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Executive Summary
Today, logistics systems are becoming larger and more complex than ever before. Numerous concepts
and paradigms have been proposed to deal with this problem. Self-organising principles in logistics
systems can be seen as a potential remedy. This study aims to investigate and develop efficiency
improvements for a decentralised dynamic last-mile parcel delivery system. A better understanding of
the efficiency, and thus the feasibility of this decentralised logistics method, helps to understand the
potential of these systems as alternatives to the current centrally organised system. The main research
question addressed is: To what extent can the efficiency of a decentralised dynamic parcel distribution
method be improved by applying different heuristics and adapting the simulation environment with
congestion and a mixed fleet? To answer this question a review of existing literature on last-mile
logistics, self-organisation in logistics and auction methods in logistics is conducted. The current
model is evaluated, benchmarked and validated. The improvements of the model are defined and
applied in an experimental setting using a small data set, after which the extended model is applied
to a real-scale case data set based on 729 delivery addresses in Delft.

The problem of last-mile delivery is related to various topics of operational optimisation. It has
characteristics in common with routing problems, transport planning problems and scheduling prob-
lems. In today’s last-mile delivery, the allocation and routing of parcels are performed separately.
First, the clustering of postal codes is used for allocation and then a routing problem is solved for
each individual vehicle. Since the delivery zones are often set for several weeks, daily fluctuations in
the number of parcels can lead to suboptimal utilisation and routing of the vehicles within the deliv-
ery fleet. A decentralised dynamic parcel distribution system, inspired by self-organisation principles,
would allow for combinatorial optimisation and dynamic allocation, thus overcoming the restriction of
strict delivery zones.

When self-organising principles are taken into account, the question arises why a self-organising
network is created. For several domains (logistics, mobility, energy, etc.) the drivers are the increasing
complexity and scale of systems and processes, the need for greater efficiency, the need for flexibility and
the need for robustness against failure of system components. Self-organisation is a broad concept with
many different interpretations and the literature is mainly conceptual. The method used to enable self-
organising features in this study is a single parcel auction method where the parcels are inserted into the
route of the bidding vehicles. The auction system defined for this method is distinguished by its focus
on allocation within an organisation of individual parcels. This approach is still relatively unexplored
as an alternative to the current centralised sorting and routing system. Moreover, quantitative research
through simulation and optimisation approaches is also necessary to investigate the performance and
viability of this type of system in real cases.

To assess the actual feasibility of this method, three main characteristics are defined that the
system must satisfy to be used effectively in real-world systems: acceptable computational complexity,
self-organising capabilities, and the ability to handle a dynamic sequence of parcels. The principles of
self-organisation in a logistics system are defined by Pan et al. (2016) which are openness, intelligence
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and decentralised control. The analysis of the model revealed the limitations of the current method.
The difficulty in applying the method results from the lack of built-in heuristics; furthermore, the
dependence on input data is a limitation. To benchmark and validate the method. The performance
of the model is compared across multiple test instances with the best-known solution and a centralised
solver which showed that the considered decentralised base method performs mediocre when considering
the distance travelled and computation times. Further validation by use of a parameter variation and
an extreme value test showed the irregular behaviour of the number of reassignment iterations and
the number of kick-outs parameters. Therefore, reducing the possibility to validate the model and the
results, as path dependency could be present.

To address the limitations present, the model is modified with alternative heuristics. The applied
modification strategies are random insertion, parcel swapping and k-means clustering. To take into
account the behaviour of the model under different conditions, the method is tested for a heterogeneous
fleet of vans and cargo bikes and different levels of congestion. Applying the heuristics for the test
instance of random insertion and k-means clustering shows better performance in terms of distance
travelled and calculation time. Swapping did not yield any benefits in terms of performance and
efficiency. Therefore, the combination of random insertion with a search frequency of 50% and the
clustering method in a combined approach was chosen. The results of the combined method are better
than those of their separate applications in terms of performance for travel distance and calculation
time. The combined method was able to achieve significantly better computation times with up to
40% faster run times for the test data. In general, the heuristics were able to improve the performance
of the model, but the improvements in travel distance were minimal. When the combination of the
best performing heuristics is applied to the case data, a 4.6% improvement in vehicle travel distance
can be achieved compared to the original method, but still with high computation times. Comparison
with an external centrally organised OR solver shows that although the decentralised method can be
improved, it does not perform well, as the OR solver can find a better solution in a fraction of the time
needed by the improved decentralised auction method.

The simulation environment is adapted with a heterogeneous fleet, both for the basic method and
for the improved method. The mixed fleet changes the simulation environment of the algorithm with
respect to the implementation of different vehicle types with lower vehicle speed and capacity. The
fleet is adjusted for three types of combinations of different amounts of vans and cargo bikes in the
test case and the case data. It was found that for a mixed fleet with similar capacity, the model is
no longer able to deliver all parcels with a large number of cargo bikes in the fleet. In general, it
was found that for a higher number of vehicles with lower capacity the routing is less efficient. On
the other hand, the integration of the cargo bikes shows that for the test case and the case data, the
emissions decrease with a higher number of cargo bikes. This indicates a trade-off between efficient
routing and greener transport. The simulation environment is also adjusted for congestion. Congestion
is a common disturbing factor in the daily last mile delivery. To take congestion into account, three
congestion factors are chosen. Congestion affects the time pressure a vehicle has to accept a package.
More congestion means less chance for a vehicle to include a parcel in its route. For the original solution
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method, the model is not affected by the inclusion of congestion. For the modified solution method,
congestion causes a slight increase in travel distance. Emissions increase proportionally to congestion,
due to the direct relationship between distance travelled and emissions. For the case data, the inclusion
of congestion has a larger effect on the travel distance and the associated emissions. The higher the
congestion, the less efficient the routing. In contrast to the mixed fleet, the change in the simulation
environment by including congestion does not affect the ability of the vehicles to deliver all packages
in a feasible way. When taking into account the combination of congestion and a mixed fleet, it can
be concluded that the modified method in this study produces more infeasible results for the test case
than the original method. Moreover, it can also be observed that for the same fleet combinations with
more congestion more parcels are not allocated, both for the test case and for the real case.

The proposed system would represent a radical change from the current way of doing business and
handling parcels. Overall, the method is not comparable to other (centralised) approaches in terms
of efficiency, which raises the question of whether such a system is desirable. If the method is to
compete with the current centralised method, a more efficient model must be developed. The steps for
the development of the model would be to structure the research and development by creating a clear
vision and scope, defining the requirements, evaluating the limitations, identifying the key partners and
establishing step-by-step steps for the actual development of such a system. This study has contributed
to the first three steps. It has demonstrated the proof-of-concept and created a more efficient model.
In addition, quantitative research has been carried out through simulation and optimisation, and the
performance and viability of this type of system have been examined at real scale case data.

The assumption of complexity is evident in real-life logistical processes. Studying a decentralised
solution method for parcel distribution helps in understanding these complex systems and points to
possible intervention possibilities. It can be argued that the current method of decentralised dynamic
parcel distribution is not a good method for the distribution of last mile parcels. The advantages that
a decentralised dynamic approach through individual parcel auctions could bring are outweighed by
the low efficiency of the model studied in this study. At the academic level, many papers point to the
benefits of self-organising principles. It is widely believed in the literature that decentralised control
can help improve the robustness and performance of systems. The gap in research not addressed in this
study is the relationship between the efficiency of a model and its robustness. Further research should
focus on uncovering this relationship to better demonstrate the potential of this type of method.
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1 Introduction

In recent decades, we have seen increasing industrial production and corresponding logistic demands.
In the European Union alone, more than 1 million companies are registered in the transport and
storage sector, employing nearly 11 million people (Winkelhaus and Grosse, 2020). Production and
logistics systems have matured, but new customer demands are putting pressure on logistics systems,
turning them from complicated to complex (Winkelhaus and Grosse, 2020). One of the drivers is
the direct delivery of packages ordered by consumers. Logistics service providers are faced with the
challenge of efficiently delivering millions of packages to customers’ homes. Numerous companies have
gone bankrupt due to operational and logistical problems related to this last mile of transport (Boyer
et al., 2009). Last-mile delivery can be defined as freight transport over the last part of the route
to the customer using the last means of transport (Macioszek, 2017). Problems related to last-mile
delivery usually arise because deliveries consist of individual orders and are spread across destinations
(Macioszek, 2017). These inefficiencies make the last-mile delivery the least efficient stage of the supply
chain, accounting for 28% of total delivery costs. Moreover, externalities such as congestion and pollu-
tion, occur especially in urban areas (Ranieri et al., 2018). Trends of improvements in this area can be
classified into the optimisation of transport management and routing, innovative vehicles, collaborative
and cooperative logistics, and innovation in infrastructure (Ranieri et al., 2018). One of these innova-
tions in transport management and routing is the application of self-organising principles in logistics.
Self-organisation is a term widely used in many research fields (Pan et al., 2016). The application,
architecture of control, and level of self-organisation differ greatly. The definition of all distinct concept
systems have one thing in common, there is no external control (Hrabia et al., 2018). Moreover, it
is overall hypothesised that decentralised control can help to improve the robustness, resilience, and
performance of systems (Zhang et al., 2016, Serugendo et al., 2003, Pan et al., 2016, Van Duin et al.,
2021, Hrabia et al., 2018, De Wolf and Holvoet, 2007). The principles of self-organisation in logistics
systems relate to openness, decentral control, and intelligent of the agents in the system (Pan et al.,
2016). For the paper by Van Duin et al. (2021), which evolved from the thesis of Vlot (2019), it is
hypothesised that a system in which parcels can choose their own route in last-mile delivery is more
robust and could obtain better results in terms of vehicle distance travelled, delivery times, and emis-
sion rates than the current centralised system. The method uses a semi-decentralised auction-based
model. In this study, possible improvements of this decentralised auction-based solution method are
explored. The efficiency and performance are studied for different heuristics and for changes in the
simulation environment. This study contributes to the benchmarking and validation of this alternative
to centralised sorting, allocation and routing for last mile logistics. It examines the improvements
and limitations and thereby better defines the potential of this method as a remedy for the growing
complexity in last mile logistics.
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1.1 System Scope

The parcel allocation method used in Van Duin et al. (2021), was commissioned by the Self-Organising
Logistics in Distribution (SOLiD) consortium. This is a partnership between TNO, DPD, University of
Groningen, Delft University of Technology, Eindhoven University of Technology and Erasmus Univer-
sity Rotterdam. The collaboration aims to develop a proof-of-concept for self-organisation in logistics.
The algorithm is hereinafter referred to as the SOLiD algorithm. The system concerns the last-mile
of logistics in parcel handling in the Netherlands. The focus of this study is on a combination of two
parts. First, there is the sorting and assignment of the parcels in distribution centres and second, there
is the last-mile delivery of the parcels. Both adhere to conceptual problems known in the literature.
For sorting and assignment, there are multiple algorithms and methods to allocate parcels and fill a
vehicle, section 2.1.2 describes the current sorting process. For last-mile delivery, different heuristics
exist for vehicle routing, an elaborate overview of the vehicle routing problem is given in Appendix
A. For this study, the SOLiD algorithm is considered which combines both. The scope is set at the
dynamic sorting and routing, where a team of vehicle agents must allocate parcel agents for the last-
mile delivery from the last distribution centre to the customer. The term self-organising system is a
popular expression, but it is opaque to logistics in the sense that it is unclear what requirements a
system must meet in order to unlock the benefits that can result from it. The main reason for applying
a self-organising system in general is the improved flexibility and robustness of a system. For this
study, the umbrella term self-organisation is still used to explore the literature and the potential for
logistics, but a more precise classification of the solution method used in this study is a decentralised
dynamic parcel distribution method for parcel sorting and vehicle routing. To assess the actual feasi-
bility of this method, three main characteristics are defined that the system must satisfy in order to
be used effectively in real-world systems: acceptable computational complexity, self-organising capabil-
ities, and the ability to handle a dynamic sequence of parcels. Self-organising capability refers to the
principles of openness (agents can enter and exit the system), intelligence (agents can make decisions),
and decentralised control (agents can function without central control). This study investigates the
possible improvements in terms of efficiency of the decentralised auction-based method for last-mile
parcel delivery and tests it for real-time complexity by incorporating congestion and a mixed fleet. The
above-mentioned requirements act as a tool to evaluate, benchmark and validate the solution method.
The scope of the study is limited to examining the performance and efficiency of the method. The
benefits of robustness and flexibility that could result from incorporating a number of self-organising
capabilities are not tested. The model is tested for a range of instances and scenarios, before finally
being applied to a real-scale case study consisting of 729 customer location points (postcodes) in the
Delft region. For the mixed vehicle fleet, both a homogeneous fleet and a heterogeneous fleet with two
types of vehicles are considered, namely a cargo bicycle and a delivery van. Figure 1 gives an overview
of the system scope.
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Figure 1: System scope

1.2 Objective and Research Questions

The objective of this study is to evaluate improvements in applying the decentralised single parcel
auction method for last-mile logistics. This is done by validating the existing method and proposing
an improved version of the solution method which accounts for alternative heuristics, a mixed fleet,
and congestion. The insights should provide a critical evaluation of the concept of parcel sorting and
vehicle routing by use of the method. The main research question for this study is defined as:

To what extent can the efficiency of a decentralised dynamic parcel distribution method be improved
by applying different heuristics and adapting the simulation environment with congestion and a mixed
fleet?

The main research question can be answered by dividing it into five sub-questions. The sub-questions
are formulated to structurally gather and apply knowledge. The sub-questions are placed in the order
of research, namely, analysing the current body of literature on the topic, benchmarking the existing
situation, doing experiments to test extension to the model, and identifying the broader implication of
the results found.
Sub questions:

1. What is the state of the art of self-organisation and auction methods in last-mile logistics?

2. What is the effect of alternative routing heuristics on the efficiency of the parcel delivery solution
method in terms of computation time, and vehicle mileage?

3. What will be the effect of a mixed fleet of vans and cargo bikes for the parcel delivery system in
terms of calculation time, vehicle mileage, and emissions?

4. How will the adapted last-mile delivery solution method perform under different conditions of
congestion?

5. What are possible other extensions of the decentralised dynamic parcel distribution solution
method and what are the steps to implement this technology in last-mile logistics?
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The current self-organising logistics system is limited by the assumptions it makes. To validate the
current method, moreover, relieve these assumptions, the sub-questions step-by-step examine whether
it is possible to include more realistic conditions in the logic of the model. The overview of the state
of the art provides the basis for understanding self-organising logistic systems and auctions in logistics
systems. This knowledge is then applied to understand the current performance and limitations of
the existing model. The model is then extended with alternative heuristics. This is done to see
if improvements can be made in terms of calculation time, vehicle kilometres, and emissions. To
take into account the behaviour of the model under different conditions, the method is tested for a
heterogeneous fleet and different levels of congestion. This gives a better insight into the behaviour
of the improved and original model under different conditions of real-time complexity. The extensions
to the model should provide further insight into the feasibility of this method and pave the way for
further research into this technology.

1.3 Research Approach

The research will be carried out by means of a literature study, modelling and case study approach.
The first sub-question 1 will be answered through a literature study. The state of the art in the field
of self-organisation in logistics, auction methods and their application possibilities will be studied.
The literature study should reveal the gaps in the literature. To ensure the quality of the literature,
emphasis should be placed on reviewed papers to obtain information. The required data consists of
academic literature that will be consulted using Scopus and Google Scholar. To expand the number of
papers, snowballing will be used. The knowledge of the state of the art forms the basis for answering
the remaining sub-questions. Moreover, it provides the necessary insights to construct and improve
the model for the following sub-questions.

A modelling approach that uses an agent-based model allows for the analysis of the dynamic, multi-
actor, multi-objective, and multi-level environment (Van Dam et al., 2012). Therefore, this approach is
best suited to study the behaviour of last-mile logistics systems. To create the model, first, the current
situation needs to be carefully mapped. The model would consist of a simulation with the interacting
vehicle and parcel agents. The main advantage of a model-based approach is that the system can be
studied under different conditions (Robinson, 2014). In this way, a comparison can be made between
the SOLiD algorithm and extensions to the algorithm. A limitation of the method is that models are
always a simplification of reality and should therefore be carefully validated and verified (Robinson,
2014). This approach is used to answer sub-questions 2, 3, and 4. The performance of the model
in terms of computing time, vehicle mileage, and emissions will be compared to the performance of
the current model to see the effects of the extensions. For each extension, experiments will be carried
out that will be compared with the results of the current algorithm working under similar conditions.
The modelling approach is applied to a single case study at a company. Prime Vision B.V. would
provide access to the data involving last-mile logistics. This provides an opportunity to create a digital
environment to test and verify the model based on real historical data. This strategy allows for an in-
depth exploration of a complex problem in a real-scale environment (Crowe et al., 2011). In addition,
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the use of a case study strategy helps to analyse the topic within the boundaries of the organisation
(Yin, 2009). The knowledge gained from discussing the topic with industry experts at Prime Vision
B.V. is used to answer the last sub-question 5. Here, the possible next steps for the development of
this innovation are discussed.

1.4 Methodology

The research flow diagram is designed based on the structure of the research questions and chapters in
the report. The diagram of the methodology is given in Figure 2. The chapters provide direction for
the research phases. The smaller boxes indicate the main topics addressed per section.

Figure 2: Thesis structure and overview of the research flow

1.5 Previous Work

This thesis is conducted in cooperation with Prime Vision B.V. Prime Vision is a world leader in
computer vision integration and robotics for logistics and e-commerce. In its 60 years of existence, it
has stimulated innovation in the postal and logistics sector, winning several awards. Prime Vision’s goal
is to obtain a proof-of-concept for the self-organising capabilities of parcels in logistics. As previous work
has been done in collaboration with Prime Vision B.V. in the area of self-organised last-mile logistics,
it is important to outline their work and point out the areas that can still be explored and improved.
Three of my predecessors have looked at the subject from different angles. Vlot was the first and did
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extensive research into self-organising parcels and routing. His work resulted in an algorithm for self-
organisation that was used in the paper of Van Duin et al. (2021). Valdivia then developed the software
architecture for a logistics planning system based on Vlot’s algorithm. Finally, Chandrashekar focused
on the self-organisation/automation of robots in intralogistics. He thus departed from the concepts of
parcel sorting and routing discussed by the first authors.

1.5.1 Distinction of this Study

This study will focus on the continuation of Vlot and Valdivia’s work on the application of self-
organising principles in last-mile logistics by using the auction-based solution method. This is done
by validating and extending the model consisting of Vlot (2019) sorting and routing algorithm. It
distinguishes itself from previous work by not classifying the model as fully self-organising, as this
might give a wrong impression, but as a solution method that uses decentralised control. This study
therefore better delineates the proposed solution method from existing solution methods so that its
advantages and limitations can be better compared. The novelty of this study is the exploration of
improvements in the decentralised auction method and the analysis of the effects of a mixed fleet, and
congestion in the model. A visual overview of the distinction of this work is given in Figure 3.

Figure 3: Current solution method compared to the extended
solution method

1.6 Research Contribution

The nature of the research problem is the exploration of self-organising principles for the improve-
ment of logistics operations. This is based on the limited knowledge about the effects of decentralised
control in logistics and parcel handling. The identified knowledge gap is the lack of understanding
of self-organising principles and their ability to improve the performance of parcel sorting and rout-
ing. When self-organising principles are considered, the question arises as to why a self-organising
network is created. For several domains (logistics, mobility, energy, etc.) the drivers are the increasing
complexity and scale of systems and processes, the need for greater efficiency, the need for flexibility
and the need for robustness against failure of system components. One consideration that emerges in
decentralised systems is between efficiency and greater robustness. Organising all parcels centrally can
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greatly optimise the delivery system, but it may be less robust against changes in the environment.
A decentralised system may be more robust, but less efficient due to the lack of centrally available
information. The objectives of design for efficiency and design for robustness are often in conflict
(Meepetchdee and Shah, 2007). A better understanding of the efficiency, and thus the feasibility of
decentralised logistics, is essential to understanding the potential of these systems. In this way, more
insight is gained into the tools for tackling the challenges faced by the constantly evolving logistics
sector. This topic relates to the MSc programme Complex Systems Engineering and Management, as
the increasing interrelationships and dynamics between different actors in logistics networks lead to
highly complex global supply chain processes (Nilsson, 2019). The assumption of complexity is evident
in real-life logistics processes. Studying a decentralised solution method for parcel distribution helps
in understanding these complex systems and points to possible intervention possibilities. Furthermore,
this thesis project deals with the design and analysis of transport systems.

1.7 Thesis Outline

This thesis is structured as follows, this introductory section provides the initial problem analysis
and the research framework. Section 2 provides a review of existing literature on last-mile logistics,
self-organisation in logistics, this is then translated into a conceptual model in section 3. The imple-
mentation of the model is then defined in Section 4. After the model is validated and verified, and the
implementation is outlined, the simulation is run for several experiments in Section 5. The conclusion
of the research is then given in Section 6, followed by a discussion and recommendation in Section 7.
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2 State of the art

This chapter describes the state of the art of last-mile logistics, self-organisation in logistics and auction
methods in logistics. The three topics together form the foundation on which this study is based and
highlights the research gap present. Furthermore, the current situation is analysed, which will later
help in understanding the modelling decisions.

2.1 Last-mile Logistics and Operational Optimisation

At present, traditional brick-and-mortar shops are expanding their online services, pushing the tra-
ditional supply chain to new limits with the expectation of excellent service and same-day delivery
(Fleischer et al., 2020). The recent times of Covid-19 also show the switch to the more individualistic
logistics demand paradigm, forcing logistics networks to become more efficient (Yavas and Ozkan-Ozen,
2020, Ghosh et al., 2021). These changes in behaviour together with growing urbanisation and increased
focus on sustainability make last-mile logistics an emerging research area (Olsson et al., 2019). Olsson
et al. (2019) divide the literature landscape for last-mile logistics literature in four themes: emerging
trends and technology, operational optimisation, supply chain structures, performance measurement,
and policy. The focus of this study can be classified as operational optimisation which focuses on
optimising last-mile operations and making better operational decisions. This often employs math-
ematical modelling and optimisation. The theme of operational optimisation can be subdivided in
routing, transport planning, scheduling, and facility location. A visualisation of the different themes is
given in Figure 4. Routing refers to selecting, planning and finding optimal paths within a network.
Transport planning deals with issues such as consolidation, use of spare capacity and load optimisa-
tion. Scheduling focuses on planning the sequence of deliveries, and facility location involves finding
an optimal location for a facility (Olsson et al., 2019). The problem of decentralised last-mile parcel
distribution relates to a combination of routing, transport planning, and scheduling.

