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summary

This thesis explores the development of mobile charging systems, which could significantly ease the
challenges associated with current electric vehicle charging methods. The purpose of this thesis is to
develop an autonomous system to fulfil estimated charging demand on a typical day under different
conditions to exemplify how mobile charging systems can address these issues.

The research is mainly motivated by the limitations of conventional charging poles, such as their
scarcity, lengthy charging times, unregulated demand, and urban space conflicts as EV usage grows.
Future EV statistics and charging station projections are presented underscoring how these challenges
can be amplified shortly. As an alternative solution, mobile charging systems are introduced highlighting
products, prototypes, and studies in the market and literature. Through stakeholder analysis, these
systems are shown to benefit investors, consumers, and the public, supporting the grid, facilitating
convenient charging, and offering solid financial returns.

The thesis incorporates a charging demand estimation algorithm to simulate the charging tasks on
a typical day. This demand estimation is represented as private, public, and workspace charging load,
sampled by considering the probability of energy demand and connection times. Next, the study inte-
grates an iterative optimization process to simulate how effectively this demand can be addressed by a
robot-like mobile charging system. Furthermore, the system is simulated with different price scenarios,
grid capacity values of 50 and 100 kW, varying the number of units between 3 and 5, and adjusting
battery sizes between 70 and 400 kWh. As a result, it is demonstrated that mobile charging systems
can effectively reduce peak demand by decoupling charging demand from the grid while offering a
more convenient charging experience. The profitability is assessed through energy arbitrage, opera-
tional revenues, and energy costs, noting improvements with seasonal effects and higher grid capacity.
However, life expectancy assessments using Li-ion battery degradation models show that while higher
grid capacity slightly boosts profits, it reduces peak demand benefits and accelerates battery wear if
used heavily for energy arbitrage, limiting lifetime returns. Furthermore, investment costs associated
with the system are calculated and compared to a system with charging poles. The results show that the
switchable battery configuration can effectively minimise the required investment costs because of the
smaller number of necessary carrier units mobilising the battery units. A switchable battery setup with
3x270 kWh batteries and 2 carriers is identified as cost-effective for public and workplace demand, with
a potential increase to 340 kWh for higher returns despite 20% more investment. The sizing process
is reiterated for another demand scenario consisting of a private charging load and 260 kWh capacity
is highlighted as a cost-effective choice, while the profits can be improved with 310 kWh capacity.

The thesis further discusses the mobility necessities of the system and the performance require-
ments of the powertrain. To maintain grounding, the study simulates the parking service area of P1 at
the TU Delft campus. A driving cycle is developed by taking site measurements and also considering
safety concerns and standards. Consequently, energy consumption and maximum power requirement
are calculated by also integrating a weight estimation methodology regarding the main components
of the system. As a result of analysing different traction machines, an induction motor is found as a
suitable solution fulfilling the performance criteria and minimizing the investment costs.

Lastly, the thesis introduces different power converter topologies that can act as a bridge between
the system and EVs. As a consequence of a comprehensive analysis of different converters and the
findings reported in the literature, various topologies are suggested to be used in different cases. In
particular, DAB and full-bridge converters are highlighted due to their relative simplicity and outstanding
high-power performance in stationary applications where efficient packaging is not the priority. On the
other hand, in a mobile onboard charger where the dimensions of the converter play a key role, the
LLC Resonant converter becomes prominent due to its high power density and efficiency.

As a result, the findings reveal that mobile charging systems could offer a significant improvement
over charging poles by providing flexible, on-demand services that reduce charging times and space
requirements. These systems can adapt to the dynamic demands of urban environments, offering a
competitive and convenient solution which could be attractive to the investors and public.
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Introduction

Technology, business, and policy concepts are evolving due to the climate crisis that nature and human-
ity have been experiencing. Global carbon emissions in 2022 reached 36.8 GtCO,, an all-time high,
urging stakeholders to act more environment responsibly and consciously [78], [102]. This alarming
trend of emissions and the climatic consequences has resulted in a policy shift towards sustainability,
along with vast technological and regulatory developments in almost every sector. Mostly powered by
fossil fuels, the mobility and transportation sector is one of the most significant contributors to global
emissions. In 2022, motorised transport by road, rail, shipping, air and pipeline accounted for 7.95
GtCO, of emissions [103]. In detail, road transportation by itself was responsible for 73.8% of CO,
emitted into the atmosphere by the transportation sector [103]. Sustainable transportation therefore
holds significant value in the reduction of greenhouse emissions, and making this sector emission-free
would lead to a remarkable decrease in environmental damage.

As a response to the need to decrease the carbon footprint globally, the Paris Agreement was
adopted by 196 Parties at the UN Climate Change Conference (COP21) on 12 December 2015 [190].
Consequently, the parties pledged to decrease their emissions in order to keep the global average
temperature increase below 2°C compared to the pre-industrial levels [190]. This pledge implies an
array of advancements in the global infrastructure, reshaping not only how the energy is generated
and transmitted, but also how it is stored and ultimately used. Moreover, the technology playing a
part in these advancements is constantly being redefined due to policy frameworks. One of the most
important examples of this revolution is the European Union’s (EU) restriction on fossil fuel-powered
cars. According to the regulation, in order to reach carbon neutrality by 2050, the sale of new road
vehicles equipped with internal combustion engines will be banned by 2035 [58]. Some of the countries
with more ambitious targets such as the Netherlands, Iceland, Sweden, Ireland and Slovenia even bring
this deadline forward to 2030 [144], [17]. This has prompted global automotive manufacturers to adjust
their production lines and their product catalogues in order to catch up with the sustainable mobility
revolution [185]. In 2022, the total number of passenger cars registered in the EU was 253,305,631
[59]. Moreover, considering that 21.6% of all registered vehicles in 2022 were electric vehicles (EVs),
it is foreseeable that this percentage will heavily increase in light of the adoption policies implemented
[57].

Another consequence of the countries’ adoption of the Paris Agreement was a shift toward more
sustainable energy generation methodologies. Primarily, the deployment of solar and wind power plants
has picked up globally. With cumulative power capacity shares in 2023 of 14.7% and 11.4% respectively,
solar and wind energy are expected to dominate the energy landscape, driving a significant shift away
from traditional fossil fuel sources and playing a pivotal role in global endeavours to address the climate
crisis [100]. Furthermore, by 2027 these shares are predicted to reach 22.2% and 14.4% respectively,
as shown in Figure 1.1 [100].
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Figure 1.1: Share of cumulative power capacity by technology, 2010-2027[100]

1.1. Electric Vehicles and Charging Infrastructure

Today, significant barriers are making the EV market penetration limited, even though they play a pivotal
role in the sustainable mobility transition and their use is encouraged by policy and business perspec-
tives. Remarkably, charging infrastructure is one of those challenges making potential drivers question
if they will be able to charge their cars whenever they wish and as quickly as they desire. Addressing
this issue requires a wide-scale cooperation between the government-owned and private entities. For
example, in February 2023, the total number of charging stations in the Netherlands was announced as
128,032, which 4,376 of are equipped with fast charging [138]. This number is a result of a strong col-
laboration among the Dutch Government, local governments, and public-private partnerships to reach
ambitious climate goals set by the Dutch National Climate Agreement which concluded in 2019 and
Fit for 55 package [137]. In this regard, The Dutch National Charging Infrastructure Agenda aims to
further develop the charging infrastructure in the Netherlands, and widen the coverage of the network
to increase accessibility.

In a broader perspective, the number of battery electric vehicle registrations in the EU is announced
as 1,126,682 in 2022 [57]. Meanwhile, the number of charging stations in Europe is also growing in
parallel, surpassing 500,000 units in 2022 [175]. Aligned with the EU climate goals, the number of
charging stations is expected to reach 5 million by 2030, and then increase to 10.4 million by 2035 to
serve an estimated 131 million EVs, following the implementation of vehicle sale restrictions, as shown
in Figure 1.2 [187].
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Figure 1.2: Number of public charging stations and EVs in the EU [187]

Furthermore, in a more conservative scenario, the minimum number of public charging stations that
should be installed in the EU is predicted as 3.4 million by 2030 in order to develop the charging network
in parallel to the increasing demand and climate goals [37]. Nevertheless, the European Automobile
Manufacturers’ Association (ACEA) has proposed the installation of 7 million charging stations across
the EU by 2030 to lower market barriers, boost EV sales, and ensure an infrastructure capable of
meeting drivers’ needs following the sale [56].

Even though the significant increase in the number of charging stations has lots of advantages
for sustainable mobility, it also brings about certain challenges. First, the instalment itself requires
a remarkable investment. In 2032, the global charging station market is estimated to reach 280.6
billion $[80]. Furthermore, it is estimated that the number of installations proposed by ACEA will result
in utilization rates as low as 5% [187]. Considering that these investments stem from both public and
private capital, any unprofitable deployments would need to be subsidized, leading to substantial public
expenditure [187]. Hence, the deployment should be able to pay off itself in order to reveal a sustainable
business model. Second, one should pay attention that each charging station takes up a significant
space in the urban environment. Although current figures do not indicate any conflict between urban
space and the occupation of charging stations, it is foreseeable that a significant amount of urban space
will be required for charging purposes when the number of EVs scales up to 131 million.

Another challenge to be addressed is the lengthy duration of EV charging [50], [165]. Extensive
development is underway to offer drivers shorter waiting times. Specifically, the solution largely de-
pends on the charging power used during the process. At this juncture, DC fast charging emerges as
a notable solution, significantly reducing waiting times. For instance, a Tesla Model 3 can gain up to
322 km of range in just 15 minutes under optimal conditions using Supercharger technology, which
is equipped with Level 3 DC charging [183]. Increasing the power of charging stations shortens the
charging time. However, there is still a significant gap to bridge before EV charging can match the
speed of today’s refuelling times. Additionally, higher charging powers necessitate cables with larger
cross-sections for insulation, resulting in heavier cables [197]. This makes cable handling a challenge
for some drivers, thereby impacting the accessibility and convenience of EV technology. Furthermore,
due to their high power demand, the fast charging technology requires a significant improvement in the
grid management side. It poses challenges to the power grid, including potential voltage drops that
could threaten system stability [1], [4]. A large number of fast chargers may strain the current power
grid beyond capacity, leading to possible rapid failures and putting immense strain on the power grid
[120].

Even if the higher charging powers allow a significant reduction in waiting times, there are also
additional bottlenecks experienced by EV drivers regarding the charging infrastructure. For example,
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it is reported that the drivers have sometimes difficulties due to the queues at the charging locations
[165]. In detail, according to the survey conducted in the Netherlands, 46% of the people reported they
face the issues due to the insufficient number of public charging stations in the area which could be the
root cause of these queues [156]. Moreover, the effect of this insufficiency is further amplified when the
charging station is blocked. This blockage can be caused by another EV which is left plugged in but
not charging anymore since its battery is full. On the other hand, this could be an ICE vehicle which
uses the charging location as a parking place. In the same survey, 43% of the respondents reported
that they witness such incidents in their daily lives [156].

1.2. Mobile EV Chargers

The deployment of mobile chargers stands out as an innovative solution to overcome the current bar-
riers to EV adoption and address some of the problems that today’s EV owners face. These mobile
chargers can either be in the form of battery units supporting or undertaking the charging activities, or
grid-connected systems. Primarily, these systems enable more strategic planning of charging opera-
tions, leading to improved utilization rates. For instance, charging tasks that would typically require a
large network of fixed stations can be efficiently managed by a smaller fleet of mobile units, thereby
optimizing resource use and increasing utilization [4]. This advantage fundamentally paves the way for
a more efficient use of urban space. However, the utility of mobile charging systems extends beyond
merely offering EVs a charging solution. By their inherent flexibility, if they are equipped with batteries,
they can function as mobile energy storage units, absorbing excess energy generated during periods
of low demand and dispensing it during peak times [4], [131], [198], [194]. When the increasing portion
of renewable sources in the energy mix is considered, the storage functionality even becomes more
significant. This dual capability allows them to play a pivotal role in the broader context of the renewable
energy transition, positioning them as a critical component in the effort to mitigate emissions from two
of the largest contributing sectors: transportation and energy production. By acting as a dynamic buffer
for the energy grid, mobile charger robots not only facilitate a more resilient and adaptable charging
infrastructure for EVs but also enhance the integration of renewable energy sources, smoothing out
the variability of supply and demand when they are considered battery units connected to the grid [41].
This synergy has the potential to accelerate the decarbonization of these sectors, marking a substan-
tial stride towards achieving a sustainable, low-carbon future. This battery integration also helps to
decouple charging demand from the grid, operating in a more network-friendly manner, mitigating the
necessity of significant investments to improve grid capacity [120]. These systems can fulfil the charg-
ing tasks, supplying high charging powers while using a lower grid capacity and reducing the effects
of fast charging [120], [160]. Moreover, drivers are responsible for plugging in their vehicles currently,
which inherently restricts the physical properties of the charging cables and hence the charging power
to what is manageable by human strength and skill [197]. With mobile EV chargers, the connection
process is managed by a fully automated system, which becomes increasingly important to address
the challenges of heavier cables and increasing safety concerns associated with the higher charging
powers to reduce the charging times. Ultimately, this system could greatly enhance smart charging ca-
pabilities through its potential flexibility. Charging sessions can be optimally timed, and the interaction
between the charger, the electric vehicle, and the power grid can be efficiently managed in real-time
through live data acquisition.

1.3. Research Objectives

This thesis aims to investigate the main challenges associated with today’s charging solutions from
different perspectives to analyse an alternative solution, mobile charging, which can mitigate the related
problems. To determine the scope of the research, the research gaps are identified as a result of a
literature review presented in Section 2. Following these gaps, the goal of the designed framework is
expressed as one general question in Section 1.3.2, while the main idea is branched under Section
1.3.3, to fully convey the details and distinguish the related disciplines of the position of this study.

1.3.1. Research Gaps

There is extensive research and development on mobile charging systems highlighting academic and
corporate interest towards this area. In the literature, different studies are focusing on the practicality
of such solutions, proposing designs and discussing the outcomes. These studies are grouped under
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two categories depending on their focus, such as Mobile Charging System Configurations and System
Optimization Studies on Mobile Charging Techniques in the literature analysis reported in Section 2.
As a consequence of the literature analysis, the following research gaps can be identified:

» Lack of Performance Assessment in Different System Configurations
The system configurations mainly describe the alternative approaches studied to substitute the
regular charging poles. These approaches are pronounced as Battery-less Systems [92], [36],
[143], [15], [49], [121], [197], [152], [114] [90], [97], Large Scale Battery Integrated Systems [25],
[162], [116], Battery Swapping Systems, [168], [25] and Robot-like Systems with Batteries, [16],
[111], [70], [135], [8], [71], [53], [196]. Generally, even if these studies and products demonstrate
an effective use of mobile charging systems and share valuable insights on their designs, they
lack a comprehensive attitude towards the designs introduced, without sharing any operational
assessment or critical methodology to numerically test and verify the system’s performance under
various parameters. Therefore, such studies do not go beyond demonstrating prototypes, con-
ceptually highlighting the benefits and reviewing the state-of-the-art, except one of them analysing
the effect of different parameters under an assumed fixed battery capacity [111].

» Limited Focus on Robot-Like Solutions in Urban Setting
Most of the reported studies focus on battery-less, grid-connected systems, undervaluing the
challenges associated with the electricity grid as a consequence of substantial charging load.
Furthermore, among the ones focusing on battery-integrated systems to address additional chal-
lenges related to the grid, it is found that the academic interest rather focuses on large-scale
systems such as vans or trailers loaded with batteries to operate remote locations or provide
emergency charging services or battery-swapping stations. Therefore, only a limited number of
papers address the scalable systems that suit the urban environment and potentially substitute
the regular charging poles, meanwhile, it is found that corporate interest is growing in this area as
different partnerships and startups reveal robot-like systems to operate inner-city parking places.
As a result, this thesis sets a unique example to focus on robot-like systems with batteries that
will suit well urban charging, critically evaluate the options in terms of configurations and system
sizes and assess the attractiveness of the solution from different perspectives.

 Limited Analysis in Mobile System Sizing
Moreover, the studies focusing on sizing the mobile systems generally approach those systems in
a complementary layout, either focusing on systems like delivery vans, mobile swapping stations
or on-site charging services operating besides regular charging poles [181], [210], [160], [29],
[153], [95], [120]. That means, they often realise a system made up of regular charging poles
which are supported with the use of mobile batteries or chargers in a city or neighbourhood.
Furthermore, such studies sometimes use assumptions on the battery capacity of the system,
lacking a critical approach to reveal the effect of sizing on the final result. Even if some papers
set the system size as a decision variable, the robustness of the system is not evaluated by using
different price scenarios, grid capacities and charging demand patterns. Therefore, it is also
aimed to assess the system’s performance depending on its size under different conditions.

» Lack of Focus on Energy Arbitrage
Such studies generally disregard the possibility of energy arbitrage which can bring along extra
benefits for the grid and the investors, since it is more difficult to achieve so in a relatively large
operational area like a city or a remote place. On the other hand, when robot-like systems are
studied in a smaller operational area than a typical city, energy arbitrage becomes easily achiev-
able, unlike delivery vans or emergency charging services. As a result, the thesis also establishes
a distinctive methodology with enhanced system integration with the help of bidirectional energy
flow between the batteries and the grid. This way also can pave the way for a better integration
of renewable energy generation, allowing the storage in the batteries to be used when there is a
deficit.

* Need for Computational Efficiency and Trustability in Sizing Methodologies
The necessity of the minimization of the computational requirements also emerges as a key is-
sue as a result of the literature analysis. The optimization studies often rely on computation-
ally expensive methodologies such as Reinforcement Learning and heuristics or even complex
custom-made combinatorial optimization algorithms. For such algorithms, the factor of explain-
ability frequently emerges to be able to trust the results. When the tool solving the algorithms can
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not claim global optimality or does not allow an understanding of why the output is returned in
a certain way, a comprehensive verification process becomes necessary. Therefore, by utilizing
a framework whose accuracy and performance are verified while also not compromising global
optimality, the designed methodology sets a basis for formulating optimization problems whose
solutions can be claimed as global optimum points by employing linearization techniques.
Insufficient Focus on Financial Analysis and Comparative Studies
As the literature does not generally focus on fulfilling the charging demand by only using mo-
bile charging systems, it offers limited analysis of the financial performance and competitiveness
compared to today’s solutions. However, these factors often determine the viability of applica-
tions for different stakeholders. Furthermore, a comprehensive comparison of the advantages
and disadvantages of different mobile charging system configurations such as robot-like units
with built-in and switchable batteries, using numerical examples and frameworks is also missing.
Hence, it is essential to test and verify the system’s performance in different practical scenarios
to highlight operational necessities and assess its capabilities, while proposing a system sizing
and configuration.
» Absence of Multidisciplinary Approach
Lastly, the related studies often approach this topic from a single discipline, such as reviewing the
literature for reporting the state of the art, optimising the system’s parameters such as pricing or
service location, designing mechanisms, components or algorithms to implement, and proposing
a prototype. Especially, it is noted that the literature does not extensively address the powertrain
and power electronics requirements of the system due to the absence of comprehensive analysis
focusing on robot-like systems. Therefore, the lack of a multidisciplinary approach, addressing the
ideal configurations, and parameters, suggesting design solutions focusing on various aspects
such as powertrain and power conversion and testing the outcoming performance of the system
in various scenarios contributes to this research gap and the main motivation behind this thesis.
To address this gap, a multisided framework is created to evaluate the status quo, report the po-
tential solutions, create scenarios and discuss the results as a consequence of a comprehensive
analysis.

1.3.2. Main Research Question
Bearing in mind the upcoming restrictions on road vehicles and the increasing demand for EVs, suffi-
cient charging infrastructure is crucial to encourage the expansion of sustainable mobility in the short
term and to make the charging process more convenient. Today, the insufficiency of charging infrastruc-
ture can be attributed to occupied charging spaces, lack of charging stations and overall long charging
duration. All those challenges cause the charging process to become something planned, instead of
being intuitive and user friendly. Challenges encountered and testimonies given by EV users set a
significant barrier against the transportation sector to become more sustainable. Furthermore, heavy
adoption of EVs requires a great number of charging station installations which will occupy too much
space and eventually start conflict with urban life, when today’s chargers are scaled according to the
number of passenger vehicles. This expansion also raises concerns about the utilization ratio of the
installed systems and questions about the self-sufficiency of the business scheme. Moreover, uncon-
trolled charging also poses a threat to the efficient management of energy and causes unpredictable
power peaks and valleys.

Regarding the setbacks emphasized above the main research question can be expressed as fol-
lows.

How can the development of an effective mobile charging system be compared in terms of
performance outcomes to the regular charging poles from the perspectives of the public,
investors, and EV drivers while

* Promoting the widespread adoption of EVs in urban settings,
+ Addressing the current challenges experienced by EV drivers and grid management?

1.3.3. Research Sub-Questions
Considering the complexity and how multi-faced the research question is, the main question can be
divided into several subquestions to analyze the domains clearly, identify the trade-offs associated with
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the system’s development and evaluate the performance of the design in a more organised framework.
These subquestions are listed below.

1. What are the challenges associated with today’s EV charging systems? What alternative methods
can be proposed instead of charging poles to address these challenges? What potential benefits
can mobile charging bring along, compared to regular charging poles?

2. What is the optimal configuration that can be suggested as a mobile charging solution in the urban
setting?

3. How can a realistic demand estimation be conducted to identify the charging tasks the mobile
system fulfils in a typical day?

4. What could be an effective sizing strategy for this proposed mobile charging system? How many
units should be considered and what should be the size of their batteries in the proposed config-
uration?

5. How does the powertrain system need to be built to achieve the expected functionality and perfor-
mance requirements, and what characteristics should the system possess to ensure suitability?

6. How can the power conversion topology be implemented to act as a bridge between the system
and EVs?

As the goal of the thesis is to address the identified Research Gaps in Section 1.3.1, the Research
Sub-Questions are directed to tackle these gaps and pave the way for a unique and comprehensive
analysis. In this regard, Research Sub-Question 1 aims to deepen the focus on Robot-like Systems
with batteries, requesting an introduction of alternative charging methodologies and a comparison of
these techniques to highlight their advantages. Given the operational area of the urban setting, Re-
search Sub-Question 2 takes this analysis further to demonstrate the effective use of such systems
to substitute regular charging poles. Furthermore, as the identified gaps point out a necessity of com-
prehensive performance and sizing analysis, Research Sub-Question 3 lays the foundation to create
realistic charging demand scenarios to demonstrate the effect of different parameters on the proposed
system parameters to enlarge the depth of the performance assessment. Moreover, Research Sub-
Question 4 sets a basis to decide on an effective system size by analysing the influence of the number
of units and the battery capacities on financial outcomes, also paying attention to the energy arbitrage.
The answer to this question potentially fills various research gaps because it exhibits a comprehensive
sizing analysis by accounting for various scenarios to further process the outputs to present a compar-
ison and financial analysis, revealing the advantages and disadvantages of the system. In addition,
the employed methodology to answer this Sub-Question also uses computational resources efficiently
as well as employing techniques whose outputs can be verified and explainable to prove optimality.
Finally, Research Sub-Questions 5 and 5 aim to enlarge the scope of the thesis to come up with a mul-
tidisciplinary approach, and address two more main technical points of the system, thus contributing to
the uniqueness of the study.

1.4. Thesis Outline

This thesis consists of 7 Sections. In Section 2, today’s charging solutions are introduced. In addition,
challenges associated with these solutions are identified. Following that, alternative charging solu-
tions that can potentially address these challenges are exemplified and mobile charging systems are
described by using concrete example products in the market and taken from the studies in the liter-
ature. The section ends with a discussion of the potential benefits of mobile charging systems from
different stakeholders’ perspectives. Next, an algorithmic framework for charging demand estimation is
introduced and the results are given in Section 3. Meanwhile, Section 4 mainly demonstrates a frame-
work to size the mobile system while discussing the advantages and disadvantages of different mobile
charging configurations. In order to come up with a comprehensive analysis, different inputs such as
various electricity price and demand scenarios, grid capacity, number of units and battery capacity val-
ues are iterated in a Mixed Integer Linear Programming (MILP) problem. Consequently, the results
are presented and the trade-offs are identified. The financial performance of the proposed system is
assessed by processing the results and comparing them to traditional charging poles with the help of a
business evaluation metric, considering the profitability, investment cost and product life of the system
determined by the battery degradation. Furthermore, Section 5 describes the powertrain requirements
of the system by first distinguishing the performance criteria. These requirements are transformed
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into numbers in the form of maximum power and energy consumption per driving cycle following a
weight estimation. Taking the numbers into account, a traction motor selection procedure is exhibited
by discussing the advantages and disadvantages of the potential electric machine types. Moreover,
power conversion topologies that can act as a bridge between the system and EVs are introduced and
discussed in Section 6. In light of reported experimental values in the literature, adequate converter
topologies for stationary and mobile applications are suggested. Lastly, in Section 7, the discussion is
wrapped up and key findings are concluded also by emphasizing the future work.



State-of-the-Art

This section presents a comprehensive state-of-the-art analysis made up of the studies reported in
the literature and the products developed as an alternative to charging poles. First, regular charging
stations, which are grouped as private and public, are introduced. Next, mobile charging systems are
described and alternative charging methodologies are demonstrated as well as discussing their advan-
tages and disadvantages in accordance with Research Sub-Question 1. Consequently, the challenges
associated with today’s EV charging systems are highlighted and matched with the solutions that mo-
bile charging systems bring along to fully answer this question. Finally, the benefits of the introduced
methodologies are emphasized from different perspectives and matched with the challenges they po-
tentially address. As a result of this comparative analysis, an optimal methodology well-suited to urban
settings is introduced to answer the Research Sub-Question 2.

2.1. Fixed Charging Stations

Fixed charging stations, taking the form of standard electrical plugs or buildings equipped with multiple
charging outlets, serve as enduring fixtures powered by the electricity grid or local energy sources [12].
These stations, distinguished by their accessibility, are divided into two primary categories: private
charging stations and public charging stations, both of which are also called charging poles[4].

2.1.1. Private Charging Stations

Private charging stations are set up in places that demand restricted entry, such as private residential
complexes and business parking lots accessible solely to authorized individuals, whether residents,
employees, or visitors [33], [104], [4]. Meanwhile, many residential charging stations, typically operate
at a slow charging pace [4].

In the realm of private charging infrastructure, three tiers define the charging rate: AC Level 1 (slow
charging), AC Level 2 (moderate-speed charging), and Level 3 (fast charging) [7]. For home charging
setups, there is a choice between the relatively slow Level 1 charger equipment or the slightly more
powerful Level 2 [4]. Despite the declining prevalence of Level 1 chargers due to their limited charging
power, they still constitute a significant proportion of charging instances and remain pivotal in driving
EV adoption [169], [4].

2.1.2. Public Charging Stations

EV owners often rely on home charging for its affordability, yet the scarcity of private parking in urban
centres and lengthy charging times propel the necessity for public charging stations [29]. These sta-
tions, typically equipped with Level 2 or Level 3 chargers, are situated in various public venues like
parking lots, malls, and eateries [4]. While slow charging predominates in private and public settings,
fast chargers are also geared towards commercial and public use [104], [117], [4].

Governments worldwide envision a significant expansion in public charging infrastructure, with pro-
jections ranging from 14 million slow to 2.3 million fast chargers by 2030, potentially surpassing 24 mil-
lion public chargers and 4 million fast chargers under more ambitious climate goals following the Paris
Agreement’s Climate goals [104], [190]. Considering this drastic expansion of the charging network,

9
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these numbers also highlight the public space requirement in the urban setting to meet the charging
demand.

Public charging infrastructure is also instrumental in supporting the EV market and facilitating faster
charging times, notably through advancements in DC fast charging technology, which could cut charg-
ing durations to less than 30 minutes [89], [34], [128], [4].

However, the implementation of fast chargers poses challenges to the power grid due to their high
power demand and notably variable loading characteristics [128], [2]. Consequently, the power distri-
bution network must adapt to accommodate the demands of fast-charging stations through capacity
improvements [109], [4].

2.2. Mobile Charging System Configurations

This section introduces mobile charging systems studied in the literature to address the challenges of
the regular EV charging process. Primarily, the studies and development are exemplified along with
the solutions they bring along by matching them to the setbacks associated with today’s EV charging
procedures. The goal of this section is to set a basis to introduce these alternative solutions and
demonstrate the potential benefits of these systems Research Sub-Question 1 considers.

As the transition to a zero-emission future accelerates, mobile EV charging systems are increasingly
recognized as a promising solution to meet the evolving demands of electric EV infrastructure. In this
dynamic arena, automobile manufacturers, Original Equipment Manufacturers (OEMs), and innovative
start-ups are intensively researching and developing to integrate these systems into the EV technology
landscape. The field showcases a wide variety of projects, each highlighted by distinctive approaches
and considerations that regard strategic objectives. Subsequent sections will explore each categorised
approach in detail, shedding light on the cutting-edge advancements and their potential impact on the
future of EV charging. These solutions can be highlighted as alternative charging approaches that can
be proposed instead of regular charging poles.

Mobile EV chargers can primarily be categorized under 4 different titles as shown in Figure 2.1,
namely Battery-less Systems, Large Scale Battery Integrated Systems, Mobile Battery-Swapping Sta-
tion Systems and Robot-like Systems [25]. The first category mainly describes the systems equipped
with power converters to establish the connection between the EV and the grid, providing extra con-
venience compared to a regular charging station. Furthermore, the second category generalizes the
mobile battery services fulfilling charging demand at the desired location and time. These systems
mainly charge their batteries from the grid and act like an energy delivery system by request. The
third category of systems can also be proposed which are capable of providing the delivery of mobile
and switchable batteries, fulfilling the requested operation faster on-site, instead of charging the EVs.
Meanwhile, the fourth option depicts the autonomous robotic systems which are capable of travelling
to the location requested, managing the plugging process and handling the charging demand by the
stored energy in the batteries. The fourth option is suggested as an effective solution when the study
area can be contained in a relatively smaller area such as a parking place [25].
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Figure 2.1: Categories of Mobile EV Charging Systems [25]

2.2.1. Battery-less Systems
EV charging cables are designed to handle substantial currents, ranging from several tens to hundreds
of amperes. To minimize the charging duration and make it comparable to the refuelling process of vehi-
cles using internal combustion engines, the implementation of high-power charging systems is crucial.
These systems enable the rapid recharging of electric vehicles within a time frame closer to conven-
tional refuelling, as the waiting time is one of the major concerns raised by the drivers [50]. The Society
of Automotive Engineers establishes the specifications of Level Ill DC Charging, capable of delivering
currents up to 400A and voltage up to 600V [186], [46]. At the core of the matter, heat generation from
high currents and safety considerations stemming from accelerated ageing lead to the production of
thicker cables, which in turn significantly increases their weight and stiffness. Currently, the fact that the
plugging operation is performed manually by individuals imposes considerable ergonomic limitations
on the design of these cables. For example, lengthy and bulky cables with a restricted bending radius
occupy significant space [197]. A CCS-Type 2 (Combined Charging System) charging cable, used for
charging capacities up to 106.25 kW, weighs 1.7 kg/m and has an external diameter of 28.2 mm [197].
This issue of cable handling can be addressed by some of the battery-less systems. At the centre of
these configurations is a robotic, actuated arm that takes over the connection process, executing this
task with enhanced safety compared to human operation. However, the platform that supports the arm
is stationary and linked to the grid, making these units dedicated to their designated charging zones.
Furthermore, this system generally benefits from artificial intelligence-powered cameras, sensors, and
LiDAR (Light Detection and Ranging) systems to recognize the vehicle dimensions, place the charging
inlet and protective lid, and identify the type of inlet and its precise location implemented in the EV.
The lack of automation in the charging process appears as a setback, affecting the convenience of
EV charging. An alternative battery-less system could be underbody conductive charging units. Hirz et
al. discuss the use of such charging systems for enhanced convenience [92]. The primary objectives of
this study are to evaluate the mobile EV charging systems and develop a conductive charging system
that is capable of working with different EV models, both human-driven or autonomous, safely operating
without unexpected consequences, designed simply so that it does not require frequent maintenance
and realizable by using today’s technological developments. In this regard, they discuss an underbody
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coupling solution. In this type of system, two complementary units are used and one of them is con-
nected to the EV’s battery, while the other is connected to the charging stations. The connection is
established by coupling the EV and charging stations via these units. For coupling to happen, at least
one of these units should be movable, while the other one can be fixed. These systems have a certain
operation range, hence they should be aligned by the driver, still requiring human intervention, even
though such systems have a typical alignment error tolerance of 0.5 m in both horizontal and vertical
dimensions, according to the study. However, it is further concluded that even though such systems
improve safety because the connection is done via a coupling instead of cables, it is not a scalable
solution because of the challenges of integration. Because there is still no standardized, widespread,
and recognized under-body charging interface used by EV manufacturers, a tailored design for each
battery and EV type is necessary for these systems to become practical [92].

Another example of the underbody coupling systems is developed by the fixed charging robot pro-
duced by Continental Engineering Services (CES) incorporated in Continental AG and its startup part-
ner Volteiro [36]. While the product is planned to be manufactured in 2024 in Germany, the charging
solution consists of two parts: one attached to the vehicle’s underbody and the other placed on the
garage floor. When the vehicle is parked, these components automatically connect via a smart system,
using a short-range data transmission technology utilizing radio-based communication. This system’s
advantage is that it can tolerate imprecise parking since the charging robot can compensate for a de-
viation of up to 30 centimetres and can connect regardless of the vehicle’s angle to the floor unit. The
conical connector design allows for flexibility in the connection orientation. The charging robot offers
several key benefits. Unlike wireless inductive charging, it uses a physical connection, ensuring min-
imal energy loss and greater efficiency and sustainability [36]. The automated process removes the
need for manual handling of charging cables, making it more convenient, especially in tight spaces.
The ultra-broadband communication allows for precise alignment between the vehicle and the charg-
ing unit. Additionally, the system is easy to install, with options like simply placing the floor unit on the
garage floor. Initially designed for private use with a 22 kW Alternating Current (AC) rating, the solution
is adaptable to existing vehicle models. Plans include developing a fast-charging version for public
spaces, capable of supplying over 50 kW DC, which will be especially useful for parking garages, filling
stations, and fleet management of commercial vehicles [36]. The product is illustrated in Figure 2.2.

