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Abstract

In this study, we present a first step towards a cutting-edge software framework that will enable
autonomous racing capabilities for nano drones. This is done through the integration of neural
networks tailored for real-time operation on resource-constrained devices. A lightweight Convolutional
Neural Network, with the Gatenet architecture, is adjusted for reduced computational demand and is
successfully deployed on a GAPS8 processor at a rate of 16Hz. This network provides gates’ size and
location data for the subsequent positioning algorithm. A second neural network, trained through
reinforcement learning, governs the drone’s guidance and control systems, demonstrating a remarkable
rate of 167Hz on an STM32F405 processor. The attitude rates and thrust outputted by this network are
then fed to an attitude rate PID controller.

The research shows that state-of-the-art neural networks for drone racing can be deployed on nano
drones, despite their limited processing power. Nonetheless, the study demonstrated specific limitations,
such as the perception network’s sensitivity to white pixels in the image reducing its effectiveness
when light sources are present in the scene. These findings underscore the importance of dataset
composition and the need for diverse training scenarios to enhance the neural network’s generalizability
and performance in real-world applications.
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Abbreviations

CNN Convolutional Neural Network

EKF Extended Kalman Filter

GPS  Global Positioning System

GPU  Graphics Processing Unit

IMU  Inertial Measurement Unit

INDI Incremental Nonlinear Dynamic Inversion
MPC Model Predictive Control

PID  Proportional Integral Derivative

RANSAC Random Sample Consensus

VIO  Visual-Inertial Odometry
Symbols

W Angular velocity

A Attitudes

(@) Attitude Rates

C Center of Camera

d Distance from camera to point
E Errors

e Basis vector of the world coordinate systems
P Point in image

14 Position

R Rotation Matrix

t Translation Vector

\4 Velocities

L Loss

u Loss Weight

¢ Roll

Y Yaw

o Threshold

T Time Constant
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Introduction

In the intersection of deep learning and autonomous systems, the world of autonomous drone racing
has emerged as a testing bed for cutting-edge technology. The last few years have witnessed tremendous
advancements in deep learning, driven by new reinforcement learning strategies and sophisticated
neural network architectures. These technological leaps have consistently outperformed human expertise
in simulations and controlled gaming contexts, such as Go[9], Starcraft[11], and chess[9]. Yet, the
application of such artificial intelligence has been predominantly within simulations, manily due to the
less predictable variables of real-world settings.

The world of drone racing where trained pilots maneuver quadcopters at speeds exceeding 100
km/h, has recently been recognized as a prime environment for testing and enhancing Al systems.
The Alphapilot autonomous racing competition in 2019 was a showcase of the cutting-edge research
being conducted in this domain. However, human pilots were still significantly faster, with drones
operated by Al lagging by a factor of at least two[2]. A paradigm shift occurred with the introduction
of the Swift system, which, powered by a Nvidia Jetson TX2, successfully outperformed multiple
professional human pilots for the first time in history[6]. This field’s relevance extends beyond sport;
the technologies developed for drone racing have implications for real-world applications like search
and rescue operations and autonomous inspections in disaster-struck regions where indoor navigation
without GPS is vital[5].

Despite the progress, a significant gap remains in deploying neural networks, the state-of-the-art for
control and perception[5], on edge devices like nano drones. These devices face tight constraints in
computational resources and latency, that are amplified when drones must navigate at high speeds.
Addressing these challenges is not trivial, as traditional neural networks are not feasible on such
constrained devices, as they usually run on powerful GPUs[2].

This thesis delves into a system designed to race a 40g nano drone, capable of running Al algorithms
on processors with limited computational power. It describes the development and deployment of two
lightweight deep neural networks: one for perception and gate detection and another for guidance and
control, both optimized through parameter tuning and quantization. Additionally, this report provides
a comprehensive review of state-of-the-art strategies employed at each stage of the autonomous drone
racing software stack. From perception algorithms converting images to position and state[7, 8, 10], to
planning and control methods[1], and methods to deploy neural networks for reduced latency[4].

Embarking from this foundation, the main research question this work seeks to answer is:

How can state-of-the-art perception and control algorithms for autonomous drone racing be simplified
to fit nano-drones, specifically a crazyflie equipped with AI-Deck?

In addressing the central research question, this study has yielded three significant contributions
that address the existing knowledge gap in the field of autonomous nano drone racing. The first is
the successful development of a neural network capable of accurately locating racing gates at very
low image resolutions. The second contribution is the effective deployment of this network on the
Al-Deck, achieving inference speeds sufficient for real-time drone flight. Lastly, the study has pioneered
the implementation of a lightweight guidance and control neural network, trained via reinforcement
learning, on the flight controller of a Crazyflie drone, allowing autonomous flight to happen.

1



This thesis document is divided in three parts: Part.I contains the scientific paper, Part.Il contains
additional results which dig into more details about certain aspects of the project, and finally Part.III,
the literature review. All the code for this project can be found on github?

Thttps:/ / github.com/fed12345/nano-drone-racing
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Modular Neural Network Navigation for
Autonomous Nano Drone Racing

Federico Magri, Robin Ferede, Stavrow Bahnam, Christophe De Wagter, Guido C.H.E De Croon

Abstract—In this study, we present a first step towards a
cutting-edge software framework that will enable autonomous
racing capabilities for nano drones. Through the integration of
neural networks tailored for real-time operation on resource-
constrained devices. A lightweight Convolutional Neural Net-
work, with the Gatenet architecture, is adjusted for reduced
computational demand and is successfully deployed on a GAPS
processor at a rate of 16H z. This network provides gates’ size
and location data for the subsequent positioning algorithm. A
second neural network, trained through reinforcement learning,
governs the drone’s guidance and control systems, demonstrating
a remarkable rate of 167H =z on an STM32F405 processor. The
attitude rates and thrust outputted by this network are then fed
to an attitude rate PID controller.

The research shows that state-of-the-art neural networks for
drone racing can be deployed on nano drones, despite their
limited processing power. Nonetheless, the study demonstrated
specific limitations, such as the perception network’s sensitivity
to white pixels in the image reducing its effectiveness when light
sources are present in the scene. These findings underscore the
importance of dataset composition and the need for diverse train-
ing scenarios to enhance the neural network’s generalizability
and performance in real-world applications.

Index Terms—Reinforcement learning, Convolutional neural
network, Quantization, Drone Racing

I. INTRODUCTION

EEP Learning has seen incredible progress over the

last years, with notable advancements propelled by the
integration of reinforcement learning and deep neural network
architectures. These methods have proven their worth by sur-
passing human experts in several competitive areas, including
games like Go [1], Starcraft [2], and chess [1]. Despite these
successes, the application of Artificial Intelligence(Al) has
remained predominantly within the bounds of simulations and
controlled gaming contexts, lacking the unpredictable variables
present in real-world settings.

The world of drone racing, where trained pilots maneuver
quadcopters at speeds exceeding 100 km/h, has recently been
recognized as a prime environment for testing and enhancing
Al systems. The Alphapilot autonomous racing competition
in 2019 was a showcase of the cutting-edge research being
conducted in this domain. However, human pilots were still
significantly faster, with drones operated by Al lagging by a
factor of at least two [3]. A paradigm shift occurred with the
introduction of the Swift system, which, powered by a Nvidia
Jetson TX2, successfully outperformed multiple professional
human pilots for the first time in history [4].

With the rise of edge artificial intelligence, complex al-
gorithms can be run on smaller drones [5]. Nano drones,
with diameters under 10cm, are an agile and versatile robotic

platform employed in cases where size is of the essence.
Spanning from aerial inspection tasks in narrow places [6]
to human-robot interaction tasks [7]. Given the limited flight
time from the battery size, the faster these drones can fly the
more efficient the application is.

This article describes a system that can be used to au-
tonomously race on nano drones, using artificial intelligence.
Two lightweight deep neural networks are introduced in this
article. The perception neural network detects the gates and is
trained with supervised learning. The output of this network
is the center and size of the gate similar to an approach taken
by Pham et al. [8]. These outputs are then used to estimate the
relative position. The second neural network is for guidance
and control, it commands the attitude rates and thrust of the
drone. This network is trained via reinforcement learning.
Both networks are accelerated via tuning of the number of
parameters and quantization.

The three major contributions of this article are the suc-
cessful development of a neural network capable of accu-
rately locating racing gates at very low image resolutions.
The deployment of this network on the AI-Deck, achieving
inference speeds sufficient for a nano drone to fly. Finally,
the implementation of a lightweight guidance and control
neural network, trained via reinforcement learning, on the
flight controller of a Crazyflie drone.

II. RELATED WORK

Advanced algorithms such as Visual Inertial Odometry
[9] or feature-based Simultaneous Localization And Mapping
(SLAM) [10] are unviable due to their intensive computational
demands. Similarly, the application of control strategies, like
Model Predictive Control [11], are discarded because of their
computational intensity.

Consequently, we move towards employing Neural Net-
works, prioritizing lightweight ones, to avoid overburdening
the drone’s processing capabilities. DroNet proposed an end-
to-end navigation solution via a single neural network [12].
However, our approach leans towards a modular system as
it tends to be faster and easier to debug. A faster approach
is because the perception network and control network can
operate at independent speeds, which is particularly advanta-
geous for certain needs, such as the control network running
at a much faster rate. Modularity also offers the benefit of
providing insights into the actions of each network, rather than
treating the system as a black box.

The state-of-the-art system for drone racing is Swift [4]
and also follows a modular neural network approach. On the
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perception side, this system runs a gate detection Convolu-
tional Neural Network(CNN), that infers the corners of gates
and the part affinity fields [13]. Following this, the gates are
identified and the position of the drone on the race track is
determined. This network has a U-net structure not compatible
with nano drones due to its computational load. For this
reason, lightweight and efficient networks, like Gatenet [8]
and Dronet [12] are a better option for this project.

On the control side, Swift employs a two-layer network that
maps the output of the Kalman filter to the control commands
for the drone. The policy is trained using reinforcement learn-
ing in simulation [4]. During training, the policy maximizes
a reward that combines progress towards the next racing gate
with a perception objective that rewards keeping the next gate
in the field of view of the camera. This approach is also used
in the Guidance and Control Net [14], with the output of
the network being the motor rpm commands directly instead
of the attitude rates and thrust and no perception penalty.
Deploying reinforcement learning policies on nano drones is
a challenge due to their unpredictability, as there will be a
large reality gap between the simulator and the real world.
This reality gap is attributed to many factors namely, the
sensitivity to disturbances due to the small size of nano drones,
the dependency on the battery state [5], and the fact that the
Crazyflie motors are brushed.

III. HARDWARE

To devise an optimal racing strategy for nano drones, one
must first consider the inherent constraints of these small de-
vices. We employ the CrazyFlie 2.1 as our primary model due
to its widespread availability and its open-source development
platform. This drone is powered by an STM32F405 processor
(Cortex-M4, 168MH z, 192kb SRAM, 1Mb flash) and utilizes
the nRF51822 for radio communications and power man-
agement (Cortex-M0, 32M Hz, 16kb SRAM, 128kb flash).
Additionally, it has 3-axis accelerometers/gyroscopes and a
high-resolution pressure sensor [15]. Moreover, the CrazyFlie
2.1 is equipped with an Al-Deck that integrates a Hi-Max
Gray-scale camera, with a low-power GAPS processor.

IV. IMPLEMENTATION

The software stack is shown in figure 1. One can notice
that the perception task is handled by the AI-Deck, where a
[122x162] pixel image is captured by the Hi-Max camera at
a rate of 30Hz. This image is then fed to a network that
detects gates and outputs the center coordinates of the gate
and the apparent size, in pixels. Following this, a relative po-
sition algorithm estimates from these parameters, the relative
position from the gate to the drone. In this research, the state
estimation is done with a motion capture system and an IMU.
Alternatively, one could use the relative gate position and IMU
but this is outside the scope of the project.

