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Preface

The field of anomaly detection has long fascinated me due to its broad applications in fields ranging from
cybersecurity to healthcare. Here, | always found it fascinating how despite it being an unsupervised
problem, it still performs so well. However, | also saw that quite often there are many different types of
anomalies, and | wondered how interesting all of those were for the end user of the system. | especially
considered the situation where the user keeps on getting alerted for anomalies that are not interesting.
This realization sparked the core motivation behind this thesis—how can we refine anomaly detection
systems to better align with what the end user wants and only highlight the anomalies they deem
interesting?

This thesis is the culmination of months of research, experimentation, and problem-solving. It would not
have been possible without the guidance and support of many people. First and foremost, | would like to
express my deepest gratitude to my supervisor, Anna Lukina, for their invaluable insights, constructive
feedback, and unwavering encouragement throughout this project. | would also like to thank my second
supervisor, Emir Demirovi¢, for their fresh look on this work every time. Additionally, | would like to say
a special thank you to my family and friends for their patience and support during the long hours spent
developing and refining this work.

Finally, I hope this research contributes to the growing field of anomaly detection by providing a practical
approach to reducing irrelevant anomalies. | am excited to see how future developments build upon
these findings to further enhance intelligent detection systems.

Nathalie van de Werken
Delft, April 2025



Abstract

Anomaly detection is a cornerstone of data analysis, aimed at identifying patterns that deviate from
expected behaviour. However, conventional anomaly detection methods often fail to differentiate be-
tween actionable anomalies and those that, while statistically anomalous, are irrelevant to the user’s
goals. Such uninteresting anomalies, originating from distinct, unrelated distributions, contribute to
false alarms and resource inefficiencies, particularly in critical domains like cybersecurity and health-
care. This thesis proposes a novel, adaptive framework that retrains anomaly detection models to ex-
clude uninteresting anomalies from being flagged, thereby improving the relevance of detected anoma-
lies.

Central to this framework is the use of the Synthetic Minority Over-sampling Technique for Nominal and
Continuous (SMOTE-NC) to artificially augment datasets with labelled uninteresting anomalies, trans-
forming them into regular data. The framework also incorporates user feedback to iteratively refine
model performance during deployment. A key finding of this research is that the effectiveness of the
framework is highly dependent on the degree of distinguishability between interesting and uninteresting
anomalies. Specifically, when the two types of anomalies are clearly distinct in terms of their statisti-
cal and categorical features, the framework achieves a significant reduction in false positives without
adversely affecting the detection rate of actionable anomalies or the accuracy of regular data.

The framework was evaluated using four state-of-the-art anomaly detection models: Isolation Forest,
One-Class Support Vector Machines, Autoencoders, and Variational Autoencoders. It was then tested
using two datasets: one in cybersecurity, involving various attack types, and another in healthcare,
where anomalies represent different diagnostic categories. The results demonstrate that the frame-
work can effectively identify and suppress uninteresting anomalies, achieving over 90% accuracy in
classifying these cases as regular data under favourable conditions. Notably, when the distinction
between interesting and uninteresting anomalies was substantial, the models retained their ability to
detect actionable anomalies, with minimal degradation in overall accuracy. Furthermore, it was seen
that a significant number of samples are needed to be able to successfully represent the uninterest-
ing anomalies class, a minimum of around 50. When not using the framework, it takes many more
samples for the algorithm to successfully no longer detect these uninteresting anomalies as anomalies.
This class then needs to make up a significant amount of the training data, so depending on the size
of the training data set, this can mean thousands of samples. Gathering around 50 samples poses no
problem for the framework, as it is meant to be especially relevant when we have too many uninter-
esting anomalies, where it is constantly giving false alerts, so there is usually a sufficient number of
samples available.
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Introduction

Anomaly detection is a critical process in data analysis that involves identifying patterns in the data that
do not conform to the expected behaviour [8]. These atypical patterns, which are known as anomalies,
can indicate significant and often actionable information. Detecting these is often a challenging task due
to the diverse nature of anomalies and their tendency to be context-specific. Anomalies can manifest
as sudden spikes or drops in values, unexpected sequences, or deviations from statistical properties.
Their detection requires sophisticated algorithms and techniques capable of handling large volumes of
data with high dimensionality [2]. The complexity is further compounded by the need to minimise false
positives, where normal data is mistakenly identified as anomalous, and false negatives, where actual
anomalies go undetected. Addressing this problem involves developing robust models that can learn
the intricate patterns of normal behaviour and accurately identify deviations, even in the presence of
noise and variability in the data. This has many real-world applications, e.g. in cybersecurity [25], to
monitor if there are irregularities in certain metrics which might indicate that the system is under attack.
Another use case is in the medical world, where it can be used to detect if certain cells are anomalous
and further testing is required [20].

An ongoing challenge in anomaly detection is the inability to distinguish between different types of
anomalies. When an anomaly is defined as a data sample that does not fit in, encountering one does
not always mean that it is an interesting case that needs to be looked at. For instance, when it comes
to network monitoring, the servers being down for maintenance is an anomaly, as it does not happen
very often, but it does not require an entire procedure to protect the servers against an attack. In the
medical domain, an algorithm has been trained to distinguish cancerous liver cells from healthy liver
cells, but during deployment of the algorithm, it turns out that the samples might also contain blood
cells. The user of the model does not care about the anomaly if it is caused by an incidental blood cell.
These are all novel classes; classes that were not present in the training data, but are not of interest to
the user.

Novel classes usually encompass uninteresting anomalies, and thus, we want to ensure that an alarm
is only raised in the case of a real anomaly. A big challenge here is that anomaly detection is an
unsupervised problem, so the user cannot simply tell the algorithm that it is wrong and retrain it based
on this new sample. Turning it into a supervised problem is possible, however, this means that all
the training data needs to be labelled, which is very time-intensive and not always feasible. As of
now, the field of detecting true anomalies and false positives has seen a severely limited amount of
research. Some approaches have been found that rely on neural networks [54]. They ask a user to
label how anomalous they think the sample is, and combine this with how certain the algorithm is that
it is an anomaly and send this back to retrain. This is an interesting approach, but it relies on neural
networks, which are big black boxes when it comes to how the model has been formed. Therefore,
they are lacking in terms of explainability. Explainability is especially important in anomaly detection,
as this allows the user to trust the system and feel comfortable using it [34]. However, it is of even
more importance in this use case, as the user is guiding the model, so we need to ensure that the user
does not make a mistake and label an interesting anomaly as uninteresting. In addition to the lack of



(a) Liver cells and cancerous liver cells [14] (b) Red blood cells [31]

Figure 1.1: There is only a small difference between the regular data (healthy liver cells) and the interesting anomalies
(cancerous liver cells), as can be seen in (a), but the uninteresting anomalies (blood cells) look completely different in (b)

explainability, it requires feedback on every sample by the user, which can become a bottleneck.

For simplicity, we will introduce a real-world example to make the problem more concrete, which will
be referred back to throughout the paper. In this example, there is an anomaly detection model that
analyses liver cells and tries to detect cancerous cells, the anomalies in this case. After this model has
been trained, however, it is discovered that the samples that are submitted to the system from the tests
can contain blood cells. Blood cells are indeed anomalous and look very different from both the normal
and the cancerous cells, and therefore are detected as anomalous. In Figure 1.1, you can see that
the cancerous liver cell mostly looks significantly different in size, but the blood cell looks completely
different in all of these attributes. This will raise many false alerts, and as a result, the domain expert,
in this case, the physician, will have to look at many more cases. They might even disregard the entire
model as they deem it inaccurate and ineffective. The cells have several features, such as the size
of the cell, colour, number of spikes, and number of entrances to the cell. Due to this, it is easily
distinguishable from both the interesting anomaly and the regular data class.

The objective of this thesis is to investigate how to continually adapt an anomaly detection algorithm
while it is in production to ensure it does not raise an alarm anymore for anomalies which are of no
interest to the user. This thesis will contribute to the scientific community in three significant ways. First
of all, we will define the problem of no longer detecting uninteresting anomalies as a new challenge in
anomaly detection. Secondly, we will show a framework that will be able to solve this challenge while
the model is in production, with the help of a user, and retrain the model such that these uninteresting
anomalies will no longer be flagged. Finally, we have implemented this framework, which uses SMOTE,
a resampling algorithm, to create more samples of this uninteresting class. Then the model will learn
to see these as part of the regular data and no longer raise these alarms while still being effective
in detecting actually interesting anomalies. We have tested this framework using 4 different models,
which have all been used in anomaly detection before. These are isolation forests (IForest), one-class
support vector machines (OCSVM), autoencoders (AE) and variational autoencoders (VAE). These
models were then tested on two datasets, one in the domain of cybersecurity and the other in the
medical domain. Here, we found that we can greatly increase the number of uninteresting anomalies
that will no longer be labelled as anomalies as long as these classes are very distinct. This does not
mean that none of them will slip through anymore, as it was found that it is difficult to get above a 90
% accuracy in the uninteresting class. However, the rate of regular data being classified correctly can
decrease by a relatively small amount, as well as anomalies being classified correctly. Furthermore, it
is seen that only around 50 samples are needed to get good results, but gathering more samples of
the uninteresting class will lead to its accuracy increasing.
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1.1. Research questions
This all comes together to form the main research question:

How can we design a framework such that we can mitigate the effect of novel classes during
anomaly detection?

To answer this research question, we will answer the following subquestions:

1. How do we detect a novel class compared to an anomaly, and help the user see that?

2. How can we retrain the model on the fly to ensure that it no longer detects said novel classes as
anomalies?

3. How can we test the effectiveness of this framework?

1.2. Thesis structure

This thesis is structured as follows. First, we will go through all the relevant related work to this problem
in chapter 2, and the background of work which has been directly built on top of for this thesis in chapter
3. After this, we will formally define this new problem in chapter 4. Following this, in chapter 5, we will
talk about the technical steps we have taken in this thesis. In the first section, we will discuss the overall
framework, and how SMOTE has been used to implement this framework is discussed in the second
section. In chapter 6, we will go through the setup that has been used for the experiments, as well as for
each experiment, describe how we conducted them. After this, in chapter 7, we will display the results
that have been acquired and analyse these. Finally, in chapter 8, we will discuss recommendations for
future work and end with the conclusion in chapter 9.



