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Abstract. Driven by its contactless sensing capabilities and the lack of
optical images being recorded, radar technology has been recently inves-
tigated in the context of human healthcare. This includes a broad range
of applications, such as human activity classification, fall detection, gait
and mobility analysis, and monitoring of vital signs such as respiration
and heartbeat. In this paper, a review of notable achievements in these
areas and open research challenges is provided, showing the potential of
radar sensing for human healthcare and assisted living.

Keywords: Radar sensing · radar signal processing · machine
learning · human activity classification · vital signs monitoring

1 Introduction

Radar is a technology conventionally associated to applications in the context of
defence and security to monitor objects located at rather long distances. More
recently, radar sensors are broadly used in autonomous vehicles for perception
of multiple objects at distances of a few tens of meters, leveraging on their
robustness to low-visibility weather and light conditions, if compared to cameras
and lidar [1,2].

Besides these more conventional usages of radar, there is an increasing body
of studies in the literature demonstrating the potential of radar sensing technolo-
gies in the context of human healthcare [3–6]. More specifically, these studies can
be broadly categorized into three macro-areas:

– Monitoring of vital signs, typically including respiration rate and heart-
beat. The principle behind this application is the capability of radar to detect
the small physiological movements of the thorax and abdomen due to the res-
piration cycle and the beating of the heart [7–10]. More recently, research also
investigates the usage of radar for other vital signs, such as the arterial pulse
wave due to circulation in blood vessels [11], and the combination/fusion of
multiple vital indicators to assess higher-level physiological functions, such as
sleep stages and quality [12,13].
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– Human activity recognition (HAR), which can include the prompt detec-
tion of critical events such as falls, but also the more general pattern of usual
activities an individual performs in their home environment. This can help
assess the general fitness level and everyday physical activities, as well as the
presence of outliers or anomalies that, if repeated, may be signs of physi-
cal and/or cognitive decline. In literature, HAR includes the monitoring and
classification of movements and activities such as walking, sitting, standing,
bending, crouching, carrying objects, and (quasi-)static postures while stand-
ing, sitting, or sleeping [14–21]. These basic motions can also be considered in
combination to form higher-level activities, such as food preparation, clean-
ing, or personal hygiene, which constitute the expected daily activities of
healthy subjects living independently at home.

– Gait analysis and gait parameter extraction, which can include the
identification of impaired vs normal gait with radar sensing, such as episodes
of frozen gait, limping, dragging feet, as well as the quantification from the
radar signatures of gait-related parameters that would otherwise require a
visit to a specialized gait laboratory [22–25]. The emphasis on gait analysis is
related to the fact that more irregular and slower gait patterns may indicate
a worsening in the individual’s physical and cognitive health.

The aforementioned applications share the approach to use radar sensors
and radar data to monitor physiological quantities and processes that can help
form an overall ‘health picture’ of subjects, and where needed spot critical events
and/or anomalies. The assumption is that radar has the potential to be well-
embedded in home environments, with the objective to unlock forms of proactive
care and diagnostics that alert medical professional of possible problems before
the subjects themselves succumb to illness, become bedridden, and may then
require costly and invasive hospitalization.

One may ask: why radar as a sensor for healthcare applications and not
others? The potential advantage of radar sensing comes from its non-intrusive,
contactless capability to measure small and large movements and postures of
subjects [3,26,27]. Hence, individuals do not need to carry, wear, or interact
with electronic devices, which can provide an advantage for users’ compliance,
especially for those affected by cognitive impairments. Additionally, it is impor-
tant to highlight that radar sensing does not generate optical images or videos of
subjects and their private environments at home; this can provide an advantage
in terms of perceived privacy infringement and help users’ acceptance.

It is important to highlight that the word ‘radar’ in the context of the afore-
mentioned healthcare applications includes in reality many different types of
hardware architectures and operational processing parameters. An in-depth dis-
cussion on these aspects goes beyond the scope of this paper and the readers are
referred to review papers such as [3,5,15], amongst others.

