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Abstract

The paper reviews some of the essentials of human-machine interaction in automated driving, focusing on control authority 
transitions. We introduce a driving state model describing the human monitoring level and the allocation of lateral and 
longitudinal control tasks. An authority transition in automated driving is defined as the process of changing from one static state 
of driving to another static state. Based on (1) who initiates the transition and (2) who is in control after the transition, we 
categorize transitions into four types: driver-initiated driver control (DIDC), driver-initiated automation control (DIAC), 
automation-initiated driver control (AIDC), and automation-initiated automation control (AIAC). Finally, we discuss the effects 
of human-machine interfaces on driving performance during transitions.

© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of AHFE Conference.

Keywords:Automated driving; Control authority transitions; Driving states

1. Introduction

Automated vehicles have recently drawn a great deal of attention. Technology companies, such as Google, as 
well as vehicle manufacturers, such as Nissan, Mercedes, BMW, and Volvo, are testing their automated driving 
products or prototypes on public roads. These developments follow up on various advanced driver assistance 
systems (ADAS) that have been introduced in the last three decades, including Anti-lock Braking Systems, Collision 
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Warning Systems, Adaptive Cruise Control (ACC), Lane Keeping Assistance (LKA), and Automatic Parking. 
Experimental research as well as field operational tests have demonstrated that ADAS can not only improve traffic 
efficiency and cut down fuel consumption but also reduce traffic accidents[1], of which over 50% are primarily 
caused by unintentional human error[2,3].

Several general conclusions can be derived from previous research on human-machine interaction: a greater 
degree of automation generally reduces the variability of human performance, but on the other hand leads to 
‘human-out-of-the-loop’ problems, such as complacency, loss of situation awareness, loss of manual control skills, 
and behavioral adaptation [4–7]. A literature review by De Winter et al. [8] showed that drivers’ workload and 
situation awareness are vastly different for driving with ACC compared to Highly Automated Driving (HAD). Such 
human factors issues resulting from increased automation levels need to be taken into consideration when designing 
automated vehicles [9,10].

Sooner or later, fully automated vehicles without human supervision will be on the roads. However, at present, 
many problems of technologyand legalization stillneed to be solved, and peoples’ opinions are divergent regarding
the desirability of fully automated vehicles[11]. Before the moment of fully automated vehicles arrives, drivers will
have to supervise their automated cars.That is, due to functional limitations of automation, hardware failure, or 
policy factors, drivers may have to resume manual control at certain moments during their drives. Such control 
authority transitions in automated driving need to be studied, especially when considering that human factors 
research over the past decades has repeatedly demonstrated that humans are not good at supervisory tasks [12]. 
Driving simulator research which has studied human behavior during authority transitions in automated driving has
shown that accidents and near-accidents are likely to occur if humans suddenly have to resume manual control [13–
16].

This review will begin with introducing the fundamental concepts of levels and stages of automation. By 
comparing different definitions of levels of automated driving, key principles of authority transitions are extracted. 
Accordingly, a driving state model is introduced. Next, a categorization tree is introduced that identifies different 
types of transitions and which can be used to cluster transition scenarios. Finally, we discuss the importance of a 
human-machine interface (HMI) for safe transitions.

2. Transitions defined as changes in primary functions: monitoring and control

Automation systems can be described across four stages: 1) information acquisition; 2) information analysis; 3) 
decision and action selection; and 4) action implementation [17]. Bainbridge [18] argued that ‘monitoring’ and 
‘taking over control’ are the two primary tasks that are left for human operators when using an automated system. 
These primary tasks resemble the stages of automation defined by Parasuraman et al. [17], where monitoring 
corresponds to information acquisition and analysis, and control of lateral and longitudinal directions corresponds to 
decision-making and action implementation.

2.1. Levels of automation in automated driving

The German Federal Highway Research Institute (BASt), the Society of Automotive Engineers (SAE), and the 
National Highway Traffic Safety Administration (NHTSA) have each created their definitions of ‘levels of 
automated driving’ [19–21]. Although these definitions vary, the essential criteria that define the different levels of 
automation are similar in each of the three cases. These essential criteria refer to how the primary functions (i.e., 
monitoring and control) are distributed between the human and the automation.

