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A B S T R A C T

This study presents a probabilistic analyses of suction bucket installation in cohesionless soils. The spatial
variability of soil properties is quantified using a representative survey dataset from practice. Vertical random
field modelling is used to model cone resistance variability and probability density functions are fitted using
drained parameter estimates. Conventional installation analysis methods are adapted for layered soil deposits.
The effect of varying permeability is included through the incorporation of a finite element seepage model.
Parametric uncertainties are considered through a Monte Carlo analysis and the results are interrogated through
a variety of feasibility and sensitivity studies. Performing such an analysis allows a designer to gain insights
into governing failure mechanisms and objectively quantify the impact of uncertainty regarding parameter
estimates.

1. Introduction

Offshore wind developments are moving to deeper waters, as suit-
able near-shore sites become increasingly difficult to find. In addition
environmental regulations regarding installation noise are becoming
more strict. Suction buckets provide a quieter, rapid installation alter-
native to piled foundations and are comparatively simple to decom-
mission (Tjelta, 2015). They can be used as a foundation or anchoring
system for either bottom-founded or floating wind turbines (Arany and
Bhattacharya, 2018). According to the latest WindEurope report (Wind
Europe), suction buckets comprise a very small percentage of offshore
wind foundations in European developments at this moment, with
piling still the preferred option. Unfortunately, this means there is
little practical guidance or precedence on suction bucket installation.
Assessment of the feasibility of suction bucket installation is hindered
as a consequence.

A suction bucket foundation consists of an upside down bucket
which is installed through the generation of reduced pressure within
the buckets enclosed area (Foglia and Ibsen, 2014). Characterising
in-situ soil properties and how they vary across a site is of critical
importance when assessing the feasibility of suction buckets (Tjelta,
2015). Parameter variability is of particular importance when assessing
in-situ soil strength and permeability. Unfortunately, permeability is
notoriously difficult to measure accurately but of paramount impor-
tance to the successful installation of suction buckets (Tran et al.,

∗ Corresponding author at: Temporary Works Design, Marconistraat 16, 3029 AK, Rotterdam, The Netherlands.
E-mail address: jremmers@twd.nl (J. Remmers).

2007). This paper provides insight into the impact of uncertainties on
the installation design.

Engineers have a number of competing strategies for considering
uncertainty: (1) ignoring it altogether - a surprisingly common but dan-
gerous practice, (2) being conservative - a practice which generally
results in a safe but overly expensive design. The primary drawback
being that without explicitly considering variability it is impossible to
determine how conservative one is being. (3) the observational method,
which involves changing the design during construction or opera-
tion to accommodate observed behaviour and correct for it. While
this approach is quite successful in its own right it has a number of
drawbacks, mainly changing costs and construction times. (4) Quantify
uncertainties, using reliability-based design methods (Christian, 2004).
While the first three can only give an impression of certainty the
latter can explicitly account for uncertainties and give a true measure
of conservatism (Lacasse and Nadim, 2007). Reliability-based design
methods were originally developed to model low rate of occurrence and
high risk problems such as those encountered in nuclear design (Chris-
tian, 2004). To accurately apply these methods in the geotechnical
domain, realistic descriptions of measurement errors, model errors and
the spatial variability of soil properties are required (Christian et al.,
1994). Unfortunately, these are difficult to obtain due to the limited
availability of measurements and the large inherent uncertainty in
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Fig. 1. Methods (with Sections) forming the reliability analysis performed in this study.

geotechnical parameter estimation approaches (Phoon and Kulhawy,
1999). Nevertheless, these methods have been successfully applied in
the fields of levee design, slope stability, bearing- and lateral pile
capacity among others (Christian et al., 1994; Fenton and Griffiths,
2003; Malkawi et al., 2000; Phoon and Kulhawy, 2005; Reale et al.,
2016). To date however, there are few practical examples of reliability-
based design being applied to quantify uncertainty in the installation
of offshore foundations (Wu et al., 1989). Reliability based approaches
are ideal for the consideration of installation studies given the costs and
risks involved.

This study demonstrates how reliability methods can be used to
investigate the impact material uncertainty has on the installation of
suction buckets in cohesionless soils. Qualitative reliability analyses,
that focus on events and failure mechanisms which could arise during
installation, are performed. Two design methods for suction bucket
installation are analysed and adapted for layered soils with varying per-
meabilities. Spatial variability of parameters is objectively quantified
in order to apply reliability-based design to suction bucket installation
design methods. A representative geotechnical survey from an offshore
wind farm is used to obtain the variability estimates. Quantified para-
metric uncertainties are implemented in the adapted design methods
using a Monte Carlo simulation. The results are used to assess the
impact of parametric variability in a series of feasibility and sensitivity
studies.

2. Analysing suction bucket installation

Before performing a quantitative reliability assessment, qualita-
tive reliability methods are considered to account for and relate fail-
ure events (that are not directly accounted for) to traditional design
methods. Fig. 1 displays the followed procedure during the analysis.

2.1. Overview of suction bucket installation

The installation of suction buckets has a number of phases. In the
initial phase the suction bucket penetrates into the seabed under its
own weight. Before breaching further into the seabed the bucket must
first penetrate through the scour protection layer previously placed
at the site (Sturm, 2017; Houlsby and Byrne, 2005). When the soil
resistance equalises with the submerged weight on the bucket, water is
pumped out of the bucket cavity. This generates a pressure differential
(s) within the bucket cavity relative to the surrounding water pressure
(Fig. 5). This underpressure results in a net downward driving force
(in addition to the self weight) and causes seepage flow into the
bucket as water pressure attempts to equilibrate. The seepage flow
reduces the soil’s effective stress profile along the inside and under the
bottom annulus of the bucket. Thereby reducing the soil’s resistance
to suction bucket installation (Foglia and Ibsen, 2014; van Dijk, 2018).
Installation is considered to be successful if the bucket reaches its target
depth without refusal or structural damage.