Once the states have been estimated, a Guidance and Con-
trol network [14] outputs the desired thrust and attitude rates,
and will fly the drone through the gate. At the lowest level,
the rates are fed to a PID controller, developed by Bitcraze,
which outputs the motors’ rpms.

A. Perception

1) Architecture: In order to detect a gate, a CNN-based
approach is taken. Two state-of-the-art neural networks are
compared in this work. The first one, GateNet [8], is a CNN
with 6 convolutional layers followed by a max pooling, and at
the end a fully-connected layer, illustrated in figure 2. The idea
of this network would be for the convolutional layers to detect
features and the fully connected layer to map these features to
the pixel coordinates of the center, the width, and the height of
the gate. The other network is Dronet [12], which is a variant
of the ResNet-8 neural network with three residual blocks.
This architecture is efficient and simplifies back-propagation.
In addition, these residual blocks help combat the vanishing
gradient problem [12]. The outputs of these networks are the
u and v coordinates of the center of the gate, the height
and width of the gate(in pixels), and a confidence value that
determines if a gate is in the image or not.

2) Training: Running a neural network on the AI-Deck
requires it to be lightweight, especially if it runs for drone
racing purposes the latency needs to be low, leading to the
need for a low-resolution input image. For this project, the
networks are trained on two datasets. The first dataset consists
of 5000 simulated images with the AIRR Gate [3] to compare
the two network architectures and evaluate if detecting gates
is possible at low resolutions'. The other dataset is a set of
images taken with the Hi-Max camera of the gate that needs to
be detected, see figure 3. This is a collection of 2000 images,
of which 400 have been labeled by hand. The rest are labeled
with a computer vision algorithm that detects white pixels in
the image. To be automatically labelled the gate has to be on
a dark background.

3) Loss Function: The network is subject to minimizing
the loss function in equation 1.

L :Mcenteré ((’LL - ’0’)2 + (U - {))2)

+ /-Lsizeé ((Su - éu)2 + (Sv - §v)2> + Hconf(c - 6)27
(1

where ficenter = 2, Usize = 2 and piconf = 1, are the weights of
the center coordinate, size and confidence parts of the loss
function, these are non-trainable. (u,v) and (@,0) are the
coordinates to the center of the gate, predicted and ground-
truth respectively. s,,, s, are the width and height of the gate
in pixels.

4) Deployment: The GapFlow process, pipeline by Green-
waves technologies [16], is used to deploy the CNN on the
GAPS8 processor. Before the network can go through this
pipeline it needs to be quantized. For this, the training-aware
quantization of TensorFlow is employed. Network sparsifica-
tion, to reduce the number of connections in a network, was
also attempted but did not improve the performance of the
network(see Additional Results). This model is then fed to the
GAP NNTool, which maps the network nodes to the GAPS
computational nodes. Next, the GAP Autotiler optimizes the
data movement across the memory hierarchy based on the

Uhttps://github.com/open-airlab/pencilnet
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Motor Commands

>

Al-Deck
Image 1 Center, Size (
CNN J }L Rel. Pos. Algo
Relative Position
STM32F405 State Des Rates, Thrust
\{ EKF G&C Net Att Rate PID
Fig. 1: Software stack for racing on the Crazyflie
I B. Relative Position
- - - C — > The relative position from the gate to the drone is estimated
&= @ é @ é @ é % é % Q% @ 8 % é 2 using the center coordinates and size of the gate, which are
g E SNETEIEIEIENEIENEIENETE A g ;: computed by the gate detection network. The first step is to
“TRIEIRPIEIPIEIRPIEIP|IE]RP] - o calculate the angle, ¢, between the gate center and the center
of the camera, shown in equation 2. Where » and v are the
I center coordinates of the gate and camera, in pixels. While, f
Fig. 2: Network architecture of Gatenet is the focal length.

Fig. 3: On the left, the test set of the simulation dataset, in
green is the label and in red are results of Gatenet. On the
right, two images captured by the Al-Deck camera. Again in
red the output of the network, no labels are present for these
images.

network and memory constraints. Finally, this generated code
can be dockerized and flashed to the AI-Deck with the help
of the crazyradio.

_ Ugate — Ucam ¢, = Ugate — Ucam

fy fa
Following this, the distance to the camera is calculated accord-
ing to equation 3, where S, is the size of the gate, assumed
to be known, in meters and sy is the size of the gate in pixels,
which is the output of the gate detection network. The distance
can be calculated using s, or s, values according to which
measurement is larger. The camera focal length and center are
determined experimentally.

d= Sreal, X (

Finally, =, y, and z relative position from the center of the
gate to the drone are extracted using equations 4, 5 and 6.
The coordinate system is z up with the origin located at the
center of the gate, the x-axis is aligned with the direction the
gate needs to be crossed. Thus, the drone is always behind the
gate. The major drawback of this approach is that it assumes
the relative yaw between the gate and the drone to be zero.

¢ (€3]

Ja

Snet,,

3

r=—d )
y=—Cxd 3)
v=—(y xd ©)

C. Control

Once the relative position has been determined, a feed-
forward network estimates the desired attitude rates and thrust,
then a PID controller yields the motor rpms’. To achieve this
we train the model in simulation using reinforcement learning.
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The pipeline begins with the drone being modeled to have
a good simulator, next the architecture of the network was
decided. Following this, the network was trained in simulation
leveraging the Markov Decision Process(MDP) framework.
Finally, the network is deployed on the flight controller. To
fly the control network an imaginary race is set up, with four
gates in a 4 x 3m rectangle. The goal is to fly this path as
quickly as possible.

1) Quadcopter Model: The controller’s response to com-
mands are assumed to be a first-order delay system. The model
encompasses kinematic equations and a linear drag model, the
states and inputs are:

X = [pv v, >\7 ﬂaT]Ta u= [Qcmda Tcmd]T

Where p are the positions of the drone, v are the velocities,
A are the Euler angles, €2 are the angular rates, and 7" is the
thrust. The equations governing motion are:

p=v, 9
v = ges + R(A)F, (8)
A=QNQ, 9)
Q = (ema — ) /70, (10)
T = (Tiwa — T)/7r, (11

From flight data we computed 7, and 7, to be 0.0382. 7,
to be 1.1113, and 77 to be 0.0565,. Moreover, the specific
force F is formulated as F = [~d,v5, —d,v?, —T]". From
empirical data, we derived d, to be 0.34 and d,, to be 0.43.

To optimize performance, we set defined boundaries for
thrust and attitude rates, tailored to the most stable and rapid
flight achievable in our system:

Pemds Gemd € [—0.2, 02},

2) Architecture: The policy network processes 13 inputs,
which include states of the drone relative to the gate, denoted
by superscripts g, attitude rates, and thrust:

Xin = [pgiv vgi ) Agiv Qa T]T

The network outputs four control signals: thrust and body
rate commands. Distributed from -1 to 1 to simplify the
network learning. The architecture consists of three general
matrix multiply(GeMM) layers, with a ReLu activation func-
tion, with the same amount of neurons, see in figure 4.

3) Training: In order to train the network using rein-
forcement learning, we transform our dynamic model into a
discrete-time MDP. This framework defines the set of states the
environment can be in, the set of actions the agent(drone) can
take, the reward for every given action, and the probabilities of
moving from one state to the next after an action. Initial states
are uniformly sampled from specified intervals, as described in
equation 12. The agent starts at one of these states and employs
the network to choose an action with a certain probability and
receiving a certain reward, 7.

States
Input
GeMM
GeMM
GeMM
Output
p.q.1, T

Fig. 4: Network architecture of the Guidance and Control
network

Layer inference analysis for Gatenet

Precentage of total inference time[-]

Layer Name

Fig. 5: Inference analysis of the layers of GateNet as a
percentage of the total inference time. Inference is run on the
simulation dataset

The objective is to change the parameters (w) of
a neural network policy to maximize expected return

maxy, Er, [Z;io Vtrt”

zel-3,3+a, yel-Li+y, ze-% 3]+
(-3, 3] vy € [~3. 3] v, € [~5, 3]

pe -5 %] 0el-% % Y € [-m, 7]

p e [—1,1] q€[-1,1] re[—1,1]

T € [9.8,10.1] (12)

The drone’s goal is to complete an oval path, moving
through each gate as rapidly as possible. The performance
is evaluated using a reward function 13, as implemented by
Ferede et al. [14] with the additional yaw penalty.

IPx = Pyull = [IPr—1 = Py,

r(k) = — (Vg — g, )? if 7> 30
+10 — 10{|px — Py, ||, if gate passed
—10, if collision

(13)

In this function, pg, indicates the center position of the cur-
rent target gate. pi and py_1 represent the drone’s present and
preceding positions, respectively. The yaw is also taken into
account as we always want the drone to face the gate, to ensure
that the camera sees the gate. This reward becomes active only
once the network manages to fly through 3 gates, making the
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Evaluaiton of Gatenet on Al Deck
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Fig. 6: Trade-off between inference time on the Al-Deck and
the loss of networks with gatenet architecture with different
input image sizes. Trained on the self-generated dataset.

training more effective. Successful gate passage occurs when
the drone crosses the specified 1x1 meter boundary of the gate.
Collisions happen either when the drone touches the ground
or if it crosses outside the designated boundary of the gate.
4) Deployment: For optimal performance, the attitude rates
need to be supplied at approximately 150H z, to receive up-
to-date information but not overload the processor. To achieve
this speed on an STM32F405 processor, the network needs
to be lightweight. For this reason, after the training carried
out with Stable Baselines Proximal Policy Optimization [17],
an ONNX model is extracted and quantized with dynamic
quantization, before being converted to C code?.

V. RESULTS

In this work, we evaluate perception and control separately.
The perception networks are tailored for the AI-Deck, while
the control network is deployed on the STM32F405. All
flight tests were conducted in the CyberZoo, a 10x10x7 m
flight arena at TU Delft’s Aerospace Engineering faculty,
equipped with an OptiTrack motion capture system for real-
time position. The autopilot used was the Bitcraze software
development kit for the Crazyflie.

A. Perception

1) Architecture Selection: Detecting gates from images of
small resolution is a complex task for this reason two different
neural network architectures are investigated and compared.
Table I compares the Dronet [12] and Gatenet [8] architectures
in terms of FPS on an Intel-i5 CPU with no multi-threading.
We compare the loss according to the loss function, shown in
equation 1, the error in the center coordinated (E.), and errors
in width and height(Egx and Es,) according to equations 14
and 15 respectively.

E.=lu—14]+ |v— 9

(14)

By =|s— 3§ (15)

Zhttps://github.com/kraiskil/onnx2c

The experiment found that Dronet consistently surpassed
Gatenet across all error terms, while also having a lower
latency. It is important to note that in the simulation dataset,
all the images contain a gate therefore the confidence error is
not taken into account, but can be used as a framework for
further work.

Upon detailed examination, the disparity in the error met-
rics between the two architectures was relatively marginal.
Specifically, the relative error in determining the center pixel
location was 2 pixels, while the error in estimating the size of
the gate was approximately 0.7 pixels. These results suggest a
closer performance level between the two models than initially
indicated by the loss term.

However, a critical limitation of the Dronet architecture
arises from its structural complexity. Dronet’s architecture
cannot be quantized using either TensorFlow or the GapSDK
routines. This constraint makes Dronet impractical for imple-
mentation on the Al-Deck platform. Given these technical lim-
itations and the necessity for a balance between performance
and deployability, Gatenet is further analyzed in detail in this
work.

