

Delft University of Technology

BackboneAnalysis: Structured Insights into Compute Platforms from CNN Inference
Latency

Hafner, Frank M.; Zeller, Matthias ; Schutera, Mark ; Abhau, Jochen ; Kooij, J.F.P.

DOI
10.1109/IV51971.2022.9827260
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE Intelligent Vehicles Symposium (IV)

Citation (APA)
Hafner, F. M., Zeller, M., Schutera, M., Abhau, J., & Kooij, J. F. P. (2022). BackboneAnalysis: Structured
Insights into Compute Platforms from CNN Inference Latency. In Proceedings of the 2022 IEEE Intelligent
Vehicles Symposium (IV) (pp. 1801-1809). IEEE. https://doi.org/10.1109/IV51971.2022.9827260

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/IV51971.2022.9827260
https://doi.org/10.1109/IV51971.2022.9827260

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

BackboneAnalysis: Structured Insights into Compute
Platforms from CNN Inference Latency

Frank M. Hafner1, Matthias Zeller1, Mark Schutera1, Jochen Abhau1 and Julian F.P. Kooij2

Abstract— Customization of a convolutional neu-
ral network (CNN) to a specific compute platform
involves finding an optimal pareto state between
computational complexity of the CNN and resulting
throughput in operations per second on the compute
platform. However, existing inference performance
benchmarks compare complete backbones that entail
many differences between their CNN configurations,
which do not provide insights in how fine-grade layer
design choices affect this balance.

We present BackboneAnalysis, a methodology for
extracting structured insights into the trade-off for
a chosen target compute platform. Within a one-
factor-at-a-time analysis setup, CNN architectures
are systematically varied and evaluated based on
throughput and latency measurements irrespective of
model accuracy. Thereby, we investigate the configu-
ration factors input shape, batch size, kernel size and
convolutional layer type.

In our experiments, we deploy BackboneAnalysis
on a Xavier iGPU and a Coral Edge TPU accelerator.
The analysis reveals that the general assumption from
optimal Roofline performance that higher operation
density in CNNs leads to higher throughput does
not always hold. These results highlight the impor-
tance for a neural network architect to be aware of
platform-specific latency and throughput behavior in
order to derive sensible configuration decisions for a
custom CNN.

I. INTRODUCTION

Algorithms based on convolutional neural net-
works (CNN) have demonstrated to be state-of-
the-art in many major computer vision tasks such
as image classification [10], object detection [12]
and semantic segmentation [3], [25]. In response, a
strong demand in industry arised for acceleration of
CNN inference often referred to as AI accelerators

1Autonomous Mobility Systems, ZF Friedrichshafen AG,
Germany firstname.lastname@zf.com

2Intelligent Vehicles Group, Delft University of Technol-
ogy, Netherlands j.f.p.kooij@tudelft.nl

[7], [16]. While GPUs are well suited by design,
also new compute hardware was introduced [15].

The majority of these compute platforms have
in common that they leverage single instruction
multiple data (SIMD) concepts for highly parallel
processing of CNNs. Roofline [31], as a renowned
technique for the evaluation of the efficiency of
compute workloads, was applied to AI accelera-
tors and GPUs for CNNs [13], [16]. From the
Roofline analysis for CNNs [13], [16], [31] one
might conclude that higher operational density in
CNNs (in terms of operations per byte transferred
from memory) increases throughput (in operations
per second) on a compute platform up to a compu-
tational bound. However, as we will show in our
experiments, this is not generally the case and a
proper analysis of configuration decisions in CNN
architectures is needed on a per platform basis.

When deploying a CNN on a compute platform
several steps have to be completed. In a first step,
a suitable compute platform needs to be chosen.
Existing CNN inference hardware benchmarks such
as MLPerf [22] target this use case and support
the decision with insights in the latency of state-of-
the-art neural network architectures [6], [19], [21],
[36]. In a second step, neural network architects
face the task of customizing a target neural network
configuration to a given compute platform such
as in selecting convolutional block types or kernel
sizes. Typically, this challenge is phrased as finding
a pareto optimum between accuracy (higher is
better) and latency (lower is better) such as seen
in Neural Architecture Search (NAS) [14], [32].

However, to minimize latency one needs to con-
sider how more finegrained network design choices,
such as input shape, batch size, kernel size and
convolutional layer type affect another complex

2022 IEEE Intelligent Vehicles Symposium (IV)
June 5-9, 2022. Aachen, Germany

978-1-6654-8821-1/22/$31.00 ©2022 IEEE 1801

20
22

 IE
EE

 In
te

lli
ge

nt
 V

eh
ic

le
s S

ym
po

si
um

 (I
V

) |
 9

78
-1

-6
65

4-
88

21
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IV
51

97
1.

