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Data-Driven Fault Diagnosis Using Deep
Canonical Variate Analysis and Fisher

Discriminant Analysis
Ping Wu , Siwei Lou, Xujie Zhang, Jiajun He, Yichao Liu , and Jinfeng Gao

Abstract—In this article, a novel data-driven fault diagno-
sis method by combining deep canonical variate analysis
and Fisher discriminant analysis (DCVA-FDA) is proposed
for complex industrial processes. Inspired by the recently
developed deep canonical correlation analysis, a new non-
linear canonical variate analysis (CVA) called DCVA is first
developed by incorporating deep neural networks into CVA.
Based on DCVA, a residual generator is designed for the
fault diagnosis process. FDA is applied in the feature space
spanned by residual vectors. Then, a Bayesian inference
classifier is performed in the reduced dimensional space
of FDA to label the class of process data. A continuous
stirred-tank reactor and an industrial benchmark of the Ten-
nessee Eastman process are carried out to test the per-
formance of DCVA-FDA fault diagnosis. The experimental
results demonstrate that the proposed DCVA-FDA fault di-
agnosis is able to significantly improve the fault diagnosis
performance when compared to other methods also exam-
ined in this article.

Index Terms—Bayesian classifier, canonical variate anal-
ysis (CVA), deep neural networks (DNN), fault diagnosis,
Fisher discriminant analysis (FDA), residual generator.

LIST OF ABBREVIATIONS

CCA Canonical correlation analysis.
CVA Canonical variate analysis.
CVA-FDA Canonical variate analysis-Fisher discriminant

analysis.
CSTR Continuous stirred-tank reactor.
DCCA Deep canonical correlation analysis.
DCVA Deep canonical variate analysis.
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DCVA-FDA Deep canonical variate analysis-Fisher discrimi-
nant analysis.

DFDA Dynamic Fisher discriminant analysis.
DNN Deep neural networks.
FDA Fisher discriminant analysis.
KFDA Kernel Fisher discriminant analysis.
KDFDA Kernel dynamic Fisher discriminant analysis.
kNN k-nearest neighbors.
L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–

Shanno.
MVA Multivariate analysis.
PCA Principal component analysis.
PLS Partial least squares.
ReLU Rectified linear unit.
SGD Stochastic gradient descent.
SVD Singular value decomposition.
TEP Tennessee eastman process.

I. INTRODUCTION

DUE TO the ever-increasing demands on high levels of
plant safety and product quality, fault diagnosis plays a

vital role in reducing system downtime and improving product
quality for complex industrial processes [1]. Fault diagnosis is
capable of detecting the process abnormality and classifying
the abnormality types to locate the root causes of the observed
out-of-control status [2].

Broadly speaking, fault diagnosis techniques can be catego-
rized into three main classes of model-based, expert knowledge,
and data-driven methods [3]–[6]. Model-based methods rely on
an accurate mathematical model. However, the mathematical
model, which takes modeling errors and uncertainties into ac-
count is very difficult to obtain for complex industrial processes.
For expert knowledge-based approaches, fault diagnosis is im-
plemented by capturing knowledge to draw conclusions in a
formal methodology. The limitation of expert knowledge-based
methods is that the knowledge base is not easily extracted from
past experiences with the process due to the complexity of mod-
ern industrial processes. Different from model-based and expert
knowledge-based approaches, data-driven based fault diagnosis
only needs to use a large amount of historical data. In data-driven
methods, fault diagnosis is carried out by applying machine
learning techniques to process data [7]. Data-driven methods
treat fault diagnosis as a multilabel classification task [8].
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With the rapid development of information and communication
technology, a large amount of industrial process data can be
efficiently collected and processed. Therefore, data-driven fault
diagnosis plays a critical role in complex industrial processes
due to its practicability and efficiency.

As a representative class of data-driven methods, multivariate
analysis (MVA) such as principal component analysis (PCA),
partial least squares (PLS), canonical variate analysis (CVA),
Fisher discriminant analysis (FDA) have recently been widely
applied for process monitoring and fault diagnosis in a variety of
industrial processes [9]–[13]. Compared to other MVA methods
such as PCA and PLS, FDA is a well-known technique for super-
vised classification and dimensionality reduction. In FDA, a set
of projection vectors is determined to simultaneously maximize
the between-class scatter and minimize the within-class scatter.
Due to its simplicity and practicability, FDA has become one of
the most popular tools to conduct fault diagnosis for industrial
processes.