Related work

Before we can start answering the research question, we have to do research into the current literature
on anomaly detection. Therefore, we will go through all the relevant background information in order
to understand what the state of the art is in anomaly detection in section 2.1, explainable anomaly
detection in section 2.2, and active anomaly detection in section 2.3. Finally, we will also discuss the
similarities to zero-shot learning and active learning in section 2.4.

2.1. Anomaly detection

There are many different approaches to anomaly detection [8]. These can range from approaches
that do not require any machine learning and instead work algorithmically, to deep learning. The first
approach that was considered is the isolation forest [35]. In this technique, we build several trees that
cluster a group of data together by taking subsets of the samples by splitting on random features. This
entire process does not require much memory. After that, the anomaly detection works as follows: we
see for every tree how many splits it takes for it to no longer be part of the cluster. The anomalies will
have a relatively low score and be labelled as an anomaly. An advantage of this approach is that you
do not need to label the input data. This is because it looks at anomalies based on how isolated they
are from the rest of the data. Many extensions have been proposed, such as deep isolation forests [51],
which use deep learning to no longer use random splits and therefore can capture the more complex
underlying distribution. Another approach is to use sliding windows to account for data changing over
time [16]. This approach also conveys an intuitive way of looking at anomaly detection, and therefore, it
leads to an understandable result while still being complex enough to deal with the more subtle aspects
of the data.

Some statistical models try to detect an anomaly based on the z-score. The z-score represents how
many standard deviations a data point is from the mean of a dataset, and samples that lie furthest from
the mean are considered anomalies. This method is very straightforward, therefore allowing for easily
interpretable and robust results. As such, it has been used for a long time. It was first introduced in
2012 by Ferragut et al. [21], and it was later applied to time series as well [55]. This approach does
have its shortcomings, as it is a rather minimalistic approach. It is often combined with other, more
complex techniques to achieve better performance [11]. There are also approaches that use more
complicated statistical analysis, where they use hybrid weights to make the model more robust against
outliers [53].

Another branch of anomaly detection algorithms uses neural networks to detect anomalies. This is what
most new research focuses on, with lots of different extensions and different neural networks being pro-
posed. However, a big downside of this technique is that the inner workings of neural networks remain
difficult to explain. Here, again, there are many possibilities, from using one-class neural networks [7]
to using convolutional neural networks [30]. Under this branch also fall autoencoders and variational
autoencoders; for further explanation on how these work, see sections 3.4.1 and 3.4.2.
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2.2. Anomaly detection with Explainable Al

A large area of research within the field of anomaly detection is extensions of anomaly detection that
make the models more understandable to the user. This is relevant to this research, as the proposed
framework will heavily rely on user feedback, so we must minimise the probability of user error. A way
to do that is to make the user understand the reasons behind a decision, so they can judge if it was
reasonable.

There are two different options when it comes to making anomaly detection more understandable.
We can work on making the overall model more explainable, which is known as transparent design.
Alternatively, we can focus on the individual samples and explain why they were marked as anomalies
or not. These are known as post-hoc explanations [50]. All of these approaches are very specific, as
they heavily depend on the technique that is being used in anomaly detection. In this research, we
will focus on explaining the algorithm per sample, as we want to explain to the user why the specific
sample has been marked anomalous.

The simplest approach to explain anomaly detection is the heuristic approach. Here, we do not use
machine learning for detecting anomalies. Instead, it requires a simple algorithm that emulates the
black-box setting, such as a decision tree or one-layer neural network [22]. This allows for simplicity
in the model, but it has many drawbacks. First of all, the model cannot become better than a human
agent, because a user picks the values for these models, and therefore it will not be able to pick up on
patterns the human does not realise exist. It also requires some very specific domain-level knowledge
to be put into the model, specifically, as can be seen in research by Brociek et al. [4]. Nevertheless, this
is still a simple method that gives clear explainability, as you can handpick which part of the algorithm
works for which feature. A notable benefit is that this needs significantly less data to test compared to
big models. For the purposes of this research, however, this approach is not preferable, because we
want to work with more complex models, as these tend to lead to higher accuracy.

As mentioned in section 2.1, autoencoders are state-of-the-art when it comes to deep learning anomaly
detection, and there is also an extension for it that makes it more understandable. In this approach,
we use an extra formula that specifies for each feature how important it was in detecting the anomaly.
It calculates how much the feature deviates from the mean given its standard deviation, and also nor-
malises it to ensure that binary features do not skew the results [38]. Another paper talks more about
giving explainable results when we are using neural networks for explainable Al, by using an attention
mechanism which signifies which part of the input data has been used to give the result [5].

2.3. Monitoring anomaly detection

The state of the art still considers anomaly detection a mostly static topic, where not a lot of research
has been done on retraining the model over time. Some research has been done about retraining the
network based on normal outliers, however, it works with a completely different technique of detecting
anomalies, namely using elastic weight retraining to change where the boundary is, which is a much
less advanced algorithm [26] and a lot less versatile than our technique will be. Another paper focuses
on unlearning, a process in which the objective function is changed in such a way that it allows for a
flexible model but also prevents forgetting of the data that has been learned [18]. This is different from
our approach, as we do not focus on how it shifts over time. In a third paper, an approach using neural
networks was used, and they retrained the model based on the new samples gathered in real life [49].
However, no user input is used for that, so it cannot gain insights from a domain expert as our approach
can. There is also a fourth paper that looks at uninteresting anomaly detection, but they turn it into a
completely supervised problem as they do post-processing to change the order in which the user gets
to see the anomalous samples [41], not changing or retraining the model.

2.4. Similarities to zero-shot learning and active learning

In zero-shot learning, we focus on a learner who has to observe samples from classes which were
not observed during training and needs to predict the class that they belong to [9]. Even though the
concept is fairly similar to what we are investigating, the approach is very different, as it usually needs
a description of the other class, something our framework will not need [45]. In addition, current ap-
proaches have mostly been tested on computer vision models, and not for anomaly detection, but some
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extensions to natural language processing have been researched [6]. Because of this and the need
for descriptions, the approach is significantly different.

In active learning, the user is queried while the system is in use, such that it can be retrained to ensure
that it is still accurate [47]. This is exactly what we will be using in this paper. However, the exact
approach we are taking has not been studied before. This is because it always requires the user to
label the data and then retrain based on that, but since anomaly detection is an unsupervised problem
at its core, this is not possible. It has been applied before in anomaly detection, but all of these still rely
on labelling a subset of the data [46], not just the relevant cases, and work with deep neural networks,
which are lacking in terms of explainability [54] [43].



Background

We will design a framework to solve the problem of no longer detecting the uninteresting anomalies as
anomalous. However, this has not been done from scratch and is instead based on a combination of
previous approaches. In this chapter, we will go through all these works. In section 3.1, we will explain
the basics of the resampling method we use in this paper. Then we will talk about the paper whose
framework we are using for the monitoring in section 3.2, and discuss the method that we are using for
anomaly detection in detail in section 3.3. Finally, in section 3.4, the theory behind all the models will
be explained.

3.1. Resampling of data

Our work will heavily rely on resampling data of the new anomalous class that does not have nearly as
many samples. We have the choice between undersampling the majority class and oversampling the
minority class. In undersampling, you take the majority class and drop a part of the samples to make
it a similar size to the minority class. However, this tends to lose valuable information, and if there are
very few cases of the other class, this is still impossible. In addition, many modern models used in
anomaly detection are deep models, which benefit from having more training data. Therefore, we will
be using one of the most commonly used oversampling techniques, SMOTE [10]. This technique has
shown promising results in biomedical applications [27] and in cybersecurity [1] [13].

3.1.1. SMOTE

Synthetic Minority Over-sampling Technique, known as SMOTE, is a widely used method for addressing
class imbalance in classification problems. Instead of simply duplicating existing instances from the
minority class, SMOTE generates new synthetic examples by interpolating between existing ones. For
a visual overview of the framework, see figure 3.1.

More specifically, for each sample in the minority class, the algorithm identifies its & nearest neighbours,
typically based on Euclidean distance. Then, it randomly selects one of these neighbours and creates a
synthetic data point by taking a convex combination of the two. This new point lies somewhere along the
line connecting the original instance and its selected neighbour. As a result, SMOTE generates samples
similar to existing ones, but not identical, helping to reduce overfitting and improve generalisation.

This approach has the advantage of respecting the local structure of the data and preserving potential
correlations between features. However, it can also introduce synthetic samples in regions where
the classes overlap, which may lead to less clear decision boundaries, especially if there is no actual
correlation between features.

There are also some extensions to the SMOTE procedure. These focus on which samples are used
to regenerate the new samples [19], where most choose to take samples where data is dense [42], or
data that is close to the decision boundary [24].

We are choosing to focus on the most basic implementation. Since the number of available samples is
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limited for the minority class, choosing which points to focus on is not as relevant, and it cannot benefit
the framework a lot. Due to the specific implementation of SMOTE, by default, it needs the data to
be labelled, as we need to supply it with at least two classes. This means that for our implementation,
the two classes are the regular data and the uninteresting anomalies, to ensure that these will be
resampled.
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Figure 3.1: lllustration of the SMOTE process [12]. The left panel shows an imbalanced dataset with a minority class (orange
squares) and a majority class (blue circles). The middle panel demonstrates the creation of synthetic samples (green stars)
between existing minority instances. The right panel displays the resulting balanced dataset after oversampling.

3.2. Framework feedback

We have based our way of looking into the continuous monitoring of an anomaly detection algorithm on
that of research on active monitoring of neural networks by Kueffner et al. [29]. The paper introduces
an active monitoring framework for neural networks to address challenges in maintaining accuracy in
dynamic environments. The framework operates in parallel with the neural network, interacting with
a human user for incremental adaptation. It includes a quantitative monitor to improve precision and
detect inputs from novel classes. By distinguishing between known and unknown novelties, the frame-
work adapts the neural network and monitors at prediction time, either by learning new classes or
retraining with updated information. Here, the model detects novelties by looking at the output of the
penultimate layer and seeing if the distance between this and the average of its class is significant
enough. If this value is indeed anomalous, it is sent to a domain expert such that they can see if it is
indeed an anomaly, and if the system made a mistake by reporting a false positive, it can be retrained.
Also, if it is a new class, they can label it as such and retrain the system so it will be more accurate
when detecting anomalies. This adaptive approach aims to prevent catastrophic forgetting and system
failures caused by novel input classes. Figure 3.2 shows an overview of this framework. Experimental
evaluation on diverse benchmarks confirms the framework’s benefits in dynamic scenarios. The frame-
work enhances the transparency and interpretability of neural network operations, facilitating informed
decision-making in real-world applications.

