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Summary

Self-organizing multi-agent systems are systems, comprised of a group
of independent agents, that are able to adapt and improve their collective
behavior through local interactions, without external intervention.
Self-organizing multi-agent systems depend less on human interaction
in order stay operational and perform well under varying conditions.
This is becoming more important as the scale of networks grows, and the
complexity increases. Human operators will no longer be able to keep up
with growing networks, or oversee the behavior that has emerged from
many local interactions between the system’s components. There are
many applications where self-organization is becoming essential in order
to continue to develop, for instance smart grids, autonomous vehicles,
and computer and communication networks.

Self-organization is a property that can be hard to control; it is a
property of the group, but it is defined by the behavior of the individual.
Existing solutions often use ad hoc approaches by adding some additional
mechanism that implements some (limited) form of self-organization,
allowing it to adapt to changing environment. However, even if a system
is suitable for changing its configuration at runtime, there is still the
problem of coordinating the adaptations between agents. To solve that,
cooperation between agents is required.

This thesis addresses the problem of providing self-organization to
multi-agent systems, or improve the existing self-organizing capabilities.
In order to do this, a framework for self-organization is proposed to
guide and ease the implementation of self-organization, making sure
that adaptive deployment is possible. Then, different mechanisms are
provided that define how to cooperatively make decisions in a network.

A formalization for this distributed decision-making is called Dis-
tributed Constraint Optimization Problems (DCOP). In this formalization
every decision variable is controlled by an agent, and agents have to
communicate with one another in order to find variable assignments
that minimize a set of constraints. A new DCOP-solving algorithm
called CoCoA is introduced that differs from existing methods, by not
relying on iteratively updating an existing solution. At its core, CoCoA
shares information locally, so that agents can make decisions taking into
account their effects on neighboring agents. This algorithm is extended
in CoCoA_CA, which performs an extra step to avoid simultaneous
decisions, this avoids potential conflicts in the outcome. Finally, a hybrid
mechanism is proposed which combines the advantages of CoCoA and
that of existing iterative algorithms.

xi



xii Summary

CoCoA is evaluated in experiments using synthetic benchmark prob-
lems such as graph-coloring and semi-randomized problems. More
realistic use cases for self-organization are provided in a greenhouse
sensor network andwireless power transfer networks. Despite the generic
approach for self-organization, there are problem classes that cannot be
solved efficiently using a DCOP-based approach. An example is the power
dispatch problem faced in smart grids, where there are constraints that
involve all agents. For this problem instance, a custom decision-making
algorithm called Local Pricing Receding Horizon is introduced based on
a market mechanism, where agents negotiate prices to settle a power
program.



Samenvatting

Zelforganiserende multi-agent systemen zijn systemen, gebouwd van
een groep van onafhankelijk acterende agenten, welke hun collectieve
gedrag kunnen aanpassen en verbeteren door lokaal met elkaar te
interacteren, zonder invloed van buitenaf. Dit soort zelforganiserende
multi-agent systemen zijn minder afhankelijk van menselijke interventie
om operationeel te blijven en goed te blijven presteren onder variërende
omstandigheden. Dit is nog belangrijker wanneer de schaal van het
netwerk en de complexiteit groter worden. Voor een mens wordt het
steeds lastiger om de grootte van het netwerk bij te benen, laat staan
het complexe gedrag van lokale interacties tussen de componenten te
overzien. Er bestaan reeds vele toepassingen waarbij zelforganisatie een
belangrijke rol speelt voor de voortgaande ontwikkeling. Voorbeelden
hiervan zijn intelligente elektriciteitsnetwerken, zelfrijdende auto’s en
uiteraard computer- en communicatienetwerken.

Zelforganisatie is een eigenschap die niet gemakkelijk te beheersen is;
het is een eigenschap van de groep, maar wordt bepaald door het gedrag
van de individu. Bestaande oplossingen gebruiken dan ook meestal ad hoc
benadering om een gelimiteerde vorm van zelforganisatie te implemen-
teren, waardoor het systeem in zich in zekere mate kan aanpassen aan de
veranderende omstandigheden. Echter, ook al is een systeem technisch in
staat om zichzelf aan te passen, dan resteert nog steeds het probleem om
de aanpassingen te coördineren tussen de verschillende agenten. Om ook
dit probleem op te lossen is er samenwerking nodig tussen de agenten.

In dit proefschrift wordt getracht zelforganisatie toe te voegen aan
multi-agent systemen, of bestaande vormen van zelforganisatie te
verbeteren. Om dit te bewerkstelligen wordt een framework geïntro-
duceerd wat het implementatieproces begeleid en vergemakkelijkt;
hierdoor wordt een adaptief systeem mogelijk. Tevens worden enkele
mechanismes voorgesteld om te redeneren over hoe een coöperatieve
agent als onderdeel van een netwerk beslissingen zoumoetenmaken.

Een formele beschrijving van het gedistribueerde beslismodel is het
zogenaamde Distributed Constraint Optimization Problem (DCOP). In deze
formalisatie wordt elke variabele beheerd door een agent, en agenten
moeten met elkaar communiceren om een toewijzing te bepalen waarmee
de kosten van set van constraints wordt geminimaliseerd. Een algoritme
voor DCOPs wordt geïntroduceerd genaamd CoCoA; het verschilt van
bestaande algoritmes door niet iteratief een bestaande oplossing te ver-
beteren. In plaats daarvan wordt in CoCoA lokaal wat informatie gedeeld
waardoor een agent een beslissing kanmaken, rekening houdende met de

xiii



xiv Samenvatting

gevolgen daarvan op de agenten in zijn buurt. Het CoCoA algoritme wordt
uitgebreid in het CoCoA_CA algoritme, waar een stap wordt toegevoegd
om gelijktijdige beslissingen te voorkomen, teneinde een conflicterende
situatie te vermijden. Tot slot wordt een hybridemechanisme voorgesteld
wat de voordelen van CoCoA en bestaande iteratieve methodenmet elkaar
weet te combineren.

CoCoA wordt geëvalueerd in kunstmatige experimenten, zoals een
graph-coloring probleem, evenals semi-willekeurige problemen. Meer
realistische toepassingen van zelforganisatie worden behandeld in
een sensornetwerk voor glastuinbouw en draadloze oplaadnetwerken.
Ondanks de generieke aanpak van zelforganisatie, zijn er typen problemen
die niet efficiënt kunnen worden opgelost middels de DCOP aanpak. Als
voorbeeld hiervan wordt het power dispatch probleem beschreven, waarbij
een planning moet worden gemaakt een elektriciteitsnetwerk. In dit
probleem zijn er constraints tussen alle agenten, waardoor een DCOP niet
schaalt. Specifiek voor dit probleem wordt een algoritme voorgesteld
genaamd Local Pricing Receding Horizon. Dit algoritme gebruikt lokale
prijsstrategieën en een gedecentraliseerd marktmechanisme, waarin
agenten met elkaar onderhandelen over een prijs om tot een planning te
komen.



1
Introduction

Networks of connected computer systems are becoming more and more
present in our world. First, networks were relatively small, and every
component of the network was carefully designed, engineered, tested,
deployed andmaintained [24, 127]. However, networks nowadays are vast
complex systems and components are being added, updated and removed
continuously. The dynamic nature of today’s networksmake it impossible
for a human operator to control every aspect of a network, let alone a large
network of hundreds, if not thousands, of systems.

There are many examples in the real world where networks consist
of countless devices that are impossible to maintain by hand; sensor
networks [154], smart grids [77], autonomous vehicles, IoT (Internet of
Things) [8], cellular networks [68], and of course, the mother of all: the
Internet. Mostly, nodes in these networks are controlled and maintained
by other computer systems, but to a lesser extent, there are also systems
that rely on self-organization.

Before we elaborate on self-organization, let us propose a definition,
since this term is overloaded andmay have differentmeanings in different
contexts.

Definition 1.1 (Self-organization). Self-organization is a property of a
system composed of subsystems, that are able to improve their collective
behavior, either by emergent behavior, or explicit cooperation.

This definitionmeans that a network system is self-organizing if it has
the following characteristics [32]:

1. Dynamic operation. The system is capable of changing its mode of
operation when appropriate.

2. A lack of explicit external control. The system receives no external
trigger indicating eitherwhen or how to change its behavior.

1
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3. Decentralized control. There is no central authority, instead the sys-
tem components interact locally with one another, and either explic-
itly or implicitly affect each other’s behavior.

Note that the last characteristic does not necessarily mean that all
components are peers; instead there might be different roles amongst the
nodes that define a hierarchy. This could be compared to a bee colony in
which there are workers, drones, a queen and other types of bees, which
all have their own roles and tasks.

Self-organization typically yields some highly desirable system
properties such as increased robustness and reliability, less effort for
(human) maintenance, and hence an overall reduce in costs. A related
concept to self-organization is autonomic computing, which describes
some of the same desirable properties. Instead of networked systems, this
concept focuses on the self-managing capabilities of computer systems
in general. By that line of logic, self-organization is to networks what
autonomic computing is to computers. The concept was first described by
the IBM paper on autonomic computing [75] where it was stated that:

Autonomic Computing helps to address complexity by using
technology to manage technology. […] self-managing autonomic
capabilities anticipate IT system requirements and resolve problems
with minimal human intervention.

The same paper also provides a blueprint for self-managing systems:
the MAPE-K framework as depicted in Figure 1.1. This is a generic
framework for adaptive systems, in which different components Monitor
the operation of the system at hand, Analyze the behavior and determine if
any changes are required, Plan a new configuration and finally Execute the
changes needed to come to a new state. These four components all have
access to a common Knowledge source, which contains information of the
system and how to operate it. The MAPE-K framework for self-adaptivity
is often used for systems that have to operate in a dynamic environment,
and is frequently referenced by other studies for instance in the domains of
IoT [145], Wireless Sensor Networks [7] and Cyber Physical Systems [31].

In our definition of self-organization, the first method of attaining
self-organizing behavior is through emergent behavior. In the field of
artificial intelligence, the term emergent behavior refers to (seemingly)
complex intelligent behavior of a system comprised of multiple simple
subsystems. Often this means that a group of agents behaves in a
collective intelligent manner, whereas each individual follows a simple
set of rules [103]. A well-known example involves a flock of birds where
the behavior of the group is very complex, yet if one simulates each bird
following three simple rules to (i) avoid collisions, (ii) stay close together
and (iii) follow the movement of neighbors, the complex behavior
“emerges”.
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monitor

analyze

knowledge

plan

execute

sensor actuator

Figure 1.1: Diagram of the MAPE-K adaptation loop. Figure redrawn from [75].

The second method to attain self-organization is through explicit
cooperation between components; this is the approach in multi-agent
systems.

Definition 1.2 (Multi-agent Systems). Multi-agent Systems are systems
in which multiple independent agents act in some shared environment,
and solve problems while interacting with each other.

Multi-agent systems is a field of distributed Artificial Intelligence,
which exists at least since the late 1980s [40, 50, 83]. Here, an agent is
defined as a distinct entity, capable of making some decisions, with some
interfaces for input and output. This definition includes software-based
agents, agents in a simulated environment with a virtual presence, and
agents with physical hardware connected (robots). Agents may either
compete with each other in order to achieve their own individual goals,
or they may cooperate to achieve a common goal. The philosophy behind
cooperative multi-agent systems is to divide a large problem into many
subproblems, which are subsequently solved by independent agents [67].

In the scope of network systems, it is common that every agent runs on,
and controls one node. This means that the terms agents and nodes are
used interchangeably when multi-agent systems are used to monitor and
control network systems.

A formal method for describing cooperative multi-agent problems and
the algorithms to solve these problems, is called Distributed Constraint
Optimization Problem (DCOP). DCOPs are a type of distributed optimiza-
tion problems in which variables are controlled by agents that have to
find assignments to minimize a cost function over the complete set of
variables [59]. This means that the agents share a common goal, and in
order to perform well on the global task, have to pass messages between
one another in order to coordinate their value assignments, and thus
self-organize. A formal definition will be presented in Section 3.2.

DCOP originates from the Constraint Satisfaction Problem (CSP) [43].
CSP is a class ofwell-studies problems [59, 105], inwhich variables have to
be assigned values from a domain, such that a set of constraints are satis-
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80Z0l0Z0Z
7Z0Z0Z0l0
60ZqZ0Z0Z
5Z0Z0Z0Zq
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a b c d e f g h

Figure 1.2: An example CSP is the 8-queens problem; here an example solution is shown in
which no queen on the chessboard can take one of the others.

fied. These constraints are logical in that their result is either true or false.
A famous example of a CSP is the eight queens problem; in this problem
eight queens have to be places on a standard eight by eight squared chess
board, such that no two queens are able to take one another. One example
of a solution to this problem is shown in Figure 1.2.

Distributed Constraint Satisfaction (DCSP, or in other literature also:
DisCSP), is an extension of CSP in which the variables are controlled
by different agents [152]. The involved agents have to cooperate in
order to find an allocation of their corresponding variables such that all
constraints are satisfied. At the same time a generalization of CSP is the
Constraint Optimization Problem (COP), in which the constraints are no
longer logical, but instead can result in any non-negative real number.
Then, the problem is no longer about finding a solution that satisfies all
constraints, but instead to minimize the sum of all constraints. Similar to
how DCSP is an extension of CSP, DCOP is an extension of COP.

By extending the eight-queens problem from a CSP to the class of
DCOPs,wouldmean that instead of placing eight queens so thatnot one can
take another; the problem would require placing, for example, ten queens
in such a way that the fewest number of queens can take another queen.
Moreover, for every queen there is a separate instance (agent) deciding
where to place its assigned queen. This is just an example problem, but
DCOPs are often used to formally describe and solve problems for instance
for Wi-Fi channel allocation [34], power dispatch and balancing in Smart
Grids [44] or even coordination of mobile (robot) search and rescue
teams [148, 156].

There exists an extension of the DCOP framework called Asymmetric
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DCOP (ADCOP) [56, 57], in which agents may value a set of constrained
assignments differently. What this means is that constraints have
different costs for the involved agents. This would allow to describe a
relation between two agents in which one agent benefits from a certain
assignment, but another agent is greatly hindered. For example, in a
group of Wi-Fi routers, the transmission powers can be controlled in
order to optimize the respective network throughputs. When one router
sets it power to the maximum possible, it will increase the throughput
of its own network, but will probably cause interference to neighboring
networks. Hence, a more coordinated strategy is required.

In the context of dynamic systems, DCOPs have been applied as
superstabilizing [117, 118] DCOP algorithms, that continuously adapt
to changes in the environment. The max-sum algorithm can also run
continuously [38], allowing for a best-effort optimum at any time. This
strategy could pertain to changes in constraint costs, but it is unclear how
added or removednodes could be taken into account. Anothermore formal
way of defining dynamic problems, lead to a family of algorithms dealing
with Dynamic DCOPs (DDCOPs) [60, 61, 86, 149]. These algorithms
proactively take into account potential future changes in the problem,
and minimize the expected future costs, considering a model of foreseen
future changes.

According to recent research, problems in self-organization in multi-
agent systems can be categorized in either one of the following four main
categories [147]:

1. Task/Resource allocation [39, 74, 153] is the problem where either
tasks or resources have to be allocated to a group of agents in order to
deal with them as efficiently as possible. Typically, in task allocation
an agent cannot finish all tasks by itself (in time) and tasks have to
be allocated to different agents to carry out. Moreover, there is often
a dependency of tasks from one to another, which has to be taken
into consideration when assigning tasks. Allocation of resources
is a similar problem, where agent have to share (a set of) scarce
resources such that all agents can perform their tasks.

2. Relation adaptation and coordination [53, 55, 82], also referred to as
relation modification, studies how relations can be adapted in order
to achieve efficient cooperation in a multi-agent system. A group of
agents has to rearrange their internal structure in order to adapt to
dynamic operating conditions and environments. This category in-
cludes leader election, group formation, and other problems inwhich
agents change the relations (or type thereof) with other agents.

3. Coordinated reasoning and learning [1, 36] is the problem that
agents face when they have to learn about the effect of their actions
on the environment. Either by trial-and-error, or by an underlying
model, agents must decide on how to act in the environment in order
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to achieve a better state, according to some utility function. In the
multi-agent domain, groups of agents can coordinate strategies in
order to determine the most effective course of actions, especially
when the strategies have to be in line with one another.

4. Collective decision-making and planning [14, 150] relates to
economics and social sciences, and studies the issue of how to
coordinate decisions made by agents. In many contexts of multi-
agent systems, the choice of one agent influences the performance
of those around it. Hence, decisions have to take into account actions
of others, and should be coordinated to achieve the optimal group
result. In a multi-agent context this is especially challenging since
only local perception and agent-to-agent communication can be
taken into account, since no agent has global knowledge. Planning
can be considered a special case of decision-making, when a series
of sequential choices have to be made.

These issues are overlapping, and in many real applications, solutions
frommultiple categories have to be applied.

1.1. Problem Statement
Although some existing networks already depend on self-organization to
keep upwith changing operating conditions, this property is hard tomas-
ter, and there are often still many places to improve. The goal could be the
reliability, efficiency, speed or cost of the system, but also that of the coor-
dination strategy itself. In this thesis the self-organizing behavior in large
networked systems is studied, and we formulate the main research ques-
tion as follows:

How can we achieve self-organization, or improve the
self-organization capabilities in a network of cooperative agents?

In order to answer this question, we can divide it into the following two
main challenges:

Challenge 1: Create a framework that allows self-organizing systems to
redefine their deployment. In some situations the desired behavior of
a network cannot entirely be specified a priori to its deployment. Some
design decisions must be made when the system is already operational.
Delaying these decisions can be used to gain robustness of the system
when facing operational changes (internal) or environmental changes
(external). Traditionally, changing the system deployment implies that
some human intervention is required in order to implement the new
configuration. This can be very expensive, slow, tedious and perhaps even
dangerous in hostile environments or hard-to-reach areas. Therefore,
a self-organization framework is needed that can redefine a system’s
deployment at runtime.
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Challenge 2: Find or improve strategies to coordinate collective behavior.
Changing the operation of a single node in a network is rarely the solution
to improve the overall behavior of the complete network. Under most
circumstances changes across the network need to be coordinated and
orchestrated in an “intelligent” manner. Moreover, a reconfiguration
might increase the local performance of a single node, but decrease the
global performance of the complete network. Cooperation between nodes
is absolutely required in order to achieve top-level goals in the complete
network. Therefore, a strategy must be found (or existing strategies
improved) to coordinate behavior between nodes.

These two challenges are not independent of one another; both will
need to be addressed in order to add self-organizing capabilities to
a system. Furthermore, the self-organization process of the system
should not be taking too much communication or computation overhead,
especially when designing a low-powered embedded systems with
limited resources. The problem underlying self-organization is a very
challenging one by itself. The multi-agent variable assignment problem
can be formulated as a DCOP, which is known to be NP-hard [107].
For this reason we should not design a system that searches the optimal
solution, butwewill have tomake sure that the strategy used for achieving
self-organization is properly balanced in terms of required resources and
benefit for the “primary” system.

1.2. Contributions and Thesis Outline
In this thesis the aforementioned challenges will be addressed in the fol-
lowingmanner.

Firstly, Challenge 1 is addressed in Chapter 2. We elaborate on the no-
tion of self-organization, and introduce a framework for self-organizing
systems. This framework describes a two-layered approach where all
self-organization tasks are executed in a “secondary” layer, which
runs independent of the primary system. This secondary layer gathers
performance indicators and acts on the deployment of the system,
optimizing its behavior. The framework will be put to use in a first use
case of self-organizing state estimation in a greenhouse climate control
system.

Secondly, Challenge 2 is addressed using two different strategies
throughout this thesis:

1. CoCoA, a newly proposed (A)DCOP solver is developed in Chapter 3
(which is subsequently improved in Chapters 4 and 5),

2. a decentralized market based mechanism called LP-RH is used in
Chapter 6.

CoCoA is an algorithm to solve ADCOPs, which coordinates collective
behavior. Moreover, it is designed to do so using fewer system resources
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than comparative algorithms. Through several experiments, the per-
formance of the CoCoA algorithm is compared to state-of-the-art DCOP
solvers. Finally, it is shown how CoCoA would solve the same greenhouse
problem from Chapter 2.

In Chapter 4 a variant of the CoCoA algorithm is described that is
specifically suited to deal with hard constraints. The new variant is
applied to the Wireless Power Transfer (WPT) problem [97]. WPT is a
technology where power is sent from a set of transmitters to receivers,
to allow for remote wireless charging. Safety regulations apply such that
electromagnetic radiation never exceeds safe human operation levels. In
this particular problemhard constraints are particularly crucial to the safe
operation of the network, and hence the extension of the CoCoA algorithm
guarantees avoiding violating such hard constraints.

Chapter 5 describes a general extension of DCOP-solving algorithms to
allow running of multiple existing algorithms, in order to cooperate and
find a better solution together, than either one would on its own. The ini-
tialization of a DCOP algorithm turns out to be particularly important, and
byusingCoCoA for initialization,we see that the eventual solution cost de-
creases, and requires less time to converge.

Finally, not all types of problems can be cast (efficiently) as a DCOP,
hence a different method for addressing Challenge 2 is proposed in Chap-
ter 6. A coordination algorithm called Local Pricing Receding Horizon, is
introduced in order to facilitate self-organization of the power dispatch
problem in smart grids. This approach uses a more hierarchical approach
than a DCOP-based solution, and is more fitting to the topology of the
energy distribution network. The proposed solution uses a multi-agent
based strategy to solve the problem using a combination of economic
steering signals to incentivize the agents and local optimization to find an
economic and sustainable power dispatch.

The thesis concludes in Chapter 7, where a brief overview of the contri-
butions and results is provided, as well as an answer to the main research
question and the two above-mentioned challenges.



2
Self Organizing State

Estimation

2.1. Introduction
Self-organization and self-optimization are approaches to address
the practical challenges of large-scale sensor and actuator (control)
networks such as easy deployment, robustness and energy efficiency.
In this chapter the first challenge of implementing self-organization
is addressed: to create a framework that allows a system to redefine its
deployment. The framework proposed in this chapter, aims to add
self-organizing properties to a multi-agent system; specifically for
self-organization of a sensor network. This framework will enable
the system to cope with changing system configurations (i.e. adding
and removing subsystem components) without re-programming the
existing set-up (ease-of-deployment), to support a mobile group of
subsystems observing particular areas (dynamic sensor management),
to adjust on environmental changes affecting the communication resource
(changing network capacities) and to adapt to a variety of system goals
during operation depending on current needs and themonitored situation
(multi-purpose).

In this chapter we propose a framework for self-organization, and
apply it to distributed state estimation. Distributed signal processing
components can be interchanged or reconfigured, depending on the
requirements and system context. This system was earlier presented
in [132], and is demonstrated in a greenhouse scenario, where the
temperature distribution within the greenhouse is to be estimated.
The main reason for selecting distributed state estimation is that state

This chapter is based on the article by C. J. van Leeuwen, J. Sijs, and Z. Papp†, A reconfiguration
framework for self-organizing distributed state estimators, in Proc. FUSION (2013) [92].
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estimation is used in a wide variety of applications, such as object
tracking, traffic management and indoor climate control, to name a few.
Yet, the proposed reconfiguration framework is applicable for any system
in which state estimation is the key component for processing sensor
measurements, as well for many more multi-agent systems in general.
In what follows a generalized framework is presented for reconfigurable
state estimating systems.

Notation and Preliminaries

Throughout this chapter, the following notation will be used: ℝ,
ℝ , ℤ and ℤ define the set of real numbers, non-negative real
numbers, integer numbers and non-negative integer numbers,
respectively. For any 𝒞 ⊂ ℝ, let ℤ𝒞 ∶= ℤ ∩ 𝒞. The notation 0 is
used to denote either zero, the null-vector or the null-matrix of
appropriate dimensions, while 𝐼 denotes the 𝑛 × 𝑛 identity matrix.
The transpose, inverse and determinant of a matrix 𝐴 ∈ ℝ × are
denoted as 𝐴 , 𝐴 and |𝐴|, respectively. Further, 𝐴 denotes the
Cholesky decomposition of a matrix 𝐴 × (if it exists). Given that a
randomvector 𝑥 ∈ ℝ is Gaussian distributed, denoted as 𝑥 ∼ 𝐺(𝜇, Σ),
then 𝜇 ∈ ℝ and Σ ∈ ℝ × are themean and covariance of 𝑥.

2.2. Distributed State Estimation
Since this chapter focuses on reconfigurable distributed state estimation,
this section starts off by considering a linear process model describing
the state dynamics. In this context, several distributed solutions of the
Kalman filter have been explored—see for example, solutions proposed
in [35, 78, 122, 130] and the references therein. This section aims to
derive a general framework, so that most of the currently available
distributed Kalman filtering (DKF) solutions can be employed in the
proposed reconfiguration scheme. To that extent, let us start with the
state estimation problem, after which the generalized framework is
introduced along with some illustrative estimation algorithms.

2.2.1. Problem Formulation
Let us consider a linear process that is observed by a sensor network with
the following description. The networked system consists of 𝑁 sensor
nodes, in which a node 𝑖 ∈ 𝒩 is identified by a unique number within
𝒩 ∶= ℤ[ , ]. The set𝒩 ⊆ 𝒩 is defined as the collection of neighboring nodes
𝑗 ∈ 𝒩 that exchange data with node 𝑖.

The dynamical process measured by each node 𝑖 ∈ 𝒩 is described with
discrete-time process model, for some local sampling time 𝜏 ∈ ℝ and
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some k-th sample instant, i.e.,

𝑥[𝗄 ] = 𝐴 𝑥[𝗄 − 1] + 𝑤[𝗄 − 1], (2.1)
𝑦 [𝗄 ] = 𝐶 𝑥[𝗄 ] + 𝑣 [𝗄 ], (2.2)

where the state and local measurement are denoted as 𝑥 ∈ ℝ and
𝑦 ∈ ℝ , respectively. Here, 𝑛 and 𝑚 correspond to the number of
elements in the state and the measurements of 𝑖, respectively. The
process noise 𝑤 ∈ ℝ and measurement noise 𝑣 ∈ ℝ follow the Gaussian
distributions 𝑤[𝗄 ] ∼ 𝐺(0, 𝑄 ) and 𝑣 [𝗄 ] ∼ 𝐺(0, 𝑉), for some 𝑄 ∈ ℝ × and
𝑉 ∈ ℝ × . 𝐴 and 𝑄 are the variance parameters of the physical process
model. Similarly, 𝐶 and 𝑉 are parameters of the sensor model of node 𝑖,
defining how a measurement is obtained from the actual state. A method
to compute the model parameters 𝐴 and 𝑄 from a corresponding
continuous-time processmodel �̇� = 𝐹𝑥+𝑤withmodel parameter 𝐹, yields

𝐴 ∶= 𝑒 and 𝑄 ∶= 𝐵 cov (𝑤(𝑡 − 𝜏 )) 𝐵 , (2.3)

with 𝐵 ∶= ∫ 𝑒 𝑑𝜂. (2.4)

In distributed state estimation, the goal of a sensor network is to com-
pute a local estimate 𝑥 ∈ ℝ of the global state 𝑥 in each node 𝑖. Since the
process model is linear and both noises are Gaussian distributed, it is ap-
propriate to assume that the random variable 𝑥 [𝗄] is Gaussian distributed
as well, i.e., 𝑥 [𝗄 ] ∼ 𝐺(�̂� [𝗄 ], 𝑃 [𝗄 ]) for some mean �̂� [𝗄 ] ∈ ℝ and error co-
variance 𝑃[𝗄 ] ∈ ℝ × . To that extent, each node 𝑖 performs a local estima-
tion algorithm for computing 𝑥 based on its local measurement 𝑦 and on
the data shared by its neighboring nodes 𝑗 ∈ 𝒩 .

Existing methods on DKF present solutions for computing 𝑥 and
determine what variables should be exchanged, at what time and with
which nodes, e.g. [35, 78, 122, 130]. The goal of the reconfiguration
framework is to reason about the design decisions made by these existing
solutions and to select the most appropriate one for the current situation
(depending on available communication and computational resources and
on the estimation performance). This reasoning process will be addressed
in a “management layer” encapsulating the variants for local Kalman
filtering, which will be discussed in Section 2.3.3.

In order to be able to reason about different configurations, the
alternatives for state estimation solutions should be described within a
generalized framework, otherwise it is infeasible to compare the different
alternatives objectively. Let us introduce such a general framework for
distributed state estimation.

2.2.2. A General Framework for Distributed Kalman Filtering
The functional framework for computing the local estimate 𝑥 is derived
from existing DKF solutions. Typically, these solutions propose that each
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Node

Communication
(one and two way)

Local Kalman filtering

Management layer

Figure 2.1: A network of Kalman filters supported by a management layer.

node 𝑖 performs a Kalman filter (locally) based on its local measurement
𝑦 and thereby, establishes an initial estimate 𝑥 ∼ 𝐺(�̂� , 𝑃 ), e.g., in [35, 78,
122, 130] and some overview articles in [18, 129]. After that, different DKF
solutions propose different types of variables exchanged between two
neighboring nodes 𝑖 and 𝑗, being:

• Local measurements: node 𝑖 receives 𝑦 for all 𝑗 ∈ 𝒩 , which can be
exploited for updating 𝑥 via a Kalman filter.

• Local estimates: node 𝑖 receives 𝑥 ∼ 𝐺(�̂� , 𝑃 ) for all 𝑗 ∈ 𝒩 , which can
be exploited for updating 𝑥 via various merging solutions, e.g. con-
sensus or state fusion.

Based on the currently available DKF methods a generalized local
estimation function is designed relying on the node’s local measurement
and on data received from neighboring nodes. The corresponding
framework consisting of so called “functional primitives” is depicted in
Figure 2.2. Each functional primitive of this framework, i.e., the Kalman
filtering function 𝑓KF and the merging function 𝑓ME, is characterized by
a specific algorithm, though it is not necessary to specify them prior
to deployment. Instead, nodes are deployed with a number of suitable
implementations for each functional primitive, from which a selection
can be made during operation. Alternative implementations related to
computing local estimation results of a single node 𝑥 ∼ 𝐺(�̂� , 𝑃 ) and that of
multiple nodes 𝑥 ∼ 𝐺(�̂� , 𝑃 ) are presented, next. Note that the subscript
𝑖+ indicates that the estimate or error covariance is based on a set of nodes
including 𝑖 and at least one other node.
Remark. Note that themeasurementmodel 𝑦 [𝗄 ] = 𝐶 𝑥[𝗄 ]+𝑣 [𝗄 ] should be
available to node 𝑖 before 𝑦 [𝗄 ] can be exploited. Therefore, node 𝑗 shares
the local measurement (𝑦 , 𝐶 , 𝑉 ), while if node 𝑗 shares local estimates, it
exchanges (�̂� , 𝑃 ). This implies that the received data of Figure 2.2, yields:

• 𝕐 ⊂ ℝ ,ℝ × , ℝ × is the collection of (𝑦 , 𝐶 , 𝑉 ) received from
neighboring nodes 𝑗 ∈ 𝒩 . Note that 𝕐 could be empty, for example,
when none of the nodes 𝑗 ∈ 𝒩 shares its local measurement;
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Kalman filter
𝑓KF(⋅, ⋅, ⋅)

Merging
𝑓ME(⋅, ⋅, ⋅)

Received
𝕐 ,𝕏

𝑦 , 𝐶 , 𝑉 �̂� , 𝑃 �̂� , 𝑃

𝑦 , 𝐶 , 𝑉

�̂� , 𝑃

Figure 2.2: A framework of the generalized local estimation function, which consists of
functional primitives, performed by each node in the network, supported bymeasurements
of another node The inputs of the functions differ slightly per implemented function.

• 𝕏 ⊂ ℝ ,ℝ × is the collection of (�̂� , 𝑃 ) received from neighboring
nodes 𝑗 ∈ 𝒩 . Similar as to 𝕐 , also 𝕏 can be an empty collection.

Let us continue with a detailed description of the Kalman filtering
function in Figure 2.2. This functional primitive combines the local 𝑦 [𝗄 ]
with the received measurements 𝑦 [𝗄 ] to update its cooperative local
estimate 𝑥 [𝗄 − 1] ∼ 𝐺(�̂� [𝗄 − 1], 𝑃 [𝗄 − 1]). Measurements are combined
via the original Kalman filter or by the alternative Information filter,
which was proposed in [35]. For this latter approach, measurements are
rewritten into their information form, for some 𝑧 ∈ ℝ and 𝑍 ∈ ℝ × , i.e.,

𝑧 [𝗄 ] ∶= 𝐶 𝑉 𝑦 [𝗄 ] and 𝑍 [𝗄 ] ∶= 𝐶 𝑉 𝐶 . (2.5)

The Information filter has similar results as the original Kalman filter
but differs in computational demand. Furthermore, the information
filter is more convenient when the amount of received measurements
(𝑦 , 𝐶 , 𝑉 ) ∈ 𝕐 varies at sample instants. Therefore, the Kalman filtering
function in the framework of Figure 2.2 employs the Information filter.
More precisely, 𝑓KF(⋅, ⋅, ⋅) is a function with three inputs and two outputs
according to the following characterization:

(�̂� [𝗄 ], 𝑃 [𝗄 ]) ∶= 𝑓KF(�̂� [𝗄 − 1], 𝑃 [𝗄 − 1], 𝕐 [𝗄 ])

𝑃 [𝗄 ] = (𝑀 + 𝑍 [𝗄 ] +∑
( , , )∈𝕐 [𝗄 ]

𝑍 [𝗄 ]) ,

�̂� [𝗄 ] = 𝑃[𝗄 ](𝑀 𝐴 �̂� [𝗄 − 1] + 𝑧 [𝗄 ] +∑
( , , )∈𝕐 [𝗄 ]

𝑧 [𝗄 ]),

𝑀 = 𝐴 𝑃 [𝗄 − 1]𝐴 + 𝑄 .