For complex industrial processes, dynamics and nonlinearity
are commonly observed in process data [14], [15]. To address
the dynamics in process data, FDA can be extended to dynamic
Fisher discriminant analysis (DFDA) by augmenting the process
variables to time-lagged vectors [16]. The main shortcoming
of DFDA is that the dynamic characteristic of process data
cannot be fully explored by time-lagged extension. And the
interpretability of the data stacking strategy is poor [17]. On
the other hand, to handle the nonlinearity of process data,
kernel Fisher discriminant analysis (KFDA) was developed by
introducing kernel methods [18]. The basic idea of KFDA is
to map the process variables into a high-dimensional space
through kernel functions and then perform the linear FDA in the
kernel feature space. A number of fault diagnosis methods have
been developed to tackle specific problems by utilizing KFDA.
Ge et al. [19] proposed a semisupervised KFDA method for
nonlinear fault classification with labeled and unlabeled data.
Feng et al. [20] integrated the local and global discriminant
information into KFDA to address the issues of non-Gaussianity
and nonlinearity. Additionally, KFDA can be extended to kernel
dynamic FDA (KDFDA) to take both dynamics and nonlinearity
into consideration by performing KFDA on the time-lagged ex-
tension of the original data [21]. However, kernel methods have
some limitations, e.g., difficulty in determining parameters such
as kernel width and number of features, and heavy computational
burden related to the calculation of a kernel function for online
samples [22].

CVA is a further MVA method and recognized as an efficient
approach in process monitoring and fault diagnosis for dynamic
systems. CVA is originated from canonical correlation analysis
(CCA). In CVA, the correlation between the “past” data and
“future” data is analyzed through CCA. CVA takes into account
serial correlations in the process data, which makes it more
efficient in fault detection for dynamic systems [23]–[25]. Odi-
owei and Cao [12] applied CVA to determine the state variables
directly from the process measurements, where the correlations
between the past values of measurements and the future values
of measurements are considered. Chen et al. [26] utilized CCA
to maximize the correlation between the combination of the past

values of process inputs and outputs and the combination of the
future values of outputs. Due to its superiority, the combination
of CVA with other MVA methods can largely improve the
process monitoring and fault diagnosis performance. Zhang
et al. [27] proposed a combined strategy of CVA and slow
feature analysis to monitor process dynamics resulting from
closed-loop control by examining both serial correlations and
variation speed of process data. Jiang et al. [17] developed
a fault diagnosis method by combining CVA with FDA to
enhance the performance of fault diagnosis, which applies CVA
to obtain the state space vector for pretreating the process data
and subsequently utilizes FDA for fault classification. However,
the issue of nonlinearity is not addressed in these combination
methods.

Deep neural networks (DNN) methods such as deep Boltz-
mann machines [28], deep auto-encoders [29], and deep non-
linear feed-forward networks [30], have attained an empirical
success on a wide variety of tasks. By utilizing DNN, deep
learning methods overcome the shortcoming of kernel-based
methods that the representation is limited by the fixed kernel.
Besides, DNN is a parametric method to extract the nonlinear
features, rather than a nonparametric method such as kernel
methods. Thus, the time required to compute the representations
of new data points does not scale with the size of the training
dataset in DNN. Jiang and Yan [22] proposed a regularized deep
correlated representation method that incorporates deep belief
networks and CCA for nonlinear process monitoring. Recently,
deep canonical correlation analysis (DCCA) was proposed to
learn complex nonlinear transformations of two views of data
based on DNN, such that the resulting representations are highly
linearly correlated [31]. The basic idea behind DCCA is to com-
pute representations of the two views by passing them through
multiple stacked layers of nonlinear transformation. DCCA has
been successfully applied in a number of case studies such
as image and text processing, acoustic features learning, and
electroencephalography signal processing [32]–[34]. However,
to the best of author’s knowledge, the use of MVA based on
DNN has been rarely investigated in fault diagnosis so far.

To address the issues of dynamics and nonlinearity of data
and pursue improved fault diagnosis performance, a novel data-
driven fault diagnosis method is proposed by combining deep
canonical variate analysis (DCVA) and FDA. We develop a
new nonlinear CVA called DCVA to handle the nonlinear and
dynamic characteristics of industrial process data. In DCVA,
the nonlinear transformations of past and future data vectors are
learned through DNN so that the correlation between nonlinear
transformations is maximized. Then, a residual generator is
established from DCVA features for the fault diagnosis process.
Since the relationship between DCVA features can be treated
as linear, FDA is performed on the residual vectors to classify
faults. The proposed method is referred to as DCVA-FDA in this
article.

The main contributions of this article can be summarized as
follows.

1) A new nonlinear CVA is developed by borrowing the idea
of DCCA to cope with the dynamics and nonlinearity of
industrial process data.
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2) A more efficient approach for extracting discriminant
features is proposed by combining the developed DCVA
and FDA for fault diagnosis.

3) An improved performance is provided by the proposed
DCVA-FDA fault diagnosis through experiments on a
continuous stirred-tank reactor process (CSTR) and an
industrial benchmark of Tennessee Eastman process.

The rest of this article is organized as follows. In Section II,
the preliminaries of CVA-based residual generator are briefly
reviewed. Then, in Section III, DCVA and its application in
residual generator are elaborated. In Section IV, the DCVA-FDA
fault diagnosis scheme is developed. A CSTR process and an
industrial benchmark of Tennessee Eastman process (TEP) are
used to show its feasibility and effectiveness in Section V.
Finally, Section VI concludes this article.