This is an interesting approach, but we modified it such that it can work for an anomaly detection
algorithm. This means it cannot use an anomaly detection algorithm to detect the difference between
a novel class and the regular data, as it is already running an anomaly detection algorithm tasked to
continue labelling interesting anomalies as anomalous. In this approach, all anomalies are given to the
user to say which novel class they belong to. This is different from our approach, as even though we
do ask the user as well, our user only needs to respond when they deem an anomaly as uninteresting.
Here, they do not need to give a label to what kind of uninteresting it is. This is to further reduce the
human bottleneck. Also, there is a lot less freedom in this approach as it only works for neural networks,
so we will be extending it and creating a generic framework.

3.3. Anomaly detection

The anomaly detection algorithm that we opted to use is based on a paper focusing on interpreting un-
supervised anomaly detection by Li et al. [33]. They describe an algorithm that explains how it decides
by making hypercubes of the data points and showing the decision boundaries. The technical steps
involve distribution decomposition rules to simplify the complex distribution of normal data into multiple
compositional distributions. An unsupervised Interior Clustering Tree (IC-Tree) is designed to incorpo-
rate model predictions into the splitting criteria, aiding in identifying rules that define normal data and
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Figure 3.2: The architecture of an active monitoring system for neural networks [29], showing its main components and data
flow. At the top left, incoming data samples are processed by the neural network, with predictions produced alongside feature
representations from the penultimate layer. These representations are passed to a quantitative monitor (middle), which
compares them against class-specific reference clusters using a distance metric. If the distance exceeds a class-dependent
threshold, the prediction is flagged as potentially novel. Flagged samples (right) are routed to a human authority for inspection,
either confirming a false positive or identifying a new class. The result informs downstream actions: the monitor may be refined,
or the neural network retrained to incorporate new knowledge.

anomalies. The Compositional Boundary Exploration (CBE) algorithm is then used to obtain bound-
ary inference rules that estimate the decision boundary of the original model on each compositional
distribution, enhancing understanding of the decision boundaries of the black-box model. By merging
the distribution decomposition rules and boundary inference rules into a rule set, the method presents
the inferential process of the unsupervised black-box model in a human-understandable way. For an
overview of this process, see figure 3.3. Comprehensive experiments on four distinct unsupervised
anomaly detection models using real-world datasets show superior performance in terms of fidelity,
correctness, and robustness compared to existing methods.

This model will be used and further extended such that it will be compatible with the framework of
section 3.2.
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Figure 3.3: lllustration of the interpretability framework for unsupervised anomaly detection introduced by Li et al. [33]
Here, you can see in (a) the original unlabeled dataset with clusters of normal data. In (b), the complex data distribution is
decomposed into multiple compositional distributions. Then, in (c), the Compositional Boundary Exploration (CBE) algorithm
identifies decision boundaries for each compositional region using hypercubes. Lastly, in (d), you can see the final rule set
combines distribution decomposition and boundary inference rules to approximate the decision boundaries of the original
black-box model in an interpretable form.

3.4. Models used

To test the effectiveness of the designed framework, it will be tested on four different models. These
models have been chosen as they are all state-of-the-art in anomaly detection. They all rely on different
principles, and a brief overview of how they work will be given in this section. Extensions of these
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models are possible, which can achieve even better results, but these are also more specific per use
case. As we first of all want to have a good understanding of whether this framework can work, we
have opted for the basic versions of the models.

3.4.1. Autoencoders

Autoencoders are neural network-based models used for unsupervised anomaly detection by learning
a compressed representation of normal data. They consist of two main components: an encoder fy
that maps an input x € R"™ to a lower-dimensional latent representation z € R™ (where m < n), and a
decoder g, that attempts to reconstruct the original input from this latent code, i.e., x = g4(fo(x)).

The model is trained by minimising a reconstruction loss, typically the Mean Squared Error (MSE),
given by:

£(x,%) =[x - %]

During training, the autoencoder learns to reconstruct regular data accurately. At inference time,
anomalies, which differ significantly from the training distribution, tend to produce larger reconstruc-
tion errors, since the model fails to capture their structure in the latent space. By thresholding this
reconstruction error, we can flag inputs as anomalous.

Autoencoders are highly flexible and capable of modelling complex, nonlinear relationships in high-
dimensional data, making them useful in applications like fraud detection, manufacturing fault diagnosis,
and medical imaging. However, their performance depends heavily on factors such as the architecture
(e.g. number of layers, size of the bottleneck), choice of loss function, and use of regularisation tech-
niques like dropout or weight decay. They require a representative sample of normal data for training,
and their sensitivity to anomalies in the training set or overfitting can limit robustness in practice. See
Figure 3.4 for a visual overview of the autoencoder architecture.

Encoder Latont Decoder
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Figure 3.4: The architecture of an Autoencoder [15]. Here we see the two stages of the Autoencoder, where we first encode
the data through multiple layers, after which we try to recreate it using the decoder.

3.4.2. Variational Autoencoders
Variational Autoencoders (VAEs) are a probabilistic extension of traditional autoencoders used for
anomaly detection, with a key difference in how they model and generate data. Instead of learning
a deterministic mapping, VAEs learn a latent distribution over the input space by approximating the
true data-generating probability density.

The encoder maps each input x € R"™ to the parameters of a probability distribution in latent space,
typically a multivariate Gaussian. That is, it outputs a mean p(x) and standard deviation o (x), which
define a latent distribution go(z|x) = N (z; u(x), diag(o?(x))). The decoder samples a latent variable z
from this distribution and reconstructs the input: x = g4(z).
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Training VAEs involves minimising a composite loss function that balances two terms:

* Areconstruction loss, the expected negative log-likelihood E,, (,x)[— log ps(x|z)], which ensures
the output resembles the input.

A regularisation term, the Kullback-Leibler (KL) divergence, which encourages the approximate
posterior to stay close to a prior distribution p(z), usually A'(0,I): Dk; (qs(z|x) || p(2))

The total loss is thus:
Lyae(8, ¢;%) = Eg, (a)x) [~ log py (x]2)] + Dr (g0(z|%) || p(2))

This probabilistic framework allows VAEs to model uncertainty and detect anomalies either through
low likelihood under the learned latent distribution or via high reconstruction error. For an overview of
the architecture of a VAE, see figure 3.5. VAEs are well-suited to capturing complex data distributions
and offer a principled method for generating realistic data samples, making them applicable in domains
such as fraud detection, image anomaly detection, and scientific data modelling.

However, VAEs require careful tuning of latent dimensionality, loss weighting, and architecture to bal-
ance reconstruction fidelity and latent space regularity. If the KL divergence term dominates during
training, reconstructions can degrade, especially for fine-grained or high-resolution data. Additionally,
the stochastic sampling and variational inference steps introduce added computational complexity com-
pared to standard autoencoders.

Input Image Reconstructed Image
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Latent Space
Haix
z 2(z | %) Z —>  mxls) —> &
E‘
Standard Devaition
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Figure 3.5: The architecture of a Variational Autoencoder [48]. The encoder maps input data to the mean and standard
deviation of a latent Gaussian distribution. A latent variable is sampled and passed through the decoder to reconstruct the input.
Training minimises both reconstruction loss and KL divergence, enabling the VAE to model uncertainty and detect anomalies.

3.4.3. Isolation Forest

Isolation Trees are a tree-based method for anomaly detection that works by recursively partitioning
the feature space using randomly selected features and split values. At each internal node, a feature is
chosen uniformly at random, and a split point is selected uniformly within the range of that feature. This
process continues until the data point is isolated in a leaf node. Since anomalies are typically rare and
differ significantly from normal points, they are more likely to be isolated earlier in the process, requiring
fewer splits and resulting in shorter path lengths.

An |solation Forest is an ensemble of such isolation trees. The anomaly score for a data point x is
computed based on the average path length h(x) across all trees in the forest. Formally, the anomaly
score is defined as:

_h()
s(x,n) =27 ™

Where h(x) is the average path length of x, n is the number of samples used to build each tree, and
c¢(n) is the average path length of unsuccessful searches in a Binary Search Tree, given by:

2(n—-1)

en)=2H(n—-1) —
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with H (i) being the i-th harmonic number H (i) ~ In(i) + 7, and ~ is the Euler-Mascheroni constant
(v = 0.5772).

A higher score (close to 1) indicates that a point is likely to be anomalous, while a lower score (close to 0)
suggests normality. Isolation Forests are computationally efficient, with a time complexity of O(n logn),
and do not rely on distance metrics or density estimates, making them well-suited for high-dimensional
and large-scale datasets. In figure 3.6, you can see a visual representation of the architecture of an
Isolation Forest.

However, the performance of Isolation Forests can be sensitive to hyperparameters such as the number
of trees and their maximum depth. Moreover, the method assumes that anomalies are more suscepti-
ble to isolation, which may not hold in cases with complex feature interactions or clustered anomalies.
In such cases, additional preprocessing or hybrid models may be necessary to improve detection per-
formance.

iForest
A

iTree iTree iTree

Anomaly

Potential Anomaly

Normal Instance

Figure 3.6: The architecture of the Isolation Forest [44]. You can see that it is made out of multiple Isolation Trees. To test a
sample, the average height is computed, and if this is under a threshold, it will return anomalous.

3.4.4. OCSVM

The One-Class Support Vector Machine (OCSVM) is a kernel-based anomaly detection technique that
identifies anomalies by learning a decision boundary that encompasses the majority of normal data
in a high-dimensional feature space. It is based on the idea of separating data from the origin with
maximum margin in a transformed feature space, using the kernel trick to handle non-linear patterns.