Figure 2.2: Fixed Charging Robot Developed by Continental Engineering Services and Volteiro. [36]

Some of the inconveniences of traditional EV charging can also be addressed by inductive charging
systems. There is extensive research going on developing such systems even though they are not very
widespread. In addition, some of the challenges created by the absence of standardization can be fixed
by inductive charging systems. For example, since there is no physical coupling required between the
charging station and the EV, identification and precise detection of inlet location and type requirements
can be bypassed with the help of inductive charging systems.

As an example of such systems, Padmavathi et al. developed an alternative use of a wireless charg-
ing system [143]. In this study, a robotic arm carrying transmitter coils capable of locating receiving
coils on the EV by using an advanced mathematical adaptive algorithm based on extremum seeking
is proposed. It also discusses the use of silicon carbide metal-oxide-semiconductor field-effect tran-
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sistors (MOSFETSs) in the power converter to maintain high frequency, aiming to reduce charging time.
Furthermore, to address the waiting times and range anxiety, a road charging methodology is also in-
troduced. In this system, the road is equipped with wireless power transmitters and the driver receives
assistance on the direction the EV should cruise towards for the most effective charging resulting from
the correct alignment of the transmitter and receiver [143]. The concept is illustrated in Figure 2.3.
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Figure 2.3: Wireless Road Charging System Studied by Padmavathi et al.[143]

In addition, Barzegaran et al. also study a conductive charging system [15]. The authors propose
a novel solution leveraging transformer induction principles. Differently, this involves an autonomous
robotic arm equipped with sensors, mounted under the vehicle, to precisely position a receiving coil.
Hence, the moving part is mounted on the vehicle instead of the charging station itself in this approach.
Accordingly, the integration of silicon carbide MOSFETs in the power converter is key to this solution,
aiming to sustain high frequencies and thereby reduce charging times significantly by allowing high
power densities [15]. The system design includes an object vision detection system using the vehicle’s
cameras to control the robot arm, ensuring the coil is placed optimally for efficient power transfer. This
approach is designed to overcome obstacles like large non-permeable air gaps and electromagnetic
interference [15]. The proposed schematic is illustrated in Figure 2.4.
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Figure 2.4: Schematic of the Wireless Charging System studied by Barzegaran et al.[15]

Moreover, there are also some private companies working on robotic inductive charging applications
as well as the academy. EFI Automotive is one of those companies working on leveraging wireless
autonomous charging in commercial applications [49]. EFI Automotive has developed an innovative
wireless charging robot that streamlines the process of charging electric vehicles. This robot is capable
of autonomously locating a vehicle and positioning itself underneath for charging, eliminating the need
for precise parking or user intervention. It is designed with safety in mind, featuring obstacle avoidance
and a halt function if any movement is detected. The robot employs wireless inductive charging tech-
nology, eliminating the cable handling and offering a considerable range of 5-10 meters. This allows
it to charge multiple vehicles sequentially, making it highly efficient for both home and business appli-
cations. Enhancing user convenience, the robot is remotely controllable through an app and boasts a
charging power of 7 kW. Lastly, it is also stated that the planned manufacturing of this product will start
in 2025 [48]. The product is shown in Figure 2.5.
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Figure 2.5: Inductive Charging Robot Developed by EFI Automotive [48]

On the other hand, the side coupling connection, which has been used for years in lots of different
EVs and conventionalized over time could also address the issue of reported scalability and standard-
ization associated with underbody coupling in conductive charging applications [92]. The connectors
used by different EV models are shown in Figure 2.6. This shows that certain connector layouts make
a side-coupled connection to be easily integrated and more advantageous than under-body connec-
tions. Moreover, since there is already a charging inlet in every single Battery Electric Vehicle(BEV),
there is no additional attachment needed to couple the EV and charging station, as it is required in the
under-body coupling unless they are wireless systems.

SAE J1772 Tyvpe 1 SAE J1772 DC CCS Combo Connector Type 1 CHAdeMO Yazaki Connector

. {0
o .?”:‘?}r‘\ £ad
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*

IEC 62196 Type 2 EU D OCS Combo 2 Connectar Tyvpe 2 TESLA Charging Connector

Figure 2.6: Different EV Side-Coupling Connectors [92]

As an example of the side coupling systems, Lou and Di propose the use of a fixed robotic arm
to improve the charging experience [121]. In this study, battery-less mobile EV charging systems are
primarily categorized under 2 different groups, namely traditional articulated manipulators, and bionic
manipulators. Traditional articulated manipulators typically consist of a fixed and grid-connected robotic
arm that can automatically plug and unplug charging outlets to EV inlets while the second category in-
cludes fixed systems with a bionic, snake-like arm, that plugs in EVs automatically. Consequently, the
paper studies the design of a low-cost and high-flexibility robotic arm with 3 degrees of freedom to sub-
stitute human intervention during the connection process and further experiments with the developed
system [121]. The proposed design is illustrated in Figure 2.7.
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Figure 2.7: Computer Aided Drawing of the proposed robotic arm system by Lou and Di [121]

Furthermore, another product that is classified as a bionic manipulator according to Lou and Di is
under development by Tesla Motor Company [121], [197]. Differently, this design incorporates a snake-
like arm carrying the connector with higher degrees of freedom compared to the other alternatives
reported [197]. Except for this distinguishable mechanical design, the operation logic is the same as
a typical grid-connected charging robot. The fundamental advantage of this system is that since Tesla
cars are standardized, they have the same inlet type with pre-designed placement on the car. Therefore,
the robot can easily be integrated into all Tesla cars, even though this might not apply to the other cars
manufactured by different companies [197]. The image of the product taken on the prototype testing
published by Tesla Motor Company is shown below in Figure 2.8.

Figure 2.8: Bionic Charging Robot Prototype Developed by Tesla Motor Company [182]

Next, Hirz et al. propose a side-coupled battery-less system prototype with a CCS Type 2 connector,
allowing the charging power to reach up to 30 kW for AC and 350 kW for DC charging [92]. The
developed prototype by Hirz et al. is shown in Figure 2.9. In the Figure, the robot is shown with the
number 1, while 2 shows the structural frame to carry the components. 3 and 4 show the cameras,
one for detecting the vehicle and the other for precisely locating the inlet, respectively. 5 shows a box
where the controllers are stored for the robot, while 6 and 7 are LED lights to increase the image quality
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in case it is dark. 8 shows the actuator and 9 shows CCS Type 2 connector. 10 and 11 are carrier
adapters while 13 is a rubber damper. Finally, 12 shows a microcontroller.

Figure 2.9: Mobile Conductive Charging System designed by Hirz et al. [92]

According to the experiments, the prototype can successfully conduct the operation in 99% of the
test instances. Hence, it proves that today’s technology is sufficient to develop such systems with high
accuracy even though there is significant room for further development [92].

One important challenge reported by this study is that even though there are standards such as IEC
61196 and certifications such as IP (Ingress Protection) 44, directing charging systems, there are no
regulations and standards published regarding automated charging systems [92]. Thus, the absence
of standardization results in additional difficulties. For example, since there is no standard location
for the charging inlet on an EV, advanced computer vision algorithms are required to successfully and
precisely locate the charging port [92].

There are also alternative methods proposed to overcome this complexity. For example, Quilez et
al. propose the use of QR codes to facilitate the docking process and guide the autonomous robots
more easily while locating targets [152]. Another reported challenge comes from the absence of stan-
dardization of inlet lids. Some EVs are equipped with electronic lids that require the driver to press a
button, while some of them are equipped with press and release mechanisms [152]. This also limits the
integration of the system, adding additional complexities and steps to the process. Consequently, EV
manufacturers’ involvement in developing such systems can be attributed to this fact as they generally
use standardized tools to reduce manufacturing costs.

As an example of EV manufacturers’ interest in such systems, Volkswagen AG and Kuka AG signed
a partnership to develop a fixed automatic charging robot [114]. The e-smart Connect initiative offers
a convenient and user-oriented approach for charging the high-voltage batteries of electric vehicles
from the Volkswagen Group. It features a KUKA robot that autonomously links the vehicle to a charg-
ing station using a specially designed application. Drivers only need to park the electric vehicle in a
specified area, and the robot then handles the task of attaching the charging cable, providing ease and
convenience for the driver [114]. Volkswagen reports that a common concern often voiced regarding
e-mobility is the potential difficulty in locating a charging station during travel, or encountering stations
that are incompatible or unsuitable in terms of power infrastructure and connector type [90]. Therefore,
one of the primary objectives of this project is to address this inconvenience acting as a significant
barrier. It is further reported that the vehicle’s charging port needs to be within a 20 x 20 centimetre
target zone [197]. Then, a camera mounted on the robot pinpoints the precise location of the charg-
ing socket, determining its position with millimetre accuracy. Subsequently, the robot’s manipulator
connects the DC Link to the vehicle’s charging socket to establish the coupling. When the battery
is completely charged, the robot autonomously disconnects the DC connector [197]. The developed
system is shown in Figure 2.10.
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Figure 2.10: E-smart Connect Charging Robot Developed by Volkswagen AG and Kuka AG. [90]

Another remarkable example of these systems is the Automatic Charging Robot (ACR) designed
by Robotics Lab incorporated in Hyundai Motor Group in 2022 [97]. This system is equipped with 2
different computer vision systems powered by artificial intelligence. The first system detects the incom-
ing vehicle and communicates with the charging station. Meanwhile, the second system is responsible
for detecting the inlet and perfectly aligning the connector for successful plugging. Once the connector
carried by the robotic arm is connected to the EV, the charging starts and the connection equipment
is unplugged when the charging is finished. During the charging process, the first system continuously
monitors the vehicle and surroundings to check if there is any anomaly in the environment to stop the
charging in case of any. Furthermore, the drivers are provided with real-time information on the charg-
ing status via a mobile application such that important data such as the instantaneous state of charge
(SoC) of the EV is streamed live. The system is fully waterproof and dustproof with IP 65 certification,
enabling seamless operation in different outdoor and weather conditions [98]. It is further stated that
the system is capable of working with any type of charger, providing the drivers with flexibility and ad-
equate integration. At this point, the company accounts for a gravitational compensation methodology
as different chargers can have significantly different weights causing the material to flex due to its elas-
ticity. Furthermore, Hyundai Robotics Lab announces that even though the system can tolerate bad
parking up to some margin, the system has a charging port locating error below 10 mm. The robot can
operate in various temperature conditions between -15°C and 60°C. The maximum power that can be
fed into EVs is announced around 400 kW [99]. The product is shown in Figure 2.11.

Figure 2.11: ACR developed by Hyundai Robotics Lab. [98]

2.2.2. Large Scale Battery Integrated Systems
Large Scale Battery Integrated Systems emerge as a remarkable solution to act as an emergency
charging service or serve drivers in remote locations. Often, battery swapping systems which are
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discussed in Section 2.2.3, are referred to as a solution to operate at the requested site. Compared to
these systems, a battery-integrated system could be an adequate choice for large and heavy batteries
that could cause difficulties during swapping operation [25]. Especially, for electric vans or trucks used
in the logistics sector, it is not very convenient to swap these large and heavy batteries implemented
in logistics EVs [25]. This operation could even become more difficult to conduct in remote locations.
Nevertheless, these systems can be separated into 2 different categories regarding battery integration.
The first system mainly describes the service vehicles in which batteries are directly embedded, while
the second one depicts articulated vehicles in which the battery in a trailer is towed by another vehicle
as shown in Figure 2.12. This reserve capacity can be used to store energy to charge the vehicles in
the requested location. It is further reported that using battery-integrated mobile charging services can
reduce energy costs by up to 42% [25].

(a) Battery embedded (b) Battery on trailer

Figure 2.12: Categories of Battery Integrated Vehicles [25]

Furthermore, the size of these systems can be as large as a trailer [162]. These systems set an
example of large-scale charging alternatives which can decouple charging demand from the grid. As
the packaging area allocated for the equipment is relatively larger, it is much easier to implement large-
capacity batteries and high-power onboard chargers on these types of systems. For example, Tesla
achieved to implement a 3 MWh battery storage system with 125 kW chargers on such a large scale
battery integrated system to serve EVs in remote locations [4], [116]. It is also important to note that
the implemented batteries can serve multiple EVs at the same time. Meanwhile, the mobility of these
systems is rather limited and relatively costly compared to the other types due to their large size and
heavy weight. Especially, due to the size requirements, it is challenging to navigate and deploy these
units in an urban setting because of the narrow streets and limited manoeuvrability area. In addition,
their application is restrained as the service area must have adequate space to facilitate the deployment
of these units and accommodate the connected EVs. Given the operational challenges, including the
need for a large area, these solutions are not ideal for urban settings but are more suitable for remote
locations or emergency services. A sample schematic of such systems is illustrated in Figure 2.13,
[162], [151].
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Figure 2.13: Schematic of Battery Integrated Charging Trailer [151][162]

2.2.3. Battery Swapping Systems

Another alternative to regular charging poles is the battery-swapping system. These systems include
the replacement of the depleted batteries with charged ones, either at a designated station or at the
requested location. An alternative solution is studied by Shukla et al., investigating the feasibility of
swappable battery stations [168]. In this study, battery swapping stations are proposed as a promising
solution to keep the recharging duration low, offering drivers the opportunity to replace their batteries
with a fully charged one in a short amount of time, comparable to refuelling times. Furthermore, the
study primarily focuses on optimizing the number of service stations affecting the vehicle interception
rates in a case study focusing on Alexandria, USA.

In addition, Catay and Sadati take this battery-swapping concept to the next step and study battery-
swapping vans in the form of Electric Vehicle Routing Problem with Time Windows and Mobile Charging
Stations [25]. In this study, the use of mobile charging stations, swapping or charging batteries, are
proposed as a solution to the problems brought up by the utilization of EVs in the logistics sector such
as long waiting times, and lack of adequate charging infrastructure and range. However, the focus
of the study is rather larger areas shaped by the routes where the logistics operations take place. At
this point, mobile battery swapping stations are proposed to increase the convenience of the battery
swapping operation by taking the service to the point of request [25].

Regarding these systems, public acceptance and integration challenges emerge as a key issue.
In this case, because battery performance and condition depend on numerous parameters, including
driving behaviour, it becomes challenging to ensure batteries provided to drivers have uniform State
of Health (SoH) conditions. This raises questions regarding the public acceptance of such solutions.
Furthermore, the varying physical properties of batteries, such as dimensions, capacity, and ratings,
across EV models make it challenging to develop a scalable business that offers easily integratable
solutions.

2.2.4. Robot-like Systems with Batteries

Mobile robot-like battery-integrated charging systems generally take autonomous robots into account,
which are capable of reaching designated locations and charging EVs without any human intervention
as well as charging themselves from the grid. These systems mainly fall under 2 different categories.
First, the robot is equipped with a built-in battery which can only charge and discharge itself to fulfil the
demand. The second one takes one more degree of freedom into account and allows the robots to
swap their batteries, increasing the overall flexibility of the system.
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As an example of robots with battery swapping, Behl et al. study the design and development
of a robot-like charging system with objectives of EV plug recognition, autonomous navigation, and
implementing switchable batteries [16]. EV plug recognition aspects expect the robot to be able to
identify the charging inlet location of different EV models and successfully plug the charger in by using
computer vision algorithms fed by live images. In the navigation perspective, the robot is expected
to continuously monitor its location in the parking place, identify the separate parking lots and hence
its service locations, and distinguish the obstacles to avoid safety concerns that can arise in a parking
place full of cars, passengers, and walls. Lastly, using a switchable battery approach aims to reduce the
service disruptions due to the discharged batteries and enable more continuous and smooth operation
because switching a battery costs significantly less time than recharging [16]. The concept studied is
described in Figure 2.14.

Figure 2.14: Mobile Conductive Charging System with Switchable Battery System Schematic Studied by Behl et al. [16]

Furthermore, the study experiments the use of such a system on a prototype built by using Turtle-
Bot 3 WafflePi, a robotic 4-wheeled platform allowing the development of such delivery projects [16].
Furthermore, the prototype has a LIiDAR sensor to chart its environment and identify proximate objects
in the designated area. On the other hand, to maximize the space that can effectively be used in the
robot to fit the power conversion equipment and battery mainly, and also to reduce weight, the duty
of replacing batteries is fulfilled by the charging hub itself. Hence, all the moving parts responsible for
taking the battery away from the robot, carrying it up to the vertical charging space, and establishing
the grid connection are implemented in the hub’s structure. Even though this design layout results in
a more compound mechanical design, it is also concluded that the framework increases the scalability
and flexibility while emphasizing the potential for an overall cost reduction [16].

An example of a robotic system with built-in batteries is studied by Kong to highlight an alternative
charging system that can address the issues associated with today’s charging process [111]. In the
proposed system, units with 225 kWh battery capacity are simulated to fulfil the charging tasks in a
parking lot. The studied system can charge the EVs with 135 kW power, while they can be charged from
the grid with 348 kW. The paper estimates the system costs and presents a comparison to the regular
charging poles to highlight the design’s advantages in terms of initial investment. It further claims that
the system can demonstrate a more cost-effective solution if it can operate for 5 years compared to
the charging poles. On the other hand, the paper’s main focus is to analyse the system performance
under stochastic charging demand, while also using an empirical battery degradation model to estimate
the operational life of the batteries, varying according to different system parameters determining how
much they are used during the day [111].

Ziggy produced by EV Safe Charge company sets another example of robot-like systems with built-
in batteries [70]. Ziggy is an autonomous mobile charging robot equipped with 4 cameras for obstacle
detection on every side. It is equipped with 4 wheels capable of separately steering, allowing sharp
manoeuvres in a packed area such as an underground parking place. Users can order the charging
robot to the parking lot through a mobile app or the in-vehicle infotainment system, allowing them to
either reserve a charging time slot in advance or request a charging robot on-demand, without any prior
reservation. If the driver reserves a charging slot, the robot reserves a parking lot for the driver before
the arrival and waits for it. After charging, ZiGGY can return to its base to recharge from the grid, battery
storage, solar energy, or a combination of these. EV Safe Charge plans to offer ZiGGY robots under
a Charging-as-a-Service model, which includes ongoing technical support and maintenance [70]. In
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addition, the robots feature large screens for information or interactive advertising, providing additional
revenue streams for parking operators to balance the costs associated with the implementation of
such systems. Initially, the company offers Level 2 charging power and also plans to upgrade to Level
3 charging within the first year of operation [70]. The service is set to launch in selected locations like
San Francisco and Brooklyn’s Williamsburg neighbourhood, and reservations are currently open [42].
However, the robot is not equipped with an arm or any mechanism automating the plugging process.
Hence, the utilization of the robot requires human intervention to initiate charging, pointing out cable
management, safety, and convenience issues, while reducing the overall cost of the system due to
the lack of advanced and precise detection and moving mechanisms. The product is demonstrated in
Figure 2.15.

Figure 2.15: Ziggy Autonomous Charging Robot developed by EV Safe Charging Company [70]

Another autonomous conductive charging robot was introduced by NaaS Technology Inc. in March
2023 based in China [135]. This robot demonstrates advanced features like active vehicle tracking,
intelligent charging, and automated payment processing, addressing the growing need for mobile EV
charging. Unlike Ziggy, the robot employs mechanical arms to automatically connect to EV charging
ports, handling the charging seamlessly. Incorporating advanced technologies like deep learning, 5G,
V2X, and simultaneous localization and mapping, the robot is also designed to be waterproof and shock-
proof, offering functionalities such as one-click ordering, precise vehicle locating and parking, automatic
docking and undocking, and self-recharging [135]. Available in various power and battery capacities,
it integrates with major OEMs through an open API, providing EV owners with unmanned charging
services at any time. Capable of interfacing with EV systems via an API, the robot can autonomously
locate vehicles with low batteries and accurately connect to the charging ports [135]. In the future,
self-driving vehicles will be able to autonomously recharge, leveraging data interconnectivity between
the vehicle and robot, with the help of this online integration possibility [135]. However, as the primary
communication mechanism used is internet-based, this robot requires continuous internet connection
and communication with EVs which can not apply to old-generation vehicles without an adequate level
of smartness [135]. Furthermore, one should not forget the significance of cyber security measures as
this sensitive data transaction will take place online. Therefore, data security precautions should also
grow parallel to the developments in the interconnected vehicles to avoid potential vulnerabilities and
breaches. The product is illustrated in Figure 2.16.
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Figure 2.16: Autonomous Charging Robot developed by Naas Inc. [135]

Aiways, a personal mobility company based in Shanghai, has secured seven patents in Europe
and China for the development of its autonomous charging robot, CARL [8]. This innovation includes
patents for its intelligent design and charging technique. CARL is designed to address the challenges
of charging electric vehicles and it is available with 30kWh and 60kWh battery capacities [8]. The
company states that the robot can rapidly charge any EV compatible with standard charging protocols.
It can recharge an EV battery to 80% in less than 50 minutes, offering a convenient and cost-effective
charging option for both individual and business customers, as well as for infrastructure developers
and operators [8]. EV owners can easily summon CARL to their vehicles in public, home, or workplace
parking areas using a smartphone app. The robot utilizes GPS data to locate and autonomously charge
the vehicle. After charging, CARL moves on to the next customer or returns to its base station. The
product is illustrated below in Figure 2.17.

Figure 2.17: Autonomous Charging Robot developed by Aiways [8]

Parky also introduces the world’s first autonomous EV recharging robot, revolutionizing the way
electric vehicles are charged [71]. With its innovative use of image marker references, Parky’s robot
can autonomously locate the EVs for recharging. This eliminates the need for drivers to search for an
EV charger as they can simply park their car, use Near-Field Communication (NFC) to summon the
charging robot, and let it handle the rest [71]. The robot is capable of navigating through parking lots,
using image markers to find and guide itself to the car. QR codes on the connector assist in directing
the robot accurately to the vehicle as this solution is also studied by Quilez et al. [152]. For safety,
the autonomous robot is equipped with triple sensors: LiDAR, Ultrasonic, and Bumpers [71]. These
sensors enable the robot to detect and stop to avoid obstacles, ensuring a safe charging process. To
use this service, drivers just need to park their car in any spot within the parking lot, attach the nearest
connector to the charging port, and send a charge request via NFC [71]. This process is primarily
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different from the fully autonomous solutions developed or studied. In detail, there are bridges mounted
on the parking place walls and a connector attached. Driver still needs to be involved in the process
since the connector has to be plugged in and out by human effort. After the connector is plugged in,
Parky docks into the bridge to charge the EV from its battery. Hence, at least one connector and bridge
are still required for each parking lot to fully allow every car parked in the designated area to charge,
requiring a substantial amount of investment. Moreover, the technology behind this service is protected
by a Class A patent application, showcasing its innovative approach to EV charging [71]. The product
is shown in Figure 2.18.
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Figure 2.18: Parky Charging Robot developed by EVAR [71]

On April 22, 2021, in Shanghai, Envision Group, a leading green technology company, introduced
Mochi, the world’s initial mass-produced, mobile smart charging robot [53]. The most remarkable fea-
ture of this robot is that it is fully powered by renewable energy. Even though there are a lot of active
projects and research focusing on powering EVs with renewable sources, Mochi is one of the first
projects realizing this concept in practice. Mochi utilizes Envision Group’s EnOS, an intelligent operat-
ing system that oversees over 200GW of renewable energy assets globally [53]. This system ensures
Mochi exclusively uses green electricity, contributing to an eco-friendly EV charging experience. Mochi
is compatible with a wide range of mainstream EVs. It has a 70 kWh battery capacity and a 42 kW power
output, making it capable of charging an EV in just two hours for up to 600km range [53]. Mochi’s mobil-
ity allows it to locate and charge EVs in various locations, offering a convenient and time-saving service
for drivers. Mochi features accurate location-sensing technology and can swiftly halt within 0.1 seconds
from its top speed of 1 m/s if it encounters obstacles [53]. EV drivers can subscribe to the service via
a mobile application, and Mochi will autonomously develop a charging plan, locate the EV, and initiate
the charging. This system also provides real-time monitoring and a comprehensive health check of
the battery during charging [53]. Furthermore, the robot is equipped with a robotic arm handling the
connection task autonomously. The product is illustrated in the image shown in Figure 2.19.

@ Envision

Figure 2.19: Mochi Charging Robot Developed by Envision Group [53]

Finally, Volkswagen Group is exploring an innovative approach: autonomous charging robots that
refill themselves at a central location and then deliver power to individual vehicles in an autonomous
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manner, using wireless communication [196]. The charging robot navigates itself to the vehicle and
communicates with the EV to request the car to open its charging socket. It then aligns its plug to
connect with the vehicle, carrying out the entire charging process without human intervention. This
robot is capable of charging several vehicles sequentially [196]. It transports a trailer, acting as a
mobile energy storage unit, to a vehicle, connects it, and then proceeds to another vehicle while the
first one is charging. In this regard, the robot is equipped with switchable batteries. Using multiple
trailers, the robot can service various cars and later return the trailers to the central charging station.
A key obstacle to the widespread adoption of this charging technology is the advancement of car-
to-X communication, which involves vehicles using networks like 5G to interact with other vehicles
and devices [196]. While some new EV models come equipped with but not yet activated Car-to-X
capabilities, older models may lack this feature as this is also a valid concern for the robot developed
by Naas Technology Inc.[135]. Again, it is vital to address the potential cybersecurity concerns while
building a network with mobile nodes, such as autonomous robots and EVs. Moreover, Volkswagen
reports that its mobile charging robot is currently in the prototype phase and is being further developed
[206]. The product is demonstrated in the image shown in Figure 2.20.

Figure 2.20: Autonomous Charging Robot and Battery under development by Volkswagen [206]

2.3. System Optimization Studies on Mobile Charging Techniques
Since one of the primary objectives of this thesis work is to optimize the number of components in the
system including robot and battery units, similar studies in the literature are reviewed.

The design and planning of mobile charging systems for electric vehicles are crucial in transition-
ing from fossil fuels to electricity. Given that existing road and grid infrastructures were not designed
with EVs in mind, creating accessible and reliable charging infrastructure is vital. This shift requires a
significant investment in the EV charging sector. Addressing the challenges and costs of establishing
a charging infrastructure is fundamental to facilitating EV adoption. Furthermore, since this investment
might require a notable amount of public and private capital, the system must be optimized to necessar-
ily address today’s EV drivers’ necessities and the challenges encountered to promote the widespread
use of e-mobility, encouraging potential customers as well as not putting the investors at stake. Hence,
the system should maximize the service quality, fulfil the demand and also realize a profitable and
feasible solution in the investor ground.

The primary capital costs in mobile charging station development include the battery and carrier, with
the high cost of the Battery Energy Storage System (BESS) being a particular challenge. Subsequently,
the power profile incorporated into the system should also be investigated critically, affecting power
converter topology and associated costs from the investor perspective as well as the charging duration
from the customer’s point of view. The high cost of this technology plays an important role, causing the
overall cost and the required investment of this kind of system to increase substantially. For example,
in 2020, a start-up called FreeWire Technologies, developing mobile charging systems with a built-
in battery, raised $25M investment, pointing out how high spending can be required for large-scale
applications [171]. Extensive research has introduced metrics to determine the optimal battery pack
capacity and number of units in mobile charging systems. Primarily, these optimization studies revolve
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around finding the number of stations with an assumed capacity, optimizing the service routes in a
given scenario, and optimizing the energy transfer by taking the benefits on the grid into account.

Tang et al. introduce the concept of Online to Offline service and further evaluate the mobile charging
services according to this business model [181]. As mobile internet becomes more prevalent, it is
transforming how various industries operate. A notable example of this is the rise of the online-to-offline
(020) business model [181]. In this new paradigm, customers no longer need to visit physical stores to
buy products. Instead, they can simply order what they want online, and the items will be delivered to
their location within hours, or sometimes even minutes [181]. Applying this concept to electric vehicle
recharging, it suggests that charging services could be brought directly to the EV user on demand.
This approach would allow drivers to recharge their vehicles wherever they are parked, eliminating
the need to search for a charging station and wait in line, thereby streamlining the recharging process
[181]. However, in this study, mobile charging systems are not only considered battery-carrying or grid-
connected robots but rather generalized over any type of remote charging service [181]. To this extent,
this service can also be offered as an emergency road service, rescuing cars with a dead battery at
remote locations.

Consequently, two primary challenges faced in the deployment and planning of mobile charging
services are referred to in this study [181]. First, the system must be ready to respond to unpredictable
and dynamically changing demands. Deployed finite mobile charging resources are needed to effec-
tively be managed to achieve certain objectives, such as lowering operational costs, enhancing service
quality, or a blend of both. Second, considering the nature of demand, operators must strategically plan
the infrastructure of the mobile charging system. This includes determining the quantity and locations
of depots, the size of the mobile charger fleet, and the battery capacity, all aimed at optimizing so-
cial welfare. To address these two points, the paper presents a two-layer simulation-based model for
strategic planning and online operation of the mobile charging system. The first layer, the operational
level, focuses on optimizing the scheduling of the mobile charger fleet to enhance the efficiency of the
service. Secondly, at the planning level, the paper aims to refine system design by determining the
optimal number and locations of depots, fleet size, and battery size, taking into account the operational
performance. To realize these objectives, the paper models the mobile charging service as a dynamic
vehicle routing problem and proposes an online operation policy for efficient scheduling of the fleet to
maximize operational utility.

Another optimization problem focusing on mobile charging systems is studied by Zhang et al. [210].
In this study, mobile battery piles transported by vans or trucks are analyzed and compared to the
regular charging poles from the user’s perspective in terms of practicality and service cost paid and
levelized cost of electricity (LCOE) [189]. This practicality is primarily associated with the charging du-
ration dependent on the hub location, delivery speed, charging power, and energy demand. Meanwhile,
the costs associated with the users are primarily defined as a function of time and money they spend
on charging. The time is monetized by taking the average salary earned by the residents living in the
study area of Xiamen, China. Finally, LCOE is calculated with and without including land cost for fixed
charging stations with different utilization rates and mobile charging stations.

In addition, Chen et al. introduce a novel approach for improving the EV charging experience us-
ing mobile charging stations within heterogeneous networks composed of macro cells and small cells
[31]. It proposes an optimal model for scheduling EV charging tasks and utilizes the Chaotic Evolution
Particle Swarm Optimization (CEPSO) algorithm to optimize the placement of mobile charging stations,
taking user demand and station capacity into account. In another study, the authors explore the integra-
tion of EVs with the Internet of Things (loT), emphasizing the rapid adoption of EVs in urban settings,
especially when combined with renewable energy sources [30]. The limitations of regular charging
poles, notably the challenges posed by the unpredictable arrival times of EV users, and the necessity
for refined power management strategies are pointed out. Then, the focus shifts to mobile charging sta-
tions, which are increasingly recognized for their superior charging services such as including effective
communication between stations and EV users for optimal power supply decisions, reduced concerns
about battery charge states due to their flexibility, and shorter waiting times for charging enabled by
real-time data acquisition [30].

However, the paper also identifies significant challenges in power distribution for mobile chargers,
such as limited power supply and the diverse power needs of EV users [30]. These challenges are
amplified by the dynamic nature of renewable energy and the randomness of EV user arrivals. To tackle
these issues, the paper proposes a stochastic optimization method for power supply in loT contexts.
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This method accounts for the fluctuating nature of renewable power and the behaviours of EV users. It
transforms the economic challenge into a stochastic optimization problem minimising the operational
costs, solvable through subproblems based on Lyapunov theory. The effectiveness of the proposed
algorithm is analyzed and demonstrated, showing its capability to lower investment costs [30].

Proposing an autonomous robot-like charging unit with batteries, Kong simulates the use of a mobile
system in a parking lot with different stochastic charging demands dependent on arrival and departure
times [111]. In this study, the author uses the Markov Chain model to create this stochasticity and anal-
yses the system’s performance with a 225 kWh fixed-capacity battery. The performance metrics used
in the study are charging delay and blocking probability to make sure the system can fulfil the demand
under the given circumstances. It further optimizes the system’s service by taking throughput, number
of parking places and EV penetration rate into account. The paper further employs a semi-empirical
battery degradation model to investigate the effect of these various parameters on the operational life
and calculates the probability densities of different service durations. The obtained average service
lives with the highest probabilities are 5.02, 2.64 and 2.07 years when a 50% capacity retention is
marked as an end-of-life point, varying according to different system parameters [111].

Cui et al. aim to determine the optimal mix of charging station sizes and charger numbers, consid-
ering a fixed budget in a study [38]. It divides BEV charging time into three components: queuing, fixed
preparation time, and charging time dependent on the amount of energy transferred and power. The
study finds that more chargers can reduce queue times significantly.

Furthermore, the paper investigates the effect of the location of charging stations of various sizes
and types, taking into account BEV users’ routing choices [38]. The goal is to aid government planners
in situating diverse BEV charging stations within a budget to minimize public and social costs. This
includes considering travel, charging, and queuing times for network users. The proposed optimization
model aims to cater to different BEV charging needs and enhance service levels, while also consider-
ing the economic aspect of public facility investment and aiding in government decision-making. The
study’s findings are relevant for future studies, such as driving behaviour analysis of BEVs, and traffic
planning and management. Finally, the reconstruction-linearization technique is applied to transform
the resulting non-convex and computationally demanding problem into a Mixed Integer Linear Program
[38].

Another contribution in the literature is studied by Saboori et al., aiming to realize an EV charging
network based on regular charging poles, supported by mobile charging stations [160]. However, the
mobile charging system introduced in this paper consists of battery units with a 200 kW power rating
and 800 kWh capacity carried by trucks. The paper further assumes that each EV connected demands
25 kWh of energy from the grid per hour. In light of these assumptions and introductions, the study
aims to develop and optimize an energy management model for this introduced combined EV charg-
ing network, which also includes charging poles. The focus is on enhancing the overall efficiency of
the EV charging process within a distribution network, considering both economic and operational as-
pects. By introducing a mobile charging solution, the paper seeks to alleviate peak load pressures on
the fixed stations and improve the energy distribution within the network as well as reduce the charg-
ing queues, increasing the convenience of the overall process from the drivers’ point of view. The
core of the research revolves around an optimization problem that addresses the efficient allocation
of mobile charging stations. This problem involves determining the most effective spatial and tempo-
ral deployment of the mobile units, considering their charging and discharging cycles, and balancing
their operational costs. Key elements of this problem include scheduling the location and timing of
the mobile charger’'s movements, managing its battery charge levels, ensuring it meets the varying EV
charging demand, and minimizing the overall operation costs while adhering to network constraints.
The optimization methodology is applied to processing various data points, such as electricity prices,
EV charging demand patterns, mobile battery capacity, and the operational costs associated with charg-
ing and transportation. The study concludes that the strategic deployment of mobile charging systems
significantly enhances the efficiency of the EV charging network. It achieves a notable reduction in
the total daily operational costs by 3.46% and drastically decreases the EV charging queue at fixed
stations by approximately 94% [160]. Additionally, the energy demand during peak periods is signifi-
cantly reduced, leading to improved voltage stability and reduced network strain [160]. This not only
reduces the operational costs but also contributes positively to the overall performance and reliability
of the electric distribution network.

