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SUMMARY

Radar sensors are an emerging technology in the context of non-contact monitoring of
vulnerable individuals. Radar-based solutions ensure end-user privacy, whilst provid-
ing medical professionals and caregivers with key information concerning the subject’s
well-being. This thesis proposes novel methods for the classification of sequential hu-
man activities using a network of radar sensors. Accurate classification of Activities of
Daily Life (ADL) can enable for instance the detection of falls and wandering amongst
elderly individuals, and can be employed for the recognition of aggressive or otherwise
anomalous behaviour for those receiving mental health care.

This thesis introduces a generic signal model for the used radar signals and data as
well as notation conventions in Chapter 2. The methods that are developed for con-
tinuous classification of human activities in this study are benchmarked on a common
dataset for the purpose of comparison with existing solutions in the literature. Notably,
the described signal model is tailored to the radar system that has been used for the col-
lection of this dataset.

In Chapter 3, a novel classification method is proposed for continuous sequences of
human activities. The proposed method processes data from Single Input Single Output
(SISO) radar sensors and adopts a non-conventional Point Cloud (PC) representation
for classification. Specifically, reflection intensity is represented in a range-Doppler-
time vector space, in contrast with typical x-y-z coordinate space. The method is essen-
tially one of dimensionality reduction, and can be utilised in the absence of Direction-
of-Arrival (DoA) information. Classification of the PCs is achieved by means of a Point
Transformer (PT) neural network. Due to the reduced data size of the PCs when com-
pared to more conventional 2D matrix representations such as range-Doppler maps or
spectrograms, the PT network is able to effectively utilise the input at full resolution with-
out becoming computationally unwieldy. Furthermore, the proposed method is applied
and experimentally verified with a network consisting of multiple cooperating radar sen-
sors, for which different sensor fusion techniques are implemented and demonstrated
to increase the overall classification performance.

The PC-based approaches are further developed in Chapter 4, where a novel method
is proposed that consists of three main components: a segmentation algorithm, a seg-
ment processing algorithm, and a classification network. The segmentation algorithm
is aimed at dividing an input sequence of activities into a time-ordered set of single ac-
tivity segments. This approach incorporates the benefits of utilising the PC processing
method, whilst mitigating the problems of using inflexible fixed windows for classifi-
cation. Segmentation is performed by monitoring a quantity computed from the micro-
Doppler spectrogram, namely the Rényi entropy. This quantity is indicative of the type of
activity performed, and segmentation is performed when significant fluctuations occur.
The proposed method, as well as two alternative segmentation methods, is validated on
the same publicly available experimental dataset used throughout this thesis. Notably,

xi
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it comprises a variety of sequences of nine human activities as observed by a network of
five radars.

A novel sensor fusion method is proposed in Chapter 5 that processes raw data from
a network of radar sensors and yields three-dimensional representations of both reflec-
tion intensity and velocity distribution. Specifically, data from a network of distributed
monostatic radars are processed into two 3D fields defined in Cartesian coordinates. The
first of these fields contains the reconstructed reflection intensity at each point in a 3D
spatial grid; the second is a 3D vector field of reconstructed velocities. In the context of
human activity classification, the reconstructed velocities can be related to the motion of
the different body parts, characterised in more detail compared to simply using spectro-
grams or range-Doppler representations with only the radial velocity components. The
efficacy of the method is evaluated through two case studies. The first case study entails
classification of human activities utilising the proposed method to process 2D data from
the same publicly available experimental dataset used throughout this thesis, followed
by classification by a CNN-BiLSTM (Convolutional Neural Network - Bidirectional Long
Short Term Memory) architecture. The second study demonstrates the feasibility of 3D
intensity and velocity reconstruction by processing dedicated data captured specifically
for this study.

Chapter 6 finally presents conclusions pertaining to the research performed for this
thesis, as well as recommendations for future research. The contributions of the stud-
ies are summarised first, and are followed by a section detailing the recommendations.
Improvements and refinements of the proposed methods are suggested, and remaining
challenges are outlined.



SAMENVATTING

Radarsensoren zijn een opkomende technologie voor het contactloos monitoren van
kwetsbare individuen. Radargebaseerde methoden waarborgen de privacy van de ge-
bruiker en voorzien medische hulpverleners van essentiële informatie met betrekking
tot het welzijn van de persoon. In dit proefschrift worden methoden voorgesteld om
opeenvolgende menselijke activiteiten te classificeren met behulp van radarsensoren.
Nauwkeurige classificatie van Activiteiten van het Dagelijks Leven (ADL) maakt het mo-
gelijk om vallen en dwaalgedrag bij ouderen tijdig te detecteren en kan worden ingezet
om aggressief of anderszins afwijkend gedrag te herkennen bij patienten in de geestelijke
gezondheidszorg.

Deze scriptie introduceert allereerst een generiek signaalmodel voor de gebruikte ra-
darsignalen en notatieconventies in Hoofdstuk 2. De methoden die in deze studie zijn
ontwikkeld voor de continue classificatie van menselijke activiteiten worden geijkt op
een dataset met het oog op vergelijking met bestaande oplossingen in de literatuur. Het
beschreven signaalmodel is relevant voor het radarsysteem dat is gebruikt voor het ver-
zamelen van de dataset.

In Hoofdstuk 3 wordt een nieuwe classificatiemethode voorgesteld voor continue
reeksen van activiteiten. De voorgestelde methode verwerkt gegevens van Single In-
put Single Output (SISO) radarsensoren en introduceert een atypische puntwolk oftewel
Point Cloud (PC)-representatie voor classificatie. Specifiek wordt de reflectie-intensiteit
weergegeven in een afstand-Doppler-tijd vectorruimte, in tegenstelling tot de typische
x-y-z coördinatenruimte. De methode is in essentie een dimensionaliteitsreductieme-
thode en kan worden gebruikt zonder Direction-of-Arrival (DoA) informatie. Classifi-
catie van de PC’s wordt uitgevoerd met behulp van een Point Transformer (PT) netwerk.
Vanwege de gereduceerde datastructuur van de PC’s in vergelijking met meer conventio-
nele matrixrepresentaties zoals afstand-Dopplerrepresentaties en spectrogrammen, kan
het PT-netwerk de input effectief gebruiken op hoge resoluties zonder dat het computa-
tioneel onhandelbaar wordt. Verder wordt de voorgestelde methode toegepast en ex-
perimenteel geverifieerd met een netwerk bestaande uit meerdere radarsensoren. Hier-
bij worden verschillende sensorfusietechnieken geïmplementeerd en wordt aangetoond
dat zij de algemene classificatieprestaties verbeteren.

De op PC gebaseerde benaderingen worden verder ontwikkeld in Hoofdstuk 4, waar
een methode wordt voorgesteld die uit drie hoofdcomponenten bestaat: een segmentatie-
algoritme, een segmentverwerkingsalgoritme en een classificatienetwerk. Het segmentatie-
algoritme is gericht op het verdelen van een ononderbroken reeks van activiteiten in een
tijdsgeordende reeks van segmenten met slechts één activiteit. Deze aanpak maakt ge-
bruik van de voordelen van de PC-verwerkingsmethode, terwijl de problemen van het
gebruik van vaste vensters voor classificatie worden beperkt. Segmentatie wordt uitge-
voerd door een grootheid te volgen die is berekend uit het micro-Doppler-spectrogram,
de Rényi-entropie. Deze grootheid geeft een indicatie van het type uitgevoerde activi-
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teit, en segmentatie wordt uitgevoerd wanneer significante schommelingen optreden.
De voorgestelde methode, evenals twee alternatieve segmentatiemethoden, wordt ge-
valideerd op dezelfde openbaar beschikbare experimentele dataset die bestaat uit een
verscheidenheid aan reeksen van negen menselijke activiteiten, geobserveerd door een
netwerk van vijf radars.

In Hoofdstuk 5 wordt een nieuwe sensorfusiemethode voorgesteld die ruwe data van
een netwerk van radarsensoren verwerkt en driedimensionale representaties oplevert
van zowel reflectie-intensiteit als snelheidsverdeling. Gegevens van een netwerk van
gedistribueerde monostatische radars worden verwerkt tot twee 3D-velden, gedefini-
eerd in cartesiaanse coördinaten. Het eerste veld bevat de gereconstrueerde reflectie-
intensiteit op elk punt in een 3D-ruimteraster; het tweede is een 3D-vectorveld van ge-
reconstrueerde snelheden. In de context van menselijke activiteitclassificatie kunnen de
gereconstrueerde snelheden worden gerelateerd aan de beweging van de verschillende
lichaamsdelen. De effectiviteit van de methode wordt geëvalueerd aan de hand van twee
studies. De eerste studie betreft de classificatie van menselijke activiteiten waarbij de
voorgestelde methode wordt gebruikt om 2D-gegevens uit een openbaar beschikbare
dataset te verwerken, gevolgd door classificatie met een CNN-BiLSTM (Convolutional
Neural Network - Bidirectional Long Short Term Memory) architectuur. De tweede stu-
die toont de haalbaarheid aan van 3D-intensiteit- en snelheidsreconstructie door gege-
vens te verwerken uit een dataset die voor deze studie is vastgelegd.

Hoofdstuk 6 presenteert de conclusies met betrekking tot het onderzoek dat voor
deze scriptie is uitgevoerd, evenals aanbevelingen voor toekomstig onderzoek. De bij-
dragen van de studies worden eerst samengevat, gevolgd door een sectie waarin de aan-
bevelingen worden beschreven. Verbeteringen en verfijningen van de voorgestelde me-
thoden worden gesuggereerd, en de resterende uitdagingen worden geschetst.
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1
INTRODUCTION

Radar can be used to aid medical professionals and caregivers by providing a privacy-
preserving way of monitoring vulnerable individuals. In this introductory chapter I ex-
plain why and how radar can be used for this purpose. I discuss existing literature and
current challenges in the field, before stating the objectives and contributions of this PhD
research.

1
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2 1. INTRODUCTION

1.1. RADAR-BASED HUMAN ACTIVITY CLASSIFICATION

In the general field of healthcare, radar has emerged as a valuable non-contact sensing
technology with distinct advantages over alternatives like cameras and wearable sen-
sors [1–6]. Specifically, radar-based systems offer activity monitoring without requiring
individuals to remember to wear devices or interact with them, and maintain effective-
ness in low-light or glaring conditions as well as in obstructed environments. Impor-
tantly, radar’s inability to capture visual imagery can help preserve personal privacy.

Monitoring human Activities of Daily Living (ADL), provides essential insights for
medical professionals, enabling timely interventions for events such as falls, wander-
ing, and self-harm attempts. Following estimates of the United Nations, the percent-
age of global population aged 65 and above is expected to nearly double from 9.1% in
2019 to 15.9% in 2050 [7]. This growth comes with an associated increase in the need
for healthcare solutions to address age-related risks like falls and decline of cognitive
abilities. The US Center for Disease Control and Prevention concluded that approxi-
mately 27 000 adults of age 65 and up died due to fall related injuries in 2014 [8]. The
same source reports that 28.7% of older adults reported falling at least once, with 37.5%
of these falls resulting in injury requiring medical treatment. Another leading cause of
death and injury is suicide, which was the tenth most prevalent cause of death in the US
in 2013 [9]. Many of these suicides occur among mental health patients, with the Ameri-
can Psychiatric Association reporting a third of the fatalities under patients who are un-
der a 15-minute checking schedule [10]. These figures highlight the demand for reliable,
non-intrusive monitoring technologies that can assist in timely medical response.

Low-cost sensing solutions are desirable, as monitoring in an in-home setting is in
many cases preferable. Extended hospitalisation and admittance to clinics are costly
procedures and put an increased strain on medical staff and other support personnel.
From a psychological standpoint, it is generally preferable for patients to remain in their
home environment as much as possible for their own well-being. In-home monitoring
offers the possibility for long-term observation of a patient, which offers opportunities
for preventative care in addition to reactive care. Preventative care can take the form
of e.g., the monitoring of wandering among patients with dementia [11]. Furthermore,
analyses of step-time variability can be used to study those who are at an elevated fall
risk due to e.g., Parkinson’s disease or other gait impairments [12]. In the case of mental
health care, accurate classification of ADL can be beneficial for the recognition of poten-
tially aggressive or otherwise anomalous behaviour, such as restlessness and attempts at
self-harm or suicide.

In this broader context, radar technology has been proposed for a variety of the afore-
mentioned healthcare applications, including fall detection [13, 14], gait analysis [15–
19], and vital sign monitoring [20–22]. By leveraging advances in signal processing and
machine learning, radar-based Human Activity Recognition (HAR) systems can classify
activities continuously, moving beyond traditional "snapshot-style" classification where
data to be classified consists of only a single, well-defined activity. Instead, continuous
classification methods process extended activity sequences, aligning more closely with
real-life behavioural patterns where multiple activities are performed one after the other
and there are not necessarily clear and neat transitions in-between.
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3

1.2. REVIEW OF EXISTING APPROACHES TO RADAR-BASED HU-
MAN ACTIVITY CLASSIFICATION

This section presents a brief overview of existing approaches to perform radar-based
human activity classification. The individual chapters of this thesis will each include a
more in-depth review of the literature pertaining to the specific topics discussed in the
respective chapters.

Existing solutions to radar-based classification of ADL can be broadly categorised in
two distinct approaches, based on the nature of the data under consideration. One of
these two branches is concerned with the classification of data samples where it is a pri-
ori known that only a single activity is present. This approach is sometimes referred to as
‘snapshot(-style)’ classification [12, 23]. Typically, these approaches follow a four-stage
pipeline in terms of applied radar signal processing, which is comprised of data acquisi-
tion, data processing into various data domains, feature extraction, and classification.

Data acquisition is often achieved through experimental means, where human activ-
ities are captured in e.g. a laboratory space [12] or a more realistic living space [24]. Due
to the required investments of time and resources into creating large annotated datasets,
other means of data acquisition or augmentation are explored as well. As an example,
Generative Adversarial Networks (GAN) are explored to produce radar data that is sim-
ilar, but not identical, to a comparatively small set of real data [25, 26], which can lead
to improved classification capabilities. Additional forms of data augmentation include
the synthesis of radar-like data from alternative sensors that are more prevalent, such as
camera [27].

The specific processing and representations of radar data that are optimal for classi-
fication is an ongoing topic of study. Due to the ability of most radar sensors to directly
measure target velocity accurately, the spectrogram representation is a common choice
in the literature [13, 23–25, 28–31]. In spectrograms, range information is discarded in
favour of velocity information, which is strongly tied to the subject kinematics as the ve-
locity components from each body part will be superimposed onto the overall spectro-
gram. This leads to a 2D representation of velocity (or Doppler frequency) as a function
of time. Aside from other 2D representations such as range-Doppler maps [32, 33], an in-
creasing number of classification methods include Point Cloud representations, where
unordered lists of points are stored rather than matrices with dimensions of range (or
spatial coordinates), time, Doppler/velocity, and intensity or Radar Cross Section (RCS).
Point cloud representations are often based on detected points in 3D space [3, 34–36],
but can also be constructed in different vector spaces, such as range-Doppler-time [37].
Finally, fusion of information from a larger set of domains or representations into a
condensed, intermediate domain is increasingly explored [38–40]. Machine learning
approaches have proven to be valuable in the creation of fused data representations
that, while often effective and computationally efficient, are no longer easily human-
interpretable in terms of their physical meaning.

After the determination of an appropriate representation for the radar data, the pro-
cess of feature extraction follows. The aim of this process is to identify and extract quanti-
ties of interest from the chosen data domains, primarily based on discrimination power.
Feature extraction can be performed manually, yielding so-called ‘handcrafted’ features,
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or by means of Machine Learning methods. Handcrafted features often involve sta-
tistical quantities derived from the radar data representations, e.g., Doppler spectrum
width or average Doppler frequency [41–45]. Some derived quantities can more easily
be tied to physical characteristics of the motion being performed, such as for example
the period of limb motion in [46]. Approaches to feature extraction that involve Ma-
chine Learning are diverse but follow a general trend of a dimensionality reduction that
is optimised with respect to a certain cost function, or loss function. Input data from
a chosen domain enters a neural network, and subsequent layers of neurons represent
linear combinations of the input data. The weights of the linear combinations are con-
tinuously adjusted in the training of the network until a desired network is achieved.
Between handcrafted features and Machine Learning approaches to feature extraction
are methods such as Principal Component Analysis (PCA) [28, 47], that are not trained
on any data, but require little user input.

The final stage in the pipeline is classification based on the extracted features. Simi-
larly to feature extraction approaches, recent years have seen a transition from algorith-
mically simpler methods such as k-Nearest-Neighbours (kNN) [28, 32, 42] and Support
Vector Machines (SVM) [44, 48, 49], to Deep Learning (DL) methods. The most preva-
lent of the DL methods employed is the Convolutional Neural Network (CNN). Due to
CNNs effectiveness in image processing and classification, the application to radar data
which is often represented in 2D matrices is a logical evolution. Many works on radar-
based classification of ADL maintain the 2D representations common to image process-
ing, using e.g., domains such as range-Doppler maps or spectrograms [31, 50–53]. Other
research efforts are directed towards the utilisation of higher-dimensional inputs, allow-
ing for example range-Doppler-time tensors to be classified in their entirety [40].

Moving beyond snapshot-style or non-continuous classification requires the pro-
cessing of temporally extended sequences of sequential human activities. The amount
of activities in a sequence is unknown, as is the onset and duration of each activity. This
complication requires alterations to the four-stage classification discussed before, where
the expected output is only a single activity label. Three overarching approaches are
considered here based on the surveyed literature: sliding window methods, Recurrent
Neural Network (RNN)-type classifiers, and segmentation-based methods.

Sliding window methods employ the well-established methods from non-continuous
literature. Feature extraction is performed on a window that is of short duration com-
parative to the full sequence. Classification results in an activity label, and the window
is moved forward in time until the entire sequence has been processed. Sliding window
methods can be found in conjunction with e.g., SVMs [53], and CNNs [54]. Challenges
that accompany sliding window methods include the selection of an appropriate win-
dow size, or adaptive window approach. Longer windows generally include more infor-
mation on the activity being performed, facilitating classification. However, the chance
of including multiple activities, and thus introducing ambiguity, increases with longer
windows.

RNN-type methods process sequences at some fundamental, often rather short, in-
terval of the measurement setup, for example the radar sensor Pulse Repetition Interval
(PRI). Feature extraction is performed on the basis of these individual time steps, where
the data is often represented as a 1D vector. Notably, networks in the RNN family of
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DL architectures are able to correlate vectors from different time steps, essentially learn-
ing from past or future feature vectors. Among networks in the RNN family are (Bidi-
rectional) Gated Recurrent Units (GRUs) [38, 55], and (Bidirectional) Long Short Term
Memory ((Bi)LSTM) networks [33, 56]. Recently, Transformer-type networks with atten-
tion mechanisms have seen success in classification of extended sequences, despite the
challenge in training them effectively with the often scarce radar data available [57].

Finally, classification methods based on sequence segmentation aim to adopt the
methods from non-continuous literature, whilst addressing some of the challenges with
sliding windows. Activity sequences are segmented into variable-size segments that con-
tain a single activity only. This facilitates subsequent classification, but introduces the
problem of finding the transitions between activities and defining metrics to perform
this. Most approaches in literature aim to simply distinguish between the absence and
presence of motion, often accomplished by evaluating target Doppler frequencies and
by applying simple thresholds on the power levels in the signature [58–61].

1.3. OPEN CHALLENGES
Despite the multitude of proposed solutions to classification of ADL with radar, several
key challenges currently remain. Being a classification problem, the primary goal in HAR
is to perfectly distinguish a given set of activities. With Machine Learning methods be-
coming ubiquitous in the literature beyond radar, improvements in classification per-
formance are often achieved with more data, and larger, deeper classification networks.
However, the collection and annotation of radar data is typically more challenging than
using other sensors, and this can create a barrier to the development of models with in-
creasing depth. Moreover, this trend cannot continue indefinitely, and more research
is being performed to reduce network sizes, for example with the aim of efficient im-
plementation on edge devices [62]. Hence, improving classification performance with
reduced computational requirements is an open challenge.