The merging function of Figure 2.2, introduced as 𝑓ME(⋅, ⋅, ⋅), merges
the local estimate 𝑥 [𝗄 ] with the received estimation variables 𝑥 ∼
(�̂� , 𝑃 ) ∈ 𝕏 [𝗄 ] into a new estimate 𝑥 [𝗄 ] ∼ 𝐺(�̂� [𝗄 ], 𝑃 [𝗄 ]). Typically,
the functional primitive 𝑓ME(⋅, ⋅, ⋅) is based on solutions for merging two
state estimation results 𝑥 and 𝑥 , yielding a recursive behavior to merge
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all received estimation results. This means that the merging function
𝑓ME(⋅, ⋅, ⋅) performed by a node 𝑖 has the following definition:

(�̂� [𝗄 ], 𝑃 [𝗄 ]) ∶= 𝑓ME (�̂� [𝗄 ], 𝑃 [𝗄 ], 𝕏 [𝗄 ])

for each estimate (�̂� [𝗄 ], 𝑃 [𝗄 ]) ∈ 𝕏[𝗄 ] do
(�̂� [𝗄 ], 𝑃 [𝗄 ]) = Ω (�̂� [𝗄 ], 𝑃 [𝗄 ], �̂� [𝗄 ], 𝑃 𝗄 ]) ,

end
�̂� [𝗄 ] = �̂� [𝗄 ], 𝑃 [𝗄 ] = 𝑃[𝗄 ],

where Ω(⋅, ⋅, ⋅, ⋅) is the inner merging function for merging the local
estimation results 𝑥 with received estimation results 𝑥 . Let us present
three examples from the literature of such inner merging functions
Ω(⋅, ⋅, ⋅, ⋅) one synchronization and two fusion approaches.

Synchronization Merging
Recent DKF solutions, e.g., [78, 122], adopt a synchronization approach to
characterize 𝑓ME(⋅, ⋅, ⋅). Such an approach stems from the idea of synchro-
nizing different internal clocks in the network. Typically, synchronization
is employed on the estimated means, for some scalar weight 𝜔 ∈ ℝ ,
yielding the following inner-merging function:

SY: (�̂� [𝗄 ], 𝑃 [𝗄 ]) = Ω (�̂� [𝗄 ], 𝑃 [𝗄 ], �̂� [𝗄 ], 𝑃 [𝗄 ])

�̂� [𝗄 ] = (1 − 𝜔 )�̂� [𝗄 ] + 𝜔 �̂� [𝗄 ],
𝑃 [𝗄 ] = 𝑃[𝗄 ].

Solutions for establishing theweights𝜔 have been presented in literature
extensively, for example in [137, 144].

Merging solutions that take the combination of error covariances into
account in addition to a combined estimatedmean are knownas fusion so-
lutions. An optimal fusionmethodwas presented in [9], though it requires
that correlation of the two prior estimates is available. In the considered
sensor networks one cannot impose such a requirement, as it amounts to
keeping track of shared data across the entire network. Alternative fusion
methods that can cope with an unknown correlation are covariance inter-
section (CI) and ellipsoidal intersection (EI), as proposed in [70] and [131],
respectively. We will discuss these solutions below.

Covariance Intersection
In CI the fusion function is characterized as a convex combination of
the two prior estimates 𝑥 and 𝑥 , for some scalar weight defined as
𝜔 = tr(𝑃) (tr(𝑃) + tr(𝑃 )) , i.e.,
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CI: (�̂� [𝗄 ], 𝑃 [𝗄 ]) = Ω (�̂� [𝗄 ], 𝑃 [𝗄 ], �̂� [𝗄 ], 𝑃 [𝗄 ])

Σ = ((1 − 𝜔 )𝑃 [𝗄 ] + 𝜔 𝑃 [𝗄 ]) ,

�̂� [𝗄 ] = Σ ((1 − 𝜔 )𝑃 [𝗄 ]�̂� [𝗄 ] + 𝜔 𝑃 [𝗄 ]�̂� [𝗄 ]) ,
𝑃 [𝗄 ] = Σ .

Ellipsoidal Intersection
The fusionmethod EI results in a “smaller” error covariance compared to
CI, as the fusion result is not a convex combination of prior estimate. In-
stead, EI finds an explicit expression of the (unknown) correlation before
merging independent parts of 𝑥 and 𝑥 via algebraic fusion formulas. To
that extent, the (unknown) correlation is characterized by amutual covari-
ance Γ ∈ ℝ × and a mutual mean 𝛾 ∈ ℝ , yielding the following inner
function Ω(⋅, ⋅, ⋅, ⋅):

EI: (�̂� [𝗄 ], 𝑃 [𝗄 ]) = Ω (�̂� [𝗄 ], 𝑃 [𝗄 ], �̂� [𝗄 ], 𝑃 [𝗄 ])

Σ = (𝑃 [𝗄 ] + 𝑃 [𝗄 ] − Γ ) ,
�̂� [𝗄 ] = Σ (𝑃 [𝗄 ]�̂� [𝗄 ] + 𝑃 [𝗄 ]�̂� [𝗄 ] − Γ 𝛾 ) ,
𝑃 [𝗄 ] = Σ .

The mutual mean 𝛾 and mutual covariance Γ are found by a singular
value decomposition, which is denoted as [𝑆, 𝐷, 𝑆 ] = svd(Σ) for a positive
definite Σ ∈ ℝ × , a diagonal 𝐷 ∈ ℝ × and a rotation matrix 𝑆 ∈ ℝ × . As
such, let us introduce the matrices 𝐷 ,𝐷 , 𝑆 , 𝑆 ∈ ℝ × via the singular value
decompositions

[𝑆 , 𝐷 , 𝑆 ] = svd (𝑃 [𝗄 ]) , (2.6)

[𝑆 , 𝐷 , 𝑆 ] = svd(𝐷 𝑆 𝑃 [𝗄 ]𝑆 𝐷 ) . (2.7)

Then, an expression of 𝛾 and Γ , for some 𝜍 ∈ ℝ and {𝐴} ∈ ℝ denoting
the element of a matrix 𝐴 on the 𝑞-th row and 𝑟-th column, yields

𝐷 = diag (max[1, {𝐷 } ],⋯ , max[1, {𝐷 } ]) , (2.8)

Γ = 𝑆 𝐷 𝑆 𝐷 𝑆 𝐷 𝑆 , (2.9)

𝛾 = (𝑃 + 𝑃 − 2Γ + 2𝜍𝐼 ) ×

((𝑃 − Γ + 𝜍𝐼 ) �̂� + (𝑃 − Γ + 𝜍𝐼 ) �̂� ) .
(2.10)
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A suitable value of 𝜍 follows: 𝜍 = 0 if |1 − {𝐷 } | > 10𝜖, for all 𝑞 ∈ ℤ[ , ] and
some 𝜖 ∈ ℝ , while 𝜍 = 𝜖 otherwise. The value 10 is used in thiswork to de-
fine that the value is much larger, and combined with a design parameter
𝜖 support a numerically stable result.

This completes the description of the estimation function depicted in
Figure 2.2. Let us continue by explaining the reconfiguration parameters
that can be tuned for the considered estimation function.

2.2.3. Tuning the Functional Primitives
The estimation function illustrated in Figure 2.2 consists of two func-
tional primitives. A node 𝑖 combines received measurements 𝕐 via the
Kalman filtering functional primitive 𝑓KF, while received estimates 𝕏 are
merged in the functional primitive 𝑓ME via either SY (synchronization),
CI (covariance intersection) or EI (ellipsoidal intersection). There are
several parameters and structural changes that themanagement layer can
select, so that a suitable estimation function is constructed in line with
the current situation and available resources. The different options for
tuning a functional primitive are addressed in this section.

• Sampling time 𝜏 : The sampling time of both primitives 𝑓KF and 𝑓ME
can be tuned accordingly. At every sample time the Kalman filter ex-
ecutes and provides a new local estimate. Then, themerging function
is triggered, merging any received estimates into a regional estima-
tion. Lowering the sampling time 𝜏 implies that estimation accuracy,
computational demandanddata exchangewill be decreased, i.e., sav-
ing communication and computational resources and thereby saving
energy.

• Shared data 𝕐 and 𝕏 : The selection of which variables are shared,
i.e., (𝑦 , 𝐶 , 𝑉) and/or (�̂� , 𝑃 ), can change in time. Exchanging both
improves estimation results throughout the network but requires
communication resources. Decreasing the usage of this resource can
be done by exchanging either the local measurement or the local
estimation result, which would yield a decrease in the estimation
accuracy. Additionally, the frequency of exchanging data can be
influenced by changing the communication frequency parameter 𝑓 .

• Implemented algorithm: There is only one implementation of the
functional primitive 𝑓KF, which is the Information filter. Yet, for the
merging primitive 𝑓ME one has the option between three alternative
implementations—only one of which can be active in a node at any
given time:

1. SY: The inner-function Ω(⋅, ⋅, ⋅, ⋅) is characterized by the synchro-
nization approach. The required computational power for this
alternative is low, though it would result in a poor estimation
accuracy as well;



2.3. Reconfiguration Framework

2

17

2. CI: The inner-function Ω(⋅, ⋅, ⋅, ⋅) is characterized by the covari-
ance intersection approach [70]. The required computational
power for this alternative is moderate and would result in a
moderate estimation accuracy;

3. EI: The inner-functionΩ(⋅, ⋅, ⋅, ⋅) is characterized by the ellipsoidal
intersection approach [131]. The required computational power
for this alternative is high and would result in a high estimation
accuracy;

The above options on changeable parameters and alternative func-
tional primitive are exploited by the management layer for finding a
match between the desired estimation quality (accuracy) and the required
resources.

2.3. Reconfiguration Framework
The following reconfiguration framework provides the tools needed for
a self-organizing state estimation sensor node. We use concepts from
model-based design in runtime to aid the reconfiguration process by
providing information about potential configuration states. A reasoner
can then compare different states, and implement the most beneficial
one.

2.3.1.Model-Based Design Concepts
The design challenge for any embedded system is to realize the required
functionalities (in this case state estimation) on a given hardware
platform while satisfying a set of nonfunctional requirements, such as
response times, dependability, power efficiency, etc. Model-based system
design has been proven to be a successful methodology for supporting
the system design process [73]. Model-based methodologies use multiple
models to capture the relevant properties of the design. These models can
then be used for various purposes, such as automatic code generation,
design optimization, system evolution, etc. [72] Crucial for the design
process are the interactions between the different models.

Two fundamentalmodels of the design are (i) the taskmodel, capturing
the required functionalities of the employed signal processing method,
and (ii) the physical model capturing the hardware configuration of the
implementation. In Figure 2.3 the task model is represented as directed
a graph: the signal processing components are represented by the
vertices of the graph, while their data exchange or precedence relations
are represented by the edges. Both the tasks and the interactions are
characterized by a set of properties, which typically reflect non-functional
requirements/properties. The tasks run on a connected set of processors,
represented by the physical model of the system. The components in the
physical model are the computing nodes and the communication links.
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Figure 2.3: The task and physical model represent the different functional components and
the processing components where they can run, respectively. A mapping between them
defines which functions run where.

It should be mentioned that in the signal processing context the
task graph is designed in two phases as shown in Figure 2.4: first
the functional primitives are connected to form the signal flow graph
satisfying the functional requirements and design constraints. Then,
the task network should be created via clustering the elements of the
network of functional primitives to tasks considering computation,
communication and temporal requirements. This is not a linear process
and there is a strong dependency on the physical configuration. Moreover,
the search and optimization in the design space make this an iterative
process, which requires interactions between hardware, software and
signal processing architecture designs.

The design process involves finding a particular mapping that defines
the assignment of a task 𝑇 to a processor 𝑃 , i.e., it determines which task
runs on which node. Obviously the memory and execution time require-
ments define constraints when assigning the tasks to nodes. Further, data
exchange between tasksmakes the assignment problemmore challenging
in distributed configurations, as a task assignment also defines the use of
communication links 𝑐 - and the communication links have limited ca-
pacities. The design process results in a sequence of decisions, which lead
to a feasible systemdesign. Traditionally this design process is “off-line”,
i.e., it is completed before the implementation and deployment of the sys-
tem itself. The task model, the hardware configuration and their charac-
teristics are assumed to be known during this design time and the design
uncertainties are assumed to be low.

2.3.2. Runtime Reconfiguration
These are overly optimistic assumptions for large-scale sensor and
actuator (control) networks: in many cases they are deployed in “hostile”
environments, where component failures and dynamically changing
configurations manifest themselves as common operational events.
Expressed in the concepts of Figure 2.3, conceptually the runtime re-
configuration is carried out via changing the task graph (i.e. selecting a
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Figure 2.4: The design flow of the signal processing system; the function network influences
the design choices of the task network.

different signal processing scheme, changing certain parameters of the
functional primitives, etc.) or re-mapping the task graph to the physical
model (i.e. changing the task assignment with the consequential change
in the communication topology).

As Figure 2.1 already indicates, our goal is to realize the reconfiguration
functionality for distributed state estimation to improve robustness and
scalability. The functional scheme of the reconfiguration is shown in
Figure 2.5. The primary functionality (in our case the state estimation)
is realized by the task network (via the invocation of associated function
primitives). The task network is built during initialization time according
to (off-line) design specification. The reconfiguration runs parallel to the
primary data stream: based on the execution status (e.g. quality of the re-
sults generated, the conditions of the hardware resources, the availability
of the communication links, etc.) the reconfiguration functionality makes
decisions about the configuration, its parameterization and resource
usage in order to satisfy the given requirements and constraints. The
reconfiguration is event driven, triggered by changes in the execution
context or the changing (user) requirements and constraints. The
reconfiguration may act on the software side (e.g. selecting a different
algorithm to implement a particular functional primitive, changing task
allocation, etc.) or on the hardware side (e.g. adjusting transmission
power, suspending/awaking components, etc.).

The following characteristics of the proposed scheme should be
emphasized:

• Every time instant the function/task network is a snapshot of the
possible variants and mappings. Alternatives may not be explicitly
enumerated but can be the result of a reasoning process.

• The scheme explicitly supports the separation of concerns principle;
reconfiguration mechanisms can be designed and implemented rel-
atively independently.

• The reconfiguration can be a resource demanding activity. There-
fore, the scheme allows for tuning the “intelligence level” of
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requirements, constraints
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hardware control

Figure 2.5: A schematic representation of the reconfiguration process. The primary data path
is updated by a secondary “management” layer by updating the structure or parameters. The
nodes’ reconfiguration components can coordinate with one another to find configuration
that are mutually beneficial.

the reconfiguration depending on the performance of the hard-
ware configuration—virtually leaving the signal processing aspect
uninfluenced.

• There are low-overhead implementations available for dynamic
data-flow graph based signal processing (e.g. [112]). Consequently,
the influence of the reconfiguration on the signal processing perfor-
mance can be kept low. The interfacing between the data-flow graph
and the “management” side is usually implemented by a simple API
or message passing mechanism.

• The scheme is not specific to the distributed state estimation
problem, but other signal processing tasks including control or other
multi-agent based tasks can be mapped into this framework as well.

• The scheme is applicable to reconfiguration on “various levels of
granularity”: task, node and system levels, i.e. the reconfiguration
strategy scales from fine grade distributed to a centralized one.
Needless to say distributed reconfiguration may need cooperation
among the reconfiguration functionalities.

• From execution point of view the reconfiguration functionalities
should be included in the task graph (as one or more cooperating
tasks) and their resource demand should be accounted for.

In the following the “management” side will be further detailed. The
representation of the configuration and the design knowledge as well as
the associated reasoning mechanisms are the key elements on the man-
agement layer, thus in the following these aspects will be emphasized.
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2.3.3. Knowledge Representation and Reasoning
For the management layer as seen in Figure 2.1, which reconfigures the
core tasks’ functionality, a three-step strategy is implemented. The first
step in reconfiguration is themonitoring step, in which the current status
quo is observed, in order to reflect the system’s own health/performance
and the state of the embedding environment. The second step is the
reasoning step in which the observed characteristics are analyzed, decided
whether reconfiguration is even required, and if it is required how to do
so. The final step is the actuation step which performs the decisions made
in step two, thereby completing the reconfiguration process.

The reasoning step is one of special interest, because it is mainly here
where the intelligence about the configuration is represented in the sys-
tem. Because the reasoning is only a single stepwithin the reconfiguration
process and it always operates with a predefined interface, it can be sepa-
rated from the rest of the system which makes it relatively easy to imple-
ment any kind of reasoningmodule.

In order to reconfigure the tasks’ core functionality, the reconfigurator
requires knowledge and a method for reasoning about the various
configurations. These two are intrinsically connected since the form
of the knowledge representation depends on the method of reasoning.
A case-based reasoner would require knowledge in terms of different
complete configurations, whereas a utility reasoner would require a utility
function.

From the many forms of reasoning and knowledge representations,
for this article a first order logic (FOL) reasoner will be used. The
corresponding knowledge representation exists of a rule base existing
of atoms representing the configurable parameters, and constraints and
conditions in the form of logical compound statements to determine what
parameter choices are valid and which are not. The problem statement
of reconfiguration is now reduced to finding the values for the atoms
that satisfy the statements (effectively a search). Now, problem solving
methods can be used for solving FOL problems such backtracking and the
Selective Linear Definite clause resolution which is proven to be sound
and complete [6, 10, 135].

FOL has been used to describe reconfiguration knowledge in the past
as well [37, 133]. An important reason for this is that FOL reasoners have
proven to be very expressive in that they can describe both conditions
and constraints, perform boolean, numerical and symbolical opera-
tions and therefore can reconfigure either by optimizing parameters or
starting/stopping components [15].

Using a FOL reasoner however, alsomeans that a priori to deploying the
system, all constraints and conditions must be determined because a rule
base is required by the reasoner. This requires some design time knowl-
edge which can be expert or empirical knowledge from experiments. For
scenarios in which multiple methods are applicable, a preferential order
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must bedetermined. More complexbias-free reasoners,which are capable
of taking into account the effect of one’s choice on neighboring nodes, will
be looked into in the next chapter.

2.4. Case Study
In the case study, the proposed framework is applied to a scenario inwhich
the temperature distribution of a greenhouse has to be monitored. In the
scenario there are 𝑁 nodes all equipped with a temperature sensor, and a
communication interface for communicating wirelessly. Each node had
to compute an estimate the global greenhouse temperature distribution
based on a local measurement and communication with the other nodes.
The implementation of the experiment was in the form of a discrete event
simulation [29].

Using off-line measurements from a real physical small scale green-
house setup, the system had access to realistic data, but over multiple
runs, the sensors would obtain the same input. In the experiment, the six
simulated nodes are equipped with simple temperature sensors, which
would base their measurements on the values from this database.

The nodes were constrained in the bandwidth of the communication
with other nodes, the amount of integer and floating-point operations per
second (IOPS/FLOPS) and a limited energy supply. In the ideal situation
these constraints should imply that the node should initially use the most
“expensive” method that would be computationally feasible, and under
decreasing battery capacity would decrease its effort, and in the end
use the “cheapest” method. At the same time the system would always
employ methods that satisfy the current bandwidth conditions.

In the scenario implemented for this experiment, there are six nodes
and in one of the nodes the monitor finds the battery level to drop
below a certain threshold, such that reconfiguration is desired. In the
experimental setup the system can change the following variables:

1. the algorithm used for the functional primitive 𝑓ME, which can be ei-
ther EI, CI or SY,

2. the sampling rate at which to sample the sensor 𝜏 ,
3. the communication rate to send out information to neighboring

nodes 𝑓 ,
4. the sleep time of the radio, which controls the rate of incoming mes-

sages from neighboring nodes 𝑓 .
In the initial configuration the systemuses EI in themerging functional

primitive, samples its sensor once every 60 seconds and broadcasts its
state estimation results every 90 seconds. Furthermore, it fires the
monitoring cycle every 150 seconds and shuts down the radio for 5
seconds every other 30 seconds (thereby using a pattern of 5 seconds
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Figure2.6: Theerror covariance traceofnodes3and6,whenchanging themergingalgorithm
in node 3 from Ellipsoidal Intersection to Covariance Intersection.

sleep, followed by 25 seconds receiving.) Exchanged variables are
automatically chosen, so that if a node uses EI or CI it broadcasts (�̂� , 𝑃 , k , 𝑖)
whereas if it uses SY it broadcasts (�̂� , k , 𝑖).

The reasoner implemented relies on a Prolog based FOL interpreter¹.
Choosing this implementation has a couple of additional advantages. First
and foremost, it has been used for a long time by experts for formally
defining expert knowledge [125], and is very expressive, but also flexible
in the type of rules that could be used to describe the knowledge for
the application. Secondly, Prolog is a well-known logical programming
language and therefore the framework can easily be programmed using
existing syntax and methods. Finally, the Prolog implementation can
use an external rule base, separating the reasoning rule base from the
implementation itself. This results in having the reconfiguration behavior
defined separately and independently of the rest of the system.

The knowledge of the reconfiguration reasoner must be coded a priori
to the deployment of the system. The constraints and conditions of the
rules, and the order in which the different reconfiguration actions will
be performed must be determined. This does not mean that the system
will reconfigure in any specific order, because the operating conditions
are unknown beforehand, and therefore the constraints and conditions
determine the configuration at runtime.

The FOL rule base allows for a wide range of rule types. The rule base
created for the case study contained rules of varying complexity, fromvery
simple rules considering the choice of parameters to more complex rules
combining different conditions of system properties into a desired recon-
figuration action. Example statements would formally be implemented in
Prolog as following:

¹http://www.gnu.org/software/gnuprologjava/

http://www.gnu.org/software/gnuprologjava/
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Figure 2.7: The error covariance trace of nodes 3 and 6, when decreasing the outgoing
communicating frequency in node 3 to 25%.

Example Prolog reconfiguration statements

idealSamplingFrequency(0.2).

batteryCritical(State) :-
getBatteryLife(State, ~BatteryLife),
minBattery(Threshold),
BatteryLife < Threshold.

action(lowerCommunicationFrequency, ~State, ~Reason) :-
batteryLow(State),
\+ communicationFrequencyLow(State),
Reason = ”The battery is low and the communication
frequency is high enough.”.

suggest(NewSetting, lowerSamplingFrequency, State) :-
samplingFrequencyLow(State),
getSamplingFrequency(State, SamplingFrequency),
NewSetting is SamplingFrequency * 0.75.

Whenever a re-parametrization is in order, the reasoner also has to
provide the system with the new parameters. The last statement in the
above example shows an example of how the choice of parameters might
be implemented. Note that this way of choosing the parameters means
that the system will act like a feedback loop. In order to find an optimal
new value, another type of reasoner will have to be implemented such as a
utility based reasoner.

In order to determine the ordering of the different type of configura-
tions and to create the related rule base, decision were made upfront by
the systemdesigner by experimentally trying out different configurations.
In these experiments the six nodes would operate, and after two hours
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Figure 2.8: The error covariance trace of nodes 3 and 6, when changing the radio sleep time
in of node 3 to 50%, effectively decreasing the incoming communication frequency.
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Figure 2.9: The estimated remaining battery life of nodes 3 and 6, when changing the radio
sleep time. Here, the reduction of power consumption of the radio is very noticeable.

of simulation time, the configuration of Node 3 would change. For the
results of these experiments, see Figures 2.6 through 2.8. In Figure 2.6
it can be seen that changing the fusion method has a significant impact
on the error covariance of the state estimation in reconfigured node, but
also in the node that stays the same. The same holds for a change in the
outgoing communication frequency 𝑓 , of which the results can be seen in
Figure 2.7. The sleep time of the radio has relatively the smallest impact,
and seems the best option for the first reconfiguration action. This means
the node will receive fewer messages from the other nodes and therefore
the error covariance will go up, but much less than with any of the other
options. Using this information, a rule base can be created.

When running the resulting systemwith the created rule base in a sim-
ulated experiment, the reconfiguration reasoner will deduce that a differ-
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ent sleep time is most desirable. In Figure 2.9 it can be seen that the cor-
responding remaining battery lifetime goes up significantly.

2.5. Conclusions
In this chapter a framework was proposed to implement self organization
in a sensor network. We defined a framework for distributed state estima-
tion using a collection of functional primitives that can be redeployed, re-
connected and parameterized by amanagement layer. This introduces the
possibility to reason about the configuration of how to do state estimation
under a variety of circumstances and user requirements.

In the greenhouse case study we have shown that the proposed
framework is capable of improving the battery lifetime of a sensor by
runtime reconfiguring the state estimation method, while maintaining
a good performance level. This is done by modifying the outgoing
frequency, and the sleep period parameters for the communication
strategy, and thereby having minimal impact on the state estimation
error. However, in this chapter we only considered the state estimation
problem, whereas the framework allows for reconfiguring all kinds of
distributed reasoning tasks. In the later chapters we will look at different
problem domains, e.g. wireless power transfer in Chapter 4 and smart
grids in Chapter 6.

The modular framework allows for easy implementation of a different
reasoning engine, but also for portability for different state estimation
tasks. In the current reasoner, a first-order logic core uses an a priori
determined set of ordered rules from the rule base. This is a drawback
of the logic-based reasoner, and in a real implementation it would be
recommendable to use an unbiased context-free configuration space
exploring reasoner. An example of this could be a genetic algorithm
adapted to the reconfiguration scenario, or a learning algorithm. Another
drawback of the current reasoner is the lack of coordination among nodes;
although this could be implemented in a logic based reasoner, this has
not been done in this chapter. To address this shortcoming, in the next
chapter a DCOP-based method for orchestrating configurations among
different nodes is proposed, for coordinated decision-making such that
all nodes benefit.
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CoCoA: an (A)DCOP Solver

3.1. Introduction
Self-organization is a property of a group of systems that can adapt their
behavior to changing environments, or user requirements. In Chapter 1,
we introduced the notion of self-organization either through emergent
behavior, or through explicit cooperation. In Chapter 2, we introduced
a framework for reconfiguring a system’s deployment, but when we
reason about how the system should be configured, we can either make
decisions locally (thus using the emergent behavior approach), or use a
distributed decision-making method. Local reasoning about an agent’s
behavior is definitely feasible, as we have shown in the previous chapter.
It is however, much more challenging to adapt while keeping in mind
the effect of a single agent’s decisions on the group as a whole. In order
to make sure the agents act as a group, decisions need to be coordinated
or orchestrated. However, the traditional approach using a central
coordinator is not desirable, since it leads to a single point of failure and
does not scale well. Without a central coordinator or hierarchy, the agents
need to collaborate as peers in order to make sure the group objective is
maintained.

Distributed Constraint Optimization Problems (DCOP) is a class of
optimization problems in which discrete variables are controlled by
distributed agents and the optimization function itself operates over the
complete set of variables [59]. This class of problems allows to formalize
the type of decisions a group of agents needs to make in a coordinated
fashion. By definition of DCOP, the involved agents are part of a team
and need to cooperate in order to perform well on the global task. Usually
in DCOPs, cooperation between agents is achieved by passing messages

This chapter is based on the article by C. J. van Leeuwen and P. Pawełczak, CoCoA: A non-
iterative approach to a local search (A)DCOP solver, in Proc. AAAI (2017) [89].

27
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from one agent to another. DCOPs are encountered in many fields such as
in wireless LAN channel allocation [150], coordination of mobile sensing
teams [148] or coordination of tasks [38].

A number of complete algorithms have been proposed to find the
optimal solution of a DCOP, amongst which are ADOPT [108], DPOP [116],
NCBB [19] and Asynchronous Forward Bounding [52]. However, DCOP
problems are NP-hard [107], so the effort to find the optimal solution
becomes intractable for increasingly large-scale problems. Therefore,
incomplete DCOP algorithms trade a distance from the optimal solution
for convergence speed and are thus more suited for large-scale problems.
Examples of incomplete DCOP solvers are DBA [152], DSA [45], max-
sum [38], MGM and MGM-2 [100]. Also, a combination of an incomplete
solver, with a complete solver is proposed in a hybrid strategy called
HS-CAI [20].

Recently, an extension on the DCOP framework has been described
in which agents may value a set of constrained assignments differently.
In these Asymmetric DCOPs (ADCOP) constraints have different costs
for their agents. The ACLS and GCA-MGM algorithms [56, 57] have
been proposed to enable solving this class of problems. More recently,
it has also been shown that the max-sum_ADVP algorithm can solve
ADCOPs [158]. In solving ADCOPs there is usually a trade-off in privacy
versus optimality [30].

Most existing DCOP algorithms use an iterative approach, which
requires many rounds of message passing during the optimization
process, and thus require a relatively large communication overhead.
In this chapter we present a case study in which this communication
overhead is especially important: to find an optimal configuration of a
sensor network, tasked with monitoring the cargo of a shipping container
for an extensive period of time. Since in sensor networks communication
between nodes has the largest influence on the battery lifetime, we need
to minimize the communication between nodes during the optimization
process, and require an algorithm that is guaranteed to converge to a
solution as quickly as possible.

We will introduce a new (A)DCOP algorithm, denoted as Cooperative
Constraint Approximation (CoCoA), which uses a non-iterative, semi-
greedy approach with a single step lookahead (SSLA). We show that it
finds high quality solutions much faster than other (A)DCOP solvers,
using far fewer system resources. Experimentally, we show that in some
cases this leads to a reduction of up to two orders of magnitude in the
number of transmitted messages and cost function evaluations, thus
leading to superior running times.
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3.2. DCOP: Problem Statement and Challenges
DCOPs are defined as a tuple 𝒯 = ⟨𝒜,𝒳,𝒟,ℛ⟩ in which 𝒜 is a finite set of
agents {𝐴 , 𝐴 , … , 𝐴 } and 𝒳 is a finite set of variables {𝑋 , 𝑋 , … , 𝑋 } with fi-
nite discrete domains {𝐷 , 𝐷 ,… , 𝐷 } from 𝒟 such that 𝑋 ∈ 𝐷 . Each agent 𝐴
is assigned one variable 𝑋 , and therefore |𝒜| = |𝒳| = |𝒟|. Then, ℛ is a set
of relations (constraints) in which each constraint 𝐶 ∈ ℛ defines a non-
negative cost. For DCOPs such costs are defined for every possible value
assignment of a set of variables 𝐶∶ 𝐷 ×𝐷 ×…×𝐷 → ℝ , while for ADCOPs
each constraint defines a set of costs for each involved variable, i.e. 𝐶∶ 𝐷 ×
𝐷 × … × 𝐷 → ℝ . Having all definitions of 𝒯, in (A)DCOPs the goal of the
agents is to minimize the global cost function, i.e.

arg min
𝒳

∑ℛ. (3.1)

In the rest of this chapter we shall only take into account binary con-
straints, in which exactly two variables are considered, of the form
𝐶 , ∶ 𝐷 × 𝐷 → ℝ . Note that the constraints between variables can be
shown as an undirected graph, for example as shown in Figure 3.1.

Definition 3.1 (Neighbors). We refer to agents as neighbors if there is
a constraint between their corresponding variables. This follows the
real-life situation of limited range between agents, e.g. communication
range in wireless networks. The set of all neighbors of an agentℳ ⊆ 𝒜 is
called the neighborhood.

Definition 3.2 (Current Partial Assignment). The set �̂� denotes the set of
known assigned values of the neighbors of 𝐴 and is also referred to as the
current partial assignment (CPA).

Definition 3.3 (Non-Iterative Algorithm). A non-iterative algorithm is
one that does not rely on multiple rounds (iterations) of value assign-
ments, or information sharing between agents, until some stopping
criterion is met. A non-iterative algorithm is by definition asynchronous;
it does not rely on synchronous activation certain phases of the algorithm,
instead, the activation of agents happens sequentially triggered by local
interactions.

3.2.1. DCOP: Existing Solvers
DCOP solvers can be categorized into complete and incomplete. Complete
solvers search the entire solution space and are guaranteed to find the op-
timal solution, while incomplete solvers try to find a “good” solution in a
reasonable time.

Incomplete solvers from literature, e.g. DSA [45], MGM-2 [100],
DALO [76] or GCA-MGM [57] are local search algorithms, trying to
approximate the global function by solving a local problem. DSA is known
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Figure 3.1: Example of a constraint graph in a graph coloring problem with six agents
(vertices), variables (colors), and nine constraints (edges) between them.

for its low communication overhead and its ability to find high quality
solutions for symmetric DCOPs [115], whereas ACLS and GCA-MGM can
also solve ADCOPs.

The max-sum algorithm [38] is another incomplete solver, that
works in a completely different manner. It operates on a bipartite graph,
separating variable from constraint nodes, and spreads information
through the graph to estimate the effect of value assignments. It is
capable of finding optimal solutions, but only when the graphs contain no
cycles [25]. Themax-sum algorithmwill converge to the optimal solution
on acyclic graphs [25].In order to deal with cyclic graphs and asymmetric
costs, variations of the algorithm have been proposed to deal with cyclic
graphs such asmax-sum_ADVP [159] orwith asymmetric problems [158],
but is then no longer guaranteed to find the optimal solution. Max-sum
and the local search algorithms apply an iterative approach; they evaluate
their performance, share information, update their variable, and repeat
until a stopping criterion is met—usually a predetermined number of
iterations.

3.2.2. Challenges
In this chapter we propose an algorithm capable of solving (A)DCOPs with
a minimal communication and computation overhead. We hypothesize
we can achieve this by not iteratively sending messages and updating the
variable, but instead using a greedy, SSLA approach. This means that each
agent takes a decision based on information only from its direct neighbors
and will activate agents sequentially. Under these circumstances we need
to address the following challenges:

Challenge 1: Premature Assignment A non-iterative DCOP solver
assigns a value to a variable only once. In its most simple form an agent
would only look at its local constraint costs and the known values of its
neighbors. It would select a value that minimizes its local cost and update
its variable. Greedy algorithms have the advantage of converging very
fast, but early choicesmay turn out to be suboptimal when neighbors have
assigned their value.
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Challenge 2: Synchronization When two neighbor agents are both
deciding for a new value a race condition may occur, i.e. the outcome
of one agent arrives too late for the other agent’s decision. For iterative
algorithms this is not an issue since in a later iteration one agent can
correct for any incorrect assumptions; for non-iterative solver this is not
possible.

Challenge 3: Asymmetric Costs An incomplete solvermay end up in a lo-
cal minimum if a local beneficial assignment leads to poor global results.
An agentmay assign a variable to decrease its local cost, but potentially in-
creases the cost of its neighbors. This over-greedinessmay cause the global
cost to increase or lead to unstable solutions. In strongly asymmetric con-
straints for every combination of value assignments at least one agent can
improve its local cost by shifting to another assignment without decreas-
ing the global cost. Under these circumstances iterative solvers may not
converge to theminimumwhere both agents are assigned the same value,
but agents on either side of the constraint will maintain a cycle of assign-
ing different values to improve their local cost.