Figure 4: Themes in last-mile logistics literature (adapted from:
Olsson et al. (2019))
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2.1.1 Computational Complexity

The essence of studying the last mile is the inefficiencies that arise with it. The inefficiencies arise
because deliveries consist of individual orders and are spread across destinations (Macioszek, 2017).
Operational optimisation for last-mile problems is specifically difficult because many problems that
reflect the complexity of today’s business environment are NP-hard combinatorial problems (Kang and
Lee, 2018). In combinatorial problems, combinations occur in discrete values. One of the best-known
combinatorial problems is the travelling salesman problem where the salesman has to visit a series of
cities (Buckman, 2018). P-problems is an abbreviation for polynomial problems, which can be solved
in polynomial time. NP-problems is an abbreviation for non-deterministic polynomial problems. For a
non-polynomial problem, the operational complexity increases exponentially (2n). Parcel sorting and
routing can be seen as a general version of the vehicle routing problem, which has been shown to be
an NP-hard problem (Kang and Lee, 2018). When problems become NP-hard, it means that the only
way to find the optimal solution is to evaluate all permutations (Buckman, 2018). This number is
exponential for the number of parcels and vehicles in the system. Unlike NP-complete problems, it is
not possible to validate an optimal solution when it is given. As an aid to finding a solution, heuristics
can be applied to guide the search process and do not require brute force search for solutions.

2.1.2 Current Situation for Sorting/Distribution Centres

The parcel delivery industry was worth 500 billion USD in 2019, which grew even more during the
Covid pandemic (Ghosh et al., 2021). The parcel delivery system is a complex interconnected and
interdependent network. Sorting centres are critical in this infrastructure, as they are the points in the
network where incoming parcels are aggregated and then segregated into onward destinations (Ghosh
et al., 2021). Logistics service providers are looking for ways to reduce costs and improve customer
responsiveness. Cost reduction motivates to centralise inventory, while customer responsiveness mo-
tivates to have goods close to the end customer (Nozick and Turnquist, 2001). Distribution centres
provide the balance between these two objectives. In the final stage of transportation, it is difficult
to combine shipments, this leads to high costs (Macioszek, 2017). Therefore, for sorting the parcels in
the distribution centres, it is essential that the parcels are allocated for optimal routing of the delivery
fleet. In the e-commerce parcel delivery supply chain Morganti et al. (2014) define five types of facil-
ities, namely, mega fulfilment centres, where goods are stored. Parcel sorting centres, where parcels
are sorted before being forwarded to local parcel delivery centres. Local parcel delivery centres for
last-mile handling. Local urban logistics depots for fast order fulfilment. And finally, return processing
centres. A schematic overview is given in Figure 5. The focus of this work is the delivery from the
distribution centre to the customer.

The interview in Appendix B gives insight into the sorting process in the Netherlands. At present,
the sorting of parcels and corresponding routing of vehicles is done based on static areas of delivery. To
expand on this, each vehicle is assigned to a number of postal codes to which it is set to deliver. Each
package has a barcode, which contains the information of the address, delivery time and additional
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Figure 5: Schematic and simplified overview of the different steps
of parcel facilities

services. Most parcels are preregistered, if preregistration is not done, the sorting machine makes a
sorting decision by visual inspection of the label. Almost all postal centres in the Netherlands have
at least two sorting phases. The first sorting stage is called dispatch sorting and is based on postal
code only. The shipment is then sent to a sorting location near the scanned postal code. There, the
shipment is sorted again based on the postal code and house number. These postal code groups are
often fixed for multiple weeks. The sorting machine scans the packages that pass by on a conveyor
belt. The scanner sees the barcode and gives the sorter the correct sorting direction. After being
classified, the parcels are placed in roll cages. The maximum number of exists for a sorter is 50, but
because current postal services have had to deliver to so many addresses, it is impossible that there is
no overlap in postal codes. This is currently being solved by one or more dedicated sorting chutes for
the remaining postal codes. Sorting is done in a centralised control system that has all the information
of each package at the time it is pre-registered or scanned for the first time. Routes are determined
based on this information; this information is then mapped into a centralised system that creates the
sorting rules. An overview of the system is given in Figure 6.

Figure 6: Schematic overview of parcel sorting

Assignment and routing of the parcels are done separately. It first relies on the clustering of postal
codes and then a TSP is solved for each vehicle. As delivery zones are often fixed for multiple weeks,
daily fluctuations in quantities of parcels can lead to suboptimal utilisation and routing of the vehicles
within the delivery fleet.

The method described above is only possible if information is known centrally. This assignment
becomes more difficult when not all information is available beforehand. This occurs for parcel handling
where the destination of the parcel is not known up to the assignment of the parcel to a delivery vehicle
(Phillipson and de Koff, 2020). Considering the dynamic assignment, previous work by Van Duin et al.
(2021), uses an auctioning system such that each parcel can decide which vehicle it is assigned to.
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Phillipson and de Koff (2020) describe several methods to find an efficient solution to a dynamic
allocation problem for vehicle routing. Similar to Van Duin et al. (2021), they propose an approach
using minimum cost insertion. The dynamic assignment theory has overlap with auction methods
in which assignment is done based on bids of multiple parties. Auctioning methods in logistics and
dynamic assignment are further explained in section 2.3.

2.1.3 Transport Modes

For the delivery of parcels along its logistics chain, various modes of transport are used. Long-distance
parts of transport are often carried out by trucks, trains or barges (Boudoin et al., 2014). In densely
populated areas, such as cities, the road with vans or small trucks is the most traditional mode of
transport. However, due to external factors, alternative modes are emerging, such as rail, river/canal
boats, and cargo bikes (Cardenas et al., 2017). A visualisation of the possible organisation of such a
system with different modes is shown in Figure 7. The emergence of these vehicles is the result of a
number of economic and environmental challenges. Urban mobility is responsible for 40% of all CO2

emissions from road transport and up to 70% of other pollutants (Schliwa et al., 2015). The rapidly
growing e-commerce market and the resulting growing number of diesel vans to meet demand do not
contribute to this. A possible solution to this is the adoption of cargo bikes in the last-mile logistics
fleet. A study conducted by Gruber et al. (2013), shows that 19% to 48% of the mileage of courier
logistics could be substituted by electric cargo bikes. Cargo bikes can be classified as 2- or 3-wheeled
bikes, with a cargo box, with the possibility of electronic support (Schliwa et al., 2015). One of the
main limitations with these vehicles is the limited range they have (Ranieri et al., 2018). Therefore,
the main advantage of a van over a cargo bike is its higher capacity and longer range. The viability of
implementing different vehicles for last-mile logistics is highly dependent on the geography of the cities
and the logistics network. Urban areas with high density and narrow streets in historic city centres are
ideal for cargo bikes. Less densely populated and more remote delivery areas argue more for the use
of vans (Schliwa et al., 2015).

Figure 7: Visualisation of different transport modes for parcels
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2.2 Self-organisation in Logistics

Self-organisation is a concept broadly used in many research fields. The term is often used in com-
bination or in overlap with the terms self-adaptation, emergence, and automation. It can be difficult
to define the distinction between these three concepts (Hrabia et al., 2018). Appendix C gives an
elaborate overview and explains the terms and their dependencies and relationships. When a logistic
system is self-organising it can function without significant interventions by managers, engineers, or
software control. It functions based on contextual local interactions (Bartholdi III et al., 2010). Today,
logistics systems are becoming larger and more complex than ever before. To cope with this problem,
numerous concepts and paradigms are proposed as solutions, e.g. intelligent products, holonic and
multi-agent systems, cyber-physical systems and physical internet. Self-organising logistics systems
can be seen as a joint effort of all these concepts (Pan et al., 2016). In order to achieve self-organising
logistics systems, Pan et al. (2016) state that the main characteristics they must fulfil are openness,
intelligence and decentralised control.

The concept of self-organisation in logistics is still a developing paradigm, but inspiration is taken
from other research domains (Pan et al., 2016). Van Belle et al. (2011), Bartholdi III et al. (2010)
and Serugendo et al. (2003) look at a bio-inspired coordination architecture operating system for self-
organisation of logistics systems. The principle of self-organisation can be seen in biological processes,
where complex organisms can grow from a single cell. A cell can interact with its environment to
influence its activities (Van Belle et al., 2011). A commonly used reference in the self-organisation of
logistic routing is the network of ants. The self-organising behaviour of the ant population is the result
of a network of interactions between the ants and their environment. These can organise the tasks of the
ant colony, such as building a nest, finding food, and spreading alarm among members of the community
(Serugendo et al., 2003, Van Belle et al., 2011). Ants use pheromones to communicate information
along different routes (Van Belle et al., 2011). This principle is used in ant colony optimisation
algorithms that can be used, for example, to solve travelling salesman problems (Dorigo et al., 2006)
or in cross-docking operations in warehouses (Van Belle et al., 2011). Bartholdi III et al. (2010) apply
this approach for the balancing of assembly lines. Furthermore, Serugendo et al. (2003) compare the
behaviour of ants routing and food foraging behaviour to a manufacturing control system, in which
the different agents communicate with their neighbours to create a system that keeps functioning
in a highly dynamic environment. Van Duin et al. (2021) focus on a method of self-organisation
specifically for last-mile parcel delivery. Here, self-organisation principles are applied for the allocation
of parcels and the routing of vehicles. The self-organisation is facilitated by the integration of an
auction algorithm, which allows the parcels to choose their desired path. Another application of self-
organisation is by use of a holonic design approach (Bousbia and Trentesaux, 2002, Botti and Giret,
2008). This control architecture is characterised by autonomous and collaborative entities that are often
used in manufacturing systems (Botti and Giret, 2008). This concept supports the idea of how self-
organising and self-adaption functionalities can deliver cooperative behaviour while providing resilience
against the demand and dynamics of the environment (Valckenaers et al., 2008). The application of
this architecture is mostly concerned with intelligent manufacturing systems and the allocation and
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reallocation of resources (Bousbia and Trentesaux, 2002). A trend that gained popularity over the last
decade, is the physical internet. This theory applies the analogy of the Internet to structure logistics
networks (Pan et al., 2016). Based on the protocols of the digital internet, which is characterised
by operational interconnectivity, the physical internet is hypothesised to improve the current logistic
models, to solve the challenges of the current global logistic network (Montreuil, 2011).

Most of the literature on both self-organisation and self-organising logistics is conceptual in nature,
and relatively little empirical research has been done on it. For practitioners, there is currently no clear
direction or course of action for working towards the vision of self-organisation in logistics (Quak et al.,
2018). When looking at the decentralised aspects of self-organisation, there is overlap with large multi-
agent systems, such as task allocation for autonomous guided vehicles. Decentralised algorithms have
made it possible to scale the planners as the teams grow, spreading computation and communication
across the robot teams (Buckman, 2018). However, the characteristics of openness (agents joining and
leaving the system) are not present in such systems.

2.2.1 Applications of Self-organisation in Different Domains

The concept of self-organisation can be applied in many different contexts. Applications range from
energy systems to communication networks. A good example of the application of self-organisation
in communication networks is mobile ad hoc networks (MANET). MANETs make use of wireless
technologies to connect dynamically without any centralised structure (Hinds et al., 2013). To take
into account the dynamic topology of the network, all nodes need to be informed about changes
in the network. Conventional information routing methods are inapplicable due to dynamic topology
(Gorodetskii, 2012). The main characteristics of these systems are that there is no infrastructure needed
as the devices act as network nodes and that the robustness is high. A downside of such a network is the
low throughput, as data transfer can only happen at two points. When considering other applications of
self-organisation of large-scale systems it is inherently connected to communication structures. Another
domain where self-organisation is named is energy systems. An example is decentralised coordination
based on self-organisation is used for the improvement of energy resilience. Čaušević et al. (2021)
describe an approach to achieve resilience by directing both the physical topology of the grid and
changes in supply and demand of individual consumers and prosumers. Additionally, self-organisation
can also be observed in computer systems. Serugendo et al. (2003) describe the application of self-
organisation in web communities. Authors of web pages place debates on the web with hyperlinks
to other pages. The posting of such a web page changes the environment, and in turn, changes the
behaviour of other web page authors. These web pages contain specific information for other authors,
who will reinforce the strengths between web pages by referring to them. The web communities are
thus collectively but independently organised.
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2.2.2 Robustness in Self-organising Logistic Systems

A typical objective of a logistics network design is to maximise profits, minimise costs and at the same
time satisfy all established constraints. These objectives can be classified as the efficiency of the logistic
chain. Logistics networks face contradictory requirements of achieving high operational effectiveness
and efficiency while retaining the ability to be robust. Over time, environmental pressures and/or
sudden changes may affect the system to such an extent that the entire supply chain may collapse, not to
mention have an adverse effect on efficiency. This long-term survival aspect must be taken into account
(Meepetchdee and Shah, 2007). The robustness of a system can be defined as the degree to which a
system can continue operating despite the existence of errors or malfunctions (Hrabia et al., 2018). The
objectives of design for efficiency and design for robustness are often in conflict (Meepetchdee and Shah,
2007). However, systems with higher robustness rather than optimal efficiency are gaining increasing
interest (Serugendo et al., 2003). Due to the dynamics of logistic processes, conventional organisational
structure can be insufficient in terms of robustness (Berndt, 2011). In the literature on self-organised
logistics, it is generally assumed that decentralised control can help to improve robustness (Serugendo
et al., 2003, Pan et al., 2016, Van Duin et al., 2021, Hrabia et al., 2018). However, the degree of
robustness can vary greatly. For some systems, it is desirable that the system is resistant to failures of
parts of the system, while for other systems, delays are the maximum of what can be tolerated.

2.3 Auction Based Logistics

The self-organisation model of the market can be described as an auction in which groups of agents
negotiate intending to sell or buy resources. Agents communicate locally by exchanging messages
with offers, commitments and payments (Gorodetskii, 2012). An efficient mechanism shares resources
between the willing seller with the lowest valuation and the willing buyer with the highest valuation
(Ehsanfar and Grogan, 2020). This mechanism design for exchanging resources in a network has
attracted interest from a diverse set of communities in literature. In logistics, pricing and auction
mechanisms are used for the scheduling of tasks and resources in distributed systems (Wellman et al.,
2001, Ehsanfar and Grogan, 2020). For example, Bae et al. (2022) look into auction mechanisms
that are used for collaborative freight transport and Gansterer et al. (2020b,a) focus on auctioning of
bundles of deliveries. This can also be seen in Van Duin et al. (2007) who developed a sealed multiple
auction approach to allocate (peaks of extra) freight to the best offer of a carrier. Moreover, Lee and
Kim (2015) look at continuously auctioning single delivery tasks. Giving the carriers the possibility
to reevaluate their assigned freight. Furthermore, Van Duin et al. (2021) try to make a connection
between the properties of self-organisation and auctioning for the sorting and routing for last-mile
delivery. For all, algorithmically, an auction mechanism includes a submission form for participants, an
outcome evaluation and a winner selection method (Ehsanfar and Grogan, 2020). Auction mechanisms
proposed in the literature include a single-round sealed-bid auction, Vickrey-Clarke-Groves (VCG)
mechanisms, market-clearing price, and iterative auctions (Ehsanfar and Grogan, 2020).

Horizontal collaborations in freight logistics have been extensively studied in the literature. Liter-
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ature for collaborative routing services can be divided into centralised and decentralised planning. In
centralised planning, agents have perfect information, whereas, in decentralised planning, limited in-
formation is available. For decentralised planning, the method of exchanging requests can be complex;
to address this, auctioning is a dominant method in the literature (Karels et al., 2020). Such as com-
binatorial auctions, which have been shown to be effective mechanisms for establishing collaborations
(Gansterer et al., 2020b). For collaborative logistics, combinatorial auctions can be used to exchange
transport requests without revealing critical information. This method can yield significantly higher
collaborative profits (Gansterer et al., 2020b). The concept of combinatorial auctions is that transport
requests are not traded individually, but combined into bundles. A carrier receives the entire bundle of
freight if the bid is accepted (Gansterer et al., 2020a). The logic shows similarities with the method of
Van Duin et al. (2021), however, they look into individual parcel auctions. These auctions of individual
parcels are rarely described in the literature. This while in general clusters affects the performance of
single-item auctions in a negative way (Karels et al., 2020).

For Bae et al. (2022), Gansterer et al. (2020b,a), Van Duin et al. (2007), Lee and Kim (2015) the auc-
tioning is used as an optimisation objective function, where different parties compete in (combinatorial)
auctions. Meaning that multiple competing carriers try to win the auction. In single parcel auctions,
however, the focus is on the benefits of matching shipments for non-competing carriers. Therefore,
diverging from existing auctioning literature as all parcels are individually assigned per auction within
the same logistic service provider. Thus distinguishing between cooperation and competition. This
distinction is also made for the architecture for distributed control for a multi-robot system by Dias
and Stentz (2000). The flexibility of a market model within a non-competitive environment allows for
the vehicles to cooperate and compete as necessary to accomplish a task, regardless of homogeneity or
heterogeneity within the fleet (Dias and Stentz, 2000).

Inspiration can be drawn from other types of auction applications in logistics. A somewhat similar
situation is auction-based task allocation for multi-agent systems. In the case of dynamic task alloca-
tion, a team of agents is presented with a new, unknown task that must be allocated with their original
allocations (Buckman, 2018, Braquet and Bakolas, 2021). This method is focused more on produc-
tion operations in a job-shop environment (Braquet and Bakolas, 2021). While the individual parcel
method of Van Duin et al. (2021) allows for a redistribution of all allocated parcels, Buckman (2018)
considers a partial redistribution, in order to allocate new tasks more efficiently. Closely related to task
allocation is auctioning in decentralised scheduling where the allocation of resources is auctioned off
to competing autonomous agents (Wellman et al., 2001). In contrast to static allocation or scheduling
problems, these problems involve dynamic applications. When considering dynamic aspects in vehicle
routing, an often-used example is dial-a-ride services that consider transport on demand (Van Duin
et al., 2021, Buckman, 2018). The limitations of these problems are that for larger instances, repeating
the expensive calculations to obtain routes or allocations becomes a burden on the system and it can
no longer return solutions on the time scale of dynamics (Buckman, 2018).

The SOLiD algorithm uses an incremental auction method to (re)allocate each individual parcel.
An overview of the sorting situation is shown in Figure 8. As can be seen in the figure, an auction
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takes place for each unit arriving in the system. The result of the auction depends on the availability
of the vehicles and the parcels already in the system. The changing order of the packages makes the
system dynamic.

Figure 8: Interpretation of the sorting of self-organising parcels
based on the auctioning system proposed by Van Duin et al. (2021)

2.4 Summary

Self-organising logistics systems have only been studied to a limited extent in the literature. The prob-
lem of self-organising last-mile delivery is related to several topics of operational optimisation. It shares
characteristics with routing problems, transportation planning problems and scheduling problems. The
topic of optimisation in this research area is specifically difficult because many problems involve NP-
hard combinatorial problems. To overcome this, the real-life sorting and routing system assigns each
vehicle to a predetermined static delivery area. As delivery zones are often fixed for multiple weeks,
daily fluctuations in quantities of parcels can lead to sub-optimal utilisation and routing of the vehicles
within the delivery fleet. Logistics systems that have self-organising characteristics can potentially
improve the current system by making it more dynamic and robust. Three main characteristics have
been defined for self-organising logistics systems to be self-organising systems: openness, intelligence
and decentralised control. Self-organisation in logistics is still a developing field of research, often tak-
ing inspiration from other research domains such as biology or communication systems. Most of the
literature on both self-organisation and self-organising logistics is conceptual in nature, and relatively
little empirical research has been done on them. There is currently no clear direction or course of
action for working towards the vision of self-organisation in logistics. The method used in this study
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also relates to auction-based logistics. Auction-based logistics and horizontal cooperation have been
studied extensively. The focus of these studies is on the allocation of bundles of packages to competing
logistics providers. The auction system defined for the SOLiD algorithm is distinctive in that it focuses
on the allocation within an organisation of individual parcels. This approach, which would allow for
decentralised control, is still relatively unexplored as an alternative to the current centralised sorting
and routing system.
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3 Conceptual Model

Conceptual modelling is the abstraction of a simulation model from the part of the real world it is
representing (Robinson, 2011). This section will elaborate on the abstraction and simplifications of
the conceptual model used for this study. Figure 9 gives an overview of the artefacts of conceptual
modelling as defined by Robinson (2011). The steps are in line with the steps taken in this research.
Sections 1 and 2 give the system description, followed by the conceptualisation in this section, and
the model design in section 4. This conceptualisation builds upon the model used in Van Duin et al.
(2021). The proposed method is validated, improved to be more applicable for real-life instances, and
tested for different heuristics, congestion, and a mixed fleet. To better understand the system an initial
conceptualisation is done, and then an in-depth analysis of the original algorithm is done in section
3.2, at last, the extensions of the model are explained in section 3.3.

Figure 9: Artefacts of conceptual modeling taken from Robinson
(2011)

3.1 General Conceptualisation

Based on the system descriptions, the conceptual model can be made. The conceptual model shows
the proposed simulation model to be run in the last mile delivery environment. A visualisation of
this is shown in Figure 10. Three categories of input parameters can be defined. The customer
demand parameters, the parcel parameters and the vehicle parameters. This is the starting point
of the model. Based on these parameters, the model will perform the operational optimisation of
the auctioning/matching/sorting/routing problem in question. The optimisation is a combinatorial
optimisation problem in which the total utility (based on emission, speed and distance) is maximised.
The model itself consists of the interaction between the different agents, the objective function, and the
constraints. The objective functions define the optimisation that should take place, and the constraints
indicate the limits of this optimisation. The agents can be defined by the parcels, the vehicles and the
control platform. The combination of the agents, the objective function and the constraints result in

Delft University of Technology 18



an operational optimisation algorithm. It answers a two-fold question of how the parcels should be
assigned to the delivery vehicles and what path should the delivery vehicles follow.

Figure 10: Conceptual overview model

3.1.1 Agents

All agents can be described by the state, rules, and interactions. The state of the agent represents the
location of control. A simple example is that an agent can be idle, or busy. The rules of an agent define
the actions and the ability to act within the system. The interaction can be explained by the exchange
of information between the different agents and their environment. For the model, three agent groups
can be defined, namely, the vehicles, the parcels, and the platform. The customer parameters are
incorporated into the parcel’s characteristics. For example, each parcel has a drop-off location which
defines the demand for that parcel at that customer point. The platform agent provides the possibility
of matching vehicles and parcels to take place. An overview of the interaction between the agents is
given below in Figure 11.