Given a set of training data {x,...,x,} C R¢, OCSVM solves the following optimization problem:
A DR
min o [lw|*+ Z}f —p

subject to
(W¢(XZ))Zp_§Za fi207 i:l,...,n
Where ¢(-) is the mapping function to a high-dimensional feature space, v € (0, 1] controls the trade-off

between the fraction of outliers and the margin, and &; are slack variables allowing some data points
to lie outside the decision boundary.

The decision function is then given by:

f(x) = sign (Z a; K(x;,x) — p)
i=1

Where K (x;,x) = (¢(x;), »(x)) is a kernel function, typically the Radial Basis Function (RBF):
K (xi,%;) = exp (—7[xi — %)

Points for which f(x) < 0 are considered anomalies, as they lie outside the learned boundary. For an
overview of this method, see figure 3.7. OCSVM is particularly effective for capturing complex, non-
linear structures in data and is widely used in applications such as fraud detection, intrusion detection,
and medical data analysis.
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However, OCSVM’s performance is sensitive to the choice of kernel parameters (e.g. ~), the regular-
isation parameter v, and the proportion of anomalies assumed in the data. Moreover, the algorithm
involves solving a quadratic programming problem, making it computationally expensive for large-scale
datasets. It is also prone to reduced robustness if the training data contains outliers or is not well-
representative of the normal class.

@ Normal samples
@ Abnormal samples

(_ Delimited boundary

Figure 3.7: The basic principles of an OCSVM model [32]. Here we assume that the normal data is grouped, and the
anomalies are outside of this region. Therefore, we can draw a decision boundary such that it separates the anomalies from
the normal samples with as large a region as possible.



Problem statement

This chapter will formally introduce the new problem we propose to solve and clearly define the differ-
ence between anomalies, uninteresting anomalies, and regular data. We denote the variable space
of d-dimensional features as X C R?, z is a data sample, and z; is the i-th dimension of a sample.
Y represents the label given to the sample by the model, 0 meaning non-anomalous, and 1 meaning
anomalous.

In the concrete example introduced in chapter 1, we have an anomaly detection model that analyses
liver cells to detect cancerous cells. In that model, there are several features such as the size of
the cell, colour, number of spikes on the outside, shape, and circumference. All these features are
a combination of numerical and categorical features. There are also blood cells present, which are
indeed anomalous, but we do not want to detect them.

Definition 1: Regular data
Regular data is data drawn from an underlying stationary distribution D. The class of this regular,
nonanomalous data will be referred to as NA, which stands for nonanomalous.

This data represents uninteresting data, where nothing out of the ordinary can be seen. This would
be equivalent to the healthy liver cells in the example. All these cells look relatively the same, but this
distribution can contain multiple clusters, as there are different types of liver cells. Furthermore, each
cell is unique, so they all have some minor differences; however, to a domain expert, it is easy to identify
them as healthy liver cells.

Definition 2: Anomaly
An anomaly is a data point that does not fit under the underlying stationary distribution D. This class
will be referred to as A, which stands for anomalous.

It is important to note that anomalies do represent some kind of underlying class or set of classes,
and therefore, they do have an underlying distribution. However, there is no indication of what this is,
and therefore no guarantee that it is disjoint from the regular data. They can also come from multiple
distributions, as it is possible to have multiple types of anomalies. The underlying distribution of the
class of anomalies is denoted as D”.

In the real-world example, these are the cancerous cells. They have a distinct underlying distribution,
but there can be several distributions because different types of cancerous cells can exist. Also, due
to the variety of types, some types at some stages can look very similar to a healthy cell. This means
that it is not given that the model can detect all anomalies.

Definition 3: Unsupervised anomaly detection

Given an unlabeled dataset X, an unsupervised model estimates the probability density function f(z) ~
Py..p(x), and detects an anomaly if there is a low probability that a certain sample has come from this
underlying probability density function, i.e. f(z) < ¢, where ¢ > 0 is a threshold determined either by
the user of the algorithm or by the model itself.

14
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This means that when the algorithm deems something an anomaly, the probability of it fitting under the
distribution of the regular data is very low, close to 0; therefore, f(x) < ¢ will return 1. This also means
that when a sample is not labelled as an anomaly, it is the score of the probability is close to 1, and
therefore it is finally given a label of 0.

Note that in practice, this approach can inevitably generate false positives, as we have ¢ > 0. In
addition to this, we assume that the training data consists of only regular data, which does not contain
anomalies. In reality, however, we do not have the ground truth for the data that the model is being
trained on, and it may contain some anomalies. However, we assume that this percentage is very low
and therefore will not affect the performance of the models.

This leads us to the final definition of non-interesting anomalies, which is defined as follows:

Definition 4: Uninteresting anomalies
An uninteresting anomaly is a data sample drawn from a distinct underlying stationary distribution D’.
This class will be referred to as UA, which stands for uninteresting anomalies.

In our running example, these stand for the blood cells, which are very different from both the healthy
and cancerous liver cells. But these do have an underlying distribution of what a blood cell looks like.

An important aspect of these uninteresting anomalies is that they have a distinct underlying distribution
D’, which means that we can differentiate them from the interesting anomalies. Of course, that is
not always the case in reality, as some uninteresting anomalies will look too similar to the interesting
anomalies and therefore be indistinguishable. Note that this distinguishability needs to be in a feature
that the algorithm uses to detect the anomalies, but it can also be in multiple features or a combination
of several features.

To look at how distinguishable these uninteresting anomalies are from the interesting ones, we have
looked at the distance between them. For all the numerical features, we used the means to determine
the distance after they were normalised. For the categorical features, we look at the ratios of each
different value that the feature can take, and take the difference between the two datasets for each
label, sum these up, and divide by 2 to normalise the outcome. Then, we sum up the distances of
all the features and divide them by the total number of features to get a final similarity score between
0 and 1, where 1 means completely disjoint and 0 means the same. This can be summarised in the
following equations:

dnumeric(Aa B) = |‘21 - B|

Zlel bel ‘{aleLEA}‘ _ |{b=lg6B}|
dcategorical(A,B) — ‘ ‘2 iz
drotar(A, B) = " e features A(Af, By)
total s ‘features‘

These uninteresting samples will most likely be labelled as anomalies by the unsupervised anomaly
detection algorithm as they do not fit the original distribution D. This is a correct result, as these samples
are indeed anomalous, but not the desired result for the user, as these are not the samples that they are
interested in. Therefore, the goal is to minimise the number of uninteresting anomalies we detect as
anomalies, while still remaining accurate in detecting the real anomalies and not increasing the number
of false positives we get. In mathematical terms, this means our goal is to optimise

max(aP(Y =0z € NA)+pP(Y =1z € A)+~vP(Y =0|z € UA))

where a+ 5+ v =1.

There are three values which can be decided by the user, which can tune the sensitivity of the model.
With «, the user of the model can tune how important it is that we do not produce false negatives. This
is especially important when an unnoticed anomaly is very costly, for instance, in a healthcare scenario.
With 3, the user can tune the impact of false positives for our use case. This would be in a case where
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any false positive costs a lot, for instance, if we need to shut down the servers automatically when we
detect a cyber attack. Finally, with ~, the user can tune how important it is that we do not detect these
uninteresting samples as anomalies.



Methodology

In order to no longer detect uninteresting anomalies as anomalies, the model needs to learn to detect
this relatively small set of uninteresting data points as regular data as well. This is a complex task, as
this framework should not be model-specific. As many of these models are unsupervised, we cannot
simply tell the model that it is wrong by changing the label of a sample and adding that knowledge to
the model. The solution to this is to add these data points to the training set. However, the models
are designed in such a way that they are robust to some noise of anomalies in the training, as can be
seen in chapter 4. Therefore, we need to find a way to make them more prominent in the dataset. This
can be done by using an existing technique to artificially generate more of the uninteresting anomalies.
These are then added to the dataset, and the model is retrained with this new dataset. Because of
the volume of the extra data points, the models will see these data points as a proper cluster of non-
anomalous data and therefore will no longer label them as an anomaly. In this chapter, this framework
will be further explained in section 5.1. Then in section 5.2, we will explain how we have engineered
this framework using SMOTE and what trade-offs it brought with it.

5.1. Overview of framework

There are multiple phases to the continuous retraining of the model. We start with an initial model,
which is only trained with regular data in principle. Of course, some noise can exist, but research has
shown that the models are generally quite resilient to this noise [33]. Then, the model is utilised in
its usual manner. This means the user supplies samples to the model, or this is done automatically,
depending on the context, and the anomalies are raised to the user. An important extra aspect to
consider is that we make use of the explainability aspect of the model. In this process, we show the
user the system’s output together with an explanation of why this decision was made. This means that
the model explains the decision boundaries it has found. With this information, the user can trace the
reason the decision was made and see which features have been selected.

As soon as the user notices that the result is not as expected, i.e. they see that there is an anomaly
that is not interesting to them, they will flag it as such. They can use the explanation that the model
has given to better understand the sample and why the model chose to label this sample as such. This
minimises the chance that they will label it incorrectly, which would cause the model to lose accuracy
due to human error.

Based on that, a resampling phase will be triggered in which this new uninteresting anomaly is classified
as normal data. This is only done once we have reached a minimum number of samples needed;
for further clarification on how this number is chosen, see section 5.1.3. There are multiple possible
approaches to resampling, one of which has been implemented and explained in section 5.2. After this
phase, we will test the algorithm again. This is to ensure it was successful, and that this sample can
now be classified correctly, as well as that the accuracy of the model on the interesting anomalies is still
adequate. If the model does not meet these goals, it can try to resample again. However, this might
not lead to the desired results. Instead, we are either in a situation where the class of uninteresting
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anomalies and that of genuine anomalies are too similar, or we do not have enough uninteresting
samples gathered yet. Then the next time we encounter another uninteresting sample, we can retrain
again using all gathered samples and then retrain the model in such a way that it meets our objective.
An overview of this entire process can be seen in Figure 5.1.

Bad results — different parameters

Artificially sample
more of this class

Test model Retrain model

Good results — Update model

User labels anoma-
lies as uninteresting

— Model
Another class of uninteresting anomalies appears

Anomaly detection

Figure 5.1: The flow of the pipeline where we retrain the model in the case of uninteresting anomalies. After retraining, the
model is tested, and if it produces the desired results, the model is updated. When these results are not achieved, the
resampling parameters are changed, and the model is retrained. If the class of uninteresting anomalies is deemed too similar
to the interesting ones, the model is never updated, and this gets communicated to the user.