3.3. CoCoA: A New DCOP Solver
To address the challenges introduced in the previous section we propose
a new incomplete ADCOP algorithm based on a semi-greedy strategy,
denoted as Cooperative Constraint Approximation (CoCoA), employing three
key ideas:

1. A single step lookahead (SSLA) to consider the effect of an assignment
on the cost of neighbors. This is especially effective when a neighbor
is constrained in its choices;

2. A unique-first approach, such that an agent will only assign a value if
it is a unique local optimum for its variable. If it cannot find a unique
solution, the decisionwill be delayed untilmore information is avail-
able;

3. A state machine to spread and keep track of the algorithm’s activity,
prevent dead-locks or endless loops.

By minimizing not only the local cost, but also the cost of its single-
hop neighbors, we hypothesize that CoCoA can find a solution with a low
global cost with relatively little overhead. When CoCoA is triggered it first
inquires its neighbors what the effect of different assignments would
be for their local cost. The neighboring agents decide the resulting cost
effect asynchronously and return to the inquirer what theminimum effect
would be. Upon receiving the estimated costs the active agent will assign
the value that minimizes the sum of all incurred costs, including its own.



3

32 3. CoCoA: an (A)DCOP Solver

During the variable assignment process it is possible that multiple
values suit equally well, especially in an early stage of the algorithmwhen
multiple neighbors have no assigned values. In such cases the assignment
will be postponed until a neighbor has changed its value. We hypothesize
that this unique-first approach will help in avoiding premature conver-
gence to a sub-optimal solution. However, this approach may lead to
a deadlock if all the neighbors are waiting for each other. Therefore,
we partition the algorithm in four states and have agents inform their
neighbors about their internal state. When all neighbors are in the HOLD
state, a bound denoting the “allowed uniqueness” is increased until a
decision can be made. The proposed algorithm is given in pseudocode
in Algorithm 1, with accompanying set of messages and agent states
in Table 3.1 and Table 3.2, respectively and discussed in detail in the
subsequent section.
Remark. Due to its non-iterative approach, it is impossible to recover from
early choices. Thismay lead to situations in which a variablemust be set to
a value that leads to a very high cost, i.e. it has to break a hard constraint.

3.3.1. CoCoA: Algorithm Description
CoCoA assumes that all neighbors 𝐴 can communicate with, ℳ , are
known. Also, each 𝐴 ∈ ℳ must know its neighbor’s domain 𝐷 . Finally,
we assume that all nodes are reachable from any other node, i.e. for every
pair of nodes there must be a set of edges that connects them.

Initially all agents start in the IDLE state and activation occurs at any
random node. As soon as one agent finishes the algorithm it will trigger
the algorithm for its neighbors. When any 𝐴 has to find an assignment,
it will first send an InqMsg(𝑖, �̂� ) message to its neighbors (line 3 of Algo-
rithm 1). This will trigger agents 𝐴 ∈ ℳ to calculate for every possible as-
signment for 𝑋 what the lowest cost would be for 𝐴 taking into account
the CPA and that assignment for 𝑋 . That is, each 𝐴 ∈ ℳ calculates for
every 𝑋 , ∈ 𝐷

Θ , = min
, ∈

∑
∈ℛ
𝐶 (�̂� ∩ 𝑋 , ∩ 𝑋 , ) , (3.2)

where 𝑋 , denotes that 𝑋 is assigned the 𝑘th value of 𝐷 .
If variables are not yet assigned in �̂� , the cost of their constraints can

not be determined and the mean cost is used, i.e. a single step lookahead
is performed. The resulting cost map Θ = {Θ , , Θ , , … , Θ ,| |} is sent via a
CostMsg(Θ ) back to the inquiring 𝐴 . Then, 𝐴 finds 𝑋 by

𝛿 = arg min
|ℳ |

∑Θ , , (3.3)

and assigning 𝑋 , . The minimizing value may achieve a minimum for
more than one value of 𝑋 since the arg min operator can return a set of
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Algorithm 1 CoCoA Algorithm

When started or upon receiving UpdState(𝑗,DONE) on 𝐴 :
Require: state:=IDLE or state:=HOLD
1: state← ACTIVE
2: send ∀𝐴 ∈ ℳ UpdState(𝑖,ACTIVE)
3: send ∀𝐴 ∈ ℳ InqMsg(𝑖, �̂� )
4: wait for all CostMsg(Θ )
5: find 𝛿 using (3.3)
6: if 𝒰(𝑋 ) ≤ 𝛽 or number of idle/active neighbors is 0 then
7: 𝑋 ← random from 𝑋 ,
8: state← DONE
9: send ∀𝐴 ∈ ℳ UpdState(𝑖,DONE)
10: send ∀𝐴 ∈ ℳ SetVal(𝑖, �̂� )
11: else
12: state← HOLD
13: send ∀𝐴 ∈ ℳ UpdState(𝑖,HOLD)
14: end if

Upon receiving InqMsg(𝑖, �̂� ) at 𝐴 :
15: incorporate �̂� in �̂� ∗

16: for all 𝑋 , ∈ 𝐷 do
17: find Θ , using (3.2)
18: end for
19: Send 𝐴 CostMsg(Θ )

Upon receiving UpdState(𝑖, S):
20: Store state 𝑆 of neighbor 𝐴
21: if 𝑆 is HOLD andmy state is HOLD and number of idle/active neighbors is

0 then
22: 𝛽++
23: Repeat algorithm
24: else if S is DONE andmy state is HOLD then
25: Repeat algorithm.
26: end if
∗This line is added since the original publication for clarity; the implementation did not
change.

minimizers. The uniqueness of this minimal cost is the number of distinct
values that achieve this minimum, defined as 𝒰(𝑋 ) = |𝛿|. For CoCoA this
means that a value can now be assigned to the variable, and for that any
minimizer will do. CoCoA_UF however, differs from CoCoA in that it also
employs the unique-first approach.

In CoCoA_UF the uniqueness will be compared with a bound 𝛽 to
determine if this solution is accepted (line 6 of Algorithm 1). Initially
𝛽 = 1, so that only unique solutions are accepted. If 𝛽 < 𝒰(𝑋 ) and at



3

34 3. CoCoA: an (A)DCOP Solver

Table 3.1: List of messages sent by CoCoA

Message Description

InqMsg(𝑖, �̂� ) Sent by 𝐴 at start of algorithm
CostMsg(Θ ) Neighbors’ reply; contains Θ
SetVal(𝑖,𝑋 ) Indicator: 𝐴 assigned a value to 𝑋
UpdState(𝑖, S)* Sent when 𝐴 updates its state to S
*UpdState( , S) is only sent in the unique-first, CoCoA_UF variant.

Table 3.2: Agents’ potential states in CoCoA

State Description

IDLE Agent’s default/initial state; indicates agent is active,
but not yet started.

ACTIVE State after agent’s activation; finding an assignment
for its variable.

HOLD At an impasse; delay variable assignment and await
information from neighbors.

DONE Final CoCoA state; indicates that agent has assigned a
final value to its variable.

least one neighbor is ACTIVE or IDLE, the algorithm switches to the HOLD
state and waits until another node has updated its state to DONE before
the algorithm is run again. If an UpdState(𝑗,HOLD) message is received,
indicating that the last neighbor is in the HOLD state, then 𝛽 is increased
by one and the algorithm is repeated (line 22 of Algorithm 1). This
mechanism makes sure that premature choices are avoided until more
information is available. Initially, when no agents have a value assigned
this may occur frequently, but as more variables are set the chances of
such impasses decrease.

If 𝒰(𝑋 ) ≤ 𝛽 then 𝑋 is chosen randomly from all minimizers and is
communicated to the agent’s neighbors 𝐴 ∈ ℳ in a SetVal(𝑖,𝑋 )message.
Thismakes the neighbors 𝐴 update their CPA (as they now know the value
of 𝑋 ) and triggers the algorithm for them.

3.3.2. CoCoA: Example Run
Let CoCoA solve a graph coloring problem, where each variable must be
assigned value, which can be either blue (b), green (g), or yellow (y) such
that ∀𝑖𝐷 = {b,g,y}. The constraints in the graph coloring problem are
that neighboring variables should not have the same color—a cost of one
is induced for every pair of neighbors that are assigned the same color.
In the example in Figure 3.1 the variables of 𝐴 , 𝐴 , and 𝐴 are already
assigned a color. Let us assume that this is the starting condition, and
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we have to find the best assignment in this situation starting at 𝐴 . As
we shall see under these premises the best solution must violate some
constraints—there is no perfect solution with zero cost.

Agent 𝐴 starts by sending UpdState(3,ACTIVE) and InqMsg(3, �̂� ),
informing that it has started and wants to know the effect its assignment
may have, to all of its single-hop neighbors 𝐴 ∈ ℳ = {𝐴 , 𝐴 , 𝐴 , 𝐴 },
where �̂� = {𝑋 = g, 𝑋 = y}. As these messages arrive at all the neighbors,
they will save the information that is in the CPA and the state of 𝐴 .

Each neighbor will then calculate a cost map Θ , which contains for ev-
ery assignment 𝑋 , ∈ 𝐷 , what the lowest possible local cost is, given the
CPA (3.2). Agent 𝐴 will return a CostMsg(Θ ) message with the mapping
Θ = {g → 1,y → 0,b → 0} and for agent 𝐴 this mapping will be Θ = {g →
0,y → 1,b → 0}. For both 𝐴 and 𝐴 it will be Θ = Θ = {g → 0,y → 0,b → 1},
and agent 𝐴 its own costs are Θ = {g → 1,y → 1,b → 0}. All cost maps will
be received by𝐴 , which sumsover thepossible assignments andfinds {g →
2,y → 2,b → 2}. There are now three potential assignments leading to the
same minimal cost. Since initially 𝛽 = 1, the choice is delayed until more
information is available (because 𝛽 < 3 and other neighbors are still either
ACTIVE or IDLE). Agent 𝐴 sends an UpdState(3,HOLD) to its neighbors.

Since𝐴 and𝐴 are already DONE, theywill not react to the new informa-
tion. Agents 𝐴 and 𝐴 are now activated and after inquiring their neigh-
bors, they gather a combined mapping Θ = {g → 2,y → 2,b → 1}. They
can both find a uniqueminimal solution, so they assign their value to 𝑋 ←
b. Agents 𝐴 and 𝐴 send a SetVal(𝑗,b) to spread the algorithm’s activity
and their newvalue. Upon receiving this information the neighbors update
their CPAaccordingly. Immediately after, anUpdState(𝑗,DONE)message is
sent, notifying all neighbors that they are now done.

Activity returns to 𝐴 , who receives two UpdState(𝑗,DONE) messages.
After the first message it will assume that another neighbor is still active
and will run the algorithm again without increasing 𝛽. This time, 𝐴
will find assignment costs {g → 2,y → 2,b → 3} (assuming that one of
the neighbors is done, otherwise it would contain b → 4; this is a race
condition). As there are two minimizers and the uniqueness bound 𝛽 = 1,
𝐴 will go to the HOLD state. After the second UpdState(𝑗,DONE) message
arrives, 𝐴 knows that there are no more active neighbors, so it will
increase its bound 𝛽 ← 2. Now it will find the cost of assignments to be
{g → 2,y → 2,b → 4}with two distinct minima; since the uniqueness bound
is now 2, it will select a randomminimizer out of the two.

3.3.3. CoCoA: Termination Guarantees
With the state-mechanism in place, one could run the risk of entering an
endless loop. We have the following Proposition:

Proposition 3.1. The CoCoA algorithm will converge after a finite number of
messages and function evaluations.
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Proof. Assume a situation in which an agent 𝐴 and all of its neighbors are
in the HOLD or DONE state. At some point 𝐴 receives an UpdState(𝑗, S)mes-
sage and itwill find that there are nomore active neighbors, thus increases
its 𝛽 by one. CoCoAwill run again and either therewill be a unique solution
or not. If no solution is found, 𝐴 will set its state to HOLD, we are again at an
impasse, and the process will repeat. At some point however 𝛽 = |𝐷 | since
the domain is finite. At this point any assignment must satisfy 𝒰(𝑋 ) ≤ 𝛽,
so a value will be picked, and an endless loop is avoided.

3.3.4. CoCoA: Privacy
When solving ADCOPs, there is always the possibility of transmitting
the full local constraint cost matrix to one agent’s neighbors. Sharing
all constraint information between neighbors, and adding the received
costs to the local costs, effectively converts any ADCOP into an equivalent
symmetric DCOP. This strategy is also referred to as Private Events as
Variables [101], and the main motivation not to use this strategy is the
loss of privacy. In literature there are four different types of privacy
defined [87]: agent privacy, topology privacy, constraint privacy, and de-
cision privacy. The max-sum algorithm is known to be very private [138],
especially because of its unique bipartite approach, separating utility and
function nodes. However, when we consider constraint privacy, we argue
that CoCoA is at least as privacy-conserving as max-sum.

Proposition 3.2. CoCoA preserves at least as much privacy as max-sum.

Proof. The max-sum algorithm is known to be more privacy preserving
than the local search algorithms ACLS and GCA-MGM [158]. Only in two
iterations entries from the cost matrices are exchanged between agents.
In other iterations the shared values are derived from multiple entries as
information spreads through the graph. CoCoA, on the other hand, shares
cost matrix entries only once, i.e. before any agent has assigned a value
and after that it is always derived frommultiple entries. In CoCoA, for each
assignment, the lowest total cost is sent taking into account the complete
CPA (line 17 of Algorithm 1). As withmax-sum, in everymessage to 𝐴 , |𝐷 |
values are transmitted, however since CoCoA does not iterate, the number
of exchangedmessages is lower.

3.4. CoCoA Performance: Experimental Results
CoCoA is tested and compared against state of the art DCOP solvers, being:
DSA [45] (variant C, with update probability, 𝑝 = 0.5), MGM-2 [100] (with
offer probability 𝑝 = 0.5),max-sum_ADVP [158] fromhereon also referred
to as simply max-sum, (switching graph direction after 100 iterations,
value propagation after two switches, and using the constraint standard
inner order), ACLS (with update probability 𝑝 = 0.5) and GCA-MGM [57]
(non-parametric). Also, we show the individual effects of the SSLA and
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the unique-first approach by showing the results for CoCoA with and
without the unique-first (UF) strategy.

For all experiments 100 problems are generated (the type of problems
will be described subsequently) and the presented results are the average
over all problems. To compare the performance of CoCoA we look at
the following performance metrics: (i) the cost of the final solution (S),
(ii) the number of transmitted messages (M), (iii) the number of cost
function evaluations (E), and (iv) running time of the algorithm (T). A
cost function evaluation is defined as computing or looking up the local
cost of one constraint, similar to Non-Concurrent Constraint Checks
(NCCCs) [104]. These are not necessarily non-concurrent, but they do
indicate a non-implementation specific measurement of computational
effort. We keep track of the global cost function and when no better
solutions are found for more than 100 iterations the solver is stopped.
Afterwards we report the performance metrics at the moment where a
solver was first within 1% of the best solution. This approach is similar to
an anytime framework as described in [102, 157], but instead of keeping
track of the best state at every agent, we maintain this information in the
experiment script; this information is only used for evaluation.

The solvers are implemented in Java 1.7, and the experiments are set
up in MATLAB 2015b, which is also used to post-process and present the
result figures¹. The experiments are carried out on a laptop with an Intel
Core i7-3720 CPU 2.6GHz and 8GB RAM.

3.4.1. Graph Coloring
A common problem for benchmarking DCOP solvers is the graph coloring
problem e.g. [100, 108, 123]. As in the example run, the values of 𝒳
represent the colors of nodes, and the solvers need to assign colors
such that nodes on the ends of edges have different colors. In the first
experiment every constraint violation will induce a cost of 1. In the
experiment the number of colors |𝐷| = 3, so the cost matrix for every
constraint is 𝐂 = 𝐈 . The graphs are generated by selecting 𝑛 = 500
random points in two-dimensional space using a Poisson point process,
representing the variables, and the constraints are chosen as the edges of
a Delaunay triangulation between those points—the average density of
the graphs is 0.01.

Experiment Results
In Figure 3.2 the solution cost is plotted against the running time for sev-
eral algorithms, while Table 3.3 shows the full set of metrics. CoCoA_UF
finds a solution of near optimal cost in a single iteration, requiring
less function evaluations than any other algorithm, and second least

¹For a replicability of results and figures, the source code of the implemented algorithms
is available at https://github.com/coenvl/jSAM/tree/AAAI17, and of the experiment
setups and visualization at https://github.com/coenvl/mSAM/tree/AAAI17.

https://github.com/coenvl/jSAM/tree/AAAI17
https://github.com/coenvl/mSAM/tree/AAAI17
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Figure 3.2: Graph coloring experiment: DSA finds the best solution, but CoCoA_UF finds a
similar solution in less time.

Table 3.3: Graph coloring experiment results

Algorithm I S M∗ E∗ T

CoCoA N/A 183 𝟖.𝟖 𝟏𝟑𝟖 𝟎.𝟓
CoCoA_UF N/A 147 15.4 152 0.8
ACLS 35 189 101.0 194 3.5
DSA 200 𝟏𝟐𝟗 28.3 1 177 18.9
GCA-MGM 58 144 128.0 213 6.0
MGM-2 80 184 98.2 452 8.1

∗ ×

number of messages; therefore it is also the fastest algorithm. The result
demonstrates that the unique-first approach definitely provides a benefit
in terms of eventual solution cost, as CoCoA_UF finds a solution that is
20% better than CoCoA at the cost of some additional messages and cost
function evaluations, almost as good as DSA, which finds the best.

In the experiment max-sum is left out since it is unable to converge to
a solution. This is because there are |𝐷| “mirrored” solutions that perform
equallywell, and there is no local preference of one coloring over the other.

3.4.2. Semi-Randomized Asymmetric Problems
In the second experiment we generate semi-random asymmetric prob-
lems by creating scale-free graphs according to [5] with an initial graph
of ten randomly connected nodes, and iteratively adding up to four
nodes until 𝑛 = 200, resulting in graphs with an average density of 0.04.
The variable domain size |𝐷 | = 10, and for every constraint an integer
semi-random cost is generated for both sides of the constraints. A cost
of zero is selected with a probability of 𝑝 = 0.35 and uniformly randomly
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Figure 3.3: Semi-randomized asymmetric experiment: CoCoA finds a Pareto-optimal
solution, but GCA-MGM eventually finds the best solution after more than 60 seconds.

Table 3.4: Semi-randomized asymmetric experiment results

Algorithm S∗ M∗ E∗ T

CoCoA 29.3 𝟒.𝟖 1 595 𝟎.𝟑
CoCoA_UF 27.4 6.9 1 334 𝟎.𝟑
ACLS 26.6 153.1 1 296 5.0
DSA 32.3 40.8 𝟏𝟐𝟓𝟎 3.8
GCA-MGM 𝟐𝟐.𝟑 1 349.2 5 397 59.8
MGM-2 35.1 91.8 3 287 11.5
Max-sum 27.1 1 709.4 51 221 133.9

∗ ×

chosen in the domain [1, 100] for the remainder. This setup recreates the
experiment as described in [56, Section 5.2]. In this experiment the DSA
and MGM-2 algorithms are taken into account, even though it is already
known that they cannot solve asymmetric problems; they are used to
demonstrate the fact that this problem is indeed an ADCOP.

Experiment Results
Figure 3.3 presents the solution costs of different algorithms as they con-
verge to a solution. CoCoA andCoCoA_UFquickly converge to a good solu-
tion, more than 10 times faster than any other algorithm. The symmetric
DCOP solvers DSA and MGM-2 fail to find a solution. The max-sum al-
gorithm also converges to a reasonable solution, but only after more than
twominutes (not visible in Figure 3.3). The GCA-MGM algorithm shows a
“discovery”phase in thefirst 25 seconds, afterwhich it finds a global opti-
mum, which is better than any other algorithm finds. The added overhead
of the GCA-MGMalgorithm can clearly be seen in Table 3.4. The better so-
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Figure 3.4: Sensor planning experiment: CoCoA finds the optimal solution and converges the
fastest out of all evaluated algorithms.

Table 3.5: Sensor planning experiment results

Algorithm S M∗ E∗ T

CoCoA 𝟐𝟑𝟔𝟓 𝟏.𝟐 389 𝟎.𝟏
CoCoA_UF 𝟐𝟑𝟔𝟓 1.8 332 𝟎.𝟏
ACLS 3934 7.0 𝟒𝟒 0.3
DSA 3332 13.1 427 1.3
GCA-MGM 2379 197.2 952 10.7
MGM-2 2917 24.5 1 161 3.9
Max-sum 1246 306 12.0 1 300 0.9

∗ ×

lution is found by sending nearly 200 times the amount ofmessages, eval-
uating 4 times the number of cost functions and running 200 times longer
than CoCoA_UF.

3.4.3. Sensor Planning
The final experiment is motivated by an example in which a sensor
network is used to monitor the cargo state of a shipping container.
The sensors have to maintain a good quality estimation of the cargo
such that they can either warn the cargo owner in case the shipping
circumstances unexpectedly change, or provide a trace of the cargo state
upon arrival. In this scenario the cargo estimation has to be optimized,
but is constrained by limited battery life. The scenario is the adapted
from Chapter 2, from which we use the outcome to model the effect of
the communication frequency on the estimation quality and the battery
lifetime. In this problem 𝒳 are communication rates between sensors,
and hard constraints make sure that the agents (nodes) will meet the
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minimum required battery lifetime. Asymmetric constraints between
agents are used to model the effect that more shared information does not
reduce the local estimation error, but it does improve the performance
of neighboring nodes. The domains 𝒟 are integer communication
frequencies of [1, 11]Hz, and the networks are generated by connecting
𝑛 = 50 nodes, in randomly generated graphs with an average density of
0.17.

Experiment Results
The results are show in Figure 3.4 and Table 3.5. They show that CoCoA
is not only capable of finding the best solution, but also does so in the
least amount of time and using the fewest messages from all considered
algorithms—only in terms of computational effort, ACLS ismore efficient.
However, ACLS is unable to find a better solution than the symmetric
solvers DSA and MGM-2. This may contribute to its low evaluation
count—it is simply considered as “converged” after a few evaluations.

3.5. Conclusions
In this chapter we studied the problem of coordinated decision-making
in multi-agent systems. In order to reason about the configuration of
an agent, taking into account the neighboring agents, we have proposed
and investigated a new ADCOP solver: CoCoA. CoCoA is a non-iterative,
semi-greedy strategy using SSLA to incorporate the effect a decision
has on neighboring nodes. We compared its performance with state-of-
the-art solvers by using (i) three-color graph coloring, (ii) randomized
asymmetric problems and (iii) a sensor network use case problem.

We showed that CoCoA finds high quality solutions, with a similar
overhead for symmetric problems, and a much smaller overhead for
asymmetric problems, both in terms of communication and running
time. The GCA-MGM algorithm finds better solutions for randomized
asymmetric problems, but requires up to 200 times more messages, and
over 4 times more cost function evaluations. In the sensor planning
problems CoCoA finds better solutions, and does so faster than the
benchmarks. When we look at performance of the algorithm with or
without the unique-first approach, we can conclude that preferring
unique solutions yields a clear advantage in terms of solution cost.

Because CoCoA requires no iterative approach, it can be used in
applications where fast convergence is required, or when communication
is a limiting factor. We have shown that for this reason CoCoA is very
well suited to find assignments in sensor planning problems. CoCoA
seems a promising method for collaborative decision-making, to find
communication strategies that benefit everyone.

In recent studies, another extension of DCOPs was proposed: Func-
tional DCOPs or F-DCOPs. In F-DCOPs the variable domains are contin-
uous, and consequently the constraints must be expressed as functions,
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and cannot bewritten as tables [23, 46, 62]. C-CoCoA [126] is an extension
of the CoCoA algorithm, which is capable of solving F-DCOPs, using the
same strategies underlying CoCoA i.e. it uses a non-iterative one-step
lookahead to asses the effects of local decision on neighboring nodes.

A downside of CoCoA is that it cannot recover from early choices, and
there is a serious chance of simultaneous assignments in neighboring
nodes which in the presence of hard constraints may lead to infeasible
solutions. In the next chapters, these shortcomings will be addressed.
First, in Chapter 4 an extension is presented that avoids simultaneous
assignments, which will be utilized in a use case with hard constraints in
wireless power transfer. Then, in Chapter 5 an extension is considered,
where the best of both worlds is exploited; the fast convergence of CoCoA
is complemented with high quality solutions, and possibility to improve
on early choices, of other solvers.
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4.1. Introduction
In this chapter, an extension to the CoCoA algorithm (from the previous
chapter) is introduced called CoCoA Controlled Activation (CoCoA_CA). As
we concluded in the previous chapter, CoCoA is a good starting point for
an algorithm driving self-organization, but might have difficulty dealing
with hard constraints. The underlying problem is that the activation of the
algorithm is likely to occur simultaneously in neighboring agents. When
this happens, both agentsmake a decision based on the same information,
but cannot take into account the assignment that other agent is making.
In order to address this, an additional check is added to make sure simul-
taneous decisions cannot occur, and experiments are carried out to see the
effect of this additional cycle.

A use case is presented in which a self-organizing system controls a
networkofWireless Power Transfer (WPT) transmitters. These transmitters
form a system which has a goal to provide electrical power to a group
of receivers, by means of radio frequency (RF) waves. Such radio waves
are safe for operation in an environment where humans are also present,
provided that transmission levels are maintained. In this chapter we
will propose a wireless charging protocol, built on top of the CoCoA_CA
algorithm. Since for the WPT use case, it is crucial that safe transmission
levels aremaintained, hard constraintsmust be implied on the underlying
problem (when represented as a DCOP). Therefore, we will need to make
sure that hard constraints are never violated, justifying the use of the
CoCoA_CA algorithm.

This chapter is based on the article by C. J. van Leeuwen, K. S. Yıldırım, and P. Pawełczak, Self
adaptive safe provisioning of wireless power using DCOPs, in Proc. SASO (2017) [93].
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4.1.1. A Primer onWireless Power Transfer Networks
Today’s ecosystemof the IoT is composed ofmillions of embedded devices
that can monitor and control the physical world [4]. These devices are
equipped with several hardware components such as sensors, actuators,
microcontrollers and transceivers, that still consume a considerable
amount of power. Fortunately, the research efforts on electronic circuits
have already decreased the power consumption of these hardware
components to a few microwatts [54]. This allows the provision of power
wirelessly bymeans of harvesting the energy of RFwaves [106, 141]. As the
efficiency of harvesting circuits will improve, in the future more devices
can be powered wirelessly, using only RF energy without any external
power source such as batteries.

The electromagnetic radiation (EMR) at a particular point can be
modeled as a linear function of the received power [27, 58]. Since,
several energy transmitters can be active simultaneously to charge
nearby receivers, it might be the case that the total EMR value at some
particular points in the charging area—which have a contribution from
all active transmitters—can exceed the limit defined by the RF exposure
regulations [27, 97]. Therefore, a safe-charging WPTN must ensure that
it does not create harmful electromagnetic radiation [143], as it is trying
to minimize the charging time by increasing the power levels of the
transmitters [97].

For safe, sustainable and continuous operation, a wirelessly-powered
IoT system requires several dedicated RF energy transmitters that can
control their power level to charge nearby receivers collaboratively,
forming a Wireless Power Transfer Network (WPTN) [48, 65, 96]. The
deployment of this conceptual network is an important issue for the fast
provisioning of wireless energy. Since in such a network the amount and
locations of receivers is continuously changing, it is especially important
to make use of a power optimization strategy, that is fast and reliable.
Therefore, using local information for decentralized decision-making
seems an appropriate strategy, and hence self-organizing multi-agent
systems, is a natural fit for this problem.

4.1.2. Problem Statement
The main challenge is the maximization of the total transmitted power by
finding individual transmission power levels of the transmitters, while
satisfying the safety constraints, which is even more difficult due to the
dynamic charging environment. There are two requirements that need to
be addressed:

1. Dealing with the dynamic environment New energy transmitters,
as well as receivers, can be introduced to the charging system. This
means that EMR values at some particular locations can exceed the
threshold if these new transmitters start provisioning power. The
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optimization strategy needs to be able to include addition, removal
or changing of its variables and constraints.

2. Dealing with model uncertainty Based on a transmitter output
power, it is difficult to model and estimate exactly the received
power, and in turn the EMR value, due to the environmental dy-
namics of the RF wave propagation. Therefore, the latest (local)
information should always be taken into account, and an offline
centralized charging algorithm is not feasible.

Apparently, self-adaptation or self-organization shall become a neces-
sary property of a WPTN such that the charging algorithm should trans-
fer the network into a safe state, when the safety constraints are violated.
Unfortunately, we are unaware of a self-organizing and safe charging al-
gorithm in the current literature that (i) allows energy transmitters to in-
teract with the energy receivers and sensors locally in a dynamic environ-
ment; (ii) does not use a centralized entity to find sub-optimal power lev-
els subject to safety regulations.

4.1.3. Contributions
In this chapter we propose a method based on DCOP solvers to find
near-optimal solutions for the optimization problems without any
centralized entity and by only using local interactions among the nodes.
Accordingly, in this chapter, we introduce a newwireless charging system
called TESSA (Transferring Energy Safely by Self-Adaptation). TESSA is
based on a variation of the DCOP solver CoCoA proposed in Chapter 3, and
is self-adaptive, in the sense that it runs an algorithm on the transmitter
nodes that will find an optimal transmission power level. This not only
keeps a WPTN near-optimal in terms of power transfer, but also safe with
respect to EMR regulations. Within this context, we provide the following
contributions to the state of the art:

1. We formulate a distributed constraint optimization problem where
the energy transmitter devicesmaximize the total transmitted power
to the receiver devices, i.e. minimize the charging time, while keeping
the network safe in the EMR sense using measurements from the
locally deployed sensors;

2. A variation on the CoCoA algorithm is proposed, called CoCoA_CA,
that enables solving the distributed optimization problem, while
making sure the EMR thresholds are never violated. This algorithm
drives a self adaptive charging system, called TESSA. TESSA opti-
mized the charging network to a safe state, even when perturbed by
environmental dynamics such as new energy transmitters joining in
the network;
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3. We compare the CoCoA_CA algorithmwith the existing DCOP solvers
via simulations. Our results show that the existing algorithms
are unable to find feasible solutions, whereas CoCoA_CA finds
solutions near the theoretical optimal, reaching on average 85% of
the maximum (optimal) solution, in terms of power transmission;

4. We show that our charging system based on DCOP solvers maintains
safe EMR levels, without relying on a model for the RF propagation.
Hence, it is capable of dealing with unexpected RF measurements,
which a model-based centralized solution cannot.

4.2. Related Work
We provide a brief overview of the related work onwireless power transfer
and distributed constraint optimization, which our work builds upon.

4.2.1.Wireless Power Transfer
The number of IoT nodes continues to grow exponentially [11, 128]. This
exposes a problem of sustainable energy provision to such a mass of
(battery-powered) IoT devices. Fortunately, the recent advancements
in RF energy harvesting and low-power electronics, e.g. [49], make it
feasible to power ultra low-power microcontroller-based IoT devices
wirelessly using electromagnetic energy [134]. Wireless power transfer
revealed several optimizationproblems that gained considerable attention
from the research community, e.g. the optimization of the harvested
power [84], energy outage [64] and charging delay [47].

However, the electromagnetic safety issues provide additional con-
straints on the wirelessly supplied power. Specifically, since an EMR value
that is above the limits of well-defined regulations [71] is considered as a
threat to human health [111], it introduces an important constraint to the
objective of aforementioned optimization problems.

To the best of our knowledge, there are only two recent studies (from
the same authors) that target the optimal wireless power transfer incor-
porating the human health effects. A one-shot centralized solution that
maximizes the total transmitted power subject to the safety constraints at
each point on a predefined deployment area is presented in [27]—in [28],
the same problem is handled in a distributed fashion. Unfortunately, these
two studies have a fundamental drawback: they use deterministic models
to estimate EMR. However, RF propagation is non-deterministic and
modeling errors might lead to violate the safety constraints. Moreover,
the distributed algorithm in [28] is quite complex and composed of
several phases. The algorithm employs a distributed redundant constraint
reduction algorithm, splits the deployment area into small squares and
employs linear programming (LP) by considering the local constraints
inside each square. Therefore, it cannot be considered as a self-organizing
solution since optimization is not performed by local interactions solely,
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rather than using the global information within each square.
The charging algorithm that we will introduce is not dependent on any

RF propagation model since it uses direct measurements from the sensor
nodes. Therefore, it always satisfies the safety constraints. Moreover, our
algorithm is fully-distributed and self-organizing, based on the local in-
teractions among the energy transmitters, receivers and sensors.

4.2.2. Distributed Constraint Optimization
DCOPs are a type of problems from the field ofmulti-agent systemswhere
agents need to cooperatively assign a set of variables in order to optimize
some cost function. We introduced the formalization and notation of
DCOPs in Section 3.2. DCOP solvers can be divided into complete and
incomplete solvers, which provide either the global optimal solution, or a
near-optimal solution near the overall best, respectively. However, since
the optimization problems are NP-hard [107], optimal solvers are by
definition exponentially slow for increasing problem sizes. Therefore, for
the application forWPT, we aremore interested in incomplete solvers that
are not guaranteed to find the optimal solution, and find a good solution
in a feasible time.

Iterative solvers
Most incomplete DCOP methods use an iterative approach and belong
to the class of local search algorithms. This means that these solvers
start with an initial variable assignment and iteratively search the
local problem space for a solution that incrementally improves, until it
converges to a local optimum. Some examples of solvers belonging to this
class are the DSA [155], MGM or MGM-2 [100] algorithms. Solvers for
problems with asymmetric constraints such as ACLS and GCA-MGM [56]
or max-sum [158] are also considered iterative.

Non-iterative solvers
There exist some complete non-iterative solvers in the literature such as
DPOP [116], ADOPT [108] or AFB [52]. However, since these complete
solvers are very time-consuming, for the Wireless Power Transfer
problem an incomplete solver is preferable. To the best of our knowledge
there is only one non-iterative incomplete approach, which is offered by
the CoCoA algorithm as introduced in Chapter 3.

The advantage of thenon-iterative solvers is that theywill immediately
present their final solution. This means that if the solver is capable of
finding a solution that satisfies the EMR constraints, it will immediately
find this solution, thus never violating the EMR thresholds. This is in
contrast to iterative solvers, that might initially violate the constraints,
even if it may eventually find a solution that yields more transmitted
power.
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4.3. SystemModel: A Network of Energy Provision
We abstract a WPTN as a graph in the 2D plane, that has different types
of nodes representing either energy transmitters (ETs), energy receivers
(ERs) or sensor nodes. It is assumed that each ET node is equippedwith an
antenna that can emit RF waves to charge ER nodes inside its power trans-
mission rangewirelessly. Besides, each ER node is assumed to be equipped
with an RF-harvester circuit that accumulates the harvested energy into
the storage component. Moreover, each sensornodes is assumed tobe able
to measure the EMR value at its specific location.