Figure 11: Agent interaction overview

Vehicles
The vehicle agents take the parcel agents from the sorting centre to the desired drop-off locations.
All vehicle agents are initially generated at the start of the simulation. Each vehicle is waiting for
a transportation request. When a parcel request is accepted the vehicle agent changes its scheduled
itinerary. Once the truck’s capacity is full, or all parcels are sorted, the vehicle undocks and will go
past each delivery point in its itinerary. The state changes from docked to moving. Every time a parcel
is dropped off the state changes from moving to unloading. For modelling simplifications, it is assumed
that all vehicles of the same type have the same characteristics. Each vehicle has the ability to give
an offer for the transport request. Moreover, each vehicle can update its itinerary. A state flow of the
vehicle agent is given in Figure 12a.
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(a) State flow vehicle agent (b) State flow parcel agent

Figure 12: State flow of the vehicle (a) and parcel (b) agents

Parcels
A parcel agent represents an unit to be shipped within the capacity of the vehicle agent. The parcels
are generated in the sorting centre where they decide upon their vehicle of transportation. The state
of the parcels can change from unassigned, to assigned, to in transit, to delivered. In the first three
stages, the parcel is able to send out transportation requests to improve its routing possibilities. A
state flow of the parcel agent is given in Figure 12b.
Platform
The central platform enables the auction process to take place. It brings together the transport requests
of the parcels and the vehicles that are willing to fulfil these requests. The platform is able to place all
relevant vehicles in a pool so that the parcel agent can choose the most suitable vehicle. The platform
has no states to switch between, it only acts as temporary storage of information. A visualisation of
this is given in Figure 13.

Figure 13: Combined state flows of the the vehicle, parcel and
platform agent
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3.1.2 Optimisation Strategy

The goal of the proposed method is to optimise the last-mile logistics provider’s efficiency while meeting
all delivery requests. The optimisation strategy follows an auction process to match the transportation
request with the vehicle’s capabilities to deliver. To obtain efficiency maximisation an objective func-
tion is proposed in the bidding process. In the objective function of each auction session, two utility
parameters are considered; delivery speed and emissions, both derived from the travel distance of each
vehicle. To reflect the customer’s preference (speed or low emission), a general cost function with the
value of emission (VOE) and the value of time (VOT) is used (Vlot, 2019). The algorithmic procedure
of the auction methods comprises four steps. The first step is to request a transport auction. The
second step is that the vehicles bid their best transport bid. In the third step, the bid is evaluated
based on the equation described in equation 1. The fourth step is that a vehicle wins the auction and
adds the parcel to its route. As the system is decentralised, it relies on local minimisation of the cost
function for each bidding round. To describe the objective function first the notations are given.

Notations:

V is the set of vehicles in the auction, indexed by v

R is the transport request being auctioned, indexed by r

drv is the additional distance (m) of a request r for vehicle v ∈ V , r ∈ R

pvvar is the variable operating price (e) per kilometre of vehicle for vehicle v ∈ V

pvf is the fixed operating price (e) for vehicle v ∈ V

Cr
v is the operating cost (e) of a vehicle v for a request r ∈ R, v ∈ V

αtime is the VOT

T v
r is the leadtime (sec) (until final delivery) of the parcel request r ∈ R for vehicle v ∈ V

βemission is the VOE

Ev
r the CO2 emitted (gr) per kilometre for vehicle v ∈ V

Kv capacity of vehicle v ∈ V

Kmax
v maximum capacity of vehicle v ∈ V

Tmax
v maximum delivery time (sec)

The cost function per parcel request is given by equation 1:

CGeneralised
r = Cr

v + αtime ∗ T v
r + βemission ∗ Ev

r ∗ drv (1)
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The operating cost Cr
v of vehicle v for request r, is defined by equation 2. The transport costs

consist of a variable cost per kilometre and a fixed operating cost.

Cr
v = drv ∗ pvvar + pvf (2)

Each vehicle bid will be evaluated based on the cost function 1 for each request. In order to
chose the winning bid, a simple winner determination program needs to take place. The winner
determination program is formulated as minimising the CGeneralised

r for all vehicles while Kv < Kmax
v

and T lead
r < Tmax

v .

3.2 The SOLiD Algorithm

The algorithm by Vlot, used in Van Duin et al. (2021), is done in an assignment for the Self-Organising
Logistics in Distribution (SOLiD) project. In the proposed algorithm a parcel requests transport from
vehicles based on its preferences. The algorithm allows for decentralised decision-making by each parcel
through a bidding system, and it also considers the transfer of parcels between vehicles. The parcel
requests transport, and then the vehicles send bids, which are then accepted based on the preferences
of the parcel. The parcel can send several transport requests along its route, evaluating whether a
transfer is desirable. If these requests are accepted, the parcel can change vehicles, making the system
hypothetically more robust than current centralised systems. An overview of the system can be given by
the UML sequence diagram in Figure 14. In order to understand the system, the following sections will
give an overview of its various functions, the input data, the auction method, and possible extensions.

3.2.1 Functions

The algorithm consists of the main file and 19 functions. In the main file, the simulation is performed,
which consists of a number of iterations during a certain time frame, representing the handling of the
parcels during that time frame. For this purpose, the different defined functions are used. Table 1
contains an overview of each function and an explanation. An overview of the interrelationships of the
different functions is visualised in Appendix D in Figure 35.
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Figure 14: UML sequence diagram of the auction-based sorting
algorithm taken from Van Duin et al. (2021)

Table 1: Algorithm Function Overview

Functions Explanation

Main Model the last mile logistics of the parcels

findDistance Loads in text file with distance matrix and finds distance between location A and B

removeParcel Removes the pickup and delivery of parcel in a vehicle’s itinerary

insertOffer Inserting pickup and delivery into vehicle’s itinerary.

findRelevantVehicles Determines which vehicles are relevant to make an offer

makeOffer Creates offer a vehicle can make to respond to a transportation request

calculateETA Calculates the time of arrival given an vehicle’s offer

checkTimeLimit Checking if time limit is not exceeded

checkCapacityLimit Checking if capacity limit is not exceeded

rescheduleDelivery Removes pickup and delivery of a parcel in vehicle’s itinerary

calculateIterationStats Calculates the KPI of the system after each iteration

calculateKPIs Calculates the KPI of the system, parcel agents, and vehicle agents

removeParcelKickOut Removes the pickup and delivery of a parcel in a vehicle’s itinerary

removeDummyDestination Removing a dummy destination from a vehicle’s itinerary

kickParcels Removes worst preforming parcel from the truck based on the distance from the delivery centre

updateStatus Updates status of the parcels and vehicles

atTransshipmentLocation Checks if a parcel is located at a transshipment point

assignedParcels Organising the transportation request auctions for parcels that are assigned

unassignedParcels Organising the transportation request auctions for parcels that are unassigned

enRouteParcels
Organising the transportation request for parcels that are en route. Calculates the current ETA,
emission, and overcost, and than compares it to the new offer.
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The UML in Figure 14 helps to understand the basic sequence of the code. It is, however, too
simplified in understanding the sequence of all functions. To understand the interrelations and the
working of the algorithm an extensive overview is created. This overview is given in Figure 15.

Figure 15: Diagram to illustrate the sequence of the SOLiD al-
gorithm based on the functions used in the algorithm

This overview provides a visualisation of the algorithm. Four input files are used to start the code,
which is shown on the top left. When analysing the code, it is important to note that the functions in
Figure 15 that are in the dotted simulation box are executed iteratively for each time step. The KPIs
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are calculated when the stop time is reached. At the beginning of each time step (excluding the first
time step), a predetermined number of worst-performing parcels are removed from the vehicle, if they
have already been assigned. This is done on the basis of the distance to the delivery centre of that
vehicle. These removed delivery and pick-up locations are then removed from the truck’s itinerary.
Next, a check is made whether parcels are at a transfer point and the lists of unassigned, assigned, and
in transit, parcels are updated. The next part of the algorithm can best be described if it is divided
into three parts. Namely, depending on the status of the parcel; unassigned, assigned, and en route.

• For an unassigned parcel, first all relevant vehicles are selected based on the length of the route,
the capacity of the vehicles, and the time frame. Then an offer is made, this offer consists of a
sorted list of available vehicles based on the delivery costs. The first vehicle that does not exceed
the capacity and time limit is selected.

• For an assigned parcel, a similar process is carried out, and the whole process of the unassigned
parcel is carried out again. So finding relevant vehicles and making an offer based on the available
vehicles, cost, capacity and time limit. To understand why assigned parcels go through a similar
process as unassigned parcels, it is important to know that the system depends on the order in
which the parcels arrive. Each arriving parcel is assigned to a vehicle, but this may no longer be
optimal when there are more packages in the system.

• For an en-route parcel, a different process is performed. First, the relevant vehicles are identified.
Then, a sorted list is drawn up based on cost, time limit and capacity. Then the overcosts for
the changeover is calculated and if the current overcosts are higher than the new overcosts, the
pick-and-deliver is removed from the vehicle route. The improved offer is then included in the
vehicle route.

After the bidding process and allocation is done for each parcel for each status (unassigned, assigned,
en route) for every iteration. The algorithm provides the routes of the vehicles and the KPIs of the
system for the given input values. The method of the current assignment of parcels is similar to a
Dynamic Assignment Vehicle Routing Problem. In this VRP the parcels arrive at a location in a
certain order, each parcel reveals its destination on arrival and has to be assigned immediately to one
of the vehicles (Phillipson and de Koff, 2020). This happens in the first allocation round when the
parcels are not yet allocated. The algorithm assumes that in the following steps there is still room
to reassign a parcel after the first assignment. This means that parcels can be moved after they have
been assigned to a vehicle.

3.2.2 Input Data

The input data used consists of three excel sheets and a text file. An Excel sheet with parcel data, an
Excel sheet with vehicle data, an Excel sheet with predefined delivery point data, and a text file with
the distance matrix between all delivery points. The origin-destination matrix is calculated in advance
on the basis of Euclidean distances. A detour factor of 1.5 is used for all distances (Vlot, 2019).

Delft University of Technology 25



The parcel file exists of the parcelID, the status, final destination of each parcel, priority, start
location, onboard (empty), intermediate Destination (empty), distance (empty), cost (empty), emission
(empty), tour, and platform. The vehicle file exists of the Vehicle ID, the status (empty), capacity,
operation cost, speed, emission, partTime, start time, end time, origin, destination, itinerary (empty),
delivery centre, and platform. The empty variables are added to an list in the algorithm and constantly
updated during code execution. An overview of the variables used as input and an overview of the
variables that are predefined or updated can be found in Table 14 in the Appendix E.

As mentioned above, the delivery centre for each vehicle is determined in advance. In the method
of Vlot used in Van Duin et al. (2021), the preferred delivery centre is chosen randomly. The delivery
centres play a role in assigning a parcel to a vehicle. Bidding is based on the distance that a vehicle
must travel. By assigning a delivery area to each vehicle, the algorithm mimics the current situation
in which vehicles are assigned to a fixed set of postal codes. However, the random selection of delivery
areas may lead to a situation where vehicles’ routes overlap. Phillipson and de Koff (2020) use a
K-means clustering method to determine the delivery centres in the case of the dynamic assignment
vehicle routing problem. A similar approach could be used to improve the current algorithm.

3.2.3 Auctioning Method

The auction process of the SOLiD algorithm is best described by the make offer function and the
unassignedParcel function of the algorithm. The pseudocode is given in Algorithm 1 and 2. The offer
part of the auction in Algorithm 1 consists of an offer for insertion in the itinerary of an available
vehicle. Each transport request from the parcels is considered for inclusion in the routes. After which
a list is made based on possible insertions which are then sorted based on cost (the cost function is
explained in more detail in Section 3.1.2). It is then checked whether the time or capacity limit is
exceeded. The best insertion in the travel route is selected from the sorted list (based on cost). This
offer is then sent to the parcel that sent the transport request.
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Algorithm 1 Auction (makeOffer) in SOLiD algorithm (modified from: Vlot (2019))
Require: Offer for parcel transport request

for Each point of pickup insertion do
for Each point of delivery insertion do

if Pickup time <= delivery time and pickup time >= departure Time then
Calculate cost of pick up and delivery
Create list of possible insertion combinations
Sort possible insertion combinations based on summed cost

end if
end for

end for
for Each insertion combination do

if If arrival time at destination > endtime delivery window then
Send no offer

end if
if Timelimit not exceeded then

if Maximum vehicle capacity is not exceeded then
Select best insertion
Create offer for parcel

else if Maximum vehicle capacity is exceeded then
Send no offer

end if
end if

end for

The next step in the auction process is to accept the best bid. This is done in the algorithm 2.
First, the availability of vehicles is checked. All vehicles available make a bid using the MakeOffer
function described above. For each bid in the list, the generalised cost is then calculated according
to the priority of the package (speed or emission). The list is then sorted by cost, speed, and then
emissions. The best choice is selected, and the parcel is assigned to that vehicle.

Delft University of Technology 27



Algorithm 2 Auction (unassignedParcel) in the SOLiD algorithm
Require: Organising the transportation request auction for unassigned parcels

for All vehicles do
if None available then

Pass to next transportation request
else if Vehicles available then

for All available vehicles do
Make offer ▷ Function described in algorithm 1
if Offerlist is empty then

Pass to the next transportation request
end if
for Each offer in the list do

Calculate the generalised cost based on the priority and corresponding value of time
(VOT) and value of emission (VOE) (see equation 1)

Sort offer list based on cost, then speed, then emission
end for
for Sorted offer-list do

Pick the first on the list
for Selected offer do

Insert selected offer in itinerary
Add distance to vehicle’s KPIs
Set the status of the parcel to assigned

end for
end for

end for
end if

end for

3.2.4 Model Limitations

The research done by Vlot (2019) is extensive, but there is still room for improvement. To improve
the current model, it is important to identify the areas of improvement. Vlot (2019) named several
model extension in his study which are described in Appendix F. In addition to the limitations named
by Vlot (2019), more areas of improvement were found while analysing the algorithm:

• Applicability on real-life instances: One of the main limitations of the algorithm is the calcu-
lation time, even for a small dataset of 80 parcels with 11 vehicles for 660 iterations (7 hours
in simulation) it takes more than an hour to execute the code (Processor: Intel(R) Core(TM)
i7-8565U CPU @ 1.80GHz 1.99 GHz, RAM: 16.0 GB). This happens because all calculations are
performed sequentially. As the number of parcels increases, the model’s calculation time increases
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significantly. To clarify, for each parcel that is (re)allocated, the allocation of all other parcels is
recalculated. A vehicle routing problem is an NP-hard problem, which means that the solution
time required increases significantly with the size of the problem. Heuristics are therefore of
great importance. In his study, Vlot (2019) mentions that, for the model, a random insertion
heuristic is first performed to create the initial solution. Then a two-opt improvement heuristic
is used to randomly swap route segments (1000 iterations per vehicle), guided by a simulated
annealing metaheuristic. Finally, a random insertion heuristic is used to remove the last quirks in
the vehicles’ routes. The given algorithm does not incorporate these heuristics. The pseudocode
1 shows that the insertion for the given vehicle is not done for a random set of insertions, but
for the complete route of each available vehicle. Furthermore, the two-option improvement has
to do with the assigned parcels changing vehicles, but also for this all possibilities are calculated
instead of a random number of parcels. The simulated annealing meta heuristic described can
not be found in the functions creating the algorithm, as also can be seen in the overview in
Figure 15. To summarise, the current algorithm runs a full enumeration. An improvement could
be the implementation of heuristics to reduce the computation time and applicability on real-life
instances.

• Dependence on input data: All parcel information, coordinates, distance matrix, and vehicle
characteristics have to be predefined for the model to run. All the start and end times of the
vehicles must be predefined in the input data, which means that the model can run only during
the time frame that corresponds to the input data. This has to be logically aligned beforehand,
to have the algorithm running smoothly. An interesting extension would be to have agents that
are to some extent autonomously join the system.

• Dynamic demand: Currently, all customer points are predefined and static. It would be interest-
ing to include a full range of drop-off points where demand varies over a longer period.

• Replenishment of delivery vehicle: In the current model it is not possible to have vehicles restocked
at the distribution centre. An interesting extension would be the ability to restock the vehicles.
Making simulation over longer periods possible.

• Congestion: For the parcels to be exchanged between the vehicles, it is essential that both vehicles
are at the same point to transfer the parcels. Moreover, the delivery routes are dependent on
the actual delivery times of the vehicles. To test the behaviour of the system under real-time
complexity, congestion can be included in the model. Both to validate the method under different
conditions and to make it more realistic.

• Clustering: For the current method, according to the report of Vlot (2019), random delivery
centres are chosen for each vehicle in the validation phase and delivery zones are chosen in the
case experiments. However, when testing for different random delivery centres, overlapping routes
occur. Furthermore, the performance of the system based on the calculated KPIs decreases. An
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improvement could be to add k-means clustering. However, this reduces the dynamic behaviour
of the model, since all parcel locations must be known in advance.

• Heterogeneous fleet: The current model only considers the use of vans in the base fleet. An
interesting extension would be the integration of different vehicles to look at the effects and
behaviour between agents with different characteristics.

• Iterations to simulate time steps: For the current code, the entire code is looped for each timestep,
which is set to one minute. This means that 660 iterations represent 7 hours (1 workday). The
current algorithm is unable to distinguish a minimum time frame for the delivery of the parcels.
To clarify, when the code is executed during one time step, the KPIs for distance travelled and
parcels delivered still give results as if a full run (1 workday) had been performed. In other words,
time steps are currently only used to limit the number of insertions (exceeding the pick-up and
delivery time) and to announce the availability of a vehicle.

• Incorporation of more stochastic elements: Currently, the algorithm applies only one random seed
used to shuffle the list of parcels on arrival. It would be interesting to include more stochastic
elements in the model.

Given these limitations, it is important to define that part of the novelty of this study lies in a
better understanding of this type of model and its applicability to real cases. One of the contributions
is the validation of this existing method and the evaluation of this decision-making tool. The next
section will extend this by testing the method for a range of instances. In addition, the model is
extended to address some of the current shortcomings, potentially bringing the method one step closer
to implementation.

3.3 Model Integration

Now that the general conceptualisation of the model and the analysis of the existing algorithm have
been carried out, the model integration can be defined. The current model has proven that the
applied method can give better results for total vehicle distance, operational costs and carbon emissions
(Van Duin et al., 2021). However, analysis of the model has shown that the application of the model in
practice has its limitations. It was discussed in Chapter 1.1 that in order to be used efficiently in real-
world systems, the model must have acceptable computational complexity, self-organising capability,
and the ability to handle a dynamic sequence of parcels. In order to realise these capabilities, the model
is adapted with different heuristics, heterogeneous fleet and congestion. The different heuristics help
to reduce the computational complexity but may affect the performance of the model. The changes
in the simulation environment by adding a heterogeneous fleet and congestion test the behavior of the
model under real-time complexity.
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3.3.1 Heuristics

The current method runs an enumeration of all possibilities of (re)assignment of the parcels within the
constraints of the capacity of the vehicle and the time frame of delivery. It can be said that it uses
brute force to come up with a feasible solution. In order to effectively use the algorithm, heuristics
need to be incorporated. The algorithm does to some extent apply a greedy algorithm as it chooses
the best option within the available list of offers. However, the number of available offers that are
calculated can be limited. The heuristics to be applied and tested are a random insertion heuristic, a
two-opt swap heuristics, and a k-means clustering heuristic to find the delivery centres. A visualisation
of this can be seen in Figure 16.

3.3.2 Heterogeneous Fleet

The heterogeneous vehicle fleet should provide insight into the effects of different vehicle characteristics.
Literature shows that the use of cargo bikes is a growing trend for last-mile delivery. To include cargo
bikes in the basic fleet, adjustments have to be made for vehicle speeds, capacity and fleet capacity. In
addition, elements such as maximum distance travelled need to be taken into account. This will result
in additional constraints on vehicle availability (e.g. maximum distance based on a time constraint)
and a change in input variables.

3.3.3 Congestion

Congestion is a common phenomenon in last-mile logistics. It adds a layer of complexity to the system.
The implementation of congestion mimics the existence of system failures. Testing different congestion
factors help to understand how the system behaves under these environmental changes. The algorithm
uses time iterations of minutes. For each pick-up, delivery and redistribution of a parcel, this time
iteration is used to determine and limit the possibility of redistribution of parcels. The assignment
and routing of parcels can thus be influenced by congestion. The current system claims to perform
better than a system with fixed clusters. It would be interesting to see how congestion affects the
self-organisation of the parcels when congestion occurs. Moreover, it could show the advantages of
using a heterogeneous fleet, as congestion affects vans more than cargo bikes. Congestion can initially
be modelled by changing vehicle speeds. This is the simplest way is to simulate the congestion of each
vehicle.

3.4 Summary

The model consists of a combinatorial optimisation problem where distance and emission are minimised.
The simulation itself consists of an interaction of agents that exchange information about the allocation
and routing of a parcel. Three agents can be defined: vehicle agents that make transport offers, parcel
agents that request transport, and a platform agent that reconciles the offer and the request. The
analysis of the algorithm led to a comprehensive overview that can be seen in Figure 15. It also
revealed the limitations of the current method, including the difficulty of applying the model to real
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Figure 16: Diagram to illustrate the sequence of the SOLiD al-
gorithm with alterations to the heuristics
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cases, which is due to the computational complexity resulting from the lack of built-in heuristics. In
addition, the dependence of the model on input data is a considerable limitation. For the integration
of the model, the application of three heuristics is considered, namely random insertion, two-opt swap
and k-means clustering. The simulation environment is adapted for a heterogeneous fleet with cargo
bikes and vans and congestion to observe the behaviour of the model under real-time complexity in
the simulation environment.
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4 Simulation Model

This chapter describes the case specifics, the verification and validation, and the scenarios of the mod-
ified algorithm for the distribution of last-mile parcels. In the previous chapter, the conceptualisation
of the model was explained; during the development and modification of the model, it is important to
produce an accurate and credible model. For this purpose, the original model is benchmarked with
respect to a series of instances and compared with an OR solver. The model is then calibrated and
path dependency is assessed. Subsequently, the modification strategies are explained and the scenarios
for the experiments are elaborated.

4.1 Case Specifics

The case is based on a dataset provided by a major Dutch delivery company, containing data of its
delivery operations in the Netherlands on Tuesday 18 September 2018. The dataset is the same as the
one used in Van Duin et al. (2021). It contains per delivered parcel the delivery address, depot number
and trip number. A subset was selected consisting of 11 vehicle trips and 729 parcels to be delivered
in the city of Delft and its surroundings. An overview of the delivery addresses is given in Figure 17.
This data will be used to run the experiments in chapter 5. However, this chapter first focuses on a
series of cases known in the literature, which will be explained in the next section.