Network | FPS Loss ‘ Ec[pix] ‘ Esulpix] | Esv [pix]
DroNet 764 83.64 8.35 1.50 0.92
GateNet 528 127.19 10.97 2.16 1.60

TABLE I: Comparison between DroNet and GateNet in terms
of errors and inference times for images of size [122 x 162]
and batch size 32. Trained and tested on the simulation dataset

2) Layer Inference Analysis: The performance of Gatenet
was benchmarked on an Intel Core i5 processor, where it
achieved a frame rate of 528 frames per second (FPS). Given
the high-speed demands of drone racing, it is imperative to
maximize the network’s processing speed. The GAP8 pro-
cessor, featuring a RISC-V architecture, shows architectural
parallels to the x86 architecture of the Intel i5. This similarity
facilitates the transferability of inference analysis between
these two platforms. In Figure 5, we present a detailed
breakdown of the computation time required for each layer
in the Gatenet architecture, expressed as a percentage of the
total inference time.

The most important observation from this analysis is that,
out of the 15 layers, the first three convolutional layers
account for approximately 75% of the total inference time.
This significant proportion shows that these layers are the
primary bottlenecks in the network’s computation pipeline.
Consequently, reducing the resolution of the input images
leads to a substantial decrease in latency.

Another observation is that the second convolution is slower,
primarily because of the significantly higher number of multi-
plications needed due to the increased number of channels in
the input and the increased size of filters, despite the smaller
height and width of the input layer.

3) Parameter Tuning: In the pursuit of optimizing the
Gatenet architecture for deployment on the Al-Deck, a series
of experiments were conducted to determine the most effective
input image size. The primary objective was to establish a
balance between inference time and accuracy, ensuring that the
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Fig. 7: LIME on testset image with light in the camera view
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Fig. 8: LIME on standard testset image

network maintains a high performance while operating within
acceptable time constraints. The results of these experiments
are shown in Figure 6. Normalized loss is the loss from
equation 1 with the center and size prediction divided by the
height or width of the input image.

The experimental data shows that the inference time in-
creases with an increase in image size. For instance, with
an input dimension of [80 x 70] pixels, the network ran at
an inference time of 15 ms, corresponding to a frequency
of approximately 66 Hz, and recorded a loss of 0.11. While
a [400 x 350] image runs at 463ms[2H z]. This observation
highlights the direct impact of image size on the computational
efficiency and accuracy of the network.

After evaluating various configurations, the [162 x 122] pixel
version of Gatenet was selected. This decision was informed
by the requirement to keep the vision system’s update rate
within a minimum threshold of approximately 10 Hz.

4) LIME Algorithm: In order to better understand the
results and limitations of the network. The Local Interpretable
Model-agnostic Explanations(LIME) algorithm is employed
[18].

LIME operates by first perturbing the input data and gen-

erating a new dataset consisting of these perturbed instances
along with the corresponding predictions of the network [18].
For an individual prediction to be explained, LIME focuses
on this local neighborhood generated by perturbation. It then
learns a simple, interpretable model, such as a linear model,
which is trained to approximate the predictions of the complex
model as closely as possible within this local space.

The learned interpretable model is used to identify the
importance of each feature for the prediction of the instance
being explained. This is achieved by examining the weights
of the linear model that lead to the decision. The features that
contribute most significantly to the prediction are considered
to be key explanatory factors.

The output of this algorithm is shown in figures 7 and 8.
Focusing on figure 7, one can immediately notice that the
network gives importance to the white sections of the gate,
namely the bottom left corner and the top left corner. Apart
from some noise on the side of the images, the most sensitive
pixels are around the gate. Figure 7 illustrates the network’s
deficiencies. It depicts the white lights on the ceiling of the test
environment, which correspond to white pixels that are absent
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Fig. 9: Comparison between the position of the drone relative
to the gate measured with a motion capture system and
estimated by the CNN and relative position pipeline, estimate
width is calculated with the dimension of the width and the
height with the dimensions of the height. The coordinate
system is z up with the origin located at the center of the
gate, the x-axis is aligned with the direction the gate needs to
be crossed. Thus, the drone is always behind the gate.

in the training dataset. Consequently, the network exhibits
a pronounced bias towards regions with more white pixels.
Additionally, the network incorrectly infers the dimensions of
the gate, estimating it to be negative.

5) Relative Position: Figure 3 shows the Al-Deck running
Gatenet onboard can recognize a gate and estimate its center
and size in pixels. Figure 9 compares the output of the relative
position onboard running onboard against the true distance
from the gate to the drone over a 40-second period.

It can clearly be seen that the actual and predicted values
for x are closely aligned, indicating that the network reliably
predicts the gate’s dimensions and any size variation. However,
there is a notable discrepancy in the estimated distance when
the drone is situated more than 3 meters from the gate,
particularly at the start and end of the flight. This error is
linked to the CNN’s tendency to overreact to white pixels.
Beyond the 3-meter mark, the ceiling lights in the testing
environment come into the camera’s view, compromising the
accuracy of the predictions.

Evaluation of G&C Net on Flight Controller
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Fig. 10: Trade off between the inference time on the Crazyflie
flight controller and the reward of different size networks

B. Control

1) Parameter Tuning: Once again, for the application of
autonomous drone racing a faster network will result in a faster
drone. For this reason, a series of experiments were conducted
in which the number of neurons per layer of the network
was changed, thus changing the number of parameters. These
different networks were trained and the inference time on the
Crazyflie flight controller was recorded.

The findings, illustrated in Figure 10, reveal a direct correla-
tion between the network’s size and its inference time, which
ranged from 2.4ms to 11.7ms. A particularly interesting
aspect of these results is the observed plateau in the mean
reward, irrespective of the network’s increasing size. Despite
increasing the network dimensions, the mean reward appeared
to stabilize around 50. This figure suggests that, under the
conditions described in the previous section, the drone aver-
aged passing through five gates over a 12-second duration.
Interestingly, while an increase in network size made the
training faster, it did not increase the drone’s gate navigation
performance.

The Crazyflie’s attitude rate PID operates at 500H z. For
optimal performance, the attitude rates need to be supplied at
approximately 150H z. This requirement positions the network
configuration with 125 neurons as the most effective.

2) Performance Analysis: Tests were carried out on both
simulated rollouts and actual flight experiments. An analysis
of the real flights, as depicted in Figure 11, reveals that the
overall quality of flight control is suboptimal. This deficiency
is attributed to two principal factors. Firstly, there is a notable
discrepancy in the drone’s yaw control, as illustrated in Figure
12. The inaccuracy in modeling the drone’s yaw significantly
impairs the network’s ability to manage this aspect of flight
control, a limitation that becomes evident in the observed small
looping of the drone’s flight trajectory.

Secondly, the instability can be linked to the thrust model of
the Crazyflie. While the thrust appears to be accurately mod-
eled as seen in Figure 12, the underlying issue arises from how
the network directly manipulates the thrust. Specifically, the
network’s output in Gs is transformed into a thrust command
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Fig. 11: Trajectory for the real flight of the Crazyflie.

via multiplication with a constant. This constant, although
empirically derived, shows a high degree of sensitivity to
the drone’s battery state and voltage. Additionally, our model
does not account for the reduced efficiency of the propellers
at higher velocities, a factor that further compromises the
drone’s flight stability and control precision. This highlights
the complex interplay between modeling accuracy and real-
world control dynamics, proving the need for more sophisti-
cated models.

Analysing the simulated flight, as depicted in Figure 13. A
notable observation from the simulation data is the smoother
trajectory achieved, due to the more precise control over thrust
and yaw within the simulation environment. However, despite
the smoother trajectory, some inconsistencies are present,
especially in the first lap. These errors are less visible when
the network is trained with higher limits on the commands, the
reason for this is unknown and should be addressed in further
research.

Another insight emerged when examining the time taken to
complete the flight paths: the simulated flight accomplished
five laps in 18 seconds, in contrast to the 80 seconds required
for the real flight. This significant discrepancy underscores the
reality gap. Specifically, in real-world scenarios, the flight is
considerably slowed down by the need for numerous correc-
tion maneuvers.

Figure 12 shows the command and response of the Crazyflie
during the flight. It is clear that the modeling of the drone is
not very accurate, the thrust is acceptable, in this portion of
the flight. While, the roll and pitch rate overshoot. Another
important aspect is the yaw, as the model does not follow
the behavior of the drone. Moreover, the sensor heavily
undershoots the command especially in positive rotations. It
is important to note that a bias was identified of 35deg/s
between network command and response signifying an error
in the PID controller, this was corrected in the flight tests.

VI. CONCLUSION

We showed that state-of-the-art neural networks for drone
racing can be deployed on nano drones, despite their limited
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processing power. Our approach is divided into perception and
control. The former consists of a lightweight CNN with a
gatenet-like architecture [8]. We have tuned and deployed this
network on a GAPS processor, achieving speeds of 16 z. This
network outputs the size and center location of the gate which
are then fed to a relative position algorithm. A second network
trained with reinforcement learning is in charge of guidance
and control for the drone. This network was deployed on the
STM32F405 and, once again after having tuned the number
of parameters, the inference time is 6ms. Proving, that it is
possible to run state-of-the-art neural networks on small, CPU-
constrained devices.

This work is a proof of concept for nano drone racing,
further work on the perception part of the project should focus
on one of the biggest limitations of the CNN, namely the
sensitivity to white pixels. This issue arises from a dataset that
mostly represents the gate on a black background, to facilitate
the self-labeling algorithm. Moreover, deploying Dronet [12]
on the Al-Deck will be beneficial considering it outperformed
Gatenet in terms of accuracy and inference time. Another
aspect that should be researched could be to include the skew
of the gate in the prediction of the network to be able to extract
the relative yaw between the gate and the drone.

With regards to the control side of the project, further steps
could be focused on a better model of the drone to fix the
attitude rates responses. To fix the thrust two approaches can
be carried out, the first one is to modify the model such
that during the training phase the maximum thrust varies thus
leading to a network that can adapt to changes in maximum
thrust. The second approach could be to implement a PID
controller on the thrust command, similar to what is done for
the attitude rates. Another interesting path to take would be
to improve the attitude rate PID controller of the Crazyflie or
substitute it with an INDI controller.
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Addition results

This chapter describes additional experiments and results that were carried out during the project,
which are not included in the scientific article. This might be useful if someone would like to continue
working on this project or for the sake of completeness. The topics covered are the selection of the
datasets, in section 2.1, next a description of the training pipeline in section 2.2, an evaluation of the
relative position algorithm, section 2.3, and finally an analysis of the cost function for the guidance and
control network, section 2.4.

2.1. Vision Datasets

For any network trained with supervised learning, datasets are crucial. A dataset that is not accurate,
diverse, or with enough depth will surely result in a network that does not do the required task.
Unfortunately, with datasets finding the right one is mostly trial and error. For this project, three
different datasets were used: the Mavlab gates, the Simulated Gates, and the self-recorded dataset.
In the following sections, each dataset will be described and the performance of the network will be
evaluated.

2.11. Mavlab Gates

The initial dataset comprises in a collection of approximately 5,000 high-resolution images of gates
captured by various high-resolution cameras across multiple drone racing circuits, during the 2019
Alphapilot challenge. This collection was hand-labeled and contributed significantly to the victorious
outcome for the team in the said competition [2]. Representative samples from this dataset are exhibited
in Figure 2.1. Concurrently, Figure 2.2 shows the visual performance of the Gatenet neural network
post-training on this dataset. The efficacy of the network is compromised by several factors. First of
all, the presence of multiple gates within a single image. The network’s architecture can only detect
one, during training, if multiple gates are present, the algorithm preferentially processes the largest.
This penalizes the network for correct identifications. A secondary factor impeding performance is the
diversity in luminosity and lighting conditions observed in the gate images. For instance, occasional
blue LED illumination surrounding the gates, which suggests that the current network parameters may
be insufficient to understand such variability. Lastly, a "reality gap’ exists, attributable to the discrepancy
between the dataset images and the physical gates to be navigated during flight, predominantly coming
from the low image quality captured by the Ai-Deck camera, as illustrated in figure 2.5.