For example, the difference between Assisted Driving (AD) and Partially Automated Driving (PAD) as defined 
by BASt is that in PAD, the automation takes over both lateral and longitudinal control, while only one of these is 
controlled in AD. This distinction between AD and PAD is equivalent to the distinction between Driver Assistance 
and Partial Automation in the SAE definition, and equivalent to the distinction between ‘Level 1Function-Specific 
Automation’ and ‘Level 2 Combined Function Automation’ in the NHTSA definition.Furthermore, the 
BAStdefinition states that the difference between PAD, HAD and Fully Automated Driving is the required 
monitoring frequency which decreases from ‘permanently’ in PAD, ‘need not permanently’ in HAD, to ‘need not’ in 
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Fig. 1. Control diagram illustrating the states of automated driving. hx = human longitudinal; hy = human lateral; ax = automation longitudinal; 
ay = automation lateral. The human monitor level alpha changes with as a function of the driving state, as explained in the text. 

Automated Driving (FAD). This monotonic decrease of monitoring frequency with increasing level of automation 
can also be identified in the SAE and NHTSA definitions of levels of automated driving.

2.2. Driving states in automated driving

A transition can be defined as a period in which the system changes from one state to another state [22]. States of 
automated driving systems are defined in a more fine-grained manner than the aforementioned levels of automation. 
For example, systems with only lateral support or only longitudinal support are classified as the same level of 
automation in the definitions provided by BASt, SAE, and NHTSA, even though human workload and situation 
awareness are known to be different during lateral support as compared to during longitudinal support [23]. 
Defining authority transitions in terms of states does not only integrate the different definitions of levels of 
automated driving, but can also be used to distinguish between the possible modes of function allocation. The 
control diagram representing the states of automated driving is illustrated in Figure 1.

In Figure 1, Input is information regarding theplanned trajectory, states of the vehicle (such as velocity and 
acceleration), and environment information (such as traffic signs and other vehicles). Output is the actual vehicle
trajectory and the states of the vehicle. (Sax, Shx) and (Say, Shy) are two pairs of switches thatallocate control 
authorities in the longitudinal and lateral directions. If one assumes static states, only one switch is turned on in each 
pair of switches. (Kax, Khx) and (Kay, Khy) are two pairs of adaptive parameters that are used to tune the control 
weights of human and automation. These parameters are set to 1in the case of static states. However, these variables 
can optionally be tuned in the case of dynamic states in which both switches can be turned on at the same time (e.g., 
to facilitate the concept of ‘shared control’[24]).

The ‘human monitor’ (a biological agent) and ‘automation analysis’ (a computer agent) acquire and analyze the 
input and output information, make decisions, and feed signals to the longitudinal and lateral human or automation 
controllers. The longitudinal and lateral automation controllers are transfer functions that generate control signals, 
such as steering and pedaling signals. The vehicle actuator will implement these directional signals to move the 
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vehicle. The output will be feedback to the ‘automation analysis’ directly. The human monitor level ‘alpha’
represents the required human monitoring frequency. The ‘human monitor level function’, which determines how 
much output information will be fed back to the ‘human monitor’is represented by ‘alpha’. If the driver does not 
need to monitor, alpha is set to 0;on the contrary, alphais 1 when the driver is required to monitor permanently.

The static states are listedbelow.

State 1:if Shx and Shyare both switched on, and Sax and Say are both switched off, then the state is manual driving, 
where alpha needs to be 1.
State 2.1:if Sax and Shyare both switched on, and Shx and Say are both switched off, then the state represents 
driving assistance with longitudinal support (like ACC). Here, alpha still equals 1, because the driver is engaged 
in other control tasks.
State 2.2: if Shx and Say are both switched on, and Sax and Shy are both switched off, then this state represents 
driving assistance with lateral support (like LKA). Alpha equals 1, for the same reason as in State 2.1. 
State 3: if Sax and Say are both switched on, and Shx and Shy are both switched off, then this state maps to 
partially automated driving with lateral and longitudinal support (like vehicles equipped with both ACC and 
LKA). The driver is still required to monitor permanently to be able to take over control anytime needed. Hence, 
alpha is still 1.
State 4: If Sax and Say are both switched on, and Shx and Shy are switched off, but unlike State 3, driver the does 
not need to monitor permanently, then this state corresponds to highly automated driving. This means that alpha 
floats between0 and 1.
State 5: If the conditions of the switches are the same as in State 3 and State 4, but the driver does not need to 
monitor (so alpha equals 0), then this state corresponds to fully automated driving. 

State 2.1 and State 2.2 are both categorized within State 2, because both states belong to the same level of 
automation[19–21]. However, as we discussed above, the control task allocations in these two states are different 
from each other. 

