

Delft University of Technology

Designing a knowledge representation interface for cognitive agents

Bagosi, T.; de Greeff, J.; Hindriks, KV; Neerincx, MA

DOI
10.1007/978-3-319-26184-3_3
Publication date
2015
Document Version
Final published version
Published in
Proceedings of the 3rd International Workshop on Engineering Multi-Agent Systems, EMAS 2015

Citation (APA)
Bagosi, T., de Greeff, J., Hindriks, KV., & Neerincx, MA. (2015). Designing a knowledge representation
interface for cognitive agents. In M. Baldoni, L. Baresi, & M. Dastani (Eds.), Proceedings of the 3rd
International Workshop on Engineering Multi-Agent Systems, EMAS 2015 (pp. 33-50). (Lecture Notes in
Computer Science; Vol. 9318). Springer. https://doi.org/10.1007/978-3-319-26184-3_3
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-319-26184-3_3
https://doi.org/10.1007/978-3-319-26184-3_3

Designing a Knowledge Representation Interface
for Cognitive Agents

Timea Bagosi(B), Joachim de Greeff, Koen V. Hindriks,
and Mark A. Neerincx

Delft University of Technology, Delft, The Netherlands
{T.Bagosi,J.deGreeff,K.V.Hindriks,M.A.Neerincx}@tudelft.nl

Abstract. The design of cognitive agents involves a knowledge repre-
sentation (KR) to formally represent and manipulate information rel-
evant for that agent. In practice, agent programming frameworks are
dedicated to a specific KR, limiting the use of other possible ones. In
this paper we address the issue of creating a flexible choice for agent
programmers regarding the technology they want to use. We propose a
generic interface, that provides an easy choice of KR for cognitive agents.
Our proposal is governed by a number of design principles, an analysis
of functional requirements that cognitive agents pose towards a KR, and
the identification of various features provided by KR technologies that
the interface should capture. We provide two use-cases of the interface
by describing its implementation for Prolog and OWL with rules.

Keywords: Knowledge representation technology · Agent programming
framework · Generic interface design

1 Introduction

In cognitive agents, knowledge representation (KR) is used to store, retrieve and
update information. In principle, knowledge can be represented in many different
ways, but in practice programmers tend to be limited to a specific KR approach
that a particular agent programming framework offers. We consider an agent
programming framework to be a set of tools for developing or creating cognitive
agents. Cognitive agents are entities or pieces of software that percieve and act
in an environment, as it is explained more in detail in Sect. 3.2. In many agent
frameworks (e.g. Jason [5], 2APL [7] and GOAL [15]), Prolog (or a variant)
has become the de-facto standard. There are several reasons why a programmer
might prefer to use a different KR from Prolog. A negotiating agent, for example,
might need some legislative information, that would need to be encoded when
using Prolog. On the other hand, when using OWL, it is possible for the agent
to access large amounts of readily available information on the semantic web.
However, most agent programming frameworks are committed to a specific KR,
and switching to another is not supported.

c© Springer International Publishing Switzerland 2015
M. Baldoni et al. (Eds.): EMAS 2015, LNAI 9318, pp. 33–50, 2015.
DOI: 10.1007/978-3-319-26184-3 3

34 T. Bagosi et al.

1.1 Motivation

A generic interface for connecting different KRs to cognitive agents is useful for
several reasons. Our main motivations are described next.

Knowledge representation languages differ in the expressivity that they offer.
It is well-known, for example, that negation in logic programming has a semantics
based on the Closed World Assumption whereas the family of web ontology
languages support the Open World Assumption. Depending on the task, domain,
or scenario, one language might be more appropriate than another.

An agent programmer, may have a personal preference based on, e.g., ease of
use, familiarity, or other factors. An ontology enginner could model a domain of
interest easily, but might find other languages difficult.

The Dagstuhl report on “Engineering Multi-Agent Systems” [10] advocates a
component-based agent design, as this would provide flexibility, reduce overhead,
bridge the gap to other architectures and could facilitate more widespread adop-
tion of agent frameworks in real-world applications. A separation of the agent
framework and the KR it uses – that is agnostic with respect to the underlying
agent programming language – subscribes to this component-based approach,
that our interface aims to support.

When using agent programming as part of real-world applications, one
commonly has to access existing infrastructure, which typically may include
industry-standard approaches for data storage (e.g. Oracle database). Rather
than implementing some kind of bridge between these legacy databases and the
knowledge representation language used in the agent framework on an ad-hoc
basis, a much better approach would be the use of a generic interface, so that
the agent framework can use the available technology directly. The semantic
web offers a wide range of information in RDF standard format, that could be
accessed by OWL-knowledgeable agents.

An agent may need to combine knowledge from multiple sources, that are
either distributed or not. A generic interface supporting a variety of KR lan-
guages, allowing the use of several KR sources from several locations is useful in
this context. A particular case is when dealing with large multi-agent systems
that may include different manifestations of the agents, such as embodied in
robots, software agents and modeling users, where they might be of different
technologies.

A wide range of agent frameworks could benefit from providing a flexible
choice of various logic-based KR formalisms. Reusability prevents the need for
reinventing the wheel, as the effort to support this interface for a particular agent
framework or a particular KR is a one time investment.

1.2 Scope and Methodology

In this paper we propose a design for a Knowledge Representation Interface
(KRI) that facilitates an easy choice of KR for cognitive agents. Currently, this
interface presupposes the adoption of the chosen KR by all agents in an agent
programming framework. In principle, it is conceivable that a single agent would

Designing a Knowledge Representation Interface 35

use multiple KRs, or multiple interacting agents would each utilize different KRs.
The combination of multiple KRs into a single agent framework poses a number
of issues that are investigated by [8]. This work is orthogonal to our work, as
our aim is to facilitate the easy integration of an arbitrary single KR technology
into a cognitive agent. Investigating issues relating to multiple interacting agents
that each may use a different KR technology is therefore outside the scope of
this work.