We further assume that each ET, ER and sensor node is equipped with
a transceiver that allows communication with the other nodes inside
their communication range. For the sake of simplicity, it is assumed
that the power transmission range of the ET nodes are identical to their
communication range, and ET, ER and sensor nodes are stationary during
the optimization process.

4.3.1. ETModel
The set of ET nodes is denoted by 𝑇 = {𝑇 , 𝑇 , … , 𝑇 }, where 𝑡 represents
the number of ETs. We denote the transmission power of 𝑇 such that
𝑖 ∈ {1, … , 𝑡} by 𝑃 and assume that each ET node can modify it by assigning
values in the interval [𝑃min, 𝑃max]. The set of ER and sensor nodes with
which 𝑇 can communicate and transfer power, i.e. the set of neighbors of
𝑇 , is denoted byℳ .

4.3.2. ERModel
We denote the set of ER nodes by 𝑅 = {𝑅 , 𝑅 ,… , 𝑅 }, where 𝑟 represents the
number of ERs. Each 𝑅 ∈ ℳ such that 𝑗 ∈ {1, … , 𝑟} receives power from the
ET node 𝑇 . Following the model in [58, Eq. (4)] which is based on Friis’
free space equation, the harvested power at 𝑅 from 𝑇 can be expressed as

𝑃→ = 𝜂
𝐺 𝐺
𝐿 ( 𝜆

4𝜋(𝑑 + 𝛽)) 𝑃 , (4.1)

where 𝐺 and 𝐺 are antenna gains of 𝑇 and 𝑅 , 𝜆 is the wavelength, 𝐿 is the
polarization loss, 𝛽 is a parameter to adjust the Friis’ free space equation
for short distances, 𝑑 denotes the distance between 𝑇 and 𝑅 and 𝜂 rep-
resents the efficiency coefficient of the RF harvester. By introducing 𝛾 =

( ) , we can write 𝑃→ in compact form as

𝑃→ = 𝜂 𝛾
(𝑑 + 𝛽) 𝑃 . (4.2)

In reality, the emitted energy waves from transmitters can combine at
receivers either constructively or destructively, that might led to energy



4.4. Problem Description

4

49

cancellation [109]. For the sake of simplicity, we consider only the case of
constructive combination. In turn, we model the total harvested power at
receiver 𝑅 as the sumof individual received energy from the transmitters,
which we denote by 𝜃 as

𝜃 = ∑
∶ ∈ℳ

𝑃→ . (4.3)

4.3.3. Sensor Model
The set of sensor nodes is denoted by 𝑆 = {𝑆 , 𝑆 , … , 𝑆 }, where 𝑠 represents
the number of sensors. Each sensor 𝑆 such that 𝑘 ∈ {1,… , 𝑠} is able tomea-
sure the EMR value at its specific location. We model the EMR value at 𝑆
as a linear function of the total transmitted power as

𝐸 = 𝜌 ∑
∶ ∈ℳ

𝛾
(𝑑 + 𝛽) 𝑃 , (4.4)

where 𝜌 is a constant that captures the linear relationship between the
EMR and received power, and 𝑑 denotes the distance between 𝑇 and 𝑆 .

4.4. Problem Description
We define the centralized linear programming problem. Define EMR
threshold as 𝛼 and let 𝒫 = [𝑃 ,… , 𝑃 ] . We formulate the optimization
problem as

max
𝒫

∑𝜃 ,

s.t. ∀𝑘 ∶ 𝐸 ≤ 𝛼,
𝑃min𝟏 ≤ 𝒫 ≤ 𝑃max𝟏,

(4.5)

where 𝟏 denotes a vector with all components equal to 1.

4.4.1. Translation into a DCOP
In DCOPs problems are described as a tuple 𝒯 = ⟨𝒜,𝒳,𝒟,ℛ⟩. We can for-
mulate the wireless power transfer problem by stating that every trans-
mitter in 𝑇 is represented by an agent 𝒜 = {𝐴 , 𝐴 ,… , 𝐴 } and their corre-
sponding transmission powers in 𝑃 are the variables that are being opti-
mized 𝒳 = {𝑋 , 𝑋 ,… , 𝑋 }. One of the main assumptions in DCOP theory is
that all variables must have finite discrete domains 𝒟, which should con-
tain every possible power level. Thismeans that the interval [𝑃min, 𝑃max]has
to be discretized to contain a finite set of possible values, yielding 𝑛 vari-
able domains𝒟 = {𝐷 ,𝐷 ,… , 𝐷 }. This discretization can followa specific set
of possible power values that the energy transmitter allows.
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Finally, in a DCOP, ℛ is the set of constraints, which map the assign-
ment of variables to a non-negative cost: 𝐶∶ 𝐷 ×𝐷 ×…×𝐷 → ℝ . In the
WPT problem statement (4.5) there are two types of constraints. Firstly,
we have the constraints that will maximize the amount of energy trans-
mitted. These constraints represent the ER nodes 𝑅 with a constraint cost
function such that

𝐶 = −𝜃 . (4.6)

Note that wemodelmaximization of transmitted energy, as theminimiza-
tion of the negative energy. Secondly, there is the set of sensors 𝑆 that are
modeled using a threshold constraint. This constraint aims to make sure
that the EMR safety threshold should not be exceeded. This is modelled as

𝐶 = {0, if 𝐸 < 𝛼,
𝜏, otherwise, (4.7)

where a hard constraint can be simulated by choosing 𝜏 = ∞ as described
in [13], or simply a very high value such that 𝜃 ≪ 𝜏. Hence, the full set of
constraintsℛ can be defined as the combined set of both receiver and sen-
sor constraints

ℛ = {𝐶 , 𝐶 , … , 𝐶 , 𝐶 , 𝐶 , … , 𝐶 } (4.8)

such that theminimization functionwillmaximize the transmitted power,
while minimizing the number of sensors where the EMR threshold is vio-
lated. The DCOPminimization function is defined simply as

arg min
𝒳

∑ℛ. (4.9)

4.5. TESSA: A Safe Wireless Charging System
Having presented the system model of wireless power transfer we
consider in this chapter, we are ready to present our charging system. We
first present the high-level charging protocol that governs the charging
requests of the energy receiver devices. Then, we present the extension of
CoCoA denoted as CoCoA_CA, which is triggered by TESSA.

4.5.1. TheMain Charging Protocol
The main charging protocol, executed by each transmitter 𝑇 in the

wireless power transfer network, is presented in Algorithm 2. The
objective of this protocol is to trigger the CoCoA_CA algorithm, presented
in Algorithm 3 and discussed in Section 4.5.3, that will determine the sub-
optimal power levels for the transmitters. Initially, the power transmitter
can be turned off and waiting for a receiver inside its neighborhood ℳ
to send a Charge message. The transmitter will add the corresponding
receiver to its requests list 𝖱 and reset the CoCoA_CA algorithm to
recalculate the optimal power levels (Lines 1–3). Similarly, when a
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Algorithm 2 Charging Protocol executed by Transmitter 𝑇
1: 𝖱 ← ∅ {Vector of charge requests for transmitter 𝑖}
Upon receive Charge from 𝑅 ∈ ℳ

2: 𝖱 ← 𝖱 ∪ {𝑅 } {Add new request from receiver 𝑗}
3: Reset CoCoA_CA {Execute CoCoA_CA optimizer}

Upon receive EndCharge from 𝑅 ∈ ℳ
4: 𝖱 ← 𝖱 ⧵ {𝑅 } {Remove request from receiver 𝑗}
5: if 𝖱 = ∅ then
6: Turn off charger 𝑇
7: end if
8: Reset CoCoA_CA {Execute CoCoA_CA optimizer}

𝑇 𝑅 𝑇

𝑅𝑇

𝑆

𝑆

Charge

Figure 4.1: Illustrative example of TESSA execution. Transmitters and are currently
charging the receiver subject to the constraint on the sensor . The receiver sends
a charging request to transmitters and that forces , , and in turn , to run the
CoCoA_CA optimizer again with also considering the constraints on the sensor .

EndCharge message is received, the corresponding receiver is removed
from the requests list, the transmitter is turned off if the requests list is
empty and CoCoA_CA algorithm is restarted (Lines 5–10).

The rationale behind resetting and in turn restarting the actual DCOP
solver CoCoA_CA is to force the network to adapt to the new state. As an
example, consider Figure 4.1: transmitters 𝑇 and 𝑇 are currently charging
receiver 𝑅 , and receiver 𝑅 sends a charging request to transmitters 𝑇 and
𝑇 . Since the sensor 𝑆 is already in the neighborhood of 𝑇 and there is a
new sensor 𝑆 that will be solely affected by the power transmission of 𝑇 ,
the EMR constraints on these sensors will affect not only the power level
of 𝑇 but the current power level of 𝑇 and in turn 𝑇 . Therefore, if 𝑇 start-
s/resets CoCoA_CA, the neighboring transmitter 𝑇 should be informed. In
turn, that will lead 𝑇 to inform 𝑇 so that all transmitters re-calculate the
optimal power levels.
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𝑆
. W
W

𝑇
ACTIVE

∅

𝑇
ACTIVE

∅

𝑆
. W
. W

𝑇
DONE

. W

𝑇
DONE

. W

Figure 4.2: Race condition problem of CoCoA in the wireless power transfer context. In
the initial state (top), since is measuring W, both transmitters decide on a high value
eventually exceeding the example EMR threshold of . W (bottom). is computed
according to (4.4) where ∈ ℳ and ∈ ℳ .

4.5.2. CoCoA and Race Conditions
The CoCoA algorithm is introduced in Chapter 3. By itself, it already
has some properties to avoid race conditions, i.e. situations in which
two agents simultaneously make a decision on a variable assignment.
However, they are not fully effective, since two agents may become
simultaneously activated from different neighbors. Also, CoCoA is
designed under the assumption that there are only binary constraints
in the problem graph; when applied to higher order constraints, race
conditions aremore likely to occur andmay involvemore than two agents.

If race conditionswould occur in theWPT scenario, thismeans that two
(ormore) transmitters simultaneously decide on a power level. The situa-
tionmay occur as shown in Figure 4.2, where initially two transmitters (𝑇
and 𝑇 ) are simultaneously actively running the CoCoA algorithm. As they
both know that a shared sensor (𝑆 ) is not exceeding the EMR threshold,
theymay decide both to increase their power level. Not taking into account
the assignment of the neighbor, it is possible for the two agents to assign
two values that actually would violate the EMR constraint.

It is very difficult to avoid race conditions from occurring in a multi-
agent system. However, since CoCoA already provides a mechanism
to disseminate the current state of the algorithm, we can detect if one
has occurred. In the following section we introduce the extension of
CoCoA: CoCoA_CA, where race conditions are recognized, and concurrent
assignments avoided.
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Algorithm 3 CoCoA_CA Algorithm

Algorithm start on 𝐴 :
1: Assign 𝜙 ← ACTIVE and inform neighbors
2: Send request to neighbors for cost maps
3: Wait for all responses
4: if number of ACTIVE higher ranked neighbors > 0 then
5: Go to line 2
6: end if
7: Findminimizing assignments for 𝑋
8: ifnumberofminimizer≤ 𝛽 ornumberof idle/activeneighbors is0 then
9: Assign 𝑋 and 𝜙 ← DONE; send to all neighbors
10: else
11: Assign 𝜙 ← HOLD and send to all neighbors
12: end if

Upon receiving cost inquiry message at 𝐴 :
13: for all 𝑋 , ∈ 𝐷 do
14: Calculate costs for 𝑋 , ∩ 𝜃 ∩ 𝐸
15: end for
16: Reply 𝐴 with all costs

Upon receiving new state 𝜙 from 𝐴 ∈ ℳ on 𝐴 :
17: Store neighbor’s state 𝜙
18: if 𝜙 is HOLD and 𝜙 = HOLD and number of idle/active neighbors is 0

then
19: Increment uniqueness bound 𝛽 and repeat algorithm
20: else if 𝜙 is DONE and 𝜙 is HOLD then
21: Repeat algorithm
22: end if

Upon receiving Reset on 𝐴 :
23: if 𝜙 ≠ IDLE then
24: Assign 𝜙 ← IDLE
25: Forward Reset to all neighbors
26: end if

4.5.3. Solving CoCoA Race Condition Issue: CoCoA_CA
In Algorithm 3 we present the pseudocode of the CoCoA_CA algorithm.
Note that in the algorithmweuse𝜙 to denote the state of𝐴 , which initially
is IDLE, but can be set to ACTIVE, HOLD or DONE. Also, the uniqueness bound
𝛽 is initially set to 1. CoCoA_CA starts out the same way as CoCoA does by
inquiring the neighbors the costs of local assignments. Then in lines 4–6
the algorithm checks whether any neighboring agents are also currently
running, and if there are—it will go back in the algorithm to the point
where it will gather information anew. However, since this current agent
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itself is also running, we would introduce a deadlock here, where two
simultaneously activated neighbors would stay in this cycle ad infinitum.
In order to break this potential deadlock we introduce this notion of
ranking.

At line 4, we check the number of higher ranked neighbors. In principle
any ranking could beused, as long as all involved agents agree on the rank-
ing. In our implementation we use the alphabetical ranking of the identi-
fier of the variable, but any other rankings, such as the MAC addresses of
the agentsmay be used aswell. Even a randomnumber selected at the time
of this impasse would serve, as long as there is always one highest ranked
agent. Only the highest ranked agent may finish the variable assignment,
and the other agent(s) will have to restart the algorithm. By doing so, we
make sure that no two agents are deciding on an assignment simultane-
ously.

Between line 7 and 12, where the algorithm assigns a variable based on
the neighbors’ cost messages, the logic is the same as for CoCoA. All re-
ceived costs are added, and theminimizing value is selected if the unique-
ness of the minimizer is less or equal than 𝛽.

When a message is received inquiring about the assignment costs
(lines 12–16), nodes update their state based on the received value
assignments and gather information from the receivers based on either
their actual measurements or estimations based on the theoretical energy
harvesting model as per (4.3), and from the sensors by requesting their
measured power level. By using the actual measured power, not themodel
predicted amount, we can make sure that the EMR thresholds are always
satisfied. Using this information we can compute the local cost with (4.6)
and (4.7) in line 14.

For handling the state update message from neighbors (lines 17—22)
the same logic is applied as in the original CoCoA algorithm. Whenever
a HOLD state is received, the algorithm checks if the uniqueness bound 𝛽
needs to be updated, or it will repeat the algorithm if the agent itself is in
the HOLD state and a neighbor informs us that it is finished.

Finally, an additional message was added to reset the algorithm. At
line 23 we specify that if a Reset message is received, it will update the
local state to IDLE and forward the message to the neighboring agents, if
the state was not already reset.

4.6. Experiments
We performed four experiments to evaluate the performance of the
different methods in the WPT scenario. For all experiments we generate
200 problem instances and let all methods solve the same problem
instance. For the DCOP solvers we had to discretize the potential power
levels into |𝐷| = 20 levels linearly spaced in [𝑃min, 𝑃max] where 𝑃min = 0W
and 𝑃max = 10W. We set the power transmission variables arbitrarily to the
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Transmitter
Receiver
EMR Sensor

Figure 4.3: An example randomized graph as generated using the proposed methods for the
simulation experiments with , and . There are receivers and sensors with
1 up to 4 transmitters visible.

values 𝛾 = 𝛽 = 100 and 𝜂 = 𝜌 = 1. The EMR thresholdwas set to 𝛼 = 0.018W,
and the threshold violation cost 𝜏 = 10 W. For all experiments we define
the total solution cost as the sum of all constraint costs as per (4.6) and
(4.7), i.e. negative the amount of total power consumption plus 𝜏 times
the number of sensors where the EMR threshold is violated.

To generate the problem graph we selected the position of the 𝑡 trans-
mitters using a Poisson point process in 2D space. Subsequently, the 𝑟 re-
ceiver and 𝑠 sensor locations are selected using the samemethod, and their
locations are then scaled such that they span the same area. We determine
the average distance of the third-nearest neighbor in Euclidean space and
define that any sensor or receiver within this distance, is a neighbor of the
transmitter, and hencewill receive energy. Using thismethodwe can gen-
erate a seemingly natural distribution of nodes with some variation in the
number of neighbors that a transmitter has. An example of such a gener-
ated graph is shown in Figure 4.3, with 𝑡 = 70, 𝑟 = 60 and 𝑠 = 50.

All experiments were performed in simulation on a laptop with an Intel
Core i7-6600U at 2.6GHz and 16GB of RAM. ¹

4.6.1. Comparing Solvers
In the first experiment we compare the performance of various DCOP
solvers with the centralized solver. For this experiment we generated

¹For reproducibility of the results all code for the algorithms (Java) is available from
https://github.com/coenvl/jSAM/tree/SASO2017, and experimental setups and visual-
ization (MATLAB) from https://github.com/coenvl/mSAM/tree/SASO2017.

https://github.com/coenvl/jSAM/tree/SASO2017
https://github.com/coenvl/mSAM/tree/SASO2017
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Figure 4.4: Various iterative algorithms fail to find a solution that satisfy the receiver
constraints. CoCoA_CAhowever is capable of finding a valid solution, similar to the centrally
computed optimum.

Table 4.1: Numerical results of the DCOP solvers. Colored costs indicate hard constraints
being violated—red numbers are consistent constraint violations, and orange numbers
indicate incidental violations.

Algorithm I S M∗ E∗ T

CoCoA_CA N/A −𝟏.𝟗𝟑𝟐 1.7 299 0.3
ACLS 27 33 × 10 𝟏.𝟎 74 0.3
DSA 16 28 × 10 3.1 𝟓𝟒 𝟎.𝟐
GCA-MGM 117 13 × 10 34.6 210 1.1
Max-sum 49 4 × 10 30.0 312302 321.7

∗ ×

problems with 𝑡 = 100, 𝑟 = 75 and 𝑠 = 50. We compare the results
of the DCOP solvers CoCoA_CA, ACLS, DSA, max-sum and GCA-MGM
introduced in Section 3.2.1 with a centralized LP solver. As a stopping
criterion for the iterative solvers we keep track of the reported solution
cost. When it has not dropped for 100 iterations we stop the simulation,
and report the metrics at the moment at which the solution was first
within 1% of best found solutions.

From the results in Figure 4.4 we can see that from all DCOP solvers,
only CoCoA_CA is consistently capable of finding solutions that satisfy
the EMR threshold constraints. Averaged over 200 experiments, it found
a solution that transmits 1.93W in 0.33 s compared to 2.15W in 0.03 s for
the centralized LP solver. Of course because it is constrained in the exact
values of the power levels, its final solution cost is somewhat worse. The
max-sum algorithm did perform relatively well, but took very long to
solve the problem, hence was left out from Figure 4.4.

In Table 4.1 the numeric results of the experiment are shown. These
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Figure 4.5: CoCoA_CA has the capability of solving even larger graphs, and the distance to
the global optimum is linearly dependent on the graph size.

correspond to the results in Figure 4.4, but also show the communication
overhead and the number of iterations for the iterative solvers. For every
algorithm the amount of iterations (I), the final solution cost (S), the
number of transmitted message (M) and the time to solve (T) in seconds.
The max-sum algorithm violated constraints 3.5% of the time (probably
because in those situations max-sum failed to converge, as it may not
converge on cyclic graphs), but if it does not, the mean cost is –2.067W,
which is slightly better than CoCoA’s mean result. Only in one instance
out of the 200 experiments did GCA-MGM find a solution that did not
violate the EMR constraints, whereas DSA and ACLS never did.

4.6.2. Scalability
In the second experiment we investigate the performance of the Co-
CoA_CA algorithm under varying problem sizes. Fixing all other pa-
rameters of the problem we generate instances with increasingly more
transmitters (varying between 4 and 1024), and 0.8 times as many
receivers and 0.6 times as many sensors.

In Figure 4.5 the solution cost is shown for CoCoA_CA and the LP solver
for increasingly large problems. As can be seen, CoCoA_CA performance
is only linearly worse than the optimal solution for the problem size. On
average the solution by CoCoA_CA yields 85% the amount of power com-
pared with the optimal solution found by the LP solver.

4.6.3. Performance Under Model Error
In the third experiment we validate our hypothesis that using a DCOP
approach will keep performing well, even under unpredictable amounts
of energy transmitted. In the TESSA charging system, the sensor nodes
communicate to the ETs, their actual measurements of the EMR values
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Figure 4.6: The total transmitted power of all receivers, shows that noise in the model is not
of large influence to the solution quality of the DCOP solver. The line in the graph shows the
theoretical optimumwithoutmodel noise.

which do not always perfectly follow themodel as proposed in Section 4.3;
for example because of quantization effects. Similarly, the ET nodes
can either use (i) the amount of measured harvested power based on the
measurements by the ERs or (ii) the predicted total harvested power based
on the theoretical model represented by in (4.3).

In all previous experiments we assumed that (i) our theoretical model
in Section 4.3 perfectly represents the amount of transmitted energy
and (ii) both sensors and receivers perform measurements reflected
by (4.3) and (4.4). In order to explore the effect of the measurements on
the performance of our system, we introduce an error in the model on
how much energy is received by the receivers and the sensors. i.e. for
any combination of transmitter 𝑖 and receiver 𝑗 the amount of harvested
energy is

𝑃→ = 𝜖𝜂 𝛾
(𝑑 + 𝛽) 𝑃 = 𝜖𝑃→ , (4.10)

and similarly the amount of EMRmeasured by a sensor 𝑘 is

𝐸 = 𝜖𝜌 ∑
∶ ∈ℳ

𝛾
(𝑑 + 𝛽) 𝑃 = 𝜖𝐸 , (4.11)

where 𝜖 is a random noise multiplier from the normal distribution
𝜖 ∼ 𝒩 (1, 𝜎 ): white noise added to the amount of transmitted power from
the original model.

In Figure 4.6 the results are shown for the CoCoA_CA algorithm
as it solves different problems with an increasing amount of noise,
compared to the centralized LP solver. We observe that our solver
performs well by continuously satisfying the EMR constraints. The
centralized LP solver makes its assignments based on the predetermined
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Figure 4.7: We can see that TESSA finds safe solutions, no EMR threshold violations of
are seen, that are near the optimal solutions found by the LP solver. Upward arrows (green)
indicate a random transmitter was added to the environment, and downward triangles (red)
indicate the removal of a transmitter.

energy harvesting and EMRmodel and cannot take into account the actual
measurements. Obviously, it is possible to extend the LP solution where
sensor measurements are sent to the central solver, removing any model
noise. However, that can not longer be considered a centralized solution.

In a purely centralized solution, because ofmodeling andmeasurement
errors, in practical scenarios it is impossible to estimate the actual
harvested power and in turn the EMR values [97]. If we apply the solution
found by the LP solver in the noisy model, we find that in all instances
except where 𝜎 = 0, some sensor constraints were violated, leading to
invalid solutions. The solutions of the LP solver without model noise are
shown in Figure 4.6 as a lower bound.

4.6.4. Dynamic Environment
In the final experiment we investigate the performance of the TESSA
charging systemunder network dynamics. In this experimentwe generate
a network with 10 transmitters, 8 receivers and 6 sensors. We run the
TESSA charging system, and randomly add or remove agents. Specifically
in every second there is a 5% chance that the network will change, and if
it does, then half of the times a transmitter is added, and half the time a
randomly selected transmitter is removed from theWPTN. The CoCoA_CA
algorithm is reset every second.

In Figure 4.7 the total amount of transmitter power is presented for
both TESSA, and for the centralized LP solver that calculates the optimal
power levels. Observe that when a transmitter is removed from or added
to the charging system which is currently charging receivers, TESSA
disseminates a Resetmessage (see Algorithm 2) to start the optimization
process again. Therefore, the charging network reacts to this disturbance
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Figure 4.8: Example of tracking the amount of individual received powers for all ER in the
dynamic experiment, showing the minimum, average and maximum amount of received
power for all ERs.
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Figure 4.9: TheEMR is logged for every sensor in the dynamic environment experiment. Here
we show theEMR threshold at . W(reddashed line), togetherwith theminimum, average
andmaximummeasured EMR of all sensors.

by re-calculating the optimal power levels of the whole transmitters with
respect to the EMR safety constraints. Eventually, all transmitters will
start transmitting energy according to the new power levels that comply
with the new safety constraints in accordance with the new structure of
the network.

In Figure 4.8 the amount of received power is shown over time. The
minimum, average and maximum amount of power is shown, for the full
set of ERs. It is obvious that there is a some spread between ERs, due to the
random placement of both receivers and sensors. Receivers that are near
one or more sensors, obviously cannot be charged, due to the exposure
in the sensors. The EMR levels of the sensors in the dynamic placement
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experiment are shown in Figure 4.9; again here we show the minimum,
average and maximum exposure of all sensors. From this Figure we
can determine that even for the most exposed sensor, the maximum
EMR threshold is never violated. However, due to the formalization of
the optimization problem (4.5), the amount of received radiation of the
sensors is maximal, but always less than the EMR threshold.

This network adaptivity is almost impossible to achieve with the
centralized LP solver. The reason is that, for each transmitter removal or
addition, the whole state of the network—including transmitter power
levels, the positions of the receivers and the sensors—should be collected
and sent to the central entity that calculates the optimal LP solution. What
is more, the results of these calculations should be distributed back to
the corresponding transmitters so that they update their power levels.
Thanks to TESSA and the CoCoA_CA solver, adaptivity is achieved by only
the local interactions among the agents in our system.

4.7. Conclusions
In this chapter we introduced an extension to the CoCoA algorithm
that limits the activation of neighboring agents, to avoid simultaneous
decisions. This enables the algorithm (called CoCoA_CA) to deal with hard
constraints, and also find assignments with even lower solution costs.
This new algorithm is the driving force of a new self-organizing wireless
power charging system TESSA, for safe wireless power transfer, to ensure
that electromagnetic radiation levels never exceed safety guidelines. We
formalized the safe wireless charging problem as a DCOP so that any
DCOP solver can be used to solve this problem. We compared CoCoA_CA
with existing solvers and justified that it is capable of consistently
finding solutions that maintain safe levels of EMR. Then, we presented
experiments that showed the TESSA charging system is self-adaptive in
the sense that it reacts to the network dynamics and always transfers the
network to an EMR-safe state, while ensuring a high total transmitted
power.

In our experiments we show that CoCoA_CA consistently finds
solutions that maintain the EMR thresholds, whereas other DCOP solvers
can not. The amount of transferred power was on average 85% of the
amount of power transferred in the theoretical optimal conditions,
independent of the problem size. The losses can be partially explained by
the fact that the solver is incomplete, so better solutions may be possible.
Also, because the DCOP solver can only choose a power level from a finite
set, whereas in the optimal setting any power level between theminimum
and the maximum can be selected. Unfortunately we were unable to
find performance guarantees with respect to the optimal solution, other
than our empirical results. We also showed that our method was able
to find a solution that satisfies the EMR threshold, by communicating
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measurements from sensors to transmitters. This makes the method
more robust, by not relying on a (potentially unreliable) RFmodel.

We did not perform any experiments involving hardware implementa-
tions, but this would be the reasonable next step in providing safe wireless
charging solutions. This will yield valuable information about how well
the methods performwith realistic disturbances and practical problems.

In this chapter CoCoA_CA definitely outperformed DCOP solvers from
the current literature, but in earlier experiments (e.g. Chapter 3) we have
already seen that in other classes of problems this is not always the case.
In the next chapter, we will introduce hybrid DCOPs in which we can com-
bine the benefits of different DCOP solvers. This could benefit TESSA, for
instance, by initially finding a proper solution using CoCoA_CA, and then
improving it with other solvers—something that CoCoA by itself cannot.



5
Hybrid DCOPs

5.1. Introduction
In this chapter we continue our work for finding an algorithm that is ca-
pable of driving self-organization through DCOPs. In Chapter 3 we intro-
duced CoCoA, which differs from existing state-of-the-art DCOP solvers,
in the sense that it does not require multiple iterations, or cycles of nego-
tiations and assignments. Instead, it uses a single step lookahead (SSLA)
approach to find a reasonable assignment, and then finishes its execution.
Wehave already shown that this offers very goodperformance inmanyuse
cases, and already provided an extension CoCoA_CA in Chapter 4 that en-
ables it to deal with hard constraints. But CoCoA is non-iterative, which
(by definition)makes it impossible to recover from earlymistakes. There-
fore, the issue of recovery from earlymistakes is addressed in this chapter.
Wewill generalize the SSLA approach, aswell as study the effect of contin-
uing local search with other algorithms, after a SSLA solver has found an
initial assignment.

As we have already shown in earlier chapters, Distributed Constraint
Optimization Problems (DCOP) are a method for formalizing and solving
problems that have a distributed nature, and in which multiple cooper-
ating agents control discrete variables in order to optimize a common
problem. Moreover, a special kind of DCOP can be formulated where
agents having a shared constraint may assign different costs for a value
assignment; these problems are called Asymmetric DCOP (ADCOP) [56].
In ADCOPs the aspect of cooperation and distributed decision-making
is even more important, because (in contrast to DCOP) in ADCOP an
assignment leading to a local improvement may deteriorate the global

This chapter is based on the article by C. J. van Leeuwen andP. Pawełczak,Hybrid DCOP solvers:
Boosting performance of local search algorithms, in Proc. OptMAS (2018) [90].
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performance. This makes ADCOPs especially important to consider when
designing a self-organizing multi-agent system.

In Section 3.2.1 we introduced a variety of DCOP solves, and stated
that we can classify them as either complete or incomplete solvers. In this
chapter we introduce a new class of incomplete (A)DCOP solvers, that
combine features of different solvers and combine them into hybrid solvers.
Specifically, we show that we can use different initialization methods
for existing (iterative, local search) (A)DCOP algorithms, which has a
profound impact on their overall performance. In order to achieve this,
we use different initialization methods that are not iterative in approach,
and are hence very fast in determining a solution. Empirically we show
that compared to existing state-of-the-art DCOP solvers, we can reduce
algorithm running times and improve the solution quality.

5.2. Problem Statement
For the definition and formal problem statement that are addressed in
DCOPs, we refer the reader to Section 3.2. There exist already DCOP-
solving algorithms, with varying ranges of efficiency in terms of solution
quality, computational effort, communication overhead or convergence
speed. Selecting the right algorithm for solving the problem at hand
depends on the topology, type of constraints and the problem scale; often
this is a matter of trial-and-error. Often there are multiple solvers that
outperform other solvers on at least one of the performance criteria,
and there is no single best strategy. Therefore, we foresee the need to
combine different solving algorithms into one solution, and to study
which techniques are best put together.

5.3. A New Class of DCOP Solvers: Hybrid Solvers
By combining different algorithms into a hybrid solver, we aim to get a
method which takes “the best of both worlds”. Particularly, we propose
to improve the performance of existing local search algorithms by
modifying the initialization methods to find the initial value assignment.
In the field of Constraint Satisfaction Problems, which is closely related
to DCOPs, the approach of using an initialization and repairing it is
well known, and can yield great benefits [105]. From the fields of
evolutionary algorithms [120], clustering [17], neural networks [33, 146],
meta-learning [41] and other machine learning techniques we know that
initialization methods can have a great effect on the performance of an
algorithm. However, to the best of our knowledge, there has been little to
no work on the effects of different initialization methods for (A)DCOPs.
In this chapter we will study the effect different initialization methods
may have on the performance of (existing) DCOP algorithms in the form
of hybrid DCOP solvers.
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Definition 5.1 (Hybrid DCOP Solver). We define a hybrid DCOP solver as a
solver which executes sequentially other (existing) DCOP solvers.

5.3.1.Motivation for a Hybrid DCOP Solver
Most (if not all) local search DCOP algorithms use an initial random
assignment for all the variables, which will be iteratively improved upon.
Instead, an initial assignment can be computed by a non-iterative DCOP
algorithm, such as a simple greedy algorithm, or a more elaborate greedy
algorithm such as the one introduced in [89]. Since these methods will
assign a value only once, and then terminate, they quickly provide a good
initialization assignment fromwhich one can start another DCOPmethod.

We hypothesize that the combination of different initialization meth-
ods for iterative algorithms in DCOP solution search, will be beneficial be-
cause of two effects:

1. Solution quality improvement over initial assignment: most probably
a simple initialization method will find a sub-optimal solution, and
many local search algorithms will be able to improve it. Algorithms
that are known to provide monotonically decreasing solution costs
(any algorithm that uses a coordinated change approach, e.g.
MGM-2, ACLS, GCA-MGM) are guaranteed to find better (or equal)
solutions compared with the initial value assignment; and

2. Increased convergence speed for local search algorithms: DCOP algo-
rithms that use local search will most likely converge faster when a
good solution is used for initial DCOP value assignment. This will
lead to a shorter total running time for algorithms that are initialized
with a better assignment.

5.4. Initialization of DCOP Solvers: Classification
In our experiments we combine different initialization methods with
existing local search algorithms which we shall also refer to as iterative
methods. Since the aim of this study is to improve the solution quality
and convergence speed of solvers, we do not take into account complete
solvers. To understand why only certain combination of DCOP solvers
improves the solution, we need first to classify (i) initialization methods,
and (ii) types of DCOP iterative solvers.

5.4.1. DCOP Classification: Initialization Methods
The initialization methods of DCOP algorithms can be classified into the
following categories.

• Random A de facto standard method for all DCOP solvers. It does not
take into account any constraints and startswith the randomvariable
assignment.
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• 𝑘 Step Look-ahead: We define a look-ahead initialization algorithm
as the one in which one randomly chosen initial node is triggered
first, and only after it has chosen a value it will activate its neighbors.
When choosing a value, it takes into consideration the effect on all of
its neighbors that are reachable within 𝑘 steps (edges or hops). Three
special cases of 𝑘 step look-ahead are already known:

– Zero Step Look-ahead (ZSLA):A zero step look-ahead algorithm
(𝑘 = 0) is the one in which an agent optimizes only for the
constraints it is directly involved in. Such algorithms are also
referred to as greedy, breadth-first algorithms. This is essentially
an asynchronous version of the DSA algorithm [155] with 𝑝 = 1;

– Single Step Look-ahead (SSLA): A single-step-look-ahead
algorithm (𝑘 = 1) is defined as one in which an agent optimizes
not only for the constraints it is involved in, but also the
constraints its one-hop neighbors are in. One such algorithm is
the CoCoA algorithm and its variants CoCoA_UF introduced in
Chapter 3 and CoCoA_CA introduced in Chapter 4;

– Max Step Look-ahead (MSLA): If 𝑘 is equal to the height of the
graph’s minimal spanning tree, and the algorithm would be
started at the root of the spanning tree, the algorithm becomes
a complete algorithm, and is in fact equivalent to DPOP [116].
Strictly this method should not be considered a initialization
strategy, since it is already a complete method.