In parallel to Saboori et al., Chauhan and Gupta explore a hybrid charging grid model that integrates
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mobile charging trucks [29], [160]. The central challenge addressed in their research is the strategic
distribution and timing of mobile deployments. Given the charging requests from EVs at various loca-
tions and times, the study seeks to optimally position mobile charging stations, which are essentially
vehicles equipped with large battery storage. Such mobile units are designed to enhance the capabil-
ities of fixed charging stations, especially during times of high demand, thereby easing wait times for
EV users and lessening the burden on the electrical grid. Additionally, the study underscores the com-
plexity of this problem. To address this complex scheduling problem, the authors propose two heuristic
strategies, namely the slotMCS-Allocation Algorithm and the reduced-slotMCS-Allocation Algorithm.
The first approach constructs a charge-conflict graph representing potential charging slots for EVs. It
then employs graph colouring techniques to identify independent sets of charging tasks that can be
handled by individual mobile units. As an extension of the first, the second algorithm initially reduces
the size of the problem by assigning a single potential charging pole to each EV. This streamlines the
charge-conflict graph, making the scheduling task more manageable. Simulation results, based on the
road map and charging station data of Los Angeles, reveal that both algorithms effectively manage
the scheduling of mobile units. The analysis reveals that while the slotMCS-Allocation Method is more
effective in charging a greater number of EVs, it does so at the expense of increased computational
demands. In contrast, the reduced-slotMCS-Allocation Algorithm offers faster computation but may
charge fewer EVs due to its initial reduction phase. The research concludes with an affirmation of the
significant role these algorithms can play in boosting the efficiency of mobile charging station operations
within the charging grids, thus advancing the objective of sustainable urban transit [29].

Raboaca et al. focus on optimizing the operation and placement of temporary mobile charging
stations for electric vehicles in urban areas, specifically examining the Brooklyn neighbourhood in New
York City [153]. The primary objective is to enhance the efficiency and accessibility of EV charging
infrastructure by determining optimal locations for these mobile stations without classifying how they
are transported. This is achieved through a comprehensive approach involving simulation, optimization,
and comparative analysis.

The article investigates two distinct operational modes for mobile charging stations: the traditional
moving operational mode and the proposed temporary location strategy. The moving operational mode
involves the charging station relocating itself according to the EV’s request, while the temporary location
strategy positions charging stations at strategic locations for a fixed duration. The study’s primary aim
is to ascertain which mode is more effective in terms of service quality and operational efficiency [153].

A variety of methodologies are employed in this research. The authors conduct simulations to
mimic the behaviour of 200 taxis in Brooklyn, capturing the dynamics of EV charging demand. They
also develop nonlinear and mixed-linear optimization models to solve the location-allocation problem,
considering unique probability-queuing constraints. These constraints include factors such as the num-
ber of EVs that can be queued at a charging station and the capacity limitations of these stations. In
addition, location constraints are implemented aiming to position the charging stations in areas with
limited access to fixed charging infrastructure, thereby filling a crucial gap in the charging network. The
objective function in the optimization model is designed to minimize factors such as the time taken for
an EV to receive service after making a request, operational costs considering the mobilization associ-
ated with relocating the charging stations and the electricity costs of charging EVs. It further employs a
penalty term for the percentage of charging requests that cannot be satisfied within a given time frame
stated as miss ratio [153].

The results indicate several key findings. Firstly, the temporary location strategy outperforms the
moving operational mode in terms of response time and the ability to meet changing demands. This
suggests that stationary mobile charging stations, if strategically placed, can offer more efficient service.
Secondly, the optimal locations for these charging stations are typically found in areas with limited
fixed charging infrastructure, highlighting their role in filling infrastructure gaps. Thirdly, the study notes
that the moving operational mode incurs higher operational costs due to increased travel distances,
underscoring the economic benefits of the temporary location strategy [153].

Moreover, in a novel approach to EV battery charging, Huang et al. investigate mobile charger sys-
tems, specifically focusing on two configurations such as Mobile Plug-in Chargers and Mobile Swapping
Stations [95]. The study introduces a queuing-based analytical framework, central to the Next Job Near-
est (NJN) service strategy. This strategy prioritizes serving the nearest EV after completing the current
charging task, based on a Poisson distribution of charging requests and a uniform spatial spread across
a designated service area [95]. The research includes both an idealized analytical model and a prac-
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tical simulation model. The analytical model examines a hypothetical system using unit square areas,
while the simulation, developed in MATLAB, realistically mimics EV charging requests in a 100 km? ur-
ban setting. Key assumptions in the simulation include a steady mobile charging speed and a uniform
charging duration. The study is anchored in a case study of Singapore, where EV usage patterns are
modelled to reflect daily activities such as work commutes and lunchtime errands. Local factors like
traffic flow and population density are further taken into account, providing a realistic framework for
estimating travel distances and corresponding energy needs [95].

The objective function in the optimization task is multi-faceted. It involves terms that represent
operational metrics such as the miss ratio and response time. Additionally, economic factors like bat-
tery cost and charge fulfilment rates are also incorporated into the objective function to determine the
breakeven cost per charge request. The optimization aims to balance these elements to achieve an
optimal operational model. Essentially, the study seeks to identify an operation point where the system
can serve efficiently without incurring excessive costs. Hence, the goal can be summarized as, finding
the optimal battery capacity and charging rate for the mobile plug-in configuration, or determining the
ideal number of battery swaps and swap times for the mobile swapping configuration [95].

Liu et al. introduce mobile charging vehicles as a flexible and dynamic solution to augment existing
charging infrastructures [120]. These vehicles resemble taxis in terms of their mobility and expandability
[120]. The concept revolves around using these charging vehicles to balance the charging demand,
especially during peak hours, and to respond to unexpected charging needs [120].

The core of this research lies in developing a novel, data-driven methodology for scheduling mobile
charging vehicles. Utilizing an extensive dataset from Beijing’s charging piles and a dedicated mobile
app, the study innovates in estimating unmet charging demands. This estimation is fine-tuned with
real-world charging records, incorporating temporal patterns and user preferences. The urban area
within Beijing’s Sixth Ring Road is divided into grids, mapping out the charging demand distribution
and facilitating the strategic deployment of these vehicles [120].

Three distinct scheduling strategies are put to the test: a greedy algorithm based solely on demand,
a modified version of this algorithm that also considers the scheduling distance, and a comprehen-
sive global optimization algorithm that integrates both demand and distance factors. The evaluation
of these strategies reveals that while the greedy algorithm based on demand shows promise, incor-
porating scheduling distance results in a more balanced and effective approach. However, the global
optimization strategy, despite its thoroughness, is computationally demanding and less suited for real-
time applications [120].

The study reveals that mobile charging vehicles, with their superior mobility and adaptability, can
effectively alleviate the load on fixed charging stations and reduce waiting times for EV users. Further-
more, the frequent deployment locations of these vehicles provide valuable insights for future charging
station construction, suggesting potential sites and helping to estimate the necessary scale of these
stations [120].

2.4. Benefits of Mobile Charging Systems

Apart from the introduced benefits of each discussed type of mobile system in Section 2.2, their appli-
cations have various effects from different perspectives. In this section, first, the challenges associated
with today’s charging methodology are emphasized to answer Research Sub-Question 1. Then, the
potential benefits of mobile applications are evaluated from different points of view, to answer Research
Sub-Question 1 fully.

Mobile charging systems aim to address various setbacks observed in daily charging experiences
with regular charging poles, thereby enhancing the overall EV driving experience. Moreover, the bene-
fits of such systems can be analysed from three different stakeholders’ perspectives. They can serve
to alleviate the adverse impacts regular charging poles exert on the power grid from the public perspec-
tive and attract investor interest in the system, also yielding additional advantageous outcomes on the
EV owners’ end [4].

2.4.1. EV Owners' Perspective

As mentioned, range anxiety, charging availability, and charging time stand as pivotal factors influencing
the EV driving experience according to the users [3], [4]. Mobile charging systems can emerge as a
remarkable choice to address these concerns raised on the drivers’ end.
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The restricted range of EVs presents a considerable barrier to their widespread adoption. Especially
for drivers undertaking long-distance journeys, this challenge is often referred to as range anxiety. One
potential solution involves strengthening the charging network to improve the availability of charging
stations for EVs [4]. However, this strategy requires significant financial investment as further elabo-
rated in Section 4.4.1. In contrast, mobile charging systems offer a promising solution to mitigate EV
owners’ range anxiety by providing supplementary charging alternatives that can be easily deployed,
thereby diminishing the dependence on extensive charging pole infrastructures [4].

The availability of charging poses a significant challenge in the widespread adoption of EVs [180].
Fixed charging systems often encounter a limited number of charging outlets and may face difficulties
in accommodating sudden increases in demand for charging [29]. Additionally, public charging stations,
in accessible areas, encounter issues such as prolonged station occupancy beyond the necessary EV
charging time [191]. Furthermore, the occupation of charging poles by internal combustion vehicles
poses an additional concern, blocking EV owners from access to charging facilities for extended periods
[156]. In numerous urban settings where household garages are scarce, outdoor charging becomes
imperative [158]. At this point, mobile charging services such as robot-like systems can provide a viable
solution by delivering charging services at convenient times and locations for EV users, featuring fewer
site limitations and the flexibility to adapt to changing demand [120], [4].

The charging duration involves several elements, such as the time taken to reach charging stations,
waiting periods in queues, and the actual charging time [131]. While home chargers address time con-
straints for many EV owners, the expansion of public charging remains essential to accommodate the
growing EV market [169]. Generally, EV charging is slower compared to refuelling internal combus-
tion vehicles, although fast charging stands out as an exception. However, the proportion of public
charging stations equipped with fast charging technology remains relatively low [4]. Mobile charging
systems present a solution by offering quicker charging options, especially when they support DC charg-
ing, and potentially saving time through convenient charging locations and eliminating queues, thereby
streamlining the overall charging process for EV owners [131], [38], [4]. Especially, when the offered
service is provided with robot-like units, the convenience could be enhanced due to the possibility of
user-integrated service determining the desired SoC level within the connection time. Finally, offer-
ing a potential solution to cable handling, these systems can also mitigate the safety and ergonomic
concerns raised as a consequence of high-power charging applications [92]. As the cables become
heavier and stiffer to support higher power flow to reduce the charging duration, a significant barrier
against the faster charging methodologies can be eliminated since the connection will no longer be
established by human intervention as demonstrated in battery-less and robot-like types [92].

2.4.2. Grid Perspective

As the number of EVs on the roads continues to grow, the demand for charging will naturally increase.
However, this upsurge in charging needs often coincides with peak periods in the power network, result-
ing in various technical challenges in grid management and more costly charging [160], [4]. The impact
on the power grid varies significantly depending on the charging speed. For instance, a 10-minute fast
charge for an EV can consume as much power as 140 family homes [40], [4]. Furthermore, widespread
deployment of Level 1 or Level 2 charging stations in residential areas significantly boosts electricity
consumption and introduces detrimental peaks to the existing distribution grid [179], [4].

In terms of slow charging, the charging stations which are commonly found in workplace settings,
lead to peak power demand coinciding with employees’ arrival and return after lunch [27], [4]. As a
result, areas with high concentrations of EVs encounter a notable surge in charging demands at partic-
ular times of the day, placing pressure on the power grid. At this point, charging poles exhibit limited
charging flexibility. Conversely, mobile charging systems equipped with battery units can store and
preserve energy during off-peak periods, providing charging services that align with real-time energy
demand [131], [198], [194], [4].

Even though it is a remarkable solution to reduce charging times, fast charging, characterized by
its high demand, has the potential to cause significant voltage drops in the network, jeopardizing sys-
tem stability [1], [4]. Proper scheduling of EV charging processes becomes imperative to mitigate the
risk of grid failure when multiple EVs are charged simultaneously [170], [112], [4]. With the increasing
penetration of EVs and the growing number of DC fast charging stations connecting to the power grid,
substantial investments are necessary to adapt existing infrastructure. For instance, transformers in
the US are typically designed to serve 3—5 households. However, if every home has two EVs, these
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transformers must suddenly meet the electricity needs equivalent to 9—15 households, leading to rapid
failures [40], [125], [4]- Consequently, a large number of charging poles may strain the current power
grid beyond capacity [120]. In contrast, mobile charging systems can operate independently of nearby
grid infrastructure for EV charging if they are equipped with storage systems, while still having the po-
tential to offer comparable charging powers [120]. The ability to store electricity during off-peak periods
can alleviate network stress, potentially minimizing the need for extensive infrastructure upgrades due
to the decoupling of charging demand from the electricity network [160], [194], [159], [4]. Furthermore,
mobile charging with batteries can improve power quality by reducing voltage drops and decrease pollu-
tion levels by offering a better integration possibility of renewable generation [160], [4]. These systems
can act as a buffer to store the abundant renewable energy to be used in case of a deficit [41].

2.4.3. Investors' Perspective
Mobile charging systems hold the potential to improve the utilization rate of charging services, thus
appearing as a remarkable investment option for investors to establish charging stations [4].

One of the major challenges encountered on the investor ground can be associated with the utiliza-
tion rate of the charging stations as mentioned in Section 1. This higher utilization rate thanks to the
optimal placement and sizing of the mobile charging systems could address this significant setback and
therefore attract more capital flow toward the charging services. As a consequence of the higher rates,
the system has the potential to sustain its profitability without relying on subsidies. This advantage can
not only be categorized as a benefit solely for the investors but also it is a significant metric for the
public allowing taxpayer money to be used for other welfare sources.

The dilemma of investing in charging infrastructure versus the widespread adoption of EVs presents
a significant challenge. Determining whether to develop an extensive network of charging facilities to
drive electric vehicle adoption or wait for increased EV adoption before expanding infrastructure is a
complex decision [198], [4]. Given the slower rate of EV adoption compared to internal combustion
engine vehicles, installing fast charging stations everywhere may not be economically viable [166], [4].
Especially, considering the investment cost and public space requirement of such stations, as argued
in detail in Section 4.4.1, this investment decision becomes even more critical. In this context, mobile
charging systems emerge as a pivotal solution due to their easier and more flexible deployment. By
leveraging mobile systems, investors can potentially limit the amount of money they need to invest in
the system, obtaining considerable returns within the product life of the system, as well. Especially,
compared to DC charging systems, which are an important part of the expanding infrastructure, mobile
charging systems can appear as a competitive solution to obtain higher returns on investment [37],
[111]. Furthermore, the mobile systems allow the investors to redeploy the purchased system to another
location more easily. The financial analysis of the system and comparison to the charging poles are
discussed in detail in Section 4.4.2.

2.5. Configuration Evaluation

In accordance with the mentioned advantages and disadvantages of different mobile charging system
configurations, it is essential to reflect on these factors to develop a system which is fit for purpose.
As the main setting of this thesis is the urban space where private, public and workspace charging
demands are accommodated, the suitability of different mobile charging systems has to be analysed.
Among 4 different types of systems introduced in Section 2.2, the necessity of implementing a battery
energy storage system becomes evident in order to effectively reduce the peak charging demand on
the grid, by decoupling these operations from the electricity network. This way can also facilitate a bet-
ter integration of renewable generation by offering the potential to store excess energy. At this point,
large-scale battery-integrated systems might not be an adequate choice given the setting requirements.
These types of systems are not very scalable and integratable, due to the limitations in the service area.
Furthermore, as the smaller-scale systems falling under this category such as vans are mostly used for
emergency charging services, they are not found as an adequate configuration for serving in relatively
small neighbourhoods or parking places. Due to the inconvenience in mobile applications associated
with the battery size, and weight together with the related scalability and acceptance issues, battery
swapping systems may not also be an adequate choice. Lastly, robot-like systems with integrated bat-
teries combine the introduced advantages and pave the way for an easily deployable and convenient
charging service. As these systems usually employ relatively smaller batteries than large-scale config-
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urations, they can potentially perform better in the urban setting. It is also important to note that they
require less space and could exhibit more efficient transportation by employing autonomous robots. In
addition, it is still possible to offer fast charging with these systems to address some of the mentioned
challenges drivers face today by charging the vehicles up to a desired level in a given time. Last but
not least, this configuration allows energy arbitrage due to the easy establishment of grid connection
regarding the service distances and flexibility, which is more difficult to achieve with swapping stations
and battery vans. Consequently, robot-like mobile charging systems are concluded as an advanta-
geous configuration to hinder the issues from the driver’s perspective, while not sacrificing the other
benefits that the use of mobile charging systems can bring along, in the urban setting. In this way,
Research Sub-Question 2 can be answered generally and the rest of the study and calculations focus
on robot-like mobile charging systems with batteries considering different layouts.



Sampling Charging Operations

This section introduces the random sampling algorithm developed to simulate the charging tasks that
will be fulfilled by the mobile charging system under consideration to answer Research Sub-Question
3.

A random sampling algorithm is developed to create synthetic and realistic charging profiles taking
place at a designated parking area. The main objective of this algorithm is to represent charging opera-
tions in matrix format, expressing the charging power drawn from a regular charging station dependent
on the time of the day. Operation logic further relies on sampling the EV models getting connected
to the grid with their battery capacities, and the maximum charging power they support to correct the
output data, accordingly.

One of the most important factors the developed algorithm takes into account is the type of charging
profile. It can easily be predicted that the connection time, the power drawn from the grid, and the timing
of the charging process primarily depend on the use of charging space. At this point, charging stations
can be sorted into 3 groups, such as private, public, and workspace charging stations.

Private charging stations typically refer to those purchased by individuals or private investors, al-
lowing car owners to regularly charge their EVs at residential locations. This could be done via a direct
connection to the residential infrastructure or a wall box.

Secondly, public charging stations refer to the widely available charging poles located in public
spaces, accessible to all car owners. Those are generally offered in designated parking lots on the
streets or contained parking places and drivers are free to utilize the charging station at any available
time at the expense of paying the surcharges.

Finally, workspace charging stations consist of the charging poles that are located in the parking
places daily commuters use to travel to the offices. Even though its load profile is similar to public
charging, workspace use mainly differs by the charging duration and time schedule influenced by the
work hours. At this point, it is important to keep in mind business hours generally start at 8:30 in
the morning and last at 17:30. These starting and ending times mainly impact the connection times
observed at workspace charging stations since the main use of such is to benefit from the period where
the car is stationary by charging the car to be ready to travel by the end of working hours.

3.1. Public and Workspace Demand Estimation

The algorithm is designed such that it can create the charging data tailored for any considered number
of EVs and percentage of charging type, as well as the type of the day such as a typical weekday or a
weekend. At this point, it is aimed to realize a typical weekday in the parking place that is mostly used
by workspace chargers as well as some public customers. It is further assumed that each driver using
the parking place utilizes the charging service once a week, based on a survey of EV drivers’ charging
behaviour in the Netherlands, which indicates an average of four monthly charges at the workplace and
public charging stations [156]. This results in 55 charging operations on a weekday when a charging
place with 275 EV capacity is considered, with the majority of them being workspace charging.

First, the percentage distribution of charging operations in the Netherlands is derived to create a
realistic sample out of these numbers and percentages. Data in Figure 3.1 shows the percentage of

32
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EVs arriving at the charging stations on a typical weekday, grouped under the Private, Public, and
Workplace categories.

Distribution of Arrival on Weekdays
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Figure 3.1: Percentage of EVs Arriving at the Charging Station in the Netherlands as a Function of Time of the Day

As Figure 3.1 shows, workplace charging demand peaks at 8:45, around the typical starting time of
working shifts while reaching the bare minimum by 18:00. Meanwhile, public charging peaks twice in
a day at 09:00 and 18:15, coinciding with workplace and private peaks.

Next, the percentages of EVs sorted by time are converted into integer number of EVs. In this case,
this calculated number is expressed as a function of the percentage of the EVs getting charged at the
timestep and the total number of EVs considered. In simple words, a certain percentage of the public
and workspace chargers will be demanding energy. As this percentage differs as a function of time,
the number of charging operations taking place changes accordingly. Therefore, this step reflects the
effect of arrival time on the overall charging demand. The maximum number of EVs arriving at the
same timestep describes the number of rows of the matrix, and the number of charging poles needed,
to be used during samples.

Furthermore, the algorithm takes the cumulative energy demand distribution data to create energy
demand, charging power and connection time matrices. This data is made up of 1% steps, expressing
the probability of the EVs demanding at least a certain amount of energy. This cumulative distribution
is plotted in Figure 3.2.
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Figure 3.2: Cumulative Probability Distribution of Energy Demand Associated with the Charging Operations

The dataset plotted in Figure 3.2 is interpreted such that 100% of EVs, demand 0 kWh of energy,
while 99% of them demand 0.6 kWh and 98% demand 1.2 kWh. The amount of energy demanded
increases as the percentage decreases as fewer drivers charge from 0% SoC to 100% SoC.

The same method of cumulative distribution is also applied to the connection duration data, which
is plotted in Figure 3.3. These data show how the connection time is distributed among the charging
operations taking place.

Cumulative Probability Distribution of Connection Duration
80
70 |
60
50
40

30

Connection Duration (h)

20

10

0 10 20 30 40 50 60 70 80 90 100
% of EVs

Private

Public Workplace

Figure 3.3: Cumulative Probability Distribution of Connection Duration Associated with the Charging Operations

As shown in Figure 3.3, public and workplace charging operations are mainly accumulated in the
charging times under around 5 hours, as this number is more than 10 hours for private charging. This
is fundamentally due to the traditional use of private charging services, in which the driver generally
starts the connection in the evening and keeps the car connected until the next day or the next instance
of travelling.



3.1. Public and Workspace Demand Estimation 35

Finally, the same cumulative probability distribution approach is also followed in charging power
data. However, in this case, since it is not possible to obtain private charging data due to data privacy
reasons, this data set is only derived by using public charging services. Charging power data is plotted
in Figure 3.4.
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Figure 3.4: Cumulative Probability Distribution of Charging Power Associated with the Charging Operations

As the charging power values offered in most of the charging stations equipped with AC charging
are certain and intermittent such as 3.7, 7.4 and 11 kW, these values described in the plot are further
normalized to these values, whichever is the closest.

After the data sets described above are imported, they are further processed to form the matrix
set to be used in the sampling. These matrices are constructed by the energy demand, charging
power and connection time values randomly selected among the distributed values with respect to
their percentages. It means it is more likely to find the charging duration, power and energy demand
values corresponding to higher probability in the matrices, compared to less probable instances. These
matrices are then shuffled to mimic the randomness of the reality. Lastly, as the use of DC fast charging
infrastructure is announced as 8% of the charging operations in the National Survey, this percentage
of the charging operations is randomly replaced with DC charging operations [156]. This replacement
is applied in only public and workspace loads as fast charging is not a solution applied in private data
due to its high cost and unsuitability in residential electricity infrastructure. Also, it is important to note
that the power drawn from the grid significantly changes with the SoC of the EV. Consequently, it is
advisable to disconnect the charger when the EV battery reaches approximately 80% SoC [4]. Beyond
this threshold, it is reported that the charging rate diminishes significantly, and filling the last 20% of
the charge may take nearly as long as reaching 80% initially. As this behaviour also matches with the
charging curves of the vehicles under consideration given in Table 3.1, these charging operations are
also corrected so that the DC operations abide by this charging behaviour and maximum power values
depending on their SoC values.

In the next step, these charging operations that are chosen among the created matrices are matched
with EV Models. At this point, the most popular 10 EV Models are taken into consideration [156]. These
models and their specifications are stated in Table 3.1.
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EV Model Total Number of | Share (%) | Battery Capacity | Maximum Charging

Vehicles (kWh) Power (kW)
Tesla Model 3 42618 0.25610 57.5 11
Kia Niro 19815 0.11907 64.8 11
Volkswagen ID3 16802 0.10097 58.0 11
Hyundai Kona 16688 0.10028 39.2 11
Renault Zoe 13195 0.07929 52.0 22
Skoda Enyaq 12616 0.07581 58.0 11
Nissan Leaf 12193 0.07327 39.0 6.6
Audi eTron 11567 0.06951 85.0 22
Tesla Model S 10899 0.06549 95.0 11
Volkswagen Golf 10019 0.06021 32.0 7.4

Table 3.1: The most popular EVs in the Netherlands and their specifications

Furthermore, taking the shares of each EV Model into account, the number of each EV model in
the scenario studied is calculated by multiplying these numbers by the total number of cars.

Finally, charging power and energy demand values of individual operations are sampled from the
created matrices uniformly. As soon as these operations are matched with the EV Models, a set of cor-
rections are applied accordingly to keep the charging power less than the available maximum charging
power, keep the energy demand lower than the capacity, and keep the connection time longer than
or equal to the charging duration. Finally, in case the operation is sampled as a DC Fast Charging,
corresponding power values are also corrected by taking the charging curves of individual vehicles into
account. In the end, sampled 55 operations are allocated to 16 charging stations in 1 minute-long time
steps. Accordingly, the total daily charging power in the studied scenario is plotted in Figure 3.5.

Daily Charging Power

N
(=3
[S]

=
®
o

=
N
o

[N
'S
o

-
N
o

]
o

Charging Power (kW)
=
8

60

40

20

07:00 11:05 15:10 19:14

Time of the Day

23:19 03:24

Figure 3.5: Daily Charging Power in the Studied Scenario

In detail, this total demand shown in Figure 3.5 consists of the summation of power values flowing
from the charging stations to the EVs. When these charging operations are represented individually,
the charging power for each charging operation can be seen. Figure 3.6 shows this representation in
the form of instantaneous power drawn from each charging station. Charging stations are differentiated
and numbered in the plot by using the abbreviation, CS. Research Sub-Question 3 can be answered
in this way.
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Charging Power per each Charging Station vs. Time

140

120

N
o
S

=
E3
u
[
2 80
o)
a
oo
£
b0 60
©
<
(@]

40

20

_I_“_ll'\'\_:”l ot I T — '_"_\
0 Atk LA T [n wamuh e v iy i v 1w\
07:00  08:30  10:00  11:30  13:00  14:330  16:00  17:30  19:00  20:30  22:00  23:30  01:00  02:30 0400  05:30  07:00
Time
—CS#1 CS#2 CS#3 CS#4 ——CSH#H5 ——(CSH6 ——CSH7 ——CSHB
—CS#9 ———(CS#10=—CS #11 =——CS #12 ——CS #13 CS #14 CS #15 CS #16

Figure 3.6: Charging Power Instantaneously Drawn from each Charging Station in the Studied Scenario

3.2. Private Charging Demand Estimation

The system’s performance under private charging applications is also tested. To achieve this, the same
demand estimation algorithm is run, only considering the private load for the same number of EVs. It is
expected that the demand profile will exhibit a different shape compared to the public and workspace
load due to the difference in the arrival times shown in Figure 3.1. Regarding this distribution, it is
expected to see a gradual increase in demand around 4 pm, to reach its peak value later on as a
consequence of the accumulation of EVs getting charged. It is also important to note that, as the
energy demand corresponding to the private load is higher than that of workplace and public charging,
as shown in Figure 3.2, higher total energy demand is anticipated in this scenario for the given 55 EVs.
Obtained private load charging power for a typical weekday is shown in Figure 3.7.
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Figure 3.7: Daily Charging Power Plot in the Studied Private Charging Scenario

According to the plot given in Figure 3.7, the peak load is observed around 8 pm, following an
upward trend starting in the afternoon. Furthermore, the total energy sold throughout the day is around
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840 kWh, which is higher than that of public and workspace charging with around 750 kWh, as expected.
Compared to the public and workspace scenario, the peak power value is around 34% lower than this
scenario due to the lack of DC charging operations in the private case. As all of the charging operations
are fulfilled by 3.7, 7.4 or 11 kW in AC charging, the peak power drawn from the grid is more limited
compared to the first case. However, it is also important to note that this lower power results in a higher
occupation rate of charging stations, especially when combined with the connection time distribution
shown in Figure 3.3. Therefore, in this scenario, a considerably higher number of charging stations
have to be installed to fulfil the demand, which is 28. The system’s performance under these demand
scenarios is further investigated in the following Sections.



System Sizing

This section discusses the methodology developed to design a framework to answer Research Sub-
Question 4. In accordance, an effective sizing strategy to minimize the investment cost of the system
while not compromising performance is proposed. According to the results obtained by employing the
methodology, the utilization of different numbers of units and battery capacities are simulated under
different scenarios to develop a reasonable sizing strategy.

The main objectives of the problem are to decide on the most feasible number of robots, battery
capacity, and the best action sequence. These actions can be described as the activities which robots
and batteries are free to do at any time under certain conditions, namely, charging an EV, travelling, or
establishing a connection with the grid to undergo an energy exchange. Considering the complexity of
the system as lots of different activities are involved and it is given a great degree of freedom to act,
different challenges come into play. These challenges can be categorised into two different groups.
The first one regards the computational difficulties which depend greatly on the type of the problem,
dimensions and solver capabilities. Considering the variables and parameters affecting the final result,
the problem can originally be classified as highly non-linear and non-convex. These types of problems
result in lots of complications. Due to their nature and the solver algorithms used to solve such problems,
they are computationally very expensive, costing lots of time and resources heavily dependent on the
complexity and dimensions of the problem. Furthermore, the algorithms often used can not always
guarantee a global solution, requiring additional effort to verify global optimality and rule out infeasibility.

At first, a nonlinear version of the problem is studied. The first challenge observed is due to the com-
putational resource requirements. As there are some decision variables indexed by the number of daily
charging operations, it is noted that the memory requirement of the solver significantly and exponen-
tially increases by the number of EVs considered in the scenario as shown in Figure 4.1. Consequently,
running the non-linear simulation in a local environment is found impractical due to the required memory
exceeding available resources for the desired number of operations. Therefore, the simulation is run
on a high-memory remote server which can facilitate the use of the desired number of daily charging
operations.
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Figure 4.1: Resource Requirement of the Nonlinear Problem depending on the indexed number of charging operations

Even when the server used provides sufficient memory for the solver to return a solution, a verifica-
tion problem arises. As the solvers utilized are not able to claim global optimality unless they are global
solvers, the acquired solutions can be misleading in the decision process. It is sometimes observed
that solutions bear unexplainable results highly deviating from what is reasonably expected, pointing
out the probability of the model getting stuck at a local optimum point. This evidence significantly un-
dermines the reliability of the resulting data, impeding the ability to draw conclusions from interpreting
the output. Furthermore, when a global solver which can potentially return better results is used the
solution times increase substantially, increasing the computational cost of the problem.

Furthermore, heuristic approaches are also considered as another method used in the literature
to solve complex optimization problems. These approaches, depending on their application strategies,
facilitate the use of more intricate objectives and constraints, whether they are nonlinear or non-convex,
which cannot be addressed by mathematical formulations [128]. However, the main drawback of this
method is again it can not guarantee the global optimality of the solution returned. Furthermore, it is
also observed that the final solution obtained by this method differs for various tuning parameters such
as the weights attached to the terms on the objective function [128]. Therefore, it can be concluded
that using heuristic methods is not an adequate framework to achieve an absolutely truthful solution.

As a result, the decision is made to linearize the problem by eliminating the non-convex and non-
linear relations. This is achieved by incorporating techniques such as auxiliary variables and methods
documented in the literature. Although these methods increase the number of constraints and variables,
the reduced complexity paves the way to obtain solutions proving global optimality.

Apart from the computational challenges described, intellectual difficulties are often a part of the
complex optimization problems where lots of different parameters have to be taken into consideration,
affecting the final decision. As the primary aim of the decision is to find the best size and configuration
of the system, there are lots of different physical and financial parameters affecting the result as well as
qualitative aspects associated with the stakeholders and impacting them negatively or positively. The
physical parameters can be summarised as the number of active batteries involved in the system, their
respective battery capacities, the degradation observed on Li-ion material, number of vehicles to serve
in a day while the financial parameters can be listed as the total amount of investment in the system,
the cost of buying electricity from the grid, the revenue earned by selling energy either to the grid or
a vehicle. On the other hand, the qualitative aspects are mostly related to the overall welfare and the
attractiveness of the solution on all grounds such as the public and the investor such as convenience,
affordability and competitiveness. Another example of this can be the grid capacity utilized. A high
grid capacity requires more investment in the system due to the realisation of high power flow between
the system and the grid. Furthermore, in case of grid congestion, this capacity allows more energy
transfer from the system to the grid as it has a direct effect on the electricity price. A higher price will
incentivise a positive flow from the batteries to the grid as the transaction becomes more profitable for
the investors and beneficial for the public. On the other hand, if this congestion occurs at a moment
when the system has to charge itself to fulfil the upcoming charging demand, this will further increase the
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difficulty of local grid management. Since an extra energy demand occurs at a moment of scarcity, the
resulting scenario will be unfavourable for the public and investors. Furthermore, a lower grid capacity
facilitates more effective decoupling of charging demand from the demand on the grid, offering a high
power fast charging by drawing less peak power from the grid. For example, even if the instantaneous
charging power reaches high ratings such as 100s of kW at its peak time, its reflection on the grid will
be limited by 10s of kW, as the exchange power is capped by the capacity. This results in great benefits
for the grid, offering significant advantages to the public such as peak reduction. On the other hand,
this grid capacity also limits the energy intake of the system at a moment, causing the system to not
fully benefit from the low electricity price moments, decreasing the overall profits of the system.