20
22

.9
82

72
60

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:20:30 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Selected differences of CNNs in MLPerf and the respective computational complexity and
throughput on NVIDIA Xavier [22].

SSD-MobileNet-V1 Resnet50 v1.5 SSD-ResNet34
Input Size 300x300 224x224 1200x1200
Conv. Block Depthwise Sep. Conv. Bottleneck Stand. Conv. Standard Convolution
Head SSD Head Fully Connected Layers SSD Head
Comp. Compl. 2.47 GOPs 8.2 GOPs 433 GOPs
Throughput 4.05 TOP/s 3.83 TOP/s 9.22 TOP/s

pareto state, namely between the computational
complexity of the network (lower is better) and its
throughput in operations per second for a specific
compute platform (higher is better). While the
existing benchmarks focus on the first stage, the
proposed BackboneAnalysis supports CNN archi-
tects during this second stage to understand these
trade-offs for their available compute platforms.
The example of Table I illustrates that existing
benchmarks, in this case MLPerf [22], do not
provide insight in the finegrained design choices.
BackboneAnalysis fills this gap.

The main contributions of this work are:
• BackboneAnalysis, a novel methodology sys-

tematically varying one-factor-at-a-time for
supporting the search of the pareto opti-
mum between computational complexity and
throughput. The implementation proposed in
this work considers the influence of the
CNN configuration factors convolutional block
types, kernel sizes, batch sizes and input sizes.

• We apply the methodology to the compute
platforms Xavier iGPU and Coral TPU. Our
results show that, to some extent contrary
to expectations from optimal Roofline perfor-
mance, higher operational density does often
not lead to higher throughput. This underlines
that a more fine-grained analysis is needed and
BackboneAnalysis allows to characterize these
properties of the studied platforms in detail.

II. RELATED WORK

Although inference execution latency is reported
for most new state-of-the-art CNN architectures, the
metrics are measured on heterogeneous compute
platforms and, therefore, incomparable. Also, for
compute platforms dedicated to CNNs no standard

benchmarks such as DMIPS [30] for CPUs exist.
As a result, several deep learning benchmarks have
been proposed recently [5], [6], [9], [19], [21],
[22], [36]. According to [36] existing benchmarks
are divided into training [5], [9] and inference
benchmarks [6], [19], [21], [22], [36].

A common approach of benchmarking deep neu-
ral network inference is the assessment of basic
mathematical operations such as matrix multipli-
cation or max pooling [1], [6] or analyzing single
layers of a CNN on compute platforms [17]. It was
shown that the theoretical number of achievable
operations per second (OP/s) or throughput often
reported by compute hardware manufacturers is
not reflecting performance for CNN workloads, as
this metric neglects memory-bounds and compute
utilization [15], [17], [31].

Besides that, several inference benchmarks con-
sider the execution latency of neural networks as
a whole. [19], [21] and [6] analyze deep learning
frameworks on compute platforms, where [6] and
[21] focus on edge devices. All mentioned bench-
marks have in common that they are based on state-
of-the-art academic neural network architectures,
such as MobileNets [12] and ResNets [10], where
some include Roofline analyses [31]. Through their
design, the benchmarks support the selection of
a compute platforms for CNN deployment and,
unlike BackboneAnalysis, do not support a neural
network architect in finegrained CNN configuration
decisions.

Finegrained configuration design choices are key
to finetune performance, and are therefore at the
core of Neural Architecture Search (NAS). Within
NAS, an algorithm searches an approximately ideal
neural network configuration for a task in a de-
fined search space. While state-of-the-art results in

1802

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:20:30 UTC from IEEE Xplore. Restrictions apply.

terms of accuracy-latency trade-off where achieved,
it is shown that the consideration of hardware
restrictions is critical for success [32], [37]. Re-
cently, NAS algorithms shift the focus to actually
measured execution latency in milliseconds or la-
tency estimates based on look-up tables for com-
pute hardware [14], [32], while still ignoring the
pareto state between throughput and computational
complexity. Networks from NAS often result in
complex compositions of convolutional layers and
interconnections and, hence, are not applicable for
a neural network expert seeking an understanding
of the effects of neural network configurations
on execution latency or throughput on a compute
platform. Additionally, the time and computational
requirements of NAS grow exponentially with con-
figuration possibilities, which limits the practicabil-
ity in many applications. Therefore, NAS methods
often define a search space based on heuristics or
unstructured findings [34]. BackboneAnalysis takes
a set of relevant configuration decisions as in NAS
and implements a structured comparison on top.