2.3. Definition of transitions

Based on the driving states above, transitions in automated driving can be defined as the process of changing 
from one static state of driving to another static state.Flemisch et al. [25] tried to include all transitions in one 
continuous spectrum of automation. We refine this spectrum, by pointing outthe difference between monitoring 
transitions and control authority transitions.Transitions among States 3, 4, and 5 concern changes in the driver’s
monitoring status. Control authority transitions, which refer to changes of allocation of control action, will occur 
when States 1, 2.1, or 2.2 are involved. The changes of monitoring level for some of the control authority transitions 
(e.g., monitoring level increases from 0 to 1 during the transition from state 5 to state 1) are not emphasized, because 
the responsibility of monitoring is driven by the control authority [22]. 

Figure 2 illustrates the overall concept. Solid lines represent control authority transitions, while dotted lines 
represent monitoring status transitions.A control authority transition in automated driving isdefined as aprocess 
wherecontrol authority changes from one static state of driving into another static state. Therefore, the changes of 
authority of lateral, longitudinal, or both control tasks,are referred to as control authority transitions.

Fig. 2.Transitions between different states.
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3. Categorization ofcontrol authority transition in automatic driving

Prior research indicates that who (human or automation) should initiate a transition is an essential topic in the 
design of adaptive automation and function allocation in general [26–28]. Flemisch et al. [22]argued that control 
authority transitions in automation systems should depend on the abilities of both human and automation. In other 
words, before changing control authority in a particular situation, the agent (either human or automation) who 
initiates the transition should have knowledge of the momentary driving capabilities of the other agent. 

3.1. Categorization of transitions

In automated driving, two main transition categories aredriver-initiated transitions and automation-initiated 
transitions. Each of these two main categories can be divided into two subcategories: ‘driver in control’ and 
‘automation in control’, referring to who is in control after the transition has occurred. The corresponding 
categorization tree is shown in Figure 3.

3.2. Scenarios in each transition categories 

In driver-initiated transitions (DIDC & DIAC), the driver usually has some time to prepare the transition. Both 
the DIDC and DIAC transitions can be triggered based on the driver’s preference of control while he or she is 
judging one’s own driving fitness and the capabilities of the machine. A DIDC can also be triggered by an 
automation failure; the driver, who notices this failure, subsequently initiates the transition.

In the case of a transition initiated by the automation (AIDC & AIAC), the automation should have sufficient 
information to make this decision. AIDC transitions may be caused by automation limitations or by a computer 
failure detected by on-board diagnostics. Another possibility is that the automation adaptively hands over control to 
raise driver situation awareness or to solve other human-out-of-the-loop problems. An AIAC transition does not 
imply that the automation should overrule the human. We recommend that automation should not make decisions 
and implement actions without human consent, except in cases where, through inaction, the human will get hurt 
(similar to Isaac Asimov's laws for robotics[29]). For example, when a driver fails to drive safely during a heart 
attack, the automation needs to take over control if it can. AIAC transitions may also occur when humans are 
(legally) required to hand over transitions. For example, in future intelligent traffic consisting of platoons of 
automated vehicles [30,31], entering a platoon may require an AIAC transition to let the host vehicle cooperate with 
other vehicles and infrastructure automatically. 

DIDC and AIAC are active transitions, because whoever initiates the transition is usually prepared to take over 
control afterwards. In contrast, DIAC and AIDC are passive transitions, because whoever is in control after the 
transition is forced to take over control from the other agent. Thus, lack of preparation in passive transitions may 
lead to unsafe situations. In DIAC, the driver is in the loop before the transition, and he/she may be expected to be 
aware of the automation modes and driving environment. As for AIDC, if drivers cannot respond properly, the 
transition could lead to a serious accident. This may explain why most transition scenarios in driving simulator 
experiments belong to the AIDC category. The most common AIDC scenario can be summarized as follows: due to

Fig. 3.Categorization tree of control authority transition.
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an automation limitation (e.g., the automation detects an accident in front of the host vehicle and cannot cope with 
this situation), participants are warned, such as through a visual-auditory signal, to take over control by braking or 
steering within a set time margin [32–36].Other AIDC scenarios have also been tested in driving simulator studies, 
including, for example, multiple lanes reducing to a single lane [15]. Besides AIDC transitions, some DIDC 
transitions have also been tested in driving simulator research. For example, in some studies, the automation failed to 
detect a traffic sign or obstacle, and the driver was expected to react to this simulated sensor failure [37].

Setting up scenarios is a challenge in experimental research, because theoretically everything is possible 
regarding future technologies. However, we recommend that experimental design in human factors research should 
investigate scenarios that are ‘reasonable’, taking into account our proposed categorization tree (Fig. 3). This 
categorization tree could provide guidance for designing scenarios with a theoretical basis.

4. Issues of HMI and control systems during transitions

Research shows that mental workload and situation awareness generally decrease with increasing levels of 
automation [5,16,38,39]. Furthermore, drivers’ reaction time often increases dramatically in automated driving 
conditions compared to manual driving[13].