These value and interest conflicts significantly increase the complexity of decision-making, high-
lighting the need for an alternative method. This method should set the background to analyse the
performance of the system in different scenarios and discuss the effects of upcoming results from dif-
ferent perspectives. Therefore, the system is simulated by using 3 different electricity price scenarios
from different days in the Netherlands and with 2 different grid capacities such as 50 kW and 100 kW.
Both of the capacity values are lower than the peak power values observed throughout the day as
shown in Figures 3.5 and 3.7 previously, hence reducing the peak power demand from the grid. Thus,
both scenarios are more advantageous than using regular charging poles from the grid’s perspective,
even though the scale of benefits differs for each scenario.

Another challenge associated with the sizing problem is to derive an objective function representing
a numerical transformation of reality. The objective of the decision is to find the most feasible sizing of
the system and set a basis to discuss the effects of different parameters such as grid capacity. This
feasibility includes the daily revenue, lifetime of the system and the cost of investment to realise such.
However, these terms naturally imply an unbalance in terms of monetary value. In detail, the daily rev-
enue of the system is in the scale of hundreds of euros whereas the investment cost of the system is
on the order of hundreds of thousands. When these unbalanced terms are introduced in the objective
function, the simulation will be heavily biased by the higher costs associated, and therefore return the
bare minimum size of the system, the source of the heaviest penalty by far. However, this is not the
desired output since a minimised size could bring along inefficient use of the bought material. This inef-
ficient usage can lead to faster degradation and, consequently, a shorter product lifespan. Additionally,
it may result in sub-optimal energy exchanges between the grid and the batteries such as buying at
high prices and selling at low prices. Thus, scaling becomes necessary to keep every term close to
each other in terms of numbers. However, this scale, whether it's an arbitrary weight without substan-
tial real-world relevance or a temporal normalization, such as assuming a specific system lifetime to
calculate daily investment cost, significantly impacts the accuracy with which real-world conditions are
mathematically represented, leading to a more unrealistic approach. As a result, the simulation is de-
cided to run for each fixed number of units and battery capacity. Even if this methodology significantly
increases the number of runs, it prevents the unreasonable outputs that can potentially be returned by
the simulation, bringing along the most effective way of utilising the tools. All in all, the objective of the
simulation is to find the most profitable way of using the given resources for the given demand scenario,
also considering the capacity fade realised over time. It is also important to note that the simulation is
run for a day due to the computational limitations. Therefore, the solution returns the optimal use of the
resources under the given circumstances for a day. Subsequently, the results are further processed to
determine the optimal utilization of the units over their lifetime.

Another reason making this approach inevitable is due to the nature of investment cost calculation.
As this cost is a function of the number of units and their battery capacity, this calculation requires the
multiplication of two decision variables in the system. This causes the problem to become non-linear
hence bringing along the technical challenges mentioned. Therefore, the introduced framework also
prevents this situation from occurring, avoiding the non-linearity.

The energy transaction scheme implemented in the system allows a bidirectional flow between the
batteries used for charging EVs and the grid. In this case, the system is expected to sell energy to the
grid whenever it is profitable and there is time and energy available, pointing out peak demand hours
throughout the day. In detail, the price offered by the grid acts as a major factor determining when to sell
and buy energy. Therefore, the price gap observed throughout the day also impacts the feasibility of
energy arbitrage. For example, if the difference between the highest and lowest prices fails to offset the
cost of degradation, then arbitrage activity is not expected. Therefore, it can be concluded that the flow
between the set of batteries and the grid is primarily dependent on the energy prices and incentivized
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accordingly. Dutch intraday electricity market prices on different days are used to implement the price-

incentivised decision-making in the system [54]. Price data obtained on a Winter day are plotted in
Figure 4.2.
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Figure 4.2: Daily Electricity Prices in the Netherlands on Dec 09, 2023
[54]

Furthermore, to analyse the system’s performance in different conditions, analyses are repeated
with different price variations. As shown in Figure 4.3, electricity wholesale market prices in the Nether-
lands have shown considerable volatility. The average price reached its peak in August while exhibiting
a substantial decrease later on. Hence, the system’s performance is also investigated by taking the

average daily prices in August, questioning if it sustains profitability with extremely high prices for veri-
fication purposes.
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Average monthly electricity wholesale price in the Netherlands from January 2019 to
December 2023 (in euros per megawatt-hour)
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Figure 4.3: Average Monthly Electricity Wholesale Price in the Netherlands from January 2019 to December 2023
[176]

As a consequence, the price data in August is also gathered and averaged to derive the following
daily price curve shown in Figure 4.4. This price set has a significantly higher average price, affecting
the cost of buying energy from the grid. Moreover, the data has an adequate daily price difference,
allowing a great possibility to sell energy to the grid, encouraged by the buy low and sell high principle.
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Figure 4.4: Average Daily Electricity Prices in the Netherlands in August
[54]

Lastly, as the contribution of renewable energy sources such as solar and wind energy increases
year by year in the Netherlands, the occurrence of negative prices has also increased. Due to the
unpredictable and uncontrollable nature of renewable sources, electricity prices can drop under zero
prices due to excess generation. In 2023, 212 hours of negative prices are recorded and further growth
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of these instances is predicted for 2024 [35]. Accordingly, a price data set recorded on July 16 is also
gathered to be used as shown in Figure 4.5. In this study, negative instances are set to zero, as the
system is not acting directly on the wholesale market but using the same prices. Again, these prices
also have enough price gaps to allow energy sales from the batteries to the grid, according to the
energy arbitrage principle.
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Figure 4.5: Daily Electricity Prices in the Netherlands on July 16, 2023
(54]

According to the prices plotted in Figure 4.2, the lowest prices are observed after 02:00 in the night
while the price asked is relatively higher during the rest of the day. This lowest price period points out a
low demand, compared to the rest of the day, hence has a great potential to offer a charging opportunity
to the batteries. Because the batteries have to get charged at some point in the day, having these
charging sessions during peak hours can potentially lead to local congestion, posing an extra demand
the grid should supply. Especially, if such systems become widely used such that different parking
places are powered by mobile systems, the magnitude of this impact can be further amplified. On the
other hand, charging at off-peak hours is both advantageous for the grid and the investor. Mobile EV
chargers can fulfil the charging tasks without relying on the grid at high demand hours, decoupling
the energy demand from EV charging activities from the grid. Therefore, even if there is a significant
charging demand at those hours, the load is not reflected on the grid, reducing peak demand, since
the energy is transferred via batteries. Meanwhile, investors can greatly benefit from energy arbitrage
as a consequence of the system buying at low prices, and selling at higher, while the local grid can
also benefit from extra small-scale energy supplied by the batteries. Especially, in case the system is
charged with renewable energy, it can act as a buffer to store the abundant generation at low demand
hours to supply it back when it is needed, bringing along an efficient use and enhanced integration of
renewable electricity [41].

4.1. Lithium Ion Battery Cost

To make a realistic sizing decision and practical business assessment, it is vital to address the costs
associated with the battery energy storage system. As the battery is the main part of the system, it also
has a significant effect on the investment cost as discussed further in Section 4.4.1. It is possible to
express the effect of increasing the battery capacity on its monetary value in terms of the economies-
of-scale principle [124]. Furthermore, this approach makes it also possible to define a monetary value
for battery degradation, as this phenomenon implies the loss of bought capacity. Therefore, battery
cost is an essential term to be taken into consideration in the optimization problem, as this unit price is
pivotal in determining the investment cost and the monetary value of battery degradation.

In the literature, lithium-ion battery costs are often indicated as a constant $/kWh value. In this
approach, this cost per unit capacity generally shows no difference as the capacity increases. On the
other hand, it is also found that this is often not the case, and a certain discount factor can be applied
when larger units are ordered from a manufacturer due to economies of scale [124]. To come up with a
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realistic assumption, a market search is conducted to reproduce an overall price function. According to
market research, the relationship between price and battery capacity is studied to test this hypothesis.
The options found along with their capacities and prices are plotted in Figure 4.6 and fitted linearly. It is
further acknowledged that the cost per kWh varies with the battery capacity, @, and the unit cost gets
smaller as the battery capacity increases. As a consequence, the cost function, Chattery, is obtained to
be used in the degradation and investment cost calculations. This function can also be seen in Equation
4.1,
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Figure 4.6: Lithium- lon Battery Price per kWh of Capacity

Chattery(Q) = 170.69 - Q + 175.37 4.1)

Furthermore, it is also important to note that Li-ion batteries have a developing second-life market,
which is beneficial for the global economy. This second-life market emerges primarily as a consequence
of the increasing EV penetration rate [52]. Considerable capacity fading occurs over time when EVs are
driven. As more and more EVs are sold and used, the number of batteries whose capacity is lost up to
a certain percentage increases, acting as a driving factor for the second-life market to facilitate a better
and circular use of them. When this capacity loss reaches the end-of-life point and the battery can not
fulfil the performance requirements, the batteries are retired and primarily end up in 3 different situations.
They can be disposed of and no longer serve a purpose, recycled to extract precious materials used
in components such as Cobalt and Nickel or repurposed to contribute to the economy [52].

Various studies in the literature have focused on how to use repurposed batteries in applications
where they can significantly contribute to the public and the economy. For example, there are some
studies analysing the use of retired Li-ion batteries in centralized renewable energy power stations
for promoting emission-free energy sources’ integration, smoothing control and decreasing service
disruptions [85], [10], [110], [161]. As retired batteries can be repurposed to be a part of the energy
generation side, there are also some studies analysing the use of them in grid management side. In
such studies, it is shown that retired batteries can significantly contribute to easing grid congestion,
provide auxiliary assistance to the network, and postpone the need for expanding power transmission
and distribution capacity [139], [115], [73]. Lastly, some studies also proposed the use of such batteries
in uninterrupted power supplies, residential energy storage systems and reserve storage systems [23],
[91], [204], [44].

A practical example of the use of second-life applications of Li-ion batteries is a 2.8 MWh battery
storage system installed in Johan Cruijff Arena in Amsterdam [107]. Itis important to note that the entire
storage system consists of 148 EV batteries, of which 40% of them are retired [201]. In this way, the
installed storage brings along lots of potential benefits such as enhancing the renewable generation
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integration to the grid, acting as a backup source, supporting the grid by acting as a frequency con-
tainment reserve, and peak load reduction [201]. In addition, the system size allows for serving 7000
households in Amsterdam in one hour and a potential CO, emission reduction of 116,683 tons [107].

Because of the swift growth in EVs witnessed in recent times, and an even more accelerated an-
ticipated expansion over the coming decade according to certain projections, the supply of second-life
batteries for stationary purposes is estimated to surpass 200 gigawatt-hours annually by 2030 [52].
This sector is expected to represent a market valued at over $30 billion on a global scale by 2030,
emphasizing how the second life market will be an essential part of the economy [52].

Finally, there are many studies in the literature projecting the costs and evaluating qualification
criteria for the batteries in retired status. For example, a SoH level of 70-80 % is marked as the end-
of-life condition and the batteries are repurposed after reaching this point [87]. Furthermore, various
studies realize a second-life battery price between 44-300 $/kWh range while most of them concuron a
price lower than 100 $/kWh [87], [86]. Moreover, some studies also consider regional price differences
and a second life price range of 19-72 $/kWh which European prices are closer to the higher end [32].
National Renewable Energy Laboratory highlights an end-of-life point of 70% of the initial capacity and
remarks a second-life battery salvage value range of 72-131 $/kWh with 72% health factor [139]. Lastly,
some reports evaluating the second-life market underscore a second-life price range between 30-70%
of the new battery price in 2025 considering the market price is primarily governed by the new battery
market and subsequent price per kWh [52]. As a result, 70% SoH can be taken as the end-of-life
point with 70$/kWh sale price. This value points a close value to the reported prices while it is equal
to almost 40% of the new battery price considered, staying within the price range reported [52]. The
reasoning and verification to show that this selected point can maintain effective use of the invested
battery material is further elaborated in Section 4.3.3.

4.2. Optimization Problem

An optimization problem is formulated to simulate the mobile charging system to evaluate its perfor-
mance and interactions with the EVs and the grid under different conditions. The main objective of the
formulation is to establish a realistic simulation to discuss the effects of different system parameters to
size the system critically.

Some constant values are used in the formulation to be able to represent the operation realistically.
These values are given in Table 4.1. At this point, charging efficiency regarding the energy transfer
between the batteries and EVs is denoted by 7g,y, charging and discharging efficiency taking place
between the grid and batteries are denoted by 72 and rg,g, respectively. Powertrain efficiency is
denoted by 7y, meanwhile, the duration of a timestep is denoted by At as 5 minutes sensitivity is used
in the optimization problem. Grid capacity is expressed as GC, while the maximum power rating of
batteries is Fg,,, . It is important to note that this value is derived by averaging the maximum charging
power values from the charging curves of the 10 most popular EV models in the Netherlands, which
vary depending on their SoC. This makes it possible to generalize the model over different EV models
and SoC conditions observed in the arrival. These models are given in Table 3.1, in the previous section.
Furthermore, Q stands for individual battery capacity values and Priceg is the daily electricity prices
requested by the grid as shown in Figure 4.2, 4.5 and 4.4. The price offered for charging EVs is denoted
by Pricec, and the reason behind this value is further described in Section 4.4.2. The degradation of
the battery per kWh of charged and discharged is expressed as L, and it is a function of Li-ion battery
price and linear degradation as explained in Equation 4.25 later. Lastly, Py, stands for the average
power consumption per driving cycle as explained in Equation 5.14.
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Table 4.1: Constant Parameters

Parameter Value

B2V 0.95

1G28 0.95

782G 0.95

Ly 0.9

At o

GC 50/100 kW

Poya 85.7 kKW
70-400 kWh

Priceg See 4.2/45/4.4

Pricec 0.65 €/kWh

L See 4.25

PMavg See 5.14

Objective Function

The objective function regards the maximization of the total daily profit associated with the energy
exchange between the grid and the battery and the charging operations while also considering the
battery degradation. In this regard, Rgpy denotes the revenues earned by charging EVs, while Rgog
expresses the revenues earned by energy sales to the grid. Next, Cgop denotes the cost of buying
electricity from the grid while Cp is the monetary cost of battery degradation, expressing the cost of
loss material.

The summation Ele iterates over the set of battery units, while Z;:T:1 iterates over the time steps
discretizing a day into intervals of 5 minutes. Fgyy,, denotes the power supplied from battery unit r to an
EV at time step ¢t. The variables r and ¢ are constrained to the set of units and time steps, respectively.
On the other hand, Pgag,, denotes the power supplied from battery unit r to the grid at time step ¢, while
P2, expresses the power flowing from the grid to battery unit r.

max(Reav + Re2g — Ca2s — Cb) (4.2)
Where:
R T
Rgoy = Z Z Paay,, x At x Pricec wherer € Units, T € Timesteps (4.3)
r=1t=1
R T
Rpog = ZPBZGm x At x Priceg wherer € Units, t < Timesteps (4.4)
r=1t=1
R T
Caos = Z Z Poop,, x At x Priceg where r € Units, t € Timesteps (4.5)

R T
Cp = Z Z[PBsz + Paog,, + Pozs,,| x At x L wherer € Units, t € Timesteps (4.6)

Constraints

The following constraints are defined to simulate the system. Constraints are aimed at transforming
real-world phenomena into mathematical formulations, enabling comprehensive understanding and
accurate predictions of system behaviour. Hence, they indicate equations of energy transfer and con-
sumption as well as basic logical expressions to transcribe reality.

1. In the system, the robot has 4 degrees of freedom, meaning it can charge an EV, get charged
from the grid, sell energy to the grid, and travel either from hub to EV, EV to EV, or EV to the
hub. At this point, the following constraint is defined to ensure each unit is only allowed to do one
of the listed activities at a time. When the unit is active, it is free to do one of those 4 activities
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at any time, or none of them if its contribution is not necessary to fulfill the demand. In this
constraint, explained degrees of freedom are introduced. The battery can conduct a charging
operation indexed by o, and it is controlled by binary variable B2V ., ,. It can also charge itself
from the grid, denoted by G2B, ;, sell energy to the grid B2G, ., travel T,.; or do nothing at a
timestep. When the unit does any of these activities, corresponding binary variables become 1 at
that timestep, while it is 0 otherwise. Furthermore, the unit can only fulfil one assigned charging
operation at a timestep. Hence, the sum of B2V,.; , over all indexed charging operations can
either take 1 or 0 at a timestep. This logic is shown in the following equation:

]
> B2ito+ G2Bi+ B2Gri+ Ty <1 VreR, VteT, whereoecO (4.7)

o=1

2. This constraint defines the SoC evolution of the batteries. The battery’s SoC is increased by
energy intake from the grid, denoted by Pgog,, x At, decreased by any means of discharge,
Paog,, x At, Payy,, x At and travel, Py,, x At. The endpoint of this discharge can be the grid,
motor or an EV. Also, the effect of this charge and discharge is a function of the battery capacity,
@ and constant efficiency values, ng2s, 7m:

PGZBr,t x At PBsz X At

SoCr 141 = SoCrt + ————— X Ng2B —
Q Q X nc28 (4.8)

P|32Vnt x At PMr.,t x At
Q X ngav Q X nm

VreRWteT

3. The constraint defines the power required by the powertrain as a result of travelling activities
in a way that the power drawn by the motor, Py, is equal to the average power demand of
the powertrain during a driving cycle, Py,,, When the battery is on travel, and 0 otherwise. The
calculation method of this average power is further elaborated in Section 5:

Py = Putpg X Try Vre RVLET (4.9)

4. The set of constraints introduces the travelling logic implemented in the system, controlled by
binary variable, T;;. The battery should be identified as travelling one timestep right before a
charging operation starts as well as one timestep right after the charging session ends:

O O

Trip1 > Z B2Vito — Z B2Vi1i10 Vr€R, VteT, whereocO (4.10)
o=1 o=1
(0] (0]

Trio1 > Z B2Vi 1o — Z B2Vii_ 1o YreR, VteT, whereocO (4.11)
o=1 o=1

5. This constraint enforces the battery to not do two different charging operations consecutively
since there is a necessity for travel. Although Equations 4.10 and 4.11 are employed to imple-
ment the travelling logic, the sum of binary variables used to monitor the charging condition in
these constraints only takes 1 when there is any charging operation taking place at that time step.
Therefore, these variables take a positive value regardless of which charging operation is being
fulfilled. This points out the necessity of developing the travelling logic by also checking which
operations are being conducted at consecutive timesteps. Consequently, when the battery is
away from the hub, there must be at least one timestep of travel activity between two different
charging operations, o1 and 02:

B2Vitot + B2Vitp100 <1 Vre R, VteT, YoleO, Vo2€0O, whereol#02 (4.12)

6. The following set of constraints defines the grid capacity behaviour. According to the implemented
logic, the net power drawn from the grid, as well as fed to the grid, should be smaller or equal to
the grid capacity, denoted by GC:

R
> (Pozs,, — Pazs,,) < GC VWt T, wherer € Units (4.13)

r=1
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10.

11.

R
> (Pezs,, — Pezs,,) > —GC VteT, wherer € Units (4.14)

r=1

This set of constraints defines the maximum power that an individual robot can feed or draw,
denoted by Pg,,.. If the binary variables regulating the power flow between the grid and the
batteries are active, meaning G2B,; and B2G,; are 1, the instantaneous power value should
be smaller or equal to the maximum power rating. These binary variables only take 1, when
a connection between the individual batteries and the grid is established. This can only happen
when the unit is not charging an EV or travelling as this logic is defined by Equation 4.7. Otherwise,
it is O since there is no exchange:

PGZBM < Py XG2Bry VreR, VteT (4.15)

PBZGm < PBMAX X BQGr"t Vr € R, VieT (416)

A battery can only charge one vehicle at a time. When it conducts a charging operation indexed
by o, the binary variable corresponding to this operation, B2V;:, takes 1, while that of other
operations must be 0. It can not be used to charge more than one vehicle at a certain timestep:

O
Y B2io<1 VreR, VteT, whereocO (4.17)

o=1

To set a noncollaboratory charging scheme, the following constraints are defined. According to
the rule, there is an assignment logic such that every charging operation must be assigned to
a robot. However, this assignment, denoted by A, , cannot be any other value than 1, since no
more than 1 battery can be used to charge a certain EV:

R
d Ao=1 YoeO, wherereR (4.18)

r=1

The following constraint is defined to combine the assignment logic with charging power. The
binary variable regulating the power flow value between a battery and an EV within the connection
time can be nonzero if and only if that operation is assigned to this battery. If the operation is not
assigned and hence being conducted by another unit, then there must be no power flowing from
that battery to the corresponding EV:

End,
Z B2Vi1o > Aro VreR, VteT, whereocO, Starto, EndocT (4.19)

t=Start,

To keep the energy flow between the individual batteries and vehicles regulated, the following
set of constraints are implemented. This definition aims to ensure the power flow between the
battery and the EVs can be monitored in a separate approach allowing observation of every sin-
gle charging operation. Since the batteries are not allowed to collaborate on a charging task,
there exists a requirement to define charging power indexed by battery units, time and charging
operation. The main objective is to ensure that the power flow is regulated by the binary variable
B2V} 1, and specified for each charging operation to set the non-collaboratory changing scheme
and fulfilment of charging demand. In this case, this power value has to be equal to zero when
a battery is not conducting some certain charging operation at a certain time, or that operation
is assigned to another battery. However, this approach brings along the necessity of multipli-
cation of two decision variables, the power value and the binary variable regulating it, changing
the nature of the problem and making it non-convex. At this point, the following constraints are
defined to avoid this change, inspired by the method McCormick Envelopes [126]. The method
exemplifies a technique to relax non-convex problems to address the related issues and linearise
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the optimization problems by the use of auxiliary variables, such as F,,. In this case, this aux-
iliary variable represents the power flow between the batteries and EVs, distinguished for each
charging operation:

Py < Payy X B2Vigo VreR, VteT, YocO (4.20)
o
> Py, =Py, VreR, VtecT, whereocO (4.21)
o=1
me_yo > PBZV,,‘ — PBMAx X (1 — BQV},LO) Vr € R, Vt € T, Yo € O (422)

12. Combined with the other three constraints above, this one ensures that the charging demand
of individual EVs, dependent on how much energy they desire, E,, should be fulfilled within the
connection time defined by the start of the period, Start,, and the end, End,. Therefore, this
logic ensures the system will charge every vehicle in the system up to the desired SoC and the
duration of the operation is smaller or equal to the time the EV is stationary in the parking lot:

End,
> P,xAt=E, VreR, VteT, YocO, whereStarto, Endo €T (4.23)

t=Starte

13. This constraint forces the power flow value between the battery and an EV corresponding to a
battery at a time step to be zero if it is not conducting a charging operation. This value can be
non-zero if and only if the battery charges an EV and must be smaller than the maximum power
rating:

o}
Poov,, < Poyp X _ B2Vito VreR, VteT, whereocO (4.24)

o=1

4.3. Results and Discussion under Public and Workspace Charging
Load

Complex systems have a wide range of stakeholders and factors involved. These stakeholders can
often have conflicting interests requiring critical thinking in decision-making processes. To study the
problem in detail, results are comprehensively analysed regarding the interests of these stakeholders.

In this particular system, various stakeholders can be listed. First, the public is the most important
side. Mainly, the community can be categorized as the client, getting the service from the system. Thus,
the overall convenience of the system is the key issue. The system should address the requirements of
the drivers inclusively and the challenges they face. Therefore, the parameters and takeaways found in
the study should act as a solution to the difficulties of regular charging operations that take place today.
To accomplish this, the design outputs must offer an accessible and sufficient charging experience
where the charging task is fulfilled within a given time and up to a desired level. The decided number
of units and battery capacities must facilitate the satisfaction of the charging process. Therefore, the
search space of the solution starts from the minimum battery capacity that can fulfil all charging tasks
in the studied scenario, which is 70 kWh for the public and workspace demand and 120 kWh for the
private demand. The considered number of units ranges from 3. The main reason behind it is attributed
to the occurrence of fast degradation and the large size of batteries required below this number and
resulting incompetence.

Meanwhile, the investor ground can be categorized as another stakeholder. In this case, the re-
quired investment to fulfil these requirements is also a key aspect. This issue has many sides such
as the investors themselves and the government as well as the public. For the investor, the system
should be financially viable, ensuring a notable turnover. To address this, daily profits of the system
are investigated as well as discussing the effect of different parameters on these numbers. Processing
the output values further, a total investment cost is calculated and the system’s financial performance
is analysed. Furthermore, the monetary return of this investment can not be classified as sole profits.
Because some investments in the charging infrastructure face continuous subsidies from governmen-
tal institutions, using an optimized system tailored to addressing the charging demand becomes more
important to ensure the self-sufficiency of the system. As today’s ambitious expansion in charging
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infrastructure highlights the risk of low utilization rate and therefore inevitable subsidy schemes, an
optimally sized system can potentially alleviate the financial burden of the investments on the public
[187]. Consequently, the investment cost of the system is compared to the systems made up of charg-
ing poles. In addition, it should also be remembered that as the system has significant benefits for the
grid such as peak reduction, the consequences of this investment again affect the public. Therefore,
the advantages and disadvantages of using higher grid capacity are also discussed, paying attention
to this motivation.

4.3.1. Effect of Energy Arbitrage

Bidirectional energy flow between the grid and the batteries can be categorized as V2G. This flow
consists of batteries buying energy from the grid to charge themselves for either fulfilling the demand
or profiting off the energy arbitrage.

The overall daily profit of the system regarding the energy arbitrage is mainly dependent on various
factors. First, there must be enough price gaps to facilitate energy arbitrage. In this case, there are
two costs associated with purchasing energy from the grid. One of them is the transaction cost mainly
defined by the instantaneous electricity price asked by the grid, while the other is the degradation cost.
Since there is a capacity loss associated with any amount of energy the battery is charged with or
discharges, the total cost of the purchase is in fact higher than what is paid to the grid. Another factor
is the selling price. The selling price must be high enough to compensate for the cost of purchasing
and the loss of battery capacity. Lastly, there must be enough grid capacity to pave the way for buying
at low prices and selling at high prices.

The price gap mainly differs daily and seasonally. For the three scenarios analysed, daily price gaps
are shown in Table 4.2

Table 4.2: Scenarios and Daily Price Gaps (€/kWh)

Scenario Maximum Price Gap (€/kWh)
Winter Scenario 0.056

Summer Scenario 0.1

Extreme Scenario 0.24

As shown in Table 4.2, the winter scenario has the lowest price gaps due to the relatively low en-
ergy generation of renewable sources. It can be concluded that this small price gap is not enough to
profit notably from energy arbitrage. The effect of renewable sources appears more remarkably in the
summer scenario due to the negative prices. As the price is determined by an auction, balancing the
supply and demand, these negative prices are an indicator of either a significant drop in demand or a
sharp increase in supply [173]. In this case, due to the abundance of renewable electricity generation,
and the ramping duration of fossil fuel generators, a surplus of production takes place. Often, it be-
comes more costly to shut down the generation than to sell it for a negative price and this causes the
negative prices to occur [173]. As stated, in this study, negative prices are set to zero. At this point, the
emerging price gap can give the system great potential to do energy arbitrage. Furthermore, as this
transaction is mainly dependent on the daily price gap, the demand from the battery side is price-driven,
hence increasing by the surplus and decreasing by the deficit. This reveals another advantage of the
system. A portion of this surplus of energy can be stored and utilized later on to support the grid, in
case itis needed. In this way, in case this price drop is sourced by emission-free generation, renewable
electricity can be utilized and integrated more effectively. The effect of electricity prices becomes much
clearer when the total exchange power between the system and the grid is investigated. For example,
when 3 units with 270 kWh battery capacity and 50 kW grid capacity are utilized, consequent exchange
power is plotted in Figure 4.7.
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Total Exchange Power between the System and Grid depending on Price
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Figure 4.7: Total Exchange Power between the System and Grid when 3 Units with 270 kWh Battery Capacity and 50 kW Grid
Capacity is Used

Figure 4.7 reveals the effect of overgeneration and resulting prices on the exchange between the
system and the grid. As shown in the figure, the system tries to take full advantage of zero prices
by charging itself whenever there is availability. As the electricity price increases later in the day, the
direction of this flow changes so that the system sells the purchased and stored energy back to the grid
when the demand is higher. As the amount of energy available for sale is finite and constrained by both
the battery and grid capacities, it only exhibits a positive flow from the system to the grid during the two
highest price periods, aimed at maximizing profits. It is also important to note that the system avoids
selling energy excessively, even though the price is non-zero in some instances. The effect of battery
degradation becomes evident at this point. Since the earned profit is not enough to compensate for
the degradation cost, the system strategically limits energy sales to mitigate battery wear and maintain
its longevity. As a result, it balances profit generation with the need to preserve the battery’s state of
health and optimize long-term performance.

4.3.2. Number of Units and Battery Size

The total energy displaced by the system is directly proportional to the number of batteries and the
battery capacity. However, for a constant displacement, these two variables exhibit an inverse relation.
The same amount of energy can either be stored in a system with a higher battery capacity but less
number of units or with a lower battery capacity but a high number of units. Having a higher number of
units can increase the number of operations that can take place at the same time. These operations
can be charging EVs as well as feeding energy to the grid or purchasing energy.

For a given total energy capacity, having more units with smaller capacities gives the system more
flexibility. For example, in a system with 1000 kWh total capacity, divided into 10 batteries of 100 kWh, a
charging task can be fulfilled by allocating only 10% of the total capacity to a specific job, while keeping
the rest engaged in a transaction with the grid, either feeding or drawing energy for profits. At a low price
period, an available extra unit might take full advantage of the cheap electricity, while the other units
are fulfilling the charging demand. However, one should not forget the sustainability of the system
while making this decision. Considering a long period where the system will be serving the public,
this configuration significantly increases the number of cycles each battery undergoes. This increase
brings about a fast degradation and hence replacement, shortening the service life of the product,
requiring continuous spending and investment. Furthermore, the investment cost of the system is
highly dependent on the number of units, either the batteries or robots, as the costs of the equipment
can not be underestimated. Consequently, more units bring along more onboard components such as
chargers, robotic arms and motors and cause the cost of investment to increase substantially. Also,
considering that larger batteries are cheaper per kWh as explained in Section 4.1, fewer units could
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minimize the cost of investment. The effect of increasing the number of units and battery capacity is
further discussed in the following sections.

Effect on Grid Interaction

To address the effect of battery capacity on the system’s performance, various sizes are evaluated.
Increasing the battery capacity paves the way for a more flexible operation scheme where the battery
undergoes less urgent charging stops to satisfy the charging demand. As the primary revenue source
and the fundamental duty of the system is charging the EVs, the batteries should always be at the
adequate SoC level to charge the vehicles up to the desired state, within the connection time. Therefore,
after a charging operation, the battery can either do sequential charging by directly travelling to the
next customer and initiating the operation, or postpone the starting time for a few time steps to get
itself charged from the grid. As the capacity of a battery increases, it can act more efficiently by taking
the charging break only if the electricity price is at a good level to buy or sell. The main reason is the
low SoC of the battery becomes a less frequent issue and hence it does not have to undergo urgent
charging breaks.

Secondly, as the total stored energy in the system increases, when there is an adequate price gap,
the system starts selling more energy to the grid, improving the daily revenue. However, this occurs up
to a certain point. After that point, further increasing the battery capacity does not improve the sales
to the grid because grid capacity starts to become an issue. In a system where the maximum useful
energy to be sold to the grid is restricted by the capacity and the electricity prices, there is a maximum
amount of energy exchange level that can be reached in a day. As a result, after reaching this level,
an increase in size no longer has a significant impact on the amount of energy sold to the grid. This
effect is demonstrated on the Figure 4.8
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Figure 4.8: Total Energy Capacity of the System vs. the Amount of Energy Sold to the Grid in the Summer Scenario

As shown in Figure 4.8, in the 50 kW grid capacity scenario, the total amount of energy sold to the
grid exhibits a direct proportion to the total system capacity until it reaches a plateau. At that point, the
sales become limited by the grid capacity. Therefore, a higher grid capacity of 100 kW provides the
system with a higher rate of energy arbitrage, with a maximum of 500 kWh, while this value is capped
at around 58 kWh for the lower grid capacity scenario. This substantial difference is not only due to
the more capacity the system can benefit during peak hours but also the amount of energy that can be
bought at off-peak instances. When the energy capacity allocated for the system is limited by the grid
capacity, this could be barely enough to compensate for the energy sold to the EVs, as is the case for
some configurations in the 50 kW scenario. However, when the system is provided with more flexibility,
it can engage in more arbitrage, since the sold energy can be compensated due to the higher grid
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capacity.

As a result, with a higher grid capacity, the batteries can be charged and discharged more effectively,
resulting in the system storing an adequate level of energy and feeding it back to the grid during the
peak demand hours. This feed brings along benefits for the grid as the system can act as an energy
source to support the grid, especially in instances where local congestion takes place. Once more,
when renewable electricity is abundant, the system paves the way for enhanced integration, acting as
an energy buffer.

On the other hand, this higher grid capacity also causes the system to rely on the grid more. As the
system is free to draw higher power, it also acts like another source that has to be fed by the generated
electricity. This reliance on the grid becomes much clearer when the amount of energy bought from
the grid is compared as shown in Figure 4.9. At their peak values, higher grid capacity results in an
overreliance on the grid by 490 kWh more energy purchased.
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Figure 4.9: Total Energy Capacity of the System vs. the Amount of Energy Bought from the Grid in the Summer Scenario

Even if transactions between the grid and the batteries are mainly controlled by price incentives,
and hence the system will avoid buying at the peak demand hours as much as possible, this conflicts
with another objective of the mobile charging concept, which is the reduction in peak demand. As the
EV charging power is decoupled from the grid, a system with a higher grid capacity has a limited ability
of peak power reduction. In this case, 100 kW grid capacity only manages to reduce the peak demand
by around 45.9% while 50 kW reduces it by almost 73%. Therefore, using a 50 kW grid capacity reveals
more significant benefits in terms of peak demand reduction.

Furthermore, it is also important to note that the excessive use of battery through more charge
and discharge cycles have also a considerable effect on the capacity loss. Therefore, heavy use of
the batteries exhibited with 100 kW grid capacity also brings notable reductions in the cycle life of the
batteries as discussed in detail in Section 4.3.2.