Figure 17: Overview delivery addresses taken from Vlot (2019)

4.2 Comparison for Different Instances

Since this method is not applied to real-world operations, the input-output transformation cannot
be compared to real cases. When real-world data is not available, it can be particularly useful to
make a comparison with other models. The original model is tested for a range of known instances to
benchmark and validate the existing model. For the comparison and benchmarking of the algorithm,
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instances belonging to the TSPLIB library are used1. A graphical overview of the instances is given in
Appendix G Figure 36. This set of cases was chosen for comparison, as the graphical layout is different
for each case; in addition, Yousefikhoshbakht et al. (2013) results provide insight into a similar test case
with one depot, a demand of one (the parcel) at each node and a fleet consisting of several vehicles.
To test the effectiveness of the SOLiD method, it is compared to an OR solver and a best solution
found in the literature for modified genetic algorithm (Tang et al., 2000), sweep algorithm and elite
ant system (Yousefikhoshbakht and Sedighpour, 2012), and modified ant colony algorithm (Junjie and
Dingwei, 2006). The OR solver uses an initial solution strategy of the cheapest arc inclusion and then
further optimises the set of routes based on the set search parameters and the objective function with
relates to minimisation of the travel distance. For the SOLiD method, input parameters are taken
that are the same as the proposed input parameter of Vlot (2019) given in Appendix H. The fleet
size and capacity are equal for all test runs. For each instance, the best solution (BS) obtained from
Yousefikhoshbakht et al. (2013) is given. The difference from the BS of each method is described by
the difference calculated by equation 3:

Gap =
Snew − Sbs

Sbs
∗ 100 (3)

An overview of the performance of the algorithm based on the given cases is given in Table 2. The
instances used are pr76, pr152, pr226, pr299, and pr439. The number corresponds to the number of
nodes (delivery addresses) of each instance. The fleet size and vehicle capacity are set to the same
values for the BS. In addition to the distance travelled, for the OR solver and the SOLiD method, the
computation times are also given. The average values of the SOLiD methods are based on iterations
over 3 different random seeds.

Table 2: Overview table of the performance of the the OR solver,
the SOLiD method and the best-known solution taken from Youse-
fikhoshbakht et al. (2013)

BS OR Solver SOLiD average
n vehicles capacity Distance (m) Distance (m) Gap RT (sec) Distance (m) Gap RT (sec)

pr76 76 5 20 157413 246104 56,34% 6,00 180393,91 14,59% 37,64

pr152 152 5 40 127755 146078 14,34% 9,02 150162,86 17,54% 169,53

pr226 226 5 50 166827 169647 1,69% 30,03 191313,81 14,68% 753,01

pr299 299 5 70 81261 82140 1,08% 60,00 385640,14 374,57% 406,77

pr439 439 5 100 160298 168412 5,06% 734,23 272222,67 69,82% 25034,53

A graphical representation of the performance of the different methods is given in Figure 18a. A
visualisation of the computation time on a logarithmic scale is given in Figure 18b. The instance
package derived from Yousefikhoshbakht et al. (2013) also included Pr1002, corresponding to a matrix
with 1002 nodes. Due to computation time, it was not possible to obtain results for the SOLiD

1further information on the instance library can be found on: http://comopt.ifi.uni-heidelberg.de/software/

TSPLIB95/.
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method, so it has been excluded from the overview. The first tests of the algorithm show that the
random assignment of the delivery centres of the vehicles is not desirable. For the optimisation method
the worst parcel is removed from the routes of the vehicles. This is based on the static, predefined
delivery centres. Assigning completely random delivery centres (as proposed for the SOLiD method)
could lead to infeasible or inefficient solutions. Therefore, a quasi-random allocation of delivery centres
is done based on the zones in the delivery matrix.

(a) Performance based on travel distance (b) Computation time

Figure 18: Performance and computation time of the different
methods for different instances

For the five cases, the SOLiD algorithm is able to find a feasible solution. In the comparison,
the SOLiD algorithm (and the OR solver) was not able to find better results for the BS of the five
examples. The OR solver outperforms the SOLiD method in almost all cases, only for the pr76 instance,
the SOLiD method is able to find a better solution. The OR solver is also more consistent with the
solution gap and the computation time required. For the pr299 instance, an outlier can be observed for
the SOLiD method, which has a large performance difference compared to the other methods. This can
be explained by the layout of the nodes; since the SOLiD method depends on successive improvements
using kick-outs based on distance from delivery centres, it tends to perform less for compact layouts
with few outliers. As a result, the method sticks to a local minimum. Overall, the comparison shows
that the SOLiD method is inconsistent en requires long computational efforts. For some instances, it
can achieve good results.

4.3 Stochastic and Deterministic Parameters

In stochastic modelling, the simulation has a number of randomly determined parameter values. In the
original SOLiD simulation, one stochastic variable is chosen. A random seed and a random shuffle are
used for the arrival order of the parcels. For the extended model, the stochastic elements of random
insertion and random swapping of parcels are used. Both elements are defined by a random seed and
a random sample element. To account for the stochasticity the model has to be tested for multiple
random seeds, which results in a spread of solutions. To obtain insights into this spread of the solution
space a confidence interval is calculated over multiple random seeds. An overview of the stochastic
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elements is given in Table 3. For the deterministic part of the model, all parameters are predefined
and fixed throughout the simulation. The values of the parameters are given in Appendix H and E.

Table 3: Stochastic elements of the model

Stochastic parameters

Stochastic parameters Distribution Unit

SOLiD Parcel arrival order Random shuffle Parcels

SOLiD extended Parcel insertion Random sample Parcels

SOLiD extended Parcel swap Random sample Parcels

4.3.1 Calibration

The model has various input parameters that can be adjusted to the specific characteristics of the
case. Variation of the parameters produces different results. The SOLiD method searches iteratively
for a feasible solution. The aim is to efficiently generate good solutions, but it does not guarantee the
optimality of the solutions found. In order to get closer to the optimality of the solution, two important
parameters can be identified with respect to combinatorial optimisation, namely the parameter of
reallocation iteration and the parameter of the number of kicked parcels. The first parameter limits
the number of time steps in which parcels are reallocated based on the removal (parameter "kicked
parcel") of the worst parcel (furthest away from the delivery centre) in each truck itinerary. To see
the behaviour of the SOLiD method and the convergence towards optimality, these parameters have
been varied. The results can be found in Table 16 in Appendix I. The parameter variation shows that
the current algorithm can produce feasible solutions for most of the variation of input parameters. For
the pr152 instance for a combination of 5 reassignments and 5 kick-outs, 8 reassignments and 1 kick
out, and 20 reassignments and 20 kickouts not all parcels are delivered. The variation of the input
parameters does not give a logical insight into the best-performing parameter combination. Running
it for the pr76 instance suggests that a higher number of kick-outs results in better performance, but
this does not hold for the pr152 instance. A possible explanation is that the algorithm gets stuck in
local minima. The implementation of the random insertion of parcels in the itinerary could aid in
escaping these local minima. It could also be that the algorithm is path-dependent. For convenience,
the combinations of 5 parcel kick-outs and 8 reassignment iterations were chosen, as this is similar to
the methodology of Van Duin et al. (2021), and would allow a comparison with the case data.

4.3.2 Path Dependence

A problem may be that the result of the model is not robust. The order of the parcels or the input
parameters define the solution space for the allocation and routing. This problem is called path
dependence; regardless of the model’s input data, randomised or not, the starting position determines
the outcomes. Path dependence can be a structural element of a problem; it cannot be solved with
more or less randomness. So it makes no difference to add heuristics with random reallocation of
insertions. To test the path dependency for the order of parcels that arrive in the system, a 95%
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confidence interval is taken for a sample of 20 random seeds for the first three instances. To analyse
the results, the confidence level for the distance travelled is graphed for every instance shown in Figure
19. The confidence level is derived from the standard deviation and significance level of 0.05.

Figure 19: 95% confidence interval for instances pr76, pr152, and
pr226

The confidence interval and the data from which it is derived (see Appendix J) show that for a
varying random seed where the order of parcels entering the system is shuffled, each iteration gives a
different result. However, the intervals are relatively small. This shows that the solution space is not
path-dependent on the order of incoming parcels. This contrasts with the dispersion in the parameter
variation mentioned earlier. This is an important limitation to take into account, as it makes the
validation of the model more difficult.

4.4 Modifications Strategies

The modification of the algorithm exist three different alterations. The implementation of the random
insertion heuristic can be obtained by limiting the calculations of the makeOffer function (described in
Algorithm 1). For each combination of insertion points, an offer is calculated. This can be constrained
by taking a random sample of the collection of insertions. In this way, the best offer from the sample
can be chosen. The size of the sample can be determined by taking a percentage (q) of the total number
of inserts. The modified algorithm is given in algorithm 3.
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Algorithm 3 New auction (makeOffer) of SOLiD algorithm
Require: Offer for parcel transport request

for The length of the itinerary do
Take a random sample based on search percentage (q) of itinerary of pick up points
Take a random sample based on search percentage (q) of itinerary of delivery points
for For a random sample of pickup insertion points do

for For a random sample of delivery insertion points do
if Pickup time <= delivery time and pickup time >= departure Time then

Calculate cost of pick up and delivery
Create list of possible insertion combinations
Sort possible insertion combinations based on summed cost

end if
end for

end for
end for
for Each insertion combination do

if If arrival time at destination > endtime delivery window then
Send no offer

end if
if Timelimit not exceeded then

if Maximum vehicle capacity is not exceeded then
Select best insertion
Create offer for parcel

else if Maximum vehicle capacity is exceeded then
Send no offer

end if
end if

end for

The implementation of the two-option exchange can be done by taking a sample of a set of allocated
parcels and reassigning those parcels to the existing travel routes. The current reallocation is done
based on the kicked parcels based on the distance to the delivery centre. By randomly selecting a
number of parcels to be switched (e.g. kicking from multiple vehicles), next to the kicked parcels, the
model can incorporate the random swap heuristic. The adjusted algorithm for this is given in algorithm
4. This method can even be extended by only removing assigned parcels randomly, which means that
for each iteration a random set of parcels is reassigned, which can either be placed back in its existing
itinerary or placed in a better itinerary position.

Delft University of Technology 39



Algorithm 4 Removal of the parcels
Require: Removal assigned parcels

for Each parcel in list of assigned parcels do
Calculate the distance from the delivery centre of the corresponding vehicle
Create sorted list based on distance from delivery centre
for Length of the ’number of kickouts’ for each vehicle do

Remove worst performing parcels pickup and delivery in a vehicle’s itinerary
end for
for Length of the ’random number of kickouts’ for each vehicle do

Remove random parcels pickup and delivery in vehicle’s itinerary
end for

end for

The real method for sorting parcels in last-mile delivery revolves around clustering delivery ad-
dresses based on postal codes. This method can be partially adopted by relaxing the assumption that
information only becomes available dynamically during the period of the simulation. Assuming that
the list of parcels is known, clustering can be performed beforehand to obtain the correct delivery cen-
tres, rather than assigning them randomly. In this way, the algorithm may be able to find an optimal
solution faster. The clustering can be performed by k-means clustering in python and the centroid
location is added to the vehicle agent’s input data. To find the clusters, random centroids are first
assigned, which are updated by minimising the distance of each node to each centroid. A graphical
overview of the clustering for the pr76 instance is shown in Figure 20.

Figure 20: K-means clustering with the clusters visualised by the
different colours and the centriodes depicted by the black boxes

The implementation of the mixed fleet is done by adjusting the size of the fleet and single-vehicle
characteristics. Two vehicles are considered in this study, namely, delivery vans and cargo bikes.
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Cargo bikes fit in the roadmap toward zero-emission city logistics, reducing the negative externalities
of combustion-powered delivery vans. A downside of using cargo bikes is the limited capacity and the
slower vehicle speed (Arnold et al., 2018). For short-range deliveries, however, cargo bikes are a good
substitution for vans. Gruber et al. (2013) showing that cargo bikes could potentially take over 20% -
50% of the vehicle mileage in cities. The vehicle characteristics are based on capacity, operation cost,
speed, and emission. These performance indicators for the delivery van (Van Duin et al., 2021) and
the cargo bike (Arnold et al., 2018) are given in Table 4.

Table 4: Vehicle characteristics delivery van and cargo-bike

Capacity Operation cost (Euro/km) Speed (km/h) Emission (Gr/km)

Delivery van 113 0.44 26 230

Cargo-bike 10 0.20 12 0

The current method assumes delivery at free flow. Thus, it does not take into account the congestion
that may be present. To take congestion into account, three vehicle speeds are considered: free-flow
(26 km/h), light congestion (17 km/h) and heavy congestion (13 km/h) (Arnold et al., 2018). In real
life, congestion depends on the area and time of day. For this study, only a congestion factor (based
on vehicle speed) is used with this simplified method. As cargo bikes are allowed on cycle tracks, it is
assumed that they do not experience congestion.

4.5 Validation and Verification

Verification is the process of ensuring that the model design has been translated into a simulation model
of sufficient accuracy. Validation is the process of verifying that the model is sufficiently accurate
for the process in question (Robinson, 1997). This study concerns the modifications of an already
validated simulation model. Nevertheless, validation is a huge challenge for agent-based simulation
modelling. By benchmarking using multiple instances and the parameter variation for calibration
of the existing method, this work contributes to further validation of this decentral dynamic parcel
distribution method. Since this method is not applied to real world operations, the input-output
transformation cannot be compared to real world cases. When real world data is not available, further
validation of this model may be particularly useful. As the comparison of the model with the different
cases shows, the SOLiD model performs moderately in finding optimal results. Moreover, the parameter
variation shows inconsistent results for different variations. This is an important consideration when
evaluating the results of the experiments. By extending and modifying the model, the current method
can be validated by testing it under different conditions.

The verification and validation of the model are carried out according to the scheme in Figure
21. The conceptual model validity exists of determining the theories and assumptions underlying the
conceptual model are correct. The SOLiD algorithm considers a method of minimum cost insertion
for assigning the parcels in the travel route. Heuristics regarding random insertions and swaps are a
common method in collaborative auctions (Gansterer et al., 2020b) and dynamic allocation in VRPs
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(Phillipson and de Koff, 2020, Phillipson et al., 2020). Furthermore, K-means clustering has proven
to be a successful heuristic for dynamic allocation of parcels (Phillipson et al., 2020, Phillipson and
de Koff, 2020).The implementation of a mixed fleet approach is inspired by Van Duin et al. (2021), Kang
and Lee (2018) who use different vehicles by changing the vehicle characteristics related to capacity
and speed. The use of a congestion factor is inspired by Arnold et al. (2018) who simplify congestion
by using a congestion factor in a simulation study.

Variation in parameters has shown that the results of the SOLiD model can be inconsistent. There-
fore, to avoid testing and modifying an invalid model, a test under extreme conditions is performed to
increase the verification of the model. For the test under extreme conditions, the input parameters with
extremely high and low values are taken, while the other parameters remain constant. The parameters
tested in the extreme conditions test are listed in Table 5.

Table 5: Input parameters with normal, minimum and maximum
values for testing under extreme conditions

Parameter Description Normal min max

reassignmentIterations Number of assigned parcel auctions 8 0 660

numberParcelRemovals Number of parcels removed from vehicles itineraries 5 0 20

deliveryDuration Duration of a delivery stop 3 0 20

maxRelevantVehicles Vehicles selected for auction 3 0 5

Capacity Capacity of delivery vehicle 20 0 1000

Speed Vehicle speed 26 0 10000

A summary table of the results of the extreme parameter variation is given in Appendix K. For the
reassignment iterations, one would expect that more reassignment rounds would lead to better routing
because the algorithm is allowed to search longer for better allocations of the parcels. For iterations
with few reassignment rounds, one would expect the results to be worse because the algorithm is not
allowed to redistribute any more parcels after the first iteration. The test under extreme conditions
shows that for zero redistribution iterations, the parcel’s performance is indeed mediocre. However, for
a reassignment iteration over the full simulation run time, many invalid solutions are found, and long
computation times are required. This shows that the input parameter for the redistribution iteration is
not suitable for the purpose for which it is used in the model. For the experiments in the last sections,
it should be taken into account that the model may be path-dependent concerning the reassignment
parameter. When the kick-outs of the parcels are taken into account, it can be seen that the model
performs better than without kick-outs; this is questionable because the kick-outs were included to
improve the model. This means that the heuristics applied to kick out the worst-performing parcels
may not be efficient. With the maximum number of kick-outs (set to the maximum capacity of the
vehicles), it can be seen that most parcels are not delivered. This makes sense, as the method assumes
that the parcels will be ejected and inserted into new routes. If there are no routes to insert them,
unfeasible results arise. The tests for delivery times show that for longer delivery times, the travel
distance increases, which is understandable because less efficient routing is possible due to the time
constraint. For the number of relevant vehicles, with zero relevant vehicles, no parcels are delivered,
which behaves as expected. For a higher number of relevant vehicles, the results become slightly better

Delft University of Technology 42



as there are more options to choose from in the auctions. Also for capacity, the results are as expected.
With a capacity of zero, no parcels are delivered and with a high capacity, routing becomes more
efficient as fewer vehicles are needed. The same can be said for speed, with a speed of zero no parcels
can be delivered. With a high vehicle speed, the model does not improve much, which is logical because
the model is aimed at minimising the distance.

For the operational validity of the modifications, the input from the two interviews is used to assess
whether the logic is reasonable. The interviews in Appendix B and R agree with the idea of a self-
organising system that can potentially outperform the current centralised system. Both mention the
limitation of a simulation model as a tool to demonstrate this. In the interview with the sorting expert,
it was mentioned that it is doubtful whether the decision system actually works in practice. Also in
the interview with the business expert, this concern was expressed by raising the question of whether
and how the physical system that could facilitate such a system would be designed. Both agree with
the idea of applying the model in the simulation model to obtain more insights on applicability, but
all limitations present should be considered when evaluating the results and generalising conclusions
for the system in real terms.

Figure 21: Validation and verification overview adapted from
Sargent (2010)

4.6 Scenarios

This study aims to come up with possible improvements of the existing algorithm. Experiments will be
conducted step by step to test the proposed changes and understand the changes in the performance
of each method. A combination of the best-performing methods will then be tested for a mixed fleet
and congestion. The test case is the pr76 instance. This instance has been chosen because the limited
number of nodes allows for faster calculations and results. The last two experiments concern the
complete data set of a logistic service provider in the Netherlands, as described in section 4.1. The
results will be compared with the earlier work of Vlot (2019). The combination of these possibilities
results in a list of experiments to be performed, which is presented below.
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Table 6: Experiment overview

Experiment Description

1 Pr76 instance tested for the original solution method

2 Pr76 instance tested for the modified solution method with random insertion

3 Pr76 instance tested for the modified solution method with swap heuristic

4 Pr76 instance tested for the modified solution method with predefined clusters

5 Pr76 instance tested for a combination of best performing aforementioned modifications

6 Pr76 instance tested for the base case method with congestion and mixed fleet

7 Pr76 instance tested for the base case method for a combination of congestion and mixed fleet

8 Pr76 instance tested for a combination of best-performing modifications with a mixed fleet and congestion

9 Pr76 instance tested for a combination of best-performing modifications for a combination of congestion and mixed fleet

10 The case data set tested for a combination of best-performing heuristics

11 The case data set tested for a combination of best-performing heuristics with a mixed fleet and congestion

12 The case data set tested for a combination of best-performing heuristics for a combination of congestion and mixed fleet

Each change is tested iteratively for 10 random seeds to understand the distribution of results when
comparing the outcomes. The key performance indicator used to compare each method is the distance
travelled by each vehicle. Other important factors are emissions and travel time. As these performance
indicators are directly linked to the distance travelled in the model, they are not always considered.

4.7 Summary

For the development and modification of the new model, it is good to benchmark and validate the
current model. The SOLiD method is able to find feasible results for different instances, but seems
to have limitations as the results are mediocre and larger instances require considerable calculation
time. The calibration of the number of reassignment iterations and the number of kick-outs also shows
that the model produces different results for different inputs. Testing the model for path dependence
for the sequence of input parcels shows that this is not the case for the sequence of parcels. The
model is further validated by comparing the conceptual changes with known studies and by a test
on extreme parameter conditions. This test again reveals limitations of the SOLiD method, as the
reassignment iteration and the number of kick-out parameters do not behave as expected. Showing
that that the number of kick-outs and iterations do not fit their purpose of constraining or improving
the model. These limitations are important when evaluating the results in the following chapters. The
modification strategy for the random insertion method consists of limiting the search sample based on a
search rate. For the swap, the strategy is to remove a random number of parcels from the vehicle’s route
so that they can search again for placement in the available fleet. The clustering is done using k-means
clustering and the delivery centres are adjusted accordingly. In terms of changes in the environment,
the mixed fleet is incorporated by changing the fleet size and the characteristics of the vehicles in the
fleet. Congestion is added by adding a congestion factor to the delivery vehicles. This leads to a list of
experiments to be carried out. To structure these experiments, first the test cases are used to obtain
preliminary results that can be used to structure the experiments for the case data, which will require
considerably more calculation time.
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5 Model Application

This section will give an overview of the results of the different experiments that have been carried out.
The first part will consist of a test case in which the different modifications are tested and evaluated.
Based on this first round of experiments, the model will be tested using real-life case data. This
section will conclude with an evaluation of the implementation of this type of decision-making method
in logistics. The experiments in the python simulation consist of multiple variations of the heuristics
and changes in the simulation environment. The influences of the changes are assessed based on the
distance travelled, emission, and computation time. Each experiment is set to run for 660 iterations,
corresponding to 660 minutes, simulating a working day from 08:00 to 19:00. The first iterations are
considered to be the start-up of the model, where the parcels are iteratively allocated and reallocated,
after which the shipments start and the parcels can only be reallocated by trans-shipments. Each set of
experiments is performed for different random seeds, in order to gain insight into the distribution of the
solution space. Unless mentioned otherwise, the parameter input is set to the input values described
in Appendix H Table 15. For the first experiments, the pr76 instance is used, as a test bed for all
modifications. The last experiments include the case data set.

5.1 Base case

The first experiment is performed as a reference case. In the reference case, the pr76 instance is
compared to the original method2. The results of the base case are shown in Table 7. These results are
similar to the confidence interval described in Figure 19. A feasible solution was found for all random
seeds and no parcel was not allocated.