III. BACKBONE ANALYSIS

BackboneAnalysis is a methodology for extract-
ing insights into compute platforms from CNN
latency following a one-factor-at-a-time experimen-
tation setup. It consists of a collection Θ of N
neural network configurations θ, where θ ∈ Θ. In
the design phase of BackboneAnalysis the core con-
figuration factors F are defined and, subsequently,
the measurements are conducted with varying one
of those factor per experiment keeping the rest of
the design constant.

The focus of BackboneAnalysis is on supporting
neural network architects in finding a good pareto
state between computational complexity of a CNN
and throughput in terms of operations per second on
a platform and, therefore, only latency l is measured
while accuracy is neglected. Due to rapidly evolv-
ing factors of interest in CNNs we consider the
implementation defined in this work (Section III-
A) as an example which can be adapted by future
users of the methodology.

A. Finegrained Network Configuration Choices

As the baseline structure for all neural network
configurations Θ for this study, we propose ResNet-
50 [10]. The setup of ResNets in terms of width,
height and channel depth in the feature maps leads
to the fact that all layers in the network have the
same amount of operations. This property is desir-
able for the analysis to obtain a sensible average of
the performance of layers at different depth in the
network.1

The key contribution of the experimentation in
this work is the factor combination F for the neural
network configurations Θ used for BackboneAnal-
ysis. It is composed of convolutional block type
c, kernel size k, batch size b and input shape i as
those factors are typically varied between academic
network configurations and relevant for execution
latency. Therefore, each network configuration θ
is built upon a permutation of these factors with
ResNet-50 as the baseline structure. A visualization
of the resulting networks is found in Table III.

A review of literature for deep learning architec-
tures points out that a substantial share of convo-
lutional block types c in state-of-the-art neural net-
work architectures can be condensed to three vari-
ants which are mutually substitutable (see overview
in Table II): Standard convolution block [10], [18],
[26], spatially separable convolution block [27],
[28] and depthwise separable convolution block
[12]2. Additionally, the described types are fre-
quently embedded between bottleneck layers [10],
[11], [24], [27], [29]. Hence, non-bottleneck as well
as bottleneck convolutional block types are added
as variations of c. The network configurations with
different convolutional block types, ranked from
high to low computational complexity, are standard
convolution, spatially separable convolution and
depthwise separable convolution. The same order
from high to low is expected for operational density

1As the focus of BackboneAnalysis is performance in
convolutional layers fully connected layers are removed and
"straightened" convolutions are considered as in [35]. This
means that all layers in a convolutional block have the same
amount of channels.

2Grouped convolutions are a itermediary between depthwise
separable and standard convolutions and, hence, neglected at this
point.

1803

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:20:30 UTC from IEEE Xplore. Restrictions apply.

TABLE II: State-of-the-art neural network architectures include convolutional block types identified for
BackboneAnalysis (not comprehensive). Convolutional block structures described with depth d, kernel
size k and channel C

Convolutional block type State-of-the-art reference architectures Convolutional block structure

Standard convolution VGG-16 [26], Alexnet [18], ResNet-18, ResNet-34 [10], WRN [35] k×k×d

Bottleneck standard convolution ResNet-50, ResNet-101, ResNet-152 [10], ResNeXt [33], DPN [4] 1×1×d → k×k×d → 1×1×d

Spatially separable convolution Inception-V2 [28], Inception-V4 [27], ERFNet [23] k×1×d → 1×k×d

Bottleneck spatially separable convolution Inception-ResNet-v1 and v2 [27] 1×1×d → k×1×d → 1×k×d → 1×1×d

Depthwise separable convolution MobilenetV1 [12] k×k×1 for each C → 1×1×d

Bottleneck depthwise separable convolution MobilenetV2 [24], MobilenetV3 [11], EfficientNet [29] 1×1×d → k×k×1 for each C → 1× 1×d

on a compute platform.

The convolutional kernel size k has a signifi-
cant influence on mathematical complexity Oθ and,
hence, is another key factor considered for neural
network configurations. As in literature mostly ker-
nel sizes of 3, 5 and 7 are used, the convolutional
block types are varied with these kernel sizes [10]–
[12], [18], [24], [26]–[29]. In general, bigger kernel
sizes in network configurations are expected to lead
to higher operational density and higher computa-
tional complexity.

The batch size b describes the number of inputs
samples which are processed in parallel by a neural
network. For the analysis batch sizes b of 1, 2, and
4 are chosen as those numbers are applicable in
real-world applications [22].

State-of-the-art work shows that higher resolu-
tion input shapes i lead to higher accuracies for dif-
ferent tasks of convolutional neural networks [29].
In this analysis an input shape i of 224× 224× 3
is taken as the baseline from [10]. Additionally, a
scaling of input width and height by 2.5 leads to
input shapes of 560 × 560 × 3 (similar to VGA
resolution) and 1400 × 1400 × 3 (similar to Full
HD resolution).