Effect on Daily Profits

Battery capacity and the number of units in the system have a critical effect on the daily profits that
can be realised as a consequence of providing charging services to EVs and energy arbitrage. Some
factors directly influence the financial benefits of the system. Generally, more battery capacity and
more number of units allow the system to act more flexibly and take full advantage of price opportunities
observed throughout the day. For example, as the total energy stored is limited by the total capacity of
the system, batteries are mainly used to satisfy the charging demand. Therefore, the instances where
the batteries buy the energy from the grid are mainly determined by the charging demand. At this point,
sometimes the energy could be purchased just to store enough energy to charge the upcoming vehicles,
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not because it is very cheap, since the charging demand must be fulfilled under any conditions. This
results in a high cost of buying electricity and hence lower profits. As the total capacity of the system
increases, the system gains enough flexibility to take full advantage of the low prices. As a result,
the average cost of purchasing decreases, improving the profitability of the system in a day. This is
shown in Figure 4.10. When the individual battery capacity increases up to 150 kWh with 50 kW grid
capacity, then the over-sizing no more influences the daily profits significantly and the earnings reach
the plateau of around €425. The main reason behind this is that, after a certain point, the system can
take advantage of the cheapest electricity prices with the given grid capacity. After that point, increasing
the system capacity no longer improves profitability, since the purchased energy is mainly restricted by
the grid capacity.
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Figure 4.10: Daily Profits Earned in the Winter Scenario Depending on the Number of Batteries and the Battery Capacity with
50 kW Grid Capacity

Daily profits can be further improved by increasing the grid capacity. This increase allows the system
to benefit from cheap electricity prices more. As a consequence, the batteries can get charged up with
cheaper electricity, bringing along a lower cost of purchasing energy from the grid. Once more, after a
certain point, further increasing the size does not increase the profits as the energy that can be bought is
primarily limited by the grid capacity. After 250 kWh of battery capacity, the system takes full advantage
of the low-price instances up to the margin it is allowed. Hence, the profits reach their maximum limit
and reach a plateau of around €437.5. This point can be reached with less individual battery capacity
when more units are utilized as can be seen in Figure 4.11. For example, when 5 battery units are
utilized, the system reaches the profit plateau of around 170 kWh of battery capacity.

Furthermore, it is important to note that this increase in grid capacity improves the maximum daily
profit of the system by almost 3% in the Winter Scenario.
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Figure 4.11: Daily Profits Earned in the Winter Scenario Depending on the Number of Batteries and the Battery Capacity with
100 kW Grid Capacity

As mentioned, another important factor influencing the daily profitability of the system is electricity
prices. Costs can be reduced by buying at a cheaper rate as well as profits can be improved by
engaging in more energy arbitrage. At this point, the Summer Scenario underscores how both factors
can enhance the cash inflow of the system. Unlike the Winter Scenario, the system can notably profit
from energy arbitrage, due to the higher price gap observed as a consequence of the zero prices.
Furthermore, the average daily price observed throughout the day is lower compared to the Winter
Scenario. As a consequence of both factors, the system can return a profit of around €490 even with a
grid capacity of 50 kW as can be seen in Figure 4.12. Compared to the Winter Scenario with the same
grid capacity, this means around 15.3% improvement in daily profitability.
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Figure 4.12: Daily Profits Earned in the Summer Scenario Depending on the Number of Batteries and the Battery Capacity
with 50 kW Grid Capacity

Moreover, the effect of increasing the grid capacity becomes much more evident in the Summer
Scenario. Primarily, higher grid capacity allows the system to sell much higher amount of energy to
the grid, and take more advantage of cheap electricity prices triggered by the abundance of renewable
generation. As can be shown in Figure 4.13, this brings along a considerably higher maximum daily
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profit of around €538. Compared to the 50 kW grid capacity case, this means a 9.7% profitability
improvement. Furthermore, when compared to the Winter Scenario with the same grid capacity, it
can be concluded that energy arbitrage and the presence of renewable generation can bring along a
potential improvement of profitability of around 22.97%.
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Figure 4.13: Daily Profits Earned in the Summer Scenario Depending on the Number of Batteries and the Battery Capacity
with 100 kW Grid Capacity

Effect on Public Space Use

As the system can potentially be deployed to serve the EVs in a public place, the space it occupies has
to be analysed and taken into consideration. The occupation of space is mainly due to the area that
the units and components take up. The unit’s size is mainly determined by the storage capacity as it
occupies a significant space due to the Li-ion battery’s energy density. Furthermore, as the units will
be getting charged from the grid at the hub, the volume of the batteries also affects the size of the hub
that will be designated for the service. Lastly, the number of units also proportionally contributes to the
area requirement as the total area of the hub should provide a secure space for each unit.

To calculate how much area is required for the system, the volumetric energy density of LiFePO,
batteries is researched. According to the thermodynamics analyses conducted on this type of battery,
the theoretical volumetric energy density is calculated as 2107.0 Wh/L [202]. However, it is important
to note that there are lots of other components involved in a typical battery pack such as BMS, cooling
components and casing, therefore reducing this volumetric density. At this point, it is important to refer
to practical packing densities instead of theoretically calculated values to realistically estimate the area
required for the system.

In a study focusing on different LiFePO, batteries used by car manufacturers, the average volu-
metric pack density of such batteries is reported as 243 Wh/L [164]. Following this, the volume of the
battery pack can be calculated as 0.288 m? for a 70 kWh battery, while it is 1.646 m? for a 400 kWh
battery.

At this point, the area requirement is directly proportional to the total overall capacity of the system.
On the other hand, more system capacity brings along higher profits due to the flexibility of sales and
transactions between the system and the grid. These two factors conflict with each other due to the
various interests of different stakeholders.

The total area occupied by the system can be calculated by using the volumetric energy density
mentioned, and the dimensions of similar products in the market. A mobile autonomous charging robot
with similar specifications has dimensions as 1850 mm length, 950 mm width and 1500 mm height
[122]. Using the battery energy density mentioned, it can be calculated that these dimensions allow
the placement of a LiFePO, battery around 640 kWh capacity. Therefore, even in the case with the
highest battery capacity considered, 400 kWh, there will be almost 1 m? of empty packaging volume,
allowing the placement of other components of the system. Taking the length and the width of the
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robot as the base, the total area occupied by the units for different battery capacities and the number
of batteries can be calculated as 5.27 m? for 3 units, 7 m?2 for 4 units and 8.75 m? for 5 units.

These values determine the minimum area of the hub and it has to be large enough to accommodate
these units while they are not charging EVs. Furthermore, a certain area will be assigned for the
charging equipment installed in the hub. As the task fulfilled by this charger is the same as what a
typical charging pole does, the land use of this charger can be taken as the same as what is required
for a regular EV charging station. Considering the reported land use of 20 m? per charging station,
and the total area occupied by the units is comparable to that of an EV, the total land use can be taken
as the summation of land utilization of a charging station [209]. Therefore, it can be concluded that
the hub occupies approximately the area of one charging pole, while a system made up of regular
charging poles takes up multiple times larger space, directly proportional to the number of stations.
Consequently, the use of a mobile system can also bring along a significant reduction in space use
while fulfilling the same charging tasks done by the traditional system.

Effect on Product Life

Product life can be described as the duration it takes to reach the end-of-life point of a critical compo-
nent in the system. In this case, this duration is mainly described by the capacity fade of the Li-ion
battery utilized. The batteries implemented in the system undergo several different cycles while they
get charged and discharged throughout the day. Different system parameters have considerable ef-
fects on the product life. These parameters can be listed as the number of batteries utilized and the
capacity of each battery. They have a direct effect on the total number of cycles the batteries undergo
daily, hence have a significant influence on the product life. On the other hand, some parameters
have indirect effects on the product life. These parameters can be listed as daily electricity prices and
grid capacity. Fundamentally, the combination of these determines the availability of energy arbitrage.
Even if these factors do not directly affect the degradation dynamics, they primarily determine how
much energy will be exchanged in a day. Therefore, as the price gap and the grid capacity allow more
energy arbitrage, the battery material becomes utilized more during the day.

The main factor defining the battery life is how much it is used throughout the day by any means
such as getting charged and discharged. Therefore, in a scenario where the price gap is suitable for
energy arbitrage, it is expected to see a lower product life due to the higher number of cycles. Otherwise,
when the batteries are solely used for charging EVs, the product sustains a longer service life. In this
case, grid capacity does not show a significant influence on the service life when it does not effectively
limit the amount of energy that can be sold. For example, in the Winter Scenario where the price gap
does not give a suitable position for energy arbitrage, the service life changes between 1 and 6 years
when 70% capacity retention is marked as the end-of-life point as mentioned in Section 4.1. The use
of this point is further elaborated in Section 4.3.3. Battery life plot depending on the battery capacity
for different numbers of batteries is plotted in Figure 4.14.
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Battery Life vs. Battery Capacity (50 kW, Winter)
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Figure 4.14: Battery Life in the Winter Scenario Depending on the Number of Batteries and the Battery Capacity with 50 kW
Grid Capacity

As shown in Figure 4.14, there is a direct correlation between the service life and the battery capac-
ity. A higher capacity brings along less cycling and more material to be degraded, therefore a longer
service life. Not surprisingly, implementing more batteries in the system allows the load to be shared
among different units and further increases the product life. As mentioned, due to the lack of prof-
itable buy and sell positions, no effective energy arbitrage is observed in this price scenario. Therefore,
further increasing the grid capacity does not exhibit a considerable influence on the service life. For
comparison, the battery life plot with 100 kW grid capacity is shown in Figure 4.15.

Battery Life vs. Battery Capacity (100 kW, Winter)
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Figure 4.15: Battery Life in the Winter Scenario Depending on the Number of Batteries and the Battery Capacity with 100 kW
Grid Capacity

As shown in Figure 4.14 and 4.15, increasing the grid capacity does not affect the service life
considerably since the batteries are only used for charging EVs in the Winter Scenario. Therefore, it
can be concluded that the service life of the batteries changes between around 1 and 6 years when
they are only used for EV charging. The higher end of this interval is reached by using 5 batteries in
the system with a large size of 400 kWh. Even if this decision seems like the best one to sustain a
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higher battery life, it is also important to note the costs associated with the size of the system, as well
as the public space occupation.

On the other hand, the summer prices allow the system to engage in energy arbitrage due to the
presence of zero prices. In this case, as the battery goes under more cycles, more capacity loss
occurs over time. This is simply because batteries are not only used for charging EVs but also to sell
electricity to the grid during peak demand hours to yield more. When the battery is also used in this
way to increase daily profits, a shorter battery life is experienced. A corresponding plot for the Summer
Scenario with 50 kW grid capacity is found in Figure 4.16.

Battery Life vs. Battery Capacity (50 kW, Summer)
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Figure 4.16: Battery Life in the Summer Scenario Depending on the Number of Batteries and the Battery Capacity with 50 kW
Grid Capacity

As shown in Figure 4.16, a slightly shorter battery life is exhibited in this case. It is important to
note that, the exchange between the grid and the system is primarily limited by the grid capacity in
this scenario. Therefore, it is expected to see even shorter product life when the system is allowed to
demand from or feed to the grid more. Even if it increases the daily profits, this brings along a significant
reduction in the years the system retains an adequate SoH. For example, battery life corresponding to
the Summer Scenario with 100 kW grid capacity is plotted in Figure 4.17.
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Battery Life vs. Battery Capacity (100 kW, Summer)
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Figure 4.17: Battery Life in the Summer Scenario Depending on the Number of Batteries and the Battery Capacity with 100 kW
Grid Capacity

As shown in Figure 4.17, this case presents the shortest battery life due to the large amount of daily
energy exchange between the system and the grid. At first glance, this enhanced exchange can be
very advantageous in terms of cash inflow, as the daily profit reaches up to around €538 as can be
seen from the previously shown plot in Figure 4.13. However, using the battery material at this high
rate also causes a significant reduction in the period in which the units can be used seamlessly. As a
consequence, even with the maximum system size of 5 batteries with 400 kWh capacity, the units can
maintain an adequate SoH for around 3.5 years. This duration is remarkably shorter when compared
to the scenarios where the units are mostly used for charging EVs, with limited engagement in energy
arbitrage.

4.3.3. Battery Degradation

To address the costs and benefits associated with energy trade activities between a battery and the
grid, it is essential to analyse how much the arbitrage damages the storage material. Due to the nature,
materials and chemistry of Li-ion batteries, a considerable loss in the overall capacity is observed over
time. This loss is affected by lots of different parameters such as the C-rate, temperature conditions,
and DoD of the battery. Furthermore, the purchase price of the batteries and the daily energy prices
also significantly influence the feasibility of energy arbitrage, as the overall profitability depends on com-
paring the daily price difference with the monetary expression of battery degradation. When factoring
in the cost of battery degradation from discharging and then charging later to compensate for the sold
energy, if this cost exceeds the price difference between buying and selling energy throughout the day,
energy arbitrage becomes a viable option. This ultimately boosts the system’s daily profit. Otherwise,
the system sacrifices a certain amount of capacity per transaction, which is meant to be bought to profit,
at the expense of a return, which is not enough to compensate for the ageing.

Linear Degradation Model
As mentioned, Li-ion battery degradation is dependent on different factors. These factors result in
primarily three different modes of degradation in terms of material loss. First, lithium ions can be lost
over time due to the parasitic reactions as a consequence of solid electrolyte interphase growth, planing
or decomposition. As those ions are lost over the composition of the mentioned structures, they will no
longer be available to cycle, resulting in a reduction in the battery capacity [20]. Furthermore, a portion
of active material used in the composition of anode and cathode can also be faded over time. Particle
cracking and decline in electrical contact can be listed among the primary causes of this phenomenon
[20].

As these loss mechanisms exhibit highly nonlinear and multidimensional behaviour, affected by
many different conditions, there is extensive research in the literature, deriving degradation models,
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testing batteries and analysing how much capacity is lost over time [74], [148], [22], [79]. These studies
and their findings under different C-Rate conditions are given in Table 4.3.

Study C-Rate Capacity Loss (kWh/kWh)

[74] 0.08C 0.00015
[148] 0.45C 0.000134
[22] 1C, 3C 0.0002 , 0.00023
[79] 4C, 0.5C 0.00013, 0.0001

Table 4.3: Summary of Battery Studies

In the designed system, the battery undergoes two different charging and discharging operations, ex-
hibiting different maximum power ratings and C-rates. One regards the exchange between the battery
and the grid, while the other considers the charging operation of EVs. Comparing these two different
operation modes, the maximum power is observed while the battery is used for charging an EV, with
a maximum of 175 kW of power. Because this power is drawn by one of the popular models like the
Tesla Model 3, the probability and frequency of achieving this high C-rate further increase [72]. On the
other hand, it is also important to note that this power rating is observed only for a short amount of
period. Figure 4.18 shows the charging profile for the corresponding model. The profile demonstrates
this high charging power is only drawn at SoC levels around 10% and gradually drops as the EV gets
further charged.

Tesla Model 3 Charging Profile
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Figure 4.18: Tesla Model 3 Charging Profile
[72]

According to the results, this discharging power requires the battery to operate at a maximum C-rate
between 1 and 0.5, when a battery capacity between 175 and 350 kWh is used to maximise the profits
while also considering the investment cost. Assuming an ideal temperature management system will
be implemented in the system, these rates correspond to a degradation value larger than 0.00015
kWh/kWh and lower than 0.0002 kWh/kWh, according to the results given in Table 4.3. Even if this
C-rate will not be observed continuously throughout the battery’s operational life, the frequency of this
discharge rate primarily depends on how frequently EV models with relatively higher power utilize the
charging service. As a consequence, a degradation rate of 0.000175 kWh, per charged and discharged
kWh of energy is assumed in the study.

Following this degradation rate, the cost of capacity loss to be used in the optimization problem can
be represented as a function of battery price when combined with the price function given in Equation
4.1. The resulting function is shown in Equation 4.25.

(170.69 - Q + 175.37)
Q

L(Q) = 0.000175 - $/kWh (4.25)
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Empirical Degradation Model

As introduced, battery degradation can be represented as a function of various factors such as the
C-rate, thermal maintenance and cycling behaviour. In fact, it is difficult to express the rate of capacity
fading with simple equations. There is extensive research going on to test the batteries under differ-
ent conditions and reproduce representative equations to model the loss mechanisms. As a linear
approximation of capacity loss is a simplified approach and the degradation is often far from exhibiting
linear behaviour, the accuracy of this approximation has to be investigated to verify the trustability of
the results.

To achieve the verification, an empirical battery model is taken into consideration and the results of
both estimations are compared. The empirical model identifies two different ageing mechanisms such
as cycling and calendar aging. Cycling ageing regards the loss of capacity while the battery is getting
charged and discharged while calendar ageing considers the capacity fading during the idle operation
where the battery stores the energy without any exchange [177], [178]. An extensive study develops
an empirical model whose accuracy is also tested and verified. The empirical equation developed by
the mentioned study to calculate calendar ageing, C.a, is given in Equation 4.26 while cycling ageing,
Ceyc, is given in Equation 4.27 [178].

Ocal =0.1723 - 60.()0738&800 ) tO.S (426)

Ccyc — 0.02] - ¢ 0-01943:S0Cayg | 5q0-7612  |1~0.5 (4.27)

In Equation 4.26, SoC represents the level where the constant idling is observed while ¢ is the
duration. On the other hand, in Equation 4.27, SoCa,y4 represents the average SoC of the battery cycle,
while nc is the number of cycles and cd denotes the depth of the corresponding cycle.

Furthermore, calendar ageing calculation is neglected in the calculations. There are two reasons
for that. First, calendar ageing becomes significant for systems where the idling periods are much more
frequent than charging or discharging periods while it is not the case for the studied charging system
[108]. Second, the time unit in Equation 4.26 is months while the idling behaviour only occurs in the
scale of minutes in the system. In addition, the linear degradation models consider tests where the
battery is exposed to charging and discharging cycles under a constant C-rate. Therefore, calendar
ageing is not also relevant for these models. Combining all of these, calendar ageing is found negligible
and therefore excluded from the battery life calculations. Moreover, to calculate the capacity fading
related to cycling, the output SoC curve of the batteries, taken from the optimization model is plugged
into the equations, to check if the linear and empirical models return similar results. The degradation of
battery cycling capacity arises from numerous cycles, each presenting varied characteristics in terms
of cd and SoCayg. To plug in the required terms indicated in the equations, and express the SoC
behaviour in terms of cycles, Rainflow Counting Algorithm is used. The Rainflow Counting Algorithm
operates by analyzing the state of charge (SoC) profile of the battery. It begins by detecting all the
local extreme points within the profile, then proceeds to establish the cycle depth and average state of
charge [167]. The algorithm exemplifies its functionality by extracting local extreme points from the SoC
profile, which are subsequently utilized to identify either full or half cycles [167]. Battery degradation can
be conceptualized as a material fatigue phenomenon rooted in stress cycles. Therefore, the rainflow
algorithm stands out as a widely used method for identifying cycles within material fatigue processes
and has seen widespread application in assessing battery degradation [167]. To calculate the terms to
plug into the empirical equations, a PyPi package named Rainflow 3.2.0 is utilized [154].

To compare the results obtained from two estimation methods, SoC data of different scenarios is
tested for comparison. For example, SoC data corresponding to 3 batteries with 210 kWh capacity and
50 kW grid capacity on a summer day is shown in Figure 4.19
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Battery SoC vs. Time
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Figure 4.19: State of Charge Data Corresponding to the Scenario with 3 Batteries, 210 kWh capacity and 50 kW Grid Capacity
in Summer

End of life point of the battery is mainly determined by the period it takes to retire the equipment.
70% of SoH can be accepted as the end-of-life point as this is often expressed as the lowest limit
of acceptance in the second life market in the literature [87], [24], [149]. It is also advantageous for
the business to keep using the purchased material as much as possible to postpone the replacement
process. Furthermore, regarding the fact that the batteries are cycled with an 80% DoD to limit the
fast degradation, 20% of the original capacity becomes unused. Moreover, as the system’s overall size
increases, it is observed that some batteries do not even use the entire 80%, as shown by the cycling
behaviour of Battery #1 and #2 in Figure 4.19, using almost 60% DoD. As a consequence of this limited
use of battery material, it can be concluded that a 30% fade in the overall capacity can still sustain the
same charging and discharging sequence and hence the same amount of profits. Lastly, this argument
can also be verified by choosing a size of at least 30% larger than the point where the daily profits
reach the plateau as shown in Figures 4.10, 4.11, 4.12 and 4.13. This selection ensures even if the
batteries lose 30% of their initial capacities, they can still return the maximum amount of profits which
can be achieved in a day under given conditions.

When 70% capacity retention is marked as the end-of-life point, overall product life under both
estimations is calculated. It is also important to note that the degradation rates are averaged bearing in
mind that the batteries can switch the tasks in a daily sequence. For example, the cycles that Battery
#1 undergoes in a day can be handed over to Battery #2 the day after. In this way, a homogeneous
degradation can be realised within the batteries, preventing a situation where one battery is heavily
used while others still sustain relatively higher SoH. As a result, the linear model returns 1.74 years of
product life until the point the batteries lose 30% of their capacities, while the empirical model returns it
as 1.71. When the results obtained from the two models are compared, the relative difference is found
to be 1.75%. Therefore, it can be concluded that the simplification by using linear estimation does not
influence the result considerably.

4.4. Comparative Financial Assessment

The results obtained from the optimization model should be processed further in order to assess the
mobile system’s financial performance and compare it to that of regular charging poles. This gives
valuable insights into how attractive the solution is from the investors’ perspective as well as how to
choose an effective system size. The costs associated with the individual systems are calculated
and compared, while also evaluating how much return can the systems yield. As a consequence, an
evaluation metric is utilized to highlight an ideal system size and configuration. This metric considers
the total amount of profits, investment costs, and the period it takes to earn that yield. As the total
profits the system can return are mainly dependent on the battery life, this metric inherently considers
the degradation, as well.
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4.41. Investment Cost

The amount of money that has to be invested in the system plays a critical role in attracting capital as
well as in setting a financially feasible and competitive investment plan compared to the charging poles.
As the considered mobile charging system can be developed in two different system configurations,
consisting of built-in or switchable batteries, the investment cost differs for each layout. To calculate a
realistic investment cost, the main components of the individual configurations have to be investigated,
as they have a direct effect on the amount of money that has to be invested.

Built-in Battery Configuration

Built-in battery configuration requires a heavy-duty robotic platform to carry onboard equipment. These
platforms support flexibility as they accommodate integrated sensors for autonomous operation, as well
as chassis and wheels suitable for heavy loads. Furthermore, a battery to fulfil the tasks is necessary.
To facilitate the desired operation, a DC/AC converter should be implemented to drive the motor as
well as a state-of-the-art charger which is primarily a DC/DC converter to charge the vehicles with high
power. Lastly, a robotic arm is necessary to realise the docking to the EV inlet, or the bridge connector
that can be located in the pavement. The general layout of the introduced configuration is shown in
Figure 4.20.

g
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Charger

Converter

Platform

Figure 4.20: General Layout of the Built-in Battery Configuration

Switchable Battery Configuration

Switchable battery configuration consists of two separate platforms, one for carrying the battery on
board and another for mobilizing it. The first one is almost the same as the one introduced in Built-in
Configuration, except for the absence of the motor, DC/AC converter and robotic arm. These compo-
nents are parts of the carrier robot as it is responsible for towing the battery platform to the designated
parking lot or the hub. To realise the stand-alone operation of the carrier robot, a small battery has to
be installed, while the energy required for the travel can be sourced by the larger battery in other cases.
The general layout of this configuration is illustrated in Figure 2.14.
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Figure 4.21: General Layout of the Switchable Battery Configuration

Another alternative docking mechanism can also be realised by using a much larger carrier robot
platform and attaching or detaching the main battery on it as introduced in Section 2.2 and shown in
Figure 2.14 [16]. This requires the batteries to be stored on shelves or designated spaces in the hub.
However in this case an autonomous robotic mechanism is required to detach the battery from the
robot and lift it to the charging port in the hub. Considering how heavy the batteries are an advanced
mechanism which can control heavy loads precisely is necessary. Consequently, this further increases
the money that has to be invested in the system. On the other hand, a quick-release mechanism can do
the task requiring a much lower investment, acting as a dock to couple the carrier and the main battery
while still facilitating the use of large batteries. In this way, the down times can also be minimised due
to the easiness of the switching operation. For these reasons, a switchable configuration where this
quick-release mechanism is studied instead of the one with battery shelves.

Total Cost of Mobile Charging System

The total cost of the system differs for each configuration as the number of units and components vary
for the built-in and switchable battery layouts. As a consequence of market research, the prices of the
components with the required specifications are found. They are listed in the following Bill of Materials
Table 4.4. LiFePO, battery prices differ for battery capacity and therefore can be derived depending
on battery capacity using the price function in Equation 4.1.

Table 4.4: Bill of Materials for Built-in and Switchable Battery Configurations

Built-in Battery Configuration
Unit Type Component Name Cost
LiFePO, Battery See 4.6
DC/AC Converter $321
. . Motor $200
Main Unit Heavy Duty Robot Platform | $10,000
Robotic Arm $30,000
Onboard Charger $11,600
Switchable Battery Configuration
Unit Type Component Name Cost
LiFePO, Battery See 4.6
Battery Unit | Heavy Duty Robot Platform | $10,000
Onboard Charger $11,600
LiFePO, Battery (10 kWh) $1,882
Lighter Duty Robot Platform | $3,500
Carrier Unit | Motor $200
DC/AC Converter $321
Robotic Arm $30,000

Following the costs given in Table 4.4, the total cost function for each system is derived as a function
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of the battery capacity, @, and the number of units, N. For built-in configuration, the total cost of the
system can be calculated as shown in Equation 4.28.

Chuitt—in(Q, N) = (52,121 + 170.69 - Q + 175.37) - N (4.28)

On the other hand, the total cost function for the switchable configuration can be expressed as a
function of the battery capacity, O, the number of battery units, IV, and carrier units, N.. The function
is shown in Equation 4.29

Cwitehavie (@, Noy, Ny) = (35,903 - N) + (21,600 + 170.69 - Q + 175.37) - N, (4.29)

To verify the accuracy of price estimation, some example pricing approaches followed in the litera-
ture are evaluated. In particular, it is found that when a built-in configuration is used, some studies point
out an investment cost of $55,000, excluding the battery cost [111]. Meanwhile, the pricing scheme in
Table 4.4 and the consequent cost function in Equation 4.28 calculate an investment cost of $52,121.
Furthermore, the same study estimates a full unit cost of $100,000 for 225 kWh storage, while the cost
function calculates it as $90,701 [111]. As a result, it can be concluded that the cost function returns
close values when compared to the values in the literature, but this cost is lower. At this point, it is
expected because the study was conducted in 2019, hence regards higher component costs. Funda-
mentally, this difference is a result of economies of scale, due to the increase in supply and demand
for batteries and semiconductor materials, triggering a price drop over the years. It is also important
to note that the same study does not take into account the difference in price per kWh with increasing
capacity and rather accepts a constant cost, which does not change with the capacity.

Moreover, additional costs are also associated with the equipment utilized in the hub, allowing the
bidirectional flow of energy. In this case, it is necessary to use a conversion topology functioning bidirec-
tionally to charge the batteries and feed the energy back to the grid when required. As a consequence
of market research, it is found that bidirectional EV fast chargers allowing V2G functionality can be
used for the task. These chargers couple with the grid to be fed by AC from the network side and carry
out a rectification process to charge the EV with DC electricity. In case an opposite flow takes place,
the implemented topology converts DC to AC to sell to the grid. Furthermore, this kind of converter
also includes galvanic isolation to ensure safety. It is further reported that these converters can be
used as aggregates in parallel to build up higher power varying between 5 kW and 200 kW. Following
this, the hardware cost associated with the battery chargers can be calculated as $11,925 for 50 kW
and $23,850 for 100 kW configurations. It is also important to note that 100 kW infrastructure may also
require additional costs due to the necessity of a more advanced transformer as mentioned in Section
4.4 1. Installation costs are also a part of the investment scheme. However, as the operation taking
place in the hub is similar to what happens in a regular charging station, installation costs associated
with charging poles can be taken as a reference to estimate the installation cost of the hub. As Level 2
charging infrastructure mainly covers power ratings up to around 20 kW, the installation cost of 50 kW
infrastructure can be considered higher than what is required for this type of station [83]. Furthermore,
as this power rating is close to what is offered by Level 1 DC charging infrastructure in SAE Standard,
the cost value can be taken as an expenditure close to the lower limit of the intervals introduced in
Section 4.4.1, $10,000 [140], [83]. When this value is taken, it is concluded that the total cost associ-
ated with the charging system in the hub falls within the cost intervals reported in the literature [140],
[39]. This installation cost can be taken as $37,500 for 100 kW grid capacity, as the rating falls within
what is provided by the DC fast charging stations. It is important to note that this value is the average
installation cost value used for DC charging poles in Section 4.4.1. Following the costs given, the sum
of hardware and installation costs can be calculated for 50 kW and 100 kW grid capacity as $21,925
and $61,350, respectively.

Total Cost of Regular Charging Poles

To compare the investment costs related to the mobile charging system with charging poles, different
price data are analysed. It is further acknowledged that the costs associated with instalment of a
charging pole mainly consist of equipment costs, installation costs and area costs. A study assumes a
fast charging station cost of $163,000, with a land use cost of 407$/m?. Furthermore, it is reported that
installing the charging station requires 20 m? land area, and purchasing the parking lot costs $23,500.
The study further emphasizes a distribution line cost of 120 $/(kVA km), and a substation expansion
cost of 788 $/kVA [209].
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Furthermore, another study underscores a DC charger hardware cost of $32,023 and an AC charger
cost of $6,404-9,607, considering only the equipment costs [184].

Another study presents an acquisition cost for the EV charging station of a minimum of $14,000 and
a maximum of $91,000 with an average of $52,500 for DC fast chargers [39].

In addition, the International Council On Clean Transportation calculates the costs associated with
installing charging stations in the United States. The hardware costs stated in the report differ for
charging station type. In detail, it highlights $3,127 for an AC Level 2 charging station, $28,401 for a 50
kW and $75,000 for a 150 kW DC charging station. Furthermore, it announces an average of $3,492
of the installation cost for Level 2 charging stations, $45,506 for 50 kW and $47,781 for 150 kW DC
charging stations [141].

Lastly, the U.S. Department of Energy remarks a hardware cost between $400 and $6,500 for Level
2 AC chargers and $10,000 to $40,000 for DC fast chargers. The report further mentions installment
costs between $600 - $12,700 for Level 2 chargers, and $4,000-51,000 for DC fast chargers [140].

To verify the findings, market research is also conducted. As a result, it is concluded that hard-
ware costs are between $1,950 and $3,000 for a Level 2 charger and $40,000 and $100,000 for a DC
fast charger. Additionally, around $6,000 installation costs for Level 2 and $15,000 to $60,000 can
be reported for fast chargers, depending on the transformer requirement. As a consequence, costs
associated with AC and DC charging stations, C'4¢ and Cp¢, in terms of hardware costs, Cy, and
instalment costs C7, can be calculated as shown in Equation 4.30 and 4.31 as a function of the number
of stations, Na¢ and Np¢, by taking the average values.

CAC(NAC):(OHAC+CIAC)'NAC:8475'NAC (430)

Cpc(Npe) = (Cupe + Crpe) - Npe = 107500 - Npe (4.31)

4.4.2. Profitability Analysis

This section analyses the profitability of systems made up of mobile charging robots and regular charg-
ing poles to assess the financial viability of the system. It mainly evaluates the system by using financial
metrics to question its attractiveness from the investors’ perspective.

Profits of the Charging Poles

Regular charging poles act as a bridge between EVs and the grid, buying the energy instantaneously
from the grid to sell it to drivers. In this case, as they lack an effective storage system which can be
charged up with cheap electricity during low demand to reduce the purchase costs, its profitability per
transaction also depends on the arrival time of a vehicle. If it conducts a charging operation at peak
demand hours when the electricity prices are much higher, then the system earns less from a charging
process. Therefore, the daily profit of the system is mainly the charging revenues subtracted from the
purchase costs. In this case, the system’s profits, revenues and costs corresponding to different price
scenarios are given in Table 4.5. In detall, it is found that the current rates offered for AC and DC
charging in the Netherlands are 0.4 €/kWh and 0.69 €/kWh according to two popular service providers,
respectively [193],[75]. When these rates and given electricity prices in each different scenario are
applied to the charging load data, the profitability of the system is calculated and shown in Table 4.5.

Table 4.5: Comparison and Breakdown of Charging Station Revenues

Scenario Revenue of Charging (€) Cost of Electricity (€) Daily Profit (€) Yearly Profit (€)

Winter 345.18 67.99 27719 101,174.35
Summer 345.18 7.8 337.38 123,143.7
Extreme 345.18 192.99 152.19 55,549.35

Profits of the Mobile System

When a mobile charging system is offered to the drivers, it is assumed that the pricing of the service
should not be as low as a standard AC charging rate due to improved convenience, higher investment
in the system and faster charging. However, to realise a competitive business, the system could offer
the service for a cheaper rate than some of the comparable services, such as DC charging, to attract
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customers. Therefore, asking for a rate of 0.65€/kWh could pull the drivers who generally use AC charg-
ing outside due to the ease of use and convenience of the system and DC chargers as a consequence
of the possibility of achieving the same charging speed in a more user-friendly and cheaper way. It is
important to note that this rate is also equal to the price asked by one of the largest charging network
operators in Europe, and 13.3% cheaper than the average cost of DC recharging in the Netherlands
announced by European Alternative Fuels Observatory [11], [55]. In this case, revenues coming from
charging EVs, and selling electricity to the grid as well as the cost of purchasing electricity from the grid
are shown in Table 4.6 for each electricity price and grid capacity scenario.