Table 7: Reference case pr76 original SOLiD method

Pr76

Randomseed Distance travelled (m)

1 183230,94

2 182202,24

3 175748,57

4 182687,54

5 163053,44

6 185631,51

7 180425,63

8 177480,88

9 171657,06

10 183976,87

Average 178609,47

Best performance 163053,44

2The original algorithm has been debugged and it has been adapted to fit into Spyder’s integrated development
environment (https://www.spyder-ide.org/).
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5.1.1 Random Insertion

For random insertions, the algorithm is adjusted to limit the number of insertion points, and therefore
the number of calculations, for each parcel. The logic behind the adaptation uses a search rate. In
this series of experiments, the distance travelled, the run time and the number of unassigned parcels
are derived for a set of 10 random seeds. This is done for a search rate of 25%, 50%, 75%, and 100%
(same as the reference case). An overview of the results is given in Appendix L with a table of the
results (Table 20) and a graphical representation of the routing for the different search rates are given
in Figure 37. At the search rate of 25%, the algorithm was unable to assign all the parcels in some
random seeds, and thus these runs had no feasible results. For the other search intervals, all parcels
were assigned and thus provided a feasible solution. For the travel distance and the run time, an
overview is given in Figure 22 for a confidence interval with a significance level of 5%. The figure
shows that the average travel distance for the fleet decreases with a higher search percentage. It is
interesting to note that the travel distance for a 75% search sample gives a better result than the 100%
search with a similar deviation. In general, the confidence interval gets smaller with a larger search
sample for insertion. When looking at the calculation time, a similar trend behaviour can be seen.
For smaller search percentages the dispersion is larger than for the higher search rate samples. The
calculation time of the algorithm becomes larger with a larger search rate and corresponding insertion
sample range.

(a) Travel distance of the random insertion method (b) Runtime of the random insertion method

Figure 22: 95% confidence interval for the distance and run time
of the random insertion method with the 100% search rate being
the same as the base model

5.1.2 Two-opt Swap

For the swap, the algorithm is modified to randomly reassign a predefined number of parcels. The
method is evaluated in combination with the current kick-out method which kicks out outliers in
the route of the vehicles. The number of kick-outs is kept constant at a predefined value of 5. The

Delft University of Technology 46



algorithm is analysed for a swap of 2, 5 and 8 parcels. The distance travelled, the run time and the
number of unassigned parcels are derived for a set of 10 random seeds for each experiment. Earlier
parameter analyses in section 4 showed irregularities with regard to the kick-out method. Therefore,
besides testing the random swapping of a group of parcels per vehicle in combination with the original
kick-out method, a situation where only swapping is used is also evaluated. This is done to see how
the algorithm performs under swapping alone. An overview of the results can be seen in Appendix M,
with a results overview table of the swap in combination with the kick-outs (Table 21) and only the
swaps (Table 22) and a graphical representation of the routing for the different swap cases in Figure
38. For the travel distance and the run time, an overview is given in Figure 23 for a confidence interval
with a significance level of 5%. When looking at the travel distance of a combination of the swap and
kick-out method, it can be seen that for 2 swaps the algorithm achieves slightly better results than
for the base case. For larger numbers of swaps, the performance decreases and the distribution of
the solutions becomes less consistent. For the swap-only method, the performance is fairly stable and
slightly better than in the base case. The spread becomes slightly larger for larger numbers of swaps.
The run time of the experiments shows that all methods perform around the same time interval. It
is interesting to note that the method with only random swapping takes longer than a method with
both swapping and kick-outs, which would have more computational steps. The method of swapping
can improve the results, but overall, the influence of the swapping heuristic does not yield significant
benefits when both computation time and performance are considered.

(a) Travel distance of the swap method (b) Runtime of the swap method

Figure 23: 95% confidence interval for the distance and run time
of the swap method

5.1.3 Clustering

Clustering is done separately before the algorithm is executed. By defining delivery centres the algo-
rithm mimics the current situation in which all parcels are known before the final assignment. Having
predefined clusters, therefore, limits the dynamic characteristics of the model. The clusters are set
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according to the k-means clustering done in Figure 20. A result table of the cluster method can be
seen in Appendix N. Clustering is a step towards better results. As the as can be seen in the results in
Figure 24. The performance of the model improves for a faster computation time. An important note
to make here is that the computation time of the clustering is not taken into account. Besides, in the
base case, the delivery centres are chosen quasi-randomly, i.e. the centres are placed in a specific part
of the matrix. In a situation with completely random centres, the results regarding the performance
difference could be more significant.

(a) Travel distance of the cluster method (b) Runtime of the cluster method

Figure 24: 95% confidence interval for the distance and run time
of the cluster method

5.1.4 Combination of Heuristics

When considering a combination of the different heuristics, it is good to give an overview of the
performance of the different heuristics, which can be seen in Figure 25. In general, it can be observed
that the adjustments to the model only bring about small changes in the results. The overview and the
previous results show that the swap heuristic performs well for some combinations for travel distance
and for some combinations for run times, but for a combination of both, it does not give favourable
results. Therefore, when combining heuristics, the emphasis is on combining the random insertion
method and the clustering method. Both the 50% and 75% search samples performed well considering
travel distance and computation times. Choosing to cluster for the combination of heuristics means that
the dynamic capacity of the model is limited by the pre-allocated clustering. In addition, the decision-
making process becomes more centralised, as the system assigns the parcels centrally in advance. Some
of the dynamic behaviour is still intact, as decision-making during the simulation is still dynamic and
decentralised. Therefore, it was decided to include clustering in the combination of heuristics to be
able to compete better with a fully centralised approach.
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(a) Travel distance of all methods (b) Run time of all methods

Figure 25: 95% confidence interval for the distance and run time
of all methods

For the combination of the 50% and 75% search rate and clustering, the results are shown for a
95% confidence interval in Figure 27. The combination of methods performs better than the base case,
both for distance travelled and computation time. When comparing it to the clustering-only case the
combination of methods does not improve based on performance, but for the 50% rate, it is able to
half the computation time. The spread of the solution is similar for the methods. It is interesting
to note that the combination with the 50% search frequency performs slightly better than the 75%
combination, as this was not observed for the separate tests. Regarding the computation time, a logical
increase can be observed for the larger search sample. Given these results, the combination of a 50%
search interval and clustering is chosen for application to the case data.
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(a) Travel distance for a combination of methods (b) Run time for a combination of methods

Figure 26: 95% confidence interval for the distance and run time
for a combination of methods

5.1.5 Mixed Fleet and Congestion

For this set of experiments, the simulation environment is modified for a heterogeneous fleet for the
modified version of the model with the combination of the best-performing heuristics and the base
case. The mixed fleet is included by changing the input characteristics of the vehicles according to
the parameters defined in section 4.4. For the experiments, three situations are considered in which
cargo bikes replace vans. The total capacity of all vehicles is kept the same. The experiments are
a combination of 4 vans and 2 cargo bikes, 3 vans and 4 cargo bikes, and 2 vans and 6 cargo bikes.
For this set of experiments, the distance travelled, the run time and the number of unassigned parcels
are derived for a set of 10 random seeds. In addition, CO2 emissions are also taken into account.
In previous experiments, it was assumed that all vehicles emit the same amount, which can be easily
calculated by multiplying the distance travelled by the emission factor. In these experiments, the cargo
bikes cause no emissions. The tests are first performed for the base case, after which they are applied to
the improved model of the best performing heuristic, this allows to see the effects of real-time changes
in the simulation environment on the performance of the improved and base model. Appendix P gives
an overview of the results and example graphs for the different fleets. The results in Figure 41 show
that for a combination of 4 vans and 2 cargo bikes and 3 vans and 4 cargo bikes the algorithm is able to
obtain feasible results for all random seeds. For the combination of 2 vans and 6 cargo bikes, the fleet
is not able to deliver all parcels for some random seeds. This can be observed for both the improved
method with a combination of heuristics and for the base case. Looking at the travel distance of all
methods, it can be seen that the heterogeneous fleet performs less well than the homogeneous fleet.
The travel distance is significantly higher for all cases. Moreover, the travel distance increases as the
number of cargo bikes increases. On the other hand, the experiment shows that emissions decrease as
the number of cargo bicycles increases. This shows that there is a trade-off between lower distance
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travelled with a more efficient van-only fleet and lower emissions with a less efficient mixed fleet. The
runtimes are similar for the different fleet combinations. For the improved method, it can be seen that
the runtimes are lower than for the base method. The comparison between the improved method and
the base case shows that the performance of the model is not significantly affected by the changes in
the heuristics. Both methods perform within the same range for both travel distance and emissions.
The improved model achieves only slightly better results.

(a) Travel distance for a combination of methods and
mixed fleet

(b) Emission for a combination of methods and mixed
fleet

Figure 27: 95% confidence interval for the distance and emission
for a combination of methods and mixed fleet

To account for congestion in the simulation environment, three vehicle speeds in the fleet of vans
are considered for the modified version of the model with the combination of the best-performing
heuristics and the base case. Free flow with the current speed of 26 km/h, light congestion with a
speed of 17 km/h, and heavy congestion with a speed of 13 km/h. For this set of experiments, the
distance travelled, the run time and the number of unassigned parcels are derived for a set of 10 random
seeds. The congestion rates are also applied to the base case to see the behaviour of the improved
model against the old. An overview of the results is given in Appendix Q. A graphical representation
is given in Figure 28. For all three levels of congestion, the model is able to deliver all parcels within
the working day in the old and the new model. Interesting to see is that the performance for all three
congestion rates for the original method is the same as the base case. Meaning that the model is not
affected by the slower vehicle speeds. For the improved method the distance travelled goes up slightly
for higher congestion rates, but the changes are minimal. The computation time is better for the
improved method when comparing it to the base method and stays around the same time interval.
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(a) Travel distance for a combination of methods and
congestion

(b) Emission for a combination of methods and conges-
tion

Figure 28: 95% confidence interval for the distance and emission
for a combination of methods and congestion

The integration of real-time complexity for a mixed fleet showed that the solution method for
sorting and routing parcels is not able to deliver all parcels with a high number of cargo bikes. One
of the reasons for including cargo bikes in the model is to look at the effects of low-emission vehicles.
Furthermore, it is assumed that cargo bikes are more manoeuvrable in transport by using bicycle
lanes, which makes them not affected by congestion. To see the effects in the simulation model for a
combination of mixed fleet and congestion, a mixed fleet with 4 vans and 2 cargo bicycles and 2 vans
and 6 cargo bicycles is combined with congestion speeds of 13 km/h and 17 km/h. The average results
of 10 different seeds are shown in table 8. This is done for both the improved solution method and the
base case. The results show that for this test example the effect of more or less congestion is minimal,
as for both models the performance in the trip distance is comparable, if not equal, for the same fleet
combination with different congestion rates. It is clear that the model is not able to deliver all parcels
for the combination of congestion and a mixed fleet for the modified solution method, as several parcels
are not delivered. This shows that the new model is less able to cope with this kind of complexity.
The run time for this modified model is significantly less than for the base model. For the emission, it
could again be observed that for more cargo bikes, less CO2 is emitted.
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Table 8: Results for a combination of mixed fleet and congestion
for different fleet sizes (van/cargo bike) and congestion rates for
the Pr76 instance

Pr76
4 vans and 2 cargo bikes
and congestion 13 km/h

2 vans and 6 cargo bikes
and congestion 13 km/h

4 vans and 2 cargo bikes
and congestion 17 km/h

2 vans and 6 cargo bikes
and congestion 17 km/h

Free flow
and all vans fleet

Number of unassigned parcels 0,00 0,60 0,00 0,60 0
Distance travelled 265791,54 350306,80 266237,57 342710,70 178609,4664
Run time 54,34 45,26 52,95 44,31 56,73694945

Original solution method

Emissions 29804577,10 7387455,22 29203776,60 6693386,67 41080177,27

Number of unassigned parcels 1,60 0,10 1,60 0,10 0
Distance travelled 233790,70 300840,50 233790,70 300840,50 178609,4664
Run time 24,12 20,31 28,29 21,07 56,73694945

Modified solution method

Emissions 36396703,60 24042819,80 36396703,60 24042819,80 41080177,27

5.1.6 Interpretation of Results

Overall, it can be concluded that the implementation of the various heuristics improved the model,
but the gain in performance was relatively minimal. The solution space for all results in the previous
experiments varies. All methods obtain different results. This shows that there is a wide range of
feasible solutions for the problem case, but also that the algorithm does not get stuck on similar local
minima. It may also mean that this decision model is unable to find these local minima by applying
the current method. The random insertion method showed that it is not necessary to consider all
insertion points when determining the distance travelled. It showed that it can be beneficial to have
a lower search frequency to reduce the computation time. Because the algorithm loops through the
’make offer’ functions for every offer and time iteration the 50% search rate is applied many times, this
helps to arrive at as good a solution as the full enumeration. The swapping heuristic could not make
any significant gains. It was interesting to see that for a swapping-only method the computation times
remained the same, this suggests that sorting parcels based on travel distance is not an essential step
in creating a more efficient algorithm. This corresponds to the irregularities of the kick-out parameter
evaluated in section 4. Clustering the parcels is a logical step in creating a more efficient algorithm. The
applied greedy method assumes the cheapest insertion in the already existing route and the delivery
centre, if the vehicles are already assigned to clustered areas the solution method can perform better
and more efficiently. It also shows that the current real-life method of delivery areas per vehicle can
be beneficial for the performance of the model. The choice to apply to clusters is difficult because it
reduces the dynamic properties of the model. For further extensions of the model, clustering can be
included in a more dynamic sense, for example by using historical data from previous weeks to decide
on delivery centres. The combination of methods gives slightly better results in terms of travel distance,
but significantly better results in terms of calculation time, with a decrease for the 50% search rate
plus clustering of almost 40% compared to the base case. This combination is chosen to be applied to
the case data. For the mixed fleet it can be seen that with a higher number of cargo bicycles, emissions
decrease accordingly. On the other hand, the distance travelled increases with a higher number of
cargo bicycles. When lower emissions are desired, a less efficient network with more cargo bikes can
be chosen. For 6 cargo bicycles and 2 delivery vans, both the basic method and the improved solution
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method are not able to deliver all parcels. The lower vehicle speeds and the lower capacity of the
bicycles make the routes less efficient, which leads to unfeasible results. This shows that the model
has problems in efficiently assigning the farthest parcels to the vans and the shorter distance parcels
to the cargo bikes. This can also be seen in figure 41 where more routes can be observed, but not
necessarily short- and long-distance routes, as can be expected in such a mixed fleet system. In the
case of congestion, the efficiency of the network decreases slightly as the congestion increases. However,
the effects of lower vehicle speeds are marginal. Congestion should mainly affect the time constraint,
as vehicles cannot pick up new parcels. In this small set of cases, this apparently has no effect, as
everything can be delivered on time. It will be interesting to see how this behaves for the real dataset,
where time may be a bigger constraint. The combination of congestion and a mixed fleet again shows
that the effect of congestion is minimal. The modified model is less able to cope with the addition of
real-time complexity than the original model, as more parcels are unassigned. The model as a whole
can be made more efficient by applying the proposed heuristics, but the changes only affect efficiency
and do not improve the logic of the model itself. The unfeasible results that arise when congestion
and a mixed fleet are taken into account show the limited ability of the solution method to adapt to
changes in the simulation environment.

5.2 Case Application

The following experiments will be conducted using the case data of 729 delivery points with the distance
matrix calculated from the longitude and latitude of the geographical locations of these data points in
the Delft areas.

5.2.1 Case data with a combination of random insertion and clustering

For the case data clusters are derived using k-means clustering, with 11 centroids distributed over
the 729 data points. These centroids are then included in the coordinate and distance matrix of the
algorithm, specified as fleet delivery centres. To be able to compare the results of the algorithm by Vlot
(2019), the same input parameters are used. Due to the computation time the algorithm is not able
to run multiple random seeds. Previous results have shown that the confidence interval of the results
is acceptable and therefore it is assumed that this is also the case in this instance. The experiments
again evaluate the results for distance travelled, calculation time and unassigned parcels. An overview
of the predefined clusters with the centroids is given in Figure 29.
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Figure 29: K-means clustering with the clusters visualised by the
different colours and the centriodes depicted by the black boxes for
the case data

The results for the combination of clustering and random insertion heuristics are presented in an
overview Table 9. There, they are compared to the model solution for the same dataset as Van Duin
et al. (2021). For comparison, an external centrally organised solver used in Section 3 is also included.
The results in the previous experiments showed improvements in terms of improved model performance
and efficiency. Looking only at the performance of the model, the modified version of the algorithm
is able to improve the original algorithm by about 4.6%. It is interesting to note that not the entire
fleet is used in the model. The current routing takes into account 9 out of 11 vehicles. This is possible
because the capacity of a vehicle is set at 113 parcels. A similar phenomenon can be seen with the OR
solver which also uses only 10 of the 11 available vehicles. This suggests that it is more efficient to use
fewer vehicles. When the calculation time of the model is taken into account, it can be said that it is
unable to find a solution efficiently. It took more than 3 hours to perform the full set of calculations.
Due to the difference in computing power between this study and the study of Van Duin et al. (2021),
the computation times cannot be compared. However, the OR solver and the new method can be
compared. The OR solver can generate a solution within 874 seconds that is better than both the
original method and the improved version of the decentralised algorithm. A graphical representation
of the routes of the vehicles can be seen in Figure 30.
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Table 9: Solution overview of the different solvers

Vehicle distance travelled (km) Computation time (sec)

Original SOLiD method 399,55

Modified version 380,92 12443

OR solver 369,87 874

Figure 30: Overview of the routing for 11 vehicles for 729 delivery
addresses derived by the combination of the random insertion and
clustering method

5.2.2 Case for mixed fleet and congestion

For this set of experiments, the simulation environment is modified for a mixed fleet and congestion.
This is done for the modified model with the best performing heuristics of clustering and random inser-
tion. The case data is used to see the effects of these changes, since run time is limited, the experiments
are only conducted for one random seed. Both experiments are tested for distance travelled, run time
and emissions. For the mixed fleet, the vehicle agent is adjusted so that there are 10 vans and 10
cargo bikes and 9 vans and 20 cargo bikes for two experiments. The total capacity of the fleet is kept
approximately the same. The vehicle characteristics are further described in Table 4. The results of
the experiments with the different heterogeneous fleet combinations are shown in Table 10.
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Table 10: Table of solutions for the case data simulation of the
combination of best-performing heuristics and different fleet com-
binations

Mixed fleet 10 / 10 Mixed fleet 9 / 20 All vans

Number of unassigned parcels 60 37 0

Distance travelled (km) 500,277999 687,761 380,92

Run time (sec) 16786,6749 7895,5655 22400

Emissions (gr) 100098,53 84076,96 87612

For the fleet with only vans, all parcels can be delivered to all delivery points. However, for the
mixed fleet, it can be seen that both for a fleet of 10 delivery vans with 10 cargo bikes and a fleet of 9
delivery vans with 20 cargo bikes, not all parcels can be delivered. Interesting to see is that the higher
the relative number of delivery bikes does not mean the higher the number of unassigned parcels. As
in the pr76 test case, the number of kilometres driven increases with the number of cargo bikes, but
the emission values decrease. The run time for this experiment with the test case is similar for both
cases and is again high. A visualisation of the routes is given in Figure 31.

(a) Mixed fleet 10 vans 10 cargo-bikes (b) Mixed fleet 9 vans 20 cargo-bikes

Figure 31: Routing for two heterogeneous fleet combinations of
vans and cargo-bikes for the modified model with random insertion
and clustering

The case data and the simulation are tested for different congestion situations. Again, three situ-
ations are considered, free flow of 26 km/h, light congestion of 17 km/h, and heavy congestion with
13 km/h for a fleet with only vans. The different congestion levels are implemented in the modified
model. The results concerning the distance travelled, run times and emissions are shown in Table 11.
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Table 11: Table of solutions for the case data simulation of the
combination of best-performing heuristics and different levels of
congestion

Congestion
13 km/h

Congestion
17 km/h

Free flow

Number of unassigned parcels 0 0 0

Distance travelled (km) 450,61 442,26 380,92

Run time (sec) 25887 22233 22400

Emissions (gr) 103640 101721 87612

The model is capable of delivering all parcels for all congestion levels so that a feasible result is
obtained. With higher congestion levels, the distance travelled increases. The emissions also increase
with higher congestion levels, due to the direct relationship between distance and emissions. The travel
times of the three methods are within the same time range. For the highest congestion level, the run
time is the longest. An overview of the routing is shown in Figure 32.

(a) Case data with congestion rate 13 km/h (b) Case data with congestion rate 17 km/h

Figure 32: Routing for two states of congestion for the modified
model with random insertion and clustering

The experiments showed that congestion did not significantly affect the operation of the system.
The mixed fleet did show unfeasible results, with several parcels not being delivered. The cargo bikes
in the mixed fleet situation are assumed to flow freely at all times and are not subject to the existing
congestion. It is therefore interesting to see the effects of mixed fleet and congestion combined, the
situation with the two different fleet combinations is combined with the two congestion factors of 13
km/h and 17 km/h. The results are shown in Table 12.
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Table 12: Results for a combination of mixed fleet and congestion
for different fleet sizes (van/cargo bike) and congestion rates

Mixed fleet 9 / 20 and
congestion 13 km/h

Mixed fleet 9 / 20 and
congestion 17 km/h

Mixed fleet 10 / 10 and
congestion 13 km/h

Mixed fleet 10 / 10 and
congestion 17 km/h

Free flow and
all vans fleet

Number of unassigned parcels 193 137 206 142 0

Distance travelled (km) 659 694 399 425 380,923

Run time (sec) 1987 3587 2872 3044 22400

Emissions (gr) 76673 82336 80915 86423 87612,29

The results show that with higher congestion rates in the mixed fleet, fewer parcels are delivered.
With a higher number of cargo bicycles, relatively more parcels are delivered at the same congestion
rate. This is a logical consequence of the fact that cargo bikes do not experience congestion and can
therefore improve the system. This suggests that in a system with congestion, a mixed fleet with
delivery bikes is desirable. A graphical overview of the four situations is given below in Figure 33.