Our proposed interface design is applicable to a range of agent frameworks
that facilitate agents with mental states, and all classes of KR that comply to the
definition of [8], as described in detail in Sect. 3. By supporting the interface, an
agent framework facilitates the choice of a technology that provides the required
expressivity or other feature, and the choice of a preferred knowledge technology
by its user.

Creating a generic KRI poses a number of challenges. For instance, it is
important to identify the right abstraction level for the KRI specification. Strik-
ing the right balance between a high level description (to be as inclusive as
possible) and a low level description that may be close to a particular KR lan-
guage (to be able to specify the details) is essential for the interface design.
Careful consideration is needed when identifying where an agent needs some
form of KR, such as to represent the contents of its plans, skills, goals, etc.

We use the following methodology to derive the interface. First, we explore
related literature, describing the various approaches of how each agent framework
incorporates a specific KR. Usually the choice of representing knowledge through
a certain language is implicitly integrated within a given framework, rather than
being explicitly considered, let alone providing users with any sort of choice.
To the best of our knowledge, no work has yet been done on the design and
development of a generic interface that facilitates the use of a range of KRs.

Having identified the need for such a KRI (based on the motivations described
above), and given the apparent lack of such a construct in related work, we then
present the design of the KRI, governed by the following three aspects: (1) a
number of design principles serving as guidelines, (2) the concept of cognitive
agents and the functionality requirements they pose towards a KR, and (3)
the identification of features provided by various KR technologies that the KRI
should be able to provide.

After having presented the KRI, we describe its application with two imple-
mentation: in the first implementation the KRI is instantiated with SWI Prolog
(representing a logic programming KR language), and in the second it is instan-
tiated with the ontological web language OWL with SWRL rules (a description
logics language), with Pellet [31] as the reasoning engine. After that we assess the
KRI usability for these two cases, and based on this draw conclusions regarding
the interface’s effectiveness and limitations.

The remainder of this paper is organized as follows. Section 2 discusses related
work on the usage of knowledge representation technologies into agent frame-
works with a focus on the agent programming literature. In Sect. 3 we introduce
a number of design principles and present a structural analysis of agents and
features of KR technologies that guide the design of the proposed interface.

36 T. Bagosi et al.

Section 4 presents the design of the KR interface itself and motivates the choices
that we have made. In Sect. 5 we discuss two instantiations of the interface (Pro-
log and OWL). Section 5.3 briefly discusses a preliminary analysis of the interface
that was implemented for Prolog, and OWL with rules. Finally, we conclude the
paper with future work in Sect. 6.

2 Related Work

In this section we discuss related work with respect to the choice and possible use
of KR languages in agent frameworks. It is useful to note here that some agent
frameworks such as JACK [33] and Jadex [28] have taken a more pragmatic
road, and use object oriented technology in combination with, e.g., XML, to
implement the beliefs and goals of an agent, rather than using a knowledge
technology in the sense that we use it here (cf. Davis [9]). The focus of our paper
is more on generic logic-based agent frameworks that use an existing technology
for representing an agent’s environment.

Most work on logic-based agent programming frameworks has built on top
of logic programming or some kind of variant thereof, e.g. 2APL [7], GOAL [15],
Jason [5]. Alternatively, several works have described approaches towards the
integration of semantic web technologies (such as OWL) into agent-based frame-
works. For example, for Jason there exist the JASDL extension [19], which allows
for integration with OWL, and as such lets agents incorporate OWL knowledge
into their belief base. The Java-based agent framework, JIAC [16], also uses OWL
for representing agent knowledge. While comparable in the sense that these sys-
tems allows for the use of OWL in the agent framework, the KR interface that
we propose here is aimed to provide a practical solution to the more general
problem, and to allow a range of KRs to be used in an agent framework.

The work in [22] defines a version of the BDI agent-oriented programming lan-
guage AgentSpeak based on description logic, rather than one based on predicate
logic (e.g. Prolog). The work reported in [12] proposes the use of a semantic web
language as a unifying framework for representing and reasoning about agents,
their environment, and the organizations they take part in. The work is pre-
sented as a first step towards the use of ontologies in the multi-agent framework
JaCaMo, but does not discuss the particulars to achieve this.

Probabilistic approaches have also been considered as KRs in conjunction
with multi-agent systems. E.g. [32] propose an extension of the 3APL language
based on a probabilistic logic programming framework, while [30] discuss the use
of Bayesian networks for representing knowledge in agent programs.

Access to external data sources by agents in the IMPACT agent frame-
work [11] is achieved through an abstraction layer, dubbed body of software
code, that specifies a set of all data-types and functions the underlying data
source provides.

DyKnow [13] is a stream-based approach to knowledge processing middle-
ware, supporting knowledge sharing and processing within a single platform. It
focuses more on the dynamics of knowledge, and such is orthogonal to our work.

Designing a Knowledge Representation Interface 37

The work described in [8] investigated the issue of integrating multiple KR
technologies into a single agent. The paper proposes techniques for combining
knowledge represented in different knowledge representation languages. This is
orthogonal to our work as our aim is to facilitate the easy use of an arbitrary
single KR within a cognitive agent framework.

The usefulness of facilitating the use of a particular KR in other frameworks
has been recognized in the literature, and has driven several efforts in defining
an Application Programming Interface (API) for several technologies. [3,17] for
instance, have proposed an API for description logics and OWL respectively,
and [6] proposes an API for a Fuzzy Logic inference engine. These APIs are
facilitating all aspects of a specific KR. In contrast, in this paper we aim at
a generic KRI to connect arbitrary agent frameworks with arbitrary KRs that
comply to our minimal assumptions.