Table 4.6: Comparison and Breakdown of Mobile System Revenues for Different Grid Capacities

Scenario 50 kW Grid Capacity 100 kW Grid Capacity
Revenue of Revenue of Costof Elec- Revenue of Revenue of Cost of Elec-
Charging (€) Energy Arbi- tricity (€) Charging (€) Energy Arbi- tricity (€)
trage (€) trage
Winter 486.67 0.19 62.25 486.67 0.39 49.65
Summer 486.67 6.25 2.45 486.67 51.86 0.86
Extreme 486.67 1.45 2253 486.67 130.69 290.35

According to the results shown in Table 4.6, it can be concluded that the cost of purchasing electricity
is the lowest in the Summer Scenario, due to the abundance of cheap electricity. Furthermore, it can
be noted that this cost is reduced even further when a higher grid capacity of 100 kW is used due
to the increased flexibility of buying. Similarly, the effect of flexibility is also evident in the revenue
values earned by energy arbitrage. As the system is allowed to buy cheap and sell expensive energy,
the return of energy arbitrage increases significantly. Especially in the Summer Scenario, where the
price gap exhibits lots of profitable positions for energy arbitrage, the system can return 7.29 times
more revenue only regarding the sales to the grid. However, it is also important to remember that it
only improves the daily profit by 9.7% as the main revenue source of the system is charging EVs, as
discussed in Section 4.3.2. Processing the revenue and cost values shown in Table 4.6, daily and
yearly profits of the scenarios can be calculated. Results are shown in Table 4.7.

Table 4.7: Comparison and Breakdown of Mobile System Profits for Different Grid Capacities

Scenario 50 kW Grid Capacity 100 kW Grid Capacity
Daily Profit (€) Yearly Profit (€) Daily Profit (€) Yearly Profit (€)
Winter 424.61 154,982.65 437.41 159,654.65
Summer 490.47 179,021.55 537.67 196,249.55
Extreme 262.82 95,929.3 327.01 119,358.65

As can be seen in Table 4.7, mobile charging systems can yield significant profits. Especially com-
pared to the profits earned by regular charging poles, listed in Table 4.5, yearly profit improvement of
45.4%-59.36% in Summer, 53.2%-57.8% in Winter can be achieved depending on the grid capacity
the system is allowed to benefit from. Lastly, despite expensive electricity prices, the system can still
obtain higher profits compared to the charging poles in the extreme scenario. In this scenario, profits
are lowest because of higher average electricity prices and more frequent overlaps between costly
price periods and times when the system charges for the next day’s operation. However, the mobile
system’s advantage in daily profits can be maintained, even with significantly higher electricity prices
and volatility.

4.4.3. Investment Decision

When the results of both systems are evaluated, an investment decision can be made. This conclusion
should consider how much profit the system can make in each scenario, the amount of money that
has to be invested in the system to realise this profit, and how many years the system will sustain this
return before the batteries reach their end-of-life points. Regarding those parameters, various financial
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evaluation metrics can judge the system’s performance, such as Net Present Value and Return on
Investment. However, when these parameters are used, it is concluded that the final result will be
very biased on the product life. As the life of the batteries continuously increases as the system’s size
increases, as shown in Figures 4.14, 4.15, 4.16, 4.17, the net present value and return on investment
values also continuously increase because the batteries have more years ahead to sustain profits.
However, it is also observed that, after a certain point, increasing the size of the system does not
improve the daily profits. Therefore, after that point, further increasing the capacity is oversizing the
system only to increase the battery life. At first glance, this looks like an advantageous way to deploy a
system to realise the longest amount of time horizon to return steady profits. However, a critical point
emerges related to this decision. First, it should be noted that oversizing the system brings about a
much higher initial investment. This higher investment results in a long-living system with solid profits,
therefore increasing the total amount of money that will be earned until the batteries wear out. On the
other hand, it also results in a longer investment horizon, decreasing the return on investment per year.
Therefore, not only the total amount of profits and investment costs but also the period it takes to earn
the invested amount has to be taken into consideration. In this case, the period can be taken as a fixed
period, such as a year, to evaluate the portion of the investment the system will return in that time. This
way helps investors compare the efficiency of different investments and understand how quickly they
are earning returns relative to the time invested.

The investment cost of the system consisting of regular charging poles can be calculated by the
cost function given in Equation 4.30 and 4.31. Utilizing the functions, for a system consisting of 14
AC charging poles and 2 DC charging poles, the total investment cost can be calculated as $333,650,
considering the hardware and installation costs.

For the mobile system with built-in batteries, the calculation of the investment cost is also straightfor-
ward by using the cost function given in Equation 4.28. In this case, the number of units is the number
of robots with installed batteries. However, this investment cost can be further reduced by realising a
switchable system. In this case, the number of battery units is the same as that input for the built-in sys-
tem. However, the number of carrier units can be less than the number of battery units. As the carrier
units are only used to pick up the batteries when they are in a stationary position and take them to the
next duty location, the number of carriers should not necessarily be equal to the number of batteries. In
fact, it might be possible to manage 3 batteries with only 2 carrier units, which could bring a significant
reduction in the investment cost while the system can maintain the same amount of profits. At this
time, the question becomes how many batteries travel around the parking place at a time. After this,
when one carrier unit per battery is implemented in the system, how effectively will robots be used? If
the frequency of the instances where all of the batteries are travelling is rather low, that points out an
ineffective use of robots and an overbought number of carrier units. Therefore, the number of robots
can be further reduced to decrease the total investment in the system with minimal or no reduction in
daily profits.

In order to address this question, travelling times in every scenario are evaluated. The objective of
the evaluation is to analyze the circulation patterns of battery units in the system with different numbers
of batteries utilized and to understand how frequently different numbers of battery units are simultane-
ously circulating within the system.

In this case, when 3 batteries are implemented in the system, it is found that for almost 75% of the
time, the batteries are in a stationary position, either at the hub or the parking lot. Furthermore, for
almost 20% of the time, only one battery travels around the designated area while, for 4.63% of the
time, two of them travel at the same time. These frequencies are plotted in Figure 4.22.
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Figure 4.22: Relative Frequency of Simultaneously Travelling Batteries in the System with 3 Batteries
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According to the plot in Figure 4.22, when 3 batteries are implemented in the system, having 2
carrier units instead of 3 can still meet 99.64% of the travel requirements. Furthermore, this percentage
is even lower when considering that the analysis realizes 5 minutes of time steps and in fact, it takes
less amount of time for the robot to complete the driving cycle. Therefore, it can be concluded that
the number of carrier units can be reduced to 2 to further minimize the investment costs without any
significant service disruption. In this way, the system can maintain the same amount of profits with
more efficient use of the invested units.

Moreover, the frequency of travel values corresponding to the scenario with 4 robots is shown in

Figure 4.23.
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As shown in Figure 4.23, implementing 3 carrier units to support the travel requirements of 4 bat-
teries can fulfil 99.9% of the batteries in circulation. Again, the effect of the service disruption will be
even less in reality due to the sensitivity of the model. Therefore, it can be concluded that 3 carrier
robots can support the convenience of the system with minimal service disruptions and bring about
lower investment costs.

Lastly, the frequency of concurrent travels for the system with 5 batteries is plotted in Figure 4.24.
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Figure 4.24: Relative Frequency of Simultaneously Travelling Batteries in the System with 5 Batteries

According to the plot in Figure 4.24, having 3 carrier robots in the system can fulfil 99.9% of the
travelling requirements, supporting the batteries in the instances where they are required to travel
around the parking facility. Furthermore, it would be an ineffective use of investment to buy 5 robots
as the frequency of instances where 5 of the batteries are in circulation is 0. This would cause the
fifth robot implemented in the system to be non-used even if it is implemented, bringing along a very
inefficient valuation of investment and public space.

All'in all, it can be concluded that 2 carrier robots are sufficient for a scenario with 3 batteries, while
3 robots are needed for scenarios with 4 and 5 batteries. In this way, an effective reduction in the
investment requirements and public use can be carried out. It can also be noted that the formulated
optimization problem returns a scenario which aims to maximize the daily return of the system, without
paying attention to how many concurrent travels are taking place. Therefore, these numbers can even
be minimized further in sub-optimal solutions which can sacrifice a small portion of profits to reduce the
number of batteries in circulation at the same time to decrease the investment costs.

Taking this analysis into account, the total amount of initial investment required for the realisation
of the mobile system for each configuration can be calculated and plotted as a function of the battery
capacity for each different configuration in Figure 4.25. As different hardware and installation costs are
associated with various grid capacity values, the initial investment costs are also distinguished for 50
and 100 kW configurations.
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Figure 4.25: Initial Investment Cost Associated with Different Configurations as a Function of Battery Capacity

As shown in Figure 4.25, the reduction in initial investment cost due to the use of a switchable
system is evident. In particular, this reduction becomes much more clear with respect to a larger
number of battery units. Decoupling the travel freedom of the robot from the main unit, this configuration
significantly decreases the hardware costs, revealing an attractive solution for investors. Furthermore,
it can also be observed that for some different combinations of unit numbers and battery capacity, the
resulting initial investment cost corresponding to the mobile charging system can outperform regular
charging pole systems. For example, using 3 built-in or switchable batteries with 50 or 100 kW grid
capacity can set a more attractive solution in terms of initial investment. However, this cost can also
be reduced further by employing lower grid capacity and switchable configuration as this combination
requires the least amount of investment.

To distinguish the most efficient sizing, yearly return on investment (ROI) values are calculated for
each number of battery units considered and individual battery capacities considering a switchable con-
figuration due to their lower initial investment costs. This calculation process is repeated over different
price and grid capacity scenarios. For each price scenario, it is assumed that the system will sustain
earning the same amount of daily profits until it reaches the end-of-life point presented in Section 4.3.2.
As soon as it reaches the minimum capacity retention, it is further assumed that the battery units will
be sold at the second life market for the price mentioned in Section 4.1. As a consequence, obtained
yearly ROI plots are given in Figures 4.26, 4.27, 4.28, 4.29.
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Figure 4.26: Yearly Return on Investment Plot of Switchable Configuration varying with Different Number of Units and Battery

Capacities in Winter Scenario with 50 kW Grid Capacity

As shown in Figure 4.26, the highest yearly ROI is reached with 3 batteries installed, due to the
reduction in the initial investments. Yearly ROl reaches 26.2% when 270 kWh battery capacity is used
and after that point, further increasing the capacity only brings along around 0.7% improvement. In
addition, this improvement is realised when the capacity is increased further by 70 kWh, just before a
slightly decreasing trend starts due to overinvestment.
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Furthermore, as it is shown in Figure 4.27, a slightly higher ROI of around 28% can be achieved
around 270 kWh, when the grid capacity increases up to 100 kW. This slight improvement is due to
the more flexible purchases and related lower cost of purchasing electricity. After this point, further

oversizing the capacity by 70 kWh only improves yearly ROI by 0.5% before it starts dropping.
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Figure 4.28: Yearly Return on Investment Plot of Switchable Configuration varying with Different Number of Units and Battery
Capacities in Summer Scenario with 50 kW Grid Capacity

On the other hand, zero prices observed in Summer can further improve the financial performance
of the system, as can be seen in Figure 4.28. In this Summer Scenario with 50 kW grid capacity, 3
batteries with 270 kWh capacity can make the system achieve a yearly ROI of around 33.3%. Further
increasing the capacity by 20 kWh increases this number by only 0.12%, followed by a decreasing
trend.
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Figure 4.29: Yearly Return on Investment Plot of Switchable Configuration varying with Different Number of Units and Battery
Capacities in Summer Scenario with 100 kW Grid Capacity

Lastly, the system can achieve a maximum annual ROI of 24.36% when 3 batteries are equipped
in Summer and grid capacity is 100 kW. In detail, this value is the smallest when compared to the other
peak values obtained in the other scenarios. On the other hand, this scenario is the one returning
the highest amount of daily profits due to the excessive rate of energy arbitrage. The primary reason
behind this finding is that even in the best-case scenario, the system buys energy at the cheapest price
to be sold at the peak price in Summer, the maximum profit that can be earned is around 0.11€/kWh,
without considering battery degradation. However, when the same amount of energy is purely used
for charging EVs at a rate of 0.65€/kWh, this transaction becomes more profitable for the system. By
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discharging the same amount of energy, batteries lose a portion of their capacity at the expense of
making profits. When this portion of the capacity is only or mostly sacrificed for earning 0.65€/kWh
throughout the battery’s product life, then the system yields more returns bringing along a higher yearly
ROI. Therefore, a lower value of ROI is achieved when the battery is used more for energy arbitrage,
which is less profitable than charging EVs in a broader perspective. Even if this conclusion points
out that energy arbitrage may not be very beneficial in terms of profits, it is also important to note its
advantages to the grid. In addition, it is another source of profit which is increasing the daily profits, and
hence decreasing the payback period of the system, even though in a longer time horizon, it causes
the precious capacity of the batteries which can possibly serve EVs to fade.

Analysing the system’s profits, investment costs and lifetime values, a decision can be made to
highlight an effectively sized mobile system. First, the advantages and disadvantages associated with
the grid capacity can be interpreted by evaluating the data presented. It can be concluded that the
profits can only increase by 9.7% in Summer and 3% in Winter when 100 kW grid capacity is used
at the expense of sacrificing peak reduction, as shown in Section 4.3.2. Furthermore, the system will
live and operate for a shorter amount of time due to more energy arbitrage as explained in Section
4.3.2. Moreover, in the long term, it is shown that using the battery material heavily for grid arbitrage
is not a good financial strategy instead of keeping it for the charging operations. That is why the yearly
ROl of the system with 100 kW grid capacity is the lowest in Summer, while the improvement is limited
by 1.6% in Winter due to the lack of energy arbitrage. With a smaller grid capacity, the system can
sustain a longer product life by around 52% on average, effectively reducing peak demand by 73%
by sacrificing only a small portion of its daily profits. Lastly, it is also important to note that the grid
capacity significantly affects the cost of installing the required hub to accommodate the mobile units,
as explained in Section 4.4.1. It can be noted that higher grid capacity results in a 2.88 times higher
spending on the hub instalment, primarily due to increased hardware and installation costs. In light of
these results, the advantages of higher grid capacity, which are only observed as a slight increase in
daily profits, do not outweigh the associated disadvantages. Therefore, using a 50 kW grid capacity
can be highlighted as a better strategy.

Next, a switchable configuration of the mobile system made up of 3 battery units, which are smaller
than 344.8 kWh each, can appear as a more attractive solution in terms of initial investment, as shown
in Figure 4.25. For example, compared to a mobile system with 270 kWh of battery capacity, regular
charging poles require almost 13% more initial investment to fulfil the same charging operations. The
same figure also demonstrates how the costs can be minimised by employing a switchable configura-
tion. Therefore, choosing a switchable system size smaller than 344.8 kWh can demonstrate a more
attractive solution for the investors. Furthermore, as a consequence of the yearly ROl analysis shown in
Figures 4.26, 4.27, 4.28, 4.29, it is also noted that increasing the battery capacity further than 270 kWh
has only limited improvement on the financial performance while increasing the initial investment costs
and size of the system notable. Therefore, oversizing the system to obtain a slightly higher yearly ROI
could cause this leverage of initial cost to fade away. On the other hand, choosing the maximum yearly
ROI point of 340 kWh can bring along longer service life, by 25.56% on average. As a consequence,
the system can yield more returns until the batteries reach the end-of-life point. Financial performance
parameters of the system with these two configurations, including also the costs associated with the
hub, are shown in Table 4.8 for comparison to regular charging poles. At this point, the service life
of the charging poles is taken as 10 years [111]. Furthermore, a yearly operation and maintenance
cost of $400 per charger is applied as reported by Alternative Fuels Data Center [188]. This yearly
maintenance cost is also considered in the mobile system as it is required for the charger in the hub
[188].
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Mobile System with Switchable Batteries
Scenario | Capacity | Product Total Revenue Earned | Profit Earned
(kWh) Life (Year) | Investment (€) | until until
End-of-Life (€) End-of-Life (€)
Winter 270 2.398 271,430.46 407,791.58 136,361.13
Winter 340 3.02 304,275.41 513,409.96 209,134.55
Summer | 270 2.247 271,375.52 438,149.33 166,773.81
Summer | 340 2.81 304,200.58 549,366.63 245,166.05
Charging Poles
Winter - 10 361,861.5 1,011,743.5 649,882
Summer | - 10 361,861.5 1,231,437 869,575.5

Table 4.8: Comparison of Costs and Profits of Mobile Systems and Regular Charging Poles

As shown in Table 4.8, the mobile system has a considerably shorter period of service life when
compared to the charging poles due to capacity loss, even though the initial investment cost could be
reduced. This shorter life causes the total revenues to be less as it limits the number of years that
relatively higher daily profits are sustained. On the other hand, even though charging poles can yield
higher revenue and profits, those returns are obtained at the end of a long period such as 10 years.
This also brings along an investment risk. As the lifetime of the charging poles is taken as 10 years, a
significant amount of money is invested, expecting that this trend will sustain throughout this long period.
Meanwhile, a disruptive technology or event might develop, reducing the interest in such systems or
increasing the associated costs. When the mobile system is used, the investors have the opportunity to
revise the investment decision due to the reinvestment period of batteries in 2-3 years, while acquiring
almost the same or higher yearly profits they earn by charging poles. In this way, the investors are
also provided with the flexibility of redeployment to another location much more easily since the only
stationary part is the charger installed in the hub. Also, they are given the opportunity to decide to no
longer invest in the system after this short amount of time. Otherwise, the investment is locked for 10
years while expecting that it will sustain the same profitability and the purchased system can not be
redeployed easily.

It is important to note that the expenditures related to the hub are one-time costs that have to be
invested. Therefore, it can be said that the system requires a reinvestment period due to the replace-
ment of batteries. In this case, this replacement cost only considers the batteries hence much lower
than the initial investment, since other equipment such as the motor and chargers can be used for a
longer time. In this case, the replacement cost is equal to €126,294.36 for a 270 kWh system and
€158,913.22 for 340 kWh. The total amount of money invested in the system, resulting cumulative
service life and total cumulative returns at the end of each re-investment period are given in Tables 4.9,
4.10 and 4.11. This reinvestment considers the repurchase of the batteries to replace the old ones at
the end of their service life after they are sold in the second-life market. Therefore, as a consequence
of the reinvestment, the total service life proportionally increases.

Mobile System with Switchable Batteries
Scenario | Capacity | Service Total Total Total
(kWh) Life (Years) | Investment (€) | Revenue (€) | Profit (€)
Winter 270 4.80 398,597.70 815,583.17 416,985.47
Winter 340 6.04 464,287.61 1,026,819.92 | 562,532.31
Summer | 270 4.49 398,487.83 876,298.65 477,810.83
Summer | 340 5.63 464,137.95 1,098,733.25 | 634,595.30

Table 4.9: Summary of Investment and Returns by the End of Reinvestment Period 1
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Mobile System with Switchable Batteries
Scenario | Capacity | Service Total Total Total
(kWh) Life (Years) | Investment (€) | Revenue (€) | Profit (€)
Winter 270 7.19 525,764.95 1,223,374.76 | 697,609.81
Winter 340 9.06 624,299.81 1,540,229.88 | 915,930.07
Summer | 270 6.74 525,600.14 1,314,447.98 | 788,847.84
Summer | 340 8.44 624,075.32 1,648,099.88 | 1,024,024.56

Table 4.10: Summary of Investment and Returns by the End of Reinvestment Period 2

Mobile System with Switchable Batteries
Scenario | Capacity | Service Total Total Total
(kWh) Life (Years) | Investment (€) | Revenue (€) | Profit (€)
Winter 270 9.59 652,932.19 1,631,166.34 | 978,234.15
Winter 340 12.07 784,312.01 2,053,639.84 | 1,269,327.83
Summer | 270 8.99 652,712.44 1,752,597.31 | 1,099,884.86
Summer | 340 11.25 784,012.68 2,197,466.5 | 1,413,453.82

Table 4.11: Summary of Investment and Returns by the End of Reinvestment Period 3

In accordance with the results given in Tables 4.9, 4.10 and 4.11, lifetime of the mobile system
can be increased up to a comparable level to the regular charging poles as a consequence of battery
replacements. Especially, at the end of the second and third reinvestment periods, this period appears
very close to the charging poles, revealing around 7 to 12 years of operation. As shown in the table,
even though the mobile system requires more total amount of investment to achieve a comparable
operation period, it can also return notably higher profits than what is acquired by the charging poles.
For example, a 270 kWh system requires 1.8 times higher investment while returning 1.51 to 1.26 times
higher profits in the third round of reinvestment. Furthermore, these higher profits are achieved in a
shorter period, when compared to the charging poles, highlighting that the mobile system can return
more profits per year. Therefore, in terms of yearly return, the mobile system appears as a better
choice than the regular charging poles, while it requires more investment over the course of years.
On the other hand, further oversizing the capacity up to 340 kWh, very close operation durations can
be achieved at the end of the second reinvestment. In this case, by investing 1.73 times higher, the
investors can earn 1.41 to 1.18 times higher profits than regular charging poles, in a shorter amount of
time. These numbers are further improved by the third reinvestment. However, it is important to note
that this results in very high operation period values such as 11 to 12 years, which again might bring
along investment risks due to uncertainties.

Allin all, the 270 kWh system can give investors more flexibility. With the help of this, the total cost of
investment is paid in four instalments which are the decision periods of investment. As a consequence
of the varying parameters, the investors are given the choice of not reinvesting or redeployment, while
obtaining almost 40.7 to 57% higher yearly profits compared to the charging poles, depending on the
scenario. This number can be improved slightly up to 44.5 to 61.82% when 340 kWh batteries are used,
regarding the end of the third investment round. However, in terms of yearly profits, this configuration
only brings along an average yearly profit improvement of 2.85%, compared to the 270 kWh config-
uration. Meanwhile, using that configuration requires around 20% more investment considering the
end of the third investment round, even though realising more operation life. Therefore, for investors
looking for a more compact system with less investment cost per round while still not compromising
the maximum yearly returns significantly, the 270 kWh system appears as a remarkable choice. On
the other hand, if the service area is suitable for larger units, and the investors are looking to maximize
the yearly return at all costs, the 340 kWh system can appear as the best choice.

4.5. System's Performance Under Private Charging Load

The analysis is also repeated to assess the system’s performance under private charging demand.
In particular, this charging demand mainly represents the people who can not access a private home
charger and hence need to charge their vehicles using the public infrastructure. Therefore, the demand
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schedule typically corresponds to private charging demand as this load demonstrates the use of the
service located at residential locations. To achieve this, the demand data obtained by the sampling
algorithm is used. This charging demand is presented in Figure 3.7, in Section 3.2. As this charging
demand has a different peak value, total energy demand and different arrival times, its performance is
investigated to reveal the effect of these factors in the final solution.

As the system’s performance is analysed with two different grid capacity values, 50 and 100 kW,
peak demand reduction performance also differs accordingly. In this case, using 50 kW capacity can
bring along around 59% peak reduction, while it is around 18% with 100 kW capacity. These numbers
are higher for public and workspace demand scenarios due to the presence of DC charging operations
contributing to peak demand.

4.5.1. Profitability Analysis

For this particular scenario, again the effect of system size on the daily profits is investigated. To
achieve this goal, daily profits that can be earned in a day when different numbers of units and battery
capacities are used are simulated. As it is done in the public and workspace demand scenario, the
analysis is repeated for different grid capacities to see how much the system can benefit from more
flexibility.

Daily profits of the system in the Winter Scenario with 50 kW grid capacity are given in Figure 4.30.
According to the results, oversizing the system can improve profits by approximately 0.4%. Especially,
after 210 kWh battery capacity, the profit values do not vary considerably, and stay constant around
€473.6.
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Figure 4.30: Daily Profits Plot in Winter Scenario with 50 kW Grid Capacity under Private Charging Load

On the other hand, when a higher grid capacity of up to 100 kW is used, oversizing the system
affects the maximum profits by only around 2.9%. Profit values are capped at around €487.3 in this
scenario, and increasing the battery size beyond 260 kWh has a limited effect on the return. The profit
values are plotted in Figure 4.31.
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Daily Profits in Winter Scenario (100 kW)
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Figure 4.31: Daily Profits Plot in Winter Scenario with 100 kW Grid Capacity under Private Charging Load

As expected, the Summer Scenario yields more due to the cheaper prices and the presence of free
electricity. In this case, the profit of the system is capped at around €540, when 50 kW grid capacity
is used. This brings along an improvement of 14.22% when compared to the Winter Scenario with the
same grid capacity. This maximum profit value is achieved at a battery capacity value of 170 kWh with
5 batteries, 210 kWh with 4 batteries or 310 kWh with 3 batteries. The daily profit plot corresponding
to this scenario is given in Figure 4.32.
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Figure 4.32: Daily Profits Plot in Summer Scenario with 50 kW Grid Capacity under Private Charging Load

Lastly, further increasing the grid capacity up to 100 kW yields a much higher amount of profits. This
value is capped at around €596.2, as shown in Figure 4.33. This value expresses a 10.2% improvement
in profits when compared to the scenario with 50 kW. However, this value can only be achieved when
5 units are implemented with more than 360 kWh capacity. It can be observed that the configurations
with 3 and 4 units can not effectively reach this value and the capacity has to be increased further
beyond 400 kWh to yield the maximum profit that can be returned. Therefore, the system has to be
further oversized to take full advantage of the cheap electricity, while the scenarios under public and
workspace load can efficiently realise the maximum amount of profits. The main reason behind this
oversizing requirement is due to the significant overlap of charging operations with the peak demand
hours where the electricity price exhibits a good possibility of energy arbitrage. At this point, the system



45. System's Performance Under Private Charging Load 81

requires more battery and grid capacity to store cheap electricity to charge the EVs while selling a
portion of it back to the grid. It is also important to note that overall charging demand is higher in this
scenario. Hence, the system can use higher-capacity batteries more effectively when it is given more
availability to exchange with the grid. However, it is important to note that this capacity can also bring
along mobility challenges due to the mass and volume of the Li-ion batteries.

Daily Profits in Summer Scenario (100 kW)
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Figure 4.33: Daily Profits Plot in Summer Scenario with 100 kW Grid Capacity under Private Charging Load

4.5.2. Life Expectancy Analysis

Product life values of the batteries are calculated under private charging load by using the same degra-
dation model introduced in Section 4.3.3. Considering the fact that the batteries discharge approxi-
mately 12% more energy to the EVs, it is expected to observe a slightly shorter period of life until the
SoH of the batteries reach their end-of-life points, compared to the public and workspace demand sce-
nario. The effect of this utilization is even amplified when more energy discharge brings along more
charging to keep the SoC of the batteries at an adequate level for the day after. Therefore, this more
energy input and output causes a slightly faster degradation.

In the Winter Scenario with 50 kW grid capacity, product life differs between 5.28 and 1.27 years,
as shown in Figure 4.34. As expected, the maximum life expectancy is slightly lower than what is
observed under public and workspace load, due to more utilization of batteries. This reduction can be
calculated as almost 12%.
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Battery Life vs. Battery Capacity (50 kW, Winter)
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Figure 4.34: Product Life Plot in the Studied Private Charging Scenario in Winter with 50 kW Grid Capacity

As observed under public and workspace load, increasing the grid capacity up to 100 kW in the
Winter Scenario does not affect the product life by a notable margin, as shown in Figure 4.35. This in-
variance can be attributed to the lack of effective energy arbitrage positions as explained in the previous
section.

Battery Life vs. Battery Capacity (100 kW, Winter)
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Figure 4.35: Product Life Plot in the Studied Private Charging Scenario in Winter with 100 kW Grid Capacity

On the other hand, in the Summer Scenario, the life expectancy outcome is comparable to the
results obtained under public and workspace load, as shown in Figure 4.36. Again, the maximum
product life value is slightly less than that of public and workspace load. When compared to the Winter
Scenario with 50 kW, it can be observed that the maximum product life values are almost the same.
The main reason behind this is again due to the timing of the arrival times. In private load, the arrival
times of EVs coincide with the peak demand hours where higher prices are observed. In this case,
due to the occupation of battery units with charging tasks, energy arbitrage observed is very limited.
Furthermore, limited grid capacity also does not allow the batteries to store extra energy to be sold to
the grid. Therefore, this capacity is mainly used for charging in this case.
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Battery Life vs. Battery Capacity (50 kW, Summer)
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Figure 4.36: Product Life Plot in the Studied Private Charging Scenario in Summer with 50 kW Grid Capacity

Further increasing the grid capacity results in more effective energy arbitrage as the batteries are
allowed to purchase more when prices are zero. In this case, the effect of energy arbitrage becomes
evident from the product life plot shown in Figure 4.37, with 100 kW grid capacity. As a result, almost
35.5% reduction in the maximum life expectancy is attained due to the heavier use of batteries.
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Figure 4.37: Product Life Plot in the Studied Private Charging Scenario in Summer with 100 kW Grid Capacity

4.5.3. Financial Evaluation and Comparison

Financial evaluation should consider the overall profits that will be earned, the amount of time in which
those profits will be sustained and the required investment, as well as how quickly the costs will be
earned back. To achieve this comprehensive analysis, ROl per year is used as an evaluation metric
for the switchable configuration again. The analysis is repeated for different numbers of units, battery
capacities and scenarios.

First, in the Winter Scenario with 50 kW grid capacity, the configuration made up of 3 battery units
notably overperforms due to the lower investment costs associated as shown in Figure 4.38. A maxi-
mum ROI per year of 28.7% is achieved around 260 kWh battery capacity and beyond this point, further
oversizing the system does not contribute by a significant margin as also shown by the plateau that
the daily profits reach in Figure 4.30. Following this, increasing the capacity by 50 kWh results in only
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1.2% improvement. Therefore, it can be seen that the switchable configuration with 3 battery units can
return almost 30% of the initial investment per year.

Yearly ROI for Winter Scenario with 50 kW
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Figure 4.38: Yearly Return on Investment Plot of Switchable Configuration varying with Different Number of Units and Battery
Capacities in Winter Scenario with 50 kW Grid Capacity under Private Charging Load

When the grid capacity is further increased, the daily profit the system returns also increases by a
margin as stated in Section 4.5.1. The effect of this improvement becomes evident as the maximum ROI
also increases by almost 5.66% when 100 kW of grid capacity is utilized due to the reduced electricity
costs, as shown in Figure 4.39. Again, the maximum value is obtained when 3 batteries are used. After
260 kWh of capacity, improvement of ROl becomes very limited and a gradual decrease follows after it
reaches the peak value of 31.6% at around 310 kWh, as the system reaches the maximum profit value
that can be earned shown in 4.31.
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Figure 4.39: Yearly Return on Investment Plot of Switchable Configuration varying with Different Number of Units and Battery
Capacities in Winter Scenario with 100 kW Grid Capacity under Private Charging Load

In the Summer Scenario, the system can yield more return due to the cheaper energy prices. At
this point, a maximum ROI of 38.5% can be attained per year, when 50 kW of grid capacity is used,
as shown in Figure 4.40. This brings along 28.3% of improvement, compared to the Winter Scenario
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with the same grid capacity. The maximum value is obtained with 3 battery units and around 310 kWh,
following the profit plateau shown in Figure 4.32, and again after 260 kWh, oversizing the system brings
along very limited improvement around 0.46%.
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Figure 4.40: Yearly Return on Investment Plot of Switchable Configuration varying with Different Number of Units and Battery
Capacities in Summer Scenario with 50 kW Grid Capacity under Private Charging Load

Finally, when grid capacity is further increased up to 100 kW, the system starts doing more energy
arbitrage. Even if this increases the daily profits of the system by a significant margin as stated in
Section 4.5.1, it affects the ROI obtained per year negatively. As this was the case under public and
workspace load, doing more energy arbitrage in fact causes the battery material to fade at the expense
of earning less money, compared to charging an EV. Since the profit of charging an EV is much higher
than what can be earned by energy arbitrage, a system which keeps its battery material to only charge
EVs and hence profit more can yield better ROI per year. This becomes more evident when the results
with 50 kW are compared. In this case, the system has a maximum ROI per year of around 34.5%,
which is almost 10.4% lower, as shown in Figure 4.41. Furthermore, this value is observed around 210
kWh of battery capacity. In addition, the effect of energy arbitrage becomes more clear corresponding
to 3 batteries. After reaching a capacity of 210 kWh, the system begins to take advantage of the extra
storage by heavily engaging in energy arbitrage. Up until that point, the system utilizes a significant
portion of the energy to only charge EVs. As energy arbitrage becomes more prevalent, the yearly
return on investment of the system begins to exhibit a downward trend. This trend is attributed to
accelerated ageing, as highlighted by the inflection point of the corresponding product life curve shown
in Figure 4.37. When the slight improvement in profitability is not enough to compensate for this fast
degradation, the system yields less returns, due to the limited operational life.
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Yearly ROI for Summer Scenario with 100 kW
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Figure 4.41: Yearly Return on Investment Plot of Switchable Configuration varying with Different Number of Units and Battery
Capacities in Summer Scenario with 100 kW Grid Capacity under Private Charging Load

Allin all, it can be concluded that in a battery capacity range of around 310 kWh, the system can max-
imise its financial performance and after 260 kWh, the effect of battery capacity on yearly ROl becomes
minimal. The use of 3 battery units can significantly reduce the amount of investment in the system and
hence yield a better return on this amount per year, exhibiting a more efficient investment scheme. Fur-
thermore, increasing the grid capacity up to 100 kW does not strongly improve this performance while
it compromises the peak power reduction by a large margin. Therefore, 50 kW grid capacity results in
more profitable and efficient use of the bought material. Furthermore, more investment is required to
build the necessary high-power charging equipment. Considering these disadvantages, only a 5.66%
improvement in ROI per year obtained in Winter does not cause a significant enough impact to justify
the setbacks of increased grid capacity.

Furthermore, the revenue, cost and profits of regular charging poles are calculated using the same
rates given in Section 4.4.2 and given in Table 4.12.

Table 4.12: Comparison and Breakdown of Charging Poles Revenues under Private Charging Load

Scenario Revenue of Charging (€) Cost of Electricity (€) Daily Profit (€) Yearly Profit (€)

Winter 335.68 79.86 255.82 93,374.3
Summer 335.68 55.79 279.89 102,159.85

Furthermore, the details about the maximum financial performance of the mobile system with 3
switchable units under private load are tabulated for different scenarios and grid capacities in Table
4.13.