(a) Mixed fleet 9 /20 and congestion 13 km/h (b) Mixed fleet 9 /20 and congestion 17 km/h

(c) Mixed fleet 10 /10 and congestion 13 km/h (d) Mixed fleet 10 /10 and congestion 17 km/h

Figure 33: Overview instances

5.2.3 Interpretation of Results

The experiments for the test case already suggested that the model could be improved, both in terms
of better routing and computation time. The results for the different solvers show that this is indeed

Delft University of Technology 59



the case. The modified version of the SOLiD method is able to improve the algorithm by 4.6%. Both
clustering and random insertion contribute to this. By randomly choosing the available insertion point,
the model can escape local minima and with the applied clustering the vehicles can easily assign parcels
near their delivery centres. However, the visualisation of the new method shows several long detours
and vehicles crossing their own route. This indicates that the model is far from optimised. This is
also supported by the external solver used, which can generate a better solution. Another interesting
fact is the number of vehicles used for the modified version. Due to the spare capacity of the vehicles
defined in the input parameters, the model tends to use fewer vehicles to obtain better results. When
considering the results of the mixed fleet, this idea is also supported, as it can be observed that more
kilometres are made for more used vehicles. The mixed fleet results show that when a van is replaced
by cargo bicycles, the model is not able to generate a feasible solution, as about 8% of the parcels are
not delivered. This can be explained by the slower speed of the vehicles, which makes each cargo bikes
subject to the time constraints present. The performance of the model at different congestion levels
showed that the total distance increased at higher congestion levels. This can also be explained by the
fact that the lower speeds cause time constraints, which makes the vehicles less able to accept parcels
and thus the route becomes less efficient. For a combination of congestion and a mixed fleet, this can
be seen as fewer parcels are delivered in the mixed fleet at higher congestion rates.

When the calculation time is taken into account, it becomes apparent that the algorithm is not
efficient in obtaining a result. The computation time of the algorithm for all experiments done on the
case data shows the high computational efforts of this model. In the method of Van Duin et al. (2021),
the problem is solved on an Intel Xeon(R) Gold 6140 72-core (2.30GHz) CPU with 32 GB RAM. For
these experiments, an Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz 1.99 GHz with 16 GB RAM is
used. A comparison of the two shows that the former can generate more than 3.5 times the computing
performance of the latter3. This does not allow a comparison of the model. Moreover, it is good to
mention, because it brings the performance in line with the computing power of the machine used.

This study aims to develop an improved model for the decentralised dynamic distribution of parcels,
taking into account its applicability in real cases; it must meet the requirements of acceptable com-
putational complexity, self-organisation capability, and the ability to handle a dynamic sequence of
parcels. The experiments provide a proof-of-concept of the method, but at the same time demonstrate
its limitation. With the integration of heuristics, the performance can be improved by 4.6% while
delivering all parcels. However, the two main limitations are, first, that computation times are still
high even when some heuristics are applied. Second, to obtain better results, the dynamic behaviour
property must be relaxed to cluster the parcels in advance. Finally, at higher congestion levels, the
method is able to achieve feasible results, but the distance to the vehicle fleets increases. For a mixed
fleet, not all parcels can be delivered.

3https://www.cpubenchmark.net/compare/Intel-i7-8565U-vs-Intel-Xeon-Gold-6140/3308vs3132
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5.3 Potential Implementation

The introduction of the proposed system requires a radical change from the current way of doing
business and handling packages. The steps to achieve such an implementation are therefore unclear.
This chapter explores possible ways forward. So far, the state-of-the-art chapter has shown us the
current applications and possibilities for a self-organising last-mile system. Most of the literature
is conceptual in nature and little empirical research has been done. The simulation model and the
application of the algorithm have given practical insights into these theoretical concepts and provided
a proof-of-concept of this system, but have shown the limitations for implementation. This section
uses the information from the interview that is conducted with an industry expert (see Appendix R)
to help shape the implementation steps.

The steps for further development consist of formulating a clear vision, setting preconditions, con-
sidering constraints, identifying key partners, and defining incremental steps to achieve the set vision.
The drivers of current innovation in the parcel sector are increasing customer-driven logistics, larger
volumes to be shipped, sustainability, price, speed and visibility in the supply chain. Combine this with
the trend towards automation and robotisation and increasing connectivity, and the way is clear for
self-organisation. In theory, self-organisation could provide a more dynamic and decentralised solution
that, when applied correctly, could offer a more customer-centric approach because the customer can
provide the parcel preferences to be taken into account in the auction process. In addition, through bet-
ter sorting and routing, the system can achieve lower emissions and faster delivery at lower costs. The
vision of the self-organising logistics system is in line with the three main characteristics mentioned in
the scope of this study; acceptable computational complexity, self-organising capability, and the ability
to handle a dynamic sequence of parcels. The system must be able to remain robust in a dynamic
environment, be organised in a decentralised way so that the parcels can make their own decisions,
and be applicable in situations where no information is available at the time of allocation. Ideally,
this would produce a system where each parcel always follows the most efficient route, which would
contribute to achieving overall optimality. During the research, it became apparent that designing a
fully self-organising system was not within the scope of this study. The focus is on the improvement
of efficiency a model that embraces the features of decentral decision making. The experiments have
shown that the method can be improved in terms of efficiency and performance, but when placed in
the context of the central method it performs poorly.

A precondition would be that the system is applied to ongoing operations for a specific area. A
clear decision on the availability of information must be made beforehand. This is to know the dynamic
behaviour of the system. The experiments have shown that clustering is beneficial, but is only possible
if all parcels are known in advance. An important limitation of this system in implementation is
still the computational complexity. The system should be able to handle millions of parcels, but
experiments have shown that it already has difficulty with 729 parcels. Another important limitation
of the current dynamic method is the situational awareness of the parcel. The parcel industry is
a customer-dominated environment driven by the customer’s convenience (Quak et al., 2018). In the
decentralised method, the parcels are distributed among a number of vehicles, but the actual allocation
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of the parcels may change over time. Therefore, the system cannot give a clear insight into the delivery
times of the parcels. This consideration is also visualised in Figure 34. The final limitation is that this
is a completely new system that will probably require a new design of the sorting depot that allows
for relocation and dynamic allocation. This new design has yet to be created and tested. The current
system already works well. In order to introduce the new system, a convincing pilot project or model
must first be carried out showing that it can compete with the current system, otherwise the system
will not be implemented at all.

Figure 34: Trade-off between a self-organising and central organ-
ised system

The main partners to create this system would initially be Prime Vision and a logistics service
provider, who are willing to experiment with this kind of system. Since this system is still at an early
stage of development, it is sufficient to test it between these two parties first. If the test and trial
system could be applied, a whole range of parties could be considered for implementation. You would
need new partners to make new sorting machines, you would need new partners to make a handheld
app and so on. A whole chain of partners is needed.

To bridge the gap between long-term vision and short-term operations, step-by-step action is needed
to realise such a system. Because of the fundamental change in the system, a complete overhaul of
the decision-making and physical centres is required. This makes it difficult to define clear steps for
implementation. The current algorithm has shown that it enables the decision-making software to
generate a feasible parcel allocation and routing. Turning a conceptual idea and model into practice
is another story. The first step is to provide a proof-of-concept that shows the potential benefits and
limitations of the system. This thesis contributes to that. If the proof-of-concept is successful, the next
step would be for decision-making software to start thinking from a more decentralised perspective,
instead of focusing on batches of parcels that are sent out, software developers could define parcels
as separate entities that interact with their environment. This should lead to physical requirements
for the depots and an initial physical design for the system. A simulation model showing the physical
design in combination with the agent-based decision model would help in understanding the system.
The model would exist of a discrete sequence of events with agents switching between different states.
By feeding this model with real-life data, insight should be gained into the performance of the system
(e.g. throughput times, throughput and vehicle utilisation). If the simulation model is able to achieve
the desired results, the next step is to create a physical test facility that demonstrates the practical
limitations present. If successful, the system can be tested for less critical postal moments, for example,
evening delivery. The final step would be the full implementation of the system in a sorting depot.
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5.4 Summary

The application of the heuristics for the test case of random insertion and k-means clustering shows
a better performance in terms of distance travelled and calculation time. The swapping did not
yield significant benefits. Therefore, the combination of random insertion and the clustering method
was chosen as the best combination of heuristics. The results are even better than their separate
performance for travel distance and calculation time. For the implementation of a heterogeneous fleet,
it could be seen that the number of kilometres travelled increases with a higher number of cargo bikes,
but the emissions decrease. With higher congestion rates, the distance travelled also increases. When
the combination of the best performing heuristics is applied, the modified version can achieve a 4.6%
improvement in vehicle distance, but at the cost of high computation times. Looking at the mixed
fleet and congestion, we see that with a mixed fleet of similar capacity, the model is no longer able
to deliver all parcels in the area. In case of congestion, all parcels are delivered, but the distance
travelled increases with congestion. The experiments demonstrate the improvements and at the same
time show the limitations of the method, with the long calculation times, the marginal performance
improvements, the limited dynamic behaviour and finally the unfeasible results in case of system
changes. When considering the possible application of this method, it can be said that there is still
a long way to go. The steps that can be considered for further development are, formulating a clear
vision, setting preconditions, considering constraints, identifying key partners, and defining incremental
steps towards the vision. One of the most important steps for implementation is to create a convincing
model that demonstrates the benefits of the method and its feasibility.
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6 Conclusion

This chapter summarises the findings of this study by answering the sub-questions and finally the
main research question. This study describes and evaluates the possible improvements of decentralised
dynamic parcel logistics for last-mile delivery. A literature study was conducted in the field of last-
mile logistics, self-organisation, and auction methods in logistics. This showed that there is a gap
in the research on decentralised dynamic parcel delivery methods, and in validating the feasibility of
such methods compared to the current centrally organised system. A conceptual model was created
to outline the operational optimisation of the agent-based method. The current model was studied,
benchmarked and validated. This provided the necessary knowledge to evaluate the results of the
experiments carried out for method extensions and changes in the simulation environment. It also
showed the limitation of the previously proposed method. The sub-questions are answered separately
and the combined insights answer the main research question. This chapter concludes with suggestions
for further research.

Sub-questions
1. What is the state of the art of self-organisation and auction methods in last-mile logistics?

Optimisation of last-mile distribution is widely studied because of its inefficiencies. The problems that
arise are often related to the NP-hard properties that result from the combinatorial problems of last-
mile distribution. To deal with this complexity, the current distribution system performs the allocation
and routing of the parcels separately. It first relies on the clustering of postcodes and then a TSP is
resolved for each vehicle. Since the delivery zones are often fixed for several weeks, daily fluctuations in
the number of parcels can lead to suboptimal utilisation and routing of the vehicles within the delivery
fleet. A decentralised dynamic parcel distribution system, inspired by self-organising principles, would
allow for combinatorial optimisation and dynamic allocation, thus overcoming the limitation of strict
delivery zones. Self-organisation is a broad concept with many different interpretations. In logistics,
self-organisation can be defined by decentral control, openness, and intelligence of the agents. These
capabilities offer promising opportunities to cope with the increasing complexity and need for robust-
ness of logistics chains. The actual application of self-organisation in logistics systems has only been
studied to a limited extent in the literature. There are even fewer examples of a decentralised dynamic
assignment method by use of single parcel auctioning to capture these benefits of self-organising logis-
tics. Collaborative logistics auctions can be an inspiration for the current parcel allocation method.
Market principles could be applied to enable decentralised parcel allocation. This has proven effective
for parcel bundles for competing carriers. The auction system defined for the SOLiD method is dis-
tinctive in that it considers allocation within a non-competitive environment for individual parcels. In
general, the current gap in research is the lack of implementation of self-organising inspired systems
and experiments being done to give insights into the benefits and limitations. Furthermore, there is
little or no information on the applicability and improvements of the proposed method for decentralised
dynamic packet distribution, where auctions of individual parcels are used for the allocation.
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2. What is the effect of alternative routing heuristics on the efficiency of the parcel delivery solution
method in terms of computation time, and vehicle mileage?

The analysis of the current method revealed several limitations, including the difficulty of applying
the model to real-scale cases, which is due to the computational complexity resulting from the lack
of built-in heuristics. Moreover, the dependence of the model’s outcome on the input parameters is a
limitation. The performance of the considered decentralised base method is mediocre when compared
across multiple test instances with the best-known solution and a centralised solver. For the possible
improvements of the model, the application of three heuristics is considered, namely random insertion,
two-opt swap, and k-means clustering. These are first tested for a smaller test instance, after which
the best combination of heuristics is applied to the case data. Application of the heuristics for the test
instance of random insertion and k-means clustering shows better performance in terms of distance
travelled and computation time. Swapping did not yield any benefits in terms of performance and
efficiency. Therefore, the combination of random insertion with a search frequency of 50% and the
clustering method was chosen. The results of the combined method are better than those of their
separate applications in terms of performance for travel distance and computation time. The combined
method was able to achieve significantly better computation times with a 40% faster run time. In
general, the heuristics were able to improve the performance of the model, but the improvements
in travel distance were minimal. When the combination of the best performing heuristics is applied
to the case data, a 4.6% improvement in vehicle travel distance can be achieved compared to the
original SOLiD method, but still with high computation times. Comparison with an external centrally
organised OR solver shows that the decentralised method might be improved but does not perform
well, as the OR solver can find a better solution in a fraction of the time required by the improved
decentralised auction method. Overall, it can be seen that the implementations of the heuristics have
improved the efficiency of the solution method, but when placed in the context of a centrally organised
solver, this is of no significance.

3. What will be the effect of a mixed fleet of vans and cargo bikes for the parcel delivery system in
terms of calculation time, vehicle mileage, and emissions?

The original algorithm has not been tested on a heterogeneous base delivery fleet. A mixed fleet changes
the simulation environment of the algorithm with respect to the implementation of different vehicle
types with lower vehicle speed and capacity. The fleet is adjusted for three types of combinations
of different amounts of vans and cargo bikes in the test case and the case data. The self-organising
principles would suggest that the method can adapt to changes in the simulation environment, as all
parcels can choose their best mode of transport. However, it could be observed that for a mixed fleet
with similar capacity, the model is no longer able to deliver all parcels with a high number of cargo bikes
in the fleet. In general, it was found that for a larger number of vehicles with lower capacity, routing
is less efficient. On the other hand, the integration of the cargo bikes shows that for the test case and
the case data, the emissions decrease with a higher number of cargo bikes. This indicates a trade-off
between efficient routing and greener transport. The calculation time did not increase significantly for

Delft University of Technology 65



the inclusion of more vehicles.

4. How will the adapted last-mile delivery solution method perform under different conditions of
congestion?

Congestion is a common disturbance factor in everyday last-mile delivery. To account for congestion,
three congestion factors are chosen. A situation with free-flow (26 km/h), light congestion (17 km/h),
and heavy congestion (13 km/h). The congestion influences the time constraint present for a vehicle to
accept a parcel. More congestion means fewer possibilities for a vehicle to accept a parcel for insertion in
its route. For the original solution method, the model is not affected by the inclusion of congestion. For
the modified solution method, congestion causes a slight increase in travel distance. Emissions increase
accordingly with congestion, due to the direct relationship between distance travelled and emissions.
The calculation time is not significantly affected by the increase in congestion. For the case data,
the inclusion of congestion has a more significant effect on the travel distance and the corresponding
emissions. The higher the congestion the less efficient the routing. In contrast to the mixed fleet, the
change in the simulation environment due to the addition of congestion does not affect the ability of
the vehicles to deliver all parcels in a feasible manner. When the combination of congestion and a
mixed fleet is considered, it can be observed that the modified method in this study produces more
infeasible results than the original method for the test case. Moreover, it can also be observed that
for fleet combinations with more congestion more parcels are not allocated for the test case as well
as the real-scale case. Due to the number of unassigned parcels, the travel distances are no longer
comparable.

5. What are possible other extensions of the decentralised dynamic parcel distribution solution
method and what are the steps to implement this technology in last-mile logistics?

To put the concept of self-organising last-mile parcels into practice, a convincing proof-of-concept must
be presented. The implementation depends on providing evidence of the benefits of such a system.
Considering the found limitations of the method and the poor performance, the first decision should
be whether it is desirable to continue with this method. To overcome the limitations for the algorithm
itself, there are many areas where it can be improved. One might consider applying a set of known
heuristics in literature to make the method more efficient in finding a solution. A lot of research has
been done on meta-heuristics. The ant colony optimisation algorithms could be an interesting extension
to reduce the computational complexity of routing. Another interesting extension is the integration of a
genetic algorithm for route optimisation. To make the model more realistic, fluctuating congestion can
be used to simulate daytime and peak-hour traffic. In addition, replenishment could be an important
addition. More at the level of the algorithm, by working with classes instead of updating lists, more
insight can be created into what happens to the agents during a simulation run. In addition, alterations
to the code (e.g. NumPy arrays instead of lists) can be applied for faster processing.

Steps for implementation are that first a clear vision must be developed that is very clear about
the desired scope and requirements that the system must meet. The definition of self-organisation
can be vague and is interpreted differently by different studies. Setting clear requirements helps in
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designing the system, and helps in verification afterwards. If not all requirements can be met (e.g.
openness, intelligence and decentralised), the desired benefits may not be realised. The next step is the
limitations, these are important to consider to be able to apply the method in practice. The experiments
show that this system performs poorly in contrast with a centrally organised system. Furthermore,
the computational complexity is unmanageable for large instances. Moreover, it is questionable what
the trade-offs are in adopting this method. One of the main limitations that can already be identified
is the inability to provide the customer with information on the situation and status of his parcels
and to give a clear delivery date. The next step for implementation is to identify the key partners.
For this first round of development, it is enough for the logistics service provider to cooperate with
Prime Vision. For later phases, a whole chain of partners should be considered. Finally, precise steps
in the work process must be outlined. When all the previous steps have been taken, a more structured
development can be achieved.

Main research question
To what extent can the efficiency of a decentralised dynamic parcel distribution method be improved
by applying different heuristics and adapting the simulation environment with congestion and a mixed
fleet?

The current parcel distribution system is based on delivery zones that are fixed for several weeks; daily
fluctuations in the number of parcels can lead to suboptimal utilisation and routing of vehicles within
the delivery fleet. A decentralised dynamic parcel distribution system, inspired by self-organisation
principles, would make it possible to overcome the limitation of strict delivery zones. The performance
of the considered decentralised base method is mediocre when compared over several test instances
with the best-known solution and a centralised solver. For the possible improvements of the model, the
application of three heuristics is considered, namely random insertion, two-option swap and k-means
clustering. These were found to be essential for improving the computation time. The application
of a method of random insertion and clustering was able to reduce the computation time by 40%.
However, the improvement in performance with respect to distance travelled was minimal with a 4.6%
reduction for the case data. Comparison with an external centrally organised OR solver shows that
although the decentralised method can be improved, it does not perform well, as the OR solver can
find a better solution in a fraction of the time required for the improved decentralised auction method.
The integration of mixed fleet and congestion allowed for further analysis by changing the simulation
environment. When analysing the results of the integration of mixed fleet and congestion, it could be
seen that for congestion the distance travelled increased. For a mixed fleet, it could be seen that not
all parcels were allocated for a larger number of cargo bikes. For the results that were feasible with a
mixed fleet, it could be established that the routing was less efficient when more vehicles were involved,
however, the implementation of cargo bikes resulted in a decrease in emissions. This indicates a trade-
off between efficient routing and greener transport with cargo bikes in the model. Overall, the results
show that the efficiency of the decentralised dynamic parcel distribution method can be improved, but
when contrasted with a centrally organised method, this improvement becomes of low significance.
When considering further development. The steps for developing the model would be to structure the
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research and development by creating a clear vision and scope, defining the requirements, evaluating
the limitations, identifying the key partners and defining step-by-step steps for the actual development
of such a system. This study has contributed to the first three steps. It has demonstrated the proof-of-
concept and created a more efficient model. However, given the method’s limitations, further research
should carefully consider whether it is desirable to continue with this specific method.

Further research
It can be said that the method of decentralised dynamic parcel distribution used is not a good method
for the distribution of last mile parcels. The advantages that a decentralised dynamic approach through
individual parcel auctions could bring are countered by the low efficiency of the model studied in this
research. At the academic level, many papers point to the benefits of self-organising principles. It
is widely believed in the literature that decentralised control can help improve the robustness and
performance of systems. The gap in research that is not addressed in this study is the relationship
between the efficiency of a model and its robustness. Further research should focus on uncovering this
relationship to demonstrate the true potential of this type of method.

Besides this, further research can be done in four domains, namely providing a categorised overview
of the existing literature, secondly, ways of modelling can be further explored, thirdly, limitations
of current methods can be overcome, and finally, more tests in real cases. Firstly, the conceptual
representation of a self-organising logistics model can be further elaborated and an overview of the
benefits and drawbacks of such a model can be made. Given the limited research in this area, it
would be desirable to have an overview of all applications of self-organisation in logistics and the
levels of self-organisation. Moreover, a categorised overview of different auction methods, with their
applicability with respect to the requirements of self-organisation, would help in mapping the topic
and understanding its usability. Next, the current method of modelling is limited in its dependence
on input data. Further research could explore other, more comprehensive modelling methods that can
combine the state change of the agents with the sequence of discrete events in the distribution centres.
If such a model could be constructed and applied over a longer simulation period, it would provide
more insight into the feasibility of the method and the performance in terms of lead times, tardiness
of parcels and utilisation of the available fleet. The third area for further research is the extension of
the current method by removing the existing limitations; interesting elements are the integration of
a dynamic inflow of parcels, the extension of the fleet with new vehicles such as small electric vans,
and adding a maximum range to the vehicles given the electric vehicles. An interesting application
would be a hybrid application of the system, i.e. instead of processing all parcels with decentralised
dynamic assignment, only partially apply it. For example for the chute with parcels that do not fit
within the static range of postal codes, a dynamic allocation can be done. Another interesting topic
to investigate further is the application of market forces and auctions for the allocation of parcels by
connecting the first and last mile. In such a case, the retailer or customer would register a parcel with
its characteristics in the first mile of transport, and the entire route of the package would be auctioned
within the capabilities of the logistics provider. This system could include a dynamic price based on
the demand for that period. The advantages of such a system would be that in periods of high demand
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when delivery options are scarce, dynamic pricing could help to achieve more uniform demand. The last
area of research is the application of the method to real cases. Many papers describe the conceptual
potential of self-organisation, but there are few experiments. By expanding the knowledge base to
include the above-mentioned domains, the potential of self-organising principles can be better mapped
out.
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7 Discussion and Recommendations

The goal of this study was to explore and develop improvements of a decentralised dynamic last-mile
parcel delivery system. In this section, it is discussed to what extent the goal is achieved, and what
considerations should be taken into account when interpreting the results of this study.