II. CVA-BASED RESIDUAL GENERATOR REVISITED

Letu(k) ∈ Rm andy(k) ∈ Rl be the input and output at time
instant k, respectively. The past data vector zp(k) ∈ R(m+l)q is
constructed by augmenting the “past” inputs u(k) and outputs
y(k), and the future data vector yf (k) ∈ Rlq is formed by
augmenting the “future” outputs y(k),

zp(k) =
[
u(k − 1)T · · · u(k − q)T y(k − 1)T

· · · y(k − q)T
]T

yf (k) =
[
y(k)T y(k + 1)T · · · y(k + q − 1)T

]T
where q is the number of time lags in the past and future data vec-
tors. q is often determined through checking the auto-correlation
of the process variables. Assumed that a training dataset with
N samples of (u(k),y(k), k = 1, . . . , N) is collected, then the
Hankel matrices are formed by the normalized past and future
data vectors,

Zp =
[
zp(q + 1) zp(q + 2) · · · zp(M)

]
∈ R(m+l)q×M

Y f =
[
yf (q + 1) yf (q + 2) · · · yf (M)

]
∈ Rlq×M

where M = N − 2q + 1.
The objective of CVA is to seek for the pairs of linear projec-

tions (JTzp(k),L
Tyf (k)) of the past and future data vectors

so that these projections are maximally correlated

max
J,L

1
M − 1

tr(JTZpY
T
f L)

s.t.JTJ = I

LTL = I (1)

where J and L are the weighting matrices to be determined.
Here, I is a unity matrix with appropriate dimensions.

The optimization problem (1) can be readily solved by per-
forming singular value decomposition (SVD). First, the sample
covariance matrices (Σpp,Σff ) and crosscovariance matrix

Σpf are estimated as follows:

Σpp =
1

M − 1
ZpZ

T
p (2)

Σff =
1

M − 1
Y fY

T
f (3)

Σpf =
1

M − 1
ZpY

T
f . (4)

Then, the Hankel matrix H is decomposed through SVD
operation

H = Σ−1/2
pp ΣpfΣ

−1/2
ff = USV T (5)

where U and V are the left and right singular vec-
tors, respectively. S is a diagonal matrix, which consists
of singular values. If the rank of H is n, then S =
diag(δ1, δ2, . . . , δn, 0, 0, . . . , 0), δ1 > δ2 > · · · > δn.

From the result of SVD, the weight matrices J and L, which
comprise the n weight vectors can be constructed from the left
and right singular vectors ofH as follows:

J = Σ−1/2
pp U(:, 1 : n) (6)

L = Σ
−1/2
ff V (:, 1 : n). (7)

In the CVA-based fault detection approach, the residual gen-
erator can be established from CVA features LTyf (k) and
JTzp(k) [24], [26]

r(k) = LTyf (k)− SnJ
Tzp(k) (8)

where the diagonal matrix Sn is constructed by n singular
valuesSn = diag(δ1, δ2, . . . , δn). Usually, a Hotelling’s statistic
is established based on the residual vector r(k) to monitor the
process status [25].

Remark 1: The state vector can be derived as x(k) =
JTzp(k) [35]. A Hotelling’s statistic which is built from the
estimated x(k) can also be utilized for monitoring the process
status [12], [35]. In addition, a CVA-FDA method was developed
by applying FDA on the estimated x(k) for fault diagnosis
in [17]. As described in [24], the statistic formed by r(k) is more
sensitive than the one from state vector. Therefore, we adopt this
type of residual generator for the purpose of fault diagnosis in
this article.

III. PROPOSED DCVA

In CVA-based fault detection methods, the core is to inves-
tigate the relationship between past and future data vectors.
Representations of the past and future data vectors are learned
by utilizing CCA to maximize the correlation between past and
future data vectors. Then, a residual generator is built by using
these representations for fault detection. However, nonlinear
characteristics are commonly exhibited in industrial processes.
CVA cannot deal with the nonlinearity of process data. Recently,
DCCA was developed for learning the nonlinear representations
of two views by integrating DNN into CCA [33]. Different from
kernel-based methods, DCCA is a parametric method. It does
not require an inner product operation. The whole training data
are not involved in computing the representations of the new
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data samples. It has been proved that the DCCA can achieve
superior performance over kernel-based methods [31]. Inspired
by the idea of DCCA, we develop DCVA to address the issues
of dynamics and nonlinearity for fault diagnosis of complex
industrial processes in this article.