Although most work has focused on the integration of logic programming
and semantic web technologies and Bayesian networks, we are not aware of any
work that has investigated the use of these technologies in agent frameworks in
a generic manner.

3 Dimensions of the KRI Design

Our aim is to design a standardized, extensible and easy to use interface that
allows for a flexible choice of KR languages in agent frameworks. To this end,
we first present our design approach. In Sect. 4 we propose an interface speci-
fication as a Java-based API. Three design dimensions are taken into account to
cover all aspects that can have influence on the design of such an interface. The
first dimension concerns the design principles, which we discuss in Sect. 3.1. The
second dimension concerns the concept of a cognitive agent and related assump-
tions that we make about agent frameworks. In Sect. 3.2 we present a structural
and generic analysis of the features and components that are typically required
by agent frameworks. The third dimension concerns the features that are made
available by existing KR technologies that can be supported by the proposed
interface. In Sect. 3.3 we analyze and identify these features. Taken together,
these three dimensions define the design space of the proposed interface.

3.1 Design Principles

For creating a generic KR interface for agent frameworks, reuse is a key concern.
We want the interface to serve all agent frameworks that could benefit from an
easy choice of KRs. To this end, we present and briefly discuss various reuse
design principles that we have taken into account in the design of the interface.

One of the most important reuse principles in the design of a well-defined
interface concerns abstraction. Abstraction plays a central role in software
reuse, and is essential for the reuse of software artifacts [20]. By means of abstrac-
tion, important aspects are put in focus while unimportant details are ignored
[1,20]. Each KR technology introduces a specific language, and a key issue for

38 T. Bagosi et al.

our interface specification is how to abstract from differences in the grammar
between KR languages. We want to be largely agnostic about the particular
type of agent framework that a knowledge representation is used in. We will
only assume, for example, that an agent decides what to do next based on a
state representation expressed in some KR language, and will make no stronger
assumptions about the particular structure of the mental state of an agent (see
for a more detailed discussion Sect. 3.2). Similarly, we want to be largely agnostic
about the particular type of KR languages. We assume, for example, that a KR
language provides variables, but will not assume that such a language provides
rules (which would exclude, e.g., SWRL and PDDL without axioms; see for a
more detailed discussion Sect. 3.3). The interface that we propose here provides
an abstraction in the sense that it is a high-level, succinct, natural, and useful
specification that facilitates easy use of KRs in agent frameworks.

Two closely related design principles that are very important when design-
ing for reuse are the principles of generality and genericity [1]. Generality
is achieved by the abstraction of commonalities and ignoring the (detailed) dif-
ferences that relate to how, when, or where things are done by a technology.
Generality is important when looking at different KR technologies, as our aim is
to be as general as possible and support any KR class that fits our assumptions.
An obvious example is to abstract from the particulars of how a reasoning engine
made available by a technology answers a query; an interface should only assume
that some engine is made available. Genericity refers to the abstraction of spe-
cific parameters of a technology and the introduction of generic parameters that
represent generic types. The use of generic parameters is an aid to reusability,
because it allows to define generic functionality instead of functionality that is
tight to technology specific features.

The principle of modularity refers to considerations of size and number
of a reusable software components. The general principle dictates to split large
software components into smaller subcomponents; the basic idea being that ade-
quate modular design increases reusability. In order to obtain a loosely coupled
system, we design a modular interface whose components are determined by the
functional requirements it has to fulfill.

3.2 Cognitive Agent Frameworks: Functional Requirements

In this section we examine which features are required for using a KR within
an agent programming framework. Importantly, an interface only provides an
effective specification if it includes all of the information that is needed to realize
its purpose. In other words, the KRI needs to provide support for all of the
functions that an agent is supposed to be able to implement. To identify these
functional requirements, we discuss and make explicit the notion of a cognitive
agent that has been used for the interface specification.

Because we do not want to commit to any particular agent concept, we start
from the very abstract concept of an agent as an entity that perceives and acts
in its environment of [29]. Starting from this notion of agent, we assume that
an agent maintains a state in order to represent its environment by means of

Designing a Knowledge Representation Interface 39

Fig. 1. A cognitive agent architecture, consisting of a mental state and decision mak-
ing module. Optional components are automated planning (PL), machine learning
(ML) model checking (MC), and other modules. Mental states are realized with a KR,
accessed through an interface.

a knowledge representation language. As is usual in most agent literature on
cognitive agents, we call this agent state a mental state, even though we do not
make any additional assumptions on the structure of this state. Mental states
in agent frameworks differ significantly, and we do not want to commit to any
particular framework. A state of a Jason agent, for example, consists of events,
beliefs, and plans [4], whereas a state of a Goal agent consists of knowledge,
beliefs, and declarative goals [15].

A cognitive agent (cf. Fig. 1) maintains a mental state in order to be able to
evaluate whether certain conditions hold, by querying its state. Querying is one of
the most important uses of a KR technology, as it provides an essential capability
required for effective decision making of an agent, which we identify here as the
main functional component of an agent. Another reason for an agent to maintain
a mental state is to maintain an accurate and up to date representation of the
state of its environment by updating its state with information received through
percepts or other events. The basic notion of agent of [29] already implies that
an agent is connected to an environment. Such an agent needs to be able to
align percepts it receives from an environment with its mental state. An agent
also needs to be able to evaluate when it can perform an action, and represent
what the effects of an action are. In other words, an agent needs some kind
of action specification to be able to interact with its environment. Finally, we
also assume that an agent can be part of a multi-agent system, and is able to
exchange messages with other agents. Figure 1, which represents the basic agent
architecture that is used in the design of the interface, illustrates this.