Batch size and input shape linearly scale the
computational complexity of the network config-
urations. Additionally, with increasing batch sizes
and input shapes the operational density increases.

Overall, the benchmark varies four factors with
influence on execution latency in a one-factor-at-a-
time setup (see Table III). Details for each network
such as computational complexity and number of
parameters as well as latency are found in a refer-

ence CSV sheet 3.

B. Metrics

We propose to measure the execution latency
lθ,P of each of the network configurations θ ∈ Θ
on a selected compute platform P consisting of
the compute hardware and its overlaying software
stacks. Hereby, execution latency in milliseconds is
defined as

lθ,P = t1 − t0 [ms] (1)

where t0 is the timestamp when the input is avail-
able for the first layer of θ and t1 is the timestamp
when the output of the last layer of θ is available for
further processing on P . This definition implies that
hardware latency is considered for BackboneAnal-
ysis and system latency including data pipelining
and data transfer is neglected [8].

The computational complexity of a neural net-
work configuration θ is defined by the number of
mathematical operations Oθ for inference. Given
the computational complexity Oθ and the execu-
tion latency lθ,P , the operations per second (OP/s)
carried out on P can be calculated as

Oθ,P =
Oθ

lθ,P
× 1000 [OP

s] (2)

which is referred to as the throughput on P for a
network configuration θ [2], [20]. Due to possible
quantization the commonly used metric floating-
point operations per second (FLOP/s) is generalized
to operations per second (OP/s) in this work similar
to [17].

3Details for all models (open with Chrome): https://
figshare.com/s/682b765e575abdf7a0fa

1804

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:20:30 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Network configurations for Backbone Benchmark. Last non-bottleneck convolution layer in
each block has a stride of 2 to downscale the feature maps. Batch normalization and ReLU activation
follow on each convolutional layer. Residual connections according to ResNet-50 [10] and illustration
inspired by [10].

Input shape i {224× 224× 3, 560× 560× 3, 1400× 1400× 3}
Batch size b {1, 2, 4}

Kernel sizes k {3, 5, 7}

name output
size Standard conv. Bottleneck

standard conv.
Spatially separable

conv.
Bottleneck

spatially sep. conv.
Depthwise

separable conv.
Bottleneck

depthwise sep. conv. .

conv1 i/2 7× 7, 64 stride=2

conv2 i/4

3× 3, max pool, stride=2

[
k × k, 64

]
× 3

 1× 1, 64
k × k, 64
1× 1, 64

× 3

[
1× k, 64
k × 1, 64

]
× 3

 1× 1, 64
1× k, 64
k × 1, 64
1× 1, 64

× 3

[
k × k, 1
1× 1, 64

]
× 3

 1× 1, 64
k × k, 1
1× 1, 64

× 3

conv3 i/8
[

k × k, 128
]
× 4

 1× 1, 128
k × k, 128
1× 1, 128

× 4

[
1× k, 128
k × 1, 128

]
× 4

 1× 1, 128
1× k, 128
k × 1, 128
1× 1, 128

× 4

[
k × k, 1
1× 1, 128

]
× 4

 1× 1, 128
k × k, 1
1× 1, 128

× 4

conv4 i/16
[

k × k, 256
]
× 6

 1× 1, 256
k × k, 256
1× 1, 256

× 6

[
1× k, 256
k × 1, 256

]
× 6

 1× 1, 256
1× k, 256
k × 1, 256
1× 1, 256

× 6

[
k × k, 1
1× 1, 256

]
× 6

 1× 1, 256
k × k, 1
1× 1, 256

× 6

conv5 i/32
[

k × k, 512
]
× 3

 1× 1, 512
k × k, 512
1× 1, 512

× 3

[
1× k, 512
k × 1, 512

]
× 3

 1× 1, 512
1× k, 512
k × 1, 512
1× 1, 512

× 3

[
k × k, 1
1× 1, 512

]
× 3

 1× 1, 512
k × k, 1
1× 1, 512

× 3

Another metric to describe a neural network
configuration θ is operational density ρθ. opera-
tional density is defined as the average number of
operations per unit of information transferred from
memory (such as a 8-bit units for int8 quantized
models) [17]. Hence, operational density for neural
networks can be estimated as follows:

ρθ =
Oθ

b
[OP
byte] (3)

where b refers to the number of bytes transferred
from memory (mostly feature maps and kernel
weights). In generall, operational density can differ
between compute platforms due to different mem-
ory and cache layouts.