First, representations of the past data vector zp and future
data vector yf are computed through multiple stacked layers of
nonlinear transformation. For simplicity, we assume that each
intermediate layer in the neural networks for the past data vector
zp has c1 units, and the final layer which is also the output
layer has o units. For instance, the outputs of the first layer of
zp are h1 = s(W 1

pzp + b1
p) ∈ Rc1 . Here, W 1

p ∈ Rc1×(m+l)q

is a weight matrix, and b1
1 ∈ Rc1 is a bias vector, and s(·) is

a component-wise nonlinear function. The outputs of the next
layer are computed from the preceding outputs h1 as h2 =
s(W 2

ph1 + b2
p) ∈ Rc1 . Followed by the same procedure, the

final representation fp(zp) = s(W d
phd−1 + bdp) ∈ Ro

p is com-
puted. For the convenience of optimization procedure, biases b
at each layer are usually included in the weight matrix W p by
appending an extra 1 to its input. Likewise, the representation
ff (yf ) of the future data vector yf is obtained with different
parameters W f .

The main goal of DCVA is to jointly learn parameters
W p,W f such that the correlation between fp(zp) and ff (yf )
is maximized

max
W p,W f ,J ,L

1
M − 1

tr(J TF p(Zp;W p)F f (Y f ;W f )L)

s.t. J TJ = I

LTL = I (9)

where F p(Y p;W p) and F f (Y f ;W f ) are the representations
of the past data and future data vectors for all the training dataset.

Generally, appropriate regularization terms are included to
deal with numerical problems and reduce the detection of spu-
rious correlations [31]. Therefore, the constraints in (9) are
rewritten by imposing regularization terms as follows:{
J T ( 1

M−1F p(Zp;W p)F p(Zp;W p)
T + λpI)J = I

LT ( 1
M−1F f (Y f ;W f )F f (Y f ;W f )

T + λfI)L = I

(10)
where λp and λf are the regularization coefficients.

For the typical DNNs used in regression or classification,
the optimization problems are usually without constraints. Be-
sides, the objective functions can be expressed as the ex-
pectation (or sum) of error functions (e.g., squared loss or
crossentropy). However, there are two networks in maximiz-
ing the correlation as shown in(9). Andrew et al. [31] ap-
plied a full batch algorithm, (i.e., Limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm, L-BFGS), to solve the
optimization problem. To improve the computational efficiency,
an efficient stochastic gradient descent (SGD) algorithm was
developed by Wang et al. [33]. The results showed that the
stochastic training approach can produce both faster training
and better performing features than L-BFGS for solving the
optimization problem (9) [33]. In this article, we also adopt

the SGD algorithm presented in [33] to train the networks
of DCVA.

It is noting thatJ andL have a closed-form solution for fixed
functions ff and fp. Therefore, we can obtain

T = Σ̃
−1/2
pp Σ̃pf Σ̃

−1/2
ff = USVT (11)

where Σ̃pp = 1
M−1F p(Zp;W p)F p(Zp;W p)

T + λpI ,

Σ̃ff = 1
M−1F f (Y f ;W f )F f (Y f ;W f )

T + λfI , and

Σ̃pf = 1
M−1F p(Zp;W p)F f (Y f ;W f )

T . U is constructed by
the left singular vectors corresponding to the singular values,
which are arranged in descending order of their magnitudes. V
is formed in a similar way. Then, J and L can be obtained as

J = Σ̃
−1/2
pp U and L = Σ̃

−1/2
ff V , respectively.

Substituting J and L into (9),

tr(J TF p(Zp;W p)F f (Y f ;W f )L) = ΣL
j=1σj(T ). (12)

Denote T̃ = ŨSLṼT as the rank-L SVD of T .
SL = diag(σ1(T̃ ), σ2(T̃ ), . . . , σL(T̃ )) where σ1(T̃ ) >
σ2(T̃ ) > · · · > σL(T̃ ) are the L largest singular values of

Σ̃
−1/2
pp Σ̃pf Σ̃

−1/2
ff . Ũ = U(:, 1 : L) and Ṽ = V(:, 1 : L) are

formed by the first L singular vectors of U and V , respectively.
The gradient of the total correlations with respect to the feature
matrix F p is

∂ΣL
j=1σj(T̃ )
∂F p

=
1

M − 1
(2Δ11F p +Δ12F f ). (13)

Here, Δ11 = − 1
2Σ̃
−1/2
pp ŨSLŨT Σ̃

−1/2
pp , Δ12 = −Σ̃−1/2

pp Ũ ṼT

Σ̃
−1/2
ff . In the same manner, ∂ΣL

j=1σj(T̃ )/∂F f has a symmetric
expression

∂ΣL
j=1σj(T̃ )
∂F f

=
1

M − 1
(2Δ21F f +Δ22F p) (14)

where Δ21 = − 1
2Σ̃
−1/2
ff ṼSLṼT Σ̃

−1/2
ff , Δ22 = −Σ̃−1/2

ff ṼŨT

Σ̃
−1/2
pp . The details of the derivation of gradients can be found

in [31].
The update of W p and W f can be computed through stan-

dard backpropagation. Denote W =
[
W p W f

]
. Based on

the derived gradients (13) and (14), the gradient ∇W can be
readily obtained for a determined neural networks architecture.
Given the gradient∇W with respect to the all weight parameters
evaluated on minibatches where the size of minibatch is smb, the
weight parameters W at step t are updated as follows:

ΔW t = μtΔW t−1 − εt∇W

W t = W t−1 +ΔW t (15)

where μt ∈ [0, 1) and εt are the momentum parameter and
learning rate at step t, respectively. In this article, we used fixed
μ and ε in the SGD algorithm. Based on the derived gradients
and update rules, W is learned through the SGD algorithm until
the total correlation stops improving on a held-out validation set.
The outline of DCVA is shown in Algorithm 1.
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Algorithm 1: DCVA.

Input: Data matrix Zp ∈ R(m+l)q×M ,Y f ∈ Rlq×M .
Learning rate ε, momentum parameter μ, size of
minibatch smb, regularization parameters λp and λf .

Initialization W =
[
W p W f

]
. Maximum number of

epoch Nme.

Output: The updated W =
[
W p W f

]
, J̃ , L̃ and SL.

for t← 1 to Nme do
Randomly choose a minibatch Zpt,Y ft.
Compute the matrices

Σ̃pp =
1

M − 1
F p(Zpt;W p)F p(Zpt;W p)

T + λpI

Σ̃ff =
1

M − 1
F f (Y ft;W f )F f (Y ft;W f )

T + λfI

Σ̃pf =
1

M − 1
F p(Zpt;W p)F f (Y ft;W f )

T

Perform SVD

T = Σ̃
−1/2
pp Σ̃pf Σ̃

−1/2
ff = USVT

Calculate the rank-L SVD of T
T̃ = ŨSLṼT

Compute the gradient

∂ΣL
j=1σj(T̃ )
∂F p

=
1

M − 1
(2Δ11F p +Δ12F f )

∂ΣL
j=1σj(T̃ )
∂F f

=
1

M − 1
(2Δ21F f +Δ22F p)

Calculate ∇W according to
∂ΣL

j=1σj(T̃ )
∂F p

and
∂ΣL

j=1σj(T̃ )
∂F f

Update W =
[
W p W f

]
ΔW t = μtΔW t−1 − εt∇W

W t = W t−1 +ΔW t

end for
Calculate the weigh matrices

J̃ = Σ̃
−1/2
pp Ũ

L̃ = Σ̃
−1/2
ff Ṽ

Based on the updatedW , the weight matrices L̃ and J̃ , which
are corresponding to the largestL singular values can be obtained

J̃ = Σ̃
−1/2
pp Ũ (16)

L̃ = Σ̃
−1/2
ff Ṽ . (17)

Similarly, the residual generator r̃ ∈ RL is established from
the DCVA features L̃Tff (yf (k)) and J̃ Tfp(zp(k)) for fault

TABLE I
HYPERPARAMETERS IN DCVA MODEL

diagnosis

r̃(k) = L̃Tff (yf (k))− SLJ̃ Tfp(zp(k)). (18)

Remark 2: The determination of the width and depth of DNN
is a challenging work in deep learning. In this article, the num-
bers of neurons and layers are determined by cross-validation.
In general, more neurons and layers would provide improved
performance [36]. However, there is a tradeoff between compu-
tational complexity and performance. Basically, in this article,
the number of neurons per layer is selected to be slightly larger
than the dimensions of zp and yf . Similar to CVA [12], the
DCVA dimension L is selected according to the singular values
of (11) in the proposed DCVA. In the case studies, the DCVA
dimension L is selected as a smaller value than the number of
neurons of the hidden layer, as highly correlated representations
of zp and yf are obtained through DCVA. For DCVA, Table I
lists these hyperparameters to be determined.

Since it is difficult to establish the quantitative relationship
between the performance of fault diagnosis and these hyperpa-
rameters, a common way to select the appropriate structure is
through cross-validation. To decide hyperparameters for DCVA,
cross-validation by grid search is adopted in this article.

IV. PROPOSED FAULT DIAGNOSIS METHOD

For fault diagnosis, discriminant analysis is consequently
performed in the feature space formed by the residual vectors
r̃(k). Due to the relationship between the DCVA features is
linear, the residual vectors r̃(k) can be analyzed by traditional
FDA. FDA is a typical pattern classification method [16]. The
basic idea behind FDA is to optimize the Fisher criterion by
determining a set of projection vectors.