In the remainder of this article, a brief overview of the basic principles of
radar signal processing in healthcare applications is provided in Sect. 2, with
representative results and outstanding research challenges discussed in Sect. 3.
While the discussion in this section remains at a general high level, additional
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technical details for each challenge are presented in the provided references.
Finally, a brief conclusion is drawn in Sect. 4.

2 Principles of Radar Signal Processing in Healthcare

The working principle of any radar system is based on transmitting and receiv-
ing sequences of electromagnetic waves, whose amplitude and/or frequency is
modulated according to suitable waveform patterns. These waveforms are trans-
mitted into the environment, propagate in open-air, and are reflected back to
the radar by objects present in the area under test. By digitizing these received
backscattered waveforms, one can extract information on the objects of inter-
est. For a parallel in terms of working principles, one can make a comparison
with echolocation in animals, such as bats or dolphins navigating in their living
environments and hunting for prey. However, they utilize acoustic waves (i.e.,
ultrasound) rather than electromagnetic waves as it is the case for man-made
radar systems.

The basic architecture of a radar system comprises of a transmitter and
receiver block to generate, condition, and receive electromagnetic waves, anten-
nas that act as the transducers to/from open-air propagation, and a digital block
to process and store the radar data with suitable signal processing techniques,
briefly outlined later in this section. While a detailed discussion on radar archi-
tectures goes beyond the scope of this paper, two main families of radar archi-
tectures have been mainly used in the literature for healthcare applications [28].
One includes the so-called CW (Continuous Wave) radars, with simpler architec-
tures and processing capable of measuring the velocity of moving objects (e.g.,
the bulk walking velocity of a person) but not their location. The other family
includes radars whose waveform is modulated in frequency to occupy a certain
band (either pulsed Ultra Wide Band, UWB, radars, or Frequency Modulated
Continuous Wave, FMCW, radars); the notable implication is that with these
radars the distance of objects can also be measured together with their velocity.
Recently, radars with multiple transmitters/receivers (MIMO, multiple input
multiple output radars) are used to also estimate the angular position of objects
of interest in azimuth and/or elevation.

For all the applications mentioned in Sect. 1, the detection in space and the
characterisation over time of the movements of body parts of the subjects are
crucial. This includes the very minute movements of chest and internal organs
for vital signs monitoring, as well as larger-scale movements of limbs and the
whole body for activity classification and fall detection. Hence, the typical sig-
nal processing operations on radar data for healthcare aim to characterise the
subject’s posture and movements in three domains: range, as the physical dis-
tance at which the person and their body parts are located with respect to the
radar; time, intended as the evolution of the position of the person or their body
parts; and velocity, as the speed and regularity at which such changes over time
happen. As mentioned before, with modern MIMO radars the angular position
can also be estimated, which can be very important to separate different subjects
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present together in the field of view of the radar, or even differentiate body parts
of a single subject.

It is important to highlight that radar systems measure velocities via the
Doppler effect, i.e. the change/shift in the frequency of the received radar wave-
forms induced by the movement of objects. As a simple example, we can think
of a person sitting and facing a radar while breathing, hence with chest moving
back and forth during the respiration cycle. This will induce a positive Doppler
shift when the chest is moving towards the radar as more electromagnetic wave-
fronts will be scattered back to the radar in a given time unit; on the contrary,
the Doppler shift will be negative when the chest is moving away from the radar.
Therefore, measuring velocity with radar implies measuring the frequency com-
ponents/modulations of the received radar waveforms. This can be accomplished
using Fourier analysis, as done in many other fields of engineering (e.g., acous-
tics, mechanical vibrations), and specifically using the Fast Fourier Transform
algorithm (FFT).

Figure 1 shows a simplified signal processing chain for an example of data
where a person was walking back and forth in front of a radar system.

Fig. 1. Simplified signal processing chain for radar data, with examples of Range-
Time, Range-Doppler, and Doppler-Time patterns for a person walking back and forth
in front of a radar operating in the X-frequency band.