5.4.2. DCOP Classification: Existing Iterative Methods
Classifying iterativemethodsused inDCOP solverswe candivide them into
twomain groups.

• Symmetric DCOP Solvers: Solvers that only take into account
symmetric constraints, which assume costs are the same for all
agents involved. These include DSA [155], MGM and MGM-2 [100]
and generalized DBA [113];

• Asymmetric DCOP Solvers: Solvers that also take into account
asymmetric constraints; here costs may be different for the involved
agents. Examples of such solvers include GCA-MGM [57], and
ACLS [56] with its new version ACLS-UB (which is also a novel
contribution of this work and described in Section 5.4.3).

Remark. We are naturally aware of another popular DCOP solver: the
max-sum algorithm [38] or any one of its variants. However, max-sum
is unable to utilize the benefit of initializing, as it tries to approximate
the global utility of any value, and uses this to determine the best
variable assignment. There are extensions of max-sum that are able to
build upon an initial assignment by using value propagation [159]. In a
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Algorithm 4 ACLS-UB Algorithm

On agent 𝑖 (𝐴 ) when activated
1: 𝑋 ← chooseRandomValue()
2: while (no termination condition is met) do
3: send 𝑋 to all neighboring agents ∀𝐴 ∈ ℳ
4: 𝜐 ← chooseRandomValue()
5: send 𝜐 to ∀𝐴 ∈ ℳ
6: wait for incoming constraint cost 𝛿 from 𝐴
7: Δ ← ∑ ∈ℳ 𝛿𝑗
8: if Δ < current cost and random[0, 1] < 𝑝 then
9: assign 𝑋 ← 𝜐
10: end if
11: end while

On 𝐴 when receiving 𝜐 from 𝐴
12: send constraint cost 𝛿 (𝑋 ∩ 𝜐)

recent paper [21] the effect of initialization was studied in variant called
max-sum_ADSSVP. The authors find that the timing, and approach to
initialization has a great effect on the performance, both in terms of
solution quality and convergence speed. For our evaluation however, we
leave max-sum out of the comparison, and refer to max-sum_ADSSVP to
provide a complete overview of different hybrid algorithms.

5.4.3.Novel Iterative DCOP Solver: ACLS-UB
In addition to existing DCOP algorithms listed above we introduce a vari-
ant of the ACLS, denoted as unbiased (ACLS-UB).

In the original ACLS algorithm [56], at every iteration an agent chooses
a variable assignment that would lower its local costs and proposes it as
a new value to its neighbors. Neighbors respond with the effect on their
side, after which the proposition which has the best effect on the regional
cost function is selected. In the ACLS-UB algorithm a value assignment is
proposed from all possible values, instead from the subset that improves
its local state. The ACLS-UB algorithm is described using pseudo code in
Algorithm 4.

ACLS-UB works by iteratively proposing a random value from its do-
main 𝐷 , and sends that value to its neighbors. The neighbors respond by
sending the effect of the assignment on their local costs, taking into ac-
count all known value assignments. When these local effects are received
by the initial agent, it sums over all received effects, and assigns the pro-
posed value with probability 𝑝 only if it will reduce the current local cost.
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Relation of ACLS-UB to Other Solvers
The main difference between ACLS and ACLS-UB is in line 4 of Algo-
rithm 4, where any random value is picked from the domain. In the long
run, the effect of this pick is that the effect of all values from the domain
are used to retrieve the induced effect on the neighbors’ local cost.

Intuitively ACLS-UBworks very similar to CoCoA [89, 93], with thema-
jor difference that CoCoA operates in one single iteration instead of iter-
atively trying different values. Another difference is that in ACLS-UB the
neighbors will send back the value of the constraint cost, whereas CoCoA
will send back the lowest induced cost for any assignment in conjunction
with the proposed value and the CPA. This extra look-ahead is not efficient
in ACLS-UB, since the next-hop neighborswill in fact already have an as-
signment, and the lowest cost will be too optimistic. Note that the unique-
first approach of CoCoA is not required in ACLS-UB, as it can easily recover
from any earlier suboptimal assignments in later iterations, whereas Co-
CoA cannot.

5.5.Hybrid DCOP Solvers: Introduction and Initial
Results

In order to understand whether there is any benefit from hybrid solvers,
we performed the following experiments¹. For any problem, we initiate
200 problem instances which are initialized by three methods: random,
ZSLA (i.e. greedy) and SSLA (i.e. CoCoA) and subsequently solved by other
DCOP solvers (depending on the experiment). We report the average
result of all problems. We assume a solver has converged when no better
solutions have been found for more than 100 iterations, and define the
moment of “convergence” as the first iteration in which the solution
was within 1% of the minimal solution. In this way we can compare the
convergence speed of different algorithms, and do not have to specify
the number of iterations beforehand, in a way similar to the any-time
solution as proposed in [157].

As performance metrics we will score solvers on the followingmetrics:

• The number of iterations required to converge, denoted as I;

• Final cost of the solution when converged, denoted as S;

• Number of transmitted messages during the run, denoted as M;

• Number of constraint evaluations, denoted as E; and

• Running time until convergence, denoted as T in seconds.

¹For reproducibility andvalidationofour results, all (Java) code for thealgorithms is available
at https://github.com/coenvl/jSAM/tree/OptMAS18, and for the experimental setups
(MATLAB) at https://github.com/coenvl/mSAM/tree/OptMAS18.

https://github.com/coenvl/jSAM/tree/OptMAS18
https://github.com/coenvl/mSAM/tree/OptMAS18


5.5. Hybrid DCOP Solvers: Introduction and Initial Results

5

69

. . . . . . . . . . .
Running time (s)

So
lu
ti
on

co
st

Random
ZSLA
SSLA

Figure 5.1: In a three-color graph coloring experiment, when using an SSLA for initialization,
the MGM-2 algorithm improves both speed and solution quality.

Table 5.1: Graph coloring experiment results

Algorithm I S M∗ E∗ T

Random_DSA 157 49 10.4 362.9 3.5
ZSLA_DSA 164 49 10.7 381.6 3.7
SSLA_DSA 115 47 𝟏𝟒.𝟓 381.3 3.1
Random_MGM-2 55 72 26.3 120.2 1.7
ZSLA_MGM-2 42 71 21.0 94.4 1.3
SSLA_MGM-2 7 54 12.2 121.0 0.7

∗ ×

The constraint evaluations are indicative of the computational complex-
ity and can also be referred to as Non-Concurrent Constraint Checks (NC-
CCs) [104].

5.5.1. Experiment Results
Experiment 1: Symmetric DCOP
We use a (symmetric) graph-coloring problem with three colors, which
have to be assigned to 200variables. The constraints between the variables
are chosen as the nodes were connected via a Delaunay triangulation,
when the variables are points chosen randomly on a two-dimensional
plane. The results of MGM-2 (𝑝 = 0.5) is shown in Figure 5.1, of which the
numeric results are shown in Table 5.1 together with DSA (variant C, with
𝑝 = 0.5).

Experiment 2: Asymmetric DCOP
An asymmetric problem is chosen where the constraints are created using
a scale-free graph generationmethod [5], and are assigned semi-random
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Figure 5.2: In a semi-random experiment (Section 5.5.1, Experiment 2), when using an SSLA
for initialization, the ACLS-UB algorithm shows faster convergence to a better solution.

Table 5.2: Semi-randomized asymmetric experiment results

Algorithm I S∗ M∗ E∗ T

Random_ACLS 95 26.4 151 1 321 4.3
ZSLA_ACLS 75 26.1 121 995 3.5
SSLA_ACLS 48 24.2 107 10 571 𝟒.𝟗
Random_ACLS-UB 333 24.7 531 5 747 14.8
ZSLA_ACLS-UB 299 24.1 477 5 164 13.3
SSLA_ACLS-UB 207 23.5 358 12 963 11.9
Random_GCA-MGM 1154 21.7 1 389 5 557 55.1
ZSLA_GCA-MGM 1022 21.6 1 232 4 935 48.8
SSLA_GCA-MGM 781 22.0 970 13 599 40.0

∗ ×

asymmetric costs such that there is a high probability that a conflict of in-
terests occurs. This problem is created specifically to benchmark asym-
metric problems, and is described in more detail in [56, Section 5.2]. The
result of the ACLS-UB (𝑝 = 0.5) algorithm is shown in Figure 5.2, and the
results of all algorithms is presented in Table 5.2.

Hybrid Solvers—Discussion of Initial Results
Based on the results from the first two experiments, we see that local
search DCOP solvers using initialization methods other than random,
reduced the required number of iterations before they converged, their
execution time and communication overhead, but surprisingly also found
a final solution with a lower cost. The only two exceptions (marked in
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bold in Table 5.1 and 5.2) are (i) when using the SSLA with DSA, in which
case the messages of the SSLA increases the very low communication
overhead of DSA, and (ii) when using an SSLA with ACLS, in which case
the added run time of the SSLA increases the convergence time. The
speed performance gain can be easily explained: a better initialization
will reduce the amount of variable “tweaking” needed. However, how
come the final solution is also lower and solution result dependent on the
initialization method? In the following sections we will investigate this
using three hypotheses to explain this phenomenon:

• Hypothesis 1: A lower initial solution will always lead to a lower final
solution;

• Hypothesis 2: Using initialization methods other than random
increases the explored portion of the solution space;

• Hypothesis 3: The initialization method itself finds a starting point
in the search space, fromwhich a lower local minimum is reachable.

Let us experimentally verify these three hypotheses in detail.

5.5.2.Hypothesis 1: Solution Cost Correlation
The SSLA algorithm finds a lower initial cost than the ZSLA initializer,
which in turn finds a lower cost than a random assignment. Hence, the
first hypothesis is that a lower initial costs will (on average) lead to lower
final costs. The initial state is known to be of great influence on the final
solution, and a correlation between the initial cost and the final cost
could explain why ZSLA or SSLA initializationmethods lead to better final
solutions.

To test this hypothesis we performed an experiment by repeatedly
invoking the algorithms on the exact same problem setup, but with
different random initializations. We gather information on the cost at
initialization and of the eventual outcome. In Figure 5.3 we show the
minimum, average, and maximum results of the algorithms solving 200
instantiations (the same problems for every algorithm) of three color
graph coloring problems with a Delaunay graph of size 𝑛 = 100. For
this small experiment we only compare the DSA algorithm instantiated
with a randomized approach with an algorithm that uses CoCoA_CA for
initialization.

From this experiment we see that for some iterations we do find a
solutionwith the random strategywhich is as good as the SSLA-initialized
solution, however on average the final solution is worse. The spread of the
initial and the final solution corresponds with the statistical spread of the
random assignments, and some random initialization lead to better final
solutions than others. If we look at the correlation between the initial
cost and the final cost of the individual runs, then we find that there is
no correlation between the cost of the initial random assignment and
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Figure 5.3: Starting the DSA algorithm from a different starting point will lead to a different
outcome. This graph shows the minimum, average and maximum solution costs during the
experiments.

the final minimal cost. The Pearson correlation coefficient between the
solution cost at the beginning and the end is 0.15. With these results we
reject hypothesis 1.

5.5.3.Hypothesis 2: Increased Solution Space Exploration
A DCOP problem is generally a matter of solution space exploration. The
solvers that are capable of effectively searching a larger portion of the so-
lution space, will reasonably find a better final solution than solvers that
cannot. Since local search algorithms search only a small fraction of the
search space, the increase in search space exploration by a SSLA may be
of large influence. Put differently, a better overview of the trends in the
solution space may lead to insights as to where the best optimum lies. If
we can show that the solvers using SSLA explore a larger part of the so-
lution space than randomly initialized solvers, this may explain why they
find solutions with the lower final cost.

To verify this, we construct an experiment in which we captured the
CPA every time a constraint check is performed, so that we can store every
explored value assignment. We did observe that SSLA searches a slightly
larger portion of the solution space than ZSLA, which in turn searches
a larger part of the solution space than random. However, the SSLA
algorithm sometimes searches a smaller part of the solution space, largely
because its successor algorithm converges so quickly. Therefore, with
these results we reject hypothesis 2 as well, also because the differences are
so marginally small that they cannot explain the significant effect on the
results.
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Figure 5.4: An example graph in which two dense clusters of nodes are connected by a single
bridge.

5.5.4.Hypothesis 3: Selection of Starting Point
The initial assignment determines the area of the solution space that
is reachable through local search. It is possible that SSLA is capable of
finding initial assignments that have relatively good local minima. To
explain what wemean by this, let us sketch the following example.

Definition 5.2 (Bridge edge). A bridge edge is defined as an edge that, when
removed from the graph, the graph will no longer be connected.

Suppose we have a graph with high modularity, meaning it consists
of clusters of densely connected nodes, which are connected through
relatively low number of bridge edges. The nodes on these bridges could
initially induce a high performance penalty; and it may be impossible
for a local search algorithm to escape from these expensive assignments
because of the many low cost constraints around it on the surrounding
nodes.

As a minimal example suppose we have a three color graph coloring
problemwith a graph as shown in Figure 5.4. As we see node 0 and 10 have
a constraint with many other nodes, and are connected to one another.
If through some unfortunate random assignment, they are both given
the same initial color (for example red) and the surrounding nodes are
mostly other colors, then we expect that no local search algorithm will
change that initial assigned color. This expectation is confirmed through a
series of experiments in which we use the graph as depicted in Figure 5.4,
letting the algorithms solve the graph-coloring problem. In one set of the
experiments, the agents are hardwired to initialize with an assignment
in which 𝑋 = 𝑋 , and ∀ 𝑋 ≠ 𝑋 . As we can see in Figure 5.5 for that
subset, the local search algorithm is unable to find a solution in which
this constraint is resolved. We also see, and in fact can guarantee that an
SSLA algorithm will never assign the same color to endpoint vertices of a
bridge, and will thus lead to better solutions.
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Figure 5.5: The results of theGCA-MGMalgorithm trying to solve the graph coloringproblem
in graph from Figure 5.4, with various initialization strategies. The “unfortunate” strategy is
hardwired to get a conflict on the bridge.

Proposition 5.1. A SSLA will never assign the same color to the endpoints of a
bridge.

Proof. (Sketch) When an SSLA starts, any random agent is activated first.
If either bridge endpoint is selected first, then logically they will not be
activated simultaneously. If any other node is selected, then this node will
execute the algorithm and select a random initial assignment. After that
it activates all of its neighbors, which will execute the algorithm, until at
some iteration the first bridge endpoint is selected. At this moment the
other endpoint cannot be activated, or the edge would not have been a
true bridge.

Because the algorithm is active in one bridge endpoint, but never in
both at the same time, onemust assign a value before the other. Moreover,
when an endpoint of the bridge eventually has to assign a value, no nodes
from the other component can be assigned a value yet, because the bridge
is the only connecting edge. Therefore, when the second bridge endpoint
is activated it will only have the first endpoint as a constraining value, and
will thus always pick a different value.

Although this exact order of events will not hold for pseudo-bridges
that connect clusters within a graph, there will be an ordering in which
the nodes will be activated, as long as the detour path between the vertices
on the pseudo-bridge is longer than three. In many graphs with high
modularity, the values of nodes in the bridging constraints will therefore
be chosen with low costs, and the coloring within the clusters can simply
be permuted. Therefore, the local search algorithms that continue from
these solutions are generally of higher quality, than those from random
initial assignments.
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If this final hypothesis is true, then we expect some different results
in the performance of different types of graphs, especially for various
densities. We would expect the benefit of an SSLA to decrease with
problem graphs of higher densities, since in these graphs bridges or
pseudo-bridges occur less frequently.

5.6. Graph Density
In our final experiment we use once more the graph coloring problem
with a domain size |𝐷| = 3, and instantiate randomly connected graphs
with 𝑛 = 200 with nine varying densities between 0.01 and 0.3. We
generate 50 graphs of every density, let the different solver combinations
(initialization and iteration) solve the samegraphs, and report the average
performance of all instances. The convergence criteria were identical to
the experiment described in Section 5.5.

In Figure 5.6we show the averaged results for theMGM-2 solver, when
solving the graphs with different densities. We can indeed conclude that
for graphswith a low tomediumdensity (up to 0.1), there is a benefit using
SSLA initialization for the final solution cost. The increase in convergence
speed deteriorates much faster, since the complexity of the SSLA is
exponential with the node degree, and this increases with graph density.
Note, the time the SSLA initialization takes is shown as the starting point
of the line. For other local search algorithms (DSA, ACLS, GCA-MGM),
similar results were found.

5.7. Conclusions
In this chapter we introduced a new class of hybrid algorithms which
combine the benefits of different DCOP algorithms. Particularly, we
studied the effect of different initialization strategies on the performance
of different DCOP algorithms. We found that using the combination of
non-iterative SSLA algorithms with iterative local search algorithms,
not only combines the fast convergence of the SSLA with the eventual
better solution quality of the iterative approach, but that using another
initialization improves the quality of the final solution.

Two possible hypotheses that could have explained these observations
were proposed and rejected: (i) a correlation between the initial cost and
thefinal solution cost does not exist, hence the effects are not fromfinding
any initialization with a low cost, and (ii) somewhere in the complete so-
lution space is the optimal solution, but using SSLA does not significantly
increase the searched solution space. Instead, we hypothesize that using
an SSLA (such as CoCoA and CoCoA_CA) selects an initialization that is in
a region of the solution space that has a lower local minimum than the lo-
calminimum froma random starting point in the solution space. Further-
more, we propose that this is caused by a reduction of conflicting values
assigned on bridge vertices. In our final experiment we show that the ef-
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fect is most abundant on low density graphs, in which (pseudo-)bridges
are more present, and the solution cost of the search space is less homo-
geneous. Not only didwedetermine inwhat situations anSSLA is effective,
we also gained some insight into why an SSLA performs the way it does.

Our hybrid approach seems well suited for applications in which the
problem graphs are not too dense (i.e. up to a density of 0.1), and where
both convergence speed and solution cost are required. In fact, we may
use it as a general strategy for initial value assignment instead of using
random values in problems with low graph densities.

With this chapter, we conclude the work on CoCoA and using DCOPs as
a coordinationmechanism for collective decision-making. With the addi-
tion of hybrid solvers, we have a strategy for effecting self-organization,
with a minimal communication and computational overhead using
non-iterative SSLA, combined with an appropriate (depending on the
type of problem) iterative DCOP solver. However, not all problems can be
cast as a DCOP (efficiently). In the next chapter we present a use case for
self-organization in the energy domain. Even though such a problem can
and has been formulated as a DCOP, the resulting problem graph would
be fully connected (density of 1), and hence the solution would not scale
well [44]. Instead, we will look at a different decision-making strategy for
achieving self-organization based on a decentralized market mechanism.





6
Self-organizing Smart Grid

Planning

6.1. Introduction
In this chapter we propose a method to realize self-organizing planning
in the energy domain. Specifically, we define an agent-based approach for
planning the power consumption or production program for a smart grid
of connected households.

Previously, in Chapter 3 and Chapter 4, we introduced some methods
to coordinate decision-making using DCOPs. In such a solution all agents
that are participating in the systemneed to coordinate their decisionswith
all agents that they affect. i.e. with all agents they share a constraint with.
We have also shown in Chapter 5 that the performance of (Hybrid) DCOP
solvers drastically deteriorate with increasing problem graph densities,
which confirms what was found in other studies [22, 42, 44, 85]. In
this chapter, instead of using DCOP as a decision-making formalism
for driving self-organization, a market-based strategy is proposed for
cooperatively finding solutions that are feasible for all involved agents.
A hierarchical multi-agent based approach is proposed, that uses local
pricing to incentivize device controlling agents to schedule their usage in
order to follow an agreed upon target profile and mitigate congestion. As
we remarked in Chapter 1, not all agents in a self-organizing multi-agent
systems need to be peers. In this chapter a hierarchy tree is used where
at the top a “market operator” gathers information from all agents, and
makes sure the common constraint is satisfied. Intermediate agents make
sure the physical grid constraints are respected, and device agents at the
bottom represent any end-user constraints or preferences. The resulting

This chapter is based on the article by C. J. van Leeuwen, J. Stam, A. Subramanian and K. Kok
available at https://arxiv.org/abs/2009.02166

79

https://arxiv.org/abs/2009.02166


6

80 6. Self-organizing Smart Grid Planning

algorithm is not as re-usable as the solution presented in earlier chapters,
but is tailored to the problem at hand: finding a feasible dispatch in the
power grid.

Three trends set a challenge for future power grids. Firstly, the
transition towards sustainable energy sources leads to more renewable
energy, but also to a larger fraction of unpredictable and intermittent
production. Secondly, the electrification of various systems such as
transport (electric vehicles), heating (heat pumps), and in general an
increase of electricity-consuming devices leads to a huge growth of power
consumption. And thirdly, the distribution of energy generation leads to
a very different pattern in the load of the power transmission grid, than it
was designed for.

The control of a vast number of small power units, both consuming
and producing, is extremely difficult to do completely top-down, so a
centralized control strategy cannot be used [81]. At the same time the
power infrastructure is aging, and was not built for the emerging pattern
of distributed prosumers [51]. This is why we need self-organizing control
algorithms to schedule the use of electric deviceswhile taking into account
constraints of the power distribution infrastructure. This aids distribution
system operators (DSO) and transport system operators (TSO) to maintain
power balance and make sure there is no congestion, i.e. the grid capacity
is not overloaded.

6.2. Problem Statement
The problem at hand is a variation of the economic power dispatch prob-
lem [2, 124], where the operation of a set of generators is optimized, such
that power is provided to consumers in the most cost-effective manner.
Traditionally this problem would include controllable generators (power
generation plants), constraining transmission resources (transformers,
stations, cables), and end-consumers having a static load. Currently,
with distributed energy resources, and demand response—the possibility
to control the load of consumers using flexibility of smart devices—the
problem changes significantly.

A formal definition of the problem is as follows:

min
𝒙

∑
∈𝒩
𝐽 (𝒙 ), (6.1a)

s.t. ∑
∈𝒩
𝒙 = 𝚯, (6.1b)

𝐀𝒙 ≤ 𝒃, (6.1c)

𝑥min ≤ 𝒙 ≤ 𝑥max, ∀𝑖 ∈ 𝒩, (6.1d)
𝒞 (𝒙 ) = 0, ∀𝑖 ∈ 𝒩, (6.1e)



6.2. Problem Statement

6

81

Table 6.1: Notations and parameters used in this chapter

Symbol Description Typical value Unit

𝐀 topology matrix of child relations
𝛼 forecast accuracy 0.9
𝒃 vector of congestion thresholds [2, 3, … , 3.5] × 10 W
𝑏 congestion threshold of 𝑖 3 × 10 W
𝒞 constraint function of 𝑖
𝒞Z constraint function of 𝑖 of type Z∗
𝛾 PV operation cost of 𝑖 0.2
𝒆 1 × 𝑇 vector of energy of 𝑖 [0.0, 1.1, … ,−0.3] × 10 Wh
𝑒 energy of 𝑖 at 𝑡 200 Wh
𝑒min minimum energy of 𝑖 0.0 Wh
𝑒max maximum energy of 𝑖 2 × 10 Wh
𝝐 1 × 𝑇 vector of errors [0, 11, … ,−225] W
𝜖max upper bound on the error 10 W
𝜂 storage efficiency of 𝑖 0.9
𝚯 target power of the cluster [1.9, −1,… , 2.6] × 10 W
𝑖 an agent index 0, 1, … , 𝑛
𝐽 cost function of 𝑖
𝐽Z cost of 𝑖 of type Z∗
𝜆 storage leakage of 𝑖 360 W
ℳ set of children of 𝑖
𝒩 set of all agents
𝝆 1 × 𝑇 vector of prices [0.5, 0.3, … , 0.8]
𝑇 time horizon 24
𝑡 power time unit (PTU) index 0, 1, … , 𝑇
𝜏 duration of a PTU 1 h
𝒙 1 × 𝑇 vector of scheduled powers of 𝑖 [1.1, −0.5, … , 0.4] × 10 W
�̄� 1 × 𝑇 vector of aggregated powers of

child nodes
[24.0, −18,… , 8.7] × 10 W

𝒙 1 × 𝑇 vector of expected powers of 𝑖 [1.0, −0.4, … , 0.8] × 10 W
�̂� 1×𝑇 vector of average historic powers [0.8, 0.6, … ,−0.5] × 10 W
𝑥 scheduled power of 𝑖 at 𝑡 −1.7 × 10 W
𝑥min minimum power for 𝑖 −2 × 10 W
𝑥max maximum power for 𝑖 4 × 10 W
𝜓 heatpumpcoefficientofperformance

(COP) of 𝑖
4.0

Note that powers are indicated from the grid perspective. That means positive powers
indicate power going from the grid to the device, and negative powers are from the device
back to the grid.
∗ Z indicates a type of agent, which can either be MO for market operator, CO for congestion,
LOAD for a static load agent, PV for an agentwithphotovoltaic solar panels, or ST for a storage
agent.

W is chosen as an example thermal leakage of a house, which can be considered as an
energy storage vessel.
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with all parameters defined in Table 6.1, the objective function as defined
in (6.1) is the same as for the traditional economic dispatch, which can
be summarized as: to find a set of electrical powers 𝒙 for every device
𝑖 ∈ 𝒩 in the grid, that minimizes the sum of all costs 𝐽 (𝒙 ). In the original
dispatch problem defined, 𝒩 defines only the producers. However, in
our problem formulation (6.1) 𝒩 denotes the full set of devices in the
grid, including producers and consumers. This means that contrarily to
the traditional economic dispatch problem, not only the generators are
controllable, but also the flexible loads of end consumers.

Note that the costs in (6.1a) do not necessarily refer to the financial
cost of a dispatch. Rather, this generic model only optimizes some social
welfare, which defines a desirable outcome for all participants involved.
Depending on the situation at hand, one could minimize the amount of
greenhouse gasses emitted, or maximize the amount of renewable energy
used. However, for the rest of this chapter the costs are defined as the
energy losses of the devices. By minimizing the amount of energy losses
we attempt to find a dispatch that is both economic and sustainable.
Similarly, in this chapter when we refer to the price of energy, this does
not necessarily refer to a financial price with a real currency, instead we
will refer to a more abstract concept of the price of energy, which is used
simply as a steering signal.

Let us discuss the constraints of (6.1), i.e. (6.1b–6.1e). The con-
straint (6.1b) states that the sum of all powers in the system has to meet a
specific target 𝚯. In a balanced (island) grid this target has to be zero for
every PTU, but in a connected grid this target is the contracted load with
the transmission operator. Put differently, 𝚯 is the net power input of the
grid to the rest of the world.

Constraint (6.1c) defines the limitations of the physical power grid; a
topology matrix 𝐴 specifies which device is connected to which grid com-
ponents, and 𝑏 is the rating of those components—the maximum amount
of power that it can safely transmit.

Constraints (6.1d) and (6.1e) represent the constraints of the devices in
the grid. Specifically, constraint (6.1d) states that a device cannot produce
or consume more power than it physically can, which is represented by
lower and upper bound, 𝑥min and 𝑥max, respectively. However, (6.1e) also
takes into account another private constraint 𝒞. We refer to this constraint
as private, as it only concerns the state of a single device, andmay concern
information that should not be sharedwith other parties. E.g. an end-user
should not need to share its intent to run his or her washing machine
with its neighbors. This constraint differs per device, and specifies device
limitations such as a battery that cannot hold more than a certain amount
of energy, and cannot discharge when already empty. Flexible loads also
may have constraints considering the time at which they can turn on or off
based on the consumer’s settings. We will elaborate on these constraints,
as well as the cost functions of the device agents in Section 6.3.2.
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6.2.1. Related Work
In existing studies, different strategies are used for energy management.
Four different main categories are defined in [81] based on whether there
is a distributed aspect of decision-making and whether there is one-
or two-way communication. One of the strategies defined in [81] uses
Transactive Control, where distributed systems decide locally on their
device management, using two-way communication in a market-based
control scheme. The authors compare this approach with traditional top-
down switching, price-reaction and centralized optimization strategies
and show that transactive control is capable of using the full flexibility
potential of the smart grid devices, while maintaining the end-user
privacy. This claim is consistent with earlier studies [3, 151] that have
shown that using a market-based control in a multi-agent system can
provide equally optimal results as a centrally optimized system, under
certain conditions.

Multi-agent based methods are already getting attention in the
smart grid domain due to many desirable properties: robustness, user-
friendliness, attack resistance and scalability [26, 119]. The economic
dispatch problem is very well suited to be represented using multi-
agent systems [16]. There are many studies that use a multi-agent
based approach to model and solve the problem, such as the two-way
message passing agents using consensus algorithms to find an allocation
that is optimal [63]. Other methods use a completely decentralized
method involving reinforcement [98], utility maximization [95] or model
predictive control [140].

In [142], a strategy is proposed to schedule the power consumption and
production of generators and loads based on a method called Negotiated
Predictive Dispatch. In this approach wind and conventional generators,
as well as static and flexible loads, are controlled on the transmission
level. Agents propose power schedules, which are aggregated by a central
market operator, which then updates a price program using gradient
descent, meaning the price of congested PTUs increase, and that of
underused PTUs decrease. In doing so the authors show that they are able
to balance power production and consumption, while satisfying power
grid constraints. However, this approach focuses on the transmission
level, whereas we consider the distribution-level power grid to be at a
much more imminent risk of congestion. At the transmission level, the
scale is much larger than at the distribution-level, both geographically
and considering the power levels involved. Moreover, the power grid has
a very different topology at the transmission level. A major drawback of
this approach when applied at the distribution-level, is that using a global
power price for congestion mitigation is not only unfair for agents in
non-congested areas, but it would also be converging to a solution much
too slowly. A similar approach to the negotiated dispatch is provided
by [12] in which a gradient descent on the pricing is used, followed by a
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local optimization of agents.
Another approach is given by [79], in which power programs are

proposed by device agents that are able to satisfy cluster constraints to
reach a target energy consumption, while also staying within the limits
of the grid. In their approach, called Profile Steering, agents are only
motivated to accomplish the cluster goal, which is to consume or produce
energy at a specific target amount, and will propose alternative power
programs whenever constraints are violated. Proposals that reduce the
constraint violations the most, are then selected as the new candidate
programs. In our view, the problem of this approach lies in the lack of
motivation for the participant to sacrifice private rewards for running
an alternative program. The only objective is the cluster goal, which
means that the price of having limited resources is paid by a select set
of individuals that offer the most flexibility, or conversely, the profit
is reaped by those who are able to maximally make use of remaining
capacity.

The authors of [44] propose an approach based on DCOPs (Distributed
Constraint Optimization Problem) to solve the economic dispatch prob-
lem, as well as the real-time demand-response balancing problem. Their
algorithm is able to find optimal solutions for a system of controllable
generators and (predicted) loads, taking into account transmission
network constraints. They show that finding the optimal solution using
Dynamic DCOPs is possible, but their solution does not scale very well.
A relaxed version of the problem, in which soft constraints may be
(temporarily) violated, scales better, but still for relatively small time
horizons, even considering their implemented solution on a GPU.

We note that related work on the topic of this chapter listed here is not
exhaustive. For further detailed background, a comprehensive overview of
different mechanisms for solving optimization problems in smart grids,
particularly where demand response is involved, we refer to [69, 114, 139].

6.3. Self-Organizing Economic Dispatch
In order to solve the problem defined in (6.1), we propose a heuristic
self-organizing method for coordinating the power scheduling of smart
grid devices on the distribution-level energy grid. Thismulti-agent based
approach allows for great scalability, while ensuring privacy and final
control of the end-user.

At the distribution grid level, devices are typically consumer de-
vices, such as PV-panels, household batteries, heat pumps, ventilation
or air-conditioning units. The controllability, or flexibility of such
devices is often limited, and bound by the device limitations and the
user preferences. With increasing numbers of such devices, using a
strictly “top-down” approach is intractable, since the search space
grows exponentially with each added device. For this reason we use a
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𝑡 𝑡 𝑡 … 𝑡 𝑡 𝑡

Optimization at 𝑡 :

Optimization at 𝑡 :

Optimization at 𝑡 :

Figure 6.1: The principle of a receding horizon market is that every time step the time
horizon for optimization shifts by one. Planned power programs (white) are turned intofixed
contracts for the current time step (green), which determines the outcome of the algorithm.
This figure is redrawn from [142].

hierarchical approach, in which the market operator delegates its task
to intermediate “congestion” agents which then independently solve
subproblems—which is to make sure that the total power throughput
at their allocated point does not exceed a certain threshold. Making
such subdivisions is justified, since in the power grid, transformers
are effectively branches of the topology, and two nodes under different
transformers are independent of one another; hence, transformers are
the logical point to place congestion agents in the control hierarchy.

Our approach, denoted as Local Pricing Receding Horizon (LP-RH)
is based on the economic incentive that end-user devices should have,
to provide its owner with a service, in the most affordable way. Put
differently, the system will use price differences to stimulate agents to
schedule their power consumption or production in a balanced way, such
that any grid constraints are satisfied. The overall scheme is simply to
gather expected power programs from the connected devices, and then
iteratively adjust energy prices to steer the agents into a certain power
program. Themethod is explained in more detail in the following section,
and is similar to the Negotiated Price Dispatch proposed by [142].

6.3.1. Local Pricing Receding Horizon
In order to create a power planning taking into account forecasts and/or
predicted power programs of clients, we use a Receding Horizon (RH)
approach, depicted in Figure 6.1 which means that at any point we only
take a fixed horizon of 𝑇 program time units (PTU) into account. A PTU is
typically 15 minutes or one hour, throughout this paper we will use PTU
length of one hour so 𝑇 = 24. However, none of thementioned approaches
are limited to this convention. When the algorithm has converged and a
power program is found for the next 𝑇 PTUs that satisfies all constraints,
the first PTU becomes the “current” situation, and the projected power
program becomes a contract. The time horizon now shifts by one, and the
entire system starts again.