This study contributes to the literature on the analysis of a decentralised auction-based model
in logistics and provides insight into its efficiency in terms of performance and computation time by
applying it to a real-scale case study. The aim of the method is to provide an improved alternative
to the current centralised method to cope with the increasing complexity and size of last-mile logistics
networks. Most of the literature related to self-organisation and decentralised control is conceptual
in nature. Due to the conceptual nature, the concepts appear to be distant visions of the future.
Quak et al. (2018) state that there is currently no clear direction or set of actions to make logistic
systems function more according to the principles of self-organisation. The model created provides
an quantitative application of the concept of decentralised parcel allocation for sorting and routing,
and gives insight into the efficiency of the method. The originally proposed method of decentralised
dynamic parcel distribution has been improved to better handle larger data sets by including heuristics
in the model; furthermore, the model has been modified to show the influence of congestion and
a mixed fleet. The experiments show that this type of model is still undesirable compared to the
currently used centralised methods, due to its poor performance and computational effort. One of the
main contributions of this study is that it compares the existing method with other known solvers,
thus providing a reference point for further research. Moreover, insight is given into the previously
undiscussed limitations of the method.

The results of the study show that a single parcel allocation method can be applied to small
instances as an alternative to the static centralised method currently used in practice. The study
shows with a decrease in vehicle distance of 4.6% for the case data and a reduction in computation
times in the test runs of up to 40% that the adjustments made can improve the efficiency of the method.
The adjustments to the simulation environment affect the efficiency: congestion leads to less efficient
routing and a mixed fleet leads to less efficient routing and unallocated parcels. The results suggest
that this method is a promising alternative for last-mile delivery, but as mentioned before, the efficiency
of the model with respect to the travel distance is still worse than known methods in the literature as
described by Yousefikhoshbakht et al. (2013). Moreover, the computational effort required to run the
model for a case data set shows that the model has limited applicability in practice. This disagrees
with the conclusion of Van Duin et al. (2021) who state that the method is capable of improving
the efficiency of current delivery operations. The outcome of this study supports the theory that
one of the main limitations of optimising allocation and routing is due to computational complexity
(Buckman, 2018, Kang and Lee, 2018). A comparison with MANETs has already been made in the
literature review, the ability of these networks to function with centralised control depends on local
interactions between nodes in the system. Hinds et al. (2013) mentions that the disadvantage of local
interaction is the low throughput of information that can be achieved. This can also be observed in
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the method of auctions for matching individual parcels, where each individual parcel is paired based
on the currently available transport options. The efficiency of the pairing depends on the previous
rounds of pairing and the amount of available options. This is also one of the reasons why a centrally
organised system is able to outperform the decentralised system. As seen in the collaborative auction
literature, if information is known centrally the more efficient routing between carries can be achieved
than for decentral information (Karels et al., 2020).

Berndt (2011) mentions that self-organising principles in logistics offer a solution to the conflicting
demands of achieving high operational effectiveness and efficiency while maintaining the ability to adapt
to a changing environment. The ability of self-organising principles to improve robustness and flexibility
while remaining within acceptable efficiency is what makes it an interesting topic. Meepetchdee and
Shah (2007) mention the difficulty of the combination by stating that the goals of design for efficiency
and design for robustness are often in conflict. In this study, the current method can be examined on the
basis of its efficiency. The possible advantages of distributed control, the robustness of the system, and
flexibility of the system have not been addressed in this study. No conclusion can be made regarding
them. However, the moderate efficiency provides insights for possible further studies. Knowledge of
the limitations of such a decentralised method for parcel distribution may raise the question of to what
extent this method is desirable, even though it can possibly achieve higher robustness and flexibility.

The scope of the study is inspired by the three main characteristics of a self-organising logistics
system defined by Pan et al. (2016); openness, intelligence and decentral control. Moreover, Buckman
(2018) defines two additional requirements for the application of allocation algorithms to be used
effectively in real systems: acceptable computational complexity and the ability to process a dynamic
sequence of parcels. In evaluating the self-organising capabilities in this study, openness can be verified
as the system is able to process vehicles entering and leaving the system during the simulation. It should
be noted that this does not happen randomly but at predetermined times. The intelligence element
is contained in the auction method, allowing the parcel to choose its assignment. The decentralised
organisation is an important specification but it is not fully met. The conceptual model shows that the
model consists of three agents, namely the vehicle agent, the parcel agent and the platform agent. It is
explained that the platform enables the matching of transport requests and transport offers. However,
having the platform means that there must be a central entity that can evaluate the information of
all bids. In fully self-organising decentralised systems, the information is only available locally and
the agents interact through local interactions. This is an important consideration since many of the
proclaimed advantages of self-organising systems revolve around the greater robustness resulting from
the absence of a central decision-making system. The ability of the system to handle a dynamic
sequence of parcels was also one of the conditions that the system had to fulfil. It can be said that
the system is capable of this since changing the sequence of parcels does not significantly affect the
outcome of the model. One of the limitations of the method is the dependency on the delivery centres
of the vehicles, for test cases, it is good to already assign these delivery locations based on the layout
of the nodes. However, this means that information about the delivery locations has to be assessed
centrally and in advance, which reduces the self-organisation ability and the dynamic ability. It should
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be noted that for real applications, the delivery areas can be defined based on historical data, which
should make it possible to define the delivery centres without prior knowledge of the entire batch of
parcels.

For the experiments, heuristics were applied that consisted of modifications of the existing model.
All experiments were evaluated on the distance travelled and the calculation time. The computation
time is not always a reliable measure as it depends on the available processing space during the
simulation run. Moreover, adding more randomness by using different random seeds means that the
result must be evaluated based on the dispersion of the results. Consequently, the computation time
for incorporating random insertions would be the total of all runs rather than the average time when
compared to a simulation that does not contain a stochastic element. For the experiments, a set of 10
random seeds is used to account for stochasticity; to obtain more reliable results, this number of runs
should be increased. For the experiments, the dataset consisting of 729 delivery addresses is assumed to
be a real scale case. For distribution in postal distribution centres, this number is considerably higher.
This study can provide a solution for this real-life scale test case, but no conclusions can be drawn for
the implementation of such a system for a complete distribution centre. Moreover, the model assumes
a situation where all parcels are delivered and the delivery time is the same for all deliveries. In a
real situation, there are many more uncertainties in the delivery of parcels. One of the limitations of
the proposed method is the dependence of the input parameters; the calibration showed a distribution
of the results that was not logical. The extreme value test showed that the number of kick-outs and
the number of reassignments did not behave as expected. For this study, it is assumed that the input
parameters proposed by previous studies would give adequate results. The validity of the method could
be extended by testing the effect of varying all input parameters. This would also give more insight
into the level of path dependency of this model. Moreover, in this study, the implementation of the
model was set to the distribution of last-mile delivery. Due to the magnitude of this problem, many
assumptions are made along the way. For a better representation of the real system, a more specific
application of such a system could be specified first. As mentioned in the section on future research,
it would be interesting to see the effects of this system on the parcels that cannot be sorted directly
in the static postal code areas. With regard to the mixed fleet approach, the viability of introducing
a different fleet combination depends heavily on the geographical characteristics of the area. Urban
areas with narrow streets are ideal for cargo bikes, but less densely populated areas favour the use of
vans more. This is something that has not been taken into account in the model.

Finally, building on the work of other master’s students has its advantages and some serious dis-
advantages. The work that the predecessors put into this parcel distribution method paved the way
for further exploration of the issues. It provided a pre-set test environment and a model to test. A
disadvantage of this situation is that the results of this study will always be limited by the assumptions
made along the way. A simulation model is always a simplification of reality, which depends not only
on the skill of the person who created the model but also on his/her interpretation of the logic behind
the model to which all further extensions are bound.
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Recommendations:
On an academic level, it can be argued that the used method of decentralised dynamic parcel distribu-
tion is not a good method for the distribution of last mile parcels. The benefits that might result from
a decentralised dynamic approach by auctioning individual parcels are accompanied by low efficiency
of the model. On an academic level, many papers point out the advantages of self-organising princi-
ples. It is widely believed in the literature that decentralised control can help improve the robustness,
resilience and performance of systems (Zhang et al., 2016, Serugendo et al., 2003, Pan et al., 2016,
Van Duin et al., 2021, Hrabia et al., 2018, De Wolf and Holvoet, 2007). The gap in the research
that is not addressed is the relationship between the efficiency of a model and its robustness. Further
research should focus on uncovering this interaction to show the true potential of this type of method.
Other academic recommendations relate to the future research component described in the previous
chapter. On a managerial level, recommendations include defining a smaller scope, evaluating the
trade-offs of the self-organising method and reconsidering the logic behind the model with possibly
smarter heuristics.

One of the disadvantages of the self-organising concept for last-mile delivery is the large scope
of the concepts involved. It involves adequate sorting, planning, routing, transport planning, vehicle
availability, etc. It combines the implementation of all these concepts under a sometimes opaque
definition of self-organisation, which is interpreted differently in many different research papers. The
broad scope of the problem makes it difficult to draw general conclusions about the findings. What
might help to overcome this is to focus on the application of self-organisation in only one research
domain, for example only planning. Later, these separate methods could be combined into a more
complete system. The application and concept of self-organisation should also be seen in the light
of its trade-offs. One of the most obvious trade-offs is the situational awareness of the location and
status of packages in the system, in a dencentral system, it can be hard to showcase this and provide
clear delivery windows to the customer. Another important limitation is that change in large-scale
systems is often gradual and evolutionary. New solutions for the distribution of parcels, as described in
this study, require drastic changes in the current infrastructure, which limits a gradual transition. To
realise the changes in the systems, large investments in the installed base are required. Furthermore,
switching to a new type of system entails the risk of disrupting current business continuity. Moreover,
logistics systems often involve several parties. Thus, the complexity of integrating this type of method
is not only due to the complexity of the system but also to the complexity of obtaining cooperation
from its users. The final limitation is that it is unclear whether the supposed benefits of this type
of decentralised system can be realised in practice. In general, it should be carefully considered why
and if such a system is desirable, even if the results show that the efficiency is far from ideal and
with the limitations present. If so, the current model can be further improved by removing some
of the limitations, but to further develop the idea of a more decentralised dynamic system, a more
comprehensive, realistic agent-based model should be created, this model should include a smarter
set of heuristics to improve efficiency. In addition, incorporating a dashboard or visual representation
would help people accept the results of the model and understand how it works.
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A Vehicle routing problem

In the last 60 years, research has been conducted on the problem of vehicle routing. Dantzig and Ramser
(1959) were the first to address the problem of truck routing and modelled how a truck fleet could serve
several gas stations. However, current models of vehicle routing differ greatly from those introduced
by Dantzig and Ramser (1959), as they attempt to incorporate real-life complexities (Braekers et al.,
2016). The goal of these vehicle routing problems is to find optimal delivery routes (Eksioglu et al.,
2009). In a classical vehicle routing problem (VRP), each vehicle travels only one route, there is a
homogeneous fleet, and there is only one central depot (Braekers et al., 2016). There are a wide variety
of variants to extend this classical model. These features add additional complexity. An important
notion to consider is that VRPs are an NP-hard problem, meaning that the required solution time
increases greatly with the size of the problem. Heuristics and meta-heuristics are more suitable for
these situations. Eksioglu et al. (2009) states that the VRP literature has been growing exponentially
at a rate of 6% every year. It is therefore hard to keep track of the developments and the different
variants. Braekers et al. (2016) define the following variants:

• Capacitated VRP : is the classical VRP, the optimal delivery routes are determined for one vehicle
that travels only one route, and each vehicle has the same characteristics, and there is only one
central depot.

• Periodic VRP : is used when the schedule runs over a period of time and deliveries to the customer
may occur on different days.

• VRP with time windows: is used when deliveries to a particular customer must occur within a
certain time interval that varies from customer to customer.

• Dynamic VRP : dynamics is usually related to incoming requests from customers. Little or no
information is available on future requests. For parcel sorting, this means that the destination
of the parcel is not known until it is assigned to a delivery vehicle.

• Pickup and delivery problems: goods must be picked up at a particular location and dropped off
at the destination.

• Vehicle routing with multiple depots: assumes that multiple depots are geographically distributed
across customers.

• Vehicle routing with split deliveries: in VRP with split delivery, not every customer needs to be
visited exactly once, and split deliveries are allowed.

• Green vehicle routing : focuses on overcoming difficulties with green mobility, such as vehicles
with limited range and infrastructure for refuelling.

In this study, the vehicle routing problem can be extended to other characteristics consistent with
last-mile delivery. The single-depot vehicle routing problem is assessed with the expansion of a mixed
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fleet and restrictions on time windows for delivery. An example solution to a vehicle routing problem
is depicted in Figure 13.

Table 13: Example solution of a vehicle routing problem with one
depot and 40 delivery addresses
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B Interview expert of the current sorting system

How does the current sorting process work?

In the sorting process, the object in question is the parcel. This parcel has a barcode (ID), an
address (postcode + house number + house number suffix), a delivery moment (time moment), and
services (signature on receipt, Sunday, evening, registered). You also have events, which can be divided
into events that must take place before sorting and events that take place during sorting. The events
that must take place before sorting are that a customer of the postal service, for example, bol.com
has a number of orders and must report this in advance to the postal service, for example, PostNL.
This happens via an API. From that moment on, all information about the parcel is known to the
system. If this pre-notification is not made, the system cannot make a sorting decision for this parcel
during sorting. What happens then is that OCR and/or Webcoding determine by visual inspection
what should happen to the parcel. So this is the event that takes during the sorting.

What are the OCR and Webcoding?

These are tools that allow for visual inspection of the parcel’s label. Both tools are provided by
Prime Vision.

What are the different stages of sorting?

The sorting process consists of several stages. Almost all postal centres have at least two sorting
stages. The first sorting stage is, for example, when bol.com delivers its parcels to a collection depot
somewhere of the postal sorting company. That is the first stage. Then it is taken to a sorting centre
that is nearby, where they do the first sorting. At PostNL they call this sorting by dispatch. They do
not yet sort by house number, but only by postcode. If the parcel is in Amsterdam and the dispatch
address is somewhere in Limburg, they send it to a sorting centre near Limburg. There it goes into the
sorting machine again. Then it is sorted by house number and addition. Changes may occur between
the sorting stages; for example, the end customer may decide that he prefers to receive a parcel the
next day. Or the person may say I’ll be away for a few days. In that case, the parcel is put on hold
for a while. Another change that can occur is that PostNL can reschedule journeys. The sorting depot
then receives a message that ’this parcel with this barcode’ was scheduled for that journey. But it
must now be included in another journey. This may come in just before it is sorted. These are the two
disruptive elements that can influence sorting.

Once the package is sorted and assigned to a vehicle, can it be regrouped?

When it comes to sorting in the second stage, this is not the case. Then the parcel is on its way to
the final address. If it is already on its way, nothing more can be done. That is where a decentralised
system can add something. The central system, like this one, is powerless.

So the role of Prime Vision, is mainly in the system that handles the "no prior notice"

packages?

Prime Vision does more, but this is indeed one of the most important. So it provides the OCR
and the Webcoding platforms. But Prime Vision also does the sorting. We have many customers, but
I am now limiting myself to PostNL in the Netherlands. We also have a system that controls sorting
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machines, because we also supply the logic for sorting. That system, at least for PostNL, is called SBS,
which stands for sorting decision system.

How are the routes of the buses determined?

PostNL has various mail flows. A parcel from a private individual, they call home delivery. That
is the standard. Other postal flows are medicines, food, bulky letters, and post boxes (companies). A
separate distribution channel does not have to mean separate vans driving around. These distribution
channels are used to centrally plan the journeys. This is done by PostNL itself. The journeys are then
entered into a system that is managed by Prime Vision. This also shows how central it is (a central
program containing all journeys). The rides from all distribution channels are mapped in the central
system, which creates sorting tables. These tables enable the sorting in the sorting depot. The sorting
tables are uploaded to all sorting depots. In the sorting depots, the app ’table changer’ is used, which
makes it possible to choose the right sorting table. The trips are independent of Prime Vision and
are made in an external planning package. For each distribution channel, Prime Vision receives a file
with trips. This determines how the mapping is carried out. The mapping process ensures that per
postcode block the parcels go to a certain sorting output. The result of this process is the sorting
tables.

How does the sorting process work in the depot?

Sorting takes place in shifts. For example from 02.00 to 04.00 hours. In such a shift, they determine,
for example, that they are going to do home distribution and shifts after that mailboxes and foodstuffs.
To do this, they select the corresponding tables in the table changer. That sorting table contains the
information on what the sorting should answer when it receives a parcel. SBS sees the barcode and
gives the sorter the correct sorting direction. After sorting, the parcels fall into roll containers. When
the roll container is full, they are moved to the vehicle. Are OCR and web coding also performed in
the final sorting stage? No, this is only done in the first step. It could be enabled in the second sorting
step, but in 99% of the cases, it makes no sense because it has already been sorted once and therefore
already has a known address.

How many sorting depots are there in the Netherlands?

If we only talk about PostNL, there are about 30.
What happens during a scan?

Every time there is a scan for that project, an observation is created. The observation has a special
code. Based on this code, PostNL can see and trace what is happening with the parcel, what the status
is and what they can still expect.

How many outputs does the sorter have?

The maximum number of exits for the sorter is 50. But PostNL has so many addresses to deliver
to that it is impossible to ensure that there is no overlap in the postcode. That has been solved with a
tool from Prime Vision, a mobile barcode scanner, and a handheld. To minimise overlap, Prime Vision
has a chute mapping system based on linear programming with a lot of input parameters.

How do you view the concept of self-organisation?

The current system is based on a centralised paradigm. Decentralised would mean that whenever a
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packet has a scanning moment, the packet can broadcast information about what needs to be done so
that it can decide on the spot what is the best step to take. In this way, the packet knows where it needs
to go and what additional services are required. It may be that the parcel wants to be transported in
a CO2-neutral manner. Or the parcel may want to be delivered as quickly as possible. Then there is a
digital twin of the system with sorting logic that looks at what is possible in terms of transport. Then
a negotiation process can take place. Another problem where self-organisation can be of great help is
when a vehicle breaks down, then everything in that truck cannot be delivered. Then a replacement
has to be arranged on the spot. Decentralisation can be much more flexible in this respect. Especially
when there is a continuous process of bidding and offering. Conceptually, I think it is a better system
if it is decentralised, but whether it works out that way in practice is the question. Certainly, in a
simulation model, this will probably not be seen.
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C Terminology self-organisation

Self-organisation is a concept broadly used in many research fields (Pan et al., 2016). The term is often
used in combination or in overlap with the terms self-adaptation and emergence. It can be difficult to
define the distinction between these three concepts (Hrabia et al., 2018). This section briefly explains
the terms and their dependencies and relationships.

Emergence: A popular example of emergence is fish schools, which use collective intelligence to
increase protection from predators for the individuals (Viscido et al., 2004). Emergence is the
behaviour, patterns, and traits that emerge from the interaction of local parts of the system.
In this system, the individual parts have no knowledge about the macro purpose of the system
(Hrabia et al., 2018). Serugendo et al. (2003) describes emergent collective behaviour as an
outcome of a process of self-organisation.

Self-adaption: for self-adaptation, single entity systems, apply feedback loops, which monitor the
state of parts of the system, analyse it in relation to the intended behaviour and trigger desired
responses (Hrabia et al., 2018).

Self-organisation: The term self-organisation is closely related to the previous two concepts. Zhang
et al. (2016) describe self-organising systems as being able to allocate resources to specific tasks.
While self-adaptation is described as the process of carrying out processes and eliminating dis-
ruptions. Serugendo et al. (2003) define self-organising systems as systems that function through
local interactions and without central control. Pan et al. (2016) describe a self-organising logistics
system, as a system that can operate without significant human intervention or central software
control. Furthermore, Pan et al. (2016) define three crucial factors for self-organisation, namely,
openness, intelligence, and decentralised control. Most definitions boil down to the fact that an
entity can function optimally without or with minimal central control (Bousbia and Trentesaux,
2002, Serugendo et al., 2003, Pan et al., 2016, Zhang et al., 2016, Hrabia et al., 2018). One of the
main differences between self-organisation and emergence is that self-organising systems can be
aware of the global state of the system (Hrabia et al., 2018). Self-organising systems have been
explored since 1953 with studies on the behaviour of insect societies. Many systems in nature
demonstrate self-organisation, such as planets, cells, organisms and societies (Serugendo et al.,
2003). An example is a biological process in which complex organisms can grow from a single
cell. Here, a cell can interact with its environment to influence its activities (Van Belle et al.,
2011).

Automation: Automation in the field of logistics mainly refers to the automation of logistics processes
in the supply chain (Yavas and Ozkan-Ozen, 2020). The definition of automation in these tasks
means that logistics tasks can be performed automatically. This is especially done for systems
where intelligence does not play an important role (Echelmeyer et al., 2008). An example is
the automation of shop floor logistics through the use of automated guided vehicles (Winkelhaus
and Grosse, 2020). However, automated applications have been used in logistics since the 1950s
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in tasks such as transport, handling, storage and packaging (Echelmeyer et al., 2008). The
difference with the previous three concepts is that automated logistics processes work through
the coordination of a centrally controlled system. There is little or no intelligence for and between
the different automated agents.

D Function diagram overview

Figure 35: SOLiD algorithm overview based on interrelations
functions
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E Input data overview

Table 14: Overview of the input data used in the algorithm

Input data Explanation Predefined Updated

Parcel ID Identification number for each parcel Yes No
Status Indicating the status of the parcel (unassigned, assigned, en route) No Yes
Final destination point Final delivery point of the parcel Yes No
Priority Gives parcels priority in auction process Yes No
Location Start location Yes No
Onboard Hold information whether the parcel is on board of a vehicle No Yes
Intermediate destination Hold information if the parcel has an intermediate destination No Yes
Distance The distance a parcel has traveled No Yes
Cost Cost of delivery No Yes
Emission Emission emitted by delivering of the parcel No Yes
Tour Tour number Yes No

Parcels

Platform Used indicate the different logistic providers Yes No

Vehicle ID Identification number for each vehicle Yes No
Status Indicating the status of the vehicle (en route, at sorting centre) No Yes
Capacity The amount of parcels that a vehicle is able to carry Yes No
OpCost Operating cost Yes No
Speed Speed in km/h per vehicle Yes No
Emission Co2 emission per km Yes No
part Time Participation time indicating when occasional drivers will note there presence Yes No
start Time Start time indicating the time (shift) a vehicle will be available Yes No
end Time End time indicating the time (shift) a vehicle will be available Yes No
Origin The origin location of the vehicle Yes No
Destination The final location of the vehicle Yes No
Itinerary The itinerary of the vehicle No Yes
Delivery centre Delivery centre of the vehicle Yes No

Vehicles

Platform Used indicate the different logistic providers Yes No
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F Extensions of the model

Vlot (2019) described the following extensions of the model:

• Improve the offer calculation: A limitation of the proposed method is the way that additional pick-
ups and deliveries added to a vehicle’s routes may result in the vehicle being placed further and
further away from the centre of its delivery area, as offers are made based on additional distances
travelled and do not take into account the centre of the vehicle’s delivery area. Therefore, it is
recommended to develop a better approach for vehicles to calculate more realistic offers, including
additional costs if a vehicle has diverse from its delivery area.