Overall the above defined concepts of execu-
tion latency lθ,P , computational complexity Oθ,
throughput Oθ,P and operational density ρθ cumu-
late to a diverse set of metrics to discuss compute
platforms by means of CNN configurations, while
only execution latency lθ,P needs to be physically
measured to execute the analysis. In this work,
the average latency and the respective standard
deviation of 100 executions is logged.

IV. EXPERIMENTS

After a discussion of the implementation in sec-
tion IV-A, we will evaluate the influence of the
factors input size, batch size, convolutional layer
type and kernel size on a Xavier iGPU and a Coral
TPU based on BackboneAnalysis in section IV-B.

A. Implementation

Table IV lists the compute platforms with hard-
ware and software stacks which are examined in
this section. For assessment of the Xavier iGPU
the 30 Watt mode (MODE_30W_ALL) is cho-
sen and trtexec is used for the execution latency
measurement. As the non-deterministic optimiza-
tion of TensorRT occasionally leads to a slightly
differing performances the lowest average latencies
of three optimization runs is logged for config-
urations with the two smaller input shapes. For
Coral TPU libedgetpu1-max is installed. For both
compute platforms int8 quantization is used. With
Xavier a full execution of BackboneBenchmark
takes roughly 4 days, with Coral TPU around 1.5
days.

1805

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:20:30 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Compute platforms examined in section IV.

Abbreviation Device name Compute platform

Compute hardware Software stack

Xavier iGPU NVIDIA Jetson AGX
Xavier Developer Kit

iGPU,
32GB LPDDR4x

Models from ONNX
Jetpack 4.3 (TensorRT 6.0.1,
cuDNN 7.6.3, CUDA 10.0.326)

Coral TPU Coral USB Accelerator
with Lenovo IdeaPad 5i 14

Edge TPU, USB 3.0 Type-C
Intel Core i5-1035G1
8 GB DDR4

Models from Tensorflow Lite
Edge TPU Compiler 15.0.340273435
Tensorflow Lite 2.5.0, Ubuntu 16.04

© ZF Friedrichshafen AG

Internal

1 2 4

224 560 1400

1 2 4 1 2 4

0

1000

2000

3000

4000

Batch size

Input shape

0

40

80

L
a
te

n
cy

 [
m

s]

Standard

convolution

Spatially sep.

convolution

Depthwise sep.

convolution

G
O

P
/s

0

200

400

11 1 1 1 1

224 560 224 560 560224

Batch size

Input shape

G
O

P
/s

1

224 560

1Batch size

Input shape

0

50

100

L
a
te

n
cy

 [
m

s]

Xavier Coral TPU

1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4

224 560 1400 224 560 1400 224 560 1400

Batch size

Input shape

(a) Xavier iGPU. (b) Coral TPU.

Fig. 1: Analysis of input shapes and batch sizes for configurations with different convolutional block types
on Xavier iGPU and Coral TPU (k = 3). Throughput in GOP/s. Higher is better. Execution latency in
ms. Lower is better.

B. Assessment of Xavier iGPU and Coral TPU

In the following the influence of the four em-
phasized factors input size, batch size, kernel
size and convolutional layer type will be an-
alyzed on the compute platforms Xavier iGPU
and Coral TPU (for measured latencies of
all models see https://figshare.com/s/
682b765e575abdf7a0fa).

1) Model Compilation: Before analyzing CNN
latency behavior BackboneAnalysis reveals which
network configurations can be compiled for a com-
pute platform.

For Xavier all configurations were compiled,
while for Coral TPU none of the models with input
shape 1400 was successfully compiled. Also, Coral

TPU does not support batch sizes bigger than 1.
This hints that the compute platform Coral TPU
was designed for workloads with lower computa-
tional complexity, while Xavier iGPU is flexible in
this regard.

2) Batch Size, Input Shape and Convolutional
Layer Type: Larger batch sizes and input shapes
lead to higher operational density and, therefore,
according to optimal Roofline performance an in-
crease in throughput is expected. The effects seen
on iGPU and TPU are visualized in Figure 1.

For Xavier, the influence of batch size and input
shape are as expected (see Figure 1a, top). The
throughput scales with higher operational density
and a convergence is observed for all three con-
volutional block types. Remarkably, the reduction

1806

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:20:30 UTC from IEEE Xplore. Restrictions apply.

© ZF Friedrichshafen AG

Internal

2

0

2000

4000

6000

G
O

P
/s

3 5 7 3 5 7

224 560 1400Input shape

3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7 3 5 7Kernel size

224 22414001400560 560

Standard

convolution

Spatially sep.

convolution

Depthwise sep.

convolution

k = 3

k = 5

k = 7

0

200

400

600

G
O

P
/s

3 5 7 3 5 7

224 224Input shape

3 5 7 3 5 7 3 5 7 3 5 7Kernel size

560 560224560

Xavier Coral TPU

(a) Xavier iGPU. (b) Coral TPU.

