 = D(αs ) |vacs〉 = exp

(
αp
2S

(S−−S+)

)
|vacs〉 = exp

(
− iαp

2S
2Sy

)
|vacs〉 .

In the second step, we identify the state large spin S with a product state of M = 2S qubits.
We have1

Sx ≡
M−1∑
j=0

σx, j , Sy ≡
M−1∑
j=0

−σy, j , Sz ≡
M−1∑
j=0

σz, j , |vacs〉 ≡
2S−1∏
j=0

|0〉 j ,

where j labels qubits 0, . . . , M . The coherent state |αs〉 given by

|αs〉 =
M−1∏
j=0

exp

(
iαp
M

2σy, j

)
|0〉 j =

M−1∏
j=0

(
cos

(
αp
M

)
1+ isin

(
αp
M

)
Y

)
|0〉 j

=
M−1∏
j=0

(
cos

(
αp
M

)
|0〉 j + sin

(
αp
M

)
|1〉 j

)
(A.2)

=
M∑

k=0

(
M

k

)1/2

cos

(
αp
M

)M−k

sin

(
αp
M

)k ∣∣DM
k

〉
,

where

∣∣DM
k

〉= (
M

k

)−1/2 ∑
k∈{0,1}M

w(k)=k

|k〉

is a Dicke state, i. e. a symmetric superposition over all M qubit states with Hamming
weight k. If we compute the “photon number” distribution P(k) for |αs〉, we obtain a
binomial distribution. We can also see that the distribution converges to the Poissonian
distribution expected for a coherent state in the harmonic oscillator if we take the limit
of a large number of qubits M →∞:

lim
M→∞

P(k) = lim
M→∞

(
M

k

)(
1− sin

(
αp
M

)2)M−k(
sin

(
αp
M

)2)k

= e−|α|
2 |α|2

k !
.

A.2.2. PHOTON-PRESSURE HAMILTONIAN
Using Eq. (A.1), we can also rewrite the photon pressure interaction as a Hamiltonian
acting on many qubits:

HPP =p
2g â†âq̂T −→p

2g

(
S −

M−1∑
j=0

σz, j

)
q̂T =

M−1∑
j=0

(p
2g

(
1

2
−σz, j

)
q̂T

)
.

1Note the change of sign for σy . This is because |0〉 is a high-energy state in a spin, but a low energy state in
the qubit.



A.2. RELATING A PHOTON-PRESSURE COUPLING TO PHASE ESTIMATION

A

145

target / U U · · · U U

qubit Nr.

1 cos
(

α√
M

)
|0〉+ sin

(
α√
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M
2 − 1 cos

(
α√
M

)
|0〉+ sin

(
α√
M

)
|1〉 • · · · X

M
2

cos
(

α√
M

)
|0〉+ sin

(
α√
M

)
|1〉 · · · • Y

...
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(

α√
M
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|0〉+ sin

(
α√
M

)
|1〉 · · · • Y

Figure A.2: Equivalent circuit to a photon number controlled displacement, using M = 2n,n ∈N ancilla qubits.
The target system is some harmonic oscillator (symbolized by the slash). The equivalence to the scheme from
Chapter 5 (see Fig. 5.1) is exact for M → ∞. In the limit, the initial state of the ancilla qubits behaves like a
coherent state. Measuring half of the ancilla qubits in the Pauli X basis and the other half in the Pauli Y basis
is equivalent to a heterodyne measurement.

We can see that this is the same conditional displacement coupling each qubit to the
oscillator. If we turn this Hamiltonian on for time tcoupl =

p
2π/g , the time evolution

operator is given by (compare Eq. (5.3))

UPP,s =
M−1∏
j=0

exp

(
i2
p
πq̂

(
1

2
−σz, j

))
.