Summarizing, we identify the following list of minimum capabilities that are
required for creating a functional cognitive agent in a multi-agent framework:

1. represent the contents of a mental state
2. store the contents of a mental state
3. query the contents of a mental state in order to evaluate conditions by means

of some form of reasoning

40 T. Bagosi et al.

4. update the contents of a mental state to reflect changes in an environment
5. process percepts received from an environment
6. process actions by evaluating preconditions and reflecting postconditions
7. process messages exchanged between agents

Next, we discuss the functional requirements that these items introduce
towards the KR language and technology, and its consequences regarding the
design of a generic interface.

Item 1 above does not introduce any requirements as representing is the
main purpose of a knowledge representation language. We do not assume, for
example, that an agent’s state must be consistent in a specific sense. Item 2
requires that a KR provides support for the (temporary) storage of the contents
of an agent’s state. This item does not require such a store to be persistent.
Item 3 requires support from a KR technology to evaluate queries on the men-
tal state of an agent. Without any additional assumptions on the structure of
a mental state, this item does not introduce new requirements, as querying is a
common feature provided by the KR. Item 4 requires support from a KR tech-
nology to update, i.e., to add and remove, contents of a mental state. This is a
basic requirement, that only requires that a KR makes available the capabilities
of adding and removing content from a store. Item 5 requires support in princi-
ple for representing any information that an agent receives from its environment,
and updating the representation of the environment that the agent maintains,
these functionalities being already mentioned in Item 1 and 4. Item 6 requires
that the knowledge representation language can also be used to represent the
actions that the agent can perform. We assume an action can be expressed as
a list of preconditions and postconditions. It is essential to be able to evalu-
ate whether an action can be performed, processing preconditions being fulfilled
by the querying functionality of Item 3. The ability to process the effects of
an action, i.e. its postconditions, is fulfilled by item 4 that requires support for
updating a mental state. Item 7 requires support for representing and processing
the content of a message that agents exchange. We assume here that communi-
cation between agents does not introduce any additional requirements besides
those already introduced by previous items 1–4.

Apart from very generic features and components of cognitive agents such
as mental state, we also take into account that agent frameworks might support
additional optional components that are only available in some frameworks, but
not all. The components drawn with dotted lines in Fig. 1 represent these com-
ponents. For example, an agent framework might support automated planning
(PL), model checking (MC), and even learning mechanisms, such as, for exam-
ple, reinforcement learning (RL). These components do not exhaust the possible
optional components as indicated by the three dots. It is likely that such optional
components introduce additional demands on the interface, since they provide
support to an agent framework through the interface.

3.3 Features of Knowledge Representation Technologies

Figure 1 includes an abstract definition of a knowledge representation technology
as a tuple 〈L, |=,⊕〉, where L is a language, |= is an inference relation, and ⊕ is

Designing a Knowledge Representation Interface 41

an update operator (definition taken from [8] and based on [9]). The inference
relation evaluates a subset Lq ⊆ L of expressions of the language called queries
on a store or set of language elements. We consider our interface to be applicable
to the classes of KR that comply to this definition.

This notion of a KR technology covers most, but not all existing technologies,
including, for example, logic programming (Prolog), database languages (e.g.,
SQL, Datalog), semantic web languages (e.g., OWL, SWRL), description logic
programming (DLP), planning domain definition language (PDDL), and fuzzy
logic. Answer set programming (ASP) provides a computational model that we
do not support, even though the pure reasoning support of ASP could be inte-
grated using the proposed interface. Using this abstract definition as a starting
point, we identify more concrete features and functions that are supported by
KR technologies that can be included in an interface specification.

Having described KR technologies in a general sense above, we now define
those modules that have an impact on the design of a generic KR interface,
either on its structure or its provided functionality.

Language. Although expressivity is a very important aspect of any knowledge
representation language, we do not consider it here, as it does not appear to
be useful to control expressivity by means of a KR interface. It is essential
for a KR to provide a parser, necessary to be able to operate with the textual
representation of the language, and perform syntax checking. Syntax highlighting
is an extra feature that the parser can provide.

Support for data types may widely differ between KRs, but it is important
for the engineering of practical agent frameworks. Typically, basic data types
such as (big) integers, floats, booleans, strings, and lists are distinguished from
more complex data structures such as stacks in programming languages.

Storage. The main purpose of a storage is to store knowledge. As a basic feature
of any KRT is a knowledge base, creating a store is an important requirement
towards a generic abstraction. In addition, modifying a store poses the require-
ment to be able to insert into and delete from a knowledge store.

Even though we did not identify a functional requirement for stores to be
persistent in Sect. 3.2, still, a knowledge technology may provide support for per-
sistence, and a KR interface may make this capability available to an agent. An
example for such a knowledge technology is persistent triple stores for ontologies.
This feature should be included in order to create a knowledge base that needs
to be preserved for a later use.

Integrating knowledge from other sources can be realized in many forms, such
as accessing existing (legacy) databases, or accessing information on the web.
One example is the linked open data repositories of the Semantic Web. This
feature, however favorable, cannot be considered as a general requirement.

Reasoning. Querying is the basic operation to retrieve information from a
knowledge base. We can assume the basic form of querying is to retrieve ground
data that matches a query pattern with free variables. Without querying there
can be no interaction with a knowledge base, hence it is a main requirements
towards a KR interface.

42 T. Bagosi et al.

Parallel querying is to be able to ask multiple queries simultaneously. This
feature is available for some technologies only (like triplestores), but not for
others (such as Prolog), where one needs to first exhaust all solutions of a query
at a time, hence it is considered an extra feature, and not a basic requirement.