Aside from improving classification accuracy on a given set of classes, the amount
of classes under consideration is another topic under investigation. Including a larger
variety of activity classes generally improves the versatility of the proposed method, but
simultaneously increases the complexity of the classification task. Furthermore, the in-
creased variety in activities requires an accompanying increase in the size of the datasets
that are to be used for training purposes. Especially datasets that have been captured
in realistic scenarios often have a strong imbalance in samples for different classes. In
particular, critical classes such as fall events are rare, and their respective sample sup-
port being low hinders effective training of a classifier tasked with recognising these key
events.

Related to the above challenge, open-set approaches are currently minimally ex-
plored [63] but are inherently designed to address this problem. Open-set methods offer
a capability of either rejecting previously unseen activity classes, or including them as
new activity types in an unsupervised manner. It is expected that realistic scenarios will
see many of these unseen activity classes due to the variety in human motions, and the
current closed-set, fully supervised approaches offer no effective solution to this prob-
lem.

More generally, the creation of large datasets of human activities is important for the
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development of classification algorithms. However, there is currently no generally ac-
cepted primary benchmarking dataset in the community [64]. Such a dataset should
ideally include a large variety of annotated activities, with variations in scene, observed
participant, variations in the number of people present, and potentially radar sensors.
Radar sensors are varied in capabilities and data outputs when compared to e.g. cam-
eras, further complicating the task of establishing a reference dataset that can be utilised
for the variety of methods that have been proposed in the literature.

In the development of solutions to HAR for radar, inspiration is taken from other
fields, such as the classification of images, video footage, and audio processing. Radar
data is however intrinsically different from these domains, and the methods which per-
form well for other data have to be adapted appropriately. As described in the previ-
ous section, CNNs have been demonstrated to be extremely effective at classification of
images, and an extension to 2D radar data domains is straightforward. However, cer-
tain properties of CNNs, such as translation invariance, are undesirable for e.g., range-
Doppler domains, where the coordinates within the 2D representation have strong phys-
ical relevance and link to the kinematics of the observed targets.

Finally, the topic of continuous classification of ADL is not solved. The limitations of
sliding window approaches have been outlined in the previous sections, and RNN-type
classification features drawbacks such as required model complexity and interpretabil-
ity. Especially transition points between subsequent activities are challenging with re-
gards to classification, primarily due to the rigid approaches most often taken that fea-
ture a closed set of activity classes. Classifier predictions are typically single-label only,
meaning that the predictions around a transition between activities will abruptly change
from one label to the next. Real activities typically flow more smoothly into each other,
and exact transition points are often subjective in nature.

In the following chapters of this thesis, more detailed, topic-specific challenges will
be outlined and discussed together with the proposed solutions.

1.4. RESEARCH OBJECTIVES
The primary research objective of this thesis is the improvement of classification of hu-
man activities, with emphasis on tackling continuous data sequences recorded by a net-
work of cooperating radar nodes. In continuous sequences, constituent activities are of
unknown, arbitrary duration, and smoothly transition into each other. With the goal of
classification improvements, several methods are proposed in this research to engage
with different facets of this overarching challenge.

In broad terms, the problem of continuity in activity sequences is approached from a
perspective of segmentation and classification. Rather than processing lengthy portions
of radar data with potentially numerous activities, a method is formulated to divide the
sequence into homogenous segments that ideally contain only a single activity. Classifi-
cation can subsequently be performed through the use of neural networks that are only
tasked with identifying this single activity.

The classification of extended activity sequences typically requires neural networks
capable of managing both the comparatively long duration of the sequence, as well as
the complexity of the multiple activities therein. Consequently, full resolution input data
such as complete range-Doppler matrices or 4D radar data hypercubes, can generally
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not be employed due to computational constraints. To address this issue, a method is
proposed to process raw radar data into a point cloud data structure, even if the original
radar sensor was a SISO (Single Input Single Output) radar without inherent capability
to measure the angular position of targets. The proposed processing approach allows
utilisation of full resolution data but captures only the salient features in terms of dis-
tance, velocity, and temporal distribution of the scattering points of an observed target,
in this case a person. This resulting point cloud is then used with a suitable classifier
designed for point clouds to demonstrate the method effectiveness, specifically a Point
Transformer network.

The individual motions of body parts are hypothesised to be critical to the correct
evaluation of the activity that is being performed, as demonstrated in [65]. Thus, a
method is proposed to utilise a distributed network of radar sensors to reconstruct the
location, shape, and velocity distribution of a human target in 3D. Unlike previous works
where the velocity signatures of the body parts are only measured via the line-of-sight
projections towards each radar, the proposed approach aims to reconstruct a full 3D pro-
file of the involved velocities. The method is evaluated on experimental data to demon-
strate the increased classification performance that is achieved through the application
of the method.

Notably, all methods proposed in this research are evaluated on a benchmark radar
data set co-developed as part of this thesis [66]. This ensures they can be compared to
each other, and additionally to reference works utilising the same data set. The dataset
consists of 840 min of radar data of human activities. These data are captured by a dis-
tributed network of five monostatic sensors, making the dataset unique in terms of op-
portunities for sensor fusion techniques. All activities are performed in 2 min sequences,
with 14 participants performing 30 sequences each. The sequences are composed of 9
different activity classes, and vary from fall events in different locations to mixed se-
quences of all 9 activities. In contrast to many available datasets, the activities per-
formed in the sequences are completely unconstrained in duration and location, which
makes the dataset challenging from a classification perspective. As part of the PhD re-
search efforts, a new data-loader has been developed to enable seamless integration of
the dataset into Python-based methods. This addition increases the utility of the dataset
for a wider audience of prospective users.

All methods developed for this research have yielded classification performance met-
rics that match or outperform reference works from the literature, demonstrating the ef-
fectiveness of the proposed methods for continuous human activity classification. These
improvements in classification accuracy make radar-based HAR a more suitable solu-
tion for human monitoring, which in turn can contribute to improved quality of life for
vulnerable individuals.

1.5. MAIN CONTRIBUTIONS
The main contributions of this PhD research can be briefly summarised as follows.

• A novel approach for continuous activity classification is proposed based on the
utilisation of Point Cloud (PC) radar data structures and a Point Transformer (PT)
network inspired by [67]. In contrast to conventional PC-based approaches, the



1

8 1. INTRODUCTION

proposed method adopts range, Doppler, time and reflection intensity as PC co-
ordinates. The result is an approach that combines computational efficiency and
classification performance.

• A method for segmentation and classification of continuous activity sequences is
proposed based on Rényi entropy [68] rather than simpler power-based thresh-
olds. Classification of the discrete segments allows for the utilisation of a powerful
Point Transformer classifier, compared to reference methods from the literature.
This in turn increases classification performance at no increase in computational
complexity of the classifiers utilised.

• A novel sensor fusion method that processes raw data from a network of radar
sensors and yields three-dimensional representations of both reflection intensity
and velocity distribution. This method is the first to offer these reconstructions in
intensity and velocity of extended human targets, and the efficacy of the method is
demonstrated through classification case studies. The added information on limb
velocities aids in classification, yielding improved performance metrics.

• Demonstration of the efficacy of the proposed methods through experimental com-
parison with reference works utilising a challenging dataset including 2 minutes
sequences composed of 9 activities performed by 14 participants.

1.6. THESIS OUTLINE
The remainder of this thesis is organised as follows: Chapter 2 introduces the dataset
used for benchmarking purposes in terms of sensor description, signal model, and de-
tails about the general preprocessing steps applied to the data. Chapter 3 presents the
approach to continuous activity classification utilising the proposed point cloud data
format and a Point Transformer network for effective classification. In Chapter 4, a seg-
mentation method based on Rényi entropy is introduced to divide continuous activity
sequences into discrete segments suitable for classification. Chapter 5 addresses the
reconstruction of extended target location, shape, and velocity distribution, using data
from a network of radar sensors. Finally, Chapter 6 presents the conclusions and sug-
gests directions for future work.



2
RADAR DATASET AND SIGNAL

MODEL

Radar data in the vast majority of cases bears no visual resemblance to the person being
observed. Whilst this is crucial for the preservation of user privacy, it also means that
ample thought must be given to the problem of extracting the necessary information from
the radar data. In this chapter I describe the basics of the radar system that I’ve used for
experiments throughout this research, and go over processing steps that yield information
on the person’s location and movements. Within the research group we have collected
a large dataset of human activities, measured by radar. I go over details of this dataset,
which we have used extensively for benchmarking the performance of our algorithms and
for training machine learning models.

9
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2.1. PULSED UWB RADAR SYSTEM CHARACTERISTICS
In order to gauge the effectiveness of the methods proposed in this thesis, an experimen-
tal benchmark dataset has been co-developed and utilised in order to compare methods
with each other and with reference methods from the literature on radar-based HAR. The
radar systems used in the collection of the data are Humatics PulsON P410 pulsed Ultra
Wideband (UWB) sensors [69], shown in Figure 2.1. The principle of operation of these
sensors is the emission and reception of very short pulses of electromagnetic radiation.
The modulated pulses propagate through space and scatter off objects, with a portion of
the pulse energy being reflected back towards the receiving element. The time between
pulse emission and reception is directly related to the distance between the scatterer
and the sensor antenna. Aside from target range, radial velocity of the scatterer can ad-
ditionally be determined, as will be explained in Section 2.3. The P410 sensors operate
at a centre frequency of 4.3 GHz and feature a bandwidth of 2.2 GHz, resulting in a range
resolution of approximately 6.8 cm. The sensors are Single Input, Single Output (SISO),
which implies that, unless a directional antenna is used, no information can be acquired
on the angle of arrival of reflections from scatterers at different azimuth or elevation an-
gles.

2.2. RANGE-TIME REPRESENTATION
The signal model in this section is in part adapted from [70]. Consider a series of M
coherent pulses of a transmitted signal, spaced at integer multiples of Pulse Repetition
Interval (PRI) TPul se as:

ST x (t ) =
M∑

m=1
a(t −mTpul se )exp(i 2π fc t ). (2.1)

a(t ) is a complex-valued modulation term incorporating phase and amplitude modula-
tion of the carrier signal with frequency fc . The received signal at time t is expressed in
three components as:

SRx (t ) = ST g t (t )+SC l ut ter (t )+SNoi se (t ). (2.2)

Figure 2.1: A single Humatics PulsON P410 radar sensor with two antennae, one for transmission and one for
reception.
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The first term ST g t (t ) incorporates reflections from extended targets, modelled here as
sets of point scatterers that reflect the incident radiation, giving an attenuated and time-
delayed copy of the transmitted signal at the receiver:

ST g t (t ) =∑
n
αnST x (t −τn(t )), (2.3)

where the sum is over all point scatterers, indexed by n, and αn is the complex-valued
attenuation term for each scatterer. τn(t ) is the two-way delay time for the scatterer n at
time t :

τn(t ) = 2rn(t )

c
= 2(rn(0)+∆rn)

c
, (2.4)

∆rn =
∫ t

0
v⃗n(t ′) · r̂n(t ′)d t ′. (2.5)

Here, v⃗n(t ) is the instantaneous velocity of the scatterer n at time t and the adopted
convention is that the radial velocity component away from the transmitter is positive.
The range to the scatterer n is indicated with rn(t ), where the hat symbol ̂ is used to
indicate a unit vector. Assuming that the velocity in a single coherent processing interval
(CPI) is approximately constant, the two-way round-trip delay is written as:

τn(t ) = 2(rn(0)+ vn t )

c
, (2.6)

with vn the radial component of the velocity of the scatterer n away from the transmitter.
Substituting equations 2.1 and 2.6 into 2.3 gives:

ST g t (t ) =∑
n
αn

M∑
m=1

a(t − 2rn(0)

c
−mTpul se ) . . .

exp(2πi fc t (1− 2vn

c
)).

(2.7)

Here, the term 2rn (0)
c in the exponent is absorbed in the attenuation term αn . The dis-

placement vn t over a single CPI is assumed to be much smaller than the resolution
in range, and is thus omitted from the modulation term a. Finally, equation (2.7) is
rewritten as a function of discrete coordinates t ′ (fast-time) and m (slow-time). t ≡ t ′
mod mTpul se , which for clarity will be denoted by t ′ = t −mTPul se , with t ′ < TPul se im-
plicit. The resulting equation is:

ST g t [t ′,m] =∑
n
αn a(t ′− 2rn(0)

c
)exp(2πi fc (t ′+mTPul se )(1− 2vn

c
)).

(2.8)

In order to model the clutter term in equation 2.2, equation 2.8 with the target model
is used, but under the assumption that the clutter is primarily static, which is reasonable
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for the context of this work on indoor monitoring. This means that vn ≈ 0, giving in
discrete notation:

SC l ut ter [t ′,m] =∑
n
αn a(t ′− 2rn(0)

c
)exp(2πi fc (t ′+mTPul se )).

(2.9)

The noise term SNoi se (t ) is assumed to be thermal in nature and is thus included as
Gaussian white noise.

The ensemble of the aforementioned three components is finally expressed for one
CPI as SRx [t ′,m]:

SRx [t ′,m] = ST g t [t ′,m]+Sclut ter [t ′,m]+SNoi se [t ′,m]. (2.10)

The discrete signal SRx [t ′,m] collected over multiple pulses is reshaped as a 2D ma-
trix with dimensions fast-time and slow-time, respectively representing range (i.e., the
physical distance of scatterers from the radar) and time (i.e., the time sequence of radar
pulses one after the other). This 2D range-time matrix is denoted by: Rr,t . This complex-
valued range-time representation is used throughout this thesis work as a starting point
for subsequent processing steps.

2.3. VELOCITY PROCESSING
From the range-time matrices, two representations pertaining to target velocity distri-
butions are computed. The first is the range-Doppler matrix, obtained through the ap-
plication of a discrete Fourier transform over the slow-time dimension m in a CPI. Using
the following property and denoting the Fourier transform over variable m with Fm :

Fm[ce2πi am] = cδ(k −a); a,m,k ∈R (2.11)

the target term in (2.8) after the transform becomes:

F [ST g t [t ′,m]] =∑
n
αn a(t ′− 2rn(0)

c
)exp(2πi fc (1− 2vn

c
)t ′)δ(k − fc (1− 2vn

c
)TPul se )),

(2.12)
which is 0 except where:

k = fc (1− 2vn

c
)TPul se . (2.13)

For the clutter term SNoi se [t ′,m], as vn is assumed to be 0, the transformed term is 0
except where:

k = fc TPul se . (2.14)

The Gaussian noise term SNoi se [t ′,m] transforms to a scaled Gaussian. Summing
and reshaping the transformed terms yields a complex matrix with dimensions of fast-
time t ′ and frequency k, the latter of which is directly related to the radial velocities vn of
the scatterers through equations (2.13) and (2.14). The complex matrix is thus denoted
with range and velocity variables respectively as RDr,v .
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A second velocity representation that will be used throughout this thesis is the velocity-
time or spectrogram representation Vv,t . First, a Fourier transform of the target term
ST g t [t ′,m] from equation (2.8) is applied in the fast-time dimension as follows:

Ft ′ [ST g t [t ′,m]] =∑
n
αnF [a(t ′− 2rn(0)

c
)]⊛δ(k ′− ( fc (1− 2vn

c
))) . . .

exp(2πi fc (1− 2vn

c
)mTPul se ))

Ft ′ [ST g t [t ′,m]] =∑
n
αn exp(

2i k ′rn(0)

c
)Ft ′ [a(t ′)]⊛δ(k ′− ( fc (1− 2vn

c
))) . . .

exp(2πi fc (1− 2vn

c
)mTPul se )),

(2.15)

where the second line follows from the time-shifting property of the Fourier transform
Ft ′ [ f (t ′−t ′0)] = exp(−i k ′t ′0)Ft ′ [ f (t ′)]. Denoting the Fourier transform of the modulation
term as Ft ′ [a(t ′)] = A(k ′) and utilising the sifting property of the Dirac delta yields the
following:

Ft ′ [ST g t [t ′,m]] =∑
n
αn exp(

2i rn(0) fc (1− 2vn
c )

c
)A( fc (1− 2vn

c
)) . . .

exp(2πi fc (1− 2vn

c
)mTPul se ))

(2.16)

Finally, a second Fourier transform over dimension m yields a fast-time-independent
velocity representation:

Fm[Ft ′ [ST g t [t ′,m]] =∑
n
αn exp(

2i rn(0) fc (1− 2vn
c )

c
)A( fc (1− 2vn

c
)) . . .

δ(k − fc (1− 2vn

c
)TPul se ))

(2.17)

which as before is non-zero only for k = fc (1− 2vn
c )TPul se . Equation (2.17) is only de-

pendent on the conjugate variable k of the slow-time m, which directly relates to the
radial velocities vn of the scatterers. To obtain the spectrogram representation, (2.17) is
applied for an arbitrary number of sequential or optionally overlapping CPIs, forming a
new time dimension, and yielding Vv,t .

2.4. DATASET OF CONTINUOUS HUMAN ACTIVITIES
An extensive dataset with human activities has been collected and made public to bench-
mark the methods proposed in this thesis [66]. This dataset consists of sequences of two
minutes each, captured by a network of five cooperating PulsOn radar sensor nodes. The
data comprise sequences from 14 participants of varying age, gender, height and body
type. It is important to note that this dataset is unique in its kind and features several key
characteristics that make it valuable for research efforts pertaining to the classification
of ADL, notably:
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• Dataset size. Each participant has performed 30 different sequences, each two
minutes in duration. In total there is therefore 840 min of data, which is much
greater than alternative datasets that are available in the same domain of radar-
based HAR, such as 480 min for the OPERAnet dataset [71], 119 min for the dataset
of the University of Alabama [30], and 28 min for the dataset of the University of
Glasgow [23].

• Randomisation and variety. The motions that the participants have performed
in the experimental space feature great variety and are randomised in location
and orientation. They are furthermore unconstrained in activity duration, and ac-
tivity onset times are also determined randomly by the participants. This variety
and randomisation yields large benefits for the training of classification networks,
whilst simultaneously offering a very challenging task with regards to continuous
classification of ADL.

• Sequence types. The sequences included in the dataset are varied in composition,
as further detailed in Section 2.4.2. Among the 30 different types, notably there are
realistic mixes of 9 different activities, offering a challenging test bed for classifi-
cation methods. Critical events such as falls are included and incorporated in the
sequence compositions as well, including two different modalities of falling, i.e.
from a stationary position or while walking.

• Distributed Sensor Network. All activities are recorded simultaneously by five
sensor nodes, spaced around the experimental area. Aside from effectively in-
creasing the amount of data five-fold, the simultaneous capture enables new clas-
sification approaches to be developed. Access to data captured from multiple ori-
entations yields unparalleled potential for the development of sensor fusion ap-
proaches, the benefit of which will be demonstrated in Chapters 3 and 5 of this
thesis.

In the rest of this section, the sensor network geometry is discussed in sub-section 2.4.1,
with a description of experimental measurement area. The sensor parameters used in
the collection are also provided. Subsection 2.4.2 discusses the sequence types and con-
tains examples of radar data in different representations.

2.4.1. SENSOR GEOMETRY AND DATA CAPTURE PARAMETERS

The capabilities of the simultaneous operation of the PulsOn UWB units is a result of
pulse integration, and pseudorandom encoding of the Pulse Repetition Interval of each
individual sensor. Every sensor can be individually set to a unique code channel that
governs minute variations in PRI. Furthermore, each unit can coherently integrate a
preset amount of pulses, in order to increase the ratio between consistent targets and
clutter, and randomly distributed noise. Combining the PRI coding and the pulse inte-
gration allows for each sensor to emit simultaneously, with the PRI variations ensuring
that pulses from sensors on different channels will only contribute to an elevated noise
floor (i.e., instead of generating more destructive interference) due to the relative shifts
in time that are effectively applied.
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Figure 2.2: Photograph (top) and diagram (bottom) of the experimental measurement area. Five sensors are
arranged in a semicircle, spaced at regular 45◦ intervals with a 6.38 m diameter of the semicircle.

The five radar sensors are arranged in a semicircle, as shown in Figure 2.2. They are
spaced at regular 45◦ intervals with a 6.38 m diameter of the semicircle. The activity area
is a circle with diameter 4.38 m, concentric to the semicircle of the sensor network. The
sensors are placed approximately 1 m above the floor to point approximately at the torso
of the subjects while performing the sequences of activities. Although the observation
area is clear of objects, some static clutter is present in the laboratory in the form of e.g.,
desks and metal shelving that may cause clutter and multipath returns.