14
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Figure 2.1: Examples of images from the Mavlab dataset for Figure 2.2: Results of GateNet on a test set of the Mavlab
autonomous drone racing. dataset

2.1.2. Simulated Gates

Given the limitations presented by the Mavlab dataset and its consequent impact on performance,
questions arose regarding the network’s capacity to effectively learn from images of such small resolutions.
This concern prompted a shift to a simulated dataset comprising approximately 5000 images, as depicted
in figure 2.3, utilized by Pham et al.[8]. This dataset is characterized by each image containing a single
gate, with uniform brightness levels, thereby simplifying the task for the Convolutional Neural Network
(CNN). The simplified conditions of the dataset allowed both the Gatenet and Dronet architectures
to successfully learn from input images with the resolution of [162 x 122], as showcased in figure 2.4.
Consequently, this dataset was selected to benchmark the performance of both networks within the
scope of the study.

", R «",-;5
lp ' 'li

Figure 2.3: Simulation dataset used for training Figure 2.4: Network results on the simulation dataset

2.1.3. Self Recorded Data

The difference between the simulated dataset and actual flight data remains too significant for networks
to generate useful outcomes. In response, a new dataset was generated using the Hi-max color camera,
a collection of 300 images, showcased in figure 2.5. These images were manually annotated. Upon
training a network with this data, the task proved to be overly complex. The camera’s deficient color
and exposure quality make gate detection challenging even for human observers, which suggests that a
lightweight network would also struggle with this task, as depicted in figure 2.6. In addition, another
problem with this dataset was the tedious task of labeling the images which under the time constraints
of this project forced us to change strategy and find a way to automatically label images using standard
computer vision algorithms, eg. white pixel detection. Further insights from this dataset indicate that
color does not significantly enhance the information for the task at hand, and the additional inference
time required for the two extra color channels and the conversion from a Bayer pattern to RGB is
considerable. Therefore, the focus shifted to using grayscale images.

To reduce complexity, a more straightforward and larger gate with distinct patterns was printed.
Subsequently, a new dataset was captured with the HI-Max grayscale camera, as demonstrated in
figure 2.7. This new dataset is composed of 2000 images, 400 of which were manually labeled, with
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the remaining being processed by an automatic labeling tool. This tool calculates the gate’s center and
dimensions by pinpointing the white pixels within the image. A notable limitation of this method is the
necessity for the gate to contrast against a dark background. Nonetheless, the network trained with
this dataset yielded encouraging results, as evident in figures 2.8. Consequently, this network has been
implemented on the Al-Deck for onboard gate detection tasks.

Figure 2.5: Results of GateNet on a test set of the Mavlab Figure 2.6: Results of GateNet on a test set of the Mavlab
dataset dataset

Figure 2.7: The newly designed gate used for the dataset Figure 2.8: Performance results using the new gate design

2.2. Training Vision Networks

The training pipeline of the vision networks is divided into two phases, namely the data augmentation
and the training phase.

First, the dataset is loaded, and the images are augmented to give more robustness to the network,
the hue, saturation, and brightness are modified. Next, some blur is applied to simulate motion in the
image. Finally, the image is shifted horizontally or vertically of a random number of pixels between
zero and twenty, consequentially the labels are also changed.

Next, the network is trained normally for a certain amount of epochs. Following this, the network is
pruned by a factor ranging between 20% and 50%, this step was later omitted. Finally, the network is
quantized and trained at the same time, using a quantization-aware training framework of tensorflow[4].

2.2.1. Sparsifiacation

During the training, the network undergoes a sparsification process aimed at enhancing generalization
and reducing inference time on the Al-Deck. The data in Table 2.1 compares the inference times of
various network sizes, both sparsified and dense, deployed on the Al-Deck. The results indicate that
this process does not lead to a reduction in inference time, nor does it yields a definitive enhancement
in terms of loss. This absence is performance increase is due to the lack of software support for sparsity,
namely, they do not support sparse matrix operations. Another reason is the fact that the GAPS is
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Figure 2.9: Normalized error between the estimated and true position across multiple flights, assuming a body frame with z
down. Normalized means relative error divided by true distance.

designed to leverage parallelism of its eight cores. The sparsifiacation of the matrix could not be
evenly distributed between the cores leading to some being underutilized. Due to these results, the
sparsifiacation was discarded from the training pipeline.

Input Resolution ‘ Base Inference Time [ms] ‘ Sparsifed Inference Time [ms]

120x160 24 25
90x60 13 15
60x40 6 6

Table 2.1: Inference time of different input resolution networks on the AI-Deck, comparison between a dense network and a
network sparsified at 50%

2.3. Relative Position Analysis

Figure 2.9 illustrated a collection of ten flights with vision net and relative position estimating the
distance to the gate. Compared to the actual distance measured by the optitrack. The error is between
0.5m and 0.2m for the x estimate with a median of 0.4m. While y and z have larger errors, as they
depend on the x axis prediction. However, it is important to mention that during testing the x direction
was varied the most. Overall with this prediction, it is possible to navigate with the described pipeline(
network plus relative position algorithm) but it is not very robust, as can be seen by the large amount of
outliers.

2.4. Reinforcement learning cost function

Training a network with reinforcement learning is challenging because there is no control over the data
that is being fed to the network, essentially the only parameters we can change are related to training,
the most important of which is the reward function. Initially, the reward function used was the one
developed by Ferede et al. [3] described in equation 2.1. This resulted in a flight that completed three
laps but was not very stable. Figure 2.11a shows the trajectory of this flight, some loops on itself were
present signaling a loss of control. Especially, if we compare this to the simulated trajectory, illustrated
in figure 2.11b.

+10 = 10[|px — pgll, if gate passed
r(k) = {-10, if collision 2.1
llpk = Pgill — [IPk-1 — pg. |l otherwise
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Figure 2.10: Response

from the first iteration of the network

Digging deeper into the analysis of this flight, the network command has been mapped against the
related sensor reading and the model of the drone, seen in figure 2.10. Immediately we can see the very
poor performance of the yaw, in fact, two problems are present here. The first one is that the network
constantly commands a positive yaw, which signifies that it did not learn to control the yaw. From
this problem, we decided to introduce a yaw penalty every time the yaw of the drone is not aligned
with the yaw of the gate. The second issue is that the attitude rate PID control on the crazyflie is not
very effective as it is not able to match the commanded output yaw rate. Actually, throughout four test
flights, it was determined that the controller at a bias of 35de g /s which is subtracted from the network
command would fix this error. In addition, from this flight, we can notice that the thrust undershoots
especially at high speeds, and the pitch and roll overshoot.
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Abstract

This study explores the intersection of autonomous nano-drone racing and neural networks, highlighting
its potential in advancing drone technology. Autonomous drone racing serves as a platform for testing
and improving the capabilities of autonomous systems, with applications in search and rescue operations
and autonomous inspections. The software stack of autonomous nano-drone racing is divided into three
parts: perception, control, and network acceleration. Neural networks prove to be the most accurate
strategy for gate detection, but their processing time poses a challenge. A section-by-section analysis
approach finds the bottleneck to be the first convolutional layer, 45% of the total computational time.
The study also identifies useful planning and control methods, with the G&C Net as a prominent
solution for providing motors rpm based on relative waypoints. Network acceleration methods, such
as quantization and sparsification, are introduced to enhance speed and compression in the neural
network.
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Introduction

Autonomous drone racing is a cutting-edge field that combines drone racing with the technological
advancements of autonomous systems. In recent years, this field has gained attention as a platform for
research and development, due to its ability to provide a challenging environment to push drones to its
limits and improve the capabilities of autonomous systems. These advancements can then be applied
to the real world, in systems that need to navigate in complex environments, like search and rescue
scenarios or autonomous inspection[Lit16]. For example, in earthquake or flood scenarios, drones
must be able to quickly navigate through indoor environments without the use of GPS, relying only on
onboard vision.

Neural Networks, a type of machine learning algorithm inspired by the human brain, are state-of-
the-art right now for both control and perception applications in drone racing. However, deploying
a neural network on edge devices, such as nano drones, is very challenging, due to several different
reasons. Firstly, edge devices have limited computational resources. Secondly, edge devices have very
strict latency requirements, especially drones as they need to fly at high speeds.

The intersection of autonomous drone racing and neural networks presents a compelling road
for research. In this thesis project, the goal is to deploy a perception neural network on a Crazyflie
equipped with Al-Deck[Lit3] for gate detection. Followed by the deployment of a planning and control
neural network on the same drone. Due to the small dimensions of the drone, the processing power is
very limited. Therefore, traditional neural networks cannot be used, as they are normally deployed on
powerful Graphics Processing Units(GPU).

Autonomous nano-drone racing is a field that has not been explored and pushing the limits of
the Crazyflie drone equipped with the Al-Deck is an important step in this field. There are plenty
of challenges on both the control and perception side, leading to a vast knowledge gap[Lit28][Lit26].
Consequentially, from this gap, the main research question follows:

How can state of the art perception and control algorithms for autonomous drone racing be simplified
to fit nano-drones, specifically a crazyflie equipped with AI-Deck?

This question is very general and therefore it needs to be divided into sub-questions according to the
literature study. The first one is:

Which perception algorithms perform best in the context of gate detection for autonomous drone
racing?
This question can be broken down in two distinct parts which together will lead to a well-rounded answer.
The first is the "perception algorithms", which refers to the methods that include both learning-based
and traditional algorithms. Next, "perform best", the performance of the perception algorithms "in
context of gate detection for drone racing” can be determined with the accuracy with which gate are
detected. Now for the control section of the thesis:

Which control algorithms perform best for high speed autonomous drone racing?

This question is asking to determine which control algorithms excel in the context of high-speed
autonomous nano-drone racing. These algorithms can once again be both traditional or learning
based. For both of these questions, it is implied that the best algorithm can be accelerated to maximise
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performance as, at the end of the day, the goal is to fly autonomously as fast as possible with a specific
nano-drone running all software onboard, without external positioning systems.

The purpose of this report is to investigate these research questions, determine the state of the art
algorithms and predict problems that could be encountered during the research. For this reason, the
research presents state-of-the-art strategies for each stage of the software stack. Starting from perception
in chapter 5, going from image to position and state, where traditional and learning-based strategies are
presented. Moving on to the control module in chapter 6, this module is in charge of going from states to
motor rpm. Also here, traditional and learning-based approaches are presented. Next, chapter 7 treats
methods to accelerate the deployment of neural network to reduce latency. Following this, chapter 8
lays out the plan of this project with the use of a gantt chart. Finally, chapter 9 presents the first results
of this project.