We assume that a substitution based parameter instantiation mechanism is
supported, as is usual for logic-based languages for all practical purposes. Note
that this does not mean that we make any strong assumptions about the domains
of computation. Query results are in the form of bindings between variables and
some arbitrary terms. A substitution to represent a variable to term binding
therefore is the basic form of expressing a query result.

Other. Error handling provides support for errors that might occur during pars-
ing, knowledge base creation, modification, or other language-related operations.
Some form of error handling is indispensable from an interface.

A knowledge technology that supports modularization facilitates the struc-
turing of knowledge into different modules. This feature may greatly enhance
the simultaneous development of knowledge by a team of developers. A modular
architecture might greatly influence our design of interface, as mappings between
the modules of the knowledge and the interface might be identified.

Three forms of logical validation can be supported by a KR: consistency,
satisfiability and validity checking. As these validation forms are either provided
by the technology or not, we cannot generalize it into a feature requirement.

Summarizing the above, we identified the following list of basic features and
extra features:

Basic Features

1. Parsing
2. Data types (including checking)
3. Creating a store
4. Modifying a store
5. Querying
6. Parameter instantiation
7. Error handling

Extra Features

1. Persistent storage
2. Integrate other knowledge sources
3. Parallel querying
4. Modularization
5. Logical validation

4 The KR Interface

Next, we describe the KR Interface (KRI) designed, a Java-based API to address
the issues of creating a generic, a specific KR-independent abstraction. The link
to our repository, where the interface is located, can be found at [14]. Through-
out the description of the interface we show how each design choice was based on
the generic features of KRTs, described in Sect. 3.3, and how it fulfills the func-
tionality requirements that an agent programming framework poses in Sect. 3.2.

Based on the principle of modularization, we want to ensure a separation of
concerns related to language, storage, reasoning, and others. We propose a struc-
tured interface design, such that it facilitates these sub-interfaces, as described
next in detail.

Designing a Knowledge Representation Interface 43

Language. The language module of the interface contains the abstract gram-
matical constructs of a KRT. This fulfills the requirement of being able to express
all items on the list of Sect. 3.2, since the language concepts need to be able to
represent the contents of an agent’s mental state, queries and updates, percepts
of the environment, and agent messages.

Our generic language proposal, shown as a conceptual hierarchy in Fig. 2,
abstracts any language construct into the higher level Expression concept,
corresponding to a well-formed sentence or formula in the knowledge repre-
sentation language. An expression can be of type: Term, Update, Query and
DatabaseFormula. A Term can be simple: Var, and Constant or complex: a
Function.

From a KR language’s point of view, differentiation between the concepts
of querying and updating is dictated by the syntax, and hence can differ per
language. From an agent programming’s perspective such a distinction is neces-
sary to require that performing a query never results in an update. It would be
difficult to understand the behavior of a system that can change the state as a
side-effect of performing a query.

Fig. 2. Language concepts architecture

The Term concept represents a language construct of a formula or sen-
tence (ground formula, i.e. without free variables). It can be simple or complex.
A variable is a simple term expressed with the concept Var. The interface does
not enforce variables to be present, however, most languages that support para-
meter instantiation and querying, need to represent variables. Another simple
term is a Constant, which is a basic unstructured name that refers to some
object or entity, e.g. a number. A Function is the representation of a complex
term, with a functor and arguments. No restriction on the type or the number
of arguments is imposed.

A Substitution is a mapping of distinct variables to terms. A substitution
binds the term to the variable if it maps the variable to the term. A substitution
may be empty. Its functionality includes the usual map operations. It fulfills Item
6 of the language features’ list, namely, to have some form of substitution-based
parameter mechanism, as we have assumed a set of substitutions to be also the
result of a query.

An Expression is any grammatically correct string of symbols of a KR lan-
guage, fulfilling the responsibility of Item 1 of Sect. 3, to be able to represent the
contents of an agent’s mental state. Every expression has a different signature,

44 T. Bagosi et al.

a definition of the form operatorname/arity, where the operator name is the
functor, and the arity is the number of arguments associated with the operator.
In case we need to unify two expressions, the most general unifier method returns
a substitution that makes two expressions equal. To apply a substitution to an
expression means to substitute variables in the expression that are bound by the
substitution with the term bound to the variable, or, only rename it in case the
substitution binds a variable to another one.

It is important for an agent to be able to understandwhich expressions it canuse
to query, put in a database, and to update a database with. A DatabaseFormula
stands for an expression that can be inserted into a storage facility. Usually, this is
a formula with all ground terms, and no operator that needs more processing, e.g.:
conditionals. The Query concept is used to query the database, and hence it should
contain at least one free variable. An Update is semantically equivalent with the
combination of a delete and an insert operation. To reflect this, it offers two
methods to retrieve the list of database formulas to be added and to be deleted
from the knowledge base. For example, in Prolog these classes are different,
but may overlap: database formulas are facts (positive literals), a query is an
arbitrary conjunction of literals, and an update is a conjunction of basic literals,
where basic means the predicate used in the literal is not defined by a rule.

Based on the assumption that every KR should provide its own parsing
mechanism identified in Item 1 of the identified KR features’ list, the interface
should provide a parser for parsing the source (files) represented in the KR
language. In case a parser initialization error occurs, proper error handling should
be defined and provided.

The Parser class fulfills the functionality of a KR to provide its own parser,
Item 1 of Sect. 3.3. We abstract a parser to receive an input source file, and return
language constructs of our KR interface; database formulas, queries, updates,
terms, etc. In case an error occurs during parsing, a method to get the errors
returns the source object, which can be inspected for error handling purposes.