Fig. 2: Throughput of configurations with varying kernel sizes on Xavier iGPU and Coral TPU (b = 1).
Higher is better.

of computational complexity with different con-
volutional block types is not reflected in a sim-
ilarly lowered latency on Xavier (see Figure 1a,
bottom). While configurations with spatially sep-
arable convolutions have an average reduction of
57.5% in computational complexity in comparison
to configurations with standard convolutions, only
an average reduction of 17.6% in latency is seen.
Therefore, a good tradeoff between throughput and
computational complexity is observed for stan-
dard convolutions. The same fact holds for con-
figurations with depthwise separable convolutions
with a reduction in computational complexity of
81.7% but an average reduction of latency of only
41.2%. Hence, the analysis shows that simply re-
ducing computational complexity in configurations
for Xavier iGPU with alternative convolutional
blocks can be punished with disproportionately
lower throughput.

The measurements on Coral TPU also reveal
interesting performance behavior (see Figure 1b).
For all configurations a decrease in throughput
is seen when a larger input shape (i.e. larger
operational density) is used. This contradicts the
general assumptions from optimal Roofline models.
Even more remarkable is that configurations with
spatially separable convolutions achieve a higher
throughput than standard convolutions, and config-
urations with depthwise convolutions are almost on
a par with standard convolutions in this metric.
It follows that contrary to the optimal Roofline

assumptions, the Coral TPU is performing low in
throughput on configurations with standard convo-
lutions. With alternative convolutional block types
a reduction in average latency of around 75% is
observed (see Figure 1b, bottom).

3) Kernel Size: The throughput for Xavier iGPU
and Coral TPU for different kernel sizes are shown
in Figure 2. For Xavier iGPU an increase in
throughput is seen for bigger kernel sizes for
configurations with standard as well as spatially
separable convolutions (see Figure 2a). Again this
is explainable by higher operational density in
these configurations. Unexpectedly, for configura-
tions with depthwise separable convolutions a ker-
nel size of 3 is most performant. Also for Coral
TPU, all configurations with the smaller input shape
show higher throughput with a kernel size of 3 (see
Figure 2b).

4) Bottleneck Blocks: In Figure 3 a comparison
of latency and throughput behavior of Xavier iGPU
and Coral TPU for configurations with bottleneck
and non-bottleneck blocks is visualized.

The throughput for all configurations on Xavier
iGPU is increased when bottleneck layers are in-
troduced (on average by 14%, see Figure 3a).
Again, this is unexpected based on optimal Roofline
models and suggests that the usage of bottleneck
layers is advisable for Xavier. For Coral TPU non-
standard convolutional blocks increase the through-
put with bottleneck layers similarly to the Xavier
iGPU. Hence, for both compute platforms adding

1807

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:20:30 UTC from IEEE Xplore. Restrictions apply.

© ZF Friedrichshafen AG

Internal

3

0

1500

3000

4500

G
O

P
/s

224 560 1400Input shape 224 560 1400224 560 1400

Standard

convolution

Spatially sep.

convolution

Depthwise sep.

convolution

Non-bottleneck

Bottleneck
0

250

500

G
O

P
/s

224 560Input shape 224 560224 560

Xavier Coral TPU

(a) Xavier iGPU. (b) Coral TPU.

Fig. 3: Analysis of bottleneck layers on Xavier iGPU and Coral TPU (k = 3, b = 1). Throughput in
GOP/s. Higher is better.

bottleneck layers is promising as a good tradeoff
between computational complexity and throughput
is observed.

In summary, the discussion of experiments above
shows how BackboneBenchmark can provide in-
sights in the tradeoff between computational com-
plexity and throughput based on configuration de-
cisions.

V. CONCLUSION

In this work we presented BackboneAnalysis as
a methodology for extracting insights into compute
platforms for neural network architects in order
to find better pareto states between computational
complexity of neural networks and throughput on a
compute platform. In the application of the method
in this paper we analyzed the factors convolutional
block types, input shapes, batch sizes and kernel
sizes on a Xavier iGPU and a Coral Edge TPU
accelerator.

The analysis shows that for Xavier iGPUs a
high operational density in network architectures,
such as with large input shapes and batch sizes, is
crucial for high throughput. Therefore, also replac-
ing standard convolution with less compute intense
alternatives is not always beneficial as those con-
volutional block types lead to significantly lower
throughput. In contrast, the Coral EdgeTPU benefits
from computationally cheaper convolution types
and is performing low with standard convolutions.