Hardware Platform

There are many different types of drone configurations and sizes, this project deals with nano-drones.
These are a category of unmanned areal vehicles with a wingspan between 1.5cm and 15cm and a weight
between 3g and 50g. Being of such a small size these drones are incredibly agile and maneuverable,
which allows for tight space navigation, this makes them valuable in search and rescue scenarios,
monitoring, inspections, surveillance, and gas source seeking. The selected model for this project is the
CrazyFlie 2.1, shown in Figure 4.1 due to its accessibility and the versatile open-source development
platform. The main processor is a STM32F405(Cortex-M4, 168MHz, 192kb SRAM, 1Mb flash), and
radio and power management is done by nRF51822(Cortex-M0, 32Mhz, 16kb SRAM, 128kb flash). The
platform also has 3 axis accelerometers/gyroscopes and a high-precision pressure sensor.![Lit3]

This setup does not have sufficient computational power to run both drone control algorithms
and an image processing neural network onboard in real-time. Fortunately, recent advancements in
microprocessors optimise the inference speed of neural network. The low-power GAPS8 processor
developed by GreenWave Technologies is a great example of this. The GAP8 incorporates nine RISC-V
cores capable of running at up to 250 MHz along with a neural processor designed to accelerate
convolutional neural networks. It can offer a peak performance of up to 200 MOPS at 1 mW and up
to 10 GOPS at a few tens of mW. BitCraze integrated this microprocessor on the Al-Deck along with
a Wi-Fi model and an RBG camera. It features 64kB level 1 memory and 512kB level 2 memory. The
design of the Al-Deck is based on the PULP-shield[Lit3].

Figure 4.1: CrazyFlie2.1 illustration

thttps:/ /store.bitcraze.io/ collections /kits / products/ crazyflie-2-1
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Perception

The perception section of the software stack estimates the vehicle state and perceives the environment
using onboard sensors. The most common approaches for accurate perception are GPS-based Odometry,
LIDAR-based Odometry and Visual-Inertial Odometry. This project focuses on vision-based drone
racing with nano-drones making the first two options irrelevant. This chapter focuses only on Visual-
Inertial Odometry, using a camera and the sensor readings. Starting with a description of this approach
in section 5.1 in particular how measurements from different sensors are processed. Next, the PnP
algorithm, to transform 2D coordinates to 3D, is explained, section 5.2. Gate Detection algorithms are
then explained in section 5.3 and section 5.4. And traded off in section 5.5. Finally, the software stack is
explained in section 5.6

5.1. Visual-Inertial Odometry

Visual-Inertial Odometry(VIO) is the process of estimating the state, which consists of pose(position
relative to a landmark) and velocity of a drone, by using only onboard cameras(or a single monocular
camera in the case of a crazyflie) and Inertial Measurement Units(IMUs), as shown in Figure 5.1. Itis a
possible alternative in the absence of GPS but can also be used to complement it.[Lit41]

The two sensors, camera and IMUs, augment each other very well. A camera takes a snapshot of a
scene and converts it to a 2D image, very useful for perception tasks like recognising where you are in a
scene. Although, it has various limitations namely, the slow output rate(80Hz), the scale ambiguity
due to monocular effects, motion blur, High Dynamic Range(over- and under-exposure), and most
importantly the time it takes to process an image. An IMU is an electronic device that measures a body’s
specific forces(then converted to accelerations) and angular rates. All its measurements are done in the
IMU frame(which is the same as the body frame in most cases) rendering this device scene-independent.
IMUs have a very high output rate(1000Hz) leading to better measurements at high speeds. The one big
disadvantage is that it suffers from sensor biases leading to a loss of accuracy over time that needs to be
corrected. Furthermore, the integration of IMU measurements from acceleration to velocity introduces
challenges, as integrating biases amplifies them. For this reason, to achieve accurate and robust state
estimation IMUs and cameras need to be combined.[Lit41] The camera is used for relative position
and orientation, as the 3D environment is represented as a set of landmarks projected to 2D image
coordinates. The IMU measures the angular velocity and external acceleration, following Equation 5.1.
Where subscript I refers to the IMU frame and W in the world frame, b, n are biases.[Lit41]

w=w;+b+n, alew(aw—gw)+b+n (51)

In VIO, at each point in time, the orientation with regards to the earth of the IMU needs to be known,
in order to remove gravity from the measurements. In addition to this, the velocity at which the IMU
is moving and biases need to be estimated. The first one is needed to integrate acceleration to get the
position. The latter is needed for computing actual sensor angular velocity and acceleration from raw
measurements. Thus, for high-quality measurements, the bias needs to be approximated correctly.
There are two main approaches to fuse vision and IMU data: loosely coupled and tightly coupled.
The former computes two independent state estimates one from vision measurements and the other
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Figure 5.1: VIO Flow diagram

from inertial measurements. These estimates are then fused to get a final output. The latter, generally
more accurate, computes the output directly from the raw data of cameras and IMUs together.

Diving deeper into tightly coupled VIO, three categories can be identified, which trade-off between
accuracy and computational demand: filtering, fixed-lag smoothing and full smoothing.

e Filtering algorithms only estimate the latest state allowing efficient computations. Most methods
use an Extended Kalman Filter, where they propagate the state of the system with inertial
measurements and perform the update with the camera measurements. One of the first and most
adopted methods is the multi-state constraint Kalman filter[Lit33]. There are two main errors in
filtering approaches: information from older states is absorbed, and linearisation errors can cause
a loss of accuracy.

¢ Fixed-lag smoothing methods estimate the states within a given time window while marginalising
older states. This leads to a more accurate estimate as it relinearises past measurements. These
approaches are also more robust to outliers. However, since the marginalise measurements they
still have inconsistencies and linearisation errors. [Lit17]

¢ Full smoothing methods estimate the entire history of the states by solving a large nonlinear
problem. These methods have the highest accuracy but the biggest computational load, and
solving this in real-time is not feasible, especially for long flights. For this reason, it is not a very
common approach. [Lit25]

For a nano drone with very limited computational capabilities, fixed-lag smoothing methods and full
smoothing methods are not feasible, therefore the next Section, 5.1.1 focuses on the most common
type of filtering, namely the Extended Kalman Filter, and new solution for sensor fusion named Visual
model-predictive localization, Section 5.1.2.

5.11. Extended Kalman Filter

The Extended Kalman Filter(EKF), for this project, is useful for the estimation of the position of a drone
relative to at least three landmarks. This algorithm is carried out in two steps namely, prediction and
update. The prediction step produces a predicted location based on the previous location and IMU data.
The update step then fuses the visual data to produce an overall estimate. As mentioned earlier, the
camera and IMU data update at different rates, requiring the utilisation of an asynchronous updating
technique in the algorithm. This technique ensures that the update step is executed only when new
vision data becomes available.

In an EKEF, the state and observation equation, represented in Equation 5.2 do not need to be linear,
on the contrary of a normal Kalman filter, but they just need to be differentiable. The state vector, xy,
contains the predicted coordinates so it can be position and velocity measurements or quaternions.
While, the measurement vector z, consists of the measurement from the sensors, relative position
coordinates from the camera and IMUs.

Xk = f (xg-1,uk) + wi (5.2a)

z = h(xg) + vk (5.2b)
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The prediction step, shown in Equation 5.3, uses the system model as well as the IMU measurements,
uy in this case, to predict the state vector, &y x_1, and the covariance matrix, Pyx_1.

Rt = f (Re-1jk-1, 1x) (5.3a)

Pyp-1 = FxPr_q Ff + Qy (5.3b)

The next step in the EKF is the update step. Shown in Equation 5.4, the measurement model is used to
update the predicted state using measurements from a camera, z,. This step also updates the residual
covariance (Sx), the Kalman gain (Kj) and the covariance estimate(Py ;). In order to have a better
prediction at the next iteration.

Yp=zk—h (&k|k—1) (5.4a)
Sk = HiPyy—1H| + R (5.4b)
Ki = Py H ;! (5.4c)
Xk = Xie-1 + KiYy (5.4d)
Py = (I — KkHg) Pyjk-1 (5.4e)

5.1.2. Visual model-predictive localisation

In [Lit26] the authors propose a novel sensor fusion method called visual model-predictive localisation.
The main idea behind this approach is to rely as much as possible on a predictive model of the
drone dynamics, while correcting the model by localising the drone visually based on the detected
gates and their supposed positions on the global map. Within a small time window, visual model-
predictive localisation approximates the error between the model prediction position and the visual
measurements as a linear function. Once the parameters of this function are estimated by a Random
Sample Consensus(RANSAC) algorithm, this error model can be used to update the prediction.

In other words, visual model-predictive localisation uses a combination of predictive modeling and
visual sensing to enable fast and accurate flight in an autonomous racing drone. By using a predictive
model of the drone’s dynamics, visual model-predictive localisation can anticipate how it will move
through space and adjust its flight path accordingly. At the same time, by using visual sensing to detect
gates and other landmarks in its environment, visual model-predictive localisation can correct for any
errors or deviations from its predicted path. This allows it to fly quickly and accurately through complex
courses with changing obstacles. This method gives unbiased estimations of the parameters but it is
prone to error if there are outliers in the analysed time window. For this reason, a RANSAC algorithm
is employed. This is an iterative method to estimate parameters from a set of data that contains outliers.
It works in 3 steps:

1. Randomly select a minimal subset of data points that are assumed to be inliers and use them to fit
a model.

2. Determine the remaining data points that are consistent with the fitted model based on a predefined
threshold. These data points are called inliers.

3. If the number of inliers is greater than a predefined threshold, re-estimate the model using all of
the inliers and terminate the algorithm. Otherwise, repeat step 1 until the maximum number of
iterations is reached.

5.2. Perspective-n-Point

Once features, such as gates, have been detected on a 2D projection of the image, the next problem is
estimating the pose of the calibrated camera, which is on the drone. A drone has 6 degrees-of-freedom
that are 3 rotations and 3 translations [Lit42].

The PnP algorithm requires at least three correspondences between the 3D object and the 2D image,
i.e., three pairs of points in the image and the object with known correspondence. In practice, more
correspondences are used to improve the accuracy of the estimation. Assuming only three points are
known in the world coordinate system(P;, P>, P3)and their corresponding 2D projections on a camera.
The first step in a P3P algorithm is to set the camera’s intrinsic parameters, such as focal length and
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principal point[Lit42]. Next, the camera orientation and position are solved for according to Equation 5.5,
where C is the center of the camera, R is the rotation matrix that maps the world coordinate system to
the camera coordinate system, and e are the basis vector of the world coordinate systems. Here the
unknowns that are solved for are R and C.

P -C
d, = =R- 5.5
1 P, —C| e (5.5a)
P,-C
d = =R- 5.5b
2= 1B, e (5.5b)
P;-C
d= = — =R- 5.5
STy e (5.5¢)

Finally, the translation vector t can be determined according to Equation 5.6. Knowing, both rotation
and translation the camera pose can be extracted. There are multiple other methods to solve the PnP
problem and quite a few efficient off the shelf solution, in libraries like OpenCV?! or OpenMVG2.

t=-RC (5.6)

5.3. Traditional Gate Perception

Gate detection can be accomplished by different computer vision algorithms like Viola and Jones and
Hough Transforms. However, these approaches do not perform well on drones especially due to the
lack of rotation invariance. Table 5.1 presents an overview of gate detection methods both traditional
and learning based with a high-level selection. From this table, the only traditional approach selected
was snake gate [Lit27]. This approach works by searching for gates based on their colours. The search
starts by picking a random point on the image (Pp). If the random point is of the correct colour, the
search follows pixels of the same colour "up and down" to find points, P; and P,. These two points
are then used as a starting point of a "left right" search to find P3 and P4. In order to avoid detection
of small colour blocks the same colour as the gate, a minimum distance threshold is introduced in
both the lateral and vertical searches following Equation 5.7. If the gate’s image is continuous and the
gate’s edges are smooth then this algorithm should detect all four corners. However, varying light
conditions can jeopardise the results. Figure 5.2 is an example of how the algorithm would work. In
most cases, snake gate detects more gates than the number of real gates in the image. This is due to the
fact that there will be duplicates on the same gate. This does not influence performance as they are
true positive detections. False positive detections of gate can influence performance these are solved
by adding another threshold, Equation 5.8. Where N, is the number of pixels in the polygon with the
target colour. Thus, if not enough pixels of the target colour are detected then the gate is ignored.

|P1 - P2| < 0L, (57)
N,
ocf <cf = ~ (5.8)

5.4. Learning-Based Gate Perception

Over the last years neural networks have gained popularity due to their ability to cope with different
types of input data, their accuracy and the simplification of deployment on hardware. The goal of
a perception neural network is to detect landmarks from an image, eg. gate locations in the case of
drone racing. Referring back to Figure 5.1, perception networks perform extremely well in vision
processing.Table 5.1 presents a high-level selection of gate detection methods. A few computationally
light networks are selected and their principles are explained in the following sections subsection 5.4.1,
subsection 5.4.2 and subsection 5.4.3.

thttps:/ /docs.opencv.org/4.x/d5/d1£/calib3d_solvePnP.html
%https:/ /github.com/openMVG/openMVG
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Figure 5.2: Example of snake gate detection[Lit27]

5.4.1. Gate detection by semantic segmentation
The network in [Lit46], it is a fully convolutional deep neural network that consists of a four-level U-Net.