The Local Pricing Receding Horizon algorithm is shown as pseudocode
in Algorithm 5; an example graph on which the algorithm could run is
shown in Figure 6.2. The algorithm describes how any agent finds a new
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Algorithm 5 LP-RH Algorithm

Require: 𝑖 {Run for this agent 𝑖}
Require: 𝝆 {For a given price 𝝆}
1: if 𝑖 is a PV, load or storage agent then
2: 𝒙 = arg min𝒙𝒞 (𝒙, 𝝆) {Run local optimization}
3: else
4: repeat
5: for all 𝑗 ∈ ℳ do
6: 𝒙 = 𝐿𝑃-𝑅𝐻(𝑗, 𝝆) {Recurse for child agents}
7: end for
8: 𝒙 = ∑ ∈ℳ 𝒙
9: 𝝐 = 𝒞 (𝒙 )
10: 𝝆 = 𝑎𝑑𝑗𝑢𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠(𝝐, 𝝆) {Gradient descent, see end of Section 6.3.1}
11: until 𝝐 ≤ 𝜖max

12: end if
13: return 𝒙

𝑀

𝐶 𝐶

𝐷 𝐷 𝐷 𝐷 𝐷

Figure 6.2: Simple example topology of a graphwhich could be running the LP-RHalgorithm.
One market operator ( ) is connected to two congestion agents ( ), which are connected to
a total of five device agents ( ). The device agents can represent PV panels, consumer loads,
storage agents, or anyother leafnodes in thepowergrid. Topologieswhere congestionagents
are connected to more congestion agents are also possible.

power program 𝒙 to satisfy its local constraint 𝒞 . Every device agent in
the grid does this by solving a local optimization problem (line 2), taking
into account local constraints as explained in Section 6.3.2.

Prices 𝝆 are updated by the market operator agent and the congestion
agents in order to get a power program 𝒙 satisfying the grid constraints.
When the market operator or any congestion agent runs the LP-RH algo-
rithm, all 𝑗 ∈ ℳ , whereℳ are the immediate children of agent 𝑖, are re-
quested to propose a power program based on the price 𝝆 (line 6). Here the
function is called recursively until all agents have determined a new power
program. Note, that if any of the children are congestion agents, they de-
termine their power programby forwarding the prices to their children and
returning the sumof all receivedprograms. Many agentswill not knowex-
actly how theywill function in the future, as contextsmight change, a user
might behave differently than anticipated, or weather conditions may act
up; this is why receding horizonmethod updates the time iteratively. With
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Table 6.2: A summary of the three functions specifying the behaviors of the agents.

Agent type Cost Constraint Power

Market Operator 𝐽MO = 0 𝒞MO = �̄� − 𝚯 �̄� = ∑ ∈𝒩 𝒙
Congestion agent 𝐽CO = 0 𝒞CO = ̄𝒙 − 𝑏 iff | ̄𝒙 | < 𝑏 ̄𝒙 = ∑ ∈ℳ 𝒙
Load agent 𝐽LOAD = 0 𝒞LOAD = 0 𝒙
PV agent 𝐽PV = 𝒙 − 𝒙 𝒞PV = 0 iff 𝜏𝒙 𝝆 ≥ 𝛾 𝒙 = 𝒙 or 0
Storage agent 𝐽ST = 𝒙 (1 − 𝜂 ) 𝒞ST = 0 iff 𝑒min < 𝒆 < 𝑒max 𝒙 = 𝑓(𝝆)

the sum of all power programs, themarket operator can determine the er-
ror 𝝐, which is the sum of all local constraint violations 𝒞 for every 𝑡 ∈ 𝑇.

In line 9 the constraint 𝒞 is used to compute the local constraint viola-
tion and stored as an error variable 𝝐. The value of 𝝐 is taken into account
to adjust the prices in line 10. In the function 𝑎𝑑𝑗𝑢𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑠(𝝐, 𝝆), a gradient
descent approach is used, which linearly interpolates the last two errors
as a function of the price. We then choose the price at which the error is
projected to reach zero. Note that this means we assume the reaction of
the devices linearly depends on the prices, which will only hold under very
specific circumstances. To overcome this issue, we iteratively repeat the
process until 𝝐 ≤ 𝜖max and assume that a non-linear response can be de-
scribed as a series of linear pieces. The parameter 𝜖max then represents an
upper bound on the error, which we can use as a convergence criterion.

6.3.2. Agent Behavior
Agents in the system are characterized by the device that they have to
assign a power program for. In the distributed case, every agent locally
optimizes a local cost function 𝐽 , which is part of the global optimization
problem (6.1). Also, local constraints 𝒞 have to be taken into account
which are represented by constraint (6.1e). The behavior of the agents can
be defined by three functions for the costs, the local constraint and the
power program; an overview of this is shown in Table 6.2. In our model
we consider the following types of agents.

Market Operator
This is the root node of the tree (𝑀 in Figure 6.2), as far as the local dis-
tribution grid concerns. In the physical grid, it corresponds to the trans-
former that connects the local low voltage (LV) grid to themedium voltage
(MV) grid. We assume that there is no energy loss at the market operator,
so

𝐽MO = 0. (6.2)

Its goal is to find a solution to (6.1), and its private cost would be the same
as the target constraint in (6.1b). The market operator runs Algorithm 5,
using a deviation of the target profile 𝚯 as an error, which is minimized by
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the algorithm. Hence, its local constraint is defined as

𝒞MO = �̄� − 𝚯, (6.3)

where �̄� denotes the power program of the market operator. Since the
market operator is not a device in the grid itself, its power is the sum of
the powers of its children, which in case of the market operator are all
nodes in the cluster

�̄� = ∑
∈𝒩
𝒙 . (6.4)

The value of (6.3) can either be negative or positive, which respectively
means either the total power production or the total consumption is too
high. The market operator sets an initial price of 𝝆 = 0.5 for all PTUs, and
then uses Algorithm 5 to minimize the constraint value until it reaches
zero, in order to satisfy the global constraint (6.1b).

Congestion Agent
This is an intermediate node on the grid tree (𝐶 in Figure 6.2) connected
to a parent node who is either the market operator or another congestion
agent. It corresponds to a component in the grid where congestion might
potentially occur, such as a transformer. Equivalently to themarket oper-
ator, we assume that no energy is lost here, so

𝐽CO = 0. (6.5)

This agent has a constraint that aims to limit the power usage of that
part of the grid, this corresponds to the constraint (6.1c). The congestion
agent also uses Algorithm 5 to minimize the error of its local constraint,
which is defined as

𝒞CO = { ̄𝒙 − 𝑏 , if | ̄𝒙 | ≥ 𝑏 ,
0, otherwise. (6.6)

Here 𝑏 is the congestion threshold of the agent 𝑖, which means it is the
maximum power throughput of the grid at the point that 𝑖 represents.
Again ̄𝒙 denotes the power program of the congestion agent, but is now
equal to the sum of all devices under the current node

̄𝒙 = ∑
∈ℳ

𝒙 , (6.7)

Similar to the constraint of the market operator in (6.3) the constraint
value can become negative or positive, and is used to compute the error 𝝐
in Algorithm 5.
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Load Agent
This is an agent responsible for an uncontrollable load in the grid
(represented by any device agent 𝐷 in Figure 6.2). This could be a
consumer household, an office, street lighting, or any other non-flexible
load, and thus only participates in the problem as part of constraint (6.1b).
In the distributed system however, it is responsible for making a forecast
of the power usage, and this forecast will be updated with more accurate
information as the time horizon shifts. The load agent has no attached
cost in the global problem, and no need to locally compute any optimal
behavior. This is equivalent to stating that its cost and constraint
correspond to

𝐽LOAD = 0, (6.8)

𝒞LOAD = 0. (6.9)
Its corresponding load profile 𝒙 is fixed to some profile that constrains
the global problem (6.1). In our experiments its values are taken from real
households as described in Section 6.4.2.

PV Agent
For a PV agent 𝒙 denotes the amount power produced in the time horizon.
The PV agent (any 𝐷 in Figure 6.2) has some flexibility to offer to the op-
timization function (6.1) by allowing curtailment in reference to the ex-
pected generation. We assume that curtailment is binary, in that either the
PV generates power as normal, or it is switched off and produces no power
at all. Curtailing means that there is potential energy lost, and hence the
cost function of a PV agent is defined as

𝐽PV = 𝒙 − 𝒙 , (6.10)

where 𝒙 indicates the expected power, when not curtailing. This expected
power is taken from the scenario, which will be detailed in the Section 6.4.

When reacting to prices in the distributed system, a decision ismade in
order to decide whether to curtail based on the price profile. If the opera-
tional running costs 𝛾 of the PV ismore than the power that would be gen-
erated by it, there is no point in running the generator (from an economic
point of view). Hence, the local constraint and its corresponding decision
rule of a PV agent can be written as

𝒞PV = {1, if 𝜏𝒙 𝝆 < 𝛾 ,
0, otherwise, (6.11)

𝒙 = {0, if 𝜏𝒙 𝝆 < 𝛾 ,
𝒙 , otherwise. (6.12)

For the PV agent it also holds that the corresponding expected power pro-
gram 𝒙 determines the global problem (6.1). Its values in our experiments
are taken from real PV panels as described in Section 6.4.2.
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Storage Agent
In the context of storage, 𝒙 denotes the planned charge and discharge
actions in the time horizon. A storage agent (again a leaf node 𝐷 in
Figure 6.2) provides flexibility by allowing to store some energy in a local
storage like a battery or a heat buffer. There are limits to the amount of
energy that can be stored, either because of the physical limitations of the
storage device, or because of the end-user settings. Moreover, a storage
agent has some efficiency, which defines energy loss when energy is put
into it, or out from it. This means that we can define the cost function of
the storage agent as the energy lost during charging or discharging

𝐽ST = 𝒙 (1 − 𝜂 ), (6.13)

where

𝜂 = {𝜂 , if 𝒙 ≥ 0,
𝜂 , otherwise. (6.14)

This difference makes sure that the loss is correlated to the internal
power of the battery when charging or discharging. Put differently, 𝒙
defines the power at the grid side of the storage, and when an agent is
charging, a lower power effectively charges the battery, and conversely
when discharging a higher power is required to provide some power level
to the grid.

In order to define the constraints of the storage agent we must define
the update function for the amount of energy 𝒆 stored as the cumulative
sum of the powers

𝑒 = 𝑒 + 𝜏 ∑ 𝜂 𝒙 − 𝜆 . (6.15)

Here 𝜆 represents the leakage or self-discharge rate of the storage agent 𝑖,
and 𝑒 is the stored energy at the start of the experiment. Let usnowdefine
the following constraints on the storage agent

𝒞ST = {0, if 𝑒min < 𝒆 < 𝑒max,
1, otherwise.

(6.16)

The minimum and maximum energy values are defined by 𝑒min and 𝑒max,
respectively.

For a storage device, the power limits denote themaximum charge and
discharge rates. They are defined by 𝑥max and 𝑥min, respectively, in (6.1d).
A special case of a storage device is a heat pump, which (electrically pow-
ered) heats a house in order to keep the temperature within comfortable
levels. The heat pump only allows charging and only discharges through
leakage, hence for a heat pump 𝑥min = 0 and 𝜆 > 0.
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When a storage agent has to update its expected power program
in line 2 of Algorithm 5, some response function (𝑓(𝝆) in Table 6.2) is
required, which is “economically sane” and has the following character-
istics:

• return 𝑥max for low prices and 𝑥min for high prices,

• be a monotonically decreasing for increasing prices,

• have a “plateau” of zero power response for some intermediate price
(𝝆 = 0.5), which is wider for less efficient devices.

Thefinal characteristic allowsmore efficient devices to respond to sub-
tle price change, and have less efficient devices respond to more extreme
prices. This way devices with a higher efficiency are used first when flexi-
bility is needed, and (when parameterized correctly) less efficient devices
will only be used when required. In our implementation we chose a rela-
tively simple response, defined by four points in the price domain:

1. 𝜌 = 𝜌 −𝜁, the highest price atwhich the devicewill use themaximum
charge rate (𝒙 = 𝑥max),

2. 𝜌 = 𝜂 /2, the lowest price at which the device will not charge or dis-
charge (𝒙 = 0),

3. 𝜌 = 1 − 𝜌 , the highest price at which the device will not charge or
discharge (𝒙 = 0),

4. 𝜌 = 𝜌 +𝜁, the lowest price at which the device will use themaximum
discharge rate (𝒙 = 𝑥min),

where 𝜁 is an arbitrary constant that defines the interval inwhich the agent
linearly decreases its power response between the price points. By choos-
ing the points in this way, we follow the requirements as specified before,
and we can ensure that two types of devices, that have an efficiency 𝜂 dif-
ference of more than 𝜁 will be put to use separately. This power/price re-
lation we chose for our numerical evaluation with 𝜁 = 0.075 is depicted in
Figure 6.3.

An alternative strategy for the storage agent would be to make use
out of any differences in the price, charging and discharging as soon as
the price differences are large enough to overcome its efficiency. From a
strictly economic perspective, this is the optimal strategy to maximize its
own benefit. However, this leads to very “binary” behavior with minimal
andmaximal charging rates [95] and thus, little room for optimizing from
the market operator and congestion agent. Therefore, a linear strategy
is implemented as depicted in Figure 6.3, allowing to solve the overall
optimization problem (6.1).
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Figure 6.3: The strategy of the storage agent with max W, min W and .
shows the power response for an increasing price. The plateau at W extends from 𝝆 /
to 𝝆 / .

6.4. Experiment Setup
TheLP-RHalgorithmwas empirically evaluated by running simulations of
an LV grid with a set of realistic household load profiles and PV production
profiles for a series of 24 PTUs. Simulations were randomized by select-
ing different load and production profiles, and random households were
selected to have a heatpump or a household battery. The simulations are
implemented in Matlab, and require around 30 seconds to simulate a sin-
gle day. More information about the different implementation details are
specified below.

6.4.1. Distribution Network Topology
For the topology of the network we use the European Low Voltage Test
Feeder [66] network. This dataset is used to benchmark power and energy
algorithms on realistic European distribution networks. In this chapter
we superimposed six points on the topology, where we monitor and
mitigate any potential congestion. These points are strategically chosen
to separate the problem into independent subproblems. The resulting
topology with the congestion points are shown in Figure 6.4.

6.4.2.Household Load and PV Profiles
The household consumption and production profiles are taken from a pi-
lot study [121], inwhich 92 residential consumersweremonitored over the
course of a year (fromMarch through November 2018). The data was pre-
processed such thatwe have separated information on the consumption of
houses, and of the PV installations. Data is anonymized and randomized
per month, so that we can select data from any specific month for a base
load of a household, or a residential PV installation.

In the experiment the 54 households from Figure 6.4 were assigned a
random instance of the load and PV profiles from the same month (i.e. all
households were equipped with PV panels). The daily load consumption
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Market operator
Congestion agent
Household

Figure 6.4: The topology of the IEEE LV feeder network used for the simulation. The figure
depicts the connections between household consumers, the intermediate congestion agents,
and the root market operator. The PV, load and storage agents are randomly placed at
the households for different simulation runs. The “filled” markers represent the agents
displayed in Figures 6.5–6.7.

varied between 4.98kWh and 29.39kWh, and the total PV production
varied between 826Wh and 18.8kWh. Furthermore, 16 randomly selected
households were assigned a household battery, and again 16 were chosen
to have a heat pump installation.

Every household and PV installation in the simulation would select a
random profile from the dataset, which was used as its power program.
The objective 𝚯was set to a total net consumption of the LV grid using the
mean total power consumption of the houses including PV production.
Choosing the target profile 𝚯 in this way corresponds to a situation in
which the energy provider of the simulated neighborhood would agree to
a contract for the average behavior of the households, and subsequently
attempts to use flexibility to account for any deviations from the normal.

The batteries were all dimensioned with storage capacities of 𝑒max =
10.8kWh, and maximum charge and discharge rates of 𝑥max = 4000W
and 𝑥min = −4000W, respectively. The batteries charging efficiencies
were all set at 𝜂 = 0.9. The heat pumps were estimated to have a working
energy capacity of 𝑒max = 2kWh, this means the difference between the
thermal energy capacity of the house at the minimum and maximum
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comfortable user temperature is 2𝜓 kWh,where𝜓 = 4.0 is the coefficient of
performance of the heat pump. Then, the heat pumpshave a 𝑥max = 1600W
and 𝑥min = 0W, an efficiency of 𝜂 = 1 and a constant leakage rate of
𝜆 = 360W. Finally, to ensure convergence, the maximal error value is set
to 𝜖max = 10 in the experiments for this chapter

6.4.3. Forecast Uncertainty
The predicted load and production power programs �̂� of the load and
PV agents were generated by taking average profiles of the complete
dataset. These average profiles are considered as taken from historic data
and hence, provide a ground for predicting the power program of future
PTUs. When agent 𝑖 determines its power prediction 𝒙 , it will compute a
weighted average between its assigned power program 𝒙 and the average
profile �̂�, such that

𝒙 = (1 − 𝛼)𝒙 + 𝛼�̂� , (6.17)

𝛼 = √ 𝑡 − 1𝑇 − 1, (6.18)

such that at 𝑡 = 1 the prediction equals the selected profile 𝒙 . At 𝑡 = 𝑇, the
prediction is simply the average power �̂� .

6.5. Centralized Solver
In order to address the performance of the LP-RH algorithm, a centralized
optimization approach is also introduced to provide lower bounds to its
results. A mixed integer linear program (MILP) solver was used to find
these bounds for the problem stated in (6.1). The centralized optimization
approach considers the exact same scenario that was solved by the
decentralized algorithm; the energy loss is minimized and the same set
of constraints apply. A fundamental difference lies in the availability
of information. Whereas detailed information is only shared locally in
the LP-RH algorithm, the centralized optimization approach assumes
complete knowledge of the current system state for the decision-maker;
i.e., no limits are imposed on the spacial flow of information within the
network. With these features in mind, two versions of the MILP were
formulated: RecedingHorizon Centralized Solver and Perfect Information
Centralized Solver.

6.5.1. Receding Horizon Centralized Solver
The receding horizon centralized solver (RHCS) is the most similar to the
LP-RH algorithm. It uses a receding horizon approach (as depicted in
Figure 6.1) to find an ideal dispatch solving the consecutive sub-problems.
Uncertainty about future device states is again simulated by (6.17).
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Because this solver has perfect information at the current state for each
iteration of the receding horizon, its solution represents a lower bound on
the solution found by the LP-RH algorithm.

6.5.2. Perfect Information Centralized Solver
In the perfect information centralized solver (PICS), a single centralized
optimization problem is solved for the complete dispatch. In addition to
perfect spacial information, this version of theMILP also has perfect tem-
poral information about the complete system state; thismeans that no un-
certainty about future states is simulated. Referring back to (6.17), this is
equivalent to setting 𝛼 = 1, which results in perfect predictions for each
profile. The solution of this MILP represents an absolute lower bound for
problem (6.1).

6.6. Results
In this section the results of the described experiments are shown. Before
comparing the performance of the different solvers, which is done in
Section 6.6.1, the behavior of the LP-RH algorithm is shown in this
section. The graphs in this section show examples of single simulation
runs—subject to randomized starting conditions—demonstrating the
behavior of the different agent types. Powers are shown as power
consumption, this means a net consumption is shown as positive power,
and conversely negative powers indicates a net power production. In
Figure 6.5 the final result of the market operator is shown, where the
market operator has found a price profile such that the target profile is
met exactly.

Figure 6.6 shows the power program of one of the three congestion
agents that is directly connected to the market operator. Its power
congestion limits are set such that in the peak moments of the day there
is some congestion expected. This results in a price difference shown in
the power program, as around the peak PV production (𝑡 = 12, 13, 14) the
local price is slightly lower than the market price, leading to a lower net
power production. Similarly, we can identify that at the end of the day
(𝑡 = 19, 20, 21, 22) a positive power congestion was mitigated by increasing
the price.

The power program of a heat pump agent is shown in Figure 6.7. This
heat pump is connected directly to the congestion agent, the results of
which are shown in Figure 6.6, hence its price profile should be identical.
What ismost obvious in this graph is that the high price at 𝑡 = 12 leads to a
zero power consumption, and quickly after that, the power consumption
rises in order to maintain comfortable temperatures. Again, around
𝑡 = 19, 20, 21 the relatively high prices lead to a power consumption of zero,
which was apparently feasible because of the high power consumption
leading up to it.
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Figure 6.5: The power program of the market operator and the price profile as the outcome
of Algorithm 5, show the results of a 24-hour simulation of the problem with the LV feeder
network and 92 random households.
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Figure 6.6: The power program of a congestion agent shows some periods of congestion at
the production and consumption bounds (red dashed lines), and the corresponding changes
in price profiles (from Algorithm 5) relative to the global price of the market operator.
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Figure 6.7: The power program of a heat pump agent shows the power being mostly used
at moments where the price is low, relieving the need to charge when the price is high; or
considering the view of the grid, when a lower power consumption is required.
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Figure 6.8: The total power consumption per device type show that the batteries are used far
less than the heat pumps, since they have a lower efficiency. The PV panels did not have to be
curtailed in this run.

Finally, Figure 6.8 shows the total power programs of all devices in this
experiment summed up. In this figure, the power programs of the loads
and thePVs are the direct result of the chosenprofiles, and are the input for
problem (6.1). We can see that for the majority of the experiment, all used
flexibility is from the heat pumpswith the high efficiency. Only at times of
the congestion will the less efficient battery agents be used.
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Figure 6.9: Compared with centralized optimization solvers, the LP-RH algorithm performs
equally well. In this boxplot the median is shown as a line, the boxes indicate the 25% and
75% percentiles, and the tails are capped at a maximum length of the box width; outliers are
drawn separately.

6.6.1. Comparison with Central Solvers
In a validation experiment 105 random problem instances (15 permuta-
tions for seven months) were created, and solved by the three different
algorithms. In Figure 6.9 the results are shown for the feasible instances.
A solution is considered feasible if all three solvers were able to find a
solution that satisfies all constraints. The LP-RH algorithm did not find
a correct solution for 26 problem instances, 11 of which were found to be
overconstrained according to RHCS. For the feasible instances the LP-RH
algorithm found solutions that were not significantly worse than the
PICS, and in 21 instances found a solution with the exact same cost. In 27
instances LP-RH found a solution that was equally well as the RHCS or
even slightly better—this seems to contradict the initial statement that
RHCS acts as a lower bound for LP-RH; however, this is due to theway both
solvers deal with uncertainty. The LP-RH algorithmallows the congestion
agents to violate power constraints for future PTUs (𝑡 > 1), but not for the
next PTU (𝑡 = 1), by allowing an additional error margin for future PTUs.
The rationale is that we do not want to focus on potentially imperfect
forecasts according to (6.17), as long as we ensure that eventually PTUs
are not congested. The RHCS algorithm does not allow power constraints
to be violated at any point in the future, and hence might react too strict
when a future congestion is predicted, but does not actually occur.

In the set of infeasible problems, i.e. problems that do not have a
valid solution satisfying all constraints, LP-RH does find solutions that
minimize the power loss. However, since these solutions temporarily
overload congestion agents (where 𝒙 > 𝑏 ), or does not match the target
profile 𝚯 exactly, they are not a fair comparison, since they do not strictly
solve (6.1). In a separate run the problems were relaxed, by increasing
the congestion thresholds of the congestion agents. This resulted in the
LP-RH not being able to find a solution in only 14 problem instances, but
the results were otherwise similar to the ones reported here in Figure 6.9.
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6.7. Conclusions
Implementing a self-organizing multi-agent system for smart grids re-
quires new dispatch algorithms, that do not rely on centralized control. In
Chapter 2, we showed how a framework for self-organization can be used
by a system to change its deployment, but still had no way to reason about
the configuration itself. The LP-RH algorithm for power dispatch is just
that: an algorithm for distributed decision-making. Note, that the algo-
rithm is specifically written to optimize the problem at hand, although the
underlying principles can apply to other problems.

We have introduced an algorithm for self-organization, by solving the
economic dispatch problem using a decentralized market based approach
with local pricing. The LP-RH algorithm using a hierarchical approach
was shown to be able to solve the problem using a fairly simple interaction
scheme in which pricing information is sent down the hierarchy tree, and
planned or forecasted power programs are sent back up. Using a gradient
descent approach, the market operator is capable of tuning the pricing to
find feasible solutions to minimize the power losses in the grid.

In our experiments we found that in 20% of the problems LP-RH did
not perform any worse than a perfect-information centralized solver.
In the other 80% our algorithm did not perform significantly worse.
The benefit of LP-RH over a centralized solver are in the robustness
and scalability of the solution, as well as in the preserved privacy of the
end-consumers.

In the implementation of the response of the storage agent, we inten-
tionally did not choose to respond with an optimal power program given
the price signal. Particularly, when a high price is expected in the future,
the agent will not “proactively” charge to avoid having to charge later, or
vice versa. This behavior could be implemented at the agent quite easily
using a dynamic programming approach, but it would lead to very extreme
behavior, e.g. very binary behavior of charging or not-charging at full ca-
pacity even for small price differences. This binary behavior is hard to deal
with in the rest of the hierarchical tree, and does not lead to any problems
per se, but might be improved upon in a future continuation of this work.

Other variations of the problemmay include other device types, for in-
stance time-shiftable devices such as washing machines or dishwashers.
Also, using electric vehicles (EV) as an additional type of agent, providing
energy flexibility is a very interesting extension, which will undoubtedly
lead to other complications because of their high power ratings (i.e.
they dominate the total power consumption when charging). Finally, an
integration with a real time balancing algorithm such as [80] would be
very fruitful to complete the needs of the future smart grid.

In this chapter avery specializedmethod fordriving theself-organizing
behavior was provided, compared to a generic reusable DCOP-based
approach in the previous chapters. The same underlying principle
however is that through local interactions and decisions made on partial
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knowledge, a solution is sought to a global problem. In the next and final
chapter we discuss the main outcomes of this thesis and look ahead to
potential ways to extend this work.



7
Conclusions and Future Work

We can only see a short distance ahead,
but we can see plenty there that needs to be done.

Alan Turing

In order to keep up with the quickly growing networks that exist today,
we need to minimize human intervention and maximize self-dependency
in order to keep systems operational. Self-organization is key when it
comes to making a group of agents cooperates under varying conditions,
achieving changing goals, while forming new teams. There exist already
many methods for making systems more adaptive to changing operating
conditions, but when a group of agents is involved that have to adapt to
a new condition as a team, these methods do not always apply. In this
thesis different topics were discussed that are required in order to attain
or improve existing self-organizing behaviors to a system consisting of
cooperative agents.

In Chapter 1, we asked the main question of this thesis:

How can we achieve self-organization, or improve the
self-organization capabilities in a network of cooperative agents?

The answer to this question consists of two components, which are ad-
dressed in two challenges:

Challenge 1 Create a framework that allows self-organizing systems to
redefine their deployment.

Challenge 2 Find or improve strategies to coordinate collective behavior.
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Firstly, in this thesis we have proposed a framework for adding self-
organization capabilities to multi-agent systems, specifically by adding a
layer of intelligence to an agent, which is dedicated to making decisions
on the configurations of the system at hand. We have shown that this
framework provides the means of to reason about self-configuration, but
it does not specify how to self-organize. Therefore, secondly, a reasoning
mechanism is required, but there are different methods that allow to
reason about such decisions. Throughout this thesis we have used three
methods: logic based, distributed decision-making using DCOPs, and
a market-based control algorithm. These three approaches are very
different in their nature, and deciding when to use which approach
depends largely on the problem at hand, the type of decision variables
that can be altered, and the expert knowledge of the system designer.

We will further detail the outcomes of this thesis in the following sec-
tion, addressing the main challenges as defined in Chapter 1.

7.1. Contributions
In Chapter 2, we addressed the first challenge: creating a framework
that allows self-organizing systems to redefine their deployment. A
framework for self-organizing multi-agent systems was proposed.
Particularly, this frameworkwas used to add self-organization to a sensor
network, in which a group of sensors cooperates to estimate the state
of a greenhouse climate. Using the provided mechanisms, agents are
able to reason about the current context of the sensors and about how
to most efficiently perform the task they were assigned. In the use case,
a set of preexisting algorithms for performing the state estimation was
provided, along with some knowledge about the conditions under which
anymethod should be used and how it should be configured. Themodular
implementation of the framework, and the separation of the “primary
path” from the “secondary path” allows the use of different reasoning
techniques. The framework and corresponding tools are further detailed
in [88, 91].

The second challengewas: finding or improve strategies to coordinate
collective behavior. This challenge was addressed in Chapters 3 to 5 by
using a solver for DCOPs and in Chapter 6 using a decentralized market
based approach. Specifically, in Chapter 3 a new (A)DCOP algorithm called
Cooperative Constraint Approximation (CoCoA) was introduced as one
such candidate for reasoning about the primary task of an agent. The Co-
CoA algorithm is in its essence a simplemechanism to coordinate variable
assignments in such a way that a local (1-hop) optimal assignment is
beingmade. CoCoA is unique in its kind by not using an iterative approach
to finding solutions, but instead finds a solution by spreading its activity
through the problem graph, assigning values as it does so. Comparing
this strategy to state-of-art DCOP algorithms showed that it not only
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reduced the communication overhead, but also finds solutions that are
nearly equivalent in costs.

The original CoCoA algorithmwas extended as CoCoA_CA in Chapter 4
in order to be applied to wireless power transfer networks. In this problem
it is strictly not allowed to violate a hard constraint, stating that the total
electromagnetic radiation can not exceed safe levels. By adding an extra
check in CoCoA_CA tomake sure neighboring agents do not assign a value
concurrently, in which case they would not take the other assignment
in consideration, these hard constraints are satisfied in all cases. We
furthermore showed that even though CoCoA_CA does not perform as
well as a centralized LP, the distributed mechanism is better capable of
adapting the behavior of agents, when perfect information is not available.

Another shortcoming of CoCoA was addressed in Chapter 5: the fact
that CoCoA only assigns a value once, makes it impossible to recover
from early choices. We have shown that using CoCoA as an initialization
strategy for other (iterative) DCOP solvers, we do not only improve on the
convergence rate of these other solvers and on the solution cost of CoCoA,
but also on the solution cost of the other solvers. This effect turns out to
stem from the fact that in many graphs there are bridge edges (or pseudo-
bridge edges), which connect clusters of connected vertices. When the
nodes on such bridge edges are assigned values that violate the constraint
on that edge, it is very hard for an iterative solver to overcome that initial
assignment. CoCoA, and to a lesser extent zero-step-lookahead solvers,
are unlikely to assign a constraining value on such edges, and thus allow
for a better solution.

Although DCOPs are a way of implementing coordinated decision-
making, it is not always the best approach to solving this problem—
especially “fully-connected” problems, where variables share constraints
with all other variables, are difficult to solve. Such problems can be
described as a DCOP, but solving them as such is very inefficient. For this
reason, in Chapter 6 we introduced another self-organizing mechanism,
specifically for solving the Distributed Economic Dispatch problem, with
flexible distributed energy resources. We have shown how this problem
can be formalized and optimized using a decentralized multi-agent
market-based approach, in order to minimize the energy loss, and
maximize social wellfare.

7.2. Future Work
In this thesis we have presented some mechanisms to implement self-
organization in a multi-agent system. The proposed techniques have
shown to be able to make decisions autonomously of the functioning
of the system, adapt to changes in the environment, without external
intervention, and to find solutions that are near optimal. This relieves
much work from human operators, but there are still many questions that
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remain unanswered. Based on our challenges from Chapter 1, we list some
future research possibilities that we think should be addresses next.

Challenge 1: Create a framework that allows self-organizing systems to
redefine their deployment. In Chapter 2, we proposed a framework for
self-organizing systems in a state estimation context. This framework
was founded on the principle of separation-of-concerns, and as such,
few assumptions were made on the primary task of the system. The
framework itself is quite conceptual, and lightweight. It could be extended
by introducing more concrete mechanisms for implementation, and even
add ready built modules and services. This will limit the flexibility, but
may further alleviate tasks from the system designer. The benefits of such
“frameworks” would undoubtedly exist, but are notoriously difficult to
quantify.

Challenge 2: Find or improve strategies to coordinate collective behavior.
A key contribution of this thesis is the CoCoA algorithm, and the hybrid
solvers, which were shown to efficiently solve DCOP problems. However,
different mechanisms for reasoning about self-organization were used
in this thesis; we did not find a “one approach fits all” mechanism
that works for any problem in all domains. If such an approach does
exist, it would need to be able to learn about the problem at hand,
instead of using an implicit or explicit model of the primary system.
Examples of such a mechanism are sometimes referred to as Distributed
Constraint Evaluation and Exploitation (DCEE) algorithms [110, 136] and
may involve other machine learning methods such as Reinforcement
Learning [36, 94], but this was not addressed in this thesis. Alternatively,
if such a “catch-all”mechanism does not exist, further research is needed
to find self-organization mechanisms for different problem domains.

Finally, the problem of finding coordination strategies with a small
overhead for multi-agent decision-making is one that applies in many
problem areas [99]. The First Order Logic reasoner is quite lightweight,
and the LP-RH market based mechanism also appears to scale well, but
we have not validated these approaches in very large deployments. Also,
CoCoA is an efficient solver compared to other DCOP algorithms, but there
may be different graph structures or constraint types, on which this is
not the case. In part, such drawbacks can be diminished using the Hybrid
DCOP approach proposed in Chapter 5, but more research about the type
of problems and the effects on CoCoA thereof would increase the usability
of the method.



References

[1] S. Abdallah and V. Lesser, A multiagent reinforcement learning
algorithmwith non-linear dynamics, Journal of Artificial Intelligence
33(1):521–549 (2008).

[2] M. A. Abido, Environmental/economic power dispatch using multiob-
jective evolutionary algorithms, in Power Engineering Society General
Meeting (IEEE, Toronto, Canada, Jul. 13–17, 2003) pp. 920–925.

[3] H. Akkermans, J. Schreinemakers, and K. Kok, Emergence of control
in a large-scale society of economic physical agents, in Proceedings of
the International Conference on Autonomous Agents and Multiagent
Systems (New York, NY, USA, Jul. 19–23, 2004) pp. 1232–1234.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, Internet of things: A survey on enabling technologies, pro-
tocols, and applications, IEEE Communications Surveys & Tutorials
17(4):2347–2376 (2015).

[5] R. Albert and A.-L. Barabási, Statistical mechanics of complex net-
works, Reviews of Modern Physics 74(1):47–98 (2002).