Basic data types, such as numbers (integers, floats), strings, booleans, are
provided together with the functionality of returning the data type of a constant,
and data type checking, thus fulfilling the requirement mentioned as Item 2 of
Sect. 3.3.

Storage. To create a storage, the main class of the interface provides the
way to create a database in the specific KR it hides away. Using the
getDatabase(Collection<DatabaseFormula> content) method, it creates a
new Database with the provided content, that is a list of database formulas to
be inserted in the database before it being returned. Thus it fulfills the require-
ment of creating a store by Item 3 of Sect. 3.3.

The Database class fulfills the second item of the functional requirements
listed in Sect. 3.2. It holds the content represented in the KR language, viewed
as a set of DatabaseFormula-s. It provides the functionality to store new infor-
mation in the database by inserting a formula in it, deleting a formula from
it, fulfilling the update operation, listed as Item 4 of Sect. 3.2, and Item 4 of
Sect. 3.3. Upon insertion of a formula or an update, the database should entail

Designing a Knowledge Representation Interface 45

the information added. The converse applies to deleting a formula, after removal
of the formula, in principle, the database should no longer entail the information
removed from the database. Any occurring error during insertion, deletion, or
destruction of the database is signaled by throwing a database exception.

Reasoning. In order for an agent to inspect its knowledge base, querying
functionality has to be provided by the KR, as we mentioned in our assump-
tions sections, Item 3, and our KR features section, Item 5. The query(Query
query) method fulfills that functionality, and returns as a result a set of
Substitutions. In case of an error, a query failed exception is thrown.

Other. The KRException and its more specific classes capture the several dif-
ferent types of exceptions, and take the responsibility of error reporting, Item 7
of KR features support list. Separate error types are differentiated for parsing,
database operations, failed query errors. In case of parsing, error handling is
capable to refer to the source (file) where the error occurred.

5 KR Interface Implementations

In this section we describe the two use cases we studied in depth, and imple-
mented the interface with: Prolog and OWL with SWRL rules. Implementing the
KR interface with a new language puts our design choices to the test. We want
to investigate how much the interface fits other, different logic-based languages,
and provide a first proof of concept for our proposal.

5.1 Prolog Implementation

Prolog was the default logic used for knowledge representation in the GOAL
agent framework, as it is a first natural choice for cognitive agent programming,
due to its computational powers and the features of logic programming.

Next we describe how we instantiated the interface with SWI-Prolog using
the JPL API. The high-level API’s class hierarchy consists of the top-level
classes: Term, Query, JPLException. The abstract superclass Term consists of
subclasses for variables, compounds, atoms as a specialization of compounds,
integers and floats. A Query is a wrapper around a term, but it also has a
mechanism to hold the retreived results and much more.

A clear match of terminology could be found between the way the KRI cap-
tures language constructs and the hierarchy of the JPL API. An Expression is a
JPL term representing a Prolog expression, the most general language construct
in Prolog. The Var is mapped to a JPL variable, Constants to integers, floats,
and strings, and a Function is matched to a Compound term. A JPL term is
the representation of both a Term, a DBFormula, and a Query. We chose not
to map the JPL’s query class to the KRI’s Query. The former attaches more
functionality of the querying process to the class than what the representation
a query formula would necessitate. The solution to use a term as a query conve-
niently matches the JPL idea. Then, performing the check if a term is valid to

46 T. Bagosi et al.

be inserted in a database, or can be used as a query is delegated to the parser
for efficiency reasons (to avoid such checks at runtime).

An Update is a term that is assumed to be a conjunction that can be split
into a list of conjuncts. We needed to separate the literals to be added or deleted,
so we distinguished the positive from the negative literals (with a preceding not
operator) to denote the two lists. A Substitution is a mapping of distinct
variables to terms. We do not use JPL variables as keys, because it has no
implementation for hash code, and therefore putting these in a map will fail.
Thus, we were forced to using strings.

The main issue encountered during the implementation was the question of
a parser. Existing Prolog implementations do not completely conform to the
ISO/IEC 13211-1 International Standard. We created our own lexer and parser,
following the standard in most cases. Our reasons for deviating have been prag-
matically motivated: we wanted to keep our grammar simple, and we did not
want it to support certain options that quickly lead to unreadable code, such as
using graphic tokens as predicate names, or redefine operators’ precedence.

The module feature of Prolog has been used to implement different types of
stores. As a conclusion of this choice, modules cannot be made available to an
agent programmer any more, as it would potentially clash with the modules that
are introduced automatically by the interface.

SWI-Prolog has one fast database to hold all formulas. To be able to dif-
ferentiate different Databases for various mental state construction, we need to
specify for each clause which database it belongs to. Our solution was to prefix
each database formula with the database name.

Destroying a database removes all predicates and clauses from the SWI-
Prolog database, but this is not fully implementable in SWI-Prolog. The JPL
interface does not support removing the dynamic declarations. The suggested
practice is to reset a database to free up some memory, but after resetting not
to re-use this database, but to make a new one.

SWI-Prolog needs access to various libraries at runtime and to load these
dynamically. If many agents try to do this at the same time, this creates access
errors. A possible solution is to load these libraries upfront when we need them,
that implies a check whether we need a library of course. The benefit is that we
only need to synchronize the creation of databases and not all query calls. As a
pragmatic choice, we solved this issue by adding synchronized querying.

5.2 Ontological Language Implementation

We implemented the proposed KR interface using the OWL ontological language
with DL-safe SWRL rules, such an agent being considered a novelty in the field
of agent programming. The web ontology language standard (OWL) is a W3C
standard recommendation [21] for formalizing an ontology. It is based on the
underlying logic called: Description Logic (DL) [2], which has become one of the
main knowledge representation formalism. The Semantic Web Rule Language
(SWRL) [18] is an OWL-based rule language, and is an extension to the existing
ontology language OWL, to provide more expressivity through rules. In order to

Designing a Knowledge Representation Interface 47

preserve decidability, SWRL rules are restricted to so called DL-safe rules [23],
which requires each variable in a rule to occur in a data atom in the rule body.
A data atom is one that refers to existing named individuals in the ontological
knowledge base.