Assumed that Nall observations of residual vectors r̃(k) are
computed from fault-free and c− 1 faulty classes. To elaborate
the implementation of FDA, we denote the training data matrix
R̃ ∈ RNall×L which consists of Nall residual vectors r̃(k). The
within-scatter matrix Sw,j is defined for the jth class Rj ,

Sw,j =
∑

r̃(k)∈Rj

(r̃(k)− r̃m,j)(r̃(k)− r̃m,j)
T (19)

where r̃m,j is the mean vector of the jth class Rj . By summing
all within-scatter matrix Sw,j , the within-class-scatter matrix
Sw is then derived as follows:

Sw =
c∑

j=1

Sw,j . (20)
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The total-scatter matrix St is given by

St =
∑

r̃(k)∈R̃

(r̃(k)− r̃m)(r̃(k)− r̃m)T (21)

where r̃m is the mean vector of R̃.
The between-class-scatter matrix Sb is then calculated as

follows:

Sb =

c∑
j=1

nj(r̃m − r̃m,j)(r̃m − r̃m,j)
T = St − Sw. (22)

Here, nj is the observation number of jth class.
In FDA, the Fisher criterion is used to indicate the ratio of the

projection variance (scatter) of means of classes to the projection
variance (scatter) of class instances. Therefore, the goal of FDA
can be set to derive the optimal discriminant directions w̃i, i =
1, . . . , d, d ≤ c− 1, which maximize the Fisher criterion θ(w̃)

max
w̃

θ(w̃) :=
w̃TSbw̃

w̃TSww̃
. (23)

The optimization problem (23) is equivalent to a generalized
eigenvalue problem

Sbw̃i = μiSww̃i (24)

where μi is the generalized eigenvalue and the Fisher discrimi-
nant direction w̃i is the FDA eigenvector.

From the result of generalized eigenvalue problem (24), the
optimal discriminant directions W̃ b can be derived by selecting
d FDA vectors w̃i, i = 1, . . . , d. Then, the discriminant vector
d̃(k), which is also the projection of r̃(k) onto the discriminant
subspace can be represented below

d̃(k) = W̃
T

b r̃(k). (25)

In general, two strategies including kNN and Bayesian infer-
ence are employed to determine the class of new data sample.
For kNN, the new data sample is classified by a majority vote
of its neighbors, where the class membership is assigned to the
class most common among its kNN. For Bayesian inference,
the class of new data sample is determined through computation
of posterior probability. Compared to kNN algorithm, Bayesian
inference strategy is simpler and requires less computational
load. In this article, we adopt Bayesian inference for classifica-
tion. Thus, the Fisher discriminant function gj(r̃) is utilized to
classify the process data

gj(r̃) = −
1
2
(d̃(k)− d̃m,j)

T

(
1

nj − 1
W̃

T

b Sw,jW̃ b

)−1

× (d̃(k)− d̃m,j)

− 1
2
ln

[
det

(
1

nj − 1
W̃

T

b Sw,jW̃ b

)]
(26)

where d̃m,j = W̃
T

b r̃m,j . Then, the class of the test r̃(k) is
determined by observing the Fisher discriminant function

C(r̃(k)) = arg max
1≤j≤c

gj(r̃(k)). (27)

Fig. 1. Scheme of the proposed DCVA-FDA fault diagnosis.

Fig. 2. Flowsheet for the CSTR process [24].

A detailed flowchart for the proposed DCVA-FDA fault diag-
nosis is shown in Fig. 1.

V. CASE STUDIES

In this section, the proposed DCVA-FDA fault diagnosis
scheme is applied to aCSTR and an industrial benchmark of
TEP to verify its capability and effectiveness. For comparative
study, several typical methods are employed, i.e., FDA, KFDA,
KDFDA, and CVA-FDA [17]. To ensure the comparison fair-
ness, all methods use the Bayesian inference based criterion to
classify the class label of process data.

A. Case 1: CSTR Process

The flowsheet of CSTR process is shown in Fig. 2. The CSTR
process is mainly modeled by the following equations [24]⎧⎪⎨
⎪⎩

dC
dt = Q

V (Ci − C)− akC + v1
dT
dt = Q

V (Ti − T )− a (ΔHr)kC
ρCp

− b UA
ρCpV

(T − Tc) + v2

dTc

dt = Qc

Vc
(Tci − Tc) + b UA

ρcCpeVc
(T − Tc) + v3
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Fig. 3. Classification results for normal and Faults 1–3 testing data in CSTR process. The left axis labels the normal and faulty data and the
legend at the right gives the color of the class of process data indicated by the fault diagnosis methods.

TABLE II
DESCRIPTION OF THE FAULTS IN CSTR PROCESS

where Ci is the concentration of the reactant. Ti and Tci are the
temperature of reactant and the inlet temperature of coolant,
respectively. The symbols vi, i = 1, 2, 3 are process noises.
k = k0exp−E/RT is an Arrhenius-type rate constant. Due to the
existence of parameter k, the CSTR process becomes dynamic
and nonlinear. In this study, we select u = [Ci Ti Tci]

T and
y = [C T Tc Qc]

T . The controller setting and process parame-
ters are referred to [24]. Three typical faults including saturation
and sensor drifts are described in Table II.