5.1.1. Guiding the user

An important aspect to consider, as mentioned in subquestion 1, is that the framework guides the user
to make the right decision. In chapter 4, it was defined that the user has the ultimate say in what is
an uninteresting anomaly. However, humans are not nearly as fast as computers, so they will quickly
become the bottleneck [29]. Additionally, they are prone to mistakes. Therefore, we want to help the
user as much as possible, such that they can perform the labelling as efficiently and accurately as
possible. This was implemented by clearly showing the feature vector and highlighting the features on
which the model has decided to label it an anomaly. This is especially important in cases where there
are thousands of features. In addition to this, the framework displays a score of how anomalous it is,
which further informs the user.

5.1.2. Testing the model

Testing this model is not as straightforward as a traditional anomaly detection algorithm, due to the
presence of a third class, the uninteresting anomalies. This is also reflected in question 3, where we
investigate how to test such a framework. Because of the three classes being present, we have opted
to test the three accuracies apart from one another. We have done this using the true positive rate
and true negative rate, see section 6.4, as well as separately testing the accuracy of the uninteresting
anomalies. In addition to this, it is also important to know that the model does not get significantly worse
when more samples are added. This is studied in experiment 2, see section 6.8.

5.1.3. Parameters in framework
Two parameters are important in this framework, which we will describe in the following sections.
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Minimum number of samples

To prevent the model from completely deteriorating in quality as it is trying to generate many samples
from too few uninteresting anomalies, we can set a minimum number needed, and only after this thresh-
old is reached, the framework can activate. This number is, by default, set to the minimum number of
samples that are needed for the resampling algorithm, which in the case of SMOTE is equal to the
number of nearest neighbours it uses. For more information on what is recommended to have the
minimum number of samples, see experiment 2 in section 6.8.

Critical level

It is also important to monitor the accuracy of the model and make sure it does not deteriorate. This
means that domain experts need to identify the specific accuracies per class that need to be achieved
by the model and what the cost is of potential false negatives. These values can be defined in many
different ways, so the user can choose which they find most intuitive. For instance, they can use the
overall accuracy of the system they want to ensure, or specifically, the rate of false negatives and false
positives they deem to be acceptable for the system to produce.

This parameter comes to fruition in the test model state, which can be seen in figure 5.1. This is an
optional parameter during the testing of the model, which checks if the system still meets the required
accuracies. When these are met, the model is updated, else the procedure is tried again. If, after the
second time, these desired results are not achieved, the model will not be updated. When it has not
been specified, the retrained model will be updated no matter what the new accuracy achieved by the
model is.

5.1.4. Possible extensions

The model that was described above is in its simplest form, but several extensions are possible that
create some more freedom. These will result in a more complicated model, which is not necessary for
all data sets and models. First of all, we will explain the extension with multiple types of uninteresting
anomalies, which require a more complicated resampling procedure. We can also devise a model that
only does intermittent retraining, which allows for a smoother user experience.

Multiple types of uninteresting anomalies

It can be a problem when there are multiple types of uninteresting anomalies. When we try to resample
from a set consisting of different classes, it might not lead to any meaningful generated samples, and
instead only make the algorithm lose performance. In that case, we can instead let the users label the
type of uninteresting anomaly. This change also comes with some disadvantages, as it makes the job
more difficult for the user, as they need to make the distinction between multiple classes. This creates
a greater chance of human error. Furthermore, it also means that we have fewer available samples of
all classes, which means that it will take longer until we have gathered the minimum amount of samples
required for resampling. Also, the resampling method should distinguish these different classes, or it
can create artificial uninteresting samples that do not look close to any of the classes, as it combines
multiple classes.

Only intermittent training

Retraining can be a costly procedure due to several factors, such as the available hardware, the size of
the dataset or a complex model. As a result of this, the retraining phase can become a bottleneck, as
it can become a blocking factor to using the model. However, there are some solutions to this. We can
choose to retrain while we are still using the old model. This minimises the amount of downtime, but on
the other hand, it can be confusing for the user, which model is currently being used. In addition to this,
we need to decide what needs to be done if the user labels another uninteresting anomaly; should this
wait for the next retraining batch or scrap this current retraining and start over with this sample added?
An alternative approach is to choose to only retrain every few samples of the uninteresting anomalies
we get to minimise downtime.

5.2. Data resampling using SMOTE

To implement this framework, we have used SMOTE to resample the points such that the uninteresting
anomalies make up a more significant part of the dataset. The decision to use SMOTE has been made
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as it is proven to be a very stable method of resampling. This is also to do with it taking into account
how different features could be related to one another, as mentioned in section 3.1.1.

5.2.1. Versions of SMOTE

There are still different versions of SMOTE, even within the most basic implementation. The best fit
for this use case is SMOTENC, as all of the datasets that are being investigated have a combination
of numerical and categorical features, and this version supports both types. A downside of this is that
it is necessary to specify beforehand which features are numerical and which ones are categorical.
Luckily, this is a relatively simple step that only needs to be taken once per dataset. It is, however,
something that should be taken into account while setting up the system. There are ways to automat-
ically classify a feature as either numerical or categorical, but from manual inspection of the datasets,
categorical features are sometimes encoded with a number, which leaves this approach vulnerable to
miscategorisations that can lead to incorrect data resampling.

5.2.2. SMOTE-NC

SMOTE-NC stands for Synthetic Minority Over-sampling Technique for Nominal and Continuous. It
is an extension of the SMOTE algorithm designed to handle datasets containing both continuous and
categorical features. It operates by first identifying categorical and continuous features, where cate-
gorical features are treated as discrete variables and continuous features as numerical variables. To
generate synthetic samples, SMOTE-NC employs a distance metric that combines Euclidean distance
for continuous features with simple matching distance for categorical features. The algorithm iden-
tifies the k-nearest neighbours of minority class samples using this combined distance metric. For
continuous features, synthetic samples are generated through interpolation, whereas for categorical
features, values are randomly selected from either the original sample or its nearest neighbour. This
approach allows SMOTE-NC to create realistic synthetic samples that maintain the integrity of the orig-
inal dataset’s relationships, making it particularly effective for addressing class imbalance in datasets
with mixed feature types.

5.2.3. Hyperparameter tuning

There are two hyperparameters that need tuning in SMOTE-NC: the sampling strategy and the k-
neighbours parameter. The sampling strategy encapsulates the ratio between the minority and ma-
jority class. The k-neighbours parameter is used to describe how many samples SMOTE-NC uses to
generate a new sample.

A big challenge in tuning these parameters is that we need to be careful that they are not overfitted to the
dataset. This can happen because we need to have uninteresting anomalies labelled to test the model,
but these are not available from the start. Therefore, we have looked at both of these parameters to
see if changing them gave significantly different results in the stability study. As can be seen in section
6.6, this has led to very stable results, suggesting that these parameters are not dependent on the
dataset.

5.2.4. Pseudocode

In Algorithm 1, you can see how SMOTENC has been used to retrain the model. This algorithm takes
as input the set of regular data and that of uninteresting anomalies and outputs the newly trained model.
Initially, we need to load the datasets, which happens on lines 2 and 3 of the algorithm. Specifically,
on line 3, this dataset will be the specified uninteresting anomalies by the user. After this, we calculate
the original ratio and initialise SMOTE-NC. Here, we must specify which are the categorical features,
which are specified when the dataset is first introduced. After this, in lines 6 and 7, we must combine
the regular data and the uninteresting anomalies, as SMOTE works on a singular dataset. Here, the
uninteresting anomalies have a label of 1, such that SMOTE can denote a difference in classes and
resample from the minority class. After this, the actual resampling happens in line 8. Then, we need
to ensure all the labels are again 0, meaning regular data, as uninteresting anomalies need to be seen
as such. Finally, we can retrain the model and return it.
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Algorithm 1 Oversampling using SMOTE

Input: D: regular data, D’: uninteresting anomalies, categorical_features
Output: new_model

1: procedure SMOTE-NC

2: Ttrain, Ytrain, < load_data(D)

3 Luninteresting Yuninteresting — load_data(D/)

4: Original_ratio — ‘Samplesuninteresting|/‘xt7'ain| + |xuninte7'esting|

5: SMOTE « imblearn.over_sampling.SMOTENC (categorical_features)
6: Ttrain,new — Ttrain U Tuninteresting

7

8

9

Ytrain,new < Ytrain U Yuninteresting
Lress Yres — SMOTE-flt_resample(mtrain,new> xtestmew)

Yres  nP.z2er0S(|Yres|)
10: new_model < train(Tres, Tiest, Yres, Ytest)




Experimental setup

Now that the methodology has been defined, it is important to test if the framework indeed produces
the intended results. Therefore, in this chapter, we will describe the different experiments that have
been designed to validate the framework and the role of SMOTE within it. First of all, we will describe
the setup that has been used to execute these experiments, including details of the models we use
in section 6.1, the baselines they are compared to in section 6.2, the datasets that are being used in
section 6.3, the metrics that are considered in 6.4, and the hardware used in section 6.5. Then, we will
highlight the specifics of the stability study in section 6.6, as well as the exact details of the experiments
that have been run in sections 6.7, 6.8, and 6.9.

6.1. Models used
To test the framework, it was applied to the following four models:
» An Autoencoder [36];
* A Variational Autoencoder [52];
* A One-Class Support Vector Machine [3];
* An Isolation Forest [17]

We have chosen to try these out as they are all compatible with the explainable anomaly detection of
[33], and they are all state-of-the-art anomaly detection models.

For the autoenconder, we have used a network of 5 layers, that encodes from the number of features
to 256, 128, 64, 32 and 16. Then we use the Leaky Relu function and have a total of 50 epochs.

For the variational autoencoder, we used the same number of layers and reduction of features as in
the autoencoder. Furthermore, we have 50 epochs and use the formulas as described in section 3.4.2.

For OCSVM, we use the model provided by sklearn. This model is used with the default parameters.
For the nu and false positive rate parameters, we experiment with the best values by looking at the
values from 0.001 to 0.03 in increments of 0.002.