• Incorporation of delivery time windows: The delivery times for each individual package could be
added as a constraint to obtain a situation with higher customer satisfaction and higher hit rates
from the drivers.

• Financial compensation system: The financial compensation of combined delivery by multiple
parties could be added to the model to explore the financial feasibility of such a system.

• Tracking of the delivery priority compliance: The model is not able to check whether a package
does indeed meet the delivery priority.

• Delivery priority refinement: The current model uses a generalised cost function to account for
customer preferences. This cost function could be further extended by indicating to customers
how much they are willing to spend for faster delivery.

• Traffic and network data: In the current model the assumptions regarding routing lengths are
highly simplified. Moreover, the varying vehicle speeds and traffic are not incorporated in the
model.

• Agent characteristics: The characteristics of the agents could be further extended, for example,
including the weight of the packages for capacity.

• Applying the model on different datasets: For the current model a delivery data sample of 1280
parcels and 11 delivery trucks was used. The model can be tested on different and larger datasets
to test its validity.

• Computation time: Named by Vlot (2019) as the last limitation, but one of the largest limitations
of the model. Running the model for the dataset 1280 parcels and 11 delivery vehicles for a large
amount of time (6+ hours).
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G Graphical overview instances

(a) Pr76 (b) p152

(c) pr226 (d) pr299

(e) pr439 (f) pr1002

Figure 36: Overview instances
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H Input parameters

Table 15: Input parameters as described by Vlot (2019) (deter-
ministic)

Parameter Description Value

T Simulation time steps 660

reassignmentIterations Number of assigned parcel auctions 8

numberParcelRemovals Number of parcels removed from vehicles itineraries 5

pickupDurations Duration of a pickup stop 1

deliveryDuration Duration of a delivery stop 3

maxRelevantVehicles Vehicles selected for auction 3

transshipmentLocations Number of transhipment locations 50

transshipmentPenalty Transshipment penalty cost 0,1

I Parameter variation

Table 16: Parameter variation of the reassignment iteration and
the number of kicked parcels for the Pr76 and Pr152 instance

Reassignment Iterations Number of kick outs Distance (m) RT (sec) Reassignment Iterations Number of kick outs Distance (m) RT (sec)

1 20 233487,00 19,50 1 20 159213,30 49,76
1 10 233487,00 19,47 1 10 238819,95 49,95
1 5 233487,00 19,47 1 5 238819,95 49,48
1 1 233487,00 19,31 1 1 238819,95 50,58
5 20 187227,02 33,74 5 20 206728,94 146,86
5 10 237181,65 29,39 5 10 199325,28 177,89
5 5 195460,64 42,16 5 5 184174,32 188,52
5 1 212228,19 38,30 5 1 171690,64 195,03
8 20 187136,95 45,07 8 20 224540,27 167,54
8 10 286117,94 36,04 8 10 170283,12 215,35
8 5 213897,60 38,31 8 5 168063,02 268,69
8 1 203193,46 43,36 8 1 166593,58 255,32
12 20 187136,95 41,73 12 20 198265,00 204,87
12 10 262053,11 43,01 12 10 190758,26 307,25
12 5 276339,94 53,35 12 5 183798,80 359,29
12 1 208894,08 46,53 12 1 166593,58 388,00
20 20 202218,59 46,95 20 20 252702,66 252,21
20 10 187136,95 40,57 20 10 211796,89 445,65
20 5 274827,39 76,55 20 5 181127,45 399,09

Pr76

20 1 221684,33 54,37

Pr152

20 1 166593,58 368,92
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J Confidence interval table

Table 17: Distance travelled, average, standard deviation, confi-
dence interval and highest/lowest values for a sample of 20 random
seeds for instance pr76, pr152 and pr 226

Randomseed pr76 pr152 pr226

1 183230,94 147176,40 184853,64

2 182202,24 149368,04 178020,01

3 175748,57 138782,46 188631,01

4 182687,54 141422,72 179373,37

5 163053,44 137790,67 209589,79

6 185631,51 163413,33 178856,30

7 180425,63 144299,09 205425,34

8 177480,88 140179,00 203897,93

9 171657,06 154175,61 182766,58

10 183976,87 157957,46 194350,15

11 180694,27 158972,15 196022,77

12 172501,83 153403,78 179680,37

13 168222,04 147453,60 189812,28

14 171368,58 156400,61 184973,37

15 175437,97 155684,07 183220,23

16 170489,95 152164,74 184477,11

17 187307,49 140540,39 182306,34

18 171246,69 170853,81 247306,29

19 169467,34 137049,67 180803,36

20 183733,61 156169,66 191909,90

Average 176828,22 150162,86 191313,81

Standard deviation 6829,91 9326,29 16118,85

Confidence interval 4489,93 4087,35 7064,27

upper range 269732,26 154250,21 198378,08

Lower range 260752,40 146075,51 184249,54
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K Extreme conditions test

Table 18: Extreme condition input parameter test (1)

Pr76 Reassignment iterations Number of parcel removals Pick-up durations deliveryDuration

Normal 0 max 0 20 0 20 0 20

Randomseed
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned

1 183230,94 0 253496 0 67877 67 170530 0 80577 55 238961 0 ZeroDivisionError 184040 0 196356 0

2 182202,24 0 229184 0 26817 73 171195 0 79821 55 225788 0 ZeroDivisionError 168915 0 169303 0

3 175748,57 0 240765 0 47577 70 179467 0 74988 54 241156 0 ZeroDivisionError 171135 0 161814 0

4 182687,54 0 240947 0 69095 63 171654 0 63667 55 243262 0 ZeroDivisionError 171755 0 187544 0

5 163053,44 0 212587 0 54115 70 167849 0 149691 34 225032 0 ZeroDivisionError 166213 0 195805 0

6 185631,51 0 244930 0 IndexError 169406 0 76243 55 232230 0 ZeroDivisionError 182926 0 197567 0

7 180425,63 0 231120 0 63772 66 173728 0 0 76 248313 0 ZeroDivisionError 175167 0 171432 0

8 177480,88 0 197103 0 UnboundLocalError 179019 0 73899 55 232288 0 ZeroDivisionError 163532 0 173438 0

9 171657,06 0 244781 0 38990 71 169044 0 75667 54 220654 0 ZeroDivisionError 173213 0 170985 0

10 183976,87 0 247362 0 IndexError 174224 0 85893 55 219363 0 ZeroDivisionError 175135 0 ZeroDivisionError 0

Average 178609,47 234227,50 52606,14 172611,60 76044,60 232704,70 173203,10 180471,56

Table 19: Extreme condition input parameter test (2)

Pr76 Max relevant vehicles Capacity Speed

Normal 0 5 0 1000 0 10000

Randomseed
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned
Distance
travelled

Unassigned

1 183230,94 0 0 76 178820 0 ZeroDivisionError 125492 0 OverflowError 169803 0

2 182202,24 0 0 76 168915 0 ZeroDivisionError 126499 0 OverflowError 168915 0

3 175748,57 0 0 76 171135 0 ZeroDivisionError 120317 0 OverflowError 171135 0

4 182687,54 0 0 76 171755 0 ZeroDivisionError 127689 0 OverflowError 171755 0

5 163053,44 0 0 76 166196 0 ZeroDivisionError ZeroDivisionError OverflowError 166196 0

6 185631,51 0 0 76 182926 0 ZeroDivisionError 127162 0 OverflowError 182926 0

7 180425,63 0 0 76 175167 0 ZeroDivisionError 125129 0 OverflowError 166900 0

8 177480,88 0 0 76 163399 0 ZeroDivisionError ZeroDivisionError OverflowError 163399 0

9 171657,06 0 0 76 173213 0 ZeroDivisionError 125265 0 OverflowError 173213 0

10 183976,87 0 0 76 170746 0 ZeroDivisionError 134822 0 OverflowError 175135 0

Average 178609,47 0,00 172227,20 126546,88 170937,70
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L Overview results random insertion

Table 20: Results overview for random insertion for the distance
travelled, runtime, and unassigned parcels for different search per-
centages for sample sizes of insertion points

Searchpercentage 25% 50% 75% 100%

Randomseed
Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

1 208879,23 37,54 0 182763,78 45,07 0 169803,71 52,10 0 183230,94 63,94 0

2 260890,30 41,56 0 191534,09 40,42 0 168915,17 44,37 0 182202,24 59,39 0

3 203315,46 46,12 0 179234,40 40,09 0 171135,60 47,61 0 175748,57 54,14 0

4 210302,76 48,92 0 172103,30 43,25 0 171755,01 47,50 0 182687,54 58,68 0

5 209458,74 39,33 0 180710,48 43,24 0 166196,05 60,44 0 163053,44 52,30 0

6 202330,45 39,64 0 159780,95 47,86 0 182926,54 45,48 0 185631,51 56,40 0

7 233929,52 28,26 5 176387,70 49,99 0 166900,25 51,73 0 180425,63 55,92 0

8 224056,10 51,77 0 186304,36 51,27 0 163399,44 48,90 0 177480,88 56,01 0

9 233912,29 48,64 0 176770,04 50,16 0 173213,87 46,34 0 171657,06 57,88 0

10 238593,84 50,94 0 184010,63 43,36 0 175135,71 45,98 0 183976,87 52,71 0

Average 222566,87 43,27 178959,97 45,47 170938,13 49,05 178609,47 56,74

Best performance 202330,45 28,26 159780,95 40,09 163399,44 44,37 163053,44 52,30

(a) Search percentage 25% (b) Search percentage 50%

(c) Search percentage 75% (d) Search percentage 100%

Figure 37: Pr76 example cases for routing for different search
percentages
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M Overview results swap

Table 21: Results overview for the two-option swap and kick-out
for the distance travelled, runtime, and unassigned parcels

2 Swap and kick-out 5 Swap and kick-out 8 Swap and kick-out

Randomseed
Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

1 171270,38 42,24 0 184460,78 43,18 0 220798,05 58 0

2 181508,65 52,61 0 202377,78 43,75 0 190199,71 64 0

3 163033,59 46,40 0 196035,24 44,08 0 232704,25 56 0

4 171685,47 66,49 0 187232,78 44,04 0 204598,05 59 0

5 165660,72 62,05 0 172839,03 46,83 0 206317,60 58 0

6 174946,01 61,53 0 195638,94 48,51 0 223840,88 60 0

7 161563,89 54,56 0 183604,29 44,95 0 218827,34 52 0

8 183381,18 46,26 0 173877,53 44,72 0 216471,74 57 0

9 170920,46 47,53 0 189781,91 54,07 0 258690,63 58 0

10 167219,40 52,78 0 179230,36 54,05 0 234852,37 52 0

Average 171118,98 53,24 186507,86 46,82 220730,06 57,53

Best performance 161563,89 42,24 172839,03 43,18 190199,71 51,88

Table 22: Results overview for the two-option swap for the dis-
tance travelled, runtime, and unassigned parcels

2 Swap 5 Swap 8 Swap

Randomseed
Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

1 168500,11 64,48 0 165621,36 49,14 0 165212,57 47,22 0

2 168997,49 57,11 0 167190,35 52,51 0 163840,01 53,83 0

3 175826,96 60,94 0 158071,04 57,51 0 168723,31 48,05 0

4 172168,37 58,37 0 181206,63 58,54 0 186720,95 62,18 0

5 162972,82 68,06 0 177115,79 47,37 0 161401,48 64,99 0

6 168803,47 70,88 0 180361,16 48,73 0 166091,10 64,97 0

7 169803,77 68,66 0 165537,00 53,68 0 172515,31 59,23 0

8 173632,00 69,42 0 183540,00 48,74 0 177833,81 69,55 0

9 158862,92 59,75 0 177223,79 48,38 0 178868,74 66,41 0

10 170123,23 53,60 0 170075,73 47,51 0 175767,63 57,36 0

Average 168969,11 63,13 172594,28 51,21 171697,49 59,38

Best performance 158862,92 53,60 158071,04 47,37 161401,48 47,22
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(a) 2 Swap and kick-out (b) 5 Swap and kick-out

(c) 8 Swap and kick-out (d) 2 Swap

(e) 5 Swap (f) 8 Swap

Figure 38: Pr76 example cases for routing for different swap
quantities
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N Overview results clusters

Table 23: Results overview for the cluster method for the distance
travelled, runtime, and unassigned parcels

Cluster

Randomseed
Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

1 166879,12 62,77 0

2 166608,54 63,16 0

3 173572,91 56,52 0

4 168204,37 59,68 0

5 178013,49 54,98 0

6 179059,02 50,49 0

7 162230,87 48,22 0

8 172358,65 49,38 0

9 181413,01 46,39 0

10 158863,28 51,25 0

Average 170720,33 54,28

Best performance 158863,28 46,39

Figure 39: Pr76 example case for clustering method
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O Overview results combination of methods

Table 24: Results overview for the combination of the random
insertion and cluster method for the distance travelled, runtime,
and unassigned parcels

50% and cluster 75% and cluster Base case

Randomseed
Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

1 164119,03 33,86 0 178053,63 42 0 183230,94 63,94 0

2 163588,93 30,20 0 180.508 38 0 182202,24 59,39 0

3 170164,15 30,66 0 172.331 37 0 175748,57 54,14 0

4 173377,13 32,76 0 167.533 40 0 182687,54 58,68 0

5 163936,91 33,27 0 173339,82 39 0 163053,44 52,30 0

6 186939,41 34,31 0 172302,69 37 0 185631,51 56,40 0

7 168173,95 32,34 0 166.622 37 0 180425,63 55,92 0

8 162826,52 29,16 0 175.372 43 0 177480,88 56,01 0

9 174198,39 32,67 0 166.235 39 0 171657,06 57,88 0

10 176117,87 33,39 0 169.536 40 0 183976,87 52,71 0

Average 170344,23 32,26 172183,27 39,30 178609,47 56,74

Best performance 162826,52 29,16 166235,22 36,68 163053,44 52,30

(a) Search percentage 50% and cluster (b) Search percentage 75% and cluster

Figure 40: Pr76 example cases for routing for different search
percentages and clusters
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P Overview results mixed fleet

Table 25: Results overview for the mixed fleet and the base
case (Pr76) for distance travelled, runtime, unassigned parcels, and
emission for different fleet combinations

Fleet Base case: 4 vans 2 cargo-bikes Base case: 3 vans 4 cargo-bikes Base case: 2 vans 6 cargo-bikes

Randomseed
Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Emission
(gr)

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Emission
(gr)

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Emission
(gr)

1 270411,60 43,68 0 29567890,1 309855,41 34,11 0 20595673,84 330813,79 33,34 0 9787713,02

2 226678,13 43,62 0 28593260,1 306972,56 39,84 0 20742696,51 353040,89 31,42 0 4580325,80

3 269028,91 43,64 0 28867203,6 291609,75 37,27 0 15151201,01 395760,82 32,92 0 3653246,17

4 269758,14 49,22 0 33113249,3 310042,43 34,87 0 17637015,48 342213,44 33,73 0 3224261,44

5 260024,21 44,89 0 29315325,28 325561,98 40,46 0 19087716,33 358660,90 33,82 0 762000,58

6 264081,54 45,90 0 27571399,04 293102,32 35,13 0 16689220,44 340972,83 30,24 1 4230324,80

7 274498,09 43,65 0 29343349,40 295921,91 35,27 0 19637813,77 355015,16 34,80 0 2698556,65

8 275387,22 45,45 0 29782402,84 307345,44 34,15 0 18443663,43 344064,91 42,94 0 1562646,68

9 282720,79 41,67 0 29355859,8 319621,56 30,92 0 22413578,89 355264,85 31,65 5 3113250,33

10 269787,09 46,10 0 26527830,62 312665,99 33,62 0 20569869,45 358255,95 37,80 0 2460140,26

Average 266237,57 44,78 29203777,01 307269,93 35,56 19096844,92 353406,35 34,27 3607246,57

Best performance 226678,13 41,67 26527830,62 291609,75 30,92 15151201,01 330813,79 30,24 762000,58

Table 26: Results overview for the mixed fleet and combination
of methods for distance travelled, runtime, unassigned parcels, and
emission for different fleet combinations

Fleet 4 vans 2 cargo-bikes 3 vans 4 cargo-bikes 2 vans 6 cargo-bikes

Randomseed
Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Emission
(gr)

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Emission
(gr)

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Emission
(gr)

1 257197,00 35,43 0 29479117 296.901 36,25 0 20956565,00 362958,00 21,89 0 9371526

2 256272,00 26,03 0 28119506 286413,00 35,85 0 16938314,81 365826,00 22,21 0 6029144

3 246122,00 26,46 0 27312563 332530,00 38,60 0 17152781,76 391789,00 22,81 0 6854378

4 254867,00 31,70 0 28759139 262178,00 40,88 0 20639462,16 335341,00 28,44 4 12341797

5 242522,00 29,72 0 34084766 319248,00 32,81 0 15724824,92 359922,00 32,17 0 8906410

6 255920,00 28,71 0 28861279 264986,00 38,25 0 20600306,73 340339,00 31,86 5 8145286

7 254122,00 28,21 0 26719942 307463,00 36,45 0 21547674,66 324946,00 27,86 7 10544326

8 252534,00 30,15 0 27845478 319417,00 35,20 0 21000406,45 373155,00 29,84 0 9095526

9 257647,00 28,54 0 30508456 321115,00 34,22 0 14228400,53 374702,00 29,45 0 12042362

10 228202,00 28,14 0 28266482 297475,00 34,57 0 17819778,77 352657,00 28,33 0 13503595

Average 250540,50 29,31 28995672,80 300772,57 36,31 18660851,58 358163,50 27,49 9683435,00

Best performance 228202,00 26,03 26719942,00 262178,00 32,81 14228400,53 324946,00 21,89 6029144,00

Delft University of Technology 97



(a) 4 vans 2 cargo-bikes (b) 3 vans 4 cargo-bikes

(c) 2 vans 6 cargo-bikes

Figure 41: Pr76 example cases for routing for different heteroge-
neous fleet combinations for a combination of heuristics
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Q Results overview congestion

Table 27: Results overview for congestion and the base case
(Pr76) for distance travelled, runtime, and unassigned parcels for
different congestion rates

Congestion Base case (26 km/h) Base case: 17 km/h Base case: 13 km/h

Randomseed
Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

1 183230,94 63,94 0 183230,94 52,03 0 183230,94 57,24 0

2 182202,24 59,39 0 182202,24 56,35 0 182202,24 54,98 0

3 175748,57 54,14 0 175748,57 54,40 0 175748,57 59,85 0

4 182687,54 58,68 0 182687,54 55,62 0 182687,54 61,18 0

5 163053,44 52,30 0 163053,44 55,73 0 163053,44 51,31 0

6 185631,51 56,40 0 185631,51 60,00 0 185631,51 63,00 0

7 180425,63 55,92 0 180425,63 55,45 0 180425,63 57,99 0

8 177480,88 56,01 0 177480,88 57,35 0 177480,88 60,08 0

9 171657,06 57,88 0 171657,06 56,84 0 171657,06 52,53 0

10 183976,87 52,71 0 183976,87 58,83 0 183976,87 61,72 0

Average 178609,47 56,74 178609,47 56,26 178609,47 57,99

Best performance 163053,44 52,30 163053,44 52,03 163053,44 51,31

Table 28: Overview for different congestion rates for distance
travelled, run time, and unassigned parcels

Fleet 26 km/h 17 km/h 13 km/h

Randomseed
Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

Distance
travelled (m)

Runtime
(sec)

Unassigned
parcels

1 164119,03 33,86 0 179854,00 33,36 0 169785,00 30,45 0

2 163588,93 30,20 0 182108,00 31,23 0 172194,00 37,69 0

3 170164,15 30,66 0 183317,00 29,40 0 193808,00 30,84 0

4 173377,13 32,76 0 191574,00 35,33 0 177529,00 37,89 0

5 163936,91 33,27 0 161364,00 31,89 0 168280,00 34,63 0

6 186939,41 34,31 0 162656,00 34,13 0 174418,00 34,59 0

7 168173,95 32,34 0 163686,00 33,02 0 163686,00 34,00 0

8 162826,52 29,16 0 175216,00 34,24 0 175216,00 35,30 0

9 174198,39 32,67 0 156597,00 29,91 0 202916,00 31,80 0

10 176117,87 33,39 0 174859,00 31,81 0 174859,00 33,42 0

Average 170344,23 32,26 173123,10 32,43 177269,10 34,06

Best performance 162826,52 29,16 156597,00 29,40 163686,00 30,45
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(a) 26 km/h (b) 17 km/h

(c) 13 km/h

Figure 42: Pr76 example cases for routing for different congestion
rates
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R Interview business expert Prime Vision

I can identify two major drivers for the parcel industry, namely, increasing development

in customer-driven logistics and volumes in this industry increase, am I missing some-

thing?

Drivers for innovation in the parcel industry are price, speed, sustainability, one-day delivery, and
audibility. The most fundamental drivers are still cost and speed. The lobby for sustainability is strong
and logistics service providers want to become more and more sustainable. Another driver over the
past five years is one-day delivery. By optimising the current system, companies are getting closer to
this goal. Something else that can be considered a secondary driver is audibility. The idea of visibility
in the supply chain helps with customer satisfaction, but it is also important for responsibility for
damage to packages and to know where the package was. Moreover, the controlling party can see how
the network is functioning. During a sustainability audit, for example, all kilometres travelled and the
corresponding emissions can be easily displayed.

What does my algorithm currently not have but is of importance to bring such a system

into practice?

It is still difficult to understand the conceptual idea of such a system and to translate it into a
physical system. What does a distribution centre with such a dynamic sorting system physically look
like? How can you physically move a parcel that has already been allocated and is waiting to be sent?
And what is the trade-off you make? What is done now is highly efficient for everything up to the last
mile. The elephant in the room is the behaviour and design of the depot; to create a self-organising
logistics system, a convincing picture of what such a system will physically look like and how it can be
implemented must first emerge. Otherwise, this system will not come about at all.

Implementing such a system at once can be a big step, can you think of incremental

steps for implementation of this process?

There are steps to set up new sorting/routing systems, but it is unclear how the whole decision-