Its objective is to convert every input image into a binary mask that segments all the gates in sight,
as shown in Figure 5.3. A U-Net is a type of Convolutional Neural Network(CNN) used for image
segmentation. It has a symmetric encoder-decoder architecture with skip connections between the
encoder and decoder paths. These skip connections enable the network to effectively learn spatial
information from a given input image, allowing it to accurately segment objects in the image [Lit40]. In
this case the network has [64, 128, 256, 256] convolutional filters of size 3 X 3 and elementwise sum skip
connections. The most challenging part of this neural network is creating the dataset. This net was
trained on 2336 images with the binary mask manually annotated, leading to a supervised training

method.

Figure 5.3: Gate detection by semantic segmentation input image and corresponding binary mask[Lit46]

5.4.2. GateNet

GateNet [Lit34] is a novel network that from a single image predicts center, orientation and distance
of gates. It is also designed to run high-speed inference on the Nvidia Jetson TX2, up to 60Hz. The
architecture of the network is a CNN with a single fully connected layer at the end. The convolutional
part extracts the features from the image and the fully connected layers predicts the confidence values,
orientation and distance of the gates. As noticeable, in Figure 5.4, this network has six convolutional
layers, the first five of which are followed by batch normalisation, rectified linear unit activation and
max pooling. The last convolutional layer is not followed by the max pooling. The convolution layers
condense the information in the images to 3 X 5 x 16 to reduce computational load, this image is then
flattened and a dense layer is applied. To finally output the five aforementioned predictions, in a
reshaped form, 4 X 3 x 5, where each cell in the grid contains the predicted values of {x,y,d, 9, c}.
Where x and y are the normalised pixel differences between the top-left corner of the the grid and the
gates center, d is the relative distance to the gates center in meters, 0 is the relative orientation of the
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Algorithm Selected | Reason
Snake Gate[Lit27] Yes Extremely efficient and proven to work
on nano-drones.

VINS-Mono|[Lit37] No Computationally expensive and com-
plex to deploy with gates.

DroNet [Lit30] Yes Computationally cheap, robust and
adaptable.

GateNet [Lit34] Yes Computationally cheap, robust and
adaptable.

Gate  Detection by  Semantic | Yes Very robust and adaptable, proven

Segmentation[Lit46] flight experience

AplhaPilot [Lit9] No Robust but computationally expensive
and less performant than the previous
approach.

Deep Pilot [Lit39] No End-to-end drone navigation, compli-

cations will arise in the control of the
nano-drone.

Sparse Gated Recurrent Network[Lit1l] | No Event based vision.
Deep Patch Visual Odometry [Lit45] No Network applied to VIO not just gate
detection.

Table 5.1: High-level gate detection algorithm selection

gate in radians, so the difference between the drone’s yaw and the gate’s yaw. Finally, c is the confidence
value, which has a value of 1 if a gates center is located inside the image and 0 otherwise. The training
was supervised on images generated on a simulator. The same authors of this paper developed a new
network named PencilNet [Lit35], which has the same architecture and properties as GateNet but the
input image has a pencil filter applied to it. By doing so, the network is more effective for simulation to
reality transfer learning.
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Figure 5.4: Architecture of GateNet network[Lit34]

5.4.3. DroNet

Another state-of-the-art end-to-end vision network is DroNet[Lit30]. A CNN whose initial purpose was
to reliably fly an autonomous drone through the streets of a city. The architecture as shown in Figure 5.5,
is a variant of the ResNet-8 DNN with three residual blocks. The purpose is obstacle avoidance thus,
the outputs are a steering angle and a probability of collision. However, due to its efficient structure,
many researchers used this network as a backbone feature extractor with a different output layer. For
example, the authors in [Lit21] change the output layer with multi-layer perception to estimate the
mean and variance of the gate’s next pose with regards to the camera for a model predictive control to
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then compute a trajectory for the drone. This network takes as input an 320 x 240 RBG image and the
output is the mean and the variance of these values, z = [7, 0, ¢, ¢]" € R* . The values are presented in
spherical coordinates as it is advantageous to decouple distance from the image coordinates.
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Steering angle _.-"':
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Prob. collislon
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weights
1x1 cony, 32, /2 1x1 conv, 64, /2  1xlconv, 128, /2

Figure 5.5: Architecture of Dronet network[Lit30]

5.5. Trade-off Vision Methods

In this chapter various topics have been covered namely, different sensor fusion methods, the PnP
algorithm and different gate perception methods. This section performs a trade-off between the different
ways to recognise a gate from an image, with the main parameters being:

¢ The computational efficiency of the algorithm.
¢ The accuracy of the output data.

Average time inference
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0.00 -
GateNet TUDelft PencilNet DroNet

Figure 5.6: Inference of the Networks run on an Intel i5 core, single thread using the tflite inference engine

In recent years, gate detection has been a very researched topic but from literature, the choice was
narrowed down to the four state-of-the-art methods described in the previous sections and shown in
Table 5.2. To determine the efficiency of each network, inference was run on an Intel i5 core using a
single thread and the tflite inference engine?, the results are shown in Figure 5.6. From this graph, one

Shttps:/ /www.tensorflow.org/lite
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can notice that DroNet has the best inference time and the GateNet TU Delft, so the gate detection by
semantic segmentation, required the most computational power. This is due to the fact that GateNet TU
Delft has an Encoder and Decoder structure, requiring it to reconstruct the input image. It is important
to note that for this benchmark PencilNet and DroNet were scaled up to have the same input size as
GateNet TU Delft(3 x 360 x 360). Moreover, when deploying these networks on the Al-Deck they will
run on a RISC-V architecture, so a CPU-like chip, thus similar performance, relative to each other
is expected. On a final note, the snake gate algorithm is not tested as it is clearly the most efficient
algorithm, mainly because it is not a neural network.

The approaches have been graded in Table 5.2. Overall, the snake gate is very efficient but it only
detects orange-coloured gates and is prone to errors due to false positives and motion blur. GateNet
TU Delft is more accurate compared to the previous one but it outputs a mask of the gate requiring
a PnP algorithm, also it is a very large network making it not suitable for the Al-Deck. GateNet and
PencilNet have the same neural network architecture and are quite computationally efficient due to the
low number of parameters(32K), the main drawback of these methods is that the output is in Cartesian
coordinates of the image requiring and extra conversion step, similar to PnP. Finally, DroNet is more
computationally efficient than the GateNet and with an output layer that can be adapted, making it the
best option for gate recognition. These approaches will have to be tested on the Al-Deck to actually
understand which one performs best.

ID | Title Efficiency | Ouput Data | PnP | Overall
1 Snake Gate [Lit27] 9 2 Yes | 11
2 | Gate detection by semantic segmentation[Lit46] 3 8 Yes | 11
3 | Gatenet: An efficient deep neural network architec- | 7 6 Yes | 13

ture for gate perception[Lit34]

4 | PencilNet: Zero-Shot Sim-to-Real Transfer Learning | 7 6 Yes | 13
for Robust Gate Perception[Lit35]

5 DroNet: Beauty and the Beast[Lit21] 8 7 No | 15

Table 5.2: Trade-off of different vision algorithms

5.6. Software Stack

The perception module of the software stack needs to find out where the drone is relative to a gate and
where it needs to go. Figure 5.7 shows a flow chart on how this is done in software. First, an image from
a camera is fed to a neural network. The output of which should be the coordinates on the image of the
4 corners of a gate. These 2D coordinates are then transformed into 3D world coordinates using a PnP
algorithm. Finally, the 3D coordinates are fed to an EFK which, together with IMU data, will output the
relative position and state of the drone.

Al-Deck IMU

Image 2D Coordinates 3D Coordiantes Relative Position
— Neural Network > Transformer EKF State

Figure 5.7: Perception Software Stack




Control

Once the state estimate has been obtained the next step is to plan a feasible trajectory, which predicts
the future states of the drone such that a minimum lap time is reached without crashing, this is the
planning phase. After this, the control module needs to make sure that this trajectory is followed by the
drone. In this chapter, first of all, traditional control methods are covered, section 6.1, this includes both
planning of trajectories and control of drones. Next, learning-based control approaches are described,
section 6.2 methods which bypass the planning stage and convert sensors observations to actuators
commands directly. Finally, a trade-off of all the methods is carried out in section 6.3.

6.1. Traditional Control Methods

Traditional control methods are separated in two parts: the planning, where an optimal trajectory
is planned, and the control, where the optimal trajectory is followed. There are plenty of different
approaches to this problem but, for the purpose of this report, the focus is on the most time optimal and
least computationally expensive, as this is what is needed in drone racing.

6.1.1. Planning

As mentioned before, once a state estimate has been obtained, the next step is to plan a feasible,
time-optimal trajectory, which keeps in account the limits of the drone as well as the constraints
imposed by the environment. The planning methods can be categorised into four different methods
namely, polynomial trajectory planning, optimisation-based planning, search-based planning, and
sampling-based planning.

In polynomial trajectory planning methods, a polynomial is used to represent the trajectory and its
coefficients are computed based on the specific constraints, such as initial and final position, waypoints,
velocities and accelerations. The full-state trajectory planning is reduced to only 4 states(3D position
and heading). By taking derivatives of these polynomials valuable data like velocity, acceleration,
jerk and snap can be determined and used for optimisation purposes. A great example of this is
in paper [Lit32], where the authors minimise the snap in a trajectory. They segment a trajectory in
various keyframes and generate a trajectory that passes through these keyframes at a given time while
staying in a predetermined safety corridor. Next the trajectory, is optimised for the 2nd derivative of
acceleration(so 4th of position) and 2nd derivative of yaw.

Optimisation based trajectory planning starts with a selection of an objective function. Next, a solver
is used to find the optimal sequence of states at every timestep, complying with the physical constraints
of the drone. These approaches have been researched thoroughly using different models of the drone,
such as point-mass models[Lit10], simplified quadrotor models, or full state models[Lit11]. For drone
racing, another constrain for path planning are waypoints. The standard approach to this problem,
carried out in [Lit4], is to generate an optimal continuous trajectory that passes through the sequence of
waypoints using by solving the objective function with pseudo-spectral methods, setting an arrival time
constraint at each waypoint.

Search-based planning methods generate trajectories through algorithms such as A*, Dijkstra’s, and
probabilistic roadmap searches. Normally they consider velocity, acceleration, or jerk. The procedure
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Figure 6.1: Simple example of rapidly exploring random tree[Lit31]

starts with generating a set of candidate trajectories and then evaluating them in terms of optimality
and feasibility. These algorithms are extremely powerful and versatile but they are also computationally
expensive. Therefore, not feasible to run on a nano drone.