The PRF of each sensor node is set to 122 Hz, resulting in a maximum unambiguous
velocity of ±2.13 ms−1. Each radar sensor is equipped with an antenna with a pattern
that is approximately symmetric in azimuth. Combined with the single-channel nature
of the sensors, this means that angle-of-arrival estimation can not be performed with a
single sensor.

2.4.2. SEQUENCE CHARACTERISTICS

In total, nine different activities are performed in the activity sequences, listed in Ta-
ble 2.1. The participants range in age from 20 to 37 years and comprise 10 males and 4
females. The sequence types are diverse in the order and combination of the nine ac-
tivities, including walking around the measurement area and falling at various locations
and orientations. ‘Mixed’ sequences containing all nine activities performed with ran-
dom duration and locations are also included to provide a more realistic and challenging
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Table 2.1: Distribution of samples among the nine activity classes of the collected dataset.

Activity Fraction

Walk 43.12%
Stationary 11.52%
Sit Down on Chair 4.33%
Stand Up (From sitting) 3.96%
Bending (Sitting) 9.87%
Bending (From Standing) 10.51%
Falling (From Walking) 2.81%
Falling (From Standing) 4.39%
Standing Up (After Fall) 9.48%
Total 100%

set of data. The ground truth labels are created by the participants themselves by means
of a handheld remote control signalling transitions from one activity to another.

To demonstrate the various data representations, the processing techniques previ-
ously described in this chapter are applied on a two minute sequence captured with a
single PulsON P410 UWB sensor. Figure 2.3 presents, from top to bottom, a range-time
matrix Rr,t , a spectrogram Vv,t , and a range-Doppler map RDr,v . For the spectrogram,
a window size of 1.05 s is utilised (corresponding to 128 CPI), with an overlap of 0.98 s.
For the range-Doppler map, the window size is also 1.05 s.

Figure 2.3 presents a sequence where the participant performs a variety of activi-
ties, including walking around, sitting down, and falling twice. To better illustrate the
challenges associated with discriminating various activity types, Figure 2.4 displays a
collection of spectrograms corresponding to different activities.

Finally, as equations (2.13) and (2.14) imply, the radar sensor is principally only ca-
pable of measuring the radial velocities associated with targets. The result is a strong
effect on the recorded velocity of the relative location of the sensor and the target. Fig-
ure 2.5 displays a fall event in spectrogram representation, but captured by several radar
sensors simultaneously, hence from different line of sight positions with the respect to
the direction of the fall itself. For the top sensor in particular, most of the motions are
in a plane that is orthogonal to the radar line-of-sight. As such, less information can be
gathered from this particular spectrogram, as evidenced by the weaker signature.

2.5. CONCLUSION
This chapter introduces details pertaining to the dataset that has been co-developed and
used extensively throughout this thesis to benchmark the proposed activity classifica-
tion methods. The UWB pulsed radar system is described, along with a related signal
model, followed by processing approaches that yield range-time and velocity represen-
tations. The dataset itself is described in detail. The dataset is a valuable contribution
to the scientific community due to its large size, the variety in activity sequence types,
subject locations, and orientations. Unique to this dataset is the distributed network of
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Figure 2.3: Example representations of radar data using a sequence of human activities analysed in this thesis.
Signal power is shown in dB, normalised with respect to the highest measured value. Top: Range-time matrix
containing two minutes of human activities of a single subject. Middle: Velocity-time (spectrogram) represen-
tation of the same two minute data sequence. Bottom: Range-Doppler map of a 1.05 s segment of the same
data sequence.
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Figure 2.4: Different activities presented in spectrogram representation. Left to right, top to bottom: A fall from
a stationary position, walking around, bending down from a seated position, standing up from the ground.
Signal power is shown in dB, normalised with respect to the highest measured value.
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Figure 2.5: Fall event from three different angles of observation in a horizontal plane at waist height. Signal
power is shown in dB, normalised with respect to the highest measured value.
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cooperating sensors that has been utilised to collect it, allowing for the development of
sensor fusion techniques, which will be detailed in the following chapters.



3
RADAR POINT CLOUD

REPRESENTATIONS FOR ACTIVITY

CLASSIFICATION

Typically, radar data is stored for the entirety of the field of view of the radar sensor, includ-
ing the empty space. This is sometimes referred to as the radar data (hyper)cube. Conse-
quently, a lot of memory is required to store all of this data, and it takes a long time for
computer algorithms to go through all of the data. In this chapter I proposed a method
of finding and storing only the data that corresponds to a human under observation, thus
reducing the size of the data considerably. In other words, the method gets rid of the data
that is about the empty space around the human, as if cutting out a person from a photo-
graph. The small data size allows for a strong machine learning classifier to be used, and
I demonstrate the effectiveness of this approach experimentally.

Parts of this chapter have been published as:

Kruse, N. C., Fioranelli, F., & Yarovoy, A. (2023). Radar Point Cloud Processing Methods for Human Activity
Classification With Point Transformer Networks. IEEE Transactions on Radar Systems, 2, 1–12.

Kruse, N. C., Fioranelli, F., & Yarovoy, A. (2023). Continuous Human Activity Classification with Radar Point
Clouds and Point Transformer Networks. 2023 20th European Radar Conference (EuRAD), September, 302–305.
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3.1. INTRODUCTION

T HE need for human activity classification arises significantly in the field of health-
care, where observations of patient behaviours and activities can give medical pro-

fessionals important information necessary for personalised and timely care, thus re-
ducing the need for hospitalisation and intensive intervention. These observations in-
clude fall detection [13, 14], gait analysis [15], and general classification of the activities
performed by a patient [57, 72–74]. Radar is an advantageous sensor for such monitor-
ing tasks, as no recognisable imagery is captured of the subject, thus preserving privacy.
Additionally, radar sensors function in low-light conditions, do not require the patients
to wear, carry, or interact with any device, and have some through-wall capabilities [74].

Many earlier works studying the classification of Activities of Daily Living (ADL) in-
corporated forms of feature extraction that were either manually constructed, or based
on e.g., Principal Component Analysis (PCA) [17, 28, 32, 42, 75]. Later research more of-
ten utilised machine learning approaches to perform automatic feature extraction, no-
tably Convolutional Neural Networks (CNN) architectures applied on radar data treated
as images [76, 77]. The introduction of classifiers based on Recurrent Neural Networks
(RNN) led to reported increases in classification performance [23, 78, 79], and to a fo-
cus shift from ‘snapshot-style’ classification, where activities are recorded and classified
in isolation, to classification of continuous sequences where the different activities are
performed one after the other in a more realistic manner [23, 29, 79–82].

More recently, driven by the progress in novel architectures of neural networks, Trans-
formers have been proposed to overcome the limitations of RNNs when dealing with
long sequences of data, and their difficulty in learning patterns across segments of the
data that are far from each other [83]. Also for Human Activity Recognition (HAR), the
utilisation of transformer-type architectures has been seen in various forms. For exam-
ple, in [84–87], image-based approaches are taken through the implementation of Vision
Transformer networks. The radar data is represented in a velocity-time (spectrogram)
domain, and the role of the Vision Transformer is that of an image recognition network.
An alternative approach is taken in [88], where a mm-Wave radar sensor outputs a 3D
point cloud (PC) of the subject, which is converted into voxels. A CNN extracts features
from the voxelised representation, with a Transformer architecture performing classifi-
cation based on these vectors. Finally, in [57], feature extraction is performed on several
2D representations of human motion by means of an auto-encoder, and classification is
again achieved by means of a Transformer model operating on the output of the auto-
encoders.

In this chapter, a novel method is proposed to perform activity classification on con-
tinuous sequences of human activities of unconstrained duration. This is realised by
processing the output of a Single Input Single Output (SISO) radar sensor into a multi-
dimensional point cloud representation of reflection intensity in a range-Doppler-time
space. From this data representation, classification is subsequently performed by means
of a Point Transformer (PT) model [67]. It should be noted that, because the SISO sen-
sors are unable to provide Direction-of-Arrival information individually, the processed
point clouds contain no 3D spatial coordinates aside from the range to the capturing
radar sensor, and are thus atypical compared to point cloud representations derived
from mm-wave Multiple Input Multiple Output (MIMO) radars often encountered in lit-
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Sample

Slow-time
FFT

2. Subsegment + FFT
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Nsub

Nsub 3. Threshold

RD maps Binarized RD map

4. Range Gate + Connected Region 5. To point cloud + Concatenate Nsub PCs 6. Select Npts  Points

Raw Data

Figure 3.1: Proposed processing pipeline for the generation of point cloud samples suitable for Point Trans-
former networks from continuous sequences of human activities recorded by a SISO radar.

erature [36, 85, 89]. In this regard, the proposed processing method can be considered
similar to a dimensionality reduction method, which preserves the salient features nec-
essary for effective classification and encodes them into a point cloud format suitable to
leverage the classification capabilities of PT networks. The point cloud format enables
the storage of only those points that are associated with the extended target or targets,
and not the remaining values of the often sparse input domains. The reduction in sample
size becomes more apparent as input dimensions are added, since the point cloud for-
mat size scales linearly with input dimension, whereas conventional grid-based formats
scale exponentially. Furthermore, the proposed method is applied and experimentally
verified with a network consisting of multiple radar sensors, for which different sensor
fusion techniques are implemented and demonstrated to increase the overall classifica-
tion performance. The contributions of this chapter can be summarised as:

• A novel approach for radar-based continuous activity classification utilizing Point
Transformer networks.

• Utilisation of sensor fusion techniques to enhance classification performance in
scenarios with networks of multiple radars.

• Demonstration of the method efficacy through experimental comparison with ref-
erence works utilizing the same challenging dataset including 2 minutes sequences
composed of 9 activities performed by 14 participants.

The remainder of this chapter is organised as follows. In Section 3.2, the proposed
point cloud processing methods are discussed, as well as the sensor fusion techniques,
and the Point Transformer model. Results are displayed in Section 3.3 and discussed
further in Section 3.4. Section 3.5 finally contains the conclusion to this chapter.

3.2. PROPOSED METHODOLOGY
This section contains a description of the proposed processing method for generating
samples in point cloud representation, suited for classification with the Point Trans-
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former architecture. Also included is a description of the Point Transformer architec-
ture itself. The sample generation method is visually summarised in Figure 3.1 from raw
range-time radar data to point cloud samples to be used an input to the Point Trans-
former.

3.2.1. SIGNAL MODEL AND DATASET
The signal model used in this chapter is described in Chapter 2. The transmitted signal
is again modeled as a coherent pulse train of M pulses, spaced at integer multiples of
Pulse Repetition Interval (PRI) TPul se as:

ST x (t ) =
M∑

m=1
a(t −mTpul se )exp(i 2π fc t ). (3.1)

a(t ) is a complex-valued modulation term incorporating phase and amplitude modula-
tion of the carrier signal with frequency fc . The processing steps in Chapter 2 are fol-
lowed to obtain the fast-time/slow-time representation from equation (2.10), which is
rewritten as a complex range-time matrix Rr,t .

The dataset utilised for experimental validation is the same as used throughout this
thesis work [66]. A full description of this dataset is available in Chapter 2. Each indi-
vidual radar node outputs a real-valued vector representing the backscattered signal. A
Hilbert transform is applied to obtain the quadrature component of the signal, and a
fast-time/slow-time matrix is then constructed. Thus, for each sequence the resultant
complex-valued range-time matrix forms the starting point for further processing and is
denoted by Raw Data in Figure 3.1.

3.2.2. PROCESSING STEPS

SEQUENCE SEGMENTATION

Since the raw data consist of continuous sequences of activities, an approach has to be
selected on how to perform classification in a continuous manner via a form of seg-
mentation; this is the first step in the processing pipeline (step 1. in Figure 3.1). In
broad terms, these approaches can be grouped into two categories, i.e., Time step-based
Classification and Window-based Classification. For time step-based classification, indi-
vidual samples are short in duration and often correspond to some fundamental mea-
suring scale of the sensing system, such as the PRF or the individual time window over
which spectrograms have been calculated. This approach is suited for classification with
RNN-type networks and has been used for continuous activity classification [19, 29, 82].
Downsides to this approach are firstly the ambiguity that arises when evaluating an ac-
tivity over such a short duration, especially during activity transitions, and secondly the
low information content of a single sample, necessitating the use of a classifier that eval-
uates multiple samples jointly. In window-based classification, the sample durations
are longer and aimed at capturing either an entire activity, or a fraction encapsulating
enough of the activity to perform classification [12]. Windows can be fixed in duration,
or adapted in real time to better suit the duration of the activity that is occurring. For this
approach, window duration selection is critical. Too short, and the information content
of the sample is insufficient to properly evaluate the activity, too long and the window
may include multiple activities, leading to ambiguity issues in defining the sample label.
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For this chapter, a fixed-window approach is adopted, comparable to sliding-window
methods in the literature [14, 32], but with no overlap between windows. This approach
is taken in order to best utilise the Point Transformer architecture, which is in princi-
ple unable to link multiple samples in a time sequence, but which performs well at the
task of feature extraction and classification from the point cloud samples [67]. Based on
previous work [90], a segment length of 256 ·PRI = 2099ms (hereafter denoted as 2 s for
the sake of brevity) is chosen to maximise sample information content and minimise the
classification performance impact of sample label ambiguity. Each sample is assigned a
single activity class label based on the sequence ground truth. If multiple ground truth
labels occur in the segment, for example at the transition between two different activ-
ities, the final label is determined by a majority-rule, i.e. by assigning the label of the
activity that occupies the majority of the segment.

POINT CLOUD GENERATION

After the initial sequence segmentation step, each data sample is further split into Nsub

sub-segments of equal duration (step 2. in Figure 3.1). This step is added so that within a
sample there is an evolution over time, important for distinguishing complementary ac-
tivities such as e.g. standing up from sitting down. A Fast Fourier Transform (FFT) is per-
formed over the slow-time dimension of all Nsub sub-segments as described in Section
2.3, resulting in Nsub time-ordered Range-Doppler (RD) maps RDr,v . In previous work,
the optimum value for Nsub was determined to be 6 [90] for the dataset used, balancing
Doppler and time resolution for the highly dynamic nature of human motions. Com-
bined with the 2 s sample duration, this provides a Doppler resolution of 10.5 cms−1.

An initial noise-rejection step (step 3. in Figure 3.1) is then performed through the
application of a static threshold filter on the magnitude of each of the Nsub RD maps, as:

Rbi n
i , j =

1, if |Ri , j | >αmax
i , j

|Ri , j |
0, otherwise.

(3.2)

with α the threshold level between [0,1], |Ri , j | the magnitude of an element of the RD
map in dB scale, and Rbi n

i , j a binary element of the filtered RD map. The optimal value

for α is determined experimentally to be 0.8 [90].
To further select useful information on the moving human, a range gate is applied

(step 4. in Figure 3.1), centered on the centroid of the binarised RD maps, whose range-
Doppler coordinates are calculated by:

R⃗c =


∑

i
∑

j i ·Rbi n(i , j)∑
i
∑

j∑
i
∑

j j ·Rbi n(i , j)∑
i
∑

j
.

 (3.3)

where the indices i and j represent range and Doppler bins respectively. The range gate
extends for 2 m in length, which is deemed enough to fully cover an adult laying down in
case of a fall.

Human limb motions are primarily restricted to rotations at the joints. For this rea-
son, a range-Doppler representation of a human will tend to occupy a connected region
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within a RD map, barring occlusions. This property is exploited to achieve additional
noise/clutter suppression, by selecting only the largest connected regions in the binary
RD maps (step 4. in Figure 3.1). This is realised by evaluating the regions with adja-
cent nonzero pixels, and selecting those three regions that feature the largest area. The
choice for three regions is empirical: in general it is found that the largest region is orders
of magnitude larger than the second largest and thus selecting three regions ensures that
the area of interest is captured without the inclusion of further noisy regions. Every re-
maining pixel from the connected regions is now stored as a point in a list and assigned
four basic variables: range, Doppler, intensity of the corresponding pixel in the RD map,
and time expressed as a fraction of Nsub .

The point lists for all Nsub sub-segments can then be concatenated (step 5. in Figure
3.1), resulting in a point cloud with variables range, Doppler/velocity, time (expressed as
the sub-segment number within the segment), and intensity.

Afterwards, a uniform amount of Npt s points per segment is selected to ensure con-
sistency with the Point Transformer network input size (step 6. in Figure 3.1). To this
end, the points are sorted by intensity, and the highest Npt s points are kept. If initially
there are fewer than Npt s points, randomly sampled points are duplicated until the re-
quired number is met. The duplicate points do not alter the physical characteristics
of the sample and are the first to be removed in the down-sampling layers of the Point
Transformer network. The resulting cloud consists of Npt s points, with the variables
range, Doppler/velocity, time, and intensity, and represents a 2 s observation of human
motion.

FUSION APPROACHES

To more effectively utilise the simultaneous data capture from five radar nodes in a net-
work, fusion techniques are implemented in the form of:

• Feature fusion during segment processing

• Decision fusion during classification

In the case of feature fusion, the methodology from Figure 3.1 is followed until step
5. where, prior to the point up/down-sampling operation, the points from the nodes to
be fused are pooled into a single point cloud. Afterwards, the up/down-sampling opera-
tion is applied to obtain a point cloud of the required number of points. This approach,
hereafter referred to as Simple Fusion, does not transform any of the variables, nor are
there any new variables added to the resulting fused point cloud.

For decision fusion, each data segment is processed using only data from a single
node, and segments from multiple nodes are processed by multiple, independent Point
Transformer networks in parallel. Each network outputs a vector y⃗n

c of prediction con-
fidences for the activity classes under consideration, where n ∈ N ⊆ {1,2,3,4,5} is the
node number and c indicates the respective class label. Two decision fusion methods
are utilised in this chapter as follows:

Softmax Summation The output vectors for all Point Transformer networks are summed,
and the class with the highest resulting prediction confidence is selected for the segment
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label ỹ :
ỹ = argmax

c

∑
n

y⃗n
c (3.4)

Majority Voting The segment label is determined through the statistical mode of the
set of individual predictions ỹn , which are in turn acquired by selecting the class with
the highest prediction confidence in the output vector from each network:

ỹ = mod
{

ỹn}
, ỹn = argmax

c
y⃗n

c (3.5)

POSITION AND ANGLE ESTIMATION

When a network of multiple radar nodes with known locations is available, as in the
considered dataset, additional features for the point cloud can be extracted from the
data. Utilizing a subset N ⊆ {1,2,3,4,5} of the five nodes, position estimation can be for
instance performed through multilateration, given that |N | ≥ 3. For this, it is necessary
that the extended target be simplified as a point target. First the approximate target
range rn is determined for each node by convolving the range profile of the node with a
triangular function with a base of 2a = 45cm

f (r ) =
{

1−| r
a |, |r | < a

0, otherwise,
(3.6)

which is determined empirically and reduces the influence of noise/clutter on the target
range estimate. The range at which the convolution reaches the maximum is selected as
the range to the point target. The target location is then estimated following [91], and
expressed in terms of the target ranges as:

r 2
n = (x̃ −xn)2 + (

ỹ − yn
)2 , n ∈ N ⊆ {1,2,3,4,5}, (3.7)

where rn denotes the range to the node with index n, (x̃, ỹ) the estimated point target co-
ordinates, and (xn , yn) the coordinates of the node with index n. Expanding the squares
of equation 3.7 and subtracting one of the |N | equations from the others (in this case the
last, with index n = |N |) gives:(

r 2
n − r 2

|N |
)
−

(
x2
|N |−x2

n

)
−

(
y2
|N |− y2

n

)
= ... (3.8)

2
(
x|N |−xn

)
x̃ +2

(
y|N |− yn

)
ỹ

= 2
[
x|N |−xn y|N |− yn

][
x̃
ỹ

]
.

For |N | ≥ 3 this system of equations is overdetermined, and a solution can be approxi-
mated by minimizing the mean square error (MSE) argminx⃗ ||Ax⃗ − b⃗||2, where Ax⃗ corre-
sponds to the right hand side of (3.8), and b⃗ to the left hand side. Minimizing the MSE
corresponds to finding the null space of the gradient of the MSE expression: AT Ax⃗ −
AT b⃗ = 0⃗, which leads to the following expression for the point target location estimate:

x⃗ = (
AT A

)−1
AT b⃗ (3.9)
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With the location estimates calculated, target tracking is performed by means of the
(αβ)-filter which assumes a system model comprising two state variables, one of which
is determined by integrating the other. For the current case of point target tracking this
assumption is assumed to hold. The input of the filter is the location estimates x⃗, and
the output consists of location and velocity variables ⃗̃x and ⃗̃v .