A human machine interface(HMI), which enables the human to recognize the automation’s intentions and to 
perceive the automation’s limitations, may improve driver performance and reduce the human-out-of-loop
problems[13,40,41]. 

Several studies have investigated the effect of take-over request time on the way drivers reclaim of the vehicle. 
Generally, it has been found that[15,32,37]:

The higher the level of automation, the more time drivers need to re-obtain situation awareness and take over 
manual driving.
The shorter warning time, the worse the take-over quality will be.

However, the results from different experiments vary due to variousspecific simulation conditions and different 
definitions of transition time. For example, Gold et al.[32] suggested that drivers need to be warned at least seven 
seconds in advance, in order for them to take over control safely. The conclusions were based on the measurement 
of driving performance, “hands on” time and “road fixation” time. In contrast,the results from experiments by Merat 
et al.[15], which focused on driver behaviorafter transitions, showed that drivers need around 40 s to resume and 
stabilize thecontrol of the vehicle during the transition from NHTSA Level 3 Automation [20] driving to manual 
driving.

Additionally, take-over performance varies between different warning methods, such as between visual or 
auditory warning[42,43]. For example, Biondi et al. [42]showed that a ‘beep’ has a negative effect on driving 
performance as it distracts drivers. On the other hand, Naujoks et al. [43] stated that visual-auditorywarning method 
can decrease drivers’ reaction times compared with a visual warning.

The transition control system is another important topic to be discussed. Nilsson [44]indicated that when drivers 
encounter an automation failure, they prefer to steer instead of applying the brakes. Similarly, Levitan et al. 
[45]found that drivers prefer to take over control from automation by first steering and then using accelerator, 
instead of vice versa. Thisimplies that control systems shouldbe designed to assign moreweightto steering than to
braking. The drivers’ transition performance for different initiation methods should be investigated empirically. The 
development of HMIs and controllers for smoothly and safely transferring control authority between automation and 
human is amajor challenge for human factor researchers in automated driving.

5. Conclusion and discussion

In this review, we described static states of automated driving based on two primary tasks: control and 
monitoring. A transition in automated driving was defined as the process of changing from one static state of driving 
to another static state. Note that a temporary interruption of control without changing the actual state is not a 
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transition. For example, a driver providing a change of set-points during ACC driving without turning off the ACC 
should notbe regarded as a transition. 

Based on the definition of a transition, control authority transitions between different states were categorized into 
four categories: DIDC, DIAC, AIDC, AIAC. We note that whena transition occurs between state 2.1 and state 2.2, 
two types of transitions occur at the same time, because authority of both lateral and longitudinal control tasks 
change at the same time. Thus, if the automation engages a transition from LKA to ACC, then AIDC and AIAC 
transitions occur in lateral and longitudinal control, respectively.Whether transitions are time-critical or not is 
another important factor. We acknowledge that time criticality can potentially also be used to classify transitions. 
However, time is a continuous variable, making it hard to formally distinguish between emergency and non-
emergency events during driving.

Previous research has discussed whether intermediate states are necessary during transitions. For example, shared 
control—defined as a situation where human and automationare carrying out tasks simultaneously—may be able to 
facilitate smooth control authority transitions [46–48].However, more simple approaches, like gradually changing 
the control force,are another viable option[35]. Driving performance needs to be comparedfor different controls 
systems in order to understand the pros and cons of each approach.

The function allocation can be achieved by the human driver and/or the automation controlling the two pair of 
switches: (Sax, Shx), (Say, Shy), and optionally, by tuning the weight values: (Kax, Khx), (Kay, Khy).Previous research 
has demonstrated that adaptively allocating the functions between human and automation can be a beneficial 
approach[7,49,50].For this purpose, a function allocation agent needs to be created that can allocate a set of tasks to 
both the driver and the automation, and which can determine whether transitions should happen under certain 
circumstances. The agent should not only consider the conditions of the environment and automation, but also be 
able to detect the states and habits of the driver. As Klein [51] demonstrated, humans tend to execute actions they 
have experienced before, instead of acting optimallyin time-limited tasks. Hence, this pleads for an automatic 
switching agent as opposed to a human one.

Through training and experience, drivers can learn to work around automation problems. For example, as
Larsson et al. [52] showed, when drivers get accustomed to ACC, they become more aware of the system’s 
limitations and respond quicker to emergency situations. Nonetheless, automation designers need to understand the 
limitations of humanswhen they implement a high level of automation. Human errors cannot be eliminated by 
installing automation, since automation systems are designed by humans. This makes automation systems more 
vulnerable to the errors of designers[6,53].
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