Table 4.13: Comparison and Breakdown of Mobile System Revenues for Different Grid Capacities under Private Charging Load

Scenario 50 kW Grid Capacity 100 kW Grid Capacity
Revenue of Revenue of Costof Elec- Revenue of Revenue of Cost of Elec-
Charging (€) Energy Arbi- tricity (€) Charging (€) Energy Arbi- tricity (€)
trage (€) trage
Winter 545.48 0.19 72.04 545.48 0.39 58.63
Summer 545.48 0 5.45 545.48 39.57 3.58

Following the details given in Table 4.13, daily and yearly profits of the mobile system under a private
charging load can be calculated. Calculated values are given in Table 4.14.
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Table 4.14: Comparison and Breakdown of Mobile System Profits for Different Grid Capacities under Private Charging Load

Scenario 50 kW Grid Capacity 100 kW Grid Capacity
Daily Profit (€) Yearly Profit (€) Daily Profit (€) Yearly Profit (€)

Winter 473.63 172,874.95 487.24 177,842.6

Summer 540.03 197,110.95 581.47 212,236.55

Compared to the profits obtained by the systems, mobile systems can significantly outperform reg-
ular charging poles, due to the higher revenues and lower cost of electricity resulting from the flexible
operation. However, it is also important to note that the system results in a lower operational life due
to the capacity fading, compared to the charging poles’ 10 years of service period. Furthermore, as
the maximum yearly ROI values are sometimes observed at 310 kWh, and in some cases the effect
becomes minimal after 260 kWh, lifetime and yearly profit values with the total investment considering
the costs associated with the hub are calculated for the mobile system. For comparison, the same
metrics are also calculated for the charging poles, also considering the maintenance costs and given
in Table 4.15.

Mobile System with Switchable Batteries
Scenario | Capacity | Product Total Revenue Earned | Profit Earned
(kWh) Life (Year) | Investment (€) | until until
End-of-Life (€) End-of-Life (€)
Winter 260 2.06 266,648.58 391,357.02 124,708.45
Winter 310 2.46 290,091.86 466,476.88 176,385.02
Summer | 260 2.07 266,650.46 439,946.29 173,295.83
Summer | 310 2.44 290,086.27 523,241.06 233,154.79
Charging Poles
Winter - 10 317,863 933,743 615,880
Summer | - 10 317,863 1,021,598.5 703,735.5

Table 4.15: Comparison of Costs and Profits of Mobile Systems and Regular Charging Poles under Private Load

As shown in Table 4.15, the mobile system can bring along reductions in the initial investment.
However, due to the capacity loss observed in the batteries, the system’s operational life is significantly
lower when compared to the regular charging poles. Therefore, the system returns considerably less
profits until the batteries reach their end-of-life points. On the other hand, it is also important to note
that the system with charging poles returns these higher profits over the course of a long period of 10
years. Consequently, when the yearly profits are considered, the mobile system can exhibit a good
level of competitiveness, returning very close or slightly higher yearly profits. Again, it is important
to note that the hub costs are one-off payments and no other costs are relevant after it is installed,
except for the maintenance, while the batteries require reinvestment after they become retired. After
that point, the investors can reinvest in the system to replace the batteries. This replacement cost is
equal to €121,634.52 for the 260 kWh system while it is €144,933.71 for the 310 kWh system. The total
amount of investment, cumulative revenue and profit values are calculated for each scenario regarding
3 reinvestment rounds for the mobile system and given in Tables 4.16, 4.17 and 4.18.

Mobile System with Switchable Batteries
Scenario | Capacity | Service Total Total Total
(kWh) Life (Years) | Investment (€) | Revenue (€) | Profit (€)
Winter 260 412 389,033.94 782,714.05 393,680.11
Winter 310 4.92 435,920.5 932,953.76 497,033.25
Summer | 260 414 389,037.71 879,892.58 490,854.87
Summer | 310 4.88 435,909.33 1,046,482.13 | 610,572.79

Table 4.16: Summary of Investment and Returns by the End of Reinvestment Period 1 under Private Load
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Mobile System with Switchable Batteries
Scenario | Capacity | Service Total Total Total
(kWh) Life (Years) | Investment (€) | Revenue (€) | Profit (€)
Winter 260 6.19 511,419.31 1,174,071.07 | 662,651.77
Winter 310 7.38 581,749.15 1,399,430.64 | 817,681.49
Summer | 260 6.2 511,424.96 1,319,838.87 | 808,413.91
Summer | 310 7.33 581,732.39 1,569,723.19 | 987,990.79

Table 4.17: Summary of Investment and Returns by the End of Reinvestment Period 2 under Private Load

Mobile System with Switchable Batteries
Scenario | Capacity | Service Total Total Total
(kWh) Life (Years) | Investment (€) | Revenue (€) | Profit (€)
Winter 260 8.25 633,804.67 1,565,428.1 931,623.43
Winter 310 9.83 727,577.8 1,865,907.52 | 1,138,329.72
Summer | 260 8.27 633,812.21 1,759,785.16 | 1,125,972.95
Summer | 310 9.77 727,555.46 2,092,964.25 | 1,365,408.79

Table 4.18: Summary of Investment and Returns by the End of Reinvestment Period 3 under Private Load

As shown in Tables 4.16, 4.17 and 4.18, the mobile system’s operational life can achieve similar
values to that of charging poles at the end of the third reinvestment round. In this case, the total
amount of investment is 1.99 to 2.29 times higher than that of charging poles, depending on the battery
capacity. On the other hand, the potential profits are also 1.51 to 1.94 times higher. Furthermore, it is
also important to note that these profits will be returned sooner than what is possible with the charging
poles. Consequently, the mobile system sets an investment opportunity in which total higher profits can
be earned even though more investments are required. Especially, the use of the mobile system almost
doubles the yearly profits that can be earned when compared to the charging poles because the total
return is obtained in a shorter amount of time. The difference in the total investments is more notable in
the private load scenario. The main reason is in this scenario, all of the charging poles only support AC
charging which is significantly cheaper than DC charging equipment. This allows the system to reduce
the hardware costs. On the other hand, the mobile system offers a great reduction in the charging
times due to the possibility of fast charging. This improved convenience can be highlighted as one of
the main factors contributing to this difference. In addition, it is also important to remember that the
investors are allowed to review their investment strategy with the help of reinvestment rounds or even
redeploy the system to another location much more easily.

Comparing two different battery capacities, it is clear that employing 310 kWh capacity can signifi-
cantly increase the system’s operational life. By the end of the third reinvestment period, the system
can reveal almost 9.8 years of operational life, which is very close to that of charging poles. Meanwhile,
it can improve the total profits of the system by 22.2% in Winter and 21.3% in Summer due to longer
service life at the end of the third reinvestment, when compared to the 260 kWh system. On the other
hand, when the yearly profits are considered, this improvement is only 2.59% on average. Therefore,
the 260 kWh system can exemplify a more compact system with 14.8% less investment costs, without
compromising the yearly profits of the system very much. On the other hand, for investors who are
willing to invest even more and yield the maximum returns that can be earned, the 310 kWh system
could appear as a remarkable size.



Powertrain Specifications

This section discusses the powertrain requirements depending on different mobile charging robot con-
figurations to answer Research Sub-Question 5. To achieve this, a realistic driving cycle is developed
to simulate the travel of the units. In accordance, the required power that must be supplied by the
traction motor and energy consumption are calculated. Finally, considering the purpose of the system,
types of traction motors are introduced with a comparative analysis to guide the selection process.

5.1. Driving Cycle
One of the main objectives of the powertrain design process is to calculate the power required for the
robots carrying the battery packages and the total energy consumption during the travel. To calculate
these values in a realistic framework, it is crucial to design a driving cycle representing the robot’s mo-
bility throughout the operation. These travel instances mainly consist of two different types of journeys.
First, the robot can travel from the hub to an EV to conduct a charging operation. Second, the robot
can directly travel from one EV to another if it is more advantageous than taking a break at the hub to
get the battery charged or switched. In both cases, the maximum speed, gradient and mass will be the
same in both cases. However, these two scenarios mainly differ considering the energy spent for the
travel, as the travelling time and distance depend. Nevertheless, for the calculations, the worst-case
scenario is assumed, where the robot uses the maximum energy possible by travelling to the farthest
lot from the hub before starting the charging operations.

When the location of the hub is assumed, as shown with a red pin in Figure 5.1, the distance between
the hub and the closest car parked is measured at 170 m.

89
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Figure 5.1: Assumed Hub Location and the Maximum Distance to an EV

While designing the driving cycle, it is crucial to address the safety expectations of the operations.
Hence, it is important to remember that these operations occur in public spaces where people walk and
drive freely, entrusting their personal vehicles to the safety of the area. At this point, the robot’s mobility
should not put any of these aspects in danger and conflict with the values of public space. Accordingly,
the maximum speed of the robots is determined to be not far from the typical walking speed of a
human, which is measured around 5 km/h [21]. Furthermore, when the robots’ duty is summarized
as a motorized autonomous vehicle using public space and displacing a certain mass to serve people,
they can be found similar to the delivery robots used by cargo or food companies. Such robots are also
equipped with batteries to feed electric motors and are responsible for taking a payload from a central
location to specific customer locations by using roads and pavements. One of the most well-known
examples of such robots is produced by Starship Technologies Ltd. These robots can cruise up to 6
km/h to travel within a 5 km radius and are specifically designed to cover this distance on pavements
[93]. This further validates the safety of limiting the maximum speed of the robots to a typical walking
speed.

Moreover, maximum travelling speeds of motorized vehicles are often regulated under the Traf-
fic Acts to ensure public safety, even if such acts do not cover mobile robots as they are not very
widespread as of today. For example, Dutch Traffic Regulations limit the maximum speed of motorized
vehicles using pavements and footpaths to 6 km/h. However, these vehicles are only mentioned as
disabled vehicles and motor-assisted bicycles [130]. On the other hand, autonomous robots operating
in the public are subjected to regulations in the United States and their maximum speed is limited to 5
km/h [105], [195].

Considering these design parameters, an artificial driving cycle covering the maximum travelling
distance is developed. In this cycle, it is determined that the robot will travel at 5 km/h, 1.389 m/s,
maximum speed with 0.278 m/s> maximum acceleration, equivalent to an increase of 1 km / h in speed
per second, to cover the distance between the hub and the farthest parking lot shown in Figure 5.1.
This maximum acceleration value is determined regarding the autonomous guidance requirements. It
is reported that the sensitivity of the sensors in autonomously driven systems can greatly be affected
by acceleration. At higher acceleration than 0.7 m/s?, it is reported the vibrations can distort the local-
isation and mapping ratings of the visual sensors [6]. In the literature, maximum acceleration values
varying between 0.2 and 0.3 m/s? are used and found adequate in different autonomous robot designs
and some experiments to assess the sensitivity of the measurements [106], [205], [192]. As soon as
the robot arrives at the lot, it waits for 4 seconds to detect and measure the distance between two
vehicles parked one next to each other and decides on the manoeuvre strategy to reach the charging
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port. Consequently, the robot's maximum speed is limited to 2.5 km/h, 0.694 m/s, while approaching
the vehicles to make sure the sensors have enough time to intervene by steering or stopping the move-
ment to avoid collision with any obstacle in the surroundings. All in all, the robot travels at 1.345 m/s
average speed from the hub to the lot, and at 0.555 m/s while approaching the parking lot. The average
speed observed in the full driving cycle, considering the acceleration, deceleration and waiting times, is
calculated as 1.235 m/s. The designed driving cycle is plotted in Figure 5.2, showing the target speeds
at the designated time.

Target Speed of the Robot(m/s) vs. Time(s)
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Figure 5.2: Designed Driving Cycle of the Robot on Duty

As this driving cycle only considers the travel between one service point to another, it can fully
capture how much one built-in robot travels. For example, it can be either from the hub to the parking
lot or vice versa. However, when a switchable configuration is used, it is important to note that this
driving cycle is doubled. In this case, the carrier robot will follow this driving cycle by towing the battery
unit to the service point, and proceed to the next service point after releasing the battery in a stand-
alone condition. To achieve this, the energy requirement of the first cycle can be sourced by the battery
unit, while the stand-alone travel can be powered by the smaller battery unit installed on the carrier unit.
All'in all, the driving cycle of the switchable configuration can be described as the double of the built-in
one which first one requires the mobility of the battery unit and the carrier unit, while the second one
only regards the mobility of the carrier unit.

5.2. Weight Estimation

In order to calculate how much a single unit weighs, the main components contributing significantly to
the mass have to be classified. The most significant contributor is the battery itself. LiFePO, batteries
are widely used in energy storage applications due to their high durability and lower cost. The energy
density of such batteries is reported around 175 Wh/kg [119], [155]. However, this energy density
further drops when it is packed due to the additional components implemented in the battery package.
These elements are mainly the casing, BMS and cooling system [199]. The placement of additional
elements causes the reported energy density to reduce to 125 Wh/kg [119], [150].

Other components are mainly the charger, robot platform or chassis with the wheels and sensors,
the traction motor, robotic arm and DC/AC Converter. Considering the charger has to deliver the high
power required by fast charging applications, adequate examples from the market have been studied.
Furthermore, it is observed that it is possible to deliver power up to 175 kW by using a charger with
52 kg mass addition to the system. Moreover, the use of a switchable configuration requires the imple-
mentation of two different robotic platforms for each unit. In this case, the battery unit is heavier and
therefore requires a chassis which can stand against heavier forces. At this point, a heavy-duty robotics
platform will be used for the battery unit, while a lighter-duty chassis with less mass is enough to support
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the components installed on the carrier unit. All the components mentioned and their corresponding
masses are shown in Table 5.1.

Table 5.1: Bill of Materials for Built-in and Switchable Battery Configurations Regarding their Masses

Built-in Battery Configuration

Unit Type Component Name Mass
LiFePO, Battery 125 Wh/kg
DC/AC Converter 5kg

. . Motor 24 kg

Main Unit Heavy Duty Robot Platform | 150 kg
Robotic Arm 50 kg
Onboard Charger 52 kg

Switchable Battery Configuration

Unit Type Component Name Mass
LiFePO, Battery 125 Wh/kg

Battery Unit | Heavy Duty Robot Platform | 150 kg
Onboard Charger 52 kg
LiFePO, Battery (10 kWh) 80 kg
Lighter Duty Robot Platform | 32 kg

Carrier Unit | Motor 24 kg
DC/AC Converter 5kg
Robotic Arm 50 kg

As shown in Table 5.1, the total mass of the main unit in the built-in configuration and the battery
unit in the switchable configuration differs significantly for different battery capacities installed. On the
other hand, the mass of the carrier unit is rather a constant and unchanging value of 191 kg. As the
considered robotic platform can support carrying useful payloads up to 200 kg, the unit’'s total mass
except the chassis suits the use of such a platform.

For the battery units in switchable configuration and the main unit in built-in configuration, the total
mass, M can be expressed as a function of the battery capacity, @ in kWh. Meanwhile, for the carrier
unit, a constant weight of 191 kg can be calculated. These functions are given in Equations 5.1 and
5.2.

1000 -
1000 -
MBatteryUnit(Q) = 125 Q + 202]{?9 (52)

As mentioned, in the built-in configuration, the travelling mass will be equal to the mass of the main
unit given in Equation 5.1. On the other hand, in switchable configuration, the travelling mass will be
equal to the sum of the mass of the battery unit given in Equation 5.2 and the carrier unit of 191 kg for
one driving cycle, and only the carrier unit for another cycle. In this way, it can be expected that the
switchable configuration requires slightly more energy due to the extended driving cycle, and higher
overall mass getting mobilized during the first cycle.

5.3. Performance Requirements

The energy consumption of an electric drive train is dependent on various factors such as the forces
exerted on the vehicle, and the degree of regenerative braking. Mainly, these forces and the resulting
energy demand shape how much power and torque should be provided by the traction motor. Further-
more, in vehicle applications, the performance requirements of the drive line also impact the choice
of traction motor and the required power and torque provided. Performance requirements could be
described as top speed, gradability and acceleration [81].
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5.3.1. Road Forces

The road forces applied on a mobile vehicle are rolling resistance force (Fi), aerodynamic drag (Faq),
gradient force (Fy) and acceleration force (F4). The total force exerted on a vehicle (F;) can be calcu-
lated as the sum of these forces as shown in Equation 5.3.

Fi(t) = Fu(t) + Faa(t) + Fy(t) + Fa(t) (5.3)

Furthermore, the direction of these forces acting on the vehicle during travelling indicated in Equa-
tion 5.3, are demonstrated in Figure 5.3.

Figure 5.3: Forces Acting on the Unit while Travelling

Rolling resistance is primarily caused by the nonlinearities associated with the tire material during
the rolling movement, due to the heterogeneous distribution of reaction force exerted by the ground
observed in the contact patch. Next, the rolling resistance force can be calculated as introduced in
Equation 5.4, where M denotes the mass of the vehicle, g is the gravitational acceleration and fr is the
rolling resistance coefficient. The rolling resistance coefficient (f;) varies with different road conditions
and tyre properties such as inflation pressure and profile as well as the cruising speed. For the most
common range of conditions, the coefficient can be approximated as a function of speed as shown in
Equation 5.5 [51].

Fr = fr x M x g x cos(a) (5.4)
V)=0.01 1 v 55
) =001 % (14 305 ) (55)

Furthermore, the aerodynamic drag force can be calculated by using Equation 5.6. This force is
mainly a function of air density (p), drag coefficient (Cp), frontal area (As), velocity (V) and the wind
speed acting on the vehicle (W). Air density can be calculated by using Ideal Gas Law as shown in
Equation 5.7. In the equation, p represents the absolute pressure, M the molar mass, R the ideal gas
constant, T' the absolute temperature, T the standard temperature at sea level, L the temperature
lapse rate, h the altitude above sea level, and p, the standard atmospheric pressure at sea level. Next,
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an assumption is made regarding the drag coefficient and the frontal area values, since there is no
possibility of experimenting with these parameters. Consequently, practical applications are investi-
gated and the literature is scanned to find adequate values that can realistically represent the system.
Further observations indicate that a mobile autonomous charging robot with similar specifications can
be realized with dimensions of 1850 mm in length, 950 mm in width, and 1500 mm in height [122].
The frontal area value is derived by using these specifications. Moreover, it is further witnessed that a
drag coefficient of 0.6 is used in the studies analysing the aerodynamic performance of delivery robots
[195]. Therefore, this value is processed in the calculations assuming that the same coefficient of drag
value can be obtained by implementing a similar outer shell design. Lastly, regarding the maximum
speed observed in the driving cycle, it is also acknowledged that the effect of aerodynamic drag will be
minimal compared to the other sources of loss.

Fag(p,Cp, Ar, V) = 0.5 x p x Cp x As x (V — W)? (5.6)
a1
RTy (1- 42) 0 0

The gradient force can be described as the extra force that has to be overcome while the vehicle
is climbing uphill. This force can be towards the longitudinal direction if the vehicle is cruising downhill
since gravity will act as a force speeding it up. The force can be calculated as a function of vehicle
mass (M), gravitational acceleration (g) and the gradient angle («) as shown in Equation 5.8. In this
study, it is assumed that there is no considerably steep gradient in the parking place as is often the
case and hence the angle « is taken as 0.

Fy =M x g x sin(a) (5.8)

Lastly, the acceleration force can be calculated as shown in Equation 5.9 as a function of instanta-
neous acceleration.

Fy(a) =M xa (5.9)

5.3.2. Power Ratings and Energy Consumption
The total required power for the travel as a function of time can be calculated as shown in Equation
5.10.

Pr(t) = (Fe(t) + Faa(t) + Fg(t) + Fa(t)) x V(1) (5.10)

However, the power drawn from the battery will be higher than the instantaneous power requirement
due to the losses associated with the drive train. The efficiency of the traction motor and the mechanical
losses due to the parts in contact can be classified as the root causes of this efficiency factor, denoted
by nw. This factor is taken as 0.9. Furthermore, there is also the auxiliary power, Py, consumed by
the electronic appliances operating during the travel. An auxiliary power of 60W is considered in the
system as this value is used in the studies focusing on the design of autonomous delivery robots [195].
These are mainly the sensors and lights that monitor the surrounding area ensuring safe operation.
Lastly, a certain amount of power will be required to keep the cooling system operating, denoted by
Peooling- This system is crucial to keep the batteries at the optimal temperature to ensure both safety and
efficiency. It is reported that the consumption associated with the cooling ranges between 1.3% and
11.2%, depending on the driving cycle, ambient temperature conditions and the refrigerant type used
[113]. Following this interval, the power consumed by this system is assumed as 6.25% of the total
power, which is the average reported value. When the efficiency, cooling and this auxiliary power are
taken into consideration, the power drawn from the battery can be calculated by the following Equation
5.11.

B(t)
™M

Lastly, thanks to the use of an electric machine, a portion of the braking energy will be recuperated
by using the motor as a generator. In this case, as the maximum regular deceleration of the driving

Pb(t) = + Paux(t) + Pcooling (t) (5.11)
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cycleis 0.278 m/s?, most of the braking power can be supplied by the motor, causing mechanical brakes
to play a minimal role unless it is an emergency braking. Hence, it is assumed 70% of the energy will
be regenerated as this ratio is also realisable in trained economic style driving in passenger cars [45].
This factor is denoted by neq. Consequently, the instantaneous energy regenerated at the instances
of deceleration, E\, is calculated as shown in Equation 5.12.

Fi(t) = % X M X [V(E+1)2 = V(£)2] X e (5.12)

Then, the instantaneous energy spent travelling by the batteries can be calculated by the follow-
ing Equation 5.13. It is important to note that the regenerated energy is in Joules, and therefore a
conversion step to kWh is necessary as presented in the equation.

Ei(t) = Po(t) x At + E(t) x 2.7778 x 1077 (5.13)

As soon as the energy required is calculated dependent on the speed and acceleration depicted on
the driving cycle at each second, the total energy that will be spent on travelling during one travelling
period can be calculated by summing up all the energy requirement values throughout the cycle. These
energy consumption values are plotted for each battery capacity value and each different configuration,
built-in and switchable. The resulting plot is shown in Figure 5.4.

Energy Consumption per Driving Cycle vs. Battery Capacities
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Figure 5.4: Total Energy Consumption during the Driving Cycle for Different Configurations and Battery Capacities

As shown in Figure 5.4, the amount of energy that will be fed by the battery differs between 0.0075
and 0.025 kWh, depending on the battery capacity and configuration used. As expected, the switchable
configuration demands more energy per travel due to its extended driving cycle and slightly higher mass
carried by the robot during the first cycle. For example, when a 270 kWh battery is used, the switchable
configuration requires 10.53% more energy. In detail, this consumption is around 16.9 Wh for the built-
in configuration, while it is 18.68 Wh for the switchable case. Hence, it can be concluded that even
if the switchable configuration requires more energy due to the argued reasons, the difference is not
significant especially compared to the other type of exchanges the battery undergo with 10s of kW
power.

Sample values obtained in the literature focusing on similar analysis are researched to check the
consistency of this calculated value. Similarly, in a study, a driving cycle is designed for an automated
guided vehicle which carries a 1.2t payload to a designated point and comes back to the starting point
unloaded [142]. Furthermore, the platform has a mass of 343 kg, which makes the total travelling
weight around 1.5t [5]. The studied robot is further equipped with fuel cells and hydrogen storage
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systems which contribute significantly to the overall weight, however, the physical parameters regarding
these components are unspecified. The cycle takes around 125 seconds and the robot cruises with
a velocity between 0.8 and 1 m/s. Following this route, the vehicle consumes 131.2 Wh of energy at
the end of 5 cycles, which is equal to 26.24 Wh per cycle. Considering that this driving cycle bears
similarities to the one designed for the switchable configuration, and 1.2t on payload can correspond to
150 kWh of battery storage, the calculated energy consumption per cycle is around 13 Wh for the mobile
system. Although this value is comparable to that in the study, the reported value is higher because
the vehicle’s route includes lots of stop-and-go cycles [142]. This frequent acceleration causes higher
energy consumption than mostly steady-speed cruising which is considered in this study. Another
reason could be due to the unspecified mass of the components implemented in the system researched,
which are heavy equipment powering a fuel cell system.

Furthermore, in order to represent the power drawn by the battery during the travel, the total energy
spent on travelling is averaged over 5-minute time steps. The calculation method is shown in Equation
5.14.

300
B
By, = 2= B0 (5.14)

60

Even if the use of the switchable configuration does not significantly affect the total energy consumed
in travel, its effect on the maximum power required by the traction motor is also investigated. As the total
mass mobilized during the first cycle is slightly higher in this case, the required maximum power that
will be delivered by the traction motor is calculated and compared for each configuration. As a result,
maximum power requirement values are plotted for each case as a function of the battery capacity as
presented in Figure 5.5. The shown data points represent the maximum values obtained in Equation
5.10 for each case.
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Figure 5.5: Maximum Power Requirement during the Driving Cycle for Different Configurations and Battery Capacities

As shown in Figure 5.5, the use of a switchable configuration requires the maximum power delivered
by the traction motor to slightly increase. For example, for a 270 kWh main battery capacity, the built-in
configuration requires 1.286 kW of peak power while this value for switchable configuration is around
1.34 kW. This change in the configuration requires 4.2% more peak power. However, this peak power
is only required when the maximum acceleration of 0.278 m/s? is attained just before the unit reaches
its maximum velocity in the driving cycle. Considering that this acceleration rating is observed only for
a few seconds, its effect on the total energy consumption is therefore limited.
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In addition, this maximum power rating is also compared to the values reported in the literature.
As a result, the study mentioned while comparing the energy consumption underscores a peak power
rating of around 1.4 kW [142]. Even if the maximum acceleration which is the main factor describing the
peak power is not specified in the study, it is observed that the reported value is within the calculated
range shown in Figure 5.5.

Instantaneous power required by the traction motor throughout the driving cycle is plotted in Figure
5.6. The plot also shows the mentioned peak powers as well as when they are required for each
configuration.
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Figure 5.6: Power Requirement by the Traction Motor during the Driving Cycle for Different Configurations with 270 kwWh
Battery Capacity

As shown in Figure 5.6, the power required by the traction motor to realise the driving cycle increases
as the unit accelerates. At this period, the power requirement increases due to the overcoming of the
growing road forces as a consequence of the increase in cruising speed. Hence, the power is mostly
determined by the road forces and acceleration force. At the peak point, the switchable configuration
requires more power primarily due to the increase in mobilized mass. As soon as the unit reaches its
maximum speed, it sustains a stable speed and hence the motor power is only used to overcome the
road forces. As the vehicle decelerates, the road forces decrease and eventually become zero. Then,
the unit accelerates again to manoeuvre towards the parking lot and reaches its secondary stable
speed. This movement is presented by the second peak in the plot. Finally, after the unit sustains the
second stable speed for a short amount of time, it comes to a full stop. With a switchable configuration,
the battery unit is detached and docking takes place in this time interval to connect the charger to
the EV. Following that, the carrier unit continues towards the second operation point in stand-alone
operation mode. As the mobilized mass is much lower in this secondary cycle, the power requirement
is proportionally much less.

5.4. Traction Motor Selection

Regarding the propulsion system of the units, there are lots of different options that can be implemented.
Primarily, as the traction motor will be fed by a battery, which is a fundamental DC source, the traction
motor can be chosen among AC and DC electric machines. In detail, a motor drive to invert DC to AC is
required in between the battery and the traction machine if an AC motor is utilized. On the other hand,
this inversion step can be excluded when a DC motor is used, rather a voltage and current regulator
can be used to control the motor’s speed and torque output.

DC motors have historically garnered attention due to their straightforward control and the ability



5.4. Traction Motor Selection 98

to separate flux and torque by controlling field and armature currents independently [88]. However,
their reliance on brushes and rings for construction has led to maintenance challenges. As vector
control for AC motors became more prominent, the appeal of DC motors faded, particularly in traction
applications [88]. Despite this shift, DC motors remain viable for low-power tasks. The commutator
serves as a durable inverter, simplifying and reducing the cost of power electronics devices [88].

Induction motors have emerged as a remarkable choice due to their reliability, durability, minimal
maintenance requirements, and adaptability to harsh environments. Furthermore, flux weakening en-
ables an expanded speed range within the constant power zone [88].

Permanent magnet synchronous motors (PMSM) are an important competitor of induction motors in
traction applications. These motors offer several advantages, including higher power density, improved
efficiency, and more efficient heat dissipation [88]. Despite their benefits, PMSMs are susceptible to
demagnetization due to heat or armature reaction, which represents a notable drawback [88]. On the
other hand, PMSMs typically rely on rare-earth magnets composed of metals such as neodymium,
praseodymium, and dysprosium. These metals are often sourced through mining practices that pose
environmental and ethical dilemmas.

Switched reluctance motors are increasingly gaining attention for use in traction systems. These
motors offer a range of benefits including straightforward and robust construction, fault tolerance, easy
control, and impressive torque-speed performance [88]. However, they come with some drawbacks
such as high noise levels, significant torque ripple and susceptibility to electromagnetic interference
[88].

Regarding the introduced traction motor types, the requirements for the mobile system’s powertrain
should be high efficiency, low cost, high power density and low maintenance. High efficiency is impor-
tant to secure the energy stored in the batteries for the EVs and energy arbitrage in order to support
the profitability of the system. Furthermore, the cost of the traction motor is significant to minimize the
investment cost of the system. Moreover, considering that the selected motor will be used in a mobile
application where size and compactness are an issue, the motor’s power density bears significance to
using the packaging area more efficiently. Lastly, low maintenance is a key parameter to minimize the
operational costs associated with the system and avoid downtime.

Due to the maintenance challenges of the DC machine, it is not found suitable for this powertrain
application. It is also noted that this challenge can be addressed by using brushless DC motors, how-
ever, due to their higher cost and lower power density in terms of mass and size, it is concluded that
the use of this type of motor also brings additional challenges [26].

Compared to switched reluctance and brushless DC motors, induction motors appear as a remark-
able choice due to their higher power density and lower costs [26]. The use of this type of motor can
facilitate a better use of the packaging area of the robot. Especially, in the built-in configuration, effec-
tive packaging is vital due to the higher number of components embodied in the main unit. At this point,
the induction motor can take up less space and mass, contributing to the efficient use of space and
energy. Furthermore, it is important to note that as this type of motor has a wide range of applications
in the industry, the technology is very mature enough to allow the manufacturing of reliable motors [26].
In terms of efficiency, PMSMs can outperform induction motors due to the hindrance of rotor losses
[203]. However, the use of PMSM motors brings along higher investment costs and the use of precious
metals which can raise questions about the sustainability of the system. The use of rare earth metals
inherently conflicts with the main motivation of the system, which is acting as a step towards the sus-
tainable mobility transformation. Despite its slightly lower efficiency, it can be concluded that the use of
an induction machine in the system outperforms PMSM due to its lower cost, and robustness. It is also
important to note that the effect of this slight inefficiency will not be very considerable when considering
the fact that the total energy spent on travel is just a small and inconsiderable percentage of the total
energy bought from the grid. For example, this percentage takes up around 0.12% - 0.2% of the total
energy use, depending on the grid capacity, when a 270 kWh system is used.



Power Conversion

This section discusses the electronic power conversion topologies that can act as a bridge between the
system and EVs. DC/DC converter topologies are introduced with their advantages and disadvantages.
Reported performance critiques are demonstrated to highlight the most suitable converter in stationary
and mobile applications to set a basis to answer Research Sub-Question 6.

An efficient power conversion topology is vital in Mobile EV Charging systems because there are
different types of voltage and current ratings involved, flowing through multiple directions. To accom-
plish desired functionalities, there have to be different conversion steps, regulating the energy flow.
The characteristics and the duties of the system directly affect the endpoints and how much energy
should be flowing. In this particular system, the endpoints can be listed as the grid, battery, motor and
EV. Furthermore, the battery can charge itself with the energy fed by the grid and discharge to sell to
the grid, while powering the electric machine and recuperating. Therefore, the designed topology must
be sufficient to facilitate bidirectional energy flows between the battery and the grid and between the
battery and electric machine as well as a unidirectional flow between the battery and the EVs. These
endpoints and flow directions are illustrated in Figure 6.1.
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Machine

Figure 6.1: lllustration showing the energy flow directions and endpoints

As shown with number 1 in Figure 6.1, the battery will be charged by the energy flowing from the
AC grid. Before getting stored in the battery, the energy has to go through two different conversion
steps. First, alternating current must be converted to direct current and secondly, voltage and current
ratings should be adjusted considering the DC line voltage. These two steps can be done in different
sequences. At this point, two different topologies can be proposed. The first one suggests that the AC
can go through a transforming step to adjust the voltage rating and then get rectified while the second
one proposes a rectification step first followed by voltage stepping up and down. However, it is crucial
to remember that the system is also able to do energy arbitrage and hence sell energy to the grid once
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there is a price incentive. Thus, this flow and the topology implemented must be suitable for operating
bidirectionally.

Moreover, the energy stored in the battery can be used for two more purposes such as powering
the AC machine to travel between the parking lot and hub and vice versa as shown with number 2 in
Figure 6.1, or charging the EV as shown with number 3. For number 2, an inversion step is necessary
to feed the machine with AC as well as a frequency and voltage regulation to control the speed and
torque of the machine. Furthermore, the machine can be used as a generator while braking to use
the energy more efficiently, feeding a portion of the waste energy back to the battery, and pointing
out a bidirectional operation again. For number 3, a unidirectional flow is observed while charging
EVs with regulated power and voltage ratings by the Battery Management System (BMS) through the
communication protocol.

To implement a suitable power electronics topology in the system, protocols and standards are vi-
tal to avoid compatibility issues. These industrial standards make the charging applications safe and
accessible, paving the way for a high level of integration. They form a bridge between the EV manu-
facturers and charging applications so that the designed solutions can work seamlessly with different
types and varieties of vehicles. International standards regulating the charging applications are SAE,
IEC and CHAdeMO standards [83]. These standards and their respective power, voltage, current and
location regulations are summarized in Figure 6.2.

Charging Power Levels Location for charger Expected power level
AC and DC Charging based on SAE STANDARDS

Single Phase * P =14 kW with (12 A)
* On-board * P =19 kW with (20 A)

» P =4 kW with (17 A)
» P =8 kW with (32 A)

Basic: Level 1 Charging
* Vac = 230 (EU)
* Vac = 120 (US)
Main: Level 2 Charging
* Vac = 400 (EU)

Single Phase/Three Phase

« Vac = 240 (US) * On-board > P — 192 kW with (80 A)
Fast: Level 3 Charging Three Phase *« P=50kW

* Vac = 208-600 * Located Off-Board « P =100 kW
Level 1: DC Charging . . D — .