In order to instantiate the interface, two APIs are available for the ontological
language: the OWL API [17], that contains representation for SWRL rules as
well, or the SWRL API [25] of Protégé-OWL, which is built on top of the OWL
API, but extends it further with a query language and provides a parser.

In the following we describe the identified matching between the KRI con-
structs and the ontological rule language. The higher level concept Expression
was mapped to SWRLRule, that consists of a head and a body. The Function
concept was mapped to SWRLAtom, since atoms are the building blocks of rules, a
Constant to a SWRLArgument, representing a data object or an individual object.
A variable is corresponding to SWRLVariable.

In order to create a shared, persistent storage, and to access the Semantic
Web, a Database is mapped to an RDF repository (or triple store). The Resource
Description Framework (RDF) is a serialized representation of an ontology, in
triple format [26]. The most performant reasoners are available for triple store
technologies, and can be queried using the query language SPARQL [27], the
adopted standard by the community.

The choice of query language for OWL and SWRL was not a straightforward
decision. Query languages for Semantic Web ontologies are categorized into two:
RDF-based and DL-based. The default and mostly used querying mechanism
is the RDF-based SPARQL, but since it operates on the RDF serialization of
OWL, it has no semantic understanding of the language constructs that those
serializations represent. On the other hand, the Semantic Query-enhanced Web
Rule Language (SQWRL) [24] is a DL-based query language designed on top
of the SWRL rule language, with a working implementation provided by the
Protégé-OWL API, which would be a very convenient choice in our case.

Faced with the decision between using two different languages for represent-
ing knowledge and querying on one hand, or not benefiting from the available
advanced triplestore technologies on the other hand, we decided to try to keep
the advantages of both. We created a transformation from SWRL rules into
SPARQL queries, by treating them as query bodies, with all free variables being
considered as part of the query pattern. Having established a querying mecha-
nism, an Update then consists of an addition and a deletion operation, provided
by the SPARQL Update syntax’s insert and delete.

5.3 Discussion of the KRI Implementation

In this section we reflect on the outcomes of our work: the KRI, and how well it
performed when put to the test by implementing it with two different KRTs. We
reflect on the implementation process, and complement our discussion with extra
features that the KRI makes available for the agents. Revisiting the creation
of mental states for agents, GOAL poses a difficult requirement: it should be
possible to query the combination of a knowledge and belief base (and knowledge

48 T. Bagosi et al.

and goal base), i.e., query the union of two bases. It was possible to do this with
the proposed KRI, since most KRTs provide either some mechanism to import
knowledge from one base into another (e.g., modules in SWI-Prolog) or allow
for multi-base querying (federated SPARQL queries for OWL).

An implementation of a specific KR with the interface was highly dependent
on the available Java API for the technology. In case several APIs for a language
were available, we assessed which one fits best our needs, and can provide most
features. Then, the concept hierarchy had to be matched to the interface’s cor-
responding elements, and the functionality correspondence validated. In general
the proposed KRI turns out to be generic enough to be implemented for differ-
ent KR technologies. Following the design principles described in Sect. 3.1 and
incorporating features identified in Sect. 3.3, the KRI satisfies all requirements
deemed fundamental to represent mental states for cognitive agents (Sect. 3.2);
moreover, different types of states (cf. Jason vs GOAL, Sect. 3.2) can be
implemented.

The KRI can make use of the extra features that come along with the two
languages, e.g., it allows for ontological language with rules to use triple store
technologies existing on the web, accessing the Semantic Web thus becoming
implicitly available to agents. Another example is parallel querying, that again,
agents are at liberty to perform using OWL and SWRL, which comes from
exploiting the benefit of a triple store for an agent’s mental database. A third
benefit of OWL agents that the interface makes possible, is the creation of a
shared database, so multiple agents can operate on the same set of knowledge,
incrementing data reuse and sharing. On the other hand, when chosing Prolog as
the KR, the agent is powerful in computational tasks, and can work easily with
lists. This support that would not have been available when chosing OWL, since
lists are not by default present in OWL, and are not supported by reasoners that
can handle rules. The major benefits of the two languages could be exploited
through the instantiation of the interface, which shows that our proposal does
not limit the use of a KR for agents.

6 Conclusions and Future Work

In conclusion, this paper introduced a generic KRI that is reusable across a range
of agent frameworks that can benefit from the use of different KR languages.
Our contribution is a methodological analysis of the features and requirements
between knowledge representation technologies and cognitive agent program-
ming frameworks. We proposed and implemented a generic interface to create
an abstraction layer and a modular setup to how agents can use a KR. The need
for such a KR interface and the apparent lack of such a construct in related
work has motivated the design of the interface, governed by the following three
aspects (as described in Sect. 3): (1) a number of design principles serving as
guidelines, (2) the concept of cognitive agents and related assumptions that we
make about agent frameworks, and (3) the identification of features provided by
various KRs that are considered as requirements for a KRI. We put this interface

Designing a Knowledge Representation Interface 49

to the test with two knowledge representations, namely Prolog and OWL with
SWRL rules, in the agent programming framework GOAL. Based on these two
cases we conclude that the KRI is generic enough to support a variety of KR
languages, and could be easily applied in the GOAL agent framework.

In the future we will focus on the improvement points identified during
the process, and move to a next step of trying different knowledge represen-
tation technologies and other agent programming frameworks, to discover the
full extent of applicability of, and any modifications needed to our proposed
interface.