Finally, sampling-based methods involves randomly sampling the configuration space of the drone
and constructing a graph of connected samples to generate a collision-free path. One common approach
is to use a graph-based representation of the configuration space, such as a rapidly-exploring random
tree[Lit47]. In these methods, the randomly generated configurations are added as nodes to the graph,
and edges are added between neighbouring nodes that do not result in collisions. The resulting
graph represents a set of feasible trajectories that can be used to plan a path from the robot’s current
configuration to the goal configuration, as shown in Figure 6.1. Sampling-based trajectory planning is
computationally efficient and can handle high-dimensional configuration spaces, but it may not always
find the optimal trajectory.

Overall, optimisation based trajectories are the best option for drone racing due to their low
computational cost and ability to plan 4-d trajectories, including time. Nevertheless, planning, in general,
faces challenges due to inconsistencies in a drone’s ability to adhere to the intended course, potentially
resulting in system failure. Thus, in section 6.2, learning control methods are discussed where planning
and control and coupled in closed-loop manner.

6.1.2. Control

Controllers make real-time decisions that guide the drone toward a destination. Normally, there are
high-level controllers that output desired virtual inputs like velocity or body rates, and low-level
controllers that control each individual motor based on the desired virtual input. There are many
open-source implementations of low-level controllers like Paparazzi, PixHawk and Betaflight. For the
purpose of this report, the focus is on BitCraze’s implementation, seen in Figure 6.2. The workflow
of the algorithm works as follows, a high-level controller sends a desired position to the Position PID
controller. This outputs the roll and pitch rates that are then fed to the Attitude rate PID which results
in the motor commands.
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Figure 6.2: Cascade PID by bitcraze[Lit3]

Moving on to high-level control, the most common approach is Model-Based Control. Where, a
model of the dynamic systems is used to compute the control commands to reach a certain objective.
There are many methods that follow this approach the two major ones being Incremental Nonlinear
Dynamic Inversion(INDI) and Model Predictive Control(MPC). INDI measures the angular acceleration
and an increment of the control outputs is calculated based on the desired increment of angular
acceleration. This controller is robust to modelling errors, disturbances, and can handle highly nonlinear
systems. However, it can be computationally intensive. [Lit43]

MPC is a control strategy that uses a model of the system being controlled to predict its future
behaviour and then computes a sequence of control actions that optimise a given objective function over
a finite time horizon, subject to constraints on the system and the control inputs. This method exploits
the full flight envelope of the drone achieving higher velocities and better performances. [Lit6]

6.2. Learning-Based Control Methods

As previously mentioned, learning-based control methods tend to merge planning and control,
eliminating the need for high-level trajectory planning. This leads to more robust systems as sensor
noise, model uncertainties and system latency can be included in the training data of the policy.
Moreover, by eliminating the planning stage there are no more discrepancies between planning and
control. For the purpose of this report, the learning-based approaches are divided in their groups based
on the output they provide namely, linear velocity, total thrust and body rates and single rotor thrust.

Linear velocity approaches are control policies that specify high-level commands like waypoints or
velocities. The main feature of this approach is that it does not take into account the vehicle dynamics,
making it a method that can easily be transferred to different platforms. The drawback of this is that it
will not exploit the full capabilities of the platform. An example of this method can be seen in [Lit2],
where a network given a location computes an action that a drone needs to get to that location in terms
of the velocity vector. In this specific instance at the desired location there was an object to pick up.
Once the object was picked up the network adapts the different dynamics. It is important to note that
the action computed is then carried out by an MPC.

Total thrust and body rates approaches output thrust and body rates allowing for more aggressive
manoeuvres. This paper, [Lit22], presents an approach that combines IMU measurements, reference
trajectory and feature tracks and output collective thrust and body rate commands. Its purpose is to
autonomously perform three acrobatic manoeuvres namely, the Power Loop, the Barrel Roll and the
Matty Flip. The structure of the network is shown in Figure 6.3. This approach does not need a full-state
estimation but only requires inertial measurements to feedback control on the body rates.
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Figure 6.3: Architecture of deep drone aerobatics network[Lit22]

The third and final method is outputting the single thrust for every motor. This method does not
require any additional control loop as the network directly controls the motors and correctly represents
the true actuation limits of the platform. An example of this method in action is [Lit8], where the authors
create a guidance and navigation network that takes as input the state and rpms and outputs the required
rpm of each motor for a 3-dimensional quadcopter model taking into account drag, aerodynamic effects
and actuator delays.

6.3. Trade-off Control Methods

Having an overview of traditional and learning-based computationally efficient control methods it is
now time to perform a trade-off and select the best options to deploy on a Crazyflie for the purpose of
drone racing. Once again, the main parameters to keep in mind are:

* The computational efficiency of the algorithm.
¢ The robustness to model errors.
¢ The performance it can achieve on the drone.

The algorithms that are traded off are a selection of the previously described methods that might
be deployable on the Crazyflie flight controller, they are shown in Table 6.1. In this table one may
notice that efficiency has the highest weight, this is due to the fact that the Crazyflie has very limited
computational resources, especially on the flight controller. Next in order of importance is the robustness,
as nano-drones are more prone to model errors and brushed motors are highly unpredictable so the
algorithm needs to be robust. The performance parameter, which measures the extent to which the
algorithm effectively utilises a drone’s flight envelope, holds significant importance in drone racing.
However, measuring this parameter poses a challenge due to variations in the drone models used across
different research papers. For this reason, performance is given a lower weight.

ID | High Level Controller Low Level Controller ‘E/\ii fglirtlgy ‘I/{\(])ebi;}sl’inzess \lj\iéif;;?f €| Overall
1 | Waypoint Bitcraze PID 9 5 3 37
2 | MPC Bitcraze PID 4 7 6 27
3 Deep Drone Aerobatics[Lit22] | Bitcraze PID 1 6 9 24
4 | G&C Net [Lit8] G&C Net[Lit8] 5 6 8 35

Table 6.1: Trade-off of control methods

Overall, the first approach is the most efficient as there is no planning involved the input of the PID
controller is just the required waypoint, the center of the next gate. Without planning, the limitations of
the drone are not taken into account and both robustness and performance will suffer from this. The
second approach has an MPC as high-level control, thus an optimisation problem has to be solved
leading to a high computational load. However, the dynamic model of the drone and its constraints are
taken into account, leading to higher robustness and performance. The third method is computationally
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expensive due to the temporal convolutions and deep network that need to run sequentially, so even if it
leads to a fast drone and robust behaviour, it is not plausible to deploy this on a Crazyflie. Finally, the
last approach uses a network for both high and low-level control, this network is quite efficient but needs
to run at the same rate as a low-level controller would(500Hz). As for robustness and performance, the
score is quite high as this network has access to rpm information, thus it can work with real constraints
on the drone. In conclusion, the best approach to deploy on a Crazyflie is the first one due to its
simplicity and efficiency. Although, also the fourth one with some network acceleration, see chapter 7,
can be tried.



Deploying Networks on Edge

Now that the perception and control methods have been determined, the next challenge is deploying
them on the Crazyflie. This section focuses on some methods to accelerate and deploy networks on the
Al-Deck as this is the major challenge. section 7.1 deals with the deployment pipeline on the AI-Deck,
then the next to sections focus on methods of network acceleration namely, quantization (section 7.2) and
sparsification(section 7.3). Finally, benchmarks of researchers that already deployed neural networks of
the Al-Deck are presented in section 7.4.

7.1. Gapflow

Once a network has been generated and trained it needs to be deployed on the Al-Deck, a board with a
GAPS ultra-low power 9-core processor created by GreenWaves Technologies[Lit13]. This company also
developed a pipeline to easily port neural networks on the processor, while simultaneously accelerating
the deployment and ensuring high performance and low energy consumption, this tool is called
GAPflow, and its pipeline is shown in Figure 7.1.

The process starts with the model in tflite or onnx format, a compressed format for neural networks
which saves both architecture and weights. This model is fed to the GAP NNTool, which will map the
nodes to the GAP computational node, produce the AutoTiler model, and if necessary quantize the
model, see section 7.2.

Next, the AutoTliler Model is fed to the GAP AutoTiler, which will optimise the data movement across
the memory hierarchy based on the network and the memory constraints, producing an optimised
parallel code with memory movement calls. Finally, this generated code can be dockerized and flashed
to the Al-Deck with the help of the crazyradio.

7.2. Quantization

Quantization is a method to shrink and accelerate both training and inference processes of a neural
network. With the rise of deep learning and models getting increasingly larger, this method attracted a
lot of attention from the scientific community. The goal is to decrease both sizes of models and inference
time without affecting performance. To achieve this, real values are converted to 8-bit representations
allowing bitwise operations to be used rather than the much slower floating-point operations. This
section explains the two main techniques of Quantization, deterministic and stochastic, and the method
to apply them to the different components of a neural network. [Lit14]

Deterministic Quantization is when the input values are mapped one-to-one to a quantized value in
a predictable and fixed way. Two examples of this technique are rounding and vector quantization.

* Rounding is the simplest way to quantize real values. The simplest method was proposed by paper
[Lit7], where weights are constrained to only two possible values 1 or -1 following Equation 7.1.

+1 x>0

. (7.1)
-1 otherwise

xt = Sign(x) = {
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Figure 7.1: Pipeline of gapflow for neural network deployment on the Al-Deck [Lit13]

The method works in forward propagation but error back-propagation will not work and the
values will be almost always very close to zero. This led to the development of many other
methods. The most notable is proposed by Polino [Lit36], which consists of a general rounding
function Equation 7.2, where sc is a scaling function that maps values for a range to 0 and 1 values.
And, Q is the Quantization function Equation 7.3, which given a Quantization parameter s g can
assign x to the nearest Quantization point.

Q(x) = s4¢7H(Q(s4¢(x))) (7.2)
A xs,] &
Qlx,sq) = s,: + "

(7.3)

£ {1 xsg — [xsq] > %
0 otherwise
Rounding is a very simple way to convert real values into quantized ones. However, the network
performance may drop drastically. Moreover, rounding decreases the parameter space, making it
harder for the training to converge.

* Vector Quantization consists in grouping weights and using the centroid of each group to replace
the actual weight during inference. On such method [Lit12] performs k-means clustering on
the weight matrix. After this, the centroids are fine tuned for better accuracy. This method can
significantly reduce memory footprint. In fact, when it was applied to ImageNet it compressed
the network 16 to 24 times with an accuracy loss of 1% [Lit12]. The main drawback is that the loss
of accuracy caused by k-means cannot be controlled.

Stochastic Quantization is when weights, activations, or gradients are discretely distributed, and the
quantized values are sampled from the discrete distribution. The two main techniques are random
rounding and probabilistic quantization.

¢ Random Rounding does not have a one-to-one mapping of real and quantized values. The
quantized values are sampled from a discrete distribution. A simple example is proposed in
[Lit29] and follows Equation 7.4

x’ = (7.4)

b +1  with probability p = o(x)
-1 with probability 1 - p
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Where o is defined as follows in Equation 7.5.
o(x) = cnp(xT”,o, 1) (7.5)

Therefore, if x is a positive value it will have a high probability of being quantized to 1. Random
rounding allows injection of noises into the training process and this has advantages and
disadvantages. On the one side, this noise can act as a regulariser and allow conditional
computation. On the other hand, it causes oscillations in the loss function during training.

¢ Probabilistic Quantization assumes that weights are distributed according to a probability
distribution. Then applies discrete values to weights based on this distribution. For example, in
paper [Lit44] the authors developed an Expectation Back-Propagation algorithm to train neural
networks, where they first assume some discrete distribution and then update it online during
training. The main advantage of this method is that the weights can be forced to have discrete
values.

Deterministic quantization is better if the objective of the quantization is to accelerate hardware as it is
possible to specify the quantization level in advance and it can be tailored to the hardware. However,
stochastic quantization provides more accurate results.