On top of that, both platforms can benefit in terms
of throughput from additional bottleneck layers in
many cases. While higher batch sizes and input
sizes are beneficial for the throughput in a Xavier
iGPU, CoralTPU loses performance with bigger
input shapes and does not support batching.

Overall, the described insights support a CNN
architect to understand the tradeoff between com-
putational complexity and throughput on a compute
platform when customizing a neural network. In the
future, we expect that BackboneAnalysis could be
succesfully applied as a pre-processing step to find
a reasonable search space for network architecture
search (NAS) methods in the future.

ACKNOWLEDGMENT

This work is in part funded by the German
Federal Ministry for Economic Affairs and Energy
(BMWi) through the grant 19A19013Q, project ”KI
Delta Learning”.

REFERENCES

[1] BAIDU. Deepbench: Benchmarking deep learning opera-
tions on different hardware. https://github.com/
baidu-research/DeepBench, 2017.

[2] CAVIGELLI, L., MAGNO, M., AND BENINI, L. Accelerat-
ing real-time embedded scene labeling with convolutional
networks. In DAC (2015), IEEE, pp. 1–6.

[3] CHEN, L.-C., PAPANDREOU, G., SCHROFF, F., AND
ADAM, H. Rethinking atrous convolution for semantic
image segmentation. arXiv:1706.05587 (2017).

1808

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:20:30 UTC from IEEE Xplore. Restrictions apply.

[4] CHEN, Y., LI, J., XIAO, H., JIN, X., YAN, S., AND FENG,
J. Dual path networks. In NeurIPS (2017), pp. 4467–4475.

[5] COLEMAN, C., NARAYANAN, D., KANG, D., ZHAO, T.,
ZHANG, J., NARDI, L., BAILIS, P., OLUKOTUN, K., RÉ,
C., AND ZAHARIA, M. Dawnbench: An end-to-end deep
learning benchmark and competition. NeurIPS ML Systems
Workshop (2017).

[6] DEUSCHLE, A. V., AND MARKL, V. End-to-end bench-
marking of deep learning platforms. In TPCTC Workshop
(2019).

[7] FOWERS, J., OVTCHAROV, K., PAPAMICHAEL, M., MAS-
SENGILL, T., LIU, M., LO, D., ALKALAY, S., HASEL-
MAN, M., ADAMS, L., GHANDI, M., ET AL. A config-
urable cloud-scale dnn processor for real-time ai. In ISCA
(2018), IEEE, pp. 1–14.

[8] GAO, C., BRAUN, S., KISELEV, I., ANUMULA, J., DEL-
BRUCK, T., AND LIU, S.-C. Real-time speech recognition
for iot purpose using a delta recurrent neural network
accelerator. In ISCAS (2019), IEEE, pp. 1–5.

[9] GAO, W., ZHAN, J., WANG, L., LUO, C., ET AL. Big-
databench: A dwarf-based big data and ai benchmark suite.
arXiv:1802.08254 (2018).

[10] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual
learning for image recognition. In CVPR (2016), pp. 770–
778.

[11] HOWARD, A., SANDLER, M., CHU, G., CHEN, L.-C.,
ET AL. Searching for mobilenetv3. In ICCV (2019),
pp. 1314–1324.

[12] HOWARD, A. G., ZHU, M., CHEN, B., KALENICHENKO,
D., WANG, W., WEYAND, T., ANDREETTO, M., AND
ADAM, H. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv:1704.04861
(2017).

[13] JAVED, M. H., IBRAHIM, K. Z., AND LU, X. Performance
analysis of deep learning workloads using roofline trajec-
tories. CCF Transactions on High Performance Computing
1, 3 (2019), 224–239.

[14] JIANG, W., YANG, L., SHA, E. H.-M., ZHUGE, Q.,
GU, S., DASGUPTA, S., SHI, Y., AND HU, J. Hard-
ware/software co-exploration of neural architectures.
TCAD (2020).

[15] JIANG, Z., LI, J., AND ZHAN, J. The pitfall of
evaluating performance on emerging ai accelerators.
arXiv:1911.02987 (2019).

[16] JOUPPI, N. P., YOUNG, C., PATIL, N., PATTERSON, D.,
AGRAWAL, G., BAJWA, R., BATES, S., BHATIA, S., BO-
DEN, N., BORCHERS, A., ET AL. In-datacenter perfor-
mance analysis of a tensor processing unit. In ISCA (2017),
ACM/IEEE, pp. 1–12.