References

1. Anguswamy, R., Frakes, W.B.: Reuse design principles (2013)
2. Baader, F.: The Description Logic Handbook: Theory, Implementation, and Appli-

cations. Cambridge University Press (2003)
3. Bechhofer, S., Horrocks, I., Patel-Schneider, P.F., Tessaris, S.: A proposal for a

description logic interface. In: Proceedings of Description Logics, pp. 33–36 (1999)
4. Bordini, R.H., Hübner, J.F.: Jason-A Java-based interpreter for an extended ver-

sion of AgentSpeak (2007)
5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems

in AgentSpeak using Jason, vol. 8. Wiley (2007)
6. Cingolani, P., Alcala-Fdez, J.: jfuzzylogic: a robust and flexible fuzzy-logic inference

system language implementation. In: 2012 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pp. 1–8, June 2012

7. Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-
Agent Syst. 16(3), 214–248 (2008)

8. Dastani, M., Hindriks, K.V., Novák, P., Tinnemeier, N.A.M.: Combining multi-
ple knowledge representation technologies into agent programming languages. In:
Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008.
LNCS (LNAI), vol. 5397, pp. 60–74. Springer, Heidelberg (2009)

9. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag.
14(1), 17 (1993)

10. Dix, J., Hindriks, K.V., Logan, B., Wobcke, W.: Engineering multi-agent systems
(dagstuhl seminar 12342) (2012)

11. Dix, J., Zhang, Y.: IMPACT: A multi-agent framework with declarative semantics.
In: Multi-Agent Programming, pp. 69–94 (2005)

12. Freitas, A., Schmidt, D., Panisson, A., Meneguzzi, F., Vieira, R., Bordini, R.H.:
Integrating multi-agent systems in JaCaMo using a semantic representations. In:
Workshop on Collaborative Agents, CARE for Intelligent Mobile Services (2014)

13. Heintz, F.: Dyknow: A stream-based knowledge processing middleware framework
(2009)

14. Hindriks, K.V.: The GOAL Agent Programming Language hub. https://github.
com/goalhub/krTools/tree/master/krInterface

15. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming: Lan-
guages, Tools and Applications, pp. 119–157. Springer (2009)

16. Hirsch, B., Konnerth, T., Heßler, A.: Merging agents and services the JIAC agent
platform. In: Multi-Agent Programming: pp. 159–185. Springer (2009)

https://github.com/goalhub/krTools/tree/master/krInterface
https://github.com/goalhub/krTools/tree/master/krInterface

50 T. Bagosi et al.

17. Horridge, M., Bechhofer, S.: The OWL Api: A Java Api for OWL ontologies.
Semant. Web 2(1), 11–21 (2011)

18. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.,
et al.: SWRL: A semantic web rule language combining OWL and RuleML. W3C
Member Submission 21, 79 (2004)

19. Klapiscak, T., Bordini, R.H.: JASDL: a practical programming approach com-
bining agent and semantic web technologies. In: Baldoni, M., Son, T.C., van
Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397,
pp. 91–110. Springer, Heidelberg (2009)

20. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
21. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.

W3C Recommendation 10(10), 2004 (2004)
22. Moreira, A.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented program-

ming with underlying ontological reasoning. In: Baldoni, M., Endriss, U., Omicini,
A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 155–170. Springer,
Heidelberg (2006)

23. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web
Semant.: Sci., Serv. Agents World Wide Web 3(1), 41–60 (2005)

24. O’Connor, M.J., Das, A.K.: SQWRL: a query language for OWL. In: OWLED,
vol. 529 (2009)

25. O’Connor, M.J., Shankar, R.D., Musen, M.A., Das, A.K., Nyulas, C.: The SWR-
LAPI: a development environment for working with SWRL rules. In: OWLED
(2008)

26. Pan, J.Z.: Resource description framework. In: Handbook on Ontologies, pp. 71–90.
Springer (2009)

27. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. ACM
Trans. Database Syst 34(3), 16:1–16:45 (2009)

28. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In:
Multi-agent programming, pp. 149–174. Springer (2005)

29. Russell, S., Jordan, H., O’Hare, G.M.P., Collier, R.W.: Agent factory: a frame-
work for prototyping logic-based AOP languages. In: Klügl, F., Ossowski, S. (eds.)
MATES 2011. LNCS, vol. 6973, pp. 125–136. Springer, Heidelberg (2011)

30. Silva, D.G., Gluz, J.C.: AgentSpeak (PL): A new programming language for BDI
agents with integrated bayesian network model. In: 2011 International Conference
on Information Science and Applications (ICISA), pp. 1–7. IEEE (2011)

31. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semant.: Sci., Serv. Agents World Wide Web 5(2), 51–53
(2007)

32. Wang, J., Ju, S.E., Liu, C.N.: Agent-oriented probabilistic logic programming. J.
Comput. Sci. Technol. 21(3), 412–417 (2006)

33. Winikoff, M.: JACK intelligent agents: An industrial strength platform. In: Multi-
Agent Programming, pp. 175–193. Springer (2005)

	Designing a Knowledge Representation Interface for Cognitive Agents
	1 Introduction
	1.1 Motivation
	1.2 Scope and Methodology

	2 Related Work
	3 Dimensions of the KRI Design
	3.1 Design Principles
	3.2 Cognitive Agent Frameworks: Functional Requirements
	3.3 Features of Knowledge Representation Technologies

	4 The KR Interface
	5 KR Interface Implementations
	5.1 Prolog Implementation
	5.2 Ontological Language Implementation
	5.3 Discussion of the KRI Implementation

	6 Conclusions and Future Work
	References