For IForest, we use the sklearn model, with the number of estimators set to 500. Furthermore, we
experimented with what the level of contamination gives the best score by checking all the values
between 0.02 and 0.51 in increments of 0.002.

For more technical details on how these models work exactly, you can look at section 3.4.

6.2. Baselines

As this is a new kind of task, there are currently no baselines available from tools or frameworks that
perform a similar task. However, there are still two baselines to which this new model is compared.
The first one will be called no extra data, and it entails not adding any of the non-interesting data and
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therefore never retraining. This is just a regular anomaly detection algorithm, and as a result, we do
not expect the vast majority of uninteresting anomalies to be identified as regular data. This, however,
does not exclude the odd false negative that will not be detected by the model.

We also have the second baseline, in which we add the samples that have been identified as uninter-
esting to the training data, but we do not generate any artificial samples. This will be referred to as a
few extra. The performance of this depends on the number of samples that are added. If there are
only a few, we expect the same performance as the previous baseline, but when a lot of samples are
added, we expect results similar to resampling.

6.3. Datasets used

We have used two datasets for these experiments. One of which has already been applied to anomaly
detection, and as such, it has labelled the different kinds of attacks to an 10T system. These different
labels are backdoor, DDOS, DOS, injection, MITM, password, ransomware, scanning, and XSS. Due
to this, we have taken a few combinations in which we have chosen one of these types of attacks to
not be interesting and therefore resample. For the initial experiments, we have put all these against
each other to see the performance.

The other dataset that we used has not been applied to anomaly detection before but was instead used
as an imbalanced classification set, something that happens regularly in anomaly detection [39]. For
this, we chose the healthcare dataset, which is a medical dataset and therefore will also represent the
case where we only consider some diagnoses to be important. This was also the dataset that is closest
to the concrete example that has been introduced in chapter 1 and is freely available. In this set, there
are only three labels, normal, inconclusive, and abnormal. Here, we have done experiments with the
inconclusive class being considered the interesting anomalies class and the abnormal class being the
uninteresting anomalies and vice versa.

In table 6.1, you can see how the datasets compare to one another.

Attribute TON-loT Healthcare dataset
Number of Samples 1141820 49992

Number of Features 30 17

Number of Classes 10 3

Feature Type Numerical and categorical Numerical and categorica
Domain Cybersecurity Healthcare
Source [37] [40]

Table 6.1: Comparison of dataset characteristics.

6.4. Metrics studied

Several different metrics are used in the literature on anomaly detection. We have chosen here to
consider a modified version of the true positive rate and true negative rate. This metric was also used
by Li et al. [33], as well as in several other studies [23] [28].

We have, however, modified the metric to more specifically fit our use case. Instead of just having the
true positive and true negative rate, it has been split into the three different classes we have defined in
chapter 4. The first of these is the true positive rate, which is equivalent to the accuracy of the anomaly
class:

TP
TPR= ————
i TP+ FN
Furthermore, we also have the true negative rate, which shows the accuracy of the regular data:
TN
INE=7x + FP

Lastly, we also have the third metric, which we are introducing in this paper. This metric indicates how
many of the uninteresting samples are picked up as regular data as opposed to anomalies, as they
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would originally be classified:

UA| —|{Y =1]|z e UA}|
|UA

Accuracy UA =

Furthermore, for the final experiment, we have also looked at the time it takes to resample as well as
how long the models take to retrain. This is to ensure that it will not become a bottleneck when the
models are deployed.

6.5. Hardware used

These experiments were run on a MacBook M1 Pro with 32 GB of RAM. All of the experiments were
run on the CPU, and the experiments where time was measured were executed 5 times and averaged
to get a reliable result.

Note that this hardware is very limited, and the models are being executed on the CPU instead of a
GPU. This means that when the model is applied in practice, it will have significantly faster results.
This can also be seen when we compare these results to those of Li et al. [33], where they achieved
significantly faster training times due to better hardware.

6.6. Stability study

As mentioned in chapter 5, we started by testing different parameters of SMOTE to ensure that this
worked adequately. First of all, we looked at how the sampling strategy impacts the performance of the
algorithm. For this, we have taken the number of samples of the uninteresting class to be 50. Then, we
tested out the different values between 0.1 and 1 in increments of 0.1. We have used all the different
models, and DDOS is considered the interesting anomaly class, and DOS is the uninteresting anomaly.

We suspect that as soon as this parameter is high enough, such that the minority class makes up a
significant enough part of the model, it will achieve good results. After this, we suspect that having a
higher sampling strategy to not make a significant result. However, it does impact the training time as
having a lower ratio means fewer total samples.

For the second experiment, we look at how the number of nearest neighbours that the SMOTE algorithm
uses to generate its samples impacts the accuracy of the model. Here the hypothesis is that around 5
neighbours is a good number, as otherwise the distance between the different samples might become
too large and therefore lead to unrealistic artificial samples. This parameter is not too small either, as
it is prone to continue to take the same combinations of samples.

6.7. Experiment 1. Accuracies per class

In this experiment, we have looked at the accuracies per class for all combinations of interesting and
uninteresting anomalies. For this experiment, we used 50 samples randomly chosen from the unin-
teresting class, and the interesting class has 2950 samples. The parameters for SMOTENC in this
experiment are 5 nearest neighbours and a sampling strategy of 0.5.

The hypothesis of this experiment is that if we just add the extra data without resampling, we see a small
improvement in detecting uninteresting anomalies as regular data. Furthermore, when resampling is
implemented, we see a significant reduction in the detection of uninteresting anomalies. However, we
reason that the accuracy of the anomalies, the true positive rate, can go down. By how much this
will go down depends on how distinguishable the anomalous class is from the uninteresting anomaly
class. In addition to this, there is a small chance that some small clusters from the regular data will
now no longer form a significant enough cluster to be detected as regular data. This can mean that the
accuracy for regular data, the true negative rate, goes down, but this is not expected to be a significant
amount.

6.8. Experiment 2: How many samples are needed

One of the most important aspects to consider in our framework is how many samples are needed
to lead to meaningful results. This is especially important because this problem may suffer from a
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cold start, where at the beginning there are so few samples of the uninteresting class that the model
simply cannot use them for resampling yet, as this can be detrimental to the performance of the system.
Therefore, we have looked into how many samples are needed to get accurate results. Note that the
minimum number of samples required by the model is equal to the number of nearest neighbours
SMOTE uses plus 1, which is 6 in our case.

The hypothesis of this experiment is more difficult to make as it is dependent on both the uninterest-
ing and interesting anomaly classes to determine how many samples are needed. If the uninteresting
anomalies is a very shallow class, meaning that there is very little variance between the different sam-
ples, it will not need many samples to achieve good results. However, when the uninteresting class
consists of multiple clusters, it will need more. As a baseline we expect that with around 50 samples
the model can achieve good results.

We also note that when too many samples of the uninteresting class are supplied, the scenario may
arise that the problem gets flipped, and the regular class might become the minority. However, since
SMOTE calculates what the minority class is, it will automatically flip it and not lead to regular data
being detected as anomalous. Furthermore, when the framework is working as intended after the
user has labelled sufficient uninteresting classes, SMOTE will be able to model the uninteresting class
sufficiently. This means the user should not encounter and therefore label many more uninteresting
samples, making it nearly impossible to overshadow the regular data class.

6.9. Experiment 3: Training time

An important aspect to consider is how long resampling and retraining will take, as we want to ensure
that this process does not become the bottleneck. This is especially important, as with this new frame-
work, the model is being retrained many times as opposed to the static model in traditional anomaly
detection. Therefore, we have timed how long these different methods take. Here, we used 50 unin-
teresting samples and took a resampling rate of 0.5. The dataset originally contained 3000 samples.
This means that the new dataset will consist of 4500 samples. Note that the training times will scale
depending on the number of samples that are given in both the interesting and uninteresting classes
and how many dimensions these samples have.

It is expected that the time it takes for the algorithm to run will go up. This is because of two main
reasons. First of all, it is being supplied with more data and therefore will take longer to go through all
the samples for each epoch. But in addition to this, we are also now supplying it with data with a more
difficult distribution. This means the model might need more epochs to find the optimal function that
can detect the anomalies.



Results

In the following chapter, we will highlight the results that our framework has achieved when executing
the experiments described in chapter 6. Here we found that the framework successfully reduces false
positives by learning to ignore uninteresting anomalies, especially when these are sufficiently distinct
from real anomalies. SMOTE proves effective and stable under most settings, with around 50 samples
generally being sufficient for reliable performance. Although resampling increases training time by
around 60%, it significantly improves model accuracy and generalisability across different datasets
and models.

In section 7.1, we will discuss the results achieved in the stability study. After this, we discuss the
overall accuracies that have been achieved in 7.2. After this, we ran the experiments to see more
specifically how many samples are required in 7.3. In addition to this, we also see how the times of
retraining have changed due to this framework in section 7.4. Finally, in section 7.5, we discuss how
generalisable this model is to other datasets.

7.1. Stability study

We have found that the model is relatively stable under the different parameters of SMOTE. As long as
we add enough new samples, such that the ratio is at least 0.2, the model can detect the uninteresting
anomalies, and the differences in accuracy of all the different classes are very close to one another.
This is also reflected in figure 7.1, where we ran the experiment on the IForest model. To verify this is
also the case for the other models, other experiments for the other models have been run and can be
seen in appendix A. In these figures, it can be seen that these are even less dependent on the learning
rate, which lines up with the way these models function. Additionally, we found that performing more
resampling does not worsen the performance in any of the classes. However, with a higher ratio, the
models take longer to retrain, as they now have more samples to reconsider for every epoch. Therefore,
for the rest of the experiments, we have decided to keep this value at 0.5. All of these findings were in
line with our hypothesis.

We have found that the number of neighbours is a more sensitive parameter, where anything over 5 can
lead to very volatile results, as can be seen in figure 7.2. Sometimes, the accuracy of the uninteresting
anomalies is still excellent, but it can also drop very drastically. This is because when taking too many
samples to create a new sample, there might not be enough nearby data points to sample from, which
makes the resulting new artificial data point not representative enough of the uninteresting anomalies.
For the graphs of the results of the other models, see appendix A.