[6] K. R. Apt andR. N. Bol, Logic programming and negation: A survey, The
Journal of Logic Programming 19:9–71 (1994).

[7] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Her-
man, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora, and
M. Miyashita, A line in the sand: a wireless sensor network for
target detection, classification, and tracking, Computer Networks
46(5):605–634 (2004).

[8] A. P. Athreya, B. DeBruhl, and P. Tague, Designing for self-
configuration and self-adaptation in the internet of things, in Interna-
tionalWorkshop on Internet of Things (ICST, Austin, TX, USA, Oct. 20–
23, 2013) pp. 585–592.

[9] Y. Bar-Shalom and L. Campo, The effect of the common process
noise on the two-sensor fused-track covariance, IEEE Transactions on
Aerospace and Electronic Systems 22(6):803–805 (1986).

105

https://doi.org/10.1613/jair.2628
https://doi.org/10.1613/jair.2628
https://doi.org/10.1109/PES.2003.1270431
https://doi.org/10.1109/PES.2003.1270431
https://dl.acm.org/citation.cfm?id=1018900
https://dl.acm.org/citation.cfm?id=1018900
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1016/0743-1066(94)90024-8
https://doi.org/10.1016/j.comnet.2004.06.007
https://doi.org/10.1016/j.comnet.2004.06.007
https://doi.org/10.4108/icst.collaboratecom.2013.254091
https://doi.org/10.4108/icst.collaboratecom.2013.254091
https://doi.org/10.1109/TAES.1986.310815
https://doi.org/10.1109/TAES.1986.310815


8

106 References

[10] M. Ben-Ari, First-order logic: Logic programming, in Mathematical
Logic for Computer Science (Springer, London,UK,2012)pp. 205–222.

[11] E. Bertino, K.-K. R. Choo, D. Georgakopolous, and S. Nepal, Internet
of things (IoT): Smart and secure service delivery, ACMTransactions on
Internet Technology 16(4):22:1–22:7 (2016).

[12] G. Binetti, A. Davoudi, F. L. Lewis, D. Naso, and B. Turchiano, Dis-
tributed consensus-based economic dispatch with transmission losses,
IEEE Transactions on Power Systems 29(4):1711–1720 (2014).

[13] J. C. Boerkoel and E. H. Durfee, Distributed reasoning for multiagent
simple temporal problems, Journal of Artificial Intelligence 47(1):95–
156 (2013).

[14] C. Boutilier, Planning, learning and coordination inmultiagent decision
processes, in Proceedings of the Conference on Theoretical aspects of
rationality and knowledge (De Zeeuwse Stromen, The Netherlands,
Mar. 17–20, 1996) pp. 195–210.

[15] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger, A survey
of self-management in dynamic software architecture specifications, in
Proceedings of theWorkshop on Self-managed systems (ACMSIGSOFT,
Newport Beach, CA, USA, Oct. 31–Nov. 1, 2004) pp. 28–33.

[16] N. Cai, N. T. T. Nga, and J. Mitra, Economic dispatch in microgrids
usingmulti-agent system, inNorth American Power Symposium (IEEE,
Champaign, IL, USA, Sep. 9–11, 2012) pp. 1–5.

[17] F. Cao, J. Liang, and G. Jiang, An initializationmethod for the K-means
algorithmusing neighborhoodmodel, Computers&Mathematicswith
Applications 58(3):474–483 (2009).

[18] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, Distributed Kalman
filtering based on consensus strategies, IEEE Journal on Selected Areas
in Communications 26(4):622–633 (2008).

[19] A. Chechetka andK. Sycara,No-commitment branch and bound search
for distributed constraint optimization, in Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent Systems
(Hakodate, Hokkaido, Japan, May 8–12, 2006) pp. 1427–1429.

[20] D. Chen, Y. Deng, Z. Chen, W. Zhang, and Z. He, HS-CAI: A hybrid
DCOP algorithm via combining search with context-based inference,
in Proceedings of the Conference on Artificial Intelligence (AAAI, New
York, NY, USA, Feb. 7–12, 2020).

[21] Z. Chen, Y. Deng, and T. Wu, An iterative refined max-sum_AD algo-
rithm via single-side value propagation and local search, in Proceedings

https://doi.org/10.1007/978-1-4471-4129-7_11
https://doi.org/10.1145/3013520
https://doi.org/10.1145/3013520
https://doi.org/10.1109/TPWRS.2014.2299436
https://doi.org/10.1109/TPWRS.2014.2299436
https://dl.acm.org/doi/10.5555/2566972.2566976
https://dl.acm.org/doi/10.5555/2566972.2566976
https://dl.acm.org/citation.cfm?id=1029710
https://dl.acm.org/citation.cfm?id=1029710
https://doi.org/10.1145/1075405.1075411
https://doi.org/10.1145/1075405.1075411
https://doi.org/10.1109/NAPS.2012.6336435
https://doi.org/10.1109/NAPS.2012.6336435
https://doi.org/10.1016/j.camwa.2009.04.017
https://doi.org/10.1016/j.camwa.2009.04.017
https://doi.org/10.1109/JSAC.2008.080505
https://doi.org/10.1109/JSAC.2008.080505
https://doi.org/10.1145/1160633.1160900
https://doi.org/10.1145/1160633.1160900
https://arxiv.org/abs/1911.12716
https://arxiv.org/abs/1911.12716
https://dl.acm.org/doi/10.5555/3091125.3091158
https://dl.acm.org/doi/10.5555/3091125.3091158


References

8

107

of the International Conference on Autonomous Agents and Multiagent
Systems (São Paulo, Brazil, May 8–12, 2017) pp. 195–202.

[22] Z. Chen, C. He, Z. He, and M. Chen, BD-ADOPT: a hybrid DCOP
algorithm with best-first and depth-first search strategies, Artificial
Intelligence Review 50(2):161–199 (2018).

[23] M. Choudhury, S. Mahmudand, and M. M. Khan, A particle swarm
based algorithm for functional distributed constraint optimization
problems (2019).

[24] D. Clark, The design philosophy of the DARPA internet protocols, ACM
SIGCOMMComputer Communication Review 18(4):106–114 (1988).

[25] L. Cohen and R. Zivan,Max-sum revisited: The real power of damping,
in Proceedings of the International Conference on Autonomous Agents
andMultiagent Systems (SãoPaolo, Brazil,May8–12, 2017) pp. 1505–
1507.

[26] C. M. Colson and M. H. Nehrir, Comprehensive real-time microgrid
power management and control with distributed agents, IEEE Trans-
actions on Smart Grid 4(1):617–627 (2013).

[27] H. Dai, Y. Liu, G. Chen, X. Wu, and T. He, Safe charging for wireless
power transfer, in Proceedings of the International Conference on
Computer Communications (IEEE, Toronto, Canada, Apr. 27–May 2,
2014) pp. 1105–1113.

[28] H. Dai, Y. Liu, G. Chen, X. Wu, and T. He, SCAPE: Safe charging with
adjustable power, in Proceedings of the International Conference on
Distributed Computing Systems (Madrid, Spain, Jun. 30–Jul. 3, 2014)
pp. 439–448.

[29] J. O. de Filho, Z. Papp, R. Djapic, and J. Oostveen,Model-based design
of self-adapting networked signal processing systems, in Proceedings
of the International Conference on Self-Adaptive and Self-Organizing
Systems (Philadelphia, PA, USA, Sep., 2013) pp. 41–50.

[30] Y. Deng, Z. Chen, D. Chen, Xingqiong Jiang, and Q. Li, PT-ISABB: A
hybrid tree-based complete algorithm to solve asymmetric distributed
constraint optimization problems, in Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (Montreal,
Canada, May 13–17, 2019) pp. 1506–1514.

[31] P. Derler, E. A. Lee, and A. S. Vincentelli, Modeling cyber–physical
systems, Proceedings of the IEEE 100(1):13–28 (2012).

[32] G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos, Self-
organization in multi-agent systems, Knowledge Engineering Review
20(2):165–189 (2005).

https://doi.org/10.1007/s10462-017-9540-z
https://doi.org/10.1007/s10462-017-9540-z
https://arxiv.org/pdf/1909.06168.pdf
https://arxiv.org/pdf/1909.06168.pdf
https://arxiv.org/pdf/1909.06168.pdf
https://doi.org/10.1145/52325.52336
https://doi.org/10.1007/978-3-319-71679-4_8
https://doi.org/10.1109/TSG.2012.2236368
https://doi.org/10.1109/TSG.2012.2236368
https://doi.org/10.1109/INFOCOM.2014.6848041
https://doi.org/10.1109/INFOCOM.2014.6848041
https://doi.org/10.1109/ICDCS.2014.52
https://doi.org/10.1109/ICDCS.2014.52
https://doi.org/10.1109/SASO.2013.16
https://doi.org/10.1109/SASO.2013.16
https://dl.acm.org/doi/10.5555/3306127.3331864
https://dl.acm.org/doi/10.5555/3306127.3331864
https://dl.acm.org/doi/10.5555/3306127.3331864
https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10.1017/S0269888905000494
https://doi.org/10.1017/S0269888905000494


8

108 References

[33] P.Dolezel, P. Skrabanek, andL.Gago,Weight initializationpossibilities
for feedforward neural network with linear saturated activation func-
tions, in Proceedings of the Conference on Programmable Devices and
Embedded Systems (IFAC, Brno, Czech Republic, Oct. 5–7, 2016) pp.
49–54.

[34] K. R. Duffy, C. Bordenave, and D. J. Leith, Decentralized constraint
satisfaction, IEEE/ACM Transactions on Networking 21(4):1298–
1308 (2013).

[35] H. Durrant-Whyte, B. Rao, and H. Hu, Towards a fully decentralized
architecture for multi-sensor data fusion, in International Conference
on Robotics and Automation (IEEE, Cincinnati, OH, USA, May 13–18,
1990) pp. 1331–1336.

[36] M. Elidrisi, N. Johnson,M.Gini, and J. Crandall, Fast adaptive learning
in repeated stochastic games by game abstraction, in Proceedings of
the International Conference on Autonomous Agents and Multiagent
Systems (Paris, France, May 5–9, 2014) pp. 1141–1148.

[37] M. Endler and J. Wei, Programming generic dynamic reconfigurations
for distributed applications, in International Workshop on Configurable
Distributed Systems (IET, London, UK, May 25–27, 1992) pp. 68–79.

[38] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings, Decentralised
coordination of low-power embedded devices using the max-sum al-
gorithm, in Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (Estoril, Portugal, May 12–16, 2008)
pp. 639–646.

[39] S. S. Fatima and M. Wooldridge, Adaptive task resources allocation
in multi-agent systems, in Proceedings of the International Conference
on Autonomous Agents (Montréal, Canada, May 28–Jun. 1, 2001) pp.
537–544.

[40] J. Ferber,Multi-agent systems: An introduction to distributed artificial
intelligence (Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999).

[41] M. Feurer, J. T. Springenberg, and F. Hutter, Initializing Bayesian
hyperparameter optimization via meta-learning, in Proceedings of the
Conference on Artificial Intelligence (AAAI, Austin, TX, USA, Jan. 25–
03, 2015) pp. 1128–1135.

[42] F. Fioretto, A. Dovier, and E. Pontelli, Distributed multi-agent opti-
mization for smart grids and home automation, Intelligenza Artificiale
12(2):67–87 (2019).

https://doi.org/10.1016/j.ifacol.2016.12.009
https://doi.org/10.1016/j.ifacol.2016.12.009
https://doi.org/10.1016/j.ifacol.2016.12.009
https://doi.org/10.1109/TNET.2012.2222923
https://doi.org/10.1109/TNET.2012.2222923
https://doi.org/10.1109/ROBOT.1990.126185
https://doi.org/10.1109/ROBOT.1990.126185
https://dl.acm.org/citation.cfm?id=2617427
https://dl.acm.org/citation.cfm?id=2617427
https://ieeexplore.ieee.org/abstract/document/152129
https://ieeexplore.ieee.org/abstract/document/152129
https://dl.acm.org/citation.cfm?id=1402313
https://dl.acm.org/citation.cfm?id=1402313
https://dl.acm.org/citation.cfm?id=1402313
https://doi.org/10.1145/375735.376439
https://doi.org/10.1145/375735.376439
https://dl.acm.org/citation.cfm?id=520715
https://dl.acm.org/citation.cfm?id=520715
https://dl.acm.org/citation.cfm?id=2887007.2887164
https://dl.acm.org/citation.cfm?id=2887007.2887164
https://doi.org/10.3233/IA-180037
https://doi.org/10.3233/IA-180037


References

8

109

[43] F. Fioretto, E. Pontelli, and W. Yeoh, Distributed constraint opti-
mization problems and applications: A survey, Journal of Artificial
Intelligence 61(1) (2018).

[44] F. Fioretto, W. Yeoh, E. Pontelli, Y. Ma, and S. Ranade, A distributed
constraint optimization (DCOP) approach to the economic dispatch
with demand response, in Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (São Paulo, Brazil,
May 8–12, 2017) pp. 999–1007.

[45] S. Fitzpatrick and L. Meertens, Distributed coordination through
anarchic optimization, in Distributed Sensor Networks. Multiagent
Systems, Artificial Societies, and Simulated Organizations, Vol. 9, edited
by V. Lesser, C. Ortiz, and M. Tambe (Springer, Boston, MA, USA,
2003) pp. 257–295.

[46] J. Fransman, J. Sijs, H. Dol, E. Theunissen, and B. de Schutter,
Distributed Bayesian: a continuous distributed constraint optimization
problem solver, arXiv preprint (2020).

[47] L. Fu, P. Cheng, Y. Gu, J. Chen, and T. He, Minimizing charging
delay in wireless rechargeable sensor network, in Proceedings of the
International Conference on Computer Communications (Turin, Italy,
Apr. 14–19, 2013).

[48] O.Galinina, K.Mikhaylov, K.Huang, S. Andreev, andY.Koucheryavy,
Wirelessly poweredurban crowd sensing overwearables: Trading energy
for data, IEEEWireless Communications 25(2):140–149 (2018).

[49] H. Gao, M. K. Matters-Kammerer, P. Harpe, D. Milosevic, A. van
Roermund, J.-P. Linnartz, and P. G. Baltus, A 60-GHz energy
harvesting module with on-chip antenna and switch for co-integration
with ULP radios in 65-nm CMOS with fully wireless mm-wave power
transfer measurement, in Proceedings of the International Symposium
on Circuits and Systems (IEEE, Melbourne, Australia, Jun. 1–5, 2014)
pp. 1640–1643.

[50] L. Gasser, C. Braganza, and N. Herman, Implementing distributed AI
systems using MACE, in Readings in Distributed Artificial Intelligence
(Morgan Kaufmann Publishers, Inc., 1988) pp. 445–450.

[51] Q. Gemine, D. Ernst, and B. Cornélusse, Active network management
for electrical distribution systems: Problem formulation, benchmark,
and approximate solution, Optimization and Engineering 18(3):587–
629 (2017).

[52] A. Gershman, A. Meisels, and R. Zivan, Asynchronous forward bound-
ing for distributed COPs, Journal of Artificial Intelligence 34(1):61–88
(2009).

https://arxiv.org/pdf/1602.06347.pdf
https://arxiv.org/pdf/1602.06347.pdf
https://dl.acm.org/citation.cfm?id=3091265
https://dl.acm.org/citation.cfm?id=3091265
https://dl.acm.org/citation.cfm?id=3091265
https://doi.org/10.1007/978-1-4615-0363-7_11
https://doi.org/10.1007/978-1-4615-0363-7_11
https://arxiv.org/pdf/2002.03252.pdf
https://arxiv.org/pdf/2002.03252.pdf
https://doi.org/10.1109/INFCOM.2013.6567103
https://doi.org/10.1109/INFCOM.2013.6567103
https://doi.org/10.1109/MWC.2018.1600468
https://doi.org/10.1109/MWC.2018.1600468
https://doi.org/10.1109/ISCAS.2014.6865466
https://doi.org/10.1109/ISCAS.2014.6865466
https://doi.org/10.1109/ISCAS.2014.6865466
https://doi.org/10.1109/ISCAS.2014.6865466
https://doi.org/10.1016/B978-0-934613-63-7.50047-4
https://doi.org/10.1016/B978-0-934613-63-7.50047-4
https://doi.org/10.1007/s11081-016-9339-9
https://doi.org/10.1007/s11081-016-9339-9
https://doi.org/10.1007/s11081-016-9339-9
https://doi.org/10.1613/jair.2591
https://doi.org/10.1613/jair.2591


8

110 References

[53] R. Glinton, K. P. Sycara, andP. Scerri,Agent organized networks redux,
in Proceedings of the Conference on Artificial Intelligence, Vol. 8 (AAAI,
Chicago, IL, USA, Jul. 13–17, 2008) pp. 83–88.

[54] S. Gollakota, M. Reynolds, J. Smith, and D. Wetherall, The emergence
of RF-powered computing, Computer 47(1):32–39 (2014).

[55] N. Griffiths and M. Luck, Changing neighbours: improving tag-
based cooperation, in Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (Toronto, Canada,
May 10–14, 2010) pp. 249–256.

[56] T. Grinshpoun, A. Grubshtein, R. Zivan, A. Netzer, and A. Meisels,
Asymmetric distributed constraint optimization problems, Journal of
Artificial Intelligence 47:613–647 (2013).

[57] A. Grubshtein, R. Zivan, T. Grinshpoun, and A. Meisels, Local search
for distributed asymmetric optimization, in Proceedings of the Inter-
national Conference on Autonomous Agents and Multiagent Systems
(Toronto, Canada, May 10–16, 2010) pp. 1015–1022.

[58] S. He, J. Chen, F. Jiang, D. K. Yau, G. Xing, and Y. Sun, Energy pro-
visioning in wireless rechargeable sensor networks, IEEE Transactions
onMobile Computing 12(10):1931–1942 (2013).

[59] K. Hirayama and M. Yokoo, Distributed partial constraint satisfaction
problem, in Principles and Practice of Constraint Programming (Linz,
Austria, Oct. 29–Nov. 1, 1997) pp. 222–236.

[60] K. D. Hoang, F. Fioretto, P. Hou, M. Yokoo, W. Yeoh, and R. Zivan,
Proactive dynamic distributed constraint optimization, in Proceedings
of the International Conference on Autonomous Agents and Multiagent
Systems (Singapore, Singapore, May 9–13, 2016) pp. 597–605.

[61] K. D. Hoang, P. Hou, F. Fioretto, W. Yeoh, R. Zivan, and M. Yokoo,
Infinite-horizon proactive dynamic DCOPs, in Proceedings of the In-
ternational Conference on Autonomous Agents and Multiagent Systems
(São Paulo, Brazil, May 8–12, 2017) pp. 212–220.

[62] K. D. Hoang, W. Y. M. Yokoo, and Z. Rabinovich, New algorithms for
continuous distributed constraint optimization problems, inProceedings
of the International Conference on Autonomous Agents and Multiagent
Systems (Auckland, New Zealand, May 9–13, 2020) pp. 502–510.

[63] M. Hu, J.-W. Xiao, S.-C. Cui, and Y.-W. Wang, Distributed real-time
demand response for energy management scheduling in smart grid,
International Journal of Electrical Power & Energy Systems 99:233–
245 (2018).

https://dl.acm.org/citation.cfm?id=1620010
https://doi.org/10.1109/MC.2013.404
https://doi.org/10.1109/MC.2013.404
https://dl.acm.org/citation.cfm?id=1838241
https://dl.acm.org/citation.cfm?id=1838241
https://doi.org/10.1613/jair.3945
https://dl.acm.org/citation.cfm?id=1838343
https://dl.acm.org/citation.cfm?id=1838343
https://doi.org/10.1109/TMC.2012.161
https://doi.org/10.1109/TMC.2012.161
https://doi.org/10.1007/BFb0017442
https://doi.org/10.1007/BFb0017442
https://dl.acm.org/doi/10.5555/2936924.2937013
https://dl.acm.org/doi/10.5555/3091125.3091160
https://dl.acm.org/doi/abs/10.5555/3398761.3398823
https://dl.acm.org/doi/abs/10.5555/3398761.3398823
https://doi.org/10.1016/j.ijepes.2018.01.016
https://doi.org/10.1016/j.ijepes.2018.01.016


References

8

111

[64] K. Huang and V. K. Lau, Enabling wireless power transfer in cellular
networks: Architecture, modeling and deployment, IEEE Transactions
onWireless Communications 13(2):902–912 (2014).

[65] K. Huang and X. Zhou, Cutting the last wires for mobile communica-
tions by microwave power transfer, IEEE Communications Magazine
53(6):86–93 (2015).

[66] IEEE, European low voltage test feeder network (v2), Available on-
line: https://sites.ieee.org/pes-testfeeders/files/2017/
08/European_LV_Test_Feeder_v2.zip (2015), accessed: Nov. 08,
2018.

[67] N. R. Jennings, On agent-based software engineering, Artificial Intel-
ligence 117(2):277–296 (2000).

[68] D.B. JohnsonandD.A.Maltz,Dynamic source routing inadhocwireless
networks, in Mobile Computing, edited by T. Imilienski and H. Korth
(Springer, Boston, MA, USA, 1996) pp. 153–181.

[69] A. R. Jordehi, Optimisation of demand response in electric power sys-
tems, a review, Renewable and Sustainable Energy Reviews 103:308–
319 (2019).

[70] S. J. Julier and J. K. Uhlmann, A non-divergent estimation algorithm
in the presence of uknown correlations, in Proceedings of the American
Control Conference (IEEE, Albuquerque, NM, USA, Jun. 6, 1997) pp.
2369–2373.

[71] C. Kalialakis and A. Georgiadis, The regulatory framework for wireless
power transfer systems,Wireless Power Transfer 1(2):108–118 (2014).

[72] G. Karsai, F. Massacci, L. J. Osterweil, and I. Schieferdecker, Evolving
embedded systems, Computer 43(5):34–40 (2010).

[73] G. Karsai and J. Sztipanovits,Amodel-based approach to self-adaptive
software, IEEE Intelligent Systemsand theirApplications 14(3):4–53
(1999).

[74] I. Kash, A. D. Procaccia, and N. Shah, No agent left behind: Dynamic
fair division of multiple resources, Journal of Artificial Intelligence
51(1):579–603 (2014).

[75] J. O. Kephart and D. M. Chess, The vision of autonomic computing,
Computer 36(1):41–50 (2003).

[76] C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe, Asynchronous algo-
rithms for approximate distributed constraint optimization with quality
bounds, in Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (Toronto, Canada, May 10–14, 2010)
pp. 133–140.

https://doi.org/10.1109/TWC.2013.122313.130727
https://doi.org/10.1109/TWC.2013.122313.130727
https://doi.org/10.1109/MCOM.2015.7120022
https://doi.org/10.1109/MCOM.2015.7120022
https://sites.ieee.org/pes-testfeeders/files/2017/08/European_LV_Test_Feeder_v2.zip
https://sites.ieee.org/pes-testfeeders/files/2017/08/European_LV_Test_Feeder_v2.zip
https://doi.org/10.1016/S0004-3702(99)00107-1
https://doi.org/10.1007/978-0-585-29603-6_5
https://doi.org/10.1007/978-0-585-29603-6_5
https://doi.org/10.1016/j.rser.2018.12.054
https://doi.org/10.1016/j.rser.2018.12.054
https://doi.org/10.1109/ACC.1997.609105
https://doi.org/10.1109/ACC.1997.609105
https://doi.org/10.1017/wpt.2014.13
https://doi.org/10.1017/wpt.2014.13
https://doi.org/10.1109/MC.2010.135
https://doi.org/10.1109/MC.2010.135
https://doi.org/10.1109/5254.769884
https://doi.org/10.1109/5254.769884
https://dl.acm.org/citation.cfm?id=2750439
https://dl.acm.org/citation.cfm?id=2750439
https://doi.org/10.1109/MC.2003.1160055
https://dl.acm.org/doi/abs/10.5555/1838206.1838225
https://dl.acm.org/doi/abs/10.5555/1838206.1838225
https://dl.acm.org/doi/abs/10.5555/1838206.1838225


8

112 References

[77] H. Kim, Y.-J. Kim, K. Yang, and M. Thottan, Cloud-based demand
response for smart grid: Architecture and distributed algorithms,
in International Conference on Smart Grid Communications (IEEE,
Brussels, Belgium, Oct. 17–20, 2011) pp. 398–403.

[78] S. Kirti and A. Scaglione, Scalable distributed Kalman filtering through
consensus, in Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (IEEE, Las Vegas, NV, USA, Mar. 31–
Apr. 4, 2008) pp. 2725–2728.

[79] T. van der Klauw, M. E. T. Gerards, G. Hoogsteen, G. J. M. Smit,
and J. L. Hurink, Considering grid limitations in profile steering, in
International Energy Conference (IEEE, Leuven, Belgium, Apr. 4–8,
2016) pp. 1–6.

[80] K. Kok and A. Subramanian, Fast locational marginal pricing for
congestion management in a distribution network with multiple ag-
gregators, in International Conference and Exhibition on Electricity
Distribution (Madrid, Spain, Jun. 3–6, 2019).

[81] K. Kok and S. Widergren, A society of devices: Integrating intelligent
distributed resources with transactive energy, IEEE Power and Energy
Magazine 14(3):34–45 (2016).

[82] R. Kota, N. Gibbins, and N. R. Jennings, Decentralized approaches for
self-adaptation in agent organizations, Transactions on Autonomous
and Adaptive Systems 7(1):1–36 (2012).

[83] S. Kraus and D. Lehmann, Designing and building a negotiating
automated agent, Computational Intelligence 11(1):132–171 (1995).

[84] I. Krikidis, Simultaneous information and energy transfer in large-scale
networks with/without relaying, IEEE Transactions on Communica-
tions 62(3):900–912 (2014).

[85] A. Kumar, A. Petcu, and B. Faltings, H-DPOP: Using hard constraints
for search space pruning in DCOP, in Proceedings of the Conference on
Artificial Intelligence (AAAI, Chicago, IL, USA, Jul. 132–17, 2008) pp.
325–330.

[86] R. N. Lass, E. Sultanik, andW. C. Regli, Dynamic distributed constraint
reasoning, in Proceedings of the Conference on Artificial Intelligence
(AAAI, Chicago, IL, USA, Jul. 13–17, 2008) pp. 1466–1469.

[87] T. Léauté and B. Faltings, Protecting privacy through distributed
computation in multi-agent decision making, Journal of Artificial
Intelligence 47:649–695 (2013).

https://doi.org/10.1109/SmartGridComm.2011.6102355
https://doi.org/10.1109/SmartGridComm.2011.6102355
https://doi.org/10.1109/ICASSP.2008.4518212
https://doi.org/10.1109/ICASSP.2008.4518212
https://doi.org/10.1109/ENERGYCON.2016.7514033
https://www.cired-repository.org/handle/20.500.12455/528
https://www.cired-repository.org/handle/20.500.12455/528
https://www.cired-repository.org/handle/20.500.12455/528
https://doi.org/10.1109/MPE.2016.2524962
https://doi.org/10.1109/MPE.2016.2524962
https://doi.org/10.1145/2168260.2168261
https://doi.org/10.1145/2168260.2168261
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.1995.tb00026.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8640.1995.tb00026.x
https://doi.org/10.1109/TCOMM.2014.020914.130825
https://doi.org/10.1109/TCOMM.2014.020914.130825
https://dl.acm.org/doi/10.5555/1619995.1620048
https://dl.acm.org/doi/10.5555/1619995.1620048
https://www.aaai.org/Papers/AAAI/2008/AAAI08-238.pdf
https://www.aaai.org/Papers/AAAI/2008/AAAI08-238.pdf
https://doi.org/10.1613/jair.3983
https://doi.org/10.1613/jair.3983


References

8

113

[88] C. J. van Leeuwen, V. H. Díaz, R. Kotian, R. del Toro Matamoros,
Z. Papp, and Y. Rieter-Barrell, An illustrative application example:
Cargo state monitoring, in Runtime Reconfiguration in Networked
Embedded Systems, edited by Z. Papp and G. Exarchakos (Springer
Singapore, 2016) Chap. 6, pp. 137–168.

[89] C. J. van Leeuwen and P. Pawełczak, CoCoA: A non-iterative approach
to a local search (A)DCOP solver, in Proceedings of the Conference on
Artificial Intelligence (AAAI, San Fransisco, CA, USA, Feb. 4–11, 2017).

[90] C. J. van Leeuwen and P. Pawełczak, Hybrid DCOP solvers: Boosting
performance of local search algorithms, in Proceedings of the Interna-
tional Workshop on Optimization in Multiagent Systems (Stockholm,
Sweden, Jul. 14, 2018).

[91] C. J. van Leeuwen, Y. Rieter-Barrell, Z. Papp, A. Pruteanu, and
T. Vogel, Model-based engineering of runtime reconfigurable net-
worked embedded systems, in Runtime Reconfiguration in Networked
Embedded Systems, edited by Z. Papp and G. Exarchakos (Springer
Singapore, 2016) Chap. 1, pp. 1–28.

[92] C. J. van Leeuwen, J. Sijs, and Z. Papp, A reconfiguration framework
for self-organizing distributed state estimators, in Proceedings of
the International Conference on Information Fusion (IEEE, Istanbul,
Turkey, Jul. 9–12, 2013) pp. 499–506.

[93] C. J. van Leeuwen, K. S. Yıldırım, and P. Pawełczak, Self adaptive
safe provisioning of wireless power using DCOPs, in Proceedings of the
International Conference on Self-Adaptive and Self-Organizing Systems
(Tucson, AZ, USA, Sep. 18–22, 2017).

[94] F. Lezama, E. Munoz de Cote, A. Farinelli, J. Soares, T. Pinto,
and Z. Vale, Distributed constrained optimization towards effective
agent-based microgrid energy resource management, in Conference on
Artificial Intelligence (EPIA, Villa Real, Portugal, Sep. 3–6, 2019) pp.
438–449.

[95] N. Li, L. Chen, and S. H. Low,Optimal demand response based on utility
maximization in power networks, in Power Engineering Society General
Meeting (IEEE, Detroit, MI, USA, Jul. 24–28, 2011) pp. 1–8.

[96] Q. Liu, M. Golinński, P. Pawełczak, and M. Warnier, Green wireless
power transfer networks, IEEE Journal on Selected Areas in Commu-
nications 34(5):1740–1756 (2016).

[97] Q. Liu, K. S. Yıldırım, P. Pawełczak, and M. Warnier, Safe and secure
wireless power transfer networks: Challenges and opportunities in RF-
based systems, IEEECommunicationsMagazine54(9):74–79 (2016).

https://doi.org/10.1007/978-981-10-0715-6_6
https://doi.org/10.1007/978-981-10-0715-6_6
https://dl.acm.org/citation.cfm?id=3298141
https://dl.acm.org/citation.cfm?id=3298141
https://www2.isye.gatech.edu/~fferdinando3/cfp/OPTMAS18/papers/paper_10.pdf
https://www2.isye.gatech.edu/~fferdinando3/cfp/OPTMAS18/papers/paper_10.pdf
https://doi.org/10.1007/978-981-10-0715-6_1
https://doi.org/10.1007/978-981-10-0715-6_1
https://ieeexplore.ieee.org/document/6641321/
https://ieeexplore.ieee.org/document/6641321/
https://doi.org/10.1109/SASO.2017.16
https://doi.org/10.1109/SASO.2017.16
https://doi.org/10.1007/978-3-030-30241-2_37
https://doi.org/10.1007/978-3-030-30241-2_37
https://doi.org/10.1109/PES.2011.6039082
https://doi.org/10.1109/PES.2011.6039082
https://doi.org/10.1109/JSAC.2016.2520178
https://doi.org/10.1109/JSAC.2016.2520178
https://doi.org/10.1109/MCOM.2016.7565191
https://doi.org/10.1109/MCOM.2016.7565191
https://doi.org/10.1109/MCOM.2016.7565191


8

114 References

[98] W. Liu, P. Zhuang, H. Liang, J. Peng, and Z. Huang, Distributed
economic dispatch in microgrids based on cooperative reinforcement
learning, IEEE Transactions on Neural Networks and Learning
Systems 29(6):2192–2203 (2018).

[99] M. Lützenberger, T. Küster, N. Masuch, and J. Fähndrich, Multi-
agent system in practice: when research meets reality, in Proceedings
of the International Conference on Autonomous Agents and Multiagent
Systems (Singapore, Singapore, May 9–13, 2016) pp. 796–805.

[100] R. T. Maheswaran, J. P. Pearce, andM. Tambe, Distributed algorithms
for DCOP: A graphical-game-based approach, in Proceedings of the
International Conference onParallel andDistributedComputing Systems
(ISCA, San Fransisco, CA, USA, Sep. 15–17, 2004) pp. 432–439.

[101] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and
P. Varakantham, Taking DCOP to the real world: Efficient complete
solutions for distributed multi-event scheduling, in Proceedings of
the International Conference on Autonomous Agents and Multiagent
Systems (New York, NY, USA, Jul. 19–23, 2004) pp. 310–317.

[102] S.Mahmud,M. Choudhury,M. Khan, L. Tran-Thanh, N. R. Jennings,
et al., AED: An anytime evolutionary DCOP algorithm, arXiv preprint
(2019).

[103] M. J. Mataric, Designing emergent behaviors: From local interactions to
collective intelligence, in Proceedings of the International Conference on
Simulation of Adaptive Behavior (Honolulu, HI, USA, Apr. 13, 1993) pp.
432–441.

[104] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan, Comparing perfor-
mance of distributed constraints processing algorithms, in Proceedings
of the International Conference on Autonomous Agents and Multiagent
Systems (Bologna, Italy, Jul. 15–19, 2002) pp. 86–93.

[105] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, Minimizing
conflicts: a heuristic repair method for constraint satisfaction and
scheduling problems, Artificial Intelligence 58(1-3):161–205 (1992).

[106] D. Mishra, S. De, S. Jana, S. Basagni, K. Chowdhury, andW. Heinzel-
man, Smart RF energy harvesting communications: challenges and
opportunities, IEEE Communications Magazine 53(4):70–78 (2015).

[107] P. J. Modi, Distributed Constraint Optimization for Multiagent Systems,
Ph.D. thesis, University of Southern California, Los Angeles, CA, USA
(2003).