The sampling interval for all variables is 1 min. 1000 samples
are collected in normal and three fault conditions for offline
training. Another 1000 samples in normal condition are used for
validation in the DCVA-FDA model training. For performance
evaluation, a Monte Carlo simulation of five realizations with
different random seeds for the process noises, measurement
noises, and input disturbances for each condition, is performed
to test the consistency of the results. Each testing dataset, which
consists of 1000 samples in each condition is generated.

The number of time-lags q is selected as five for CVA-FDA,
DFDA, KDFDA, and DCVA-FDA as in [24]. To decide pa-
rameters for DCVA-FDA, cross-validation by grid search is
employed. The neural networks of DCVA contain five layers
(including the output). 100 units per layer are chosen at the input

and hidden layers. The dimension of nonlinear representations
L is set as 80 for DCVA-FDA. The activation functions at hidden
layers are selected as sigmoid function s(z) = 1/(1 + e−z),
while linear function at input and output layers. The weight
decay parameters for all weight parameters are set as 10−5. In
this case, the size of minibatch smb is set as 100. The learning
rate ε is set as 0.0001. The maximum number of epochNme is set
as 2000. In SGD, the momentum parameter μ is set as 0.99. The
regularization parameters λp and λf are set as 0.01. Additionally,
the weight initialization method is according to [37], where
Xavier initialization method is applied.

Since there are four classes to be classified, the number of FDA
vectors is set as three for all methods. For KFDA and KDFDA,
we use a radial basis function kernel. The bandwidth parameters
of KFDA and KDFDA are set as 500 and 2500, respectively.
These parameters are determined through cross-validation.

The classification results for normal, Faults 1, 2, and 3 uti-
lizing the aforementioned methods are plotted in Fig. 3. As
shown in Fig. 3, it can be observed that the normal, Faults 1
and 2 data are often misclassified for linear methods such as
FDA, DFDA, and CVA-FDA. In contrast, nonlinear methods
such as KFDA, KDFDA, and DCVA-FDA can achieve better
classification results than linear methods. Table III shows the
average misclassification rate across five testing datasets. As
the data listed in Table III, it can further be found that DFDA
and CVA-FDA provide better classification results than FDA,
as they consider the system dynamics. Moreover, CVA-FDA
achieves superior classification performance than DFDA, since
the dynamic information can be better captured by pretreating
the data with CVA. The overall misclassification rate for CVA-
FDA is 23.89%, compared to 40.69% for FDA and 32.71%
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TABLE III
AVERAGE MISCLASSIFICATION RATES (%): CSTR PROCESS

Fig. 4. Diagram of the industrial TEP benchmark [16].

for DFDA. On the other hand, the nonlinear methods possess
better performance than linear methods as displayed in Fig. 3.
From the data listed in Table III, the overall misclassification
rate for KFDA is 21.65% for the testing datasets. Since KDFDA
takes both process dynamics and nonlinearity into account, the
overall misclassification rate is 15.57%, which is lower than
that of KFDA. Among the nonlinear methods, DCVA-FDA
obtains the best classification performance. The combination of
DCVA and FDA can enhance the capability of handling process
dynamics and nonlinearity. The overall misclassification rate of
DCVA-FDA is 8.43%.

B. Case 2: TEP

The industrial benchmark of the TEP was developed based on
a practical chemical process [38]. The TEP benchmark has been
widely used in the evaluation and comparison of fault diagnosis
performance [16]. It consists of five main units including the
reactor, condenser, separator, stripper, and compressor. In the
TEP, the gaseous reactants A, C, D, E, and the inert B are fed
to the reactor where the liquid products G and H are formed.
The flowsheet of the TEP is plotted in Fig. 4. There are 11 ma-
nipulated variables and 41 measurement variables, among which
22 variables are continuous measurement variables, whereas the
other 19 variables are composition measurements. In this article,
we adopt 11 manipulated variables XMV(1–11) as inputs and
22 measurement variables XMEAS(1–22) as outputs. Table IV
lists the monitoring variables. Total of 21 fault scenarios were
simulated in the TEP. More details about the TEP can be found
in [16], [38]. Different from the simulation in [16], we choose
three different fault scenarios including Faults 8, 10, and 14
for performance evaluation in this work. The descriptions of
these fault scenarios are listed in Table V. As shown in Table V,

TABLE IV
MONITORING VARIABLES OF THE TEP

TABLE V
DESCRIPTION OF FAULTS 8, 10, AND 14 IN THE TEP

Fig. 5. Label data sample projection results in discriminant subspaces
using training data in the TEP.

both Faults 8 and 10 are random variations introduced in steam
4, which are composition variation and temperature variation,
respectively. Fault 14 is a valve sticking fault from the reactor
cooling water valve.

A widely used dataset for fault diagnosis of the TEP
can be downloaded from http://web.mit.edu/braatzgroup/links.
html. We also adopt this dataset in this work. Based on this
dataset, a total of 400 data samples are collected under each of
the normal and faulty operating modes for training models. For
the purpose of validation in the DCVA-FDA method, another
100 data samples are collected in normal condition. 200 data
samples are collected in the normal and faulty conditions for
performance evaluation.