Applying this time evolution to the initial state from Eq. (A.2), the pre-measurement state
is thus

UPP,s |αs〉 =
M−1∏
j=0

(
cos

(
αp
M

)
|0〉 j +exp(i2

p
πq̂)sin

(
αp
M

)
|1〉 j

)
. (A.3)

A.2.3. HETERODYNE MEASUREMENT

Using the mapping from Eq. (A.1) a third time, we can identify the q̂ quadrature of the
oscillator with the operator Sx for the qubits and the p̂ quadrature with the operator
Sy . The heterodyne measurement in the optical setting is implemented by sending the
coherent state through a beam splitter, and then measuring one arm in the q̂ basis and
the other arm in the p̂ basis.

In the qubit setting, every qubit will be in the same state after the coupling, see
Eq. (A.3). We can therefore easily emulate the beam splitter by simply assigning half
of the qubits to group A, and the other half to a second group B . As expected from a
beam splitter where one of the input ports is in the vacuum state, the average Hamming
weight (i. e. the average “photon number”) of each group is half the average Hamming
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weight of all qubits. Following the mapping of the quadratures, the heterodyne measure-
ment is then a joint measurement of the total spin operator Sx,A(Sy,B ) for group A (B).
As Sx ≡ ∑M−1

j=0 σx, j and Sy ≡ ∑M−1
j=0 −σy, j , this means simply that we measure each qubit

of group A (B) individually in the Pauli X (Y ) basis, respectively. The measurement re-
sult for the operator Sx,A(Sy,B ) is then simply the Hamming weight of the measurement
record for group A (B).

Before the measurement, all qubits are in the same state. Therefore, all permutations
of a particular measurement result are equivalent, and any linear combination of equiv-
alent measurement results has the same back action on the target oscillator. This implies
that the back action on the target oscillator is the same whether the qubits are measured
simultaneously or sequentially, as long as the eigenvalue of the total spin operator Sx (Sy )
is the same. With the same reasoning, we can see that the probability to obtain a result
for the eigenvalue of Sx (Sy ) is also the same whether we measure sequentially or simul-
taneously.

To make the correspondence to non-adaptive phase estimation more clear, consider
the evolution of a single qubit belonging to group A, e. g. qubit 1 in Fig. A.2. The pre-
measurement state is

HUPP,s |αs〉1 =
[

1p
2

(
cos

(
αp
M

)
+ei2

p
πq̂ sin

(
αp
M

))
|+〉1

+ 1p
2

(
cos

(
αp
M

)
−ei2

p
πq̂ sin

(
αp
M

))
|−〉1

]
,

where H is the Hadamard gate and |αs〉1 indicates the term involving qubit 1 within the
larger product state |αs〉. This state has the same form as the pre-measurement state for
non-adaptive phase estimation and measurement in the Pauli X basis, see Section 3.1.2.
It is straightforward to see the pre-measurement state of group B has the same form as
the pre-measurement state of non-adaptive phase estimation and measurement in the
Pauli Y basis. Assuming that the target oscillator is in a position eigenstate

∣∣q〉
with

eigenvalue q , the probabilities to obtain result 0 for the X and Y measurements of group
A and B are given by

PX =P(0|A) = 1

2
+cos

(
αp
M

)
sin

(
αp
M

)
cos(2

p
πq)

PY =P(0|B) = 1

2
+cos

(
αp
M

)
sin

(
αp
M

)
sin(2

p
πq)

The eigenvalue q can now be obtained as a function of PX and PY :

2
p
πq = arg

 PX + iPY − 1+i
2

cos
(

αp
M

)
sin

(
αp
M

)
 . (A.4)

Note that this is a similar form as the interpretation of measurement results in non-
adaptive phase estimation, compare Eq. (3.2).

Thus, approximating the ancilla oscillator and the optomechanical coupling with
many ancilla qubits gives a variation of non-adaptive phase estimation (see Section 3.1.2),
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in a limit where each individual measurement is made weaker, but the number of mea-

surements is increased accordingly. In fact, if we choose α = π
p

M
4 , Eqs. (3.2) and (A.4)

are identical and we recover non-adaptive phase estimation with M qubits exactly (Al-
though the approximation in Eq. (A.1) is not valid for such large α).
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