[108] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, ADOPT: asyn-
chronous distributed constraint optimization with quality guarantees,
Artificial Intelligence 161(1–2):149–180 (2005).

https://doi.org/10.1109/TNNLS.2018.2801880
https://doi.org/10.1109/TNNLS.2018.2801880
https://doi.org/10.1109/TNNLS.2018.2801880
https://dl.acm.org/doi/10.5555/2936924.2937041
https://dl.acm.org/doi/10.5555/2936924.2937041
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.7011
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.7011
https://dx.doi.org/10.1109/AAMAS.2004.10067
https://dx.doi.org/10.1109/AAMAS.2004.10067
https://arxiv.org/pdf/1909.06254.pdf
https://doi.org/10.1007/978-3-642-79629-6_11
https://doi.org/10.1007/978-3-642-79629-6_11
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.8606
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.8606
https://doi.org/10.1016/0004-3702(92)90007-K
https://doi.org/10.1016/0004-3702(92)90007-K
https://doi.org/10.1016/0004-3702(92)90007-K
https://doi.org/10.1109/MCOM.2015.7081078
https://doi.org/10.1109/MCOM.2015.7081078
https://dl.acm.org/doi/book/10.5555/1037507
https://doi.org/10.1016/j.artint.2004.09.003
https://doi.org/10.1016/j.artint.2004.09.003


References

8

115

[109] M. Y. Naderi, P. Nintanavongsa, and K. R. Chowdhury, RF-MAC:
A medium access control protocol for re-chargeable sensor networks
powered bywireless energy harvesting, IEEE Transactions onWireless
Communications 13(7):3926–3937 (2014).

[110] D. T. Nguyen, W. Yeoh, H. C. Lau, S. Zilberstein, and C. Zhang,
Decentralized multi-agent reinforcement learning in average-reward
dynamic DCOPs, in Proceedings of the Conference on Artificial Intelli-
gence (AAAI, Québec, Canada, Jul. 27–31, 2014).

[111] I. C. on Non-Ionizing Radiation Protection (ICNIRP), Guidelines for
limiting exposure to time-varying electric, magnetic, and electromag-
netic fields (up to 300GHz), Health Physics 74(4):494–522 (1998).

[112] G. Nordstrom, J. Sztipanovits, and G. Karsai, Metalevel extension
of the multigraph architecture, in Proceedings of the Engineering of
Computer Based Systems Conference (IEEE, Jerusalem, Israel, Apr.,
1998) pp. 61–68.

[113] S. Okamoto, R. Zivan, and A. Nahon, Distributed breakout: Beyond
satisfaction, in Proceedings of the International Joint Conference on
Artificial Intelligence (New York, NY, USA, Jun. 9–15, 2016) pp. 447–
453.

[114] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, State of the art in
research on microgrids: A review, IEEE Access 3:890–925 (2015).

[115] J. P. Pearce and M. Tambe, Quality guarantees on k-optimal solutions
for distributed constraint optimization problems, in Proceedings of the
International Joint Conference on Artificial Intelligence (Hyderabad,
India, Jan. 6–12, 2007) pp. 1446–1451.

[116] A. Petcu and B. Faltings, A scalable method for multiagent constraint
optimization, in Proceedings of the International Joint Conference on
Artificial Intelligence (Edinburgh, Scotland, UK, Jul. 30–Aug. 5, 2005)
pp. 266–271.

[117] A. Petcu and B. Faltings, Superstabilizing, fault-containing distributed
combinatorial optimization, in Proceedings of the Conference on Artifi-
cial Intelligence (Pittsburgh, PA, USA, Jul. 9–13, 2005) pp. 449–454.

[118] A. Petcu and B. Faltings, Optimal solution stability in dynamic,
distributed constraint optimization, in Proceedings of the International
Conference on Intelligent Agent Technology (IEEE/WIC/ACM, Fre-
mont, CA, USA, Nov. 2–5, 2007) pp. 321–327.

[119] M. Pipattanasomporn, H. Feroze, and S. Rahman, Multi-agent
systems in a distributed smart grid: Design and implementation, in
Power Systems Conference and Exposition (IEEE, Seattle, WA, USA,
Mar. 15–18, 2009) pp. 1–8.

https://doi.org/10.1109/TWC.2014.2315211
https://doi.org/10.1109/TWC.2014.2315211
https://doi.org/10.1109/TWC.2014.2315211
https://dl.acm.org/doi/10.5555/2615731.2617463
https://dl.acm.org/doi/10.5555/2615731.2617463
https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf
https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf
https://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.5045
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.5045
https://dl.acm.org/citation.cfm?id=3060684
https://dl.acm.org/citation.cfm?id=3060684
https://doi.org/10.1109/ACCESS.2015.2443119
https://doi.org/10.1109/ACCESS.2015.2443119
https://dl.acm.org/doi/10.5555/1625275.1625509
https://dl.acm.org/doi/10.5555/1625275.1625509
https://dl.acm.org/citation.cfm?id=1642336
https://dl.acm.org/citation.cfm?id=1642336
https://dl.acm.org/doi/abs/10.5555/1619332.1619405
https://dl.acm.org/doi/abs/10.5555/1619332.1619405
https://doi.org/10.1109/IAT.2007.11
https://doi.org/10.1109/IAT.2007.11
https://doi.org/10.1109/PSCE.2009.4840087
https://doi.org/10.1109/PSCE.2009.4840087


8

116 References

[120] S. Rahnamayan,H. R. Tizhoosh, andM.M. Salama,Anovel population
initialization method for accelerating evolutionary algorithms, Com-
puters &Mathematics with Applications 53(10):1605–1614 (2007).

[121] A. Rassa, C. van Leeuwen, R. Spaans, and K. Kok, Developing local
energy markets: a holistic system approach, IEEE Power and Energy
Magazine 17(5):59–70 (2019).

[122] A. Ribeiro, I. D. Schizas, S. I. Roumeliotis, and G. B. Giannakis,
Kalman filtering in wireless sensor networks: Reducing communication
cost in state-estimation problems, IEEE Control Systems Magazine
30(2):66–86 (2010).

[123] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings, Bounded
approximate decentralised coordination via the max-sum algorithm,
Artificial Intelligence 175(2):730–759 (2011).

[124] D.W. Ross and S. Kim, Dynamic economic dispatch of generation, IEEE
Transactions on Power Apparatus and Systems PAS-99(6):2060–
2068 (1980).

[125] G. Rossi, Uses of Prolog in implementation of expert systems, New
generation computing 4(3):321–329 (1986).

[126] A. Sarker, A. B. Arif, M. Choudhury, and M. M. Khan, C-CoCoA:
A continuous cooperative constraint approximation algorithm to solve
functional DCOPs, in Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (Auckland, New Zealand,
May 9–13, 2020) pp. 1990–1992.

[127] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, Hidden
technical debt in machine learning systems, in Advances in neural
information processing systems (Montréal, Canada, Dec. 7–12, 2015)
pp. 2503–2511.

[128] F. K. Shaikh, S. Zeadally, and E. Exposito, Enabling technologies for
green internet of things, IEEE Systems Journal 11(2):983–994 (2015).

[129] J. Sijs, State Estimation in Networked Systems, Ph.D. thesis, Eindhoven
University of Technology, Eindhoven, the Netherlands (2012).

[130] J. Sijs andM. Lazar, A distributed Kalman filter with global covariance,
in Proceedings of the American Control Conference (IEEE, San Fran-
cisco, USA, Jun. 29–Jul. 1, 2011) pp. 4840–4845.

[131] J. Sijs and M. Lazar, State fusion with unknown correlation: Ellipsoidal
intersection, Automatica 48(8):1874–1878 (2012).

https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1109/MPE.2019.2921743
https://doi.org/10.1109/MPE.2019.2921743
https://doi.org/10.1109/MCS.2009.935569
https://doi.org/10.1109/MCS.2009.935569
https://dx.doi.org/10.1016/j.artint.2010.11.001
https://dx.doi.org/10.1016/j.artint.2010.11.001
https://doi.org/10.1109/TPAS.1980.319847
https://doi.org/10.1007/BF03037410
https://dl.acm.org/doi/abs/10.5555/3398761.3399051
https://dl.acm.org/doi/abs/10.5555/3398761.3399051
https://dl.acm.org/doi/abs/10.5555/3398761.3399051
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems
https://doi.org/10.1109/JSYST.2015.2415194
https://doi.org/10.1109/JSYST.2015.2415194
https://doi.org/10.6100/IR730947
https://doi.org/10.1109/ACC.2011.5990802
https://doi.org/10.1016/j.automatica.2012.05.077
https://doi.org/10.1016/j.automatica.2012.05.077


References

8

117

[132] J. Sijs and Z. Papp, Towards self-organizing Kalman filters, in Pro-
ceedings of the International Conference on Information Fusion (IEEE,
Singapore, Singapore, Jul. 9–12, 2012) pp. 1012–1019.

[133] M. Simonot and V. Aponte, A declarative formal approach to dynamic
reconfiguration, in Proceedings of the International Workshop on Open
Component Ecosystems (Amsterdam, theNetherlands, Aug. 24, 2009)
pp. 1–10.

[134] J. R. Smith, Wirelessly Powered Sensor Networks and Computational
RFID (Springer, New York, NY, USA, 2013).

[135] R. Stärk, A direct proof for the completeness of SLD-resolution, in
International Workshop on Computer Science Logic (Kaiserslautern,
Germany, Oct. 2–6, 1989) pp. 382–383.

[136] R. Stranders, L. Tran-Thanh, F. M. D. Fave, A. Rogers, and N. R.
Jennings, DCOPs and bandits: Exploration and exploitation in decen-
tralised coordination, in Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (Valencia, Spain, Jun. 4–
8, 2012) pp. 289–296.

[137] A. Tahbaz-Salehi and A. Jadbabaie, Consensus over ergodic stationary
graph processes, IEEETransactions onAutomatic Control 55(1):225–
230 (2010).

[138] T. Tassa, T. Grinshpoun, and R. Zivan, Privacy preserving implemen-
tation of the max-sum algorithm and its variants, Journal of Artificial
Intelligence 59:311–349 (2017).

[139] J. S. Vardakas, N. Zorba, and C. V. Verikoukis, A survey on demand
response programs in smart grids: Pricing methods and optimization
algorithms, IEEE Communications Surveys and Tutorials 17(1):152–
178 (2014).

[140] M. A. Velasquez, J. Barreiro-Gomez, N. Quijano, A. I. Cadena, and
M. Shahidehpour, Distributed model predictive control for economic
dispatchof power systemswithhighpenetrationof renewable energy re-
sources, International Journal of Electrical Power & Energy Systems
113:607–617 (2019).

[141] H. J. Visser and R. J. M. Vullers, RF energy harvesting and transport
for wireless sensor network applications: Principles and requirements,
Proceedings of the IEEE 101(6):1410–1423 (2013).

[142] J. Warrington, S. Mariéthoz, and M. Morari, Negotiated predictive
dispatch: Recedinghorizonnodal electricity pricing forwind integration,
in International Conference on the European Energy Market (IEEE,
Zagreb, Croatia, May 25–27, 2011) pp. 407–412.

https://ieeexplore.ieee.org/abstract/document/6289913
https://doi.org/10.1145/1595800.1595802
https://doi.org/10.1145/1595800.1595802
https://doi.org/10.1007/978-1-4419-6166-2
https://doi.org/10.1007/978-1-4419-6166-2
https://doi.org/10.1007/3-540-52753-2_52
https://dl.acm.org/doi/10.5555/2343576.2343617
https://dl.acm.org/doi/10.5555/2343576.2343617
https://doi.org/10.1109/TAC.2009.2034054
https://doi.org/10.1109/TAC.2009.2034054
https://doi.org/10.1613/jair.5504
https://doi.org/10.1613/jair.5504
https://doi.org/10.1109/COMST.2014.2341586
https://doi.org/10.1109/COMST.2014.2341586
https://doi.org/10.1109/COMST.2014.2341586
https://doi.org/10.1016/j.ijepes.2019.05.044
https://doi.org/10.1016/j.ijepes.2019.05.044
https://doi.org/10.1016/j.ijepes.2019.05.044
https://doi.org/10.1109/JPROC.2013.2250891
https://doi.org/10.1109/JPROC.2013.2250891
https://doi.org/10.1109/EEM.2011.5953046
https://doi.org/10.1109/EEM.2011.5953046


8

118 References

[143] T. Wu, T. S. Rappaport, and C. M. Collins, Safe for generations
to come: Considerations of safety for millimeter waves in wireless
communications, IEEEMicrowave Magazine 16(2):65–84 (2015).

[144] L. Xiao and S. Boyd, Fast linear iterations for distributed averaging,
Systems and Control Letters 53(1):65–78 (2004).

[145] L. D. Xu,W.He, and S. Li, Internet of things in industries: A survey, IEEE
Transactions on Industrial Informatics 10(4):2233–2243 (2014).

[146] J. Y. Yam and T. W. Chow, A weight initialization method for improv-
ing training speed in feedforward neural network, Neurocomputing
30(1):219–232 (2000).

[147] D. Ye, M. Zhang, and A. V. Vasilakos, A survey of self-organization
mechanisms in multiagent systems, IEEE Transactions on Systems,
Man, and Cybernetics: Systems 47(3):441–461 (2016).

[148] H. Yedidsion, R. Zivan, and A. Farinelli, Explorative max-sum for
teams of mobile sensing agents, in Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems (Paris,
France, May 5–9, 2014) pp. 549–556.

[149] W. Yeoh, P. Varakantham, X. Sun, and S. Koenig, Incremental DCOP
search algorithms for solving dynamic DCOP problems, in Proceedings
of the International Joint Conference onWeb Intelligence and Intelligent
Agent Technology, Vol. 2 (IEEE/WIC/ACM, Singapore, Singapore,
Dec. 6–9, 2015) pp. 257–264.

[150] W. Yeoh and M. Yokoo, Distributed problem solving, AI Magazine
33(3):53–65 (2012).

[151] F. Ygge and H. Akkermans, Decentralized markets versus central con-
trol: A comparative study, Journal of Artificial Intelligence 11(1):301–
333 (1999).

[152] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, The distributed
constraint satisfaction problem: Formalization and algorithms, IEEE
Transactions on Knowledge and Data Engineering 10(5):673–685
(1998).

[153] C. Zhang, V. Lesser, and P. Shenoy, A multi-agent learning approach
to online distributed resource allocation, in Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (Pasadena, CA, USA,
Jul. 11-17, 2009) pp. 361–366.

[154] H. Zhang and J. C. Hou,Maintaining sensing coverage and connectivity
in large sensor networks, Ad Hoc & Sensor Wireless Networks 1:89–
124 (2005).

https://doi.org/10.1109/MMM.2014.2377587
https://doi.org/10.1109/MMM.2014.2377587
https://doi.org/10.1109/MMM.2014.2377587
https://doi.org/10.1016/j.sysconle.2004.02.022
https://doi.org/10.1109/TII.2014.2300753
https://doi.org/10.1016/S0925-2312(99)00127-7
https://doi.org/10.1016/S0925-2312(99)00127-7
https://doi.org/10.1109/TSMC.2015.2504350
https://doi.org/10.1109/TSMC.2015.2504350
https://dl.acm.org/doi/10.5555/2615731.2615821
https://dl.acm.org/doi/10.5555/2615731.2615821
https://doi.org/10.1109/WI-IAT.2015.114
https://doi.org/10.1109/WI-IAT.2015.114
https://doi.org/10.1609/aimag.v33i3.2429
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1613%2Fjair.627&v=8fe5b3ca
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1613%2Fjair.627&v=8fe5b3ca
https://doi.org/10.1109/69.729707
https://doi.org/10.1109/69.729707
https://dl.acm.org/citation.cfm?id=1661503
https://dl.acm.org/citation.cfm?id=1661503
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.1155
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.1155


References

8

119

[155] W. Zhang, G.Wang, X. Zhao, and L.Wittenburg,Distributed stochastic
search and distributed breakout: properties, comparison and applica-
tions to constraint optimization problems in sensor networks, Artificial
Intelligence 161(1):55–87 (2005).

[156] R. Zivan, R. Glinton, andK. Sycara,Distributed constraint optimization
for large teams of mobile sensing agents, in Proceedings of the
International Joint Conference onWeb Intelligence and Intelligent Agent
Technology, Vol. 2 (IEEE/WIC/ACM, Milan, Italy, Sep. 15–18, 2009)
pp. 347–354.

[157] R. Zivan, S. Okamoto, and H. Peled, Explorative anytime local search
for distributed constraint optimization, Artificial Intelligence212:1–26
(2014).

[158] R. Zivan, T. Parash, and Y. Naveh, Applying max-sum to asymmetric
distributed constraint optimization, in Proceedings of the International
Joint Conference on Artificial Intelligence (Buenos Aires, Argentina,
Jul. 25–31, 2015) pp. 432–438.

[159] R. Zivan and H. Peled,Max/min-sum distributed constraint optimiza-
tion through value propagation on an alternating DAG, in Proceedings
of the International Conference on Autonomous Agents and Multiagent
Systems (Valencia, Spain, Jun. 4–8, 2012) pp. 265–272.

https://doi.org/10.1016/j.artint.2004.10.004
https://doi.org/10.1016/j.artint.2004.10.004
https://doi.org/10.1016/j.artint.2004.10.004
https://doi.org/10.1109/WI-IAT.2009.176
https://doi.org/10.1109/WI-IAT.2009.176
https://doi.org/10.1016/j.artint.2014.03.002
https://doi.org/10.1016/j.artint.2014.03.002
https://dl.acm.org/citation.cfm?id=2832249.2832309
https://dl.acm.org/citation.cfm?id=2832249.2832309
https://dl.acm.org/doi/10.5555/2343576.2343614
https://dl.acm.org/doi/10.5555/2343576.2343614




Acknowledgements

I would like to thank my supervisors Koen Langendoen and Przemysław
Pawełczak for their support and guidance. I will definitely remember
Przemek’s motivating speeches, when things were looking down, and his
joyful celebrations when we had good news. Thank you for all the efforts
in co-authoring, proofreading and pushing me into writing the next
papers and thesis chapters. I feel that we also got close personally, when
there was anything on my mind, I could always reach you. Koen, thank
you for your time and support and keen eye for detail, especially during
the last stages of this thesis. And of course, thank you for giving me the
opportunity to domy doctoral research in your group at the university.

I would also especially like to thank Zoltan Papp, who unfortunately is
no longer with us, and did not get to see the results of his coaching. I will
remember him as always being very enthusiastic and optimistic about his
(and this) work, and has definitely helped me get on the right track to do
my research and write this thesis.

Considering the SOSE project, many thanks go to Joris Sijs and Zoltan
Papp for co-authoring the paper, and providing their expertise on state
estimation. The project was a group effort as a part of the Adaptive
Multi Sensor Networks (AMSN) TNO research program. Also, I would
like to thank Julio Oliveira, Jan de Gier and Mark Zijlstra for their help
with implementing the experiments. Furthermore, the project was made
possible by Leon Kester, Ad van Heijningen and Paul Booij—thank you for
your contributions.

The wireless power transfer chapter would not have been possible
without the help of Kasım Sinan Yıldırım. Thank you very much for
bringing the topic tomy attention, and for providing this great application
for my algorithm. I think we had a good time working together, and I can
definitely say that writing this paper was the most fun of all the chapters
in this thesis. Also, I have to thank you again for presenting the paper in
Arizona when I couldn’t: you did a great job in presenting our work, and
brought home the Best Paper award.

Considering the final chapter of my thesis, I would like to thank Arun
Subramanian for his help with implementing the agent-based algorithm
and experiments. I would like to thank Joost Stam for helpingme with the
formal definition of the problem and the followingmathematical analysis.
And of course thanks goes to Koen Kok, for providing the scientific guid-
ance and expertise in the energy domain.

Then I would like to thank all the other TNO colleagues and former
colleagues who helped me in shaping my research, either directly or

121



122 References

indirectly, or by providing a relevant project or use case. A few people
who I owe a special thanks for their contribution as a project leader
that (partially) funded my research are Peter Laloli (AMSN), Yolanda
Rieter-Barrell (DEMANES), Esther Zondervan (ERP Complexity) and Joost
Adriaanse (CERBERO).

I would also like to thank all my colleagues at the TU Delft. Thanks for
letting me be part of the group, even though I was sometimes not around
for months on end, I always felt welcome and will remember the group
outings. I would especially like to thank Andrei Pruteanu, who worked
with me on the DEMANES project, and pointed me to DCOPs as a potential
driver of self-organization. Also, I would like to thank Marco Cattani and
Andreas Loukas for discussing my work, or telling me about theirs, or a
chitchat about the more important things in life over a cup of coffee.

A special thanks goes to Elizabeth Busey who very kindly allowedme to
use her artwork for the front cover of this thesis. Elizabeth uses the disci-
plines of printmaking, collage and alternative photography to explore the
beauty of natural forms and their underlying mathematical and scientific
explanations. Seemore of herwork at http://www.elizabethbusey.com.

Outside my work environment, I would like to thank my dear friends
Daan, Niels and Aljo and of course the JC, Folkert, Kees K., Kees L., Sjaak,
Sjoerd andWicher. Thank you for the good times, drinks and food, and all
the city trips.

Obviously I would like to thank my parents Jan and Wyp, my sisters
Jeanette and Marianne, and the rest of my family for their love and
support. Because of you, I am the curious, investigative, problem-solving
scientist that I am today. Also, I would like to thank my parents-in-law
Arnold and Corine, for welcomingme into their family.

I would like to thankmy loving wife, Inge. Thank you for your love and
understanding and for the patience over the years. You have beenmy sup-
port for nearly twelve years now, and I hope you will for a long time after
this. You know what it is like writing a dissertation, and you have helped
me see it through. You have inspired me to keep putting my best into my
work, and you will continue to do so. And of course I also have to thank
you for bringing so much happiness into my life, which brings me to the
last two people I would like to thank.

Alex en Chris, thank you for all your love and joy that you give me. You
two are the best thing that happened to me, and you already make me and
yourmother very proud. Having you has definitely not helped to finishmy
thesis, but both of you are absolutely the best reason to get mymind off of
it.

http://www.elizabethbusey.com


Curriculum Vitæ

Cornelis Jan van Leeuwen

07-10-1986 Born in Delfzijl, The Netherlands.

Education
2008–2010 Master Artificial Intelligence

University of Groningen
Master Thesis: Driver Modelling and Lane Change

Maneuver Prediction
Supervisor: Dr. ir. B. Netten and Dr. M. A. Wiering

2004–2008 Bachelor Artificial Intelligence
University of Groningen
Bachelor Thesis: Object Recognition Based on Local

Symmetries
Supervisor: Dr. G. Kootstra

1998–2004 High School
Ommelander College, Appingedam

Experience
2016 Research Scientist

TNO ICT,
Monitoring and Control Services, Groningen

2012–2020 Ph.D. Student (visiting researcher)
Delft University of Technology,
Embedded and Networked Systems

2010–2016 Research Scientist
TNO Technical Sciences,
Intelligent Imaging, The Hague

123





List of Publications

Publications related to this thesis
[1] C. J. van Leeuwen, J. Sijs, and Z. Papp, A reconfiguration framework

for self-organizing distributed state estimators, in Proceedings of the In-
ternational Conference on Information Fusion (IEEE, Istanbul, Turkey,
Jul. 9–12, 2013) pp. 499–506.
Chapter 2 of this thesis.

[2] C. J. van Leeuwen, J. M. de Gier, J. A. de Oliveira Filho, and Z. Papp,
Model-based architecture optimization for self-adaptive networked sig-
nal processing systems, in Proceedings of the International Conference
on Self-Adaptive and Self-Organizing Systems (London, UK, Sep. 8–12,
2014) pp. 187–188.

[3] C. J. van Leeuwen, Y. Rieter-Barrell, Z. Papp, A. Pruteanu, and T.
Vogel, Model-based engineering of runtime reconfigurable networked
embedded systems, in Runtime Reconfiguration in Networked Embedded
Systems edited by Z. Papp and G. Exarchakos (Springer Singapore,
2016) Chap. 1, pp. 1–28.

[4] Z. Papp, R. del Toro Matamoros, C. J. van Leeuwen, J. de Oliveira
Filho, A. Pruteanu, and P. Šůcha, Designing reconfigurable systems:
Methodology and guidelines, in Runtime Reconfiguration in Networked
Embedded Systems, edited by Z. Papp and G. Exarchakos (Springer
Singapore, 2016) Chap. 2, pp. 29–68.

[5] C. J. van Leeuwen, V. H. Díaz, R. Kotian, R. del Toro Matamoros, Z.
Papp, and Y. Rieter-Barrell. An illustrative application example: Cargo
state monitoring, in Runtime Reconfiguration in Networked Embedded
Systems, edited by Z. Papp and G. Exarchakos (Springer Singapore,
2016) Chap. 6, pp. 137–168.

[6] C. J. van Leeuwen and P. Pawełczak. CoCoA: A non-iterative approach
to a local search (A)DCOP solver, in Proceedings of the Conference on
Artificial Intelligence (AAAI, San Fransisco, CA, USA, Feb. 4–11, 2017).
Chapter 3 of this thesis.

[7] C. J. van Leeuwen, K. Sinan Yıldırım, and P. Pawełczak. Self adaptive
safe provisioning of wireless power using DCOPs, in Proceedings of the

125

https://ieeexplore.ieee.org/document/6641321/
https://ieeexplore.ieee.org/document/6641321/
https://doi.org/10.1109/SASO.2014.37
https://doi.org/10.1109/SASO.2014.37
https://doi.org/10.1007/978-981-10-0715-6_1
https://doi.org/10.1007/978-981-10-0715-6_1
https://doi.org/10.1007/978-981-10-0715-6_2
https://doi.org/10.1007/978-981-10-0715-6_2
https://doi.org/10.1007/978-981-10-0715-6_6
https://doi.org/10.1007/978-981-10-0715-6_6
https://dl.acm.org/citation.cfm?id=3298141
https://dl.acm.org/citation.cfm?id=3298141
https://doi.org/10.1109/SASO.2017.16
https://doi.org/10.1109/SASO.2017.16


126 List of Publications

International Conference on Self-Adaptive and Self-Organizing Systems
(Tucson, AZ, USA, Sep. 18–22, 2017).
Chapter 4 of this thesis. This paper received the “Best Paper” award.

[8] C. J. van Leeuwen and P. Pawełczak.Hybrid DCOP solvers: Boosting per-
formance of local search algorithms, in Proceedings of the International
Workshop on Optimization in Multiagent Systems (Stockholm, Sweden,
Jul. 14, 2018).
Chapter 5 of this thesis.

[9] A. Rassa, C. J. van Leeuwen, R. Spaans, and K. Kok. Developing local
energy markets: a holistic system approach, IEEE Power and Energy
Magazine 17(5):59–70 (2019).

Publications unrelated to this thesis
[10] J. Baan, B. Driessen, J. van Huis, and C. J. van Leeuwen. SPITS road

side sensor system, inProceedings of the EuropeanCongress on Intelligent
Transport Systems, (Lyon, France, Jun. 6, 2011).

[11] H. Bouma, G. Burghouts, L. de Penning, P. Hanckmann, J. M. ten
Hove, S. Korzec, M. Kruithof, S. Landsmeer, C. J. van Leeuwen, S. van
den Broek, A. Halma, R. den Hollander, and K. Schutte. Recognition
and localization of relevant human behavior in videos, in Sensors, and
Command, Control, Communications, and Intelligence Technologies for
Homeland Security and Homeland Defense, edited E. M. Carapezza,
(Baltimore, MA, USA, Jun. 6, 2013) 87110B.

[12] G. Burghouts, L. de Penning, J. M. ten Hove, S. Landsmeer, S.
van den Broek, R. den Hollander, P. Hanckmann, M. Kruithof,
C. J. van Leeuwen, S. Korzec, H. Bouma, and K. Schutte. A search
engine for retrieval and inspection of events with 48 human actions in
realistic videos, in Proceedings of the International Conference on Pattern
Recognition Applications and Methods (Barcelona, Spain, Feb. 15–18,
2013) pp. 413–418.

[13] C. J. van Leeuwen, A. Halma, and K. Schutte. Anomalous human
behavior detection: an adaptive approach, in I. Kadar, editor, Signal
Processing, Sensor Fusion, and Target Recognition (Baltimore,MA, USA,
May 23, 2013) 874519.

[14] B. Netten, I. Passchier, H.Wedemeijer, S.Maas, and C. J. van Leeuwen.
Technical evaluation of cooperative systems experience from the DITCM
test site, in Proceedings of the European Congress on Intelligent Transport
Systems (Dublin, Ireland, Jun. 4–7, 2013).

[15] B. Netten, A. Hegyi, M. Wang, W. Schakel, Y. Yuan, T. Schreiter, B.
van Arem, and C. J. van Leeuwen. Improving moving jam detection

https://www2.isye.gatech.edu/~fferdinando3/cfp/OPTMAS18/papers/paper_10.pdf
https://www2.isye.gatech.edu/~fferdinando3/cfp/OPTMAS18/papers/paper_10.pdf
https://doi.org/10.1109/MPE.2019.2921743
https://doi.org/10.1109/MPE.2019.2921743
https://coenvl.nl/pdf/baan2011.pdf
https://coenvl.nl/pdf/baan2011.pdf
https://doi.org/10.1117/12.2015877
https://doi.org/10.1117/12.2015877
http://resolver.tudelft.nl/uuid:34c82260-a440-4ccf-a793-0b3be85c6540
http://resolver.tudelft.nl/uuid:34c82260-a440-4ccf-a793-0b3be85c6540
http://resolver.tudelft.nl/uuid:34c82260-a440-4ccf-a793-0b3be85c6540
https://doi.org/10.1117/12.2015678
https://doi.org/10.1117/12.2015678
https://www.researchgate.net/publication/259754505_Technical_Evaluation_of_Cooperative_Systems_Experience_from_the_DITCM_Test_Site
https://www.researchgate.net/publication/259754505_Technical_Evaluation_of_Cooperative_Systems_Experience_from_the_DITCM_Test_Site
http://resolver.tudelft.nl/uuid:1b4a3aae-945d-4b34-8fa2-e57bc91beb8d


List of Publications 127

performance with V2I communication, in Proceedings of the World
Congress on Intelligent Transport Systems (Tokyo, Japan, Oct. 14–18,
2013).

[16] I. Passchier, B. Netten, H. Wedemeijer, S. Maas, C. J. van Leeuwen,
and P. P. Schackmann. DITCM roadside facilities for cooperative systems
testing and evaluation, in Proceedings of the International Conference on
Intelligent Transportation Systems (The Hague, Netherlands, Oct. 6–9,
2013) pp. 936–942.

[17] C. J. van Leeuwen, J. van Huis, and J. Baan. Large scale track analysis
for wide area motion imagery surveillance, in Optics and Photonics for
Counterterrorism, Crime Fighting, and Defence, edited by D. Burgess,
G. Owen, H. Bouma, F. Carlysle-Davies, R. J. Stokes, and Y. Yitzhaky
(Edinburgh, UK, Sep. 26–28, 2016) 99950J.

[18] P. Pillegi, J. Verriet, J. Broekhuijsen, C. J. van Leeuwen, W. Wijbrandi,
and M. Konsman. A digital twin for cyber-physical energy systems, in
Proceedings of the Workshop Modeling and Simulation of Cyber-Physical
Energy Systems (IEEE, Montreal, Canada, Apr. 15, 2019).

http://resolver.tudelft.nl/uuid:1b4a3aae-945d-4b34-8fa2-e57bc91beb8d
http://resolver.tudelft.nl/uuid:1b4a3aae-945d-4b34-8fa2-e57bc91beb8d
https://doi.org/10.1109/ITSC.2013.6728352
https://doi.org/10.1109/ITSC.2013.6728352
https://doi.org/10.1117/12.2241748
https://doi.org/10.1117/12.2241748
https://doi.org/10.1109/MSCPES.2019.8738792

	Summary
	Samenvatting
	Introduction
	Problem Statement
	Contributions and Thesis Outline

	Self Organizing State Estimation
	Introduction
	Distributed State Estimation
	Problem Formulation
	A General Framework for Distributed Kalman Filtering
	Tuning the Functional Primitives

	Reconfiguration Framework
	Model-Based Design Concepts
	Runtime Reconfiguration
	Knowledge Representation and Reasoning

	Case Study
	Conclusions

	CoCoA: an (A)DCOP Solver
	Introduction
	DCOP: Problem Statement and Challenges
	DCOP: Existing Solvers
	Challenges

	CoCoA: A New DCOP Solver
	CoCoA: Algorithm Description
	CoCoA: Example Run
	CoCoA: Termination Guarantees
	CoCoA: Privacy

	CoCoA Performance: Experimental Results
	Graph Coloring
	Semi-Randomized Asymmetric Problems
	Sensor Planning

	Conclusions

	Self-organizing Wireless Power Transfer
	Introduction
	A Primer on Wireless Power Transfer Networks
	Problem Statement
	Contributions

	Related Work
	Wireless Power Transfer
	Distributed Constraint Optimization

	System Model: A Network of Energy Provision
	ET Model
	ER Model
	Sensor Model

	Problem Description
	Translation into a DCOP

	TESSA: A Safe Wireless Charging System
	The Main Charging Protocol
	CoCoA and Race Conditions
	Solving CoCoA Race Condition Issue: CoCoA_CA

	Experiments
	Comparing Solvers
	Scalability
	Performance Under Model Error
	Dynamic Environment

	Conclusions

	Hybrid DCOPs
	Introduction
	Problem Statement
	A New Class of DCOP Solvers: Hybrid Solvers
	Motivation for a Hybrid DCOP Solver

	Initialization of DCOP Solvers: Classification
	DCOP Classification: Initialization Methods
	DCOP Classification: Existing Iterative Methods
	Novel Iterative DCOP Solver: ACLS-UB

	Hybrid DCOP Solvers: Introduction and Initial Results
	Experiment Results
	Hypothesis 1: Solution Cost Correlation
	Hypothesis 2: Increased Solution Space Exploration
	Hypothesis 3: Selection of Starting Point

	Graph Density
	Conclusions

	Self-organizing Smart Grid Planning
	Introduction
	Problem Statement
	Related Work

	Self-Organizing Economic Dispatch
	Local Pricing Receding Horizon
	Agent Behavior

	Experiment Setup
	Distribution Network Topology
	Household Load and PV Profiles
	Forecast Uncertainty

	Centralized Solver
	Receding Horizon Centralized Solver
	Perfect Information Centralized Solver

	Results
	Comparison with Central Solvers

	Conclusions

	Conclusions and Future Work
	Contributions
	Future Work

	References
	Acknowledgements
	Curriculum Vitæ
	List of Publications