. Vde — 200-450 Located Off-Board P = 40 kW with (80 A)
Lef e\ljjc [:’ngc',‘ji})“g « Located Off-Board « P = 90 kW with (200 A)
Lefe\]]j; [:)ngé'_ﬂggang « Located Off-Board « P = 240 kW with (400 A)

AC and DC Charging based on IEC STANDARDS
AC Power Level 1 Single Phase « P =4-7.5 KW with (16 A)
AC Power Level 2 Single Phase/Three Phase « P — 8-15 kW with (32 A)
¢ On-board
AC Power Level 3 Thfegilgg?: q « P = 60-120 kW with (250 A)
DC Rapid Charging « Off-Board « P = 1000-2000 kW with (400A)
CHAdeMo Charging Standard

DC Rapid Charging * Off-Board * 62.5 kW with (125 A)

Figure 6.2: Industry Standards for EV Charging Applications
(83]

According to the standards in Figure 6.2, the Mobile EV Charging in the study is categorized as a
DC Charger. These types of chargers are located off-board according to all three standards while their
power outputs differ according to their levels. Since the aim of the system is to charge vehicles as fast as
possible to spend the minimum amount of time outside of the hub to exchange energy with the grid when
it is optimal, the charging activity can be classified as the highest level possible. In the Netherlands, the
DC fast charging stations are equipped with 50 kW and 175 kW chargers. Furthermore, CharlN also
announced an enhanced CCS standard realising charging powers up to 350 kW in 2017 [28], [76].

On the other hand, it is also important to analyse the maximum charging power of the 10 most
popular vehicles used in the Netherlands. These power values are shown in Table 6.1.
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Table 6.1: Electric Vehicle Models and Max DC Charging Powers [62][66][68][61][64][65][63](60](67][69]

EV Model Max DC Power (kW)
Tesla Model 3 175
Kia Niro 80
Volkswagen ID3 124
Hyundai Kona 77
Renault Zoe 46
Skoda Enyaq 143
Nissan Leaf 46
Audi eTron 155
Tesla Model S 175
Volkswagen Golf 40

As Table 6.1 shows, the Tesla Model S has the highest charging power of 175 kW, when a CCS
charger is used. Therefore, the system should be sufficient to support this charging power.

6.1. Charging System Architecture

The design choices branch under two different configurations. The first one requires a portable on-
board charger implemented in the mobile system while the second requires a stationary application
in which the charger is located beside the parking lot so that the mobile system gets autonomously
connected. In both of the systems, as the endpoints of the charging activity are the batteries, the con-
version will be from DC to DC. This power conversion topology has certain requirements regarding the
industry standards and necessities of its duty. In order to successfully and effectively fulfil the duty
necessities, it should efficiently regulate the voltage and current ratings according to the information
acquired from both of the BMSs regulating the power. These ratings are primarily dependent on the
SoC of the batteries as well as the cell conditions. Secondly, because the conversion will take place
in a publicly available area, it should ensure safe operation and must not compromise security when
unexpected accidents happen. This could be provided by galvanic isolation. Significant leakage cur-
rent can be present in non-isolated chargers when they lack galvanic isolation. This leakage current
poses safety hazards for the surroundings and the electronic components equipped [211]. The cho-
sen architecture should also maximise the power quality, with a high power factor and hence control
the injected harmonics as numerous regulations exhibit standards regarding the harmonic distortion,
such as SAE: J2894 (Power Quality Requirements for Plug-In Electric Vehicle Chargers) [96] and IIEC
61000-3-2 (Electromagnetic compatibility (EMC)) [101], [84]. Furthermore, the selected topology must
not compromise the efficiency of the system, minimizing conductive and switching losses. The physical
parameters of the charger also bear significance such that the volume must be considered in mobile ap-
plications while the dimension of the charger matters in stationary applications to minimize public space
use. Lastly, cost-effectiveness should also be an important criterion to attract the investor ground. In
this regard, it is also important to note that the stationary application requires this topology to be located
beside every parking lot, significantly increasing the costs associated with the system, while the mobile
application can fulfil the bridging task by only requiring them to be implemented in the units. Stationary
bridging also hinders the overall convenience of the system, requiring human intervention to do the
plugging job, while the mobile application can do it autonomously.

6.2. Converter Topologies

Output power is a significant factor when deciding on the power electronics topology. Hence, con-
verter applications’ performance can mainly differ according to the charging power level. Some basic
topologies of DC/DC converters can be listed as forward, fly-back, half-bridge, full-bridge and push-pull
converters.

6.2.1. Basic Configurations

Flyback converters are generally cheaper and easier to install since they only require a single active
switch. Therefore, their overall cost is lower and control is relatively easier. They also have galvanic
isolation which is a necessary feature for the safety requirements. Furthermore, the overall number
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of components involved in the topology is limited, supporting the cost-effectiveness and simplicity. On
the other hand, this converter topology is widely used in low-power applications [84]. The primary
reason for this is due to its reliance on one magnetic element such as a transformer. When the winding
experiences high voltage resulting from high power applications, the core can reach saturation and
therefore cause leakage flux inducing current nearby as well as causing distortion in the secondary
winding [147]. This phenomenon could cause overheating, reduced efficiency and damage to the
power electronics. Furthermore, in this topology, the primary switch is exposed to high-voltage stress
during the switch-off state [84]. This stress gets even higher in high-power applications. Despite its
simplicity and low cost, this kind of topology is not the best fit for the system considering its high power
requirement. Meanwhile, similar issues can be faced in the forward converter due to its reliance on
one transformer [84]. Additionally, the maximum duty cycle of the converter is limited by the reset time
of the transformer, significantly limiting the maximum power it carries [84].

On the other hand, half-bridge, full-bridge and push-pull converters appear as a better choice for fast
charging applications. One of the main reasons is unlike forward and flyback converters, the energy
transfer takes place during the full input waveform, causing a better utilization of the magnetic core in
the absence of a reset period. This also paves the way for higher duty cycles, realising higher power
transfers. This is primarily accomplished by complementary switching. However, one notable limitation
of push-pull topology is the voltage stress experienced by the input switch [84]. This stress can even
reach higher than the input voltage when the switch is off due to the induced voltage by the energy
stored in the transformer in the form of magnetic field [84]. The sudden change of current through the
primary winding during switching is the main cause of this phenomenon. Meanwhile, this problem is
not observed in the half-bridge converter. The main reason is when one of the switches is in the off
state, the voltage is shared by two switches, reducing the voltage stress of the components during
the complementary switching. However, the main problem associated with half-bridge topology is the
intermittency of the output current during the step-up operation mode [84].

Despite the additional costs due to the higher number of switches and the relevant complexity, a full-
bridge converter is also a popular option in high-power applications. Compared to half-bridge, two times
higher voltage outputs can be obtained with the same input voltage, resulting in lower output currents
and conductive losses [172]. This especially appears as a major benefit in high-power applications,
since the same power can be transferred by less currents and losses.

Traditionally, the full-bridge converter topology has been the favoured option for achieving high-
power DC-DC conversion [43]. Nevertheless, issues resulting from the transformer’s leakage induc-
tance and resulting reverse recovery dissipation issues in output diodes restrict the feasible switching
frequency [13]. The presence of these challenges necessitated the exploration of alternative solutions
to enhance performance. In response to the limitations posed by the conventional full-bridge converter,
various solutions have been proposed. These include the implementation of active clamps and/or aux-
iliary circuits [47] [145]. These solutions aim to overcome the constraints on switching frequency, en-
abling higher rates. However, it is important to note that these enhancements come at a cost, involving
the incorporation of additional components and potentially subjecting devices to increased stress [13].
Even if these techniques increase the power density of such applications at the expense of complexity,
it is also noted that the resulting efficiencies are indifferent to the traditional switching techniques [13].

6.2.2. Dual Active Bridge (DAB) Converter

Some of the problems associated with Full Bridge Converter can be addressed in DAB converter topol-
ogy, making higher switching frequencies and a subsequent increase in power density possible [13].
As a consequence, it is further noted that remarkable power densities around 11.13 kW/L can be achiev-
able by implementing this converter in high-power applications in the literature depending on how effi-
cient the cooling system is [146].

The DAB converter utilizes galvanically isolated dual full-bridge circuits to deliver high efficiency and
enhanced switching performance through soft switching, alongside superior power density [77], [134].
This topology becomes a remarkable choice, especially in applications requiring bidirectional energy
flow such as V2G applications. DAB converter’s operation mode depends on the DC voltages of the
input and output sources and it can either operate in buck or boost mode. Output power is generally
controlled by modulating the phase shift between the input and output voltages. A circuit diagram
corresponding to a conventional DAB converter is shown in Figure 6.3.
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Figure 6.3: A Conventional Dual Active Bridge Converter Circuit Diagram

[208]

In this topology, the output inductor can be in series with the leakage inductance resulting in the
transfer of the energy stored to the output without increasing the reverse recovery losses in the output
diodes, in contrast with conventional Full-Bridge Topology [13]. This supports a more efficient operation,
reduces the stress on the diodes and makes higher switching frequencies possible. Furthermore, less
number of passive components are employed in this topology, compared to the Full Bridge Converter,
which is another advantage in terms of power density. However, it is also important to note that more
switches are used in this converter [157]. Lastly, even though the DAB converter can achieve soft
switching as explained in the next chapter, the operation range is limited by the transformer turns ratio
and voltage gain [157].

6.2.3. Resonant Converters

Switching frequency is also a key factor affecting the power density of the equipment. Typically, the
passive elements implemented in converters such as inductors charge and discharge energy during
each cycle of switching. Hence, there exists an inverse proportion between the inductance and the
switching frequency such that higher switching frequencies can result in less inductance and less
space and weight [132]. This relation becomes even more important in mobile applications, where
efficient packaging is key. On the other hand, the increase in switching frequency also escalates the
associated losses and diminishes the overall efficiency of conversion. This trade-off sheds light on
such techniques as Zero Voltage Switching (ZVS) and Zero Current Switching(ZCS). These methods
can support high switching frequencies while not compromising efficiency, helping to achieve higher
power densities [132]. Fundamentally, these soft switching methodologies set the switching to happen
while the voltage or current across the devices is approaching or equal to zero to minimize the losses
and eliminate the abrupt changes [132]. Employing these techniques minimizes the energy dissipation
during switching, supporting the realisation of higher frequencies with a minimum amount of losses.
Lastly, such techniques also help to reduce the abrupt changes in the voltage and current across the
components, decreasing the ripple [84].

Among the various DC-DC converter technologies explored in the EV charging industry, particular
attention has been directed towards resonant power converters. Improving the effectiveness of EV
chargers requires careful attention to certain aspects. One important factor is the implementation of
a soft switching technique in these converters. In this way, abrupt changes when the power devices
switch can be smoothed out, leading to fewer losses during these transitions. Consequently, switching
losses can be minimised. The outcome is an increase in overall efficiency during the charging process
[84].

Additionally, a significant focus is placed on dealing with high voltage peaks in the charging system.
Steps are taken to lessen these voltage peaks when the system converts alternating current to direct
current resulting from the isolation, ensuring a more controlled and smoother power flow to the electric
vehicle. Managing this aspect is critical for making sure the charging system performs reliably [84].

In connection with these considerations, the progress of EV chargers also involves expanding the
range where the output voltage is controlled. This strategic approach offers more flexibility, allowing
the EV charger to work well across a wider range of EV models and SoC conditions. By broadening this
controlled range, the charging system becomes more adaptable and robust, handling different situa-
tions effectively. This, in turn, contributes to creating a dependable and efficient charging infrastructure
for electric vehicles [84].

Among multiple options, one of the most popular choices for reducing both switching and conduction
losses involves employing different soft-switching resonant techniques across various converter con-
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figurations. The design of efficient and effective chargers for electric vehicles benefits significantly from
resonant topologies, primarily due to their high-performance switching operations. Types of resonant
converters that take part in EV charging applications are series resonant converters (SRC), parallel
resonant converters (PRC), series-parallel resonant converters (SPRC) and LLC resonant converters
[84]. The circuit diagrams corresponding to these four various types of resonant converter topologies
are shown in Figures 6.4, 6.5, 6.6, 6.7.

Squarc wave generator SRC
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Figure 6.4: Series Resonant Converter Circuit Diagram

(84]

Square wave generator
E ............................ .\E PR(_"
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Figure 6.5: Parallel Resonant Converter Circuit Diagram

(84]
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Figure 6.6: Series Parallel Resonant Converter Circuit Diagram

(84]
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Figure 6.7: LLC Resonant Converter Circuit Diagram

(84]

A resonant power converter incorporates circuits that exhibit sinusoidal variations in voltage and
current waveforms at specific points within the switching periods. In the context of power conversion ap-
plications, these converters demonstrate relatively low harmonic distortion due to resonant frequency-
based switching [163]. While the use of electrical resonance is a prevalent method to achieve soft
switching conditions, it brings about certain drawbacks when compared to traditional Pulse Width Mod-
ulation (PWM) converters such as the presence of additional reactive components, and observation of
higher peak current or voltage [163]. Furthermore, limitations about the operating frequency of such
converters, as well as the complexities in circuit controller design are the additional challenges intro-
duced by such systems. Despite these limitations, resonant converters are gaining popularity due to
their substantial contribution to reducing switching losses and improving waveform generation [163].
The mentioned sinusoidal waveforms are shown and associated switching losses are compared to a
converter topology with hard switching in Figure 6.8.

HARD SWITCHING RESONANT SWITCHING

\ / \ Losses /

Losses

Figure 6.8: Difference in Switching Losses between Hard Switching and Soft Switching

[19]

As shown in Figure 6.8, the switching losses in a resonant switching converter are much lower due
to ZVS and ZCS techniques employed.

A conventional Zero Current Switch setup comprises a switch positioned in series with the resonant
inductor, while the resonant capacitor is connected in parallel [19]. During the switch’s off state, the res-
onant capacitor undergoes charging with a relatively constant current, resulting in a linear rise in voltage
across it. Upon switching on, the energy stored in the capacitor is transferred to the inductor, inducing
a sinusoidal current [19]. In the negative half-wave, the current flows through the anti-paralleled diode,
leading to a period where there is neither current through nor voltage across the switch. This facilitates
turning off the switch without any energy dissipation [19].

On the other hand, a typical Zero Voltage Switch configuration consists of a switch in series with
a diode [19]. The resonant capacitor is linked in parallel, while the resonant inductor is connected in
series with this arrangement. A voltage source connected in parallel injects energy into this system.
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During the switch’s activation, a linear current traverses the inductor. After the switch turns off, the
energy stored in the inductor flows into the resonant capacitor, generating a sinusoidal voltage across
the capacitor and the switch [19]. The diode obstructs the negative half-wave of the voltage. In this
interval, both the current and voltage in the switch hit zero, allowing for a lossless switch-on during this
phase [19].

Series resonant converter employs a series connection of resonant inductor and capacitor. Despite
its advantageous simplicity compared to other types of converters, it also brings about certain draw-
backs. One of the major disadvantages of this topology lies in its nature. Since it acts as a voltage
divider in steady state conditions, it brings about a lower average DC output voltage than the average
input voltage [163]. This operational principle causes this topology to be insufficient by limiting the
range of voltages the system can work with. For example, in this case, the maximum voltage that
can be supplied is limited by the DC link voltage of the battery side and therefore can not be further
increased. Lastly, ZVS can be sustained at higher frequencies than the resonance, while ZCS can be
maintained at lower ratings, supporting efficient operation [163].

Meanwhile, this challenge of DC voltage gain is not observed in parallel resonant converters, al-
lowing gain ratios larger than one [84]. The average DC voltage can be multiplied with the support of
resonance-induced sinusoidal waveform [84]. On the other hand, the main challenge related to the
use of parallel resonant converters is due to the higher energy flow exhibited during lighter load ap-
plications, limiting the operational range of the converter [84]. Similar issues can be observed while
working with series resonant converters at no load condition, causing the regulation frequency to reach
infinity, which can be solved by employing various control methodologies [84].

These challenges of high circulating energy flow and output voltage regulation under no load condi-
tions can be addressed by series-parallel configurations connecting inductive and capacitive elements
in series to the load and employing an output filter on the load side [84]. Furthermore, this topology is
less dependent on the load changes, allowing an effective operation at a wider range of conditions and
providing flexibility [9]. However, high input voltage ratings act as a source of switching loss, putting
efficiency at stake [84].

Some of the main challenges associated with the mentioned resonant converters can be fixed by
using LLC topology [84]. One major benefit of implementing this type of converter in EV charging appli-
cations is the flexibility of operation under different load conditions while maintaining a smaller switching
frequency range [9], [84]. In resonant converters, the impedance of the resonant tank increases as the
frequency increases due to the nature of the resonance phenomenon. The resonant frequency is the
frequency at which the inductive and capacitive reactances are equal to each other. At resonance, the
impedance of the tank circuit becomes purely resistive, and its magnitude is minimized. When the fre-
quency increases beyond the resonance level, the capacitive reactance decreases, while the inductive
reactance increases, resulting in a higher impedance and therefore higher energy circulation within the
resonant tank. This brings about considerable losses in efficiency due to conductive losses [200], [84].
In LLC converters, it is possible to work under different loads while maintaining the frequency close to
the optimal value, the resonance frequency [9]. Furthermore, in this application, zero voltage switching
can be achieved within the whole operating range, including no load condition, decreasing the relevant
switching losses and enhancing the overall efficiency [9], [84].

In the literature, high-power LLC converters examples are found with 98% peak efficiency and 42.7
kW/L power density [136].

6.3. Battery Charging Profile

While designing an EV charger, it is also crucial to address the typical charging profile of a Li-ion battery,
equipped in vehicles. In order to decide on the best topology, analyzing the performance of various
converters under different operation modes bears significance.

Typically, two different operation modes, Constant Current (CC) and Constant Voltage (CV), are
employed in EV charging applications to maintain a good state of health of the battery by reducing cell
degradation without compromising the charging speed [129]. CC mode consists of a stable current
and gradually increasing voltage while CV mode starts as soon as the voltage reaches maximum with
decreasing current. The maximum charging power is observed at the intersection point of current and
voltage curves. In this operation mode, the cell voltages and currents are shown in Figure 6.9.
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Figure 6.9: Typical Charging Profile of a Li-ion Battery
[129]

In a study to compare the performance of various resonant converters, a DC link voltage of 600V
and primary resonance frequency of 200 kHz are designed to monitor and compare the switching
frequencies of different topologies [200]. It is observed that the series resonant converter exhibits a
switching frequency ranging between 219.9 kHz and 212.2 kHz during the CC mode, pointing out a
close operation point to resonance frequency and therefore presenting a low circulating energy in the
resonant tank. This paves the way for an efficient operation with reduced losses. On the contrary,
a high switching frequency is observed during CV operation, around 370 kHz, showing an inefficient
performance due to the enhanced switching losses even though the approximate circulating power is
lower than parallel and series-parallel configurations. Its incapability of voltage regulation at low load
is further noted. Due to these inadequacies, it is concluded that a series resonant converter is not a
suitable choice in this kind of charging application [200].

Meanwhile, a switching frequency range between 221 kHz and 217 kHz is observed when a parallel
resonant converter is used in CC mode. This proximity of value to the resonance frequency highlights
the efficient performance of the conversion topology. Furthermore, it is also noted that the switching
frequency ranged between 217 kHz and 233 kHz in CV mode, highlighting a much more efficient op-
eration compared to series topology. On the other hand, its underperformance at low load conditions
is further emphasized and 17 kVA of circulating power is approximated in the resonant tank, which is
much larger than the calculated value in the series configuration, underscoring its poor efficiency [200].

Next, the switching frequency ranged between 277 kHz and 276.9 kHz in the series-parallel config-
uration test, exhibiting a higher value than the resonance frequency compared to the other two topolo-
gies tested in CC mode. This higher deviation from the optimal frequency demonstrates a higher
circulating power in the resonant tank and results in less efficient operation. Further, in CV mode, the
frequency ranged between 276.9 kHz and 325.3 kHz, operating at a much higher frequency than the
ideal frequency. Circulated power is approximated as 14.1 kVA at low load conditions around 0.24 kW,
highlighting the inefficient handling of low power, similar to the parallel configuration [200].

Finally, the LLC converter’s switching frequency ranged between 193.3 kHz- 167.3 kHz at CC mode
and 168 kHz- 176.3 kHz at CV mode, performing better than the other configurations tested. It further
demonstrates a large slope of the voltage curve, proving a good voltage regulation performance at
low loads, outperforming series configuration. Moreover, the circulating power in the resonant tank is
approximated around 1.79 kVA, which is a much smaller value than the observed losses with parallel
and series-parallel configurations at low loads. This value describes more efficient operation at CV
mode [200].

6.4. Comparison of Power Converters

Discussed advantages and disadvantages of the converter topologies investigated in the previous sec-
tions are summarised in Table 6.2 to emphasize the differences in the most important selection criteria
such as efficiency, and power density.
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Considering the advantages and the drawbacks of the different converter types, the number of
elements implemented in the system directly affects the system in terms of cost and power density as
the elements take up space in the packaging area. However, the achievable frequency also matters to
improve the power density of the converter topology. In this case, a higher number of elements could be
compensated by higher operation frequency. Hence, the objective of the selection should be minimizing
the cost while maximizing the efficiency and power density. Due to their outstanding properties in high-
power applications, LLC, series resonant, full-bridge and DAB converters are remarkable and widely
used topologies in the charging industry. Especially, in a mobile onboard charger where the dimensions
of the converter play a key role, LLC resonant converter becomes prominent due to its high power
density and efficiency values reported. However, compared to the other types, this converter has the
most number of elements and therefore in stationary applications where high power density is not the
priority, the simplicity of the DAB and full-bridge converter and their specifications can outweigh the
advantages of a resonant converter. Even if it takes up slightly more space, the DAB converter’s high
efficiency and relatively small number of elements make it an excellent choice in charging applications
where the equipment does not have to be mobilized. The number of switches can be further reduced
by employing full-bridge topology. Especially, considering the stationary converter will be installed
besides numerous parking lots, this could significantly reduce the associated costs. It is also important
to note the control challenges associated with resonant converters. While they typically operate at
the resonant frequency, a sophisticated controlling methodology has to be implemented to maintain
ZVS and ZCS throughout the operating range with different load conditions. Resonant operation and
nonlinearities due to the parasitic elements employed make it more complex to control LLC resonant
converters in various load conditions while maintaining a good performance. Meanwhile, DAB and
full-bridge converters may require a much simpler controlling methodology due to the nature of the
bridge topology, possibly employing Pulse Width Modulation or Phase Shift Modulation techniques
for controlling switches. This is also another advantage, making DAB and full-bridge converters a
remarkable choice for applications where power density is not a priority. The research Sub-Question 6
can be answered in this way.
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Conclusion

The thesis demonstrates an alternative solution to address the challenges associated with today’s
charging methodologies to further promote the widespread use of EVs. In this regard, the conducted
analysis can set an example to highlight the effective and feasible use of robot-like mobile EV chargers
along with the introduced benefits from different stakeholders’ perspectives. In this regard, key findings
and takeaways are presented to answer the Research Questions in Section 7.1 and future work is
introduced in Section 7.2.

7.1. Answers to Research Questions

Introduced Research Questions can be answered below, combining the findings gathered from different
approaches and analyses. The combination of answers to these sub-questions provides a comprehen-
sive response to the Main Research Question, detailing the specifications of the developed mobile
charging system.

1. What are the challenges associated with today’s EV charging systems? What alternative
methods can be proposed instead of charging poles to address these challenges? What
potential benefits can mobile charging bring along, compared to regular charging poles?

The main challenges associated with today’s EV charging systems include long charging du-
rations and a lack of available charging stations, often due to limited service or unnecessary
occupation. Other issues involve cable handling, related safety and convenience problems, in-
vestment risks due to low utilization rates, urban space usage, and uncontrolled power and energy
demand peaks on the grid. Introduced alternative methodologies are battery-less systems, large-
scale battery-integrated systems, mobile or stationary battery swapping systems and robot-like
systems with batteries (Section 2.2). Among these alternatives, robot-like systems demonstrate a
remarkable solution to address the challenges associated with today’s charging infrastructure, of-
fering greater flexibility and convenience to drivers, supporting the electricity grid and exhibiting a
remarkable investment opportunity. From the drivers’ perspective, these systems can present re-
duced waiting times, improved availability and user-friendliness, contributing to the attractiveness
of owning EVs while also offering slightly more affordable service compared to the fast charging
alternatives offered today. From the grid’s perspective, operating with a lower grid capacity such
as 50 kW, the system can significantly reduce peak charging demand by 73%, decoupling the
charging load from the grid, and potentially minimising the extra costs of improving the electricity
infrastructure while still offering high power service. By engaging in energy arbitrage services,
this integrated battery can also support the grid. The proposed system can store a portion of the
surplus energy to be used during scarcity. This function can become very useful if renewable
generation is the source of this surplus. The analysis demonstrates that this exchanged energy
can reach up to 500 kWh when the system is allowed to utilize a high grid capacity of 100 kW.
As a consequence, the developed system requires more investment when compared to the reg-
ular charging poles while yielding 40.7% to 61.82% more yearly profits, regarding the public and
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workplace demand scenario. The system can also increase flexibility by allowing investors to
redeploy more easily and review their investment decisions by dividing the total investment into
smaller replacement rounds. In this way, the investment risks such as the uncertain price and
interest factors can be avoided much more easily (Section 4). It is also important to note that this
investment cost can also further decrease in the future as a consequence of steadily decreasing
prices of components such as Li-ion batteries [174].

2. What is the optimal configuration that can be suggested as a mobile charging solution in
the urban setting?

Regarding the introduced mobile charging solutions, robot-like systems with batteries are remark-
able solutions to reveal the full functionality of mobile charging while addressing the challenges
associated with charging solutions applied today. These systems stand out for their ease of de-
ployment and convenience in charging services, particularly suitable for the urban environment.
Unlike large-scale battery-integrated systems, which may not be suitable due to scalability and
integration challenges within limited service areas, robot-like systems offer a flexible and efficient
alternative. Their relatively smaller battery size enables better performance in urban settings and
requires less space. They also address the concerns associated with battery size, weight, and
scalability issues that are present in other configurations such as battery swapping systems or
charging vans. Furthermore, these robot-like systems are capable of providing fast charging op-
tions, helping to overcome some of the current challenges faced by drivers, such as the need
for rapid charging to reach desired levels within a short timeframe. They also allow for effective
energy arbitrage, thanks to their easier establishment of grid connections due to shorter service
distances (Section 2). In addition, it is concluded that using a switchable battery configuration
in robot-like systems can significantly minimise the amount of investment required to deploy the
system. This configuration suggests the decoupling of the travelling necessity of the batteries
from the units utilised, reducing the number of expensive components without sacrificing the full
functionality. The investigation, which aims to show the frequency of concurrent movements,
proves that 2 carrier units are sufficient to handle the mobility duties of 3 battery units without a
significant service disruption. Using smaller carrier units to meet transportation requirements, it
is revealed that this configuration can show the highest annual return on investment due to the
possibility of showing the same effective operation at a lower cost (Section 4).

3. How can a realistic demand estimation be conducted to identify the charging tasks the
mobile system fulfils in a typical day?

A random demand sampling algorithm is developed to estimate the charging load on a typical
day. This algorithm regards the probability of arrival times, energy demand, charging power and
connection duration in a separate approach for private, public and workspace types of charging.
Regarding this probabilistic data, the algorithm samples a set of charging operations in which the
user input gives the number of daily operations. This number is determined by the capacity of
the studied portion of the parking place, P1 at TU Delft Campus, along with the reported number
of monthly public and workspace charging operations in the Netherlands. It further combines this
sampled data with the specifications of the 10 most popular EV models used in the Netherlands
and applies a correction to the sampled data. In addition, the algorithm accounts for the share
of DC charging in public and workplace settings and incorporates fast charging by analyzing the
charging profiles of ten studied EV models (Section 3).

4. What could be an effective sizing strategy for this proposed mobile charging system? How
many units should be considered and what should be the size of their batteries in the pro-
posed configuration?

The sizing strategy should reveal an optimal balance regarding the profitability, investment costs
and operational life period. In this regard, energy arbitrage acts as a source to maximise daily
profits. Obtained data suggests that even though this method can pave the way for maximizing
daily profits, more energy arbitrage brings along a heavy use of the batteries and therefore signif-
icantly limits the operational life and hence the total return of the system. Therefore, the findings
suggest that, when a 50 kW grid capacity is used, the system can perform better in the long term
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due to the longer service period while still doing limited energy arbitrage up to approximately 60
kWh. Consequently, the most effective strategy is highlighted, namely using the battery units
mostly for charging EVs to utilize the invested material as profitably as possible, as realised with
50 kW capacity. This approach relies less on the electricity grid, realizing a significant reduction
in peak demand, and supporting daily revenues through slight energy arbitrage, without heavily
compromising the battery life. Furthermore, the obtained data reveals that with the use of 3 bat-
tery units and 2 carrier units in a switchable configuration, the system can yield a maximum yearly
return on investment, which is an evaluation metric as a function of profits, battery life and invest-
ment cost. This configuration points out the greatest cash flow in unit time per amount invested,
exhibiting an efficient business opportunity where maximum financial efficiency and sustainability
are achieved. Under public and workspace charging demand, two battery capacities of 270 and
340 kWh are highlighted. The 270 kWh system demonstrates a more compact system, requiring
20% less investment without significant compromise on the yearly returns at the end of the third
reinvestment round. Meanwhile, the 340 kWh system showcases 2.87% higher yearly profits on
average, at the end of three reinvestment periods, even though it necessitates more investment.
Furthermore, the system’s performance is also evaluated under different input parameters. Load
type is one of these parameters, changing the total amount of charging demand and schedule
throughout the day. Accordingly, the system is tested under private load to represent a charging
demand sourced by users unable to access a home charger at a residential location. In this case,
the effect of energy arbitrage is verified and again 50 kW grid capacity is found as a better pa-
rameter in order to achieve longer operational life and more significant peak demand reduction.
In addition, two battery capacities of 260 kWh and 310 kWh used in a switchable configuration
made up of 3 batteries and 2 carrier units are highlighted to maximise the financial performance.
The first capacity presents a more compact system with around 14.8% less investment cost while
maintaining significant yearly profits, only 2.57% lower than the second suggested system (Sec-
tion 4).

5. How does the powertrain system need to be built to achieve the expected functionality
and performance requirements, and what characteristics should the system possess to
ensure suitability?

While investigating the performance requirements of the drivetrain, the effect of increasing the
system’s size and configuration on the total amount of energy consumed and peak power is
analysed. To achieve this, an artificial driving cycle is developed to simulate its operation in the
P1 Parking Area at TU Delft Campus. The results prove that using a switchable configuration
increases the peak power demand by 4.2%, and energy consumption by 10.53%. However, as
the total energy consumption values for the travel are not comparable to the other sources drawing
power from the batteries, it is concluded that the advantages of this configuration can significantly
outweigh this higher requirement. As a result, it is found that the system requires 1.34 kW of peak
power while consuming 18.68 Wh per cycle when 270 kWh batteries are used. Accordingly, the
traction motor types implemented in such applications are introduced and an adequate machine
is selected for the system. As a result, the induction machine emerges as a notable option for
meeting performance criteria while minimizing both initial investment and maintenance expenses.
Its use promotes a more sustainable manufacturing process, aligning with the system’s motivation
by eliminating the need for rare earth elements. While the efficiency of this machine is slightly
lower, its impact on the overall efficiency of the system is found negligible because travelling
energy accounts for only 0.12-0.2% of the total energy intake when 270 kWh batteries are used
(Section 5).

6. How can the power conversion topology be implemented to act as a bridge between the
system and EVs?

An effective power conversion is essential to support high-charging powers and the overall func-
tionality of the system. In this regard, two different topologies are suggested to be used in sta-
tionary and mobile applications. The stationary application requires the charger topology to be
located beside the designated parking lot to act as a bridge between the EV and the system. On
the other hand, the mobile application requires the topology to be carried on board to facilitate a
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fully autonomous docking process, without human intervention. The second one is found more
advantageous in terms of charging convenience while it necessitates efficient unit packaging,
since the additional hardware takes up space. Furthermore, the first one alleviates the concerns
related to packaging while it exhibits a more costly solution due to the placement of the charger at
every parking lot. In this regard, the LLC resonant converter is suggested as an adequate topol-
ogy to be implemented in the mobile application due to its outstanding power density. In this way,
high charging powers are achievable while allowing more efficient packaging and energy transfer
with the help of ZVS and ZCS characteristics of this topology. The reported experimental data
suggest that it is possible to obtain power densities up to 42.7 kW/L while not compromising the
efficiency even though the control process is more complex [94], [207], [136]. On the other hand,
for stationary applications where power density is less critical, DAB and full-bridge converters are
recommended due to their simplicity and fewer components (Section 6).

In this way, the thesis demonstrates a multidisciplinary approach towards mobile EV chargers as
an alternative to address today’s necessities. It is proven that today’s technology is well developed
to realise such systems to operate in the urban environment and the economy is sufficiently scaled to
make it profitable and viable, with potential for future improvement.

7.2. Future Work

To improve the analysis further, the following strategies can be taken into consideration.

» A simulation with more timesteps to represent a larger time horizon of a month or a year can be
done with heuristics. Consequently, this way allows the capture of different price scenarios and
circumstances, testing the resilience of the system in a complementary approach.

* When more computational resources are given, the analysis could be repeated with a higher time
sensitivity, such as a minute. This way also allows capturing travelling durations more critically.

* Integrating renewable energy generation data would enable accurate measurement of the energy
sourced from zero-emission sources, and facilitate a critical examination of the mobile system’s
performance in renewable energy integration. This data could be integrated by further developing
the optimization model when more computational resources are allocated.

* Instead of relying on probabilistic data, real-time charging data taken from the site can be utilized.
In this way, a more realistic approach, depending on the service location, could be developed.
Instantaneous SoC data of the EVs could be further integrated to regulate the charging power of
the mobile system if an effective linearization could be applied or a global solver with more time
allocation is utilized.

» Conducting battery testing under conditions similar to those of the system could provide valuable
insights and enhance the accuracy of lifetime calculations in future studies.

* An experimentation could also include the test of the proposed power converter topologies to
examine their performances further under different CC and CV conditions and verify the reported
values in the literature.
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