Moving on to the challenges of quantizing different components of a network( weights, activations
and gradients). Quantizing weight can reduce the model size and accelerate inference time. However,
they make converging harder during the training process, forcing a small learning rate. Quantized
weights also make traditional Back-Propagation infeasible, requiring the use of approximation methods.

Quantized activations, inputs/outputs of hidden layers, allow the replacement of inner products
with binary operations, speeding up both inference and training. The drawback of this is that there
can be a mismatch between the discrete values of the activations and the values computed during the
backward propagation step.

Finally, quantized gradients reduce the cost of training of very large models, this is not very applicable
in the case of this report as the used model will be small. Nevertheless, this is a very useful feature for
back-propagation, but sophisticated algorithms are required to not jeopardise the convergence rate.

The deep learning library TensorFlow, which will be used for this project, has its own implemen-
tation of network quantization which focuses on weights and activations. Floating point values are
approximated to 8-bit values as using Equation 7.6. Where the r; is the real value, g, is the quantized
value, Z and S are quantization parameters, zero-point and scale respectively. [Lit19]

1y = Migy = 2) 76

Weights are represented as int8 two’s complement values in the range [-127,127] with the zero-point
equal to 0, as they are forced to be symmetric. Activations are also represented as int8 two’s complement
values but have a range of [-127,128] and a zero-point within the same range.

7.3. Sparsity

Sparsity is a property of neural networks where are a large number of the connections between neurons
have zero weights. This phenomenon can occur naturally or be forced upon a network. A great
illustration of the effects of sparsity can be seen in Figure 7.2. As sparsity increases in part A, the model
experiences reduced noise, leading to improved accuracy and a decrease in size, thereby enhancing
performance. Next in part B, the accuracy levels out and performance increased slightly. Finally in part
C, the sparsity is very high and the accuracy drops.

The two main questions now are what and when to apply sparsification. Starting from the first
question, there are two types of sparsification, model and ephemeral. Model sparsification relates to the
fine-grained pruning of weights and neurons of the network. This type shrinks the model and essentially
makes a new model still deployable of the same device as the original. Ephemeral sparsification refers to
sparsification dependent on the input data applied during the network operations. ReLu and SoftMax
operators are an example of this type of sparsification happening naturally. A less common method in
this category is the sparsification of gradients which improves performance during training.
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Figure 7.2: Occam’s hill showing the test error against the sparsity for ResNet-50 [Lit18] [Lit38]

Moving on to at what point sparsification should be applied. The most trivial option is applying it
after training, this usually leads to a significant performance degradation. Moreover, it implies that the
full network is trained, which is a costly process. Another method is to schedule sparsification during
training. The starting point is a dense model and at every epoch of training, it gets sparsified. This is an
extremely flexible method applied in many different ways. For example, the authors of paper [Lit20]
propose a combined dense and sparse training in a single schedule. [Lit15] proposes a solution that uses
a three step schedule, first dense training, then pruning and retraining, and dense training again. These
two methods solve the issue of convergence but the dense models still need to be trained, which comes
at a high computational cost. The last category is sparse training, the starting point for the training is an
already sparse model, and the training procedure adds and removes weights. Convergence is quite
hard to reach with this method[Lit18] .

7.4. Optimal Deployment Strategy

Deploying Computer Vision algorithms on the Al-Deck for real-time on-board image processing is a
topic that got plenty of attention recently, many researchers attempted this with different networks with
different inference times. Table 7.1 summarises the best performing solutions to this problem. GateNet
has been deployed on the Al-Deck, with only Quantization, as a reference.

ID | Title FPS
1 NanoFlowNet[Lit5] 5.57
2 NanoFlowNet-s[Lit5] 9.34

3 Object Detection CNN][Lit23] | 4.30
4 | DDND[Lit48] 1.24
5 Tiny-PULP-Dronets[Lit24] 160

6 GateNet 4.55

Table 7.1: Deployment times for different Vision Networks

NanoFlowNet and NanoFlowNet-s are two CNNs from the same paper [Lit5], used for real-time
dense optic flow estimation. The network is designed from semantic segmentation networks, and takes
as inputs two frames outputting the optic flow field. It is a fully convolutional network with both
encoder and decoder. To speed up the inference of the network, the authors of this paper realised that
the bottleneck were the convolutional layers. They then solved this problem by applying three different
methods. Firstly, they swapped convolutional layers for depth-wise separable convolutions. Secondly,



7.4. Optimal Deployment Strategy 42

they relocated the first convolutional layer. Thirdly, images where fed to the network in grayscale
reducing by one-third the number of inputs.

The third approach is a single-shot object detection neural network based on MobilenetV2[Lit23].
This network is able to recognise a tin can from a glass bottle and can be expanded for more objects.
To decrease latency, the authors employ a width multiplier on the network, reducing the number
of parameters and MMAC operations. A width multiplier is a parameter that scales the number of
channels or filters in the network.

The fourth approach consists of a fully CNN for depth estimation. The authors of this paper
overcome the latency problem by streamlining a network called Lite-Mono, reducing the number of
parameters, from 3.1M to 310K. After this, they employ a knowledge distillation framework to train the
model. This framework consists of a large teacher model, Lite-Mono in this case, to transfer knowledge
to the smaller model, Distilled Depth for Nano Drones(DDND). By doing so, the number of parameters
is drastically reduced without a major loss in accuracy.

Finally, in the fifth approach, Tiny-PULP-Dronet, a variant of Dronet, is deployed on the Al-Deck for
autonomous navigation. This paper[Lit24] focuses on achieving the highest possible inference speed on
the deck. The two main methods employed by the authors are the use of a width multiplier and sparsity.

These different approaches are all effective in accelerating network inference on edge devices,
especially on the Al-Deck. A mixture of these approaches will most probably yield the best performance.
For Table 7.1, approach 5 is by far the most effective as it achieves 160FPS and should be applied to
the network in this project. On the other hand, the first and fourth approaches are more complex to
implement. As one requires the employment of knowledge distillation, the other requires substituting
convolutional layers.



Project Plan

In this chapter, the project plan is presented to guide the research in the right direction. The research
is divided into three phases namely, vision phase, control phase and gathering data phase. Starting
with the vision phase, this part consists in first generating vision neural network or finidng an off the
shelf one for the purpose of detecting gates. Next these models will be trained with a sparsification and
quantization scheme. Finally, they will be evaluated in terms of accuracy and inference time on both an
Intel core and the Al-Deck.

The next phase of the research is the control phase. Here, the focus is shifted to the control and
guidance of the drone, so flying through the gates autonomously. The procedure will be to use the
optitrack as state estimator, in order to isolate the control algorithm, and try to reduce the size of the
G&C Net [Lit8]. If this approach does not work the waypoint approach will be used, see chapter 6.

Finally, the gathering data phase will consist in merging the perception and control, performing
test flights and solving any problem that may arise. A Gantt chart presenting the plan with the time
window for each phase follows here.
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Preliminary Results

This chapter focuses on the preliminary results of research. It starts with an in-depth analysis of the
vision networks described chapter 5. This gives insights into the problems related to these networks.
section 9.2 proposes a solution to these problems along with the results of its deployment.

9.1. Architecture Analysis

For the best performing networks, DroNet and GateNet/PencilNet(same architecture), an analysis of
the inference time of every layer has been carried out using a TensorFlow bench-marking tool, always
with an Intel i5 core with a single thread. From Figure 9.1 and Figure 9.2, one can immediately tell
that the convolutions are the most computationally expensive layers. In particular, the first and second
convolutions, for PencilNet take up around 60% of total time, and the first convolutional layer for DroNet
accounts for 40%. This is due to the fact that the image is very large, and the convolution layer has a
large number of operations to carry out. In fact, another observation that can be drawn from these
graphs is that the rest of the layers do not have a significant impact on the inference time.
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Figure 9.1: Inference time of every layer in Dronet, in the order in which they are run
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Figure 9.2: Inference time of every layer in PencilNet, in the order in which they are run

9.2. Active Vision

In the previous section, the bottleneck for CNN has been identified as the first convolutional layer. The
most trivial solution to this problem is to reduce the number of pixels that need to be processed by this
layer. Fewer pixels normally lead to a loss of information, this is where active vision plays a role.

Active vision refers to the use of perception tools to identify the region of interest in an image. In the
case of this report, an image is divided into smaller sections and each section is fed to a simple CNN
which has 2 outputs namely, if the top left corner is in the section and if not the coordinates of the next
section of the image for the network to analyse. Figure 9.3, shows a visualisation of the dataset, where
from the centre of every section an arrow to the top left corner of the gate is shown. Once the corner has
been identified. All the pixels from right and below the corner are fed to a second CNN which will
detect the corners.

Figure 9.3: Active vision dataset visualisation, an arrow from the center of every section points to the top left corner of the gate

A network, with an architecture inspired by GateNet, was trained on these sub-sections. This
network has 3 outputs namely, the confidence of if the top left corner was in the image, x and y directions
for the unit vector that points to the top left corner. The results can be seen in Figure 9.4, where one can
notice that most of the arrows point in the wrong direction and there are two false positive detections of
the top left corner. Moreover, from the loss graph, Figure 9.5, is it clear that the model is not learning as
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Figure 9.4: Results of the active vision network

the error for the validation never decreases. Running this network on a 36 image dataset, the correct
corner was found only 47% of the times and on average the algorithm goes through 7.5 sub-images per
image, at a speed of 0.00041092s per sub-image on intel i5 core.

This approach has a low inference time than GateNet or DroNet, but the accuracy is very low. This
is due to the fact that it is very hard for a network to understand when in the picture it is looking. For
example, looking at the right side of Figure 9.4 it is very difficult to understand if the gate is left or right.
Therefore, this approach would need to be trained on a specific dataset with images only of the track
that will be flown, resulting in a not-very-robust method.
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Conclusion

In conclusion, the intersection of autonomous drone racing and neural networks offers a promising
path for research and development in the field of drone technology. Moreover, it provides an important
platform for testing and enhancing the capabilities of autonomous systems, with potential applications
in real-world scenarios like search and rescue operations and autonomous inspections.

In the introduction of this literature review, the research questions posed were:

How can state of the art vision and control algorithms for autonomous drone racing be simplified to fit
nano-drones, specifically a crazyflie equipped with AI-Deck?

Which perception algorithms perform best in the context of gate detection for autonomous drone
racing?

Which control algorithms perform best for high speed autonomous drone racing?

This literature study tried to answer the two sub-questions identifying the state of the art algorithms
for perception and control. It did this by dividing the software stack of autonomous nano-drone racing
into three distinct parts: perception, control and network acceleration. From the perception side, it was
possible to conclude that Neural Network are the most accurate and robust strategy for gate detection.
The problem with this strategy is the time it takes to process an image, the bottleneck was identified
as the first convolutional layer. A solution was proposed that consists of analysing the image section
by section which resulted in a not robust solution. Although, more approaches that try to identify
the area of interest should be investigated. The control section provided insight into useful planning
and control methods, the most important of which is the G&C Net which from a relative waypoint
provides the required motor rpm to reach it. Finally, the network acceleration section introduced two
main acceleration methods namely, quantization and sparsification. The former converts the network
parameters from floating points to integers allowing integer maths, and boosting speed significantly.
The latter, forces a certain percentage of weight to equal zero allowing to easier compression and faster
inference.

This literature research lays the groundwork for the subsequent stages of the research project,
providing a solid foundation of knowledge and understanding to inform the development and
implementation of the autonomous system on a nano-drone. The exploration of cutting-edge strategies
and techniques in each stage of the software stack paves the way for advancements in autonomous
drone racing and the broaden field of drone technology.
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