Between placing the suction bucket on the filter layer and reaching
target depth, different events can occur which can lead to installa-
tion failure. Some of the phenomena causing failure can be mitigated

through the application of contingency measures. Prior to examining
quantitative design methods, the whole installation process is quali-
tatively inspected by means of event tree (Section 2.2) and fault tree
analyses (Section 2.3).

2.2. Event tree analysis

An event tree is a method of mapping all possible scenarios between
the initiating event (placement of the bucket on the filter layer) and all
possible outcomes (installation success/failure) using Boolean logic to
determine subsequent consequences (Christian, 2004; Whitman, 1984).
An objective analysis of the impact of hazards and the effectiveness
of contingency measures is possible with an event tree, provided that
all probabilities inside the tree are unconditional and mutually exclu-
sive (Lacasse and Nadim, 2007). Fig. 2 presents a general event tree of
suction bucket installation.

Specific causes of premature refusal can be (partially) mitigated by
the application of contingency measures. For example, if the suction
bucket does not achieve sufficient initial penetration, local piping may
occur and jeopardise the attainment of the target penetration depth. In
such a case one can consider the application of ballast to increase the
downward force. If successful, this measure can lead to penetration to a
depth where the suction process can begin. If not, premature refusal is
the consequence. Including all individual contingencies leads to a very
large event tree. Contingencies can be organised into sub-event trees
per installation phase to prevent this.

However, many contingencies (e.g. jetting, crane actions and cyclic
pumping) cannot yet be quantified as their likelihood of occurrence is
low and accurate design methods are absent. Two contingencies are
included in this study. Ballast material can be applied if insufficient
initial self weight penetration occurs. Back-fill material (grout) can be
used at refusal to fill the gap between the target and final penetration
depth (Sturm, 2017). If a contingency can be applied successfully, it
will lead to a reduction in the probability of failure of installation.

2.3. Fault tree analysis

Fault trees can be used to map conditions that need to be met for
failure to occur (Christian, 2004). If the probability of occurrence of
each mechanism is known the probability of failure of the entire system
can be analysed. The fault tree presented in Fig. 3 was developed for
application in this study. Unfortunately, mutual exclusivity of failure
mechanisms is hard to realise since several mechanisms can occur
simultaneously, while the correlation of failure mechanisms is difficult
to determine due to the non-alignment of design methods.

Installation of the suction bucket fails when penetration to target
depth becomes impossible due to structural failure (buckling), pumping
system failure (cavitation) or the exceedance of some geotechnical
limit state (e.g. piping or soil plug heave) (Ibsen and Thilsted, 2010).
These limitations are combined into a critical suction profile which
can be regarded as the maximum allowable under pressure inside the
bucket cavity at each penetration depth. A range of possible failure
mechanisms have been identified in previous case studies (Foglia and
Ibsen, 2014; Sturm, 2017). Although many failure mechanisms can
already be predicted, it remains hard to take phenomena caused by the
filter layer or laminar layers into account accurately.

2.4. Deterministic installation design methods

Understanding how soil resistance develops during penetration
forms the basis of suction bucket installation design (Foglia and Ibsen,
2014). Two main methods are available to perform such a study: the
empirical CPT-based method (Cone Penetration Test) (Andersen et al.,
2008; Senders and Randolph, 2009) and the theoretical approach by
Houlsby and Byrne (2005). Both methods are based on open-ended
pile design and compute the soil resistance as the sum of skirt friction
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Fig. 2. General event tree for geotechnical installation of suction buckets.

Fig. 3. Fault tree for installation of suction buckets in this study.

and the end-bearing capacity (Houlsby and Byrne, 2005) (Fig. 4). Both
design methods consist of an assessment of two installation phases: self
weight and suction-assisted penetration. The self weight penetration
depth is computed by balancing the sum of end-bearing resistance (𝑅𝑏)
and skirt friction (𝑅𝑖∨𝑜), with the submerged weight on the bucket (𝑉 ′).
In the second phase, the combined effects of the submerged bucket
weight and the applied differential pressure (𝑠) is equilibrated with the
total soil resistance accounting for any reduction caused by the applied
underpressure. This vertical balance is solved for the required suction
(s) at each penetration depth (ℎ).

2.4.1. CPT-based method
Conventional CPT-based design correlates the cone resistance ob-

tained in a cone penetration test (𝑞𝑐) to the skirt friction and end-
bearing via two empirical factors. A shaft friction factor (𝑘𝑓 ) between
0.001 and 0.003 and an end-bearing factor (𝑘𝑝) between 0.3 and 0.6
is recommended in the literature (Andersen et al., 2008; Senders and
Randolph, 2009). Specific methods correlating these empirical factors
to soil properties are absent. The initial self weight penetration phase is
modelled using Eq. (1). The effect of underpressure (𝑠) during phase 2 is
then incorporated in the following manner. The effect of under pressure
on the outer skirt is ignored. A linear reduction in value of inner skirt
friction and end-bearing from initial values towards zero is assumed
as underpressure increases. Both resistance components become zero
when the applied underpressure (𝑠) is equal to the soil suction limit
(𝑠𝑐) Eq. (2) (Senders and Randolph, 2009). Erosion of the inner plug
commences at this soil suction limit (Section 2.4.3). Empirical formu-
lations for hydraulic failure of the soil plug (𝑠𝑐) have been developed
for soils of uniform permeability (Ibsen and Thilsted, 2010). A thorough
description of this design method is available in (Senders and Randolph,
2009).