The processing chain starts from raw radar data, i.e., the temporal sequence
of the digitized samples of the received radar waveforms. Such data are normally
structured into a matrix, in which each radar waveform will include range bins,
i.e., digitized samples along one dimension of the matrix that are related to the
physical distance of possible targets; the sequence of waveforms along the other
dimension of the matrix can be associated to the concept of physical time. This
matrix is often referred to as Range-Time-Intensity (RTI) matrix. As the person
was walking back and forth in front of the radar, a diagonal zig-zag pattern is
visible in the RTI image of Fig. 1, with the ‘signature’ of the person moving
first away from the radar (i.e., the range bin index increases over time), and
then back towards the radar (with the range bin indexes decreasing over time).
As discussed, an FFT operation is used to estimate the velocity of objects of
interest via the Doppler effect. By applying this FFT across the sequence of radar
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waveforms, i.e., the time dimension of the RTI matrix, a new matrix is generated,
the Range-Doppler (RD) matrix. An example of RD is the middle picture of
Fig. 1, with both positive and negative Doppler contributions due to the person
walking towards the radar (positive Doppler) and away (negative Doppler) in
the considered unit of time. The RD matrix characterizes the overall velocity
components present across the (relatively) long observation time of the whole
measurement, but it is difficult to map the precise time when each movement
happened. For this, a different processing approach is needed, the Short Time
Fourier Transform (STFT). This approach applies multiple FFT operations on
the data across shorter, possibly overlapped time windows. Each FFT produces
one vector with the dimensions of Doppler/velocity, and by placing such vectors
one next to each other in their temporal order, a Doppler vs time 2D matrix is
generated, the so-called ‘spectrogram’. In Fig. 1, positive and negative Doppler
contributions are visible in the pattern of the spectrogram. Each contribution
has a central, more intense signature denoted by red and yellow colour due to the
movement of the torso and main body, with additional less intense streaks around
the main signature denoted by light blue colour and physically attributable to
the limbs. This is a typical pattern for a person walking, with the bulk movement
contribution due to the torso and main body moving, and additional oscillating
movements of the arms and legs. As these movements from the limbs produce
smaller, additional Doppler frequencies around the main bulk Doppler, they are
called ‘micro-Doppler ’ in the radar literature [29,30].

The importance of micro-Doppler in the context of healthcare applications
comes from the fact that each specific activity, movement, or type of gait will
exhibit its specific micro-Doppler pattern or signature. Thus, to achieve human
activity classification it is possible to use machine learning techniques to ‘teach’
algorithms to recognize these patterns as well as to utilize this information
to support tracking multiple people in the scene. A selection of representative
results is reported in the following section.

3 Representative Results and Open Challenges

Representative results and open challenges from the literature in the context of
healthcare applications of radar-based sensing are discussed in this section.

1. What is the most suitable representation and format of the radar data to char-
acterize or infer healthcare-related information? Conventionally, most studies
use Doppler-time representations generated by the STFT, as explained in the
previous section. This allows to study the temporal patterns of Doppler mod-
ulations due to the different body parts moving [14,29]. As Doppler mod-
ulations are directly related to the velocity of the body parts, algorithms
operating on this data representation can characterize human movements,
from the small ones related to vital signs, to the larger movements due to
gait and/or complex activities. These micro-Doppler patterns can then be
exploited as input to classification pipelines based on machine learning to
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learn the relevant information, including neural networks with various archi-
tectures, or more conventional classifiers such as Support Vector Machines
(SVM) [5,31].
A couple of notable examples of micro-Doppler signatures are shown in this
section. Figure 2 shows the spectrograms of six human activities recorded
with a radar operating at 5.8 GHz, the same frequency as Wi-Fi networks
commonly used indoors. The six activities included sitting on a chair, stand-
ing up from a chair, bending to tie shoelaces, bending to pick up a pen,
crouching to the floor and standing back up, and finally a simulated frontal
fall. One can see that each activity has a distinct pattern of positive/negative
Doppler components over time, that can be potentially learnt by algorithms
for automatic classification.