For CVA-FDA, DFDA, KDFDA, and DCVA-FDA, the num-
ber of time-lags q is selected as five through autocorrelation
analysis. Through cross-validation, seven layers (including the
output) are used to construct the neural networks in DCVA.
The dimensions of zp and yf are 165 and 110, respectively.
At the input and hidden layers, 200 units per layer are chosen.
The dimension of projectionsL is set as 180 for DCVA-FDA. At
the hidden layer, the rectified linear unit (ReLU) is adopted as ac-
tivation function. The expression of ReLU is s(z) = max(0, z).
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Fig. 6. Classification results for normal and Faults 8, 10, and 14 testing data in the TEP. The left axis labels the normal and faulty data and the
legend at the right gives the color of the class of process data indicated by the fault diagnosis methods.

The linear function is chosen at input and output layers. The
weight decay parameters for all weight parameters are set as
10−5. The size of minibatch smb is set as 300. The learning rate ε
is set as 0.01. For SGD, the momentum parameter μ is set as 0.7.
The regularization parameters λp and λf are set as 0.0001. Dif-
ferent from sigmoid function, the weight initialization is using
random initialization method while ReLU is adopted, according
to [39]. The maximum number of epoch Nme is set as 2000.
Three FDA vectors are chosen as there are four classes of process
data to classify for all methods. For KFDA and KDFDA, the
radial basis function kernel is used. The bandwidth parameters
of KFDA and KDFDA are set as 1650 and 10 000, respectively.
These parameters are determined through cross-validation.

To illustrate the discriminant capability of all methods, all the
labeled training data samples are projected into the subspaces
created by the discriminant vectors. In Fig. 5, the first three
directions of the projections are plotted. From Fig. 5, it can be
seen that it is very difficult to separate samples from both normal
and faulty scenarios in the discriminant subspace provided by the
linear models such as FDA, DFDA, and CVA-FDA. In contrast,
the labeled sample projections are better separated by nonlinear
models such as KFDA, KDFDA, and DCVA-FDA. For non-
linear methods, although the distance between the projections
of normal and Fault 10 data is closer, the projections of Faults
8 and 14 are far away from the centers of the projections of
normal and Fault 10 data. It indicates that the process data,
which are generated from Faults 8 and 14 scenarios can be
classified by nonlinear methods more accurately than linear
methods. Experimental results regarding the testing dataset are
presented in Fig. 6. As shown in Fig. 6, the classification
performance is improved using CVA-FDA compared to FDA
and DFDA, since more information on dynamics is revealed
from the process data. In Table VI, the misclassification rates

TABLE VI
MISCLASSIFICATION RATES (%): TEP

are listed. The overall misclassification rate for CVA-FDA is
42.15% for the testing dataset, compared to 51.00% for FDA and
51.53% for DFDA. Due to the strong nonlinear characteristic
of the TEP, the nonlinear methods are superior over linear
methods as shown in Fig. 6. The overall misclassification rate
for KFDA is 32.00%. Both the dynamics and nonlinearity of
process data are taken into consideration by KDFDA. Thus,
the classification performance utilizing KDFDA is better than
KFDA. The overall misclassification rate of KDFDA is 22.70%.
DCVA facilitates the extraction of discriminant features from
process data. As we expected, DCVA-FDA can achieve the best
classification performance among all the compared methods.
The overall misclassification rate of DCVA-FDA is 12.30%.
Thus, it can be concluded that the combination of DCVA and
FDA is advantageous for fault diagnosis compared with other
methods.

VI. CONCLUSION

In this article, a novel data-driven fault diagnosis method
named DCVA-FDA was proposed for nonlinear dynamic pro-
cesses. A new nonlinear CVA was developed by incorporating
DNN into CVA to learn the nonlinear dynamic relationship
between process variables from data. A residual generator was
designed from the DCVA model. FDA was performed on the
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residual vectors for discriminant analysis. Then, Bayesian in-
ference was applied to classify the process data. The proposed
DCVA-FDA took both advantages of DCVA and FDA for fault
diagnosis. Two experimental studies were carried out to val-
idate the superiority of the proposed DCVA-FDA scheme by
comparing it with reported fault diagnosis methods. Although
DCVA-FDA could achieve improved performance, the misclas-
sification rate of normal conditions was relatively high. In this ar-
ticle, the most commonly used DNN architecture was employed
in DCVA-FDA. Hence, future investigations would consider
more DNN architectures to enhance the ability of nonlinear
representation. Moreover, given the advantages of DCVA in
learning deep correlated representations for nonlinear dynamic
processes, the proposed DCVA-FDA method would be applied
in more research areas such as quality-related fault diagnosis,
semisupervised fault diagnosis in future work.
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