[17] KARBACHEVSKY, A., BASKIN, C., ZHELTONOZSHKII,
E., YERMOLIN, Y., GABBAY, F., BRONSTEIN, A. M.,
AND MENDELSON, A. Hcm: Hardware-aware complexity
metric for neural network architectures. arXiv:2004.08906
(2020).

[18] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E.
Imagenet classification with deep convolutional neural
networks. In NeurIPS (2012), pp. 1097–1105.

[19] LIU, L., WU, Y., WEI, W., CAO, W., SAHIN, S., AND
ZHANG, Q. Benchmarking deep learning frameworks:
Design considerations, metrics and beyond. In ICDCS
(2018), IEEE, pp. 1258–1269.

[20] LIU, Z., LUO, S., XU, X., SHI, Y., AND ZHUO, C. A
multi-level-optimization framework for fpga-based cellular
neural network implementation. JETC 14, 4 (2018), 1–17.

[21] LUO, C., ZHANG, F., HUANG, C., XIONG, X., CHEN, J.,
WANG, L., GAO, W., YE, H., WU, T., ZHOU, R., ET AL.
Aiot bench: Towards comprehensive benchmarking mobile
and embedded device intelligence. In Int. Symposium
Bench (2018), Springer, pp. 31–35.

[22] REDDI, V. J., CHENG, C., KANTER, D., MATTSON,
P., SCHMUELLING, G., WU, C.-J., ANDERSON, B.,
BREUGHE, M., CHARLEBOIS, M., CHOU, W., ET AL.
Mlperf inference benchmark. arXiv:1911.02549 (2019).

[23] ROMERA, E., ALVAREZ, J. M., BERGASA, L. M., AND
ARROYO, R. Erfnet: Efficient residual factorized convnet
for real-time semantic segmentation. ITS 19, 1 (2017),
263–272.

[24] SANDLER, M., HOWARD, A., ZHU, M., ZHMOGINOV, A.,
AND CHEN, L.-C. Mobilenetv2: Inverted residuals and
linear bottlenecks. In CVPR (2018), IEEE, pp. 4510–4520.

[25] SCHUTERA, M., JUST, S., GIERTEN, J., MIKUT, R.,
REISCHL, M., AND PYLATIUK, C. Machine learning
methods for automated quantification of ventricular dimen-
sions. Zebrafish 16, 6 (2019), 542–545.

[26] SIMONYAN, K., AND ZISSERMAN, A. Very deep con-
volutional networks for large-scale image recognition.
arXiv:1409.1556 (2014).

[27] SZEGEDY, C., IOFFE, S., VANHOUCKE, V., AND ALEMI,
A. A. Inception-v4, inception-resnet and the impact of
residual connections on learning. In AAAI (2017).

[28] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS, J.,
AND WOJNA, Z. Rethinking the inception architecture for
computer vision. In CVPR (2016), IEEE, pp. 2818–2826.

[29] TAN, M., AND LE, Q. V. Efficientnet: Rethink-
ing model scaling for convolutional neural networks.
arXiv:1905.11946 (2019).

[30] WEICKER, R. P. Dhrystone: a synthetic systems program-
ming benchmark. Communications of the ACM 27, 10
(1984), 1013–1030.

[31] WILLIAMS, S., WATERMAN, A., AND PATTERSON, D.
Roofline: an insightful visual performance model for mul-
ticore architectures. Comm. of the ACM 52, 4 (2009),
65–76.

[32] WU, B., DAI, X., ZHANG, P., WANG, Y., ET AL. Fbnet:
Hardware-aware efficient convnet design via differentiable
neural architecture search. In CVPR (2019), pp. 10734–
10742.

[33] XIE, S., GIRSHICK, R., DOLLÁR, P., TU, Z., AND HE,
K. Aggregated residual transformations for deep neural
networks. In CVPR (2017), pp. 1492–1500.

[34] XIONG, Y., LIU, H., GUPTA, S., AKIN, B., ET AL. Mo-
biledets: Searching for object detection architectures for
mobile accelerators. arXiv:2004.14525 (2020).

[35] ZAGORUYKO, S., AND KOMODAKIS, N. Wide residual
networks. arXiv:1605.07146 (2016).

[36] ZHANG, Q., ZHA, L., LIN, J., TU, D., LI, M., LIANG,
F., WU, R., AND LU, X. A survey on deep learning
benchmarks: Do we still need new ones? In Int. Symposium
Bench (2018), Springer, pp. 36–49.

[37] ZOPH, B., AND LE, Q. V. Neural architecture search with
reinforcement learning. arXiv:1611.01578 (2016).

1809

Authorized licensed use limited to: TU Delft Library. Downloaded on July 26,2022 at 13:20:30 UTC from IEEE Xplore. Restrictions apply.