Fig. 2. Example of six Velocity-Time (spectrogram) patterns for six human activi-
ties performed by the same volunteer and recorded by a 5.8 GHz radar. It should be
noted that these activities were performed in a simplified manner in isolation, with the
volunteer starting and ending the movement in a stationary posture.
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Figure 3 shows another example of a spectrogram for vital signs monitoring,
specifically respiration. In this case, a volunteer was sitting in front of a UWB
radar operating in the X-frequency band and performing different respiration
patterns on purpose, namely normal breathing, holding breath, deep exhala-
tion, and simulated fast breathing. The different breathing patterns can be
easily recognized ‘by eye’ in the spectrogram, and its envelope can be used
to estimate the breathing rate in normal, semi-stationary conditions, as well
as the presence of anomalous or irregular patterns.

Fig. 3. Spectrogram for a person sitting on a chair at about 60 cm from the radar and
simulating different respiration patterns. Specifically, the subject was asked to perform
10 cycles of normal respiration followed by a long period of holding breath and then
fast breathing. The radar used for this test worked in the X-frequency band.

However, beyond these examples of 2D spectrograms, radar data can take
very diverse representation formats combining into a tensor the dimensions
of range or distance, Doppler or velocity, angular information in azimuth
and/or elevation, and time. Furthermore, radar data are typically complex-
valued, unlike optical images. Hence, they can be represented with their real
& imaginary values or magnitude & phase [32–35].
An outstanding research question remains the identification of the most suit-
able radar data format for a given application and a desired classification
algorithm. This also includes the possibility of fusing different data represen-
tations and their salient features to maximize performances, and the robust-
ness of any proposed approach and choice to the diversity of environments
and individual movement patterns.

2. How to analyze radar data for HAR that present continuous and diverse
sequences of activities? Studies in radar-based HAR began with the anal-
ysis of separated motions and actions performed and collected in isolation, as
if they were sort of ‘snapshots’, whereas in reality human activities are per-
formed continuously. They appear as a seamless sequence, with duration and
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transitions between the different motions not being predefined. Furthermore,
such sequences are diverse, in the sense that they may include a mixture of
full-body actions (e.g., walking, vacuum cleaning the room), actions involv-
ing movements of limbs while remaining on the same location (e.g., sitting,
picking up an object from the floor), and broadly stationary intervals with
small or no movements (e.g., reading a book while sitting, watching TV).
These sequences are also highly diverse depending on the subject’s gender,
age, physical condition, and environmental constraints from surrounding fur-
niture and objects [36–38]. This undoubtedly adds additional complexity in
the task of learning the salient information related to the activities being
performed.
As a visual example of such diversity, Fig. 4 shows six velocity/time pat-
terns (spectrograms) for the same continuous sequence of five activities per-
formed by six different subjects. Notable aspects are: i) how diverse the signa-
tures appear for the different subjects, despite the sequences being nominally
labelled as exactly the same activity-wise; this would set an interesting classi-
fication challenge to train automatic algorithms with these diverse data with
the same nominal set of labels; ii) how challenging it can be to clearly iden-
tify the transitions in order to segment the different activities, i.e., where one
stops and a new one starts [39].
For this reason, the formulation of approaches for segmenting, interpreting,
and classifying these continuous sequences of human activities that may also
include data portions for vital signs extraction and gait parameters analysis
is an open research challenge.

3. How to effectively and wisely use deep learning techniques for radar-based
healthcare applications? Similar to plenty of other disciplines in science and
engineering, deep learning approaches are increasingly used for radar data,
including for healthcare applications discussed in this paper [5,31].
As a typical example of this trend, neural network architectures have been
proven as an effective tool for the classification of patterns in radar signa-
tures for HAR. These architectures include Convolutional Neural Networks
(CNNs) and recurrent networks such as Long-Short Term Memory (LSTM)
and Gated Recurrent Units (GRUs), as well as their combinations, to classify
bi-dimensional and temporal patterns in the radar data. Additional architec-
tural choices include Auto-Encoders (AEs) to perform unsupervised feature
extraction; Generative Adversarial Networks (GANs) to generate synthetic
radar data to complement experimental datasets; and attention-based Trans-
former architectures [5,40–45]. However, while deep learning techniques have
clear advantages in their ability to learn patterns and features that cannot
be easily captured with conventional approaches, their usage also poses prac-
tical challenges to address. First, the need to have datasets that are large (in
order to train deep architectures with many hyperparameters), well labelled
(in order to use supervised learning approaches), and representative (in order
to capture enough diverse subjects and environments with their specific mul-
tipath phenomena and clutter signatures, so that the classification networks
can generalise well to new people and situations).