𝑉 ′ = 𝜋𝐷𝑖𝑘𝑓 ∫

ℎ

0
𝑞𝑐 (𝑧)𝑑𝑧 + 𝜋𝐷𝑜𝑘𝑓 ∫

ℎ

0
𝑞𝑐 (𝑧)𝑑𝑧 + (𝜋𝐷𝑡)𝑘𝑝(ℎ)𝑞𝑐 (ℎ) (1)

𝑉 ′ + 𝑠
(𝜋𝐷2

𝑖
4

)

= 𝜋𝐷𝑜𝑘𝑓 ∫

ℎ

0
𝑞𝑐 (𝑧)𝑑𝑧+

[

1 − 𝑠
𝑠𝑐 (ℎ)

] [

𝜋𝐷𝑖𝑘𝑓 ∫

ℎ

0
𝑞𝑐 (𝑧)𝑑𝑧 + (𝜋𝐷𝑡)𝑘𝑝(ℎ)𝑞𝑐 (ℎ)

]

(2)

2.4.2. Houldsby & Byrne method
The Houlsby & Byrne method is based on the classical bearing

capacity approach. The skirt friction is computed as a product of
local horizontal effective stress (𝜎′ℎ) (calculated through the ratio of
horizontal over vertical stresses, 𝐾) and the interface friction angle
(𝛿). End-bearing is computed through end-bearing factors N𝑞 and N𝛾
Eq. (3). The effective vertical stresses are enhanced by frictional forces
further up the skirt and therefore develop differently on the inside (𝜎′𝑣𝑖)
and the outside (𝜎′𝑣𝑜) of the skirt (Houlsby and Byrne, 2005). Linear
development of underpressure between an applied suction (s) and 𝑎
times the applied suction (𝑎s) at the skirt tip is assumed on the inside
of the suction bucket. While outside, a linear underpressure dissipation
from (𝑎𝑠) at the skirt tip to zero at the seabed interface is assumed,
see Eq. (4). The factor 𝑎 was determined from finite element studies
in soils of uniform permeability allowing for a fixed value of loosening
the inner soil plug (Houlsby and Byrne, 2005). Interested readers are
referred to Houlsby and Byrne (2005) for a more thorough explanation.

𝑉 ′ = ∫

ℎ

𝑜

[

𝜎′𝑣𝑜(𝐾 tan 𝛿)𝑜 + 𝜎′𝑣𝑖(𝐾 tan 𝛿)𝑖
]

𝑑𝑧+
[

𝜎′𝑣(ℎ)𝑁𝑞 + 𝛾 ′ 𝑡
2
𝑁𝛾

]

(𝜋𝐷𝑡) (3)

𝑉 ′ + 𝑠
(𝜋𝐷2

𝑖
4

)

= {
[

𝜎′𝑣 − (1 − 𝑎(ℎ)) 𝑠
]

𝑁𝑞 + 𝛾 ′𝑡𝑁𝛾}(𝜋𝐷𝑡)+

∫

ℎ

𝑜
{(𝜎′𝑣𝑜 + 𝑎𝑠)(𝐾 tan 𝛿)𝑜 +

[

𝜎′𝑣𝑖 − (1 − 𝑎)𝑠
]

(𝐾 tan 𝛿)𝑖}𝑑𝑧

(4)

2.4.3. Critical suction
After calculating the required suction, the critical suction level (the

suction at which inner erosion starts to occur) is determined. Inner
erosion of soil starts when the exit hydraulic gradient (i) (Fig. 5)
adjacent to the inner skirt exceeds some critical value imposed by
gravitational forces (𝑖𝑐) (Ibsen and Thilsted, 2010). This is computed
with the effective soil unit weight (𝛾 ′) and the unit weight of water
(𝛾𝑤). The exit hydraulic gradient is a function of the seepage length (𝑙𝑠).
Using the results of an axisymmetric finite-element seepage model and
the relationship described by Eq. (5) several empirical soil suction limit
formulations (𝑠𝑐) were developed (Ibsen and Thilsted, 2010). However,
work by Panagoulias et al. (2017) suggests that these limits are too
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Fig. 4. Installation forces during installation of buckets in cohesionless soils.

Fig. 5. Impact of permeability variation and plug loosening on the seepage model output.

conservative (Panagoulias et al., 2017). Local exceedance of the critical
gradient does not necessarily lead to definitive refusal since global
stability might still be preserved. This matter is further discussed, for
instance in (Ibsen and Thilsted, 2010; Panagoulias et al., 2017).

𝑖 = 𝑠
𝛾𝑤𝑙𝑠

, 𝑖𝑐 =
𝛾 ′

𝛾𝑤
, 𝑠𝑐 = 𝑙𝑠𝛾

′ (5)

2.4.4. Adaptations to existing design methods
All methods discussed were developed for soils that have uniform

permeability with depth. Under uniform soil conditions, the change in
effective stress brought about by the developed underpressure would
be consistent across the site. However, when permeability varies across
a site this is no longer the case and significant variation in effective
stress reduction occurs. In practice there are questions on the suitabil-
ity of the original methods as permeability variation and progressive
soil plug loosening are to be expected (Tran et al., 2007; Harireche
et al., 2014). In this study two adaptations are made to the existing
axisymmetric finite-element seepage models (Ibsen and Thilsted, 2010).
Firstly, progressive soil plug loosening is applied for the cohesionless
layers where seepage occurs. The inner soil plug permeability (k𝑖) is
multiplied with a factor (k𝑟) with respect to the outer permeability

(k𝑜). Plug loosening increases with penetration depth (h) according
to Eq. (6) as proposed by Harireche et al. (2014). In this paper the same
loosening relationship has been applied to all layers of non-cohesive
material. Secondly, different layer elements are incorporated into the
model thereby allowing for changes in permeability with depth.

𝑘𝑟 =
𝑘𝑖
𝑘𝑜

= 1.4 + 3 ℎ
𝐷

(6)

Fig. 5 shows the impact of these adaptations on the developed
underpressures by comparing two case studies. The left-hand side plot
shows a case of constant permeability with no plug loosening. While the
right-hand side plot includes a thin less permeable (80% permeability
reduction) soil layer at a depth of 1 to 2 m and incorporates the
effects of plug loosening (k𝑟 = 3.2). The underpressures are normalised
with respect to the applied underpressure in the suction bucket cavity.
Fig. 5 shows the normalised underpressures for the two cases. Reducing
the permeability causes a decrease in hydraulic head along the inner
skirt wall and tip and consequently an increase in soil effective stress.
Conventional design methods would under-estimate the encountered
resistance in such a case. This could lead to premature refusal during
installation. Plug loosening increases permeability along the wall and
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Fig. 6. Iterative procedure due to integrating FEM seepage analysis into design methods.

thereby decreases soil resistance. Both effects need to be accounted for
to achieve more accurate installation design.

Integrating the adapted seepage model with existing installation
design methods makes them suitable for application in layered soils
of varying permeability. As a consequence, model uncertainty reduces.
The skirt friction and end-bearing resistance variation in both methods
is carried out proportionate to the change of enhanced vertical effective
stresses (𝜎′𝑣𝑖 and 𝜎′𝑣𝑜) by the applied underpressure (s) (Houlsby and
Byrne, 2005). The hydraulic head difference over the bucket wall
always scales linearly with the applied underpressure. This means that
a seepage analysis needs to be performed once per penetration depth
and installation design becomes an iterative procedure, see Fig. 6 and
Appendix B.1.

3. Quantifying parametric uncertainties

This study uses a vertical random field model to describe cone
resistance (𝑞𝑐) variability with depth. Fitted probability density func-
tions are used to model the variability of all other parameters. The
accuracy of both of these approaches is sensitive to both soil type
and layering (Uzielli et al., 2006). Therefore, several approaches are
considered to ensure representative layers are identified.

3.1. Layer and soil type identification

The presence of soil layers which have different properties (strength,
stiffness, permeability etc.) and exhibit different behaviour under stress
can have a large impact on the installation of suction buckets. Accu-
rate layer identification is therefore a necessity. This study employs
four distinct identification methods simultaneously: borehole logs, the
soil behaviour type index, the statistical moving window method and
Bartlett profiling.

Borehole logs contain the subjective interpretation made during
visual examination of the samples on site (e.g. sub angular coarse
grained sand). Often these logs contain additional information on the
geological history of the deposit (Peuchen, 2012). Borehole logs are
valuable for identifying small layers or lenses which might not be
captured by a cone penetration test. The soil behaviour type index (𝐼𝑐)
is computed after normalising the cone tip resistance (𝑞𝑐) and the shaft
friction (𝑓𝑠) with effective stress (𝑄𝑡, 𝐹𝑟) (Eqs. (7) and (8)). It can be
used to give a first indication of the soil type based on an interpretation
of the Robertson classification chart (Robertson, 2016).

𝐼𝑐 =
[

(

3.47 − log𝑄𝑡
)2 +

(

log𝐹𝑟 + 1.22
)2
]0.5

(7)

𝑄𝑡 =
𝑞𝑡 − 𝜎𝑣0
𝜎′𝑣0

, 𝐹𝑟 =

[

𝑓𝑠
𝑞𝑡 − 𝜎𝑣0

]

100% (8)

Both the statistical moving window method (Uzielli et al., 2005)
and Bartlett profiling (Phoon et al., 2003) utilise a moving window to
examine the average soil variance over the cone resistance profile. The
moving window method computes the coefficient of variation (COV) of
the cone resistance in each window. The objective of this method is to
identify homogeneous soil units from such a profile. Bartlett profiling
computes a statistical value (𝐵𝑠𝑡𝑎𝑡) per depth based on comparing the
standard deviation of both halves of the sampling window (𝜎𝑏1, 𝜎𝑏2),

see Eqs. (9) and (10). Peaks within the profile indicate a change in soil
behaviour. The width of the peaks and troughs in both moving window
methods, depend on the standard deviation of the cone resistance, the
number of measurements (𝑚𝑏) and the chosen window width.

𝐵𝑠𝑡𝑎𝑡 =
2.30259(𝑚𝑏 − 1)

𝐶𝑏

[

2 log
(𝜎2𝑏1 + 𝜎2𝑏2

2

)

−
(

log(𝜎2𝑏1) + log(𝜎2𝑏2)
)

]

(9)

𝐶𝑏 = 1 + 1
2(𝑚𝑏 − 1)

(10)

None of the four methods mentioned fully correspond to one another.
The accuracy of the borehole log depends on the loggers experience.
Neither of the moving window methods has an objective threshold
to distinguish layer boundaries. As a consequence distinct peaks and
troughs in the profile must be used. Furthermore, both moving window
methods are sensitive to the choice of window width. Fig. 7 shows
that enlarging the window results in a significant decrease of distinct
peaks, while decreasing the window width will result in more peaks
indicating layer boundaries, some of which may not exist. Both moving
window methods are challenging to apply at shallow depths, since the
magnitude and variation of the cone resistance are typically low. While
the soil behaviour type index (I𝑐) does have objective identification
thresholds, it can fail to capture a change in the gradient of the
cone resistance trendline. This can result in an overestimation of the
of cone resistance variation when constructing a random field model
(Section 3.2).

None of the four identification methods are without flaws. To verify
the layer identification process the CPT data from each layer with
corresponding second moments (standard deviations) can be depicted
on a Robertson classification chart. This allows for further optimisation
of layer boundaries by selecting boundary locations which minimise
second moments. It can also be used to merge two identified layers
which turn out to have very similar characteristics. This avoids over-
complicating the analysis of installation performance. Fig. 8 shows the
second moment plot for the layers identified in Fig. 7. At this location
eleven layers of different behaviour were identified by means of all four
methods described. Fig. 8 shows a distinct difference in both the mean
and its variation for all neighbouring layers.

3.2. Random field modelling of cone resistance

A random field model can be constructed for any stochastic process
which can be described by a trend and a variation with zero mean
about that trend (Rackwitz, 2000). The vertical variability of the cone
resistance within each layer is described by its own random field,
see Fig. 9. Two prerequisites should be satisfied in order to ensure
applicability (Uzielli et al., 2006):

1. Soil layers used should be physically homogeneous in their
behaviour;

2. The variations of soil properties about their respective trendlines
should be weakly stationary.

Proper layer identification as elaborated on in Section 3.1 can assure
meeting the prerequisite on physical homogeneity. Weakly stationary
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Fig. 7. Comparison of layer identification by the four methods applied in this study.

Fig. 8. Second moment classification chart for validation of layer identification (Robertson, 2016).

variation along the trendline indicates that there is no trendline in-
corporated in the variation profile which therefore means variation is
independent of its location within the layer. Besides checking that the
variability oscillates about a zero mean when detrended, no generally
applicable objective methods are currently available for the assessment
of weak stationarity (Phoon et al., 2003).

Each layer in a random field model requires a trendline describing
the mean (𝜇) and a standard deviation (𝜎), a scale of fluctuation (𝛿𝑣)
combined with a corresponding theoretical autocorrelation function,
R(𝜏) describing the variation (Phoon et al., 2003). The latter describes

the spatial correlation of variation within the profile (Rackwitz, 2000).
To obtain this for a given layer at a location the following procedure
is applied (Lloret-Cabot et al., 2014). First, empirical autocorrelation
functions are determined for all variability profiles obtained from dif-
ferent CPTs within the same soil layer according to Eq. (11). The mean
empirical autocorrelation is then calculated and theoretical autocorre-
lation models are fitted to it using a least squares approach (Table 1).
The best fitting theoretical model is selected with its corresponding
scale of fluctuation (𝛿𝑉 ) and is used for all further simulations, see
Fig. 10 and Appendix B.2.
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Fig. 9. Example of vertical CPT random field modelling in this study.

Table 1
Theoretical autocorrelation models common in geotechnical data analysis Phoon et al.
(2003).

Model Equation Scale of fluct.

Single exponential R(𝜏) = exp(−𝜆 |𝜏|) 𝛿𝑣 = 2/𝜆
Binary noise R(𝜏) = 1−c|𝜏| (if |𝜏| = 1/c) 𝛿𝑣 = 1/c
Cosine exponential R(|𝜏|) = exp(−b|𝜏|) cos(b𝜏) 𝛿𝑣 = 1/b
Second-order Markov R(|𝜏|) = (1 + d|𝜏|) exp(−d|𝜏|) 𝛿𝑣 = 4/d
Squared exponential R(|𝜏|) = exp[−(𝛼 𝜏)2] 𝛿𝑣 =

√

𝜋 /a

Three criteria are considered to match soil layers from different
CPTs in order to ensure that the correct data is used for determining
the mean empirical auto-correlation. The layers should have:

1. A similar soil behaviour type index (𝛥𝐼𝑐 < 5%);
2. Belong to the same geological deposit;
3. Overlap in depth.

Applying these criteria allows for the generation of theoretical auto-
correlation functions which are based on the empirically fitted curves
representative for the site at large, see Fig. 10.

𝜌(𝜏𝑗 ) =
1

𝜎2(𝑛 − 𝑗)

𝑛−𝑗
∑

𝑖=1
(𝑋𝑖 − 𝜇)(𝑋𝑖+𝑗 − 𝜇) (11)

Many current vertical random field studies consider few soil layers
and model large outliers as cone resistance variation (Doherty and
Gavin, 2010; Prendergast et al., 2018). This is feasible for very ho-
mogeneous soils over depth and closely spaced cone penetration tests.
Offshore cone penetration tests are typically positioned further apart.
Additionally, the presence of thin laminar layers can severely impact
layer permeabilities and can have serious consequence on the instal-
lation design of suction buckets and therefore should not be ignored.
These arguments emphasise the need for one random field per soil layer
with corresponding trendlines and variance description (as in Fig. 9).

Negative cone resistances are a physical impossibility and therefore
must not be simulated (Fenton and Griffiths, 2003). To prevent this,
simulated Gaussian processes are transformed into the log-normal do-
main. Caution should be exercised at locations where the fitted linear
trendline values are close to zero or negative. This can happen if the
trendline for the uppermost layer is not constrained to the positive
domain. In such cases it will be difficult to avoid simulating negative
cone resistances. The trendline should always be corrected to only
contain small near-zero positive values to avoid this.

Table 2
Parameter estimation methods applied on the case study dataset.

Variable Symbol Type Used

Soil unit weight 𝛾 ′ Measurements –
Relative density R𝐷 Correlation Jamiolkowski et al. (2003)
Angle of internal
friction

𝜙 Correlation Andersen and Schjetne
(2013)

Permeability k Correlation Kozeny-Carman Carrier
(2003)

Interface friction
angle

𝛿 Estimate 𝛿 = 𝜙 − 5◦ Lehane et al.
(1993)

Stress ratio K Estimate K = 1−2 Gavin (2018)

3.3. Continuous probability density functions (PDF)

Parameter estimates are obtained from the results of laboratory or
field tests via direct measurement or correlation (Table 2). The required
parameters are treated as random variables as they can have different
values under different conditions which have a different probability
of occurrence (Dekking et al., 2005). The probability of occurrence is
described by a continuous PDF. Different soil types form under different
conditions and can have a difference in geotechnical properties as a
consequence. Therefore parameter estimates are grouped per soil type.
Histograms are plotted for different parameter groupings and soil types
to ensure that the resulting continuous distributions are uni-modal.
Discrete variability is then quantified using both histograms and fitted
empirical Cumulative Density Functions (CDFs). Fig. 11 shows the
calculated permeability CDF for the different soil types. The result is
as expected since finer soils have a lower permeability. As previously
discussed, Gaussian distributions are not suitable for modelling param-
eters which cannot have values in the negative domain. Several PDFs
are fitted and assessed for each parameter (see Table 3).

All probable distributions are fitted using the maximum likelihood
estimator to determine shape and location factors. Two ‘goodness of
fit tests’ are applied to objectively assess the accuracy of the fit.
The Pearson 𝜒2 test compares the shape of the continuous PDF to
its normalised histogram. The weighted error is checked against a
predetermined threshold based on the number of estimates and the
𝜒2 distribution (Plackett, 1983). The Kolmogorov–Smirnov test de-
termines the maximum error between the empirical and continuous
CDF. It compares this to a threshold which depends on the number
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Fig. 10. Fitting auto-correlation model to differently sized but matching soil units.

Fig. 11. Different empirical cumulative density functions of estimated permeability.

Table 3
Probable continuous probability density functions selected for fitting procedure.

Function Variables Domain Remark

Gaussian distribution 𝜙, 𝛾 ′ All Common
Log-normal distribution k, 𝜙, 𝛾 ′ Positive Common
Weibull k, 𝜙 Positive Common
Beta k, 𝜙 Positive Flexible shape
Exponential k Positive Decaying, starts at 0
Uniform distribution K All Discontinuous

of parameter estimates (Lilliefors, 1967). The score of both tests is
normalised by their respective threshold and averaged afterwards. The
fitted continuous distribution which scores best on average is used to
describe the variability of a parameter in a given soil type. A minimum
of 30 samples is set as the lowest threshold for Pearson’s 𝜒2 ‘goodness
of fit’ test. Otherwise the mean value is used as a deterministic estimate.
Fig. 12 shows the procedure for modelling the variability of the perme-
ability of medium to fine sands based on 51 estimates. The log-normal
distribution showed the best fit.

4. Quantitative reliability analysis

In this section, the quantified parametric uncertainties from Sec-
tion 3 will be implemented into the developed design methods for
different failure mechanisms and contingencies (Section 2). The results
provide insight into the impact of uncertainties on installation design.

4.1. Monte Carlo simulation

Almost every design problem can be simplified into a combination
of a load (S) and a resistance (R). Feasibility can likewise be expressed

by the limit state (G = R − S). A limit state value below zero (G <
0) corresponds to a failure scenario, while a value above zero (G > 0)
represents a safe design. Christian (2004). In this study, the resistance
is represented by the critical suction profile (s𝑐) and the load by the
required suction profile (s𝑟). Both the empirical CPT-based method
and the theoretical approach of the Houlsby & Byrne method are
used to determine required suction profiles. Each quantifiable failure
mechanism (e.g. buckling, cavitation or inner erosion) is expressed
as the maximum allowable underpressure at that depth. This forms
a limit state over depth which may not be exceeded by the applied
underpressure.

The original limit state formulation is not useable for continuous
processes like suction bucket installation, as failure could occur at any
depth. Therefore the smallest absolute difference does not necessarily
represent the point most likely to fail. The relative magnitude dictates
the reliability instead. The limit state is normalised by the critical
suction profile to find the point which is relatively closest to failure
Eq. (12).

𝐺 = 𝑠𝑐 − 𝑠𝑟 → 𝐺 = 1 −
𝑠𝑟
𝑠𝑐

(12)

The probability of failure can be assessed in a quantitative reliability
analysis. Suction bucket installation is a multi-dimensional problem due
to its many input parameters. This hinders application of direct inte-
gration or first order reliability methods (Au and Beck, 2001). Regular
Monte-Carlo simulation is the most suitable method for these types of
problems; as it allows for the direct input of advanced probabilistic
distribution types and is accurate when sampled extensively. Param-
eters are randomly sampled from their representative distributions to
construct design profiles. The number of iterations which fail divided
by the total amount of iterations carried out represents the probability
of failure (Fig. 13 and Appendix B.3).
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Fig. 12. Fitted continuous distributions for permeability of medium to fine sands.

Fig. 13. Monte Carlo simulation for probability of buckling failure at one location.

One drawback of Monte-Carlo simulation is that the time taken to
assess low probability events can become significant, particularly when
a high degree of accuracy is required. Optimised methods for faster
computation (e.g. Markov Chain Monte Carlo, Importance Sampling
etc.) do exist and are applied in literature (Zhang et al., 2010). How-
ever, when used in combination with random field models and a depth
dependent limit state (e.g. composed critical suction profiles) any time
savings are lost.

4.2. Feasibility assessment

The probabilities of failure due to buckling, exceeding soil suction
limits and cavitation are assessed using Monte-Carlo simulations of
5000 iterations. An example for a bucket with a diameter (D) of 10
m, final penetration depth (h) of 5.5 and wall thickness (t) of 45 mm

is presented in Fig. 13. In this case the CPT-based method (adapted for
layers of varying permeability) is applied. The effect of contingency
measures such as the application of ballast and backfill material are in-
cluded where appropriate to reduce probabilities of failure accordingly
(Section 2.2). The observed failure probabilities are high. The large
model uncertainty contributes to this as: (1) The soil suction limits are
believed to be too conservative and the impact of many contingency
measures cannot be quantified (Panagoulias et al., 2017). (2) The error
in CPT results can be quite high, as CPT cones sample a relatively small
area compared to that of the suction bucket. Therefore, they register
the significance of occluded pebbles etc. as more important than they
actually are when scaled up. (3) The model error in measuring per-
meability and soil friction angles is significant, particularly given the
scale of magnitude of the change these parameters undergo during
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loading. Aside from model error, the lack of sufficient survey data to
accurately model horizontal variability adds uncertainty to the analysis.
Lateral variability of soil strength and permeability cannot be included,
which eliminates the opportunity of including some aspects relevant
to suction bucket installation (e.g. preferential flow and horizontal
strength variation) (Sturm, 2017).

The importance of a quantitative reliability analysis becomes clear
when one compares the results to that of conventional design methods.
In current driveability practice, it is common to construct lower and
upper bounds using a standard safety factor (𝛾 = 1.25) (Alm and Hamre,
2001). Taking 95% reliability intervals, as recommended by Eurocode
7, for underpressure at each depth, the output of the Monte-Carlo
simulation could be used instead of a conventional design approach. In
the left plot of Fig. 14 a deterministic estimate and the outcome of all
iterations in the Monte Carlo simulation are presented. These are then
translated to a lower and upper bound using the conventional method
(𝛾 = 1.25) and 95% reliability intervals in the right plot Appendix B.3.
As the bandwidth of the conventional method is consistently lower
than that of the reliability based approach, it would appear that the
selected safety factor is non-conservative with respect to the quantified
uncertainties and carries a greater failure probability.

4.3. Sensitivity analyses

Failure mechanisms develop when an unfavourable load resistance
envelope occurs at a location. The sampled parameters and limit state
profiles of a Monte-Carlo simulation can be used to assess the origin
of generated failure situations. Failure is observed when simulated soil
resistances are high. When a high soil resistance is observed the angle
of internal friction (𝜙) and the ratio of horizontal stress (K) are high
too. The probability of failure is therefore very sensitive to any change
in these parameters.

The influence of parameter estimates as well as the incorporation of
variability can be determined with a quantitative reliability analysis.
Fig. 15 illustrates this using the Houlsby & Byrne design method. In
the left plot the median profiles of all samples with particular stress
ratios (high and low) are plotted. These are extracted from the bulk of
iteration results during a Monte Carlo analysis. One can see that the
stress ratio (K) estimate has a large impact on the outcome profile.
This is unfortunate given the great difficulty in accurately estimating
this parameter in cohesionless soils (van Dijk, 2018). However, it also
shows the power of reliability analyses in influencing decision makers
to perform more field tests.

The right graph of Fig. 15 gives an example of the impact of
parametric variability on the results. Two 95% confidence intervals
are plotted showing the results of two Monte-Carlo analyses. The first
Monte-Carlo analysis was executed with varying permeability estimates
sampled from the previously determined distributions. The second
analysis was executed using the expected values from the same distri-
butions. One can see that incorporating the variation of permeability
has significant impact on the upper bound of the confidence interval,
naturally having this much uncertainty in your underpressure devel-
opment will lead to a less reliable installation. Combined with the fact
that it can be used to assess and simulate governing failure mechanisms
one can state that incorporating permeability variation is required.

Fig. 16 shows simulated failures and corresponding histograms of
sampled permeabilities. The low sampled permeability in layer three
indicates that the governing failure mechanism is seepage blocking.
This low permeability layer prevents the generation of underpressures
beneath it and therefore fails to reduce soil resistance which can cause
premature refusal. Slight deviations towards higher permeability in

lower layers are present too and indicate the occurrence of stucking. In
such cases high permeability layers hinder the generation of sufficient
underpressure. As a consequence the soil resistance is insufficiently
reduced to allow for further penetration (Sturm, 2017). Understanding
governing failure mechanisms can help in planning contingencies as
well as setting the scope for future site investigations.

5. Conclusion and discussion

This study objectively quantified variability of geotechnical param-
eters and incorporated it into two existing design methods for suction
bucket installation. The impact of considering permeability variations
within layers and between layers was shown to be highly significant
and should be considered in practice. The existing installation design
methods were adapted to integrate a finite-element seepage model and
progressive plug loosening, thus making them suitable for application
in layered soils of varying permeability. As a consequence, model
uncertainty reduced. Application of reliability-based design led to an
improved understanding of the expected failure mechanisms through
investigating model sensitivities. Additionally, it provides a basis for
accurately determining conservatism, thereby reducing the chance of
unexpected failure.

Suction bucket installation design research typically uses ideal data-
sets with homogeneous soil conditions. This study showcases the steps
necessary to adapt these methods for non-homogeneous sites such as
those commonly found in practice. In such conditions, layer and soil
type identification are essential in order to avoid over- or underes-
timation of the soil resistance during installation. Integrating these
features into installation design accounts for several unfavourable ef-
fects (e.g. seepage blocking and stucking), which would otherwise not
be considered. This helps to more accurately predict the occurrence of
premature refusal and increases the safety margin in installation design.
Four layer identification methods were presented and contrasted in this
research. It was found they were seldom in complete agreement, but
were best utilised in combination with each other. It was shown that
a statistical sound application of vertical random field modelling of
the cone resistance requires a more extensive check on its prerequi-
sites (homogeneity and stationarity). Due to the shallow embedment
depth of suction buckets, assuming homogeneity or stationarity without
checking can lead to substantial over- or under estimation of the cone
resistance and hence the resistance calculated in suction bucket design.
Each layer needs to be properly identified and assigned its own random
field. This is challenging in practice since the accuracy of a vertical
random field is hard to assess without many closely spaced CPTs. Prob-
ability density functions provide an excellent tool for modelling the
variability of soil parameter estimates. Using ’goodness of fit’ tests such
as the Pearson 𝜒2 and the Kolmogorov–Smirnov test is recommended
since they objectively assess distribution fit and suitability.

Integrating Monte Carlo simulation outputs into the developed fault
tree resulted in high estimates of the probability of installation failure.
The high failure probability can partly be attributed to conservatism
in the computation of the limit state (critical suction). Currently, soil
limits are set at under-pressure values which are computed based on
the onset of erosion. However, the onset of erosion is not necessarily
synonymous with installation failure. Future model tests should give
more insight into the geometric extent of critical gradients at failure.

The reliability study as well as the installation design method can
be improved by assessing other design aspects as well. For example at
this point, it is not possible to calculate the influence of a filter layer
on the penetration process. Furthermore, the CPT-based method can
be improved by developing an estimation method for the empirical
coefficients based on back-calculation using measured field data of
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Fig. 14. Comparison of deterministic design with a safety factor to a reliability interval.

Fig. 15. Influence of stress ratio estimate and permeability variation on design outcomes.

Fig. 16. Parametric study leading to identification of governing failure mechanisms.
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similarly shaped foundations. This study shows that 95% reliability
intervals can be used to verify adaptations made to installation design
or parameter estimates. If the bandwidth of an improved method
consistently decreases towards the measured output during installation
one can verify whether the adaptations made can be considered an
improvement. Mutual exclusivity of failure mechanisms is hard to
realise since several failure mechanisms can occur simultaneously while
at present their correlation is difficult to determine due to the non-
alignment of design methods. Better design method alignment would
allow this to be accounted for within a risk based framework.

In practice, variability of soil properties is difficult to determine
without extensive site investigation. Without knowing the horizontal
variability of soil properties it is impossible to quantify preferential flow
or spatially average soil strength across the diameter of a bucket. Both
are likely to significantly change design outcomes and their probability
of failures. In practice multiple buckets are often installed as the foun-
dation for a jacket structure, which supports the wind turbine. There
is a need to investigate interaction effects and develop more accurate
modelling of horizontal variability, in order to assess the feasibility of
such structures holistically as a system.

Appendix A. Notations

B𝑠𝑡𝑎𝑡 Bartlett statistical value R𝑖 Inner skirt resistance
D Diameter R𝑜 Outer skirt resistance
D𝑖 Inner diameter R𝐷 Relative density
D𝑜 Outer diameter R(𝜏) Theoretical

autocorrelation function
f𝑠 Shaft friction (CPT) s Pressure differential
F𝑟 Normalised shaft

friction
s𝑟 Required

suction/underpressure
G Limit state s𝑐 Critical suction
h Penetration depth S Solicitation
i Exit hydraulic gradient t Wall thickness
I𝑐 Soil behaviour type

index
V′ Submerged weight on

bucket
k Permeability z Depth
k𝑓 Shaft friction factor 𝛾 Safety factor
k𝑝 End-bearing factor 𝛾 ′ Effective soil unit weight
k𝑟 Permeability ratio 𝛾𝑤 Volumetric weight water
K Stress ratio 𝛿 Interface friction angle
l𝑠 Seepage length 𝛿𝑣 Vertical scale of

fluctuation
L Skirt length 𝜇 Mean
m𝑏 Measurements per

window
𝜌(𝜏𝑗 ) Empirical

autocorrelation function
N𝑞 Bearing capacity

constant
𝜎 Standard deviation

N𝛾 Bearing capacity
constant

𝜎𝑣′ Vertical effective stress

q𝑐 Cone resistance 𝜎𝑣𝑖′ Inner vertical effective
stress

q𝑡 Corrected cone
resistance

𝜎𝑣𝑜′ Outer vertical effective
stress

Q𝑡 Normalised cone
resistance

𝜏 Separation distance

R Resistance 𝜙 Angle of internal friction
R𝑏 End-bearing resistance

Appendix B. Pseudocode

B.1. Adapted installation design method for layered soils

Algorithm 1 can be used in combination with CPT-based design
(Senders and Randolph, 2009) as well as the Houlsby & Byrne method
(Houlsby and Byrne, 2005) (Section 2).

Data: Soil parameters for identified layers at each depth
Result: Required underpressure and critical suction
for every penetration depth do

Compute total soil resistance;
if total soil resistance ≥ effective submerged weight then

Save self weight penetration depth;
end
for every penetration depth ≥ self weight penetration depth do

Perform seepage analysis;
Determine critical suction;
Compute change in soil resistance by applied underpressure
according to effective stress reduction;
while reduced soil resistance ≤ driving forces do

Raise or lower applied underpressure
end
if required underpressure ≤ critical suction then

Further suction-assisted penetration feasible;
else

Premature refusal;
end
Algorithm 1: Design method for suction buckets in layered soils of
varying permeability

B.2. Parameter estimation vertical random field cone resistance

Reference is made to Prendergast et al. (2018), Rackwitz (2000) and
Lloret-Cabot et al. (2014) for generating the random fields.
Data: Multiple CPTs within one survey dataset
Result: Parameters estimation for a random field model of the cone

resistance for one (CPT) location in the survey data set
for every CPT in dataset do

Compute soil behaviour type index (I𝑐);
Compute moving window methods;
Find closest borehole log;
Manually identify soil layers;
Verification with second moment Robertson chart

end
for every layer at location do

Determine trendline and standard deviation;
Compute empirical autocorrelation function;
for every layer in every other CPT do

if layers overlap in depth then
else if layers from same geological deposit then

else if 𝛥 I𝑐 between layers ≤ 5% then
Add empirical autocorrelation function;

end
Average all added empirical autocorrelation functions;
Fit theoretical autocorrelation models and scale of fluctuation;

end

Algorithm 2: Parameter estimation for constructing vertical random
fields of the cone resistance
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B.3. Monte-Carlo simulation

Data: Identified soil layers, random field parameters for cone
resistance profile simulation (Appendix B.2), probability density
functions soil parameters, suction bucket dimensions

Result: Probability of failure, 95% reliability intervals
Determine geometric parameters;
Determine amount of iterations (N);
for every iteration do

for every identified layer at the location do
Simulate random field of the cone resistance;
Simulate soil parameters from probability density functions;

end
Perform adapted installation design method(s) (Appendix B.1);
Save required underpressure and critical suction profile;
Normalise limit state with respect to critical suction;
if Limit state ≤ 0 then

Failure observed (N𝑓 + 1);
end
Compute probability of failure (N𝑓 /N);
for every depth do

Determine empirical cumulative density function required and
underpressure and critical suction;
Determine 95% reliability intervals from empirical cumulative
density function;

end

Algorithm 3: Application of Monte-Carlo analysis on suction bucket
installation design
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