To conclude, we can see that SMOTE performs relatively similarly, no matter the parameters we use,
as long as we stay in a safe zone. We were able to reproduce these results using a different model and
dataset. This means that when we use this model on a different dataset, there is no need to figure out
the SMOTE parameters again. This is especially useful in cases where we do not know beforehand
what the uninteresting anomalies will be.

26
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Influence of sampling strategy on accuracies
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Figure 7.1: The influence of different ratios of uninteresting anomalies to regular data on the accuracies of all the classes. This
experiment has been run on the IForest model. Here it can be seen that the accuracy for regular data and that of anomalies is
very stable and close to 1. The accuracy of the uninteresting anomalies is lower at first, but is steady from a ratio of 0.2
onwards.

7.2. Experiment 1. Accuracies per class

From the first experiment, it can be seen that resampling indeed improves the framework such that it
no longer detects uninteresting anomalies as anomalies. This is a promising result, as we can see that
without resampling, adding uninteresting anomalies to the training set does help a little bit, but it is not
the solution. There is, however, a small drop in the rate at which real anomalies are picked up, as there
is a small chance that an anomaly is labelled as uninteresting, as more samples are now considered
uninteresting. It can be seen that this applies to both datasets in tables 7.1 and 7.2.

However, we can see that the algorithm’s performance heavily depends on which anomalies are in-
teresting and uninteresting we give it. This is especially apparent in the results that can be seen in
appendix B, where some combinations of interesting and uninteresting anomalies do not lead to mean-
ingful results in any of the models. We can see that a crucial factor in the algorithm’s performance is
that there is a significant difference between the distribution of a regular anomaly and an uninteresting
one. To investigate this further, we looked deeper into the differences between the classes based on
the similarity score of the averages of the two classes. The similarity scores can be seen in table 7.3,
where when we cross-reference the accuracies with this table, the more similar the two classes are,
the worse the results are. Whenever they are very similar to one another, it can be seen in one of two
ways. Either the model becomes very good at no longer detecting the uninteresting anomalies, but
loses all accuracy in the anomalies class, or vice versa.

Furthermore, we found that the performance is different for each model. Here we can see that some
models are better suited for a more complex underlying distribution. This is because the new distri-
bution will have multiple clusters, some of which are uninteresting. We found that the AE and VAE
models generally tend to obtain the best results, where we see the smallest drop in performance of the
anomalies and regular data. Here we see that IForest leads to very unstable results, and the relatively
simple model of OCSVM struggles to encapsulate this more complicated distribution.

Finally, we found that we need to ensure that the data samples we give are representative of the
uninteresting samples. We found that for some of the combinations, resampling has not brought about
a dramatic drop in performance for anomalies. Here, the algorithm struggles to pick up the overall trend
of the distribution of interesting anomalies and therefore cannot lead to a sufficient result. We also see
that it is often not possible to get 100% of the uninteresting samples to be labelled as such; some of
them will continue slipping through. This is because we are generalising what the data looks like, and
there will always be anomalies that look different from the majority and therefore cannot be caught by
the model.
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. Accuracy | Accuracy AC.C uracy

Model Which method A . uninteresting
nomalies | regular data ;
anomolies

IForest No extra data 1 0.9705 0
IForest Few extra 1 0.9838 0
IForest Resampling SMOTE | 0.9991 0.9743 0.8901
AE No extra data 1 0.9981 0
AE Few extra 0.9977 00.9705 0.5132
AE Resampling SMOTE | 0.9978 0.9619 1
OCSVM | No extra data 1 0.9790 0
OCSVM | Few extra 0.9977 0.9810 0.6394
OCSVM | Resampling SMOTE | 0.4210 0.9820 0.9235
VAE No extra data 1 0.9980 0
VAE Few extra 0.9977 0.9609 0.4758
VAE Resampling SMOTE | 0.9979 0.9458 0.9926

Table 7.1: Comparison of how different models perform on the same combination of interesting anomaly and uninteresting
anomaly. All of these experiments have been run on backdoor being considered the interesting anomaly and scanning the
uninteresting anomaly As can be seen from these results, adding just a few extra of the samples already achieves some
results, although it depends on the model how sensitive the model is for this when resampling using SMOTE is added, the
results are excellent. We do note that there are always anomalies in the anomalies class, and we cannot perfectly capture the
distribution of the uninteresting anomaly, which ensures that the accuracy never goes up to 1. Highlighted can be seen as the
best combination of all three factors.

. Accuracy | Accuracy AC.C uracy

Model Which method A . uninteresting
nomalies | regular data ;
anomolies

IForest No extra data 0.8536 0.9541 0
IForest Few extra 0.8536 0.9320 0.2431
IForest Resampling SMOTE | 0.8513 0.9320 0.8432
AE No extra data 0.8414 0.9541 0.0045
AE Few extra 0.8354 0.9267 0.2457
AE Resampling SMOTE | 0.8277 0.9110 0.8615
OCSVM | No extra data 0.8612 0.9768 0
OCSVM | Few extra 0.8124 0.9541 0.2410
OCSVM | Resampling SMOTE | 0.5142 0.9441 0.8324
VAE No extra data 0.8458 0.9325 0.0512
VAE Few extra 0.8458 0.9271 0.5413
VAE Resampling SMOTE | 0.8456 0.9254 0.9521

Table 7.2: The performance of the different models using our framework on the healthcare dataset, where abnormal is the
uninteresting anomaly and inconclusive interesting. As can be seen from the results, all of the different models perform
relatively similarly on the baseline of no extra data. There they also achieve the best results for the accuracy of anomalies and
that of regular data. However, resampling using SMOTE leads to the best results for uninteresting anomalies by a significant
margin. Highlighted are per model which method gave the best accuracy per class.

Backdoor | DDOS | DOS Injection | MITM Password | Ransomware | Scanning | XSS

Backdoor 0.8536 | 0.2466 0.1988 | 0.9351 0.7659 0.3699 0.3288
DDOS 0.0156 0.1746 | 0.4368 0.5123 0.8577 0.4655
DOS 0.8536 0.2568 0.4587 | 0.3212 0.5762 0.6542 0.7548
Injection 0.2466 0.0156 0.3459 0.4366 0.6066 0.4544
MITM 0.1988 0.1746 | 0.4587 0.4489 0.3481 0.8932 0.3574
Password 0.9351 0.4368 | 0.3212 0.4954 0.7952 0.3577
Ransomware | 0.7659 0.5123 | 0.8762 | 0.4366 0.8802

Scanning 0.3699 0.8577 | 0.6542 | 0.6066 0.8932

XSS 0.3288 0.4655 | 0.7548 | 0.4544 0.3574

Table 7.3: Similarity scores of the different types of anomalies against each other. These scores have been calculated per the
definition in chapter 4.
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Influence of the number of nearest neighbours
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Figure 7.2: The influence of the number of nearest neighbours the SMOTE algorithm uses on the accuracies of all the different
classes using IForest. Here it can be seen any number below 5 has very stable results, after which it becomes unstable.

7.3. Experiment 2: How many samples are needed

With this experiment, we found that the number of samples that are needed to differentiate each type
of uninteresting anomaly varies greatly. However, we also found that the results never deteriorated by
taking more samples, so it is always beneficial to gather more data.

We found that it heavily depends on the model and how many samples we need to gather to achieve
results. We found that, in general, around 50 samples were sufficient for the majority of combinations
of interesting and uninteresting anomalies to be able to effectively distinguish them. This is still a high
number of samples to gather, and depending on the number of uninteresting anomalies in the dataset,
this can take a while. However, if there are not as many uninteresting anomalies in the dataset, this
also means that they do not significantly inhibit the performance of the algorithm. This can also be seen
in figure 7.3. This graph also shows that it is still a very unstable process and you need to ensure that to
have enough samples to ensure reliable results. In appendix C, we can see how different combinations
of interesting anomalies, uninteresting anomalies and models lead to diverse results. Some of the
combinations can have a cold start, which is in line with our hypothesis.

7.4. Experiment 3: Training time

As can be seen in table 7.4, the runtime of resampling is on average around 60% more compared to
no resampling. From the experiments, we see that the resampling itself only takes milliseconds, and
therefore, the time it takes is negligible when considering the performance of the framework. However,
it is also clear that the time it takes to run the models significantly increases, as more time is needed to
go through all the samples in each epoch. In addition to this, more epochs might be needed depending
on the system as the data becomes more difficult to distinguish from one another. This is something
we need to be careful with because, with very big datasets or datasets with many features, this will
become a bottleneck to the system. There are, however, some solutions to this problem that can help
mitigate it. These solutions are discussed in section 5.1.4, where intermittent training is mentioned.

7.5. Generalisability to other datasets

As can be seen from the results of experiment 1, this new model does not always work as intended,
because uninteresting and interesting anomalies can look too similar when you look at the data. How-
ever, as we have attained good results with two different data sets from completely different domains in
anomaly detection, as well as for different types of state-of-the-art models, we believe that this frame-
work is very generalisable to other datasets.

However, we need to ensure that our classes are well-distinguishable from each other. When the un-
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Figure 7.3: The number of samples needed to create reliable results for IForest. Here we can see that initially the model is
very unreliable, but after 50 samples are gathered, we can achieve good results. We also see that as the number of samples
increases, we can achieve even better results, as can be seen around 95 samples collected.
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Time (seconds)

OCSVM | No resampling | 5.368
OCSVM | Resampling 8.648
AE No resampling | 7.369
AE Resampling 11.456
IForest | No resampling | 15.348
IForest | Resampling 24158
VAE No resampling | 4.428
VAE Resampling 7.145

Table 7.4: The impact of resampling on the runtime of the training, with a learning rate of 0.5 and 50 unknown samples. These
values have been averaged over 5 runs. From these results, we see that resampling consistently adds approximately 60% to
the runtime as opposed to that without resampling.

interesting anomalies look too similar to the anomalies that we are interested in, we simply cannot
guarantee correct results. We can guarantee a degree of performance by calculating the distance
metric as defined in chapter 4 and ensuring that it is higher than 0.5, as we found that for any combi-
nation of uninteresting and interesting classes that exceeds this, we always acquire good results with

an appropriate model.