500 F. Fioranelli et al.

Fig. 4. Radar spectrograms of the same sequence of five daily activities (namely walk-
ing back and forth, sitting on a chair, standing up, bending down and coming back
up, and drinking from a cup) performed by 6 subjects of different age, gender, physical
conditions. The radar operated at 5.8 GHz carrier frequency.

To the best of our knowledge, a dataset with the aforementioned desired
characteristics that is publicly shared and accepted by the radar research
community as ‘the benchmark dataset’ does not exist at the moment. How-
ever, some steps have been taken to address this challenge of data scarcity by
increasingly sharing datasets, as in the several examples reported in [46], or
the relatively large dataset our research groups shared in [47,48]. While these
activities are still fragmented at the level of the initiative of each individual
research group, they still represent a positive sign to help further develop deep
learning techniques in this context. With established datasets, one would be
able to perform a deep, comprehensive statistical study to compare the dif-
ferent relevant techniques on the same data, scenario, and radar system.
Another important challenge related to the utilization of deep learning tech-
niques in the context of radar-based healthcare comes from the often difficult
interpretation and explanation of the decisions made by the neural networks
and their rationale. The importance of explainable approaches combined with
the aforementioned issue of data scarcity can discourage the usage of deep
data-driven end-to-end architectures, even if they have proved very effec-
tive in other research domains such as image and audio processing. On the
other hand, this challenge can be turned into an opportunity to incorporate
physics-based information into the networks. This can leverage both aspects
of electromagnetic scattering & propagation, as well as human kinematics,
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since both are phenomena that can be well characterized a priori with mod-
els and equations, which do not need to be learnt from the data since they
are well understood from physics and human physiology.

4. How should a classification algorithm manage the situation of receiving
unforeseen data? This is the so called “open-set” problem [49,50], for which
a typical example in the context of radar-based HAR is the occurrence of a
movement or activity pattern that was not present in the training data. A
closely related aspect to account for, is the fact that many critical, poten-
tially life-threatening activities that a classifier should always recognize (e.g.,
fall instances) are in a sense part of these unexpected, unforeseen data. This
is because they cannot be instigated on purpose to generate representative
training data, thus leading to datasets that can be potentially unsuitable
to train for robust performances and to deal with the actual critical cases
appearing in the test set. The development of robust techniques to deal with
these cases remains an open research question.

5. How can radar be integrated into a wider suite of sensors for healthcare? For
healthcare applications such as those presented in this work, it is expected
that the combination of data from multiple sensors located in future smart
home environments will yield better performances than using each sensor in
isolation. This is because each technology has its own distinctive advantages
and disadvantages [26,27], thus a proper synergy in a multimodal fashion can
be beneficial. Radar is no exception to this idea, and its acceptance in the
perhaps not immediately obvious context of healthcare can be facilitated by
its usage together with other sensors that are more familiar to the end-users.
An open research challenge for this is the formulation of algorithms for data
processing and sensor management to combine information from different,
heterogeneous sensors. Incidentally, these approaches can also include net-
works of multiple radar sensors [24,47], either with similar radars looking at
the scene under test from different aspect angles, or with radars operating
at different carrier frequencies to ‘perceive’ complementary characteristics of
the objects of interest due to the different probing waveforms.

4 Conclusions

This paper provides a detailed overview of recent developments in the field
of radar sensing for healthcare, along with the associated research challenges.
Notably, radar technology has allowed contactless monitoring of vital signs such
as respiration and heartbeat, as well as the classification of human activity pat-
terns, including fall detection and gait monitoring/analysis through parameter
extraction. Nevertheless, research challenges remain in radar signal processing
and machine learning including the most modern deep learning techniques for
these applications. Specifically, researchers are investigating the most promising
approaches for extracting essential information from radar data and formulating
effective, robust, and scalable classification algorithms for diverse subjects and
activities in indoor environments.
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