From the velocity output ⃗̃v , the approximate target heading is acquired with respect
to an axis (C⃗ − x⃗3), i.e., an axis crossing through node 3 and the experimental area cen-
tre point, as shown in Figure 3.2. To improve the reliability of the heading estimate, an
absolute velocity cut-off is implemented at ||⃗̃v ||2 < 1000cm2 s−2. Below this velocity, the
heading variable is set to a dummy value to allow for location jitter in the tracker output.
Thus, the computation of the heading φH is expressed as:

cos(θH ) =
{

(C⃗−x⃗3)·⃗̃v
||(C⃗−x⃗3)|| ||⃗̃v || , ||⃗̃v ||2 > 1000cm2 s−2

cdummy , otherwise.
(3.10)

Aside from the target heading, two other angular variables are computed. Firstly,
the Angle off-Boresight represents the angle between an axis through a node centre-line
(C⃗ − x⃗n) and the line between the target and the observing radar node (⃗x̃ − x⃗n), shown in
Figure 3.2 and expressed as follows:

cos(θAoB ,n) = (C⃗ − x⃗n) · (⃗x̃ − x⃗n)

||(C⃗ − x⃗n)|| ||(⃗x̃ − x⃗n)|| . (3.11)

Additionally, if heading information is available, the aspect angle can be computed,
which is the angle between the direction of motion of the target and the line between the
target and the observing radar node:

cos(θA A,n) =
{

(⃗x̃−x⃗n )·⃗̃v
||(⃗x̃−x⃗n )|| ||⃗̃v || , ||⃗̃v ||2 > 1000cm2 s−2

cdummy , otherwise.
(3.12)

These angles can be added to the features of the point cloud when feature fusion
is used, i.e., at the aforementioned step when point cloud samples from different radar
nodes are combined together. It should be noted that, for a given node, heading and
aspect angle are dependent variables.

3.2.3. POINT TRANSFORMER NETWORK AS CLASSIFIER
The classification network architecture utilised in this chapter is the Point Transformer
proposed in [67], which is a point cloud-based variant in the transformer family of ar-
chitectures [92]. At the heart of a transformer architecture lies the so-called ‘attention
mechanism’ [83]. In a network layer, the attention mechanism allows for the value of
an input element to influence the weights of other elements on the output dynamically.
These dependencies can be learned from the data in contrast to conventional neural
networks where weights are input-independent and only change during training.

The Point Transformer model proposed in [67] consists of four sequential stages,
which in turn are composed of a Point Transformer block and a point down-sampling
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Figure 3.2: Representation of the three angles computed as part of the feature fusion method. Only a single
radar node is shown out of 5 nodes for simplicity. x⃗n denotes the location of the node with index n. Heading
angle is the direction of motion of the target with respect to the axis through node 3 and the experimental area
centre point C⃗ . Aspect angle is the angle between the direction of motion of the target ⃗̃v and the line between
the target ⃗̃x and the observing node. Angle off-Boresight is the angle from the node centre-line to the estimated
target location ⃗̃x.

block. The former block features a Point Transformer layer which is where the atten-
tion mechanism is utilised to exploit correlations between points in an input cloud. The
Point Transformer code is adapted from [89].

3.3. EXPERIMENTAL RESULTS
In this section results are presented for various experiments, intending to gauge the
classification performance of the proposed method with a Point Transformer classifier.
Firstly, results are discussed pertaining to single-radar performance, followed by results
where feature fusion has been applied to more effectively utilise multiple radar nodes.
Finally, experimental results are discussed where decision fusion has been performed.

In this section, all results shown are based on a sample holdout scheme where 80 %
of samples are used for training and validating the classifier, and 20 % of samples are
used for testing. Later in Section 3.4 a comparison to reference works is made, where
a more challenging Leave-One-Person-Out (L1PO) testing scheme is employed. For all
results, two performance metrics will be displayed: the test accuracy on the unseen test
dataset, and the macro F1-score which gives clearer insight in the performance on the
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Figure 3.3: Performance metrics for point cloud samples generated with individual radar nodes. For the All
Nodes result, individual samples are also generated with individual nodes, but all samples are then pooled
into a single training and testing dataset. The remaining numbered results and the Average result are for the
respective nodes and their average. See Figure 2.2 for the relative locations of the nodes.

imbalanced dataset.

3.3.1. BASELINE RESULTS

Classification metrics for Point Transformers utilizing point cloud samples generated
from radar nodes used in isolation, i.e. with no fusion method to combine data from
multiple nodes into a single PC, are displayed in Figure 3.3. The deviating performance
of node #1 is most likely attributable to strong clutter (large metal shelving) in the vicin-
ity of this node. The comparable results of the other four nodes are interpreted as indi-
cating that the activities in the sequences are diverse in location and orientation, thus
making none of the five line of sight directions of the nodes as the dominant, most ad-
vantageous one. For the experiment labeled as All Nodes, the samples originating from
all radar nodes are pooled into a single training and testing dataset. The increased per-
formance reveals that the sample support from a single node is insufficient to maximise
performance with the chosen network, regardless of the aforementioned diversity in lo-
cation and orientation. Reliance on large datasets is indeed a known characteristic of
Transformer architectures [93].

3.3.2. FUSION RESULTS

FEATURE FUSION

The results for experiments pertaining to feature fusion approaches are discussed in this
subsection and displayed in Figure 3.4. As a reference result for the various fusion meth-
ods, the first column No Fusion corresponds to the All Nodes result from Figure 3.3. For
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Figure 3.4: Performance metrics for various feature fusion approaches. For all results, the generated point
clouds comprise at least the variables range, Doppler, time, and intensity. No Fusion involves samples gener-
ated with single nodes only and corresponds to the All Nodes result from Figure 3.3. The samples for the Simple
Fusion result are constructed using all nodes, as described in Section 3.2.2.
The remaining results are denoted by the variables that are added to the point clouds thanks to the combi-
nation of data from multiple radar nodes. Node #: Extra PC variable containing the originating node for each
point. AoB: Angle off-Boresight, angle between axis through node centerline and estimated target location. AA:
Aspect Angle, angle between axis through node centerline and estimated target heading. Heading: Estimated
target heading relative to fixed axis through experiment area centre and node #3.

all results, the generated point clouds comprise at least the variables range, Doppler,
time (relative to start of the segment), and intensity. The Simple Fusion column displays
the performance for samples generated utilizing data from all five nodes, as described in
section 3.2.2, but without the addition of any new variables to the point clouds, i.e., each
point has 4 variables. The notable performance increase between No Fusion and Simple
Fusion reveals that, even without information on the originating node of a point in the
point cloud, the Point Transformer can make stronger inferences of the target class when
it has access to observations from multiple directions. This contrast is even stronger
when considering the fact that the sample support for No Fusion, i.e., the amount of
data for training the network, is effectively five times larger than for the fused case. Fur-
thermore, adding a variable to label every point in the point cloud with its originating
node does not markedly improve performance as can be seen in the Node # column.
This last result is surprising, as intuitively the originating node would be instrumental
information in the effective fusion of the information from various nodes. It is possi-
ble that a learned clustering approach is embedded in the trained Point Transformer,
based on distinctly grouped range and Doppler values in the multi-node point cloud.
This learned clustering would allow the implicit assignment of originating node number
by the network, and thus explain the low performance gained by explicitly including the
node numbers as variables.
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Figure 3.5: Performance metrics for various decision fusion approaches. No Fusion again corresponds to the All
Nodes result from Figure 3.3, and Simple Fusion corresponds to Simple Fusion in Figure 3.4. For the Softmax
Sum result, the class prediction vectors for all five nodes are summed as described in Section 3.2.2 and the
maximum value is selected as the predicted class. For Majority Vote, the statistical mode of the class predictions
of all five nodes is taken to be the decision-fused class prediction.

Three additional experiments are performed where different observation conditions
are incorporated in the point clouds in the form of the additional angular variables de-
fined in the previous section. The intended outcome is the inclusion of information in
the point cloud on the observation quality of a particular node, for example the approx-
imate component of a motion taking place perpendicular to the radar line-of-sight. The
computation of the estimates of Angle off-Boresight, Aspect Angle, and Heading is de-
scribed in Section 3.2.2. However, it is noted that no appreciable performance increase
is attained in any of these experiments, indicating that no salient information appears
to be utilised from these variables.

DECISION FUSION

Two methods of decision fusion are implemented and evaluated for this chapter, with
results displayed in Figure 3.5 and specifics detailed in Section 3.2.2. For reference, re-
sults for the case of No Fusion and Simple Fusion are shown as before. It should be noted
that Simple Fusion and the two decision fusion methods Softmax Sum and Majority Vote
are mutually exclusive procedures. The results reveal a significant difference in perfor-
mance between the majority voting method and the softmax summation method, from
which it is concluded that correct label predictions are dominated by a small fraction
of comparatively confident node predictions. Inspection of the data shows no bias of
these high confidence values to any specific node, implying that other factors such as
potentially observation angle may be responsible.

To further explore this result, Figure 3.6 displays classification performance after
decision fusion with a variable amount of nodes, i.e., by performing an ablation study
where specific nodes are left out from the decision fusion process. Firstly it can be seen
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Figure 3.6: Performance metrics for the node ablation study. Best Node indicates the result when only the most
confident node is selected for prediction. 5 Nodes indicates the performance of the Softmax Sum decision
fusion scheme applied to all five nodes. Node # out represents the result when a specific node is left out of the
Softmax Sum decision fusion process, and Majority Vote indicates the result for the majority voting scheme
applied to all five nodes.

in the Best Node column that using only the most confident node for prediction (i.e. the
highest softmax value) gives worse performance than fusing any combination of four
nodes, indicating that the fusion process improves prediction capabilities. It is also ap-
parent that none of the nodes have a particularly large impact if left out, and only when
the two most influential nodes (3&4) are left out does the performance drop below the
value achieved with Majority Vote.

Finally, a study is performed on the average performance gained by increasing the
amount of sensors used in the Softmax Sum decision fusion scheme. The results are
shown in Figure 3.7, with the amount of nodes fused on the horizontal axis. For this
experiment, all possible combinations of e.g., 2, 3, and 4 nodes are fused, and the average
performance is shown in the figure.

3.4. DISCUSSION
This section contains a discussion on the results obtained, mostly focusing on the com-
putational requirements of the method, a comparison to reference results using the same
dataset, as well as an investigation into the most prevalent classification errors.

3.4.1. COMPUTATIONAL REQUIREMENTS

The computational requirements of the proposed method are summarised here. In Table
3.1 the proposed method is compared to two alternative methods in terms of sample size
and processing time for a full two-minute sequence. The RD Sequence row indicates the
generation of RD maps at the same resolution and interval as in the first steps of the
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Figure 3.7: Performance metrics for a study on the performance gained by the addition of nodes in the Softmax
Sum decision fusion scheme. For each amount of nodes on the horizontal axis, all possible combinations of
nodes are tested and the average performance is reported.

Table 3.1: Comparison of computational requirements for the proposed method and 2 alternative methods, for
the two-minute sequences used in this chapter. Sample size refers to the size on disk of the sample(s) consti-
tuting one full sequence; Processing Time denotes the time required to process a full sequence into sample(s)
using a 3.40 GHz i5-7500 CPU. RD Sequence denotes the processing of a sequence into a series of RD maps
using the same parameters as for the proposed method.

Method Sample Size [MB] Processing Time [s]

Proposed Method 0.74 4.36±0.51
RD Sequence 3.68 1.28±0.04
Spectrogram[38] 1.68 1.27±0.03

proposed pipeline. The Spectrogram row is based on the generation of spectrograms
and follows the approach in [38]. The longer processing time for the proposed method
compared to solely the RD map generation is predominantly due to the steps of range-
gating operation and the evaluation of the connected components of the binarised RD
maps.

With regards to the Point Transformer model, using an Nvidia RTX 3090 board, a
training time of 18 s per epoch is observed, with an inference time of approximately
38 ms per full two-minute sequence. A typical model size is 17 MB.

Lastly, a study is performed to determine the optimal number of points per sample,
balancing classification performance and computational requirements. Figure 3.8 dis-
plays the results of Point Transformers trained on an increasing amount of points per
sample. It can be seen that performance gain is saturated beyond 1024 points.

3.4.2. PERFORMANCE COMPARISON
In order to compare classification performance of the method to alternative approaches
in literature, two earlier reference works are selected that report method validation on
the same experimental dataset [33, 38]. In these works, results are presented for a Leave-
One-Person-Out (L1PO) validation scheme, where data from each individual participant
are used in turn as the unseen testing set for the classification. As such, the proposed
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Figure 3.8: Performance metrics for point cloud samples generated with an increasing amounts of points
per sample. Performance saturation is observed for networks trained on samples containing more than 1024
points.
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Figure 3.9: Results for the L1PO testing scheme. Averages for test accuracy and macro F1-score across the
participants are indicated with horizontal lines.

method in this chapter is also evaluated following this scheme, utilizing point clouds
with the variables range, Doppler, time, intensity, node number, and the three additional
angular variables discussed in Section 3.2.2. Decision fusion via Softmax Summation is
also performed to maximise classification performance.

Figure 3.9 shows macro F1-score and test accuracy for all participants for the nine ac-
tivity class classification problem, with averages for these metrics across all participants
also indicated. Referencing [33], a mean L1PO test accuracy of 85.1 % is reported for
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Table 3.2: Merging scheme for the consolidation of the full nine activity classes into a set of five activity classes.
Classes are grouped based on similarity.

Constituent Classes Merged Class

Walking Walking
Stationary Stationary
Sitting Down, Standing up (from sitting), Bending (from sitting),
Bending (from standing)

In Situ

Falling (from walking), Falling (from stationary) Falling
Standing up (from ground) Standing up

Table 3.3: Distribution of Samples Among the Nine Activity Classes for the L1PO Testing Scheme.

Activity Sample Support Fraction

Walk 37810 43.12%
Stationary 10100 11.52%
Sit Down 3800 4.33%
Stand Up (Sitting) 3475 3.96%
Bending (Sitting) 8655 9.87%
Bending (Standing) 9220 10.51%
Falling (Walking) 2460 2.81%
Falling (Stationary) 3850 4.39%
Standing Up (Ground) 8315 9.48%
Total 87685 100%

the hybrid CNN-RNN architecture utilised therein, indicating that the proposed method
achieves better performance for unseen subjects with an average test accuracy of about
86.9 %.

In [38], multiple classifier models based on RNNs are evaluated on the same dataset,
with a focus on performance metrics such as macro F1-score, suited for the class imbal-
ance of the dataset. The respective processed sample supports for the activity classes are
shown for the L1PO case in Table 3.3. It should be noted that in [38] a five-class prob-
lem was considered, where some of the nine original activity classes are collated in for
instance an "in-situ" class. This grouping, shown in Table 3.2, is reproduced here for the
comparison with the proposed method, and the results are reported in Table 3.4.

The table reveals that the proposed method achieves increased performance over
the bidirectional reference RNN architectures, which themselves offer better classifica-
tion performance than their unidirectional counterparts. Although there is no tempo-
ral information shared between individual 2 s segments in the proposed approach, the
point cloud processing method ensures that within a single segment there is informa-
tion on the activity dynamics through the sub-segmentation procedure. In the No Fusion
case, the difference in classification performance between the proposed and reference
method is greater, indicating efficacy of the fusion methods.

Finally, to complement the results reported in Table 3.4, the method performance
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Table 3.4: Macro F1-score results for the proposed classification method and four reference classifiers in [38].
Both single radar performance No Fusion and multi radar performance Fusion is listed, when available. The
results on this table are for a five-class classification problem.

Classifier No Fusion Fusion

Proposed 0.807 0.862
GRU - 0.778
LSTM - 0.769
bi-GRU - 0.844
bi-LSTM 0.773 0.836

is compared to three different implementations of the ResNet-50 [94] CNN architecture
on the full nine-class problem. The ResNet-50 model is pretrained on an image dataset
from ImageNet containing over a million sample images. Specifically, the three imple-
mentations here include:

1. The ResNet-50 network retrained on RD maps computed with 2 s windows.

2. The ResNet-50 network retrained on portions of spectrograms of 2 s duration.

3. The ResNet-50 network retrained on portions of spectrograms of 2 s duration, thresh-
olded at 70% of maximum intensity.

ResNet-50 has been chosen for this comparison as a representative CNN architecture
which proved successful for image-based classification tasks, including using radar data.
In all three implementations, ResNet stages 1 through 4 are frozen, and the last stage 5 is
retrained and fine-tuned using the full radar dataset. The test accuracy achieved using
the RD input, the spectrogram input, and the thresholded spectrogram input, are 0.688,
0.655, and 0.618 respectively, whereas the proposed method attains a test accuracy of
0.825 without fusion.

3.4.3. ERROR ANALYSIS
Figure 3.10 displays an example of a confusion matrix for one of the 14 participants used
in the L1PO testing scheme. In the matrix, some of the more prevalent errors can be
identified such as:

1. Confusion between similar activities (e.g. the two fall types, i.e., one from a sta-
tionary position and one from walking, or bending from standing and sitting down)

2. Boundary-type errors (seen in the columns for Stationary and Walk)

The first of these error types is not only due to the challenging nature of differentiating
similar activities, but can also partly be attributed to the segmentation strategy. For ex-
ample, a 2 s window that does not incorporate the start of a fall will generally not provide
enough information to distinguish the type of fall that has occurred.

The second error type is mainly due to the fixed segmentation strategy. Due to the
nature of the sequences, many of the activity transitions include either Walk or Station-
ary, such as Walk→Falling (Walking) and Stationary→Bending (Standing)→Stationary.
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Figure 3.10: Example of a confusion matrix for one of the 14 participants in the L1PO testing scheme. Percent-
ages are row-normalised fractions.
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Figure 3.11: Example of a classification error due to sample label ambiguity. Ground truth is indicated in yellow
for the original time steps of 1 PRI (8.2 ms), and in light blue for 2 s segments. In this case, the sample label
ambiguity is apparent due to the activity transition occurring exactly halfway into the 2 s segment between
∼41.5 s and ∼43.6 s

When a sample window includes such a transition, ambiguity arises on the activity type,
and errors can occur. An example of such an error is given in Figure 3.11, where a 2 s seg-
ment is in nearly equal parts Stationary and Walk, and the resulting ground truth label
is Stationary. However, the erroneous prediction from the classifier is in this case Walk.

The errors associated with the fixed-window segmentation approach can possibly
be partially mitigated by adopting a variable-size segmentation approach. These ap-
proaches most often entail the monitoring of a quantity that is descriptive of the pres-
ence, absence, or change of an activity within the data sequence. This includes for in-
stance spectrogram bandwidth [30], range profile variance [95], and spectrogram en-
tropy [96]. With these approaches, an input sequence is divided into segments of differ-
ent durations that ideally contain a single activity, which can subsequently be classified
per individual segment. Regardless of the segmentation method utilised, ambiguous
segments will always occur, in no small part due to the subjective nature of defining
where the transition between two distinct activities occur. For this reason, the utilisa-
tion of a multi-label classification approach [97] can be also beneficial in detecting and
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classifying the presence of multiple activities within one segment.

3.5. CONCLUSION
This chapter explores the feasibility of radar-based continuous human activity classifi-
cation utilizing Point Transformer networks and a novel point cloud processing method.
The proposed processing method converts SISO radar output into a point cloud data
representation in range-Doppler-time space. This approach contrasts methods in litera-
ture where targets are required to be localised in 3D space before employing point cloud-
based methods. The method is validated on a publicly available dataset [66], gaug-
ing both single-radar performance, and performance after feature and decision fusion
across a network of five simultaneously operating radar nodes. For the unconstrained
nine activity class problem, a single-radar test accuracy and macro F1-score of 81.0 %
and 69.8 % are achieved using L1PO validation. After feature and decision fusion, a test
accuracy and macro F1-score 86.9 % and 78.7 % are achieved with the same validation
strategy.

In future work, temporal relations between samples in an activity sequence will be
exploited using alternative transformer architectures to further improve classification
performance.





4
SEGMENTATION OF CONTINUOUS

SEQUENCES OF HUMAN ACTIVITIES

The word ‘Continuous’ in the title of this dissertation represents a key challenge in this re-
search. Classification of an uninterrupted sequence of activities is an unsolved problem
as of yet. For a large part this is due to computer algorithms having trouble with activities
transitioning into eachother. In this chapter I propose an approach of ‘divide et impera’.
The idea is to take the sequence of activities, and to extract a quantity from the data that
behaves in a predictable manner when an activity changes into the next. With this in-
formation, the sequence can be split into segments that ideally have only a single activity
each, which can be classified individually.

Parts of this chapter have been published as:

N. C. Kruse, R. G. Guendel, F. Fioranelli, and A. G. Yarovoy, Segmentation of Micro-Doppler Signatures of Human
Sequential Activities using Rényi Entropy in International Conference on Radar Systems (RADAR 2022), 2022,
pp. 435–440.

and are currently under review in:

N. C. Kruse, A. Daalman, F. Fioranelli, and A. G. Yarovoy, Radar Point Cloud-based Continuous Human Activity
Classification Using Rényi Entropy Segmentation Methods, IEEE Transactions on Radar Systems.
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4.1. INTRODUCTION

A UTOMATED human monitoring is a beneficial capability for healthcare profession-
als. Systems that offer these capabilities can monitor e.g., vital signs [21, 22, 98],

detect harmful events such as falls [13, 14], and can ensure a timely response of relevant
personnel to assist vulnerable people. Wearable sensors, such as Inertial Measurement
Units (IMUs) have been utilised for these tasks [99, 100], but are not always feasible, as
subjects may forget or object to wear these devices. Camera-based observation is highly
dependent on lighting conditions, with darkness and glaring reflections potentially im-
peding proper operation. Additionally, video-based monitoring comes with elevated pri-
vacy concerns. Radar sensing presents a remote monitoring solution that can overcome
the limitations of the aforementioned sensor modalities, and offers a promising, versa-
tile platform for human monitoring tasks.

Radar-based classification of Activities of Daily Living (ADL) is therefore an active
area of research, with a considerable amount of efforts being directed to the open chal-
lenge of continuous classification. Continuous classification here refers to the classifica-
tion of extended sequences of human activities, with each activity of unknown duration,
and frequently with activities smoothly transitioning into each other. Three main ap-
proaches can be identified in the current literature on continuous activity classification:
sliding window methods, Recurrent Neural Networks (RNN) or similar models to pro-
cess the entire data sequence, and segmentation-based methods. Sliding window ap-
proaches include for instance the work in [53], where a set of features is computed from
a window, and used as input to classifiers such as, among others, Support Vector Ma-
chines (SVM). In [54], a coarse sliding window (i.e., 30 s with 10 s overlap) is employed
in conjunction with a Convolutional Neural Network (CNN). Approaches where activ-
ity sequences are processed in their entirety feature such classifiers as (Bidirectional)
Recurrent Neural Networks ((Bi)RNNs) [38, 55], hybrid models consisting of CNNs and
(Bidirectional) Long Short Term Memory ((Bi)LSTM) networks [33, 56], Gated Recurrent
Unit networks [101], and Transformer-based models [57].

The approaches to continuous classification that focus on segmentation of activity
sequences generally do so by discriminating periods of motion from those without mo-
tion. In [58], the beginning and end of an activity are identified based on fluctuations in
wi-fi Channel State Information (CSI) variance. A similar approach is taken in [59], where
the amount of detections from the data is used as an indicator of an activity starting and
stopping. The STA/LTA (Short-Term Average / Long-Term Average) change detection al-
gorithm is employed in [30, 60] to segment the original sequence into motion-detected
intervals, based on the spectrogram envelope. Motion-detected intervals can also be
determined through machine learning methods, as demonstrated in [61]. The activity
sequence is divided into fixed-size segments, and a CNN-LSTM network is utilised to de-
termine the presence of an activity. A dynamic segment duration algorithm is proposed
in [99], where an initial 1 s segment is processed to yield information on the bandwidth.
If the 1 s segment appears very dynamic, the segment length is extended.

The reviewed existing approaches in literature for continuous classification of ADL
have notable disadvantages. Sliding window methods with a non-zero overlap require
input data to be processed multiple times, degrading the computational efficiency of
these solutions. Furthermore, window sizes are primarily fixed, which may not neces-
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sarily be optimal for the classification of different activity types in realistic sequences.
RNNs, transformers, and other neural networks that process complete sequences, are
generally less computationally lightweight as their counterparts that are designed to
classify comparatively shorter data sequences with single activities, and require a large
amount of data for effective training. Among the segmentation methods, the prevalent
means of identifying individual activities is the presence of a pause in motion between
subsequent activities, revealed by the lack of returned power or detections in the data
under test. This pause can be absent for activities that smoothly transition into the suc-
ceeding, often without a clear stop of the body movement from one to another.

To address the above issues, in this chapter a continuous ADL classification method
is proposed that consists of three main components: a segmentation algorithm, a seg-
ment processing algorithm, and a classification network. Segmentation of the input ac-
tivity sequences is based on a quantity derived from the micro Doppler spectrograms,
namely the Rényi entropy [68]. This scalar quantity is constructed to be representative
of the distribution of velocities at a given time [102], and monitoring this quantity for
fluctuations gives an indication in the transition between activities. Classification of the
individual segments extracted in this way is then achieved by first processing the data
to a Point Cloud (PC) representation, and then utilising a Point Transformer network
inspired by [67]. The proposed method, as well as two alternative segmentation meth-
ods, is validated on a publicly available experimental dataset which consists of a variety
of sequences of nine human activities. It is demonstrated that favourable performance
figures can be achieved on a challenging test dataset, with a test accuracy and macro F1-
score of 89.3 % and 82.0 % respectively. These metrics are an improvement on previous
approaches utilising the same dataset for testing.

The contributions in this chapter can be summarised as follows:

• A novel approach for classification of continuous sequences of ADL, based on seg-
mentation with Rényi entropy, a quantity describing more complex fluctuations in
the data than simpler power-based indicators.

• Experimental validation and performance evaluation of the proposed method with
respect to reference methods from the literature, showing that the proposed method
outperforms the reference approaches with a Leave-One-Person-Out (L1PO) test
accuracy and macro F1-score of respectively 89.3 % and 82.0 %.

• Comparison of the proposed segmentation method with two alternative segmen-
tation approaches. This study reveals that a segmentation approach based on Ma-
chine Learning can be situationally more effective, achieving a L1PO macro F1-
score of 86.0 %.

The remainder of this chapter is organised as follows: the proposed method, as well
as the two reference segmentation methods, are described in Section 4.2. The experi-
mental case study, designed to evaluate the performance of the proposed method with
respect to reference works in literature, is outlined in Section 4.3. Results for the case
study are presented and discussed in Section 4.4, and conclusions follow in Section 4.5.
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1. Segmentation

Segment Segment Segment
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Figure 4.1: The proposed three-stage classification pipeline. A raw input sequence of human activities is seg-
mented into single activities by a segmentation algorithm, the individual segments are processed to generate a
point cloud (PC) format, and classification is finally achieved by means of a Point Transformer neural network.

4.2. PROPOSED METHOD
The proposed classification method consists of three main elements: a sequence seg-
mentation algorithm, a processing algorithm for the individual segments, and a Point
Transformer neural network as classifier. In this section, the three components will be
described, as well as relevant preprocessing steps. Additionally, two alternative segmen-
tation methods are outlined in Section 4.2.3.

4.2.1. SIGNAL MODEL AND NOTATION

Analogous to the analytical computations in Chapter 2, range-time representations of
radar data are acquired as follows: real-valued backscattering signal vectors are consid-
ered for a set N of distributed pulsed radar systems. The cardinality of set N is denoted
by N . The quadrature components of the N vectors are obtained through the applica-
tion of a Hilbert transform, and the resulting complex-valued vectors are reshaped into
N complex-valued fast-time slow-time matrices. The fast-time and slow-time dimen-
sions correspond to range and time respectively, and these range-time representations
are denoted by Rr,t .

Velocity-time (spectrogram) representations are computed from the complex Rr,t ,
following Section 2.3. To this end, a Fast Fourier Transform is first applied in the range
dimension, yielding an intermediate matrix equivalent to equation (2.15). Subsequently,
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a Short-time Fourier transform (STFT) is applied to the frequency bin corresponding to
the centre frequency of the system. This operation yields the spectrogram Vv,t .

4.2.2. SEGMENTATION
The aim of segmentation is to divide a continuous sequence of various activities into
segments that contain only a single activity, simplifying the subsequent task of clas-
sification. To this end, a time-dependent quantity is extracted from the spectrogram
representation that is indicative of the kinematics of the activity being performed. The
quantity that is selected for this purpose is the Rényi Entropy Hα [68], which is defined
as:

Hα(P ) = 1

1−α log

(∑
i

pα
i

)
(4.1)

for 0 < α <∞ and α ̸= 1. In the above formula, P is a discrete probability distribution
with pi a vector of probabilities of the members of the distribution. The parameter α
weighs the contribution of individual elements in P on the overall entropy. For this re-
search, the probability distribution is instead replaced by a velocity distribution. Specif-
ically, at time ti , a single time bin Vv,ti of an input spectrogram is normalised by dividing
the time bin vector by the sum of its constituent elements, and subsequently utilised for
the entropy calculation, as:

Hα(ti ) ≡ Hα(Vv,ti ) = 1

1−α log

(∑
v

(
Vv,ti∑
v Vv,ti

)α)
. (4.2)

Changes in the distribution of velocities of the human target result in corresponding
changes in entropy extracted from the spectrogram. Sudden entropy changes are asso-
ciated with changes in activity, and fluctuations are monitored to indicate these activity
transition events. To this end, an inequality is established that serves as an entropy dif-
ference threshold:

|Hα(t )−Hα(t −Tl ag )| ≥βσH , (4.3)

where Tl ag is a parameter governing the time scale of fluctuations that will trigger an
activity transition event. σH represents the standard deviation in entropy over a longer
interval, for example the full duration of the activity sequence. The parameter β is a con-
stant that determines the required fluctuation magnitude to indicate an activity transi-
tion. The utilisation of the Rényi entropy over alternatives such as signal power or spec-
trogram envelope, such as in [30], is motivated by the invariance of the entropy under a
set of key transformations of the distribution of velocities. Specifically, the value of the
Rényi entropy will remain unchanged under both a scaling of the input velocity distribu-
tion, and a translation. A scaling of the velocity distribution occurs when an otherwise
identical motion is performed faster or slower, or when the motion is performed in dif-
ferent orientations, resulting in an altered projection of the target velocity profile onto
the radar line-of-sight. In both these cases, it is desirable to have an unchanged entropy,
as the nature of the motion remains the same. A translation of the velocity distribution
corresponds to an offset in the bulk velocity of the target, implying that the same motion
is performed whilst moving. When a human target is walking in various directions, the
entropy thus remains constant.
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Whenever the threshold valueβσH is exceeded, the precise time is recorded, yielding
a vector of transition event time stamps. With the acquisition of the vector of transition
time stamps, the input sequence can be segmented into a set of range-time matrices of
varying durations. It is assumed that there is a minimum duration to human activities
of interest, and a minimum segment duration is thus implemented as a parameter. Seg-
ments that are shorter than this parameter Tmi n are split evenly across the adjoining two
segments.

4.2.3. ALTERNATIVE SEGMENTATION METHODS

Two alternative reference segmentation methods will be employed to gauge the effec-
tiveness of the proposed segmentation approach. They are described in this section.

STA/LTA
Short Term Average over Long Term Average (STA/LTA) is a change detection algorithm
based on the ratio between two moving averages of different window size. The short and
long term averages of a generic signal s(t ) are given by:

STA(s(t )) =
t∑

t ′=t−Ts

s(t ′)
Ts

(4.4)

LTA(s(t )) =
t∑

t ′=t−Tl

s(t ′)
Tl

, (4.5)

where Ts and Tl indicate the short and long window durations respectively. The ini-
tiation and termination of a segment is given by the following two sets of conditions
respectively:

STA(Hα(t ))

LTA(Hα(t ))
>σ2 & STA(Hα(t )) >σ1 (4.6)

STA(Hα(t ))

LTA(Hα(t ))
<σ2 & LTA(Hα(t )) <σ3. (4.7)

The entropy Hα(t ) is here taken as the specific signal of interest, and [σ1,σ2,σ3] are
method parameters. σ1 and σ3 are thresholds that govern the required entropy increase
and decrease for detecting the onset of a segment. The required ratio between the short
and long term averages to indicate the start of a segment is given by the remaining pa-
rameter σ2. Together with the short and long window durations Ts and Tl , a total of five
parameters are thus required to configure the STA/LTA algorithm.

For the purpose of the case study, the optimal parameters for the STA/LTA algorithm
are determined using the built-in genetic algorithm (GA) optimiser in MATLAB. The ob-
jective function is a sum of two terms, both in the range [0,1]. The first term expresses
the suitability of a segment between two detected transitions in terms of the most occur-
ring activity label. The closer to 1, the better the segment captures a single activity. The
second term penalises the difference between the amount of detected transitions and
the amount of transitions in the ground truth target vector.
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Figure 4.2: Diagram of the proposed segment processing pipeline for the generation of point cloud samples
suitable as inputs for Point Transformer networks.

BILSTM FOR SEGMENTATION

A machine learning-based approach for segmentation is also investigated. Specifically, a
bidirectional Long Short Term Memory (BiLSTM) network is trained to detect transition
events from an entropy signal input Hα(t ). The target sequence used to train this model
is a binary vector of the same length as the entropy input. At every transition between
two activities, the value of the target sequence is ‘1’. It is ‘0’ everywhere else. The target
vector is relatively sparse, as the amount of transitions in a sequence is generally orders
of magnitude smaller than the duration of the sequence in time steps. This significant
sparsity hinders the ability of the model to correctly train and predict transition events.
To alleviate this problem, it is here proposed that the target vector is convolved with
a rectangular function with a width of approximately 0.33 s. A physical interpretation of
this convolution is the non-instantaneous nature of activity transitions and an inevitable
degree of subjectivity in defining exactly when they happen. The value of 0.33 s is em-
pirically found to provide good performance without making transition events unrealis-
tically long.

4.2.4. SEGMENT PROCESSING AND CLASSIFICATION

Every range-time matrix containing a segment of activities is processed individually,
yielding a point cloud (PC) representation. The point cloud representations are com-
putationally more efficient to manipulate than using complete data matrices, and allow
for classification by the powerful Point Transformer (PT) family of neural networks [67].
This section describes the point cloud processing and classification. The processing ap-
proach is similar to that of Chapter 3, but with the important distinction that segments
are no longer fixed in size.

Every segment is first evenly divided into Nsub subsegments, as shown in step (1) of
Figure 4.2. Each subsegment is thus a complex range time matrix Rr,t , and an FFT along
the time axis yields a set of Nsub range Doppler maps. A threshold function is applied
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in step (2), yielding a binary map of where the signal power exceeds a fraction γ of the
maximum signal power. For the purpose of reduction of noise and clutter contributions,
a range gate of 2 m is additionally employed in step (3), centred on the centre of mass
of each binary map, with the assumption that the largest detected region correspond to
the target of interest. The three largest connected regions are then selected in step (4).
Connected region in this case refers to a set of matrix elements that have non-zero neigh-
bours. This step is performed since human anatomy and kinematics dictate a smoothly
varying range-Doppler profile. Selecting the large connected regions thus suppresses
speckle-type noise. The Nsub binary maps are subsequently used in step (5) to select the
points of interest from the original Nsub range-Doppler maps. These points form a point
cloud with dimensions range, Doppler, time, and signal power for each point. For con-
sistency between segments, a fixed number of points is required. Thus, the point cloud
is upsampled or downsampled to Npt s points in step (6) based on this requirement. Up-
sampling is achieved by duplication of existing points in the cloud, downsampling by
uniform subsampling of the cloud in range-Doppler space.

For classification of each segment, a point transformer neural network is utilised [67].
Point transformer networks fall under the transformer family of deep learning archi-
tectures and are suited to tasks including object classification and scene segmentation.
Point clouds serve as inputs to these networks and a modified attention mechanism [103]
is the means of feature extraction. Details on the network can be found in the original
paper [67]. For this chapter, based on previous research in Chapter 3 and inspired by the
research in [34], the architecture proposed by [67] is selected. This choice is motivated by
the demonstrated classification performance, respective to two alternative architectures
that have been considered [104, 105]. Three parameters govern the implementation of
the architecture into a specific neural network: the number of transformer blocks, the
number of neighbours considered for each point, and the size of each point transformer
layer. Based on the research in Chapter 3, they are set to 4, 16, and 128 respectively.

The point cloud corresponding to each individual segment is assigned an activity
label based on the primary activity performed during the segment, which is determined
through a majority ruling. An activity prediction is the output of the Point Transformer
model, which is compared to the ground truth for that particular segment to determine
the classification performance of the method.

4.3. CASE STUDY
To gauge suitability of the proposed method for continuous human activity classifica-
tion, as well as study the effects of alternative segmentation approaches, two case studies
are performed. The studies are conducted using the publicly available dataset [66], de-
scribed in Chapter 2, that contains sequences of activities from 14 participants. Specifi-
cally, these case studies include:

1. A comparison of classification performance between the proposed segmentation
method and two alternative segmentation methods described in Section 4.2.3.

2. A Leave-One-Person-Out (L1PO) validation of the proposed method and the best
performing alternative method to compare to reference classification approaches
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Table 4.1: Summary of parameters used in the proposed method. Parameters relating to segmentation are
found at the top, those relating to the subsequent processing of the segments are found at the bottom.

Parameter Notes

Segmentation

α Influences dependence of entropy on velocity values with strong in-
tensity

Tl ag Time scale of monitored entropy fluctuations
β Required fluctuation magnitude to indicate transition event
Processing

Nsub Number of subsegments extracted from segment
γ Threshold value for detection (binarisation) of range Doppler maps,

as a fraction of maximum signal power
Npt s Number of points in processed point cloud

in literature. L1PO validation is further detailed in Section 4.3.1, and entails train-
ing on data from all but one participant, and testing on the data of omitted partic-
ipant

A summary of the parameters employed in the proposed method, based on Rényi en-
tropy, is given in Table 4.1.

4.3.1. CLASSIFICATION APPROACH
The approach for classification in the case studies conducted in this chapter is as fol-
lows: the activity sequences is first segmented using the method under investigation.
The found segments are processed in accordance with Section 4.2.4, and subsequently
used as input to the Point Transformer network for classification. Comparing the output
of the Point Transformer to the ground truth for the segment yields performance mea-
sures, in this research expressed in terms of test accuracy and macro F1-score. Test ac-
curacy is selected due to its prevalence in classification tasks in the literature, and macro
F1-score is reported as it can give a good insight in the performance on underrepre-
sented classes.

The validation approaches taken for the case studies fall under two categories in
terms of training/testing split.

1. A Leave-one-Person-Out (L1PO) approach, where sequences from 13 of the partic-
ipants are used to train the Point Transformer, and sequences from the remaining
single participant are used to test the model. This process is repeated for each
participant and average performance figures are reported. This validation strategy
yields the most comprehensive result, as the capability of the model to respond to
unseen participants is evaluated. It is however significantly more time-consuming
due to the amount of models that have to be trained for each experiment.

2. A sample holdout method, where 80% of the segments are used to train the Point
Transformer model, and 20% are used for testing.
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Table 4.2: Test accuracy and macro F1-score results for the proposed classification method and two refer-
ence segmentation methods, detailed in Section 4.2.3. Results are presented for a 80 %/20 % sample holdout
scheme.

Method Test Accuracy Macro F1-Score

Proposed 0.909±0.003 0.853±0.005
STA/LTA 0.903±0.006 0.829±0.006
BiLSTM 0.924±0.010 0.914±0.011

Due to the computational requirements of the L1PO validation strategy, this approach
will only be taken when it is necessary to compare the methods in this chapter with ref-
erence methods from literature.

4.4. RESULTS AND DISCUSSION

4.4.1. STUDY ON SEGMENTATION METHODS

Table 4.2 contains the classification results of a comparison between the proposed method
and two reference methods. As references, the STA/LTA and BiLSTM segmentation meth-
ods from Sections 4.2.3 and 4.2.3 are specifically shown. Each model is trained three
times using 80%/20% sample holdout validation to analyze statistical fluctuations. High-
est performance is achieved using the BiLSTM segmentation method, as this approach is
able to learn more complex patterns in entropy rather than just strong fluctuations. The
proposed segmentation method outperforms STA/LTA segmentation in terms of Macro
F1-Score. Inspection of the segments created with the STA/LTA algorithm reveals that
transitions are generally correctly found when transitioning from stationary to motion
and vice versa, but that complex transitions between different types of motion are not
detected as effectively.

4.4.2. L1PO RESULT

Figure 4.3 shows the results of the L1PO validation of the proposed method, indicated
with solid markers and lines. Additionally included is the performance for ‘perfect’ seg-
mentation where ground truth labels have been employed to yield segments that con-
tain a single activity only, which is assumed to be ‘optimal’ segmentation. These per-
formance figures are shown with empty markers and dashed lines. It should be noted
that this ‘optimal’ result relies on information that is unavailable in a real scenario, and
is provided to indicate the effect of segmentation on the final classification effectiveness.

On average, the performance metrics for the segmentation based on ground truth
information are higher than for segmentation following the proposed method based on
Rényi entropy. Average test accuracy for the former and latter are 90.9 % and 89.3 %
respectively. Notable outliers however are participants #3 and #4. An important con-
clusion that can be drawn is that segmentation into human-interpretable boundaries is
not necessarily the best strategy for classification. Single activity ground truth segments
may align well with human understanding, but do not necessarily facilitate model-based
classification. Breaking down complex or long segments into possibly more homoge-
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Figure 4.3: Results for the proposed classification method, evaluated using a L1PO testing scheme. Test accu-
racy and Macro F1-score results are shown for each of the 14 participants. Averages across all participants are
indicated with horizontal lines. GT acc and GT F1 refer to classification performance achievable when ground
truth information is available about the moments where transitions occur, i.e., segments containing only a
single activity. The averages for this ‘optimal’ GT segmentation are indicated with dashed lines.

neous parts can enhance classification performance, as seen in the cases of participants
#3 and #4.

4.4.3. COMPARISON TO REFERENCE METHODS IN LITERATURE
Table 4.3 presents the L1PO test accuracy and Macro F1-score for the proposed method,
the BiLSTM segmentation method, and two reference methods from the literature using
the same dataset [33, 37]. Additionally included is the result for classification of seg-
ments created using the ground truth labelling information (GT Segments). Comparing
the proposed method with the Point Transformer operating on fixed, 2 s windows [37]
reveals an increase in test accuracy, as well as a +3.3 % increase in Macro F1-Score. This
improvement highlights the benefit of using adaptive segments, mitigating the transi-
tion errors that occur when using fixed-duration segments. The CNN-BiGRU approach
in [33] processes the activity sequences into series of range-Doppler maps, where fea-
ture extraction is performed by a Convolutional Neural Network (CNN) on a per-map
basis. The extracted features form a time series, which is then used as input to a Bidirec-
tional Gated Recurrent Unit (BiGRU) which performs classification. To keep the size of
this hybrid model computationally feasible, the range-Doppler maps are scaled down,
possibly explaining the difference in performance with the proposed method. Of note
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Table 4.3: Test accuracy and macro F1-score results for the proposed classification method and four alternative
methods. GT Segments refers to the utilisation of the Point Transformer network, but with ‘perfect’ segmen-
tation using the ground truth data to locate transitions. The top three rows correspond to different methods
discussed in this chapter, the lower two rows to reference works from literature. All results are based on the
same dataset [66] and the same L1PO validation scheme. The results in this table are for the full nine-class
classification problem. *:[37],§:[33].

Method Test Accuracy Macro F1-Score

Proposed 0.893 0.820
Proposed (GT Segments) 0.909 0.889
BiLSTM Segmentation 0.878 0.860

PT (Fixed Segments)* 0.869 0.787
CNN-BiGRU§ 0.851 -

Table 4.4: Merging scheme for the consolidation of the full nine activity classes into a set of five activity classes.
Classes are grouped based on similarity.

Constituent Classes Merged Class

Walking Walking
Stationary Stationary
Sitting Down, Standing up (from sitting), Bending (from sitting),
Bending (from standing)

In Situ

Falling (from walking), Falling (from stationary) Falling
Standing up (from ground) Standing up

is the test accuracy of the BiLSTM segmentation method, which is lower than that of
the proposed method. This contrasts with the results achieved under the sample hold-
out validation scheme in Table 4.2, where the BiLSTM-based method outperforms the
proposed method both in terms of test accuracy and macro F1-score. This result high-
lights the problem of overfitting in machine learning approaches, where a neural net-
work trained on a set of data can have issues with generalisation capabilities outside of
the training set. In this case, the test data of the unseen participant proves challenging
to the BiLSTM segmentation algorithm.

Some of the reference works with methods benchmarked on the same dataset utilise
an aggregated set of five activity classes. In this reduced set, displayed in Table 4.4, activ-
ities such as Falling from walking and Falling whilst standing still are joined into a sin-
gular Falling class. Table 4.5 shows the results for this five-class problem. The top three
rows again correspond to methods discussed and proposed in this chapter, the lower
rows are performance metrics reported in reference methods from literature [37, 38].
The methods in [38] involve the computation of a spectrogram representation of the ac-
tivity sequences, which is subsequently used as input to various Recurrent Neural Net-
work (RNN) architectures. The performance of the proposed method, as well as the seg-
mentation approach utilising a BiLSTM, both surpass that of the reference method [38].
Notably, the combination of a BiLSTM with the Point Transformer model demonstrates
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Table 4.5: Test accuracy and macro F1-score results for the proposed classification method and several al-
ternative methods. GT Segments refers to the utilisation of the Point Transformer network, but with ‘perfect’
segmentation using the ground truth data to locate transitions. The top three rows correspond to methods dis-
cussed in this chapter, the lower six rows to reference works from literature. All results are based on the same
dataset [66] and the same L1PO validation scheme. The results in this table are for a five-class classification
problem. *:[37],†: Signal Fusion [38], ‡: Feature Fusion [38].

Method Test Accuracy Macro F1-Score

Proposed 0.928 0.880
Proposed (GT Segments) 0.947 0.943
BiLSTM Segmentation 0.913 0.900

PT (Fixed Segments)* - 0.862
GRU† 0.909 0.778
LSTM† 0.910 0.769
bi-GRU† 0.933 0.844
BiLSTM† 0.931 0.836
BiLSTM‡ 0.924 0.840

superior results compared to the BiLSTM operating solely on spectrogram data. This im-
provement can be attributed to the more efficient utilisation of the BiLSTM network in
the combined approach. Specifically, the BiLSTM in the hybrid model processes only
the Rényi entropy, rather than the entire spectrogram, and is tasked with predicting
transitions rather than classifying specific activity types. Consequently, the combined
model remains more compact at 19 MB, compared to the stand-alone BiLSTM of ap-
proximately 25 MB.

The L1PO experiments demonstrate promising results for the proposed method, with
the BiLSTM-based segmentation delivering the highest performance in terms of macro
F1-score. However, the proposed method based on Rényi entropy offers several key ad-
vantages in certain scenarios:

• If minimising model size is a significant priority, the proposed method is advanta-
geous, as it relies solely on the Point Transformer model with minimal segmenta-
tion processing.

• The segmentation approach used in the proposed method offers superior inter-
pretability compared to the more complex BiLSTM-based segmentation.

• The Point Transformer model takes inputs such as range, velocity, and time, which
are consistent across experimental scenes and radar systems. In contrast, BiLSTM
segmentation may need retraining across different scenarios, as the Rényi entropy
patterns could vary. This argument is further strengthened by the disparity in per-
formance of the BiLSTM-based method between the sample holdout experiment
and the L1PO experiment, representing poor generalisation capabilities.
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Table 4.6: Test accuracy and macro F1-score results for three windowing approaches. Segmentation is the
method proposed in this chapter, Fixed Window refers to the 2 s window method from Chapter 3, Dual Fixed
Window refers to an additional experiment that has been performed to test two fixed windows of different
sizes in parallel. The results presented are for a L1PO validation scheme on a subset of 4 randomly selected
participants.

Classifier Test Accuracy Macro {F1-score}

Segmentation 0.911 0.859
Fixed Window 0.864 0.797
Dual Fixed Window 0.888 0.825

4.4.4. DUAL WINDOW COMPARISON

A final experiment is performed to gauge the effectiveness of a hybrid approach between
that presented in Chapter 3, and the segmentation-based approach proposed in this
chapter. Rather than using a single fixed, 2 s window as in Chapter 3, every sequence
in the hybrid approach is classified by two separate fixed window classifiers, operating
in parallel. At every time step, the output prediction vectors of the two classifiers are
compared, and the activity class with the highest total confidence level is selected. The
two window choices for the dual classifiers are based on the statistical mode and the me-
dian of the segment sizes that are found with the segmentation algorithm, rounded for
convenience. They are 1.31 s and 2.30 s respectively. All other processing is identical to
this chapter.

Table 4.6 shows the results for the experimental comparison. For validation, a L1PO
scheme is used. Due to time constraints, only a subset of 4 randomly selected partic-
ipants is evaluated out of the total of 14. It is noted that the dual classifier approach
is superior to the single window approach, but does not reach the performance of the
adaptive segmentation approach proposed in this chapter.

4.5. CONCLUSION
This chapter proposes a novel method for classification of continuous sequences of hu-
man activities. The proposed method consists of three main elements: segmentation
of the sequences, processing of the segments, and classification of the segments. As a
key step of the proposed processing, segmentation is achieved through the monitoring
of fluctuations in Rényi entropy, a scalar quantity computed from micro Doppler spec-
trograms. The proposed method offers a solution to the problem of continuous activity
classification that is more reliable in terms of classification performance compared to
reference methods from the literature. Additionally, it is also computationally efficient
due to the effectiveness of the Rényi entropy as an indicator of activity changes.

The proposed method is experimentally validated on a publicly available dataset.
A Leave-One-Person-Out test accuracy of 89.3 %, and a macro F1-score of 82.0 % are
achieved on the dataset which consists of a variety of sequences of nine human activi-
ties. Alternative segmentation methods are also investigated. These include the STA/LTA
change detection algorithm, and a BiLSTM network taking Rényi entropy as input. Be-
tween the proposed method and the BiLSTM segmentation method, the highest clas-
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sification performance metrics are attained by the BiLSTM. The proposed method is
however preferable in terms of computational efficiency and interpretability, and out-
performs reference methods from literature on the dataset.

An idealised form of segmentation is also studied, where ground truth labels are used
to create segments that contain a single activity only. Classification performance in this
case is generally higher than on segments produced by the various segmentation algo-
rithms. In some cases however, the opposite is true. It is concluded that segmenting to
the ground truth of an activity sequence is not necessarily optimal, if at all possible in
a realistic scenario, and segmentation into classifier-interpretable, homogeneous seg-
ments might be preferable.

Further refining the method proposed in this chapter could involve the inclusion of
a multi-label classification method, such as that presented in [50], to further mitigate
the problem of multiple activities in a segment. The proposed segmentation algorithm
in this chapter relies on a single parameter governing the time scale that is considered
when searching for transitions between activities. In reality, activity transitions can vary
in duration. A single time scale has been utilised here as an initial approach, but this
can be expanded to multiple values to allow more flexibility in the detection of activity
transitions. Finally, alternative segmentation methods are to be investigated that strike
a balance between interpretability, computational efficiency, and classification perfor-
mance.





5
RECONSTRUCTION OF EXTENDED

HUMAN TARGET INTENSITY AND

VELOCITY DISTRIBUTIONS

Radar sensors are typically best suited at measurements in the radial direction, meaning
away from and towards the antenna. For a human under observation this means that
the radar only sees the part of the movements that are directly toward or away from the
radar’s antenna. For quite some time we discussed the possibility of using multiple radars
in different locations in order to retrieve the movements of the body in all directions, but
in most cases we hit theoretical barriers. In this chapter I propose a method that uses
information from a group of radar sensors, and fuses it together to yield a recreation of
the movements of a human subject in three dimensions. Through experimental work I
then show that the recreation is accurate enough to classify what the person was doing at
a given moment in time.

Parts of this chapter have been published as:

Kruse, N. C., Guendel, R. G., Fioranelli, F., & Yarovoy, A. (2025). Reconstruction of Extended Target Intensity
Maps and Velocity Distribution for Human Activity Classification. In IEEE Transactions on Radar Systems, 3,
14-25.

Kruse, N. C., Guendel, R., Fioranelli, F., & Yarovoy, A. (2024). Distributed Radar Fusion for Extended Target
Location and Velocity Reconstruction. 2024 IEEE Radar Conference (RadarConf24), 1–6.
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5. RECONSTRUCTION OF EXTENDED HUMAN TARGET INTENSITY AND VELOCITY

DISTRIBUTIONS

5.1. INTRODUCTION

W ITHIN the context of healthcare, radar is considered a promising sensor modality
for the monitoring of patients and vulnerable individuals in their home environ-

ments. The monitoring capabilities of radar include vital sign estimation [21, 106], gait
analysis [15, 107], fall detection [13, 14], gesture recognition for interaction with smart
devices and automatic sign language interpretation [30, 108–110], and activity classifica-
tion [12, 37, 55, 111]. The non-contact nature of radar sensing allows for monitoring in
situations where wearable sensors would prove disadvantageous, such as in cases where
subjects may forget or object to wearing a sensor. Additionally, radar is an active sen-
sor and functions in complete darkness or glaring lights, with no hindrance to the user.
Finally, no visual images are captured, which can be beneficial in terms of perceived pri-
vacy from the side of the end-users.

To aid in activity classification, sensor fusion has been utilised to great effect in liter-
ature. The combination of data from multiple heterogeneous sensors [71, 112], or from
multiple radar sensors operating in a network [19, 38, 113] allows them to complement
each other and compensate for weaknesses of individual sensors. For the case of radar
in particular, the most precise position and velocity measurements are generally in the
radial direction. This suggests that a network of radars can improve the perception of
the location and velocity distribution of the different body parts of the observed subject
compared to a single radar, provided that the network is sufficiently spatially diverse.

With the proliferation of machine learning (ML) techniques, sensor fusion approaches
often rely on a fused representation that constitutes a latent space in a ML model [19,
33, 112, 113]. In other words, the feature space after fusion is no longer easily human-
interpretable. These fused feature spaces are optimised for a specific task and mostly
do not generalise well to other applications. Other common fusion types are decision-
based, where predictions from multiple classifiers are merged on the basis of e.g., pre-
diction confidence [19, 37]. A disadvantage of these approaches is that the individual
classifiers do not have access to a representation with information from all sensors, thus
potentially limiting performance. Finally, simple fusion approaches are utilised where
the fused representation is a concatenation of radar data domains from multiple sen-
sors [38, 111, 113]. In these cases, no data association between sensors is performed.

Various fusion approaches for radar networks in the literature for human activity
classification have been investigated. To the best of this author’s knowledge there is
no method that aims to explicitly model and estimate both reflection intensity and ve-
locity distribution of the target in 3D. This capability would be important to combine
interpretability and task versatility. Interpretability comes from a shared data represen-
tation from the different nodes that is based on intensity and Doppler/velocity, both of
which are quantities that are easily understandable and related to the kinematics of the
observed activities. Task versatility is here defined as the potential to utilise the fused
representations for multiple applications, for example target tracking or activity classifi-
cation.

In this chapter, a novel sensor fusion method is proposed that processes raw data
from a network of radar sensors and yields three-dimensional representations of both
reflection intensity and velocity distribution. Specifically, range-angle-Doppler repre-
sentations of data from a network of distributed monostatic radar are processed into



5.2. PROPOSED METHOD

5

59

two 3D fields defined in cartesian coordinates. The first of these fields contains the re-
constructed reflection intensity at each point in a 3D spatial grid; the second is a vector
field of reconstructed velocities, in the context of human activity classification related to
the combined movement of the different body parts. The efficacy of the proposed fusion
method is evaluated through a classification case study. A challenging, publicly avail-
able dataset of continuous human activities is processed using the proposed method.
The fused intensity maps and velocity fields are then used as input to a CNN-BiLSTM
(Convolutional Neural Network - Bidirectional Long Short Term Memory) architecture,
tasked with discriminating nine different human activities. Additionally, an experimen-
tal feasibility study is performed to demonstrate the ability of the proposed method to
yield 3D representations of extended target shape and velocity distribution.

The remainder of this chapter is organised as follows. In Section 5.2, the proposed
sensor fusion method for reconstruction of reflection intensity and velocity profile of
human movements is explained, followed by a description of the 2D case study used
to validate the method in Section 5.3. Results of this case study are presented and dis-
cussed in detail in Section 5.4. The 3D feasibility study is presented in Section 5.5, and
conclusions follow in Section 5.7.

5.2. PROPOSED METHOD
The fusion method proposed in this chapter comprises two main elements: a voxelisa-
tion of the observed human target into a 3D spatial grid, and a reconstruction technique
of the measured reflection intensity and dominant velocity in each voxel. The method
is agnostic to the angular capabilities of the radar sensors utilised, and functions with
any number of sensors, provided that this exceeds the amount of spatial dimensions
considered for the problem. At least four spatially distributed radar nodes are needed
to reconstruct intensity and velocity distribution in a 3D grid, in the case that angular
information is not available.

Inputs to the proposed fusion method are N radar data tensors from a network of N
radar sensors. The tensors represent measured signal amplitude and have dimensions of
range, Doppler (radial velocity), and azimuth and elevation if the radar sensors are capa-
ble of measuring them. The outputs of the method are a spatial distribution of reflection
intensity as well as a vector field of reconstructed velocities.

It is assumed that the human body is a non-rigid, extended target. For the purposes
of activity classification, the simplification to a point target with a single velocity is too
limiting. Although the distribution of radial velocities of the human target can be mea-
sured by multiple radar systems, an association problem prevents the determination of
a 3D velocity profile through direct sensor fusion. The human body is however subject
to kinematic constraints. The allowed joint movements are principally rotational in na-
ture, which implies that the velocity profile along the limbs will vary smoothly. Given this
implication, it follows that a volume element that is small in comparison to the human
target can be assumed to contain a dominant velocity. This assumption underlies the
velocity reconstruction aspect of the proposed method. It should be noted that the as-
sumption does not hold in the cases where e.g. two limbs pass in close proximity relative
to the size of the volume element. In these cases, volume elements may contain multiple
dominant velocities.
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The proposed fusion method takes radar data tensors D
(
r,θ,φ, v

)
from a network

of radar sensors as input, where azimuth θ and elevation φ are optional, depending on
the front-end architecture of the considered radar. Dimensions r and v represent range
and Doppler respectively. As this information can be provided by a variety of radar sys-
tems with varying processing approaches, no specific architecture or type of radar is
assumed, provided that Doppler shifts and thus radial velocity components can be mea-
sured. In the specific case of a pulsed single-channel system, with a complex valued
fast-time/slow-time matrix as in (2.12) in Chapter 2, the radar data tensor is a range-
Doppler map acquired through application of a Discrete Fourier Transform (DFT) along
the slow-time dimension:

D (r, v) =Fts [S (t f , ts )]. (5.1)

Here, Fts is the DFT operation along the slow-time dimension ts . The notation D is
maintained for the radar data tensor.

The set of radar sensors will be indicated by N , and the cardinality of this set is de-
noted by N = |N |. In the remainder of this section, vectors and unit vectors will be
indicated with arrows (p⃗) and hat operators (p̂) respectively. Thus, p⃗ = pp̂ and p = p⃗ · p̂.
An estimated vector is indicated with a tilde (p̃).

5.2.1. INTENSITY MAPS

As a first step to the proposed method, the 3D space in the field of view of the radar
network is uniformly voxelised in Cartesian coordinates, resulting in a grid with a spac-
ing that can be adjusted based on e.g., the resolution characteristics of the radar sensors
utilised. For each volume element in the grid the range to each sensor is computed, as
well as the azimuth and elevation angles if available for the radar sensors used. These
computations are achieved through a coordinate transfer mapping for each individual
sensor.

Consider the centre of a volume element in Cartesian coordinates x⃗ = [
x, y, z

]
. The

vector is first translated to place the sensor n in the origin, and is rotated such that the
sensor boresight is in the positive x-direction, as:

x⃗ ′
n = R−1

n (⃗x − x⃗n), (5.2)

where x⃗n is the position of sensor n and

Rn = R(θAz )R(φEl ) =cosθAz cosφEl −sinθAz cosθAz sinφEl

sinθAz cosφEl cosθAz sinθAz sinφEl

−sinφEl 0 cosφEl

 . (5.3)

Here, the rotation matrix Rn for the sensor n is defined as a function of the boresight
elevation φEl and azimuth angle θAz with respect to the positive x-axis. Subsequently, a
mapping f : R3 → R3 is employed to transform to a spherical coordinate system: f (⃗x) =
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r⃗ = [
r,θ,φ

]
. The transformation is given by:

r =||⃗x||, (5.4)

θ =arctan
y

x
, x > 0, (5.5)

φ=arcsin
z

||⃗x|| , x > 0. (5.6)

Note that the angles φ and θ are limited to the hemisphere in the positive x-direction.
After transforming the grid to the frames of the individual sensors as in (5.2) and

applying the aforementioned mapping into spherical coordinates, the respective radar
data tensors can be evaluated to yield the measured signal amplitude at each volume
element. As the transformed grid may not align with the range-angle map of a sensor,
the signal amplitude of a volume element is taken to be that of the closest data point
in the sensors’ range-angle map. The individual tensors are of dimension D

(
r,θ,φ, v

)
,

and reflection intensity for each volume element x⃗ is determined by summing received
signal amplitude over the radial velocity dimension v . Contributions from the set of
radar sensors N are then summed up, as:

I (⃗x) = ∑
n∈N

∑
v

D
(

f
(⃗
x ′

n

)
, v

)
. (5.7)

By repeating this process for each volume element in the grid, an intensity map I can be
constructed.

5.2.2. VELOCITY FIELD RECONSTRUCTION
The reconstruction of the velocity field for the extended target starts with the same grid
definition and transformation as outlined in the previous subsection. In contrast to the
intensity map computation, the dominant Doppler/velocity component is recorded for
each voxel in the grid, and for each radar sensor in the network. For this chapter, the
dominant Doppler component is considered to be the Doppler index with the highest
amplitude, as:

vn = vn(r,θ,φ) = arg maxv

(
D

(
r,θ,φ, v

))
. (5.8)

The resultant set of N Doppler components from the set of radar sensors is assumed
to originate from a dominant velocity in the volume element. In order to reconstruct
this full 3D velocity from the N projections, i.e., the projections on the line of sight of
each radar, the process of orthogonal projection is inverted by means of a minimisation
problem.

First, consider the generic plane defined by the vectors p⃗ for which the following
holds:

p⃗ · n̂ + ci = 0. (5.9)

Here, n̂ is a unit vector orthogonal to the plane and ci a constant. For the specific case of
a Doppler/velocity projection seen by a radar sensor, the true target velocity u⃗ projects
onto the sensor’s line of sight x̂ ′

n , yielding v⃗n as shown in Figure 5.1. It follows that all
possible u⃗ are given by the vectors u⃗ − v⃗n that are in the plane that is orthogonal to x̂ ′

n .
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Figure 5.1: Vector representation of quantities relevant for velocity reconstruction. x̂′n : line of sight unit vector
from radar n to voxel at x⃗, u⃗: true velocity in voxel at x⃗, v⃗n : radial velocity measured by sensor n.

Since vn is known and vn = v⃗n · x̂ ′
n , v⃗n can be substituted for p⃗ and x̂ ′

n for n̂ in (5.9) to
solve for the constant ci ,n :

v⃗n · x̂ ′
n + ci ,n = 0 (5.10)

ci ,n =−vn . (5.11)

A set of N planes can now be defined that, in an ideal case, would intersect in a single
point u⃗:

p⃗ · x̂ ′
n − vn = 0, (5.12)

where p⃗ ∈R3 and n ∈N .
In the non-ideal case of real targets, an optimisation problem can be set up to find

the point with minimum distance to the set of N planes, i.e., to determine the best fitting
intersection point ũ. First, a cost function is defined as the sum of squared distances of
a point p⃗ to the set of planes as per (5.12). This is formulated as follows:

E(p⃗) = ∑
n∈N

(
p⃗ · x̂ ′

n − vn
)2 (5.13a)

= ∑
n∈N

((
p⃗ · x̂ ′

n

)2 −2p⃗ · vn x̂ ′
n + v2

n

)
(5.13b)

= ∑
n∈N

((
p⃗T x̂ ′

n x̂ ′T
n p⃗

)−2p⃗T vn x̂ ′
n + v2

n

)
. (5.13c)

Matrix notation is used from equation (5.13c) onward for the sake of clarity. The deriva-
tive of the cost function with respect to p⃗ is given by:

dE

d p⃗
= 2

∑
n∈N

x̂ ′
n x̂ ′T

n p⃗ −2
∑

n∈N

vn x̂ ′
n , (5.14)

and setting this derivative to 0 yields the best fitting intersection point, namely the vector
ũ, as: ∑

n∈N

x̂ ′
n x̂ ′T

n ũ − ∑
n∈N

v⃗n = 0 (5.15a)

ũ =
( ∑

n∈N

x̂ ′
n x̂ ′T

n

)−1 ∑
n∈N

v⃗n . (5.15b)
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Figure 5.2: Schematic representation of all the evaluated sensor network geometries with the five available
radar nodes in the network. Each considered geometry is color-coded and the constituent sensors are con-
nected by dashed lines. (a) Two node geometries; (b) Three node geometries; (c) Four node geometries.

The resulting vector ũ is the assumed dominant velocity in the voxel. This velocity
reconstruction can be applied to all voxels in the considered volume of interest of the
radar network, thus yielding a vector field ũ (⃗x). The velocity field can in principle be
computed for all voxels, including those with only noise. Hence it can be decided to only
compute, or visualise, the field at those voxels where the corresponding intensity map
exceeds a user-defined threshold, i.e., I (⃗x) > ϵ.

After the computation of the scalar reflection intensity map and velocity vector field
at all voxels, the final representation generated by the proposed method is given by both
I (⃗x) and ũ (⃗x). This representation constitutes a fusion of the data from the N sensors
into three spatial dimensions, and can be subsequently used for tasks such as classifica-
tion of activities.

5.3. EXPERIMENTAL CASE STUDY IN 2D
To demonstrate the efficacy of the proposed method, an experimental case study is con-
ducted. The objective of the study is to gauge the accuracy of the reconstructed velocity
distribution and reflection intensity maps for human activity classification tasks. Specif-
ically, the intensity map and velocity field are computed according to the method de-
scribed in Section 5.2 and used as input to a deep learning model with the aim of clas-
sifying different human activities. The dataset used for the 2D case study is described
in Chapter 2, and features 120 s sequences of nine different human activities of uncon-
strained duration and direction. The data is captured with a network of five pulsed Ultra
Wideband (UWB) radar sensors, operating as distributed monostatic nodes. For classi-
fication, a hybrid CNN-BiLSTM architecture is employed to process the fused represen-
tations of intensity maps and velocity fields.

5.3.1. SENSOR GEOMETRY

Since the proposed method is inherently based on the fusion of data from different radar
nodes, various sensor network geometries are evaluated. As the dataset has been col-
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lected with the fixed five-node geometry from Figure 2.2, only subsets of these nodes
can be evaluated. These subsets can be realised by leaving data from specific nodes out
during the processing. Due to computational constraints, not all subsets that are pos-
sible with five nodes have been tested experimentally. Hence, subsets that are in the
same rotational symmetry group, or that exhibit a bilateral symmetry along a horizontal
axis, are represented in this study by a single member of the respective symmetry group.
This is done under the assumption that the activities in the experimental scene were
performed in fully random trajectories, so that there is minimal bias in activity location
or orientation. As an example, the configuration (1,2,4) is rotationally symmetric to the
configuration (2,3,5) and only the former is included in the experiment. As an excep-
tion to this, configurations (1,3) and (2,4) are both included with the aim of gauging any
bias in the location and direction of activities in the dataset. All the geometries that are
evaluated in this chapter are displayed in Figure 5.2.

5.3.2. PRE-PROCESSING

Pre-processing is performed on the data of each radar sensor prior to the implementa-
tion of the proposed method described in Section 5.2. First, the real-valued vector out-
put by each of the sensors is Hilbert-transformed, and a fast-time/slow-time matrix with
complex values is constructed, which is essentially considered as a range-time matrix
Rr,t , as in Section 2.2. The slow-time indices corresponding to one coherent processing
interval TC PI are then selected from this larger matrix for Doppler processing. Finally, an
FFT along the slow-time dimension is performed to obtain a range-Doppler representa-
tion. This process is repeated along the sequence of original data with constant TC PI

to generate a sequence of range-Doppler matrices RDr,v . As no angular information
can be extracted from the data of a single radar, the tensor defined in Section 5.2 is in
this case only represented in two dimensions, as: D

(
r,θ,φ, v

)=D (r, v). Hence, the pro-
posed method will operate in this case on bidimensional range-velocity matrices D (r, v),
equivalent to range-Doppler maps RDr,v .

5.3.3. METHOD PARAMETERS & CLASSIFICATION APPROACH

Since the radar sensors offer no angular information and are located in the same hori-
zontal plane, it is decided to consider only the horizontal x y-plane for this study. The
vertical z-direction is thus effectively projected onto the horizontal plane. It is hypothe-
sised that in the recorded scenarios enough movement occurs in this horizontal plane in
order to effectively perform activity classification, i.e. the activities can be distinguished
by their horizontal velocity and reflection intensity distributions.

For the case study, the method parameters employed for obtaining the intensity map
and velocity field are specified as follows. The coherent processing interval TC PI is set
to 0.26 s, which at the PRF of 122 Hz corresponds to 32 slow time samples. This value
is based on proven effectiveness in previous research [114] and balances Doppler and
time resolution for the highly dynamic nature of human motions. In order to process the
full 120 s sequences, a series of intensity maps and velocity fields are computed. These
are spaced at 32 slow time sample intervals, i.e. one per coherent processing interval
without overlap. This interval will for the remainder of this chapter be referred to as
a ‘time step’. The measurement area is divided into a grid of 15 cm × 15 cm cells. As
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Figure 5.3: Schematic representation of the hybrid CNN-BiLSTM network utilised in the case study. Data are
represented as 3D tensors with dimension W i d th × Hei g ht ×C hannel s/Depth. The size of convolutional
and maxpooling layers is shown as (CNN Kernel size, Channels), (maxpooling kernel size, maxpooling stride
size). The output after the last fully connected layer is a time series of class predictions y(t ).

mentioned before, the range resolution of each sensor is about 7 cm and the grid size
is selected as a compromise between reconstruction accuracy and computation time.
Finally, the velocity field that is computed at each step is masked using the intensity
map. This ensures that only velocities associated with the presence of a detected target
are used as input to the classification pipeline. Specifically, the velocity vectors that are
kept are those at the coordinates where the intensity values exceed the 95th percentile of
the intensity values distribution for that time step. The size of the extended target after
applying a threshold between the 90th and 99th percentile remains largely unchanged,
due to a relatively steep intensity boundary.

The classification approach aims to utilise a hybrid CNN-BiLSTM model. The CNN
first extracts features from the 2D intensity map and velocity field for each time step, i.e.,
each CPI. Subsequently, the BiLSTM network performs the prediction step with access
to the time series of feature vectors of the full sequence. The CNN-BiLSTM architec-
ture benefits from the translation-equivariance of the CNN to effectively extract features
from a spatial domain. In the time domain, the BiLSTM is able to process the extracted
features as a time series spanning the full duration of the activity sequence. Such hybrid
spatial-temporal architectures are used effectively in literature [61, 108, 115], and the
model for this study is inspired by [33]. The hybrid architecture is shown schematically
in Figure 5.3.

The velocity vector field generated by the proposed method at each time step is de-
composed into two scalar 2D fields of magnitude and angle. Together with the corre-
sponding intensity map, they are stacked, forming a 44 × 44 × 3 input array. This input
size is specifically the result of the chosen 15 cm × 15 cm grid cell size, and the 6.38 m
baseline of the sensor network. The activities in the dataset are performed in all direc-
tions and at random locations. To further mitigate potential bias in the orientation of
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the movement, all inputs are randomly rotated in the horizontal plane by integer mul-
tiples of 90◦. Within the network, two sequential convolutional blocks extract spatial
features and are paired with maxpooling layers for dimensionality reduction. The hy-
perparameters for the two convolutional blocks are shown in Figure 5.3 and are based
on the LeNet-5 architecture [116]. A fully connected layer subsequently yields a feature
vector of 128 elements for this time step. Finally, a BiLSTM layer with 168 hidden units
processes all feature vectors and yields a class prediction at each time step. The feature
vector length and the number of hidden units are based on [33] and [38], respectively.

For training and validation, a leave-one-person-out (L1PO) scheme is adopted. Data
from one participant is kept as a testing set, using the remaining participants’ data for
training the model. This process is repeated for all participants.

5.4. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, results of the case study will be discussed, with namely: an example of a
typical intensity map and velocity field, the L1PO benchmark result, and the results for
the study on sensor geometry. Despite the lack of angular capabilities of the individual
radar sensors, favorable results are achieved thanks to the proposed method that lever-
ages data from the radar network. The results are then compared to alternative methods
in literature in Section 5.4.2. Finally, the results are further discussed in the form of a
classification error analysis, and computational considerations will be outlined.

In Figure 5.4, a typical intensity map and velocity vector field output is shown for
the proposed method. The five sensors are marked with red squares and the color scale
is normalised to the maximum intensity value. The subject can be seen at the experi-
mental area centre point, and is in this CPI moving in the negative y-direction. At half of
the maximum intensity, it can be seen that the target takes up a space of approximately
60 cm × 30 cm. Based on the target orientation, these measurements correspond to ex-
pectation, i.e., approximately 60 cm shoulder width and 30 cm torso depth. The recon-
structed velocities also correspond to the motion performed at this specific moment in
time, with the vector field representing the bulk torso motion in the negative y-direction.
A processing artifact can be seen in the form of a ring centered around middle sensor 3,
with a section of this ring contained in the dashed ellipse. This artifact is the result of the
relatively strong contribution of sensor node 3 in this particular situation, paired with
the inability of differentiating returns from multiple azimuth directions.

The results for the L1PO testing approach are summarised in Figure 5.5. Test accu-
racy and Macro F1-score are shown for each participant in the dataset, averaged over all
sequences. The average test accuracy and Macro F1-score over all participants are also
indicated with horizontal lines. Two notable outliers with low F1-score can be identified
in the figure, namely participants 11 and 13, with respect to the other participants. In-
spection of the test results for these participants reveals that the excess errors primarily
stem from transition events between e.g., walking and a subsequent fall. As the ground
truth is recorded by the participants themselves by clicking on a remote controller, there
is variability in when a transition is indicated. For the two outliers it is noted that this
variation is relatively large compared to the remaining 12 participants, leading to in-
creased ambiguity. In spite of the outliers, the average performance metrics show suit-
ability of the method for classification. Section 5.4.2 compares the attained result with
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Figure 5.4: Typical intensity map and velocity vector field output with zoomed inset on the human target area.
Sensors are numbered and marked with red squares. The human subject is located in the centre and is mov-
ing in the negative y-direction at this specific CPI. Velocity vectors are only shown where reflection intensity
exceeds 80% of the maximum. A dashed ellipse is used to show processing artifacts.
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Figure 5.5: Results for the classification task, evaluated using a L1PO testing scheme. Test accuracy and Macro
F1-score results are shown for each participant. Averages are indicated with horizontal lines.

alternative methods in literature on the same dataset, demonstrating improved classifi-
cation performance of the proposed method.

5.4.1. SENSOR GEOMETRY EVALUATION
A summary of the experiments pertaining to the sensor network geometry is shown in
Figure 5.1, where the different utilised geometries are shown in Figure 5.2. For each
amount of radar nodes used to reconstruct intensity and velocity fields, the average
test accuracy and macro F1-score over all unique geometries is displayed, along with
the standard deviation for both metrics. For every individual geometry experiment, the
L1PO scheme is used. As such, 14 · (5+4+3+1) = 182 models are trained in total.

It is noted that performance increases with a larger amount of radar sensors used for
the proposed data fusion method. This can be explained by two main factors:

1. Increased spatial diversity within the sensor network provides a greater range of
observation angles, mitigating the effects of (partial) occlusion of the human tar-
get and individual body parts. This enhanced spatial diversity improves target il-
lumination, resulting in a stronger intensity distribution following the application
of the proposed method. In contrast with the surrounding empty space, this en-
hanced distribution enables the application of the threshold to more accurately
identify the target volume. As a result, a more accurate selection of velocity vec-
tors originating from the target is achieved, providing the classification model with
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Table 5.1: Results of the study on sensor network geometry. The utilised 2, 3, and 4 node geometries can be
seen in Figures 5.2a, 5.2b, and 5.2c respectively.

Nodes Test Accuracy Macro F1-score

(1,2) 0.758 0.631
(1,3) 0.768 0.647
(1,4) 0.791 0.677
(1,5) 0.797 0.691
(2,4) 0.773 0.643

Mean 0.777±0.016 0.658±0.025

(1,2,3) 0.804 0.731
(1,2,4) 0.812 0.709
(1,2,5) 0.821 0.723
(1,3,5) 0.834 0.756
Mean 0.822±0.011 0.729±0.024

(1,2,3,4) 0.834 0.748
(1,2,4,5) 0.848 0.775
(1,3,4,5) 0.843 0.767

Mean 0.842±0.007 0.763±0.014

(1,2,3,4,5) 0.866 0.804

the most reliable information regarding both the spatial extent of the target and its
velocity distribution.

2. More sensors results in more instances of radial velocity measurement. This overde-
termined system, paired with the Least Square Error (LSE) based approach used
for the velocity reconstruction, results in mitigation of, e.g., measurement error in
individual Doppler components. This in turn increases the accuracy of the velocity
reconstruction in a grid cell.

In the case of two node geometries, it is hypothesised that a geometry that provides
orthogonal measurements would give the highest performance. As the sensors provide
no azimuth information, an orthogonal pair of range measurements will yield the most
localised intensity profile. Inspection of the results in Table 5.1 however reveals the op-
posite, with geometries (1,2) and (1,3) yielding a performance that is almost two stan-
dard deviations lower than geometries (1,4) and (1,5). A possible explanation for this is
the higher importance of larger differences in observation angles, allowing the target to
be more completely illuminated.

To gauge potential bias in the data towards specific orientations or areas, geometries
(1,3) and (2,4) are compared. The attained accuracy is 76.8 % and 77.3 % respectively,
within the two-sensor standard deviation of 1.6 %.

For the three and four node geometries, the increase in performance is accompanied
by a decrease in the standard deviation of the results. This lower effect of sensor posi-
tioning may in this case be indicative of partial redundancy. Of interest is that for three
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Table 5.2: Test accuracy and macro F1-score results for the proposed classification method versus two refer-
ence methods. All results are based on the same dataset [66] and the same L1PO validation scheme. The results
in this table are for the full nine-class classification problem. *:[37],†:[33].

Classifier Test Accuracy Macro F1-score

Proposed 0.874 0.819
Point Transformer* 0.869 0.787
CNN-BiGRU† 0.851 -

and four node geometries, the best performance is again achieved for those geometries
that include the sensor pair (1,5). It is thus concluded that a large azimuthal opening
angle of the sensor geometry is beneficial for the application of the proposed method
for activity classification.

Summarising, the study on sensor network geometry reveals a roughly linear trend
in performance increase per added sensor. At the maximum of five sensors, no satura-
tion of performance is observed. This seems to indicate that further expansion of the
sensor network can increase the classification performance. Based on the error analy-
sis in Section 5.4.3, promising locations for additional sensors would be those that offer
boresight axes that are not in the horizontal plane. These additional sensors would be
able to provide information pertaining to the vertical velocity distribution. A secondary
note on the geometry study is the relatively low effect of sensor geometry in compari-
son to the amount of sensors. The former yields performance variations on the order of
2 %, whereas the latter brings about changes in excess of 5 %. This may be due to the
range of studied geometries all being relatively restricted to a half-circle, as opposed to
e.g. on a sphere or more complex topology. Finally, not all possible network configura-
tions are evaluated, as mentioned in Section 5.3. Under the assumption that the dataset
is unbiased in activity location and orientation, this should have a limited impact. How-
ever, individual nodes observe different clutter in the laboratory space which potentially
affects their contribution to the fusion process.

5.4.2. COMPARISON TO ALTERNATIVE APPROACHES

A comparison is made with alternative fusion-classification approaches. Results are ob-
tained on the same dataset, and employing the same L1PO testing scheme. It should be
noted that some of the reference methods performed their evaluation on a constrained
5-class problem, where activities like "Falling from walking" and "Falling from standing"
are merged into "Falling". Where this is the case, the results for the proposed method
are also evaluated for the 5-class problem. Table 5.2 shows the 9-class comparison, and
Table 5.3 the 5-class.

For the full 9-class classification task, the reference fusion-classification methods
comprise one based on the Point Transformer architecture [37], and one on a hybrid
CNN-BiGRU (Gated Recurrent Unit) architecture [33]. For the former, radar data is pro-
cessed into a point cloud representation with dimensions range, radial velocity, time,
and reflection intensity. Point clouds from various sensors are fused by simply adding
the points from all individual sensors into a single point cloud object. No data asso-
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Table 5.3: Test accuracy and macro F1-score results for the proposed classification method versus two refer-
ence methods. All results are based on the same dataset [66] and the same L1PO validation scheme. The results
in this table are for a five-class classification problem. *:[37],†: Signal Fusion [38], ‡: Feature Fusion [38].

Classifier Test Accuracy Macro F1-score

Proposed 0.930 0.898
Point Transformer* - 0.862
GRU† 0.909 0.778
LSTM† 0.910 0.769
bi-GRU† 0.933 0.844
BiLSTM† 0.931 0.836
BiLSTM‡ 0.924 0.840

ciation is performed, or an attempt to estimate a more comprehensive representation
of reflection intensity and/or velocity distribution, as in the proposed method. In [33],
fusion of data from N sensors is achieved through a maxpooling operation over N fea-
ture maps. The feature maps are the result of the CNN module processing spectrogram
representations of the sensor data. Both reference methods feature a fused representa-
tion that is at a higher abstraction level than the proposed method with respect to the
kinematics of the observed experimental scene. Because of this, the versatility of the
proposed fused representation is assumed to be greater in terms of applicability to other
tasks, such as for instance tracking or specific fall detection methods, such as the one
proposed in [56]. In addition, the classification performance of the proposed method is
improved with respect to the reference methods.

In the case of the constrained 5-class classification problem, favorable results are
also achieved with the proposed method. The reference methods are again based on the
Point Transformer architecture [37], and a selection of RNN’s [38]. Two types of fusion
are employed in [38]. First, signal fusion entails element-wise addition of N complex-
valued range-time representations from N sensors. A single spectrogram is then com-
puted based on the fused range-time matrix. The second type is feature fusion and com-
prises the concatenation of N spectrogram representations along the Doppler dimen-
sion. In terms of macro F1-score, improvements of almost 4 %pt (percentage point) are
achieved when utilizing the proposed method. The test accuracy is within 0.4 %pt of the
best performing model.

Finally, the benefits of the velocity reconstruction are illustrated by training a model
using only the intensity map data, and without the accompanying velocity vector fields.
Sequences are randomly distributed following a 80%/20% ratio into a training and a test-
ing set. This approach yields an accuracy of 50.04 % and a Macro F1-score of 48.45 %,
clearly indicating the superiority of the proposed method.

5.4.3. ERROR ANALYSIS AND COMPUTATIONAL CONSIDERATIONS

Figure 5.6 shows a representative confusion matrix for a single L1PO result, i.e., with test
data from a single participant. The five largest errors in this matrix will be discussed.
Most prevalent among the classification errors is the confusion between "Falling (Walk-
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Figure 5.6: A confusion matrix for the test result for a single participant.

ing)" and "Walking". A likely explanation for this error is the ambiguous transition point
between these activities. Since predictions are made at every time step (0.26 s), the am-
biguous time between walking and falling constitutes a relatively large amount of equally
ambiguous predictions. This ambiguity is compounded by variability in the ground truth
due to each participant indicating transition points themselves by clicking on a remote
controller. The next four most frequent errors are between activities that all share an
initial forward rotation of the torso, including standing up from sitting. Since the case
study is constrained to the 2D horizontal plane, these errors can be attributed to a lack
of information on both the vertical posture of the subject, as well as a lack of a detailed
vertical velocity profile. It is noted that standing up from the ground is kinematically dis-
tinct to the other activities with a strong vertical component and as such exhibits fewer
errors during classification.

Typical computational requirements, based on the classification case study and avail-
able hardware, are reported here. Fusion processing of a full 120 s sequence on a single
core of a 3.40GHz i5 CPU takes on average 51 s. However, since time steps are inde-
pendent, multi-core processing yields significant improvements. Typical CNN-BiLSTM
models are on the order of 10MB, and inference time for a full sequence is less than 0.1 s
on a NVIDIA Tesla V100S.

5.5. EXPERIMENTAL FEASIBILITY STUDY IN 3D
To demonstrate the ability of the proposed method to yield three-dimensional represen-
tations of extended targets and motions, a feasibility study is performed. For this study,
data is captured with a four-sensor network that extends not only in the horizontal plane,
but in the vertical direction as well. The measurement setup is shown in Figure 5.7, and
the sensors are the same as those used in the 2D case study. Two scenes are captured: a
metal sphere of diameter 30 cm suspended 120 cm from the ground, and a human sub-
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185cm
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Figure 5.7: The experimental setup used in the 3D feasibility study. Sensors are placed at the base of an isosce-
les right triangle with sides of 290 cm. The lower sensors are located at a height of 70 cm, the upper sensors at
185 cm. Targets are positioned at the apex of the triangle.

ject performing a series of squats, hence exhibiting movements towards the upward and
downward direction periodically.

The data are processed following the proposed method, and the results are shown in
Figure 5.8. Subfigures a-d represent 3D intensity and velocity fields at key points during
the squatting activity, with the maximum intensity of the thresholded 3D matrix pro-
jected on 3 orthogonal axes to facilitate visualisation. The four states of standing upright
(a), moving down into squatting position (b), sitting in squat (c), and moving back up
to the standing position (d), feature intensity and velocity distributions that correspond
to the physical expectation of the human movement. Noise levels in this experiment
are however higher, indicating that an alternative sensor geometry or additional pre-
processing may be required to fully utilise the proposed method in three dimensions
for subsequent classification purposes. Figures 5.8e and 5.8f contain the metal sphere
and corresponding 3D intensity distribution respectively. The distribution is visualised
by means of two 2D slices of the 3D intensity matrix. The sphere is seen at the correct
height and surface area.

5.6. DISCUSSION
In this section, the known and expected method drawbacks will be discussed, based on
the obtained results and the theoretical foundations of the approach. Potential solutions
are subsequently proposed.

1. For the reconstruction of the velocity in a voxel, a single Doppler value is selected
from the full spectrum. In this work, the assumption is made that a single domi-
nant scatterer with a largely localised velocity spread is present in a voxel, and is
simultaneously observed by the majority of the radar sensors. When this assump-
tion does not hold, the velocity reconstruction in the respective voxel is performed
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with projections that do not yield a consistent true velocity.

2. When multiple targets are present, ghost targets may appear when the number
of sensors with line of sight to the different targets is equal to or lower than the
amount of spatial dimensions considered.

3. Currently, no calibration of the various sensors’ contributions to the intensity field
is performed. As such, close proximity of a target to one sensor yields a very strong
contribution to the intensity field of the respective sensor. This causes the recon-
structed target shape to be distorted, and causes artefacts in the resulting image,
as seen in e.g., Figure 5.4.

Regarding possible solutions to the above, first, the current simplistic approach of
selecting the Doppler component with the highest signal amplitude can be improved by
implementing a peak detection algorithm such as, e.g., a CFAR-based one. Secondly, if
two values for each sensor are selected instead of the current single value, the LSE-based
approach allows for a straightforward reconstruction of two velocities in each voxel. To
this end, the cost function (5.13c) is evaluated for all

(2N
N

)
combinations. The combina-

tion yielding the lowest cost function is then taken to compute the two velocities. Due
to the closed form of (5.15b), this approach is computationally viable for reasonable N .
For the problem of potential ghost targets, sensor network topology is a key considera-
tion. If a target is obscured for one of the sensors in the network, the intensity map will
feature lower values at the target location, making the real target less distinguishable
from ghost targets that may be present in the intensity map. The ghost target problem is
caused by ambiguities in the angular coordinates. As such, the utilisation of MIMO sen-
sors with the ability to determine Direction of Arrival strongly alleviates potential issues
relating to ghost targets. Notably, in the case of Human activity classification and when
the amount of people present is not of primary concern, the presence of a ghost target
can result in a false alarm, but never in a missed detection of a critical event.

With regards to sensor calibration, an initial improvement can be the inclusion of
range compensation according to the radar range equation, or the addition of compen-
sation based on the antenna patterns of the sensors used for the network. The latter can
even be employed to anticipate occluded areas in the measurement space.

5.7. CONCLUSION
This chapter proposes a novel sensor fusion method that processes data from a network
of radar sensors and yields three-dimensional representations of both reflection inten-
sity and velocity distribution. The fused representation can be obtained regardless of the
capacity of the individual radars to determine angle-of-arrival. The fused data represen-
tation are easily linked to the kinematic of the observed target, and allows for versatile
application to various tasks, from tracking to human activity classification.

The proposed method is evaluated in a case study, where it is applied to a human
activity classification problem. For this task, sequences of human activities from a pub-
licly available dataset are processed using the method. Subsequently, classification is
performed by means of a hybrid CNN-BiLSTM model. For a leave-one-person-out test-
ing scheme, a test accuracy and macro F1-score of 87.4 % and 81.9 % are achieved, out-
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performing alternative fusion methods on the same dataset. An extensive study on the
number and position of radar nodes in the network is performed to evaluate their effect
on classification performance. It is found that for the five-node geometry utilised in the
case study, additional nodes can likely further increase prediction accuracy. Most no-
tably, error analysis indicates that additional sensors that are not in the horizontal plane
are expected to improve classification most substantially. An experimental feasibility
study is also conducted, successfully demonstrating the proposed method’s capability
to produce 3D representations of extended target shapes and velocity distributions.

In future work, a network of multiple-input-multiple-output (MIMO) sensors will be
utilised to fully exploit the capabilities of the method. Specifically, inclusion of velocity
components in the vertical direction is expected to mitigate classification errors between
activities that feature distinctive vertical motions.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Results for the 3D feasibility study. For subfigures a-d, 3D intensity and velocity fields are repre-
sented with the maximum intensity of the thresholded 3D matrix projected on 3 orthogonal axes. (a) Human
subject standing upright. (b) Human subject moving down into squatting position. (c) Human subject sitting
in squat. (d) Human subject moving back up to the standing position. (e) Metal sphere used for feasibility
study. (f) Intensity distribution of metal sphere, represented with two 2D slices of full 3D intensity matrix.
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6.1. MAJOR RESULTS AND NOVEL CONTRIBUTIONS
The contributions of this PhD research are summarised in the following paragraphs.

• A novel radar data representation using a point cloud structure in an atypical fea-
ture space (Chapter 3)

Radar data in uncompressed formats are rarely used for the purpose of activity
classification due to their inherent sparsity and the computational overhead in-
volved in neural networks that can process them directly [33, 38]. Point cloud rep-
resentations are beneficial in scenarios where feature spaces are sparse, as they
scale favourably when compared to full matrix representations. Whilst point clouds
have been prevalent in radar applications in automotive, their utilisation has pri-
marily been limited to conventional 3D Cartesian spaces. In contrast, this work
proposes a novel approach that leverages point cloud representations, but in
an atypical feature space with coordinates representing radar-specific features
such as range, Doppler, and time. Notably, this novel representation allows for
the utilisation of a singular Single Input Single Output (SISO) radar sensor, as no
localisation of the target in 3D space is required. Importantly, noise and clutter
cancellation techniques are applied that directly reduce the size of the input data.
This enables the preservation of input data at full radar resolution, rather than sup-
pressing noisy data points but having to allocate memory to them regardless. With
the introduction of new variables for classification, the data in a point cloud scales
linearly, rather than exponentially. With the aforementioned proposed method,
a Leave-one-Person-Out (L1PO) test accuracy and macro F1-score of 86.9 % and
78.7 % are demonstrated on a classification task based on a challenging, publicly
available dataset.

• Demonstration of classification approaches using fixed or dynamically changing
windows as viable methods for continuous activity classification. (Chapters 3 & 4)

A large part of existing literature on radar-based activity classification focuses on
single activity classification, which is inadequate for continuous classification tasks,
where transitions between activities are unknown. In recent years, Recurrent Neu-
ral Networks (RNNs) have largely been employed to address this challenge, as they
are capable of handling continuous sequences of activities, making predictions at
time scales in the millisecond range. This research demonstrates that this high
temporal resolution for making predictions is not strictly necessary, and that
powerful single activity classifiers can be utilised effectively. Specifically, win-
dowing approaches with fixed and adaptive window sizes are studied in conjunc-
tion with a powerful Point Transformer network. On a five-class activity classifica-
tion task, fixed-window and adaptive window approaches yield macro-F1 scores of
86.2 % and 88.0 % respectively, compared to 84.4 % for the best RNN-type classifier
in the literature.

• A suitable segmentation algorithm paired with a strong classifier achieves a balance
between performance and computational efficiency (Chapter 4)

The common approach in the literature of predictions at time intervals in the mil-
lisecond range is a strategy that can be computationally prohibitive. The neu-
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ral networks required for such tasks often necessitate the downsampling of input
data, which can degrade classification performance. This research proposes an
alternative approach that incorporates an activity sequence segmentation al-
gorithm in conjunction with a classifier designed to handle the obtained seg-
ments. Sequence segmentation is based on monitoring fluctuations in a quantity
derived from the micro-Doppler spectrogram, the Rényi entropy. Classification
is achieved by means of a Point Transformer network. The proposed approach is
computationally lightweight compared to conventional methods, allowing for in-
creased classification performance while maintaining a reasonable network size.
On a five-class human activity classification task, the proposed method is able to
attain a macro F1-score of 88.0 % with a model size of ~17 MB, compared to 84.0 %
for a 25 MB Bidirectional Long Short Term Memory network.

• Reconstruction of extended target location and velocity distribution in 3D space
(Chapter 5)

For the classification of human activities, accurate interpretation of human kine-
matics is essential. Differentiating the velocities of various limbs can aid classi-
fication performance, but only radial velocity in point cloud representations has
been utilised in previous literature. This research proposes a fusion method that
reconstructs the location, shape, and velocity profile of extended targets, such
as human subjects, in full 3D. This fused data representation can be obtained re-
gardless of the capacity of the sensors to determine angle-of-arrival, i.e., with SISO
sensors. The fused data representation can furthermore be linked to the kinemat-
ics of the observed target, and allows for versatile application to various tasks, from
tracking to human activity classification. The processing is applied to a publicly
available dataset of human activities to obtain the reconstructed intensity and ve-
locity maps, and these representations are utilised for a nine-class classification
task. The L1PO test accuracy and macro F1-score for this task reach 87.4 % and
81.9 % respectively.

6.2. RECOMMENDATIONS FOR FUTURE RESEARCH
In the following paragraphs, recommendations for future research are summarised. They
include improvements of methods proposed in this PhD research, as well as novel re-
search directions.

• Improvement of 3D intensity and velocity reconstruction. Several avenues for en-
hancing the method presented in Chapter 5 are identified to improve the accuracy
of intensity and velocity reconstruction. First, the contribution of each sensor in
terms of signal amplitude are currently not range-compensated, leading to less
accurate reconstruction of extended target shape, particularly when close to one
of the sensors. The primary reason for this omission is the strong influence of
background noise at longer ranges. Therefore, noise suppression is required for
effective range compensation.

Secondly, the selection of the Doppler component used for velocity reconstruc-
tion can be improved. Currently, only the largest Doppler component in terms of
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signal amplitude is selected for velocity vector reconstruction. This is however not
always the correct choice due to, e.g., occlusion effects. A potential improvement
may be found in the least squares approach used to reconstruct the velocity vec-
tors: a low value of the cost-function would imply that the constituent Doppler
components likely originate from the same velocity vector.

Thirdly, in the current approach, the selection of ‘physical’ velocity vectors from
the reconstructed vector field is performed by setting a threshold on the inten-
sity. A high intensity is assumed to imply that accompanying velocity vectors likely
originate from a real target. A better implementation could involve assigning a
weight to each vector in the field derived from the reconstructed intensity at that
location, eliminating the need for a user-defined threshold while still reflecting the
likelihood of the vectors having physical significance.

Finally, the incorporation of radar antenna patterns in the reconstruction could
allow for more accurate reconstruction of the reflection intensity in the 3D space.
Similarly to the range compensation, compensation for signal strength of a given
sensor in a certain point in space will allow for a better-weighted contribution to
reconstructed reflection intensity of that specific sensor.

• Multi-label classification. This research demonstrates that segmentation of activ-
ity sequences yields favourable results in terms of classification performance and
computational efficiency. However, multiple activities in a segment are unavoid-
able, in part due to the temporal uncertainty in the location of a transition point
between activities. In these ambiguous cases, allowing for multiple predictions of
a classifier can improve the accuracy of the classification task, as demonstrated for
example in [50, 54]. As an initial approach, a multi-label classification method may
simply be based on classifier confidence. Implementing a detection threshold on
classifier output expands the prediction from being solely based on the single most
likely class, to including potentially multiple classes in the case of an ambiguous
interval.

• Unsupervised data labelling. With current prevalence of machine learning ap-
proaches, there is an increasing demand for large, annotated radar data sets. Man-
ual labelling of data is a costly endeavour but is still the primary means of anno-
tation [64, 71]. Unsupervised labelling of radar data may for instance be achieved
with an accompanying camera. Video activity classification is able to discern com-
paratively many activities [117], and can therefore be utilised to generate labels to
train networks for radar-based approaches, which can then be employed when
camera usage is not feasible. Since radar data for different environments can vary
substantially based on e.g., presence of clutter and multipath characteristics of the
area, a challenge is to have large diversity in video-data.

• Hierarchical classification. For long term monitoring of subject health, fine-grained
predictions of a fundamental nature such as Walking and Standing Still may not
be optimal for healthcare professionals. Overarching activity types such as Prepar-
ing Meals or Wandering can be considered to be more informative. A hierarchical
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classification approach could function in a similar vain to Multi-Label classifica-
tion, where predictions are made on the level of individual motions, but simulta-
neously on a higher level of activity archetypes. For the latter, continuous classi-
fication of a stream of activities is a necessity, further highlighting the importance
of this research.

• Open set classification and anomaly detection. The majority of current research on
activity classification focusses on single-label predictions on a closed set of activi-
ties. The accompanying assumption is that all motions can be assigned to a single
representative of such a set, which is not realistic. Expanding the cardinality of the
closed set allows for the assumption to be increasingly satisfied, but comes at the
cost of greatly increased complexity of the discriminating algorithm as well as the
labelling of the data for training. Open set classification and anomaly detection
are avenues of research that shift the classification problem away from a restric-
tive set of fundamental activities. Open set classification allows for much greater
flexibility in the case of atypical motion types, and anomaly detection constrains
the problem to a binary scale that by design encompasses all human motions.

The idea of fundamental motion types does not necessarily have to be abandoned
in order to utilise, e.g., anomaly detection. An abstract activity space can be de-
fined, with dimensions representing for example prediction confidences on a closed
set of activities. Within this space, anomalous regions can be defined that repre-
sent linear combinations of the overarching set of activities.

• Application to real scenarios. All methods in this thesis work have been bench-
marked on a carefully crafted experimental dataset of human activities. Despite its
advantages compared to other datasets in comparable literature, some aspects are
unavoidably artificial in nature. Data capture in a real facility rather than a univer-
sity environment poses several challenges. First, long-term monitoring is required
to collect an amount of rare (critical) events that is large enough to be useful for ML
training purposes. For example, in [118], data capture lasted for 11 months. Such
long term monitoring will require an automated data labelling approach, but the
utilisation of cameras for this purpose comes with privacy and other ethical con-
cerns. Additionally, the amount of data output by radar sensors is large enough to
warrant live processing, potentially by constantly retraining a classification model
with new data as it becomes available. This next step in radar-based HAR poses
significant challenges, both computational to manage the amount of data, and
methodological to formulate suitable retraining approaches.
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