Future work

As can be seen from chapter 7, the framework we designed has shown promising results when the
classes are sufficiently distinct. However, several limitations have been found, too. Therefore, in this
chapter, potential extensions to this algorithm will be proposed. In section 8.1, we will explain how
to extend the framework to handle non-numeric data. Following this, in section 8.2, we will propose
conducting more comprehensive user testing with domain experts. Furthermore, section 8.3 describes
an additional step that can be added to the framework, where it calculates beforehand if using our
proposed technique is feasible. We discuss how heuristics can be used in this method in section 8.4.
Finally, in section 8.5 we discuss how the creation of offspring in genetic algorithms can be used to fill
in the resampling stage in the framework.

8.1. Non-numeric data

The method we have chosen for resampling is designed exclusively for numerical and categorical data.
It relies on data points and statistical resampling methods. However, many anomaly detection problems
involve images. Although we can still incorporate images by collecting metadata that summarises them,
directly inputting images into this framework is not currently feasible. For future work, we can enhance
this framework to support images as well. In theory, the current technique allows for pixel values, albeit
with slight modifications; however, averaging a few images may not lead to new samples that make
any sense, as the specific pixel values can be very different but still represent the same underlying
class. Therefore, we need to look into other techniques for image data. One possible approach is
to employ generative Al models to create new samples and use these to train the model, but this is
computationally expensive. Another possibility is to splice multiple pictures together, which is closer to
what SMOTE does when combining multiple samples.

8.2. Testing with domain experts

Due to time constraints, we were unable to test the framework with its primary users to evaluate its
effectiveness. Therefore, as part of future work, there should be a detailed study conducted to assess
the framework in use, preferably using data from previously unconsidered use cases. This study would
include benchmarks that provide valuable insights into how to create the most realistic artificial samples
of the uninteresting class. This is done by presenting users with newly generated samples and asking
whether these samples align with their expectations. By gathering user feedback and evaluating the
framework’s performance in real-world scenarios, we can identify areas for improvement and refine the
system to meet user needs more effectively.

8.3. Stastical testing

As can be seen from the results in section 7.2, it is not always possible to distinguish an uninteresting
class from the actual anomalies, as the possibility of this heavily depends on how distinct these two
classes are from one another. The distance between the averages of the two classes is taken as
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a measure of how well-suited this model is to the elimination of the uninteresting class. This test
is currently not included in the framework, but it can benefit from having this test integrated. In this
test, which will be introduced as a new stage before the framework starts artificially resampling, the
distance will be checked against a threshold to ensure that it is possible to attain substantial results.
This threshold can be set as a parameter. The retraining phase is not triggered if the distance is too
small. We can also extend these statistical tests to capture more information about the data, such
as the standard deviation. In addition to this, we can enhance this metric even further by only taking
into account the features that are actually used to make the decision, as dictated by the explainability
algorithm.

8.4. Inclusion of heuristics in custom method

Another possible improvement is to tailor a special method that does the resampling instead of using
SMOTE. This method can then be specifically designed for this task, making it more suitable. This
also means that the framework can take heuristics into account. This allows us to be more in control
of which samples it uses to resample; for instance, we can make sure it uses samples that are spread
apart. Outside of that, we can add additional heuristics which look at the difference in the mean of a
feature between the uninteresting anomalies and regular data, and if those means are close enough,
we can resample using the regular data as well.

8.5. Genetic algorithm techniques

An additional idea is to use genetic algorithm techniques to resample the data. In that domain, many
ways of making new offspring of a few samples have been developed, for features that are continuous,
integer, categorical, and binary. It would be interesting to experiment with using these techniques for
resampling, where the different features are genes, and then we use a genetic algorithm to make new
offspring to obtain generated samples.



Conclusion

Anomaly detection plays a crucial role in identifying irregular patterns in data across various domains,
from cybersecurity to healthcare. However, a persistent challenge in anomaly detection systems is their
inability to distinguish between truly relevant anomalies and those that, while statistically anomalous,
are irrelevant to the user. To address this issue, this thesis introduced a framework that retrains anomaly
detection models to suppress these uninteresting anomalies by leveraging user feedback and synthetic
data resampling.

The findings of this research demonstrate that by incorporating the Synthetic Minority Over-sampling
Technique for Nominal and Continuous (SMOTE-NC), we can augment the training dataset with artifi-
cial samples of uninteresting anomalies, thereby teaching the model to recognise them as regular data.
This approach was tested using four state-of-the-art anomaly detection models: Isolation Forest, One-
Class Support Vector Machines, Autoencoders, and Variational Autoencoders. This was then tested
across two datasets in cybersecurity and healthcare, respectively. The results indicate that when inter-
esting and uninteresting anomalies are sufficiently distinct, the framework significantly reduces false
positives while only minimally compromising the model’s ability to detect relevant anomalies. This is
also dependent on the model which is used, with some showing significantly better results. In cases
where the two anomaly classes were highly similar, the impact of the framework was less pronounced,
highlighting the importance of clear feature differentiation. In these situations, the accuracy of the inter-
esting anomalies class is significantly reduced. Furthermore, the framework needs quite a few samples,
around 50, to lead to meaningful results. This is, however, not a big obstacle, because this framework
is meant to function when we repeatedly get false positives from the same uninteresting class.

The key takeaways from this research are threefold. First, user feedback is an essential component
in refining anomaly detection models, ensuring that flagged anomalies align with domain expertise.
Second, data augmentation techniques like SMOTE-NC can effectively reshape anomaly detection
behaviour, provided that the uninteresting anomalies have distinguishable characteristics. Lastly, the
success of this framework depends on the degree of separability between interesting and uninteresting
anomalies, suggesting that future work should explore adaptive feature selection methods to enhance
distinction.

In conclusion, this thesis contributes a novel and practical approach to improving anomaly detection
systems by mitigating the impact of uninteresting anomalies. By integrating domain knowledge and
resampling techniques, the proposed framework provides a scalable solution for dynamic anomaly
detection tasks. Future research could focus on optimising retraining strategies, exploring real-time
adaptation, and extending this approach to other domains where anomaly detection remains a critical
challenge.
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Stability study results

In the following figures, the rest of the results of the stability study can be seen.
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Figure A.1: The influence of different ratios of uninteresting anomalies to regular data on accuracies of all the classes. This
experiment has been run on the OCSVM model. Here it can be seen that this model gives very stable results.
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Figure A.2: The influence of different ratios of uninteresting anomalies to regular data on accuracies of all the classes. This
experiment has been run on the VAE model. Here it can be seen that this model gives slightly more unstable results, due to the
randomness that is in the algorithm. It can be concluded that there is no obvious learning rate where the performance is
superior.
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Figure A.3: The influence of different ratios of uninteresting anomalies to regular data on accuracies of all the classes. This
experiment has been run on the AE model. Here it can be seen that this model gives slightly more unstable results, due to the
randomness that is in the algorithm. It can be concluded that there is no obvious learning rate where the performance is
superior.
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Influence of the number of nearest neighbours in
OCSVM
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Figure A.4: The influence of the number of neighbours on the accuracies of all the classes. This experiment has been run on
the OCSVM model. Here it can be seen that this model gives quite stable results, and there is not really a pattern to when it is
better or worse. This suggests it is up to the randomness in SMOTE that makes a difference in the results.
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Figure A.5: The influence of the number of neighbours on the accuracies of all the classes. This experiment has been run on
the VAE model. Here it can be seen that this model gives quite stable results, only with a higher number of neighbours
producing slightly worse results.
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Influence of the number of nearest neighbours in
AE

T et
0.8
z
c 06
3
g 0.4
0.2
0
1 2 3 4 5 6 7 8 9 10
Number of nearest neighbors
=== Accuracy of anomolies === Accuracy of regular data

=@==Accuracy of uninteresting anomolies

Figure A.6: The influence of the number of neighbours on the accuracies of all the classes. This experiment has been run on
the AE model. Here, it can be seen that this model gives very stable results.



Results experiment 1

Here we have given the results for all the different experiments we have ran for experiment 1. Here
the anomaly listed at the top is defined as the interesting anomaly, and the one to the side is the
uninteresting one. Then inside each cell, we first list the true positive rate, which entails the accuracy
over the anomaly class, then the true negative rate, and finally the rate of accuracy of an uninteresting
anomaly being labelled as regular data.
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. Accuracy | Accuracy AC.C uracy

Model Which method . uninteresting
Anomalies | regular data ;
anomolies

IForest | No extra data 0.7566 0.9354 0
IForest Few extra 0.7536 0.9214 0.3265
IForest | Resampling SMOTE | 0.5574 0.6587 0.8426
AE No extra data 0.6458 0.7896 0.0044
AE Few extra 0.5544 0.5789 0.1545
AE Resampling SMOTE | 0.2447 0.6584 0.7369
OCSVM | No extra data 0.7569 0.9368 0
OCSVM | Few extra 0.6935 0.9144 0.1210
OCSVM | Resampling SMOTE | 0.4578 0.8756 0.7681
VAE No extra data 0.8265 0.8900 0.0745
VAE Few extra 0.8458 0.9271 0.5413
VAE Resampling SMOTE | 0.6759 0.8464 0.7459

Table B.13: The performance of the different models using our framework on the healthcare dataset, where inconclusive is the
uninteresting anomaly and abnormal interesting. As can be seen from the results, all of the different models perform relatively

similarly on the baseline of no extra data. Highlighted are per model which method gave the best accuracy per class.



Results experiment 2

In this chapter the additional plots for experiment 2 are shown.

Influence of number of samples on accuracy in AE
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Figure C.1: The number of samples needed to create reliable results for Autoencoders. Here we can see that the model is
very consistent, and for this combination of model and interesting and uninteresting anomaly produces very reliable results with
not much variance.
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Influence of number of samples on accuracyin
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Figure C.2: The number of samples needed to create reliable results for Variational Autoencoders. Here we can see that the
model needs more time to learn data, only producing good results when we near the 100 samples gathered.

Influence of number of samples on accuracyin
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Figure C.3: The number of samples needed to create reliable results for OCSVM. Here we can see that the model needs more
time to learn data, only producing good results when we near the 50 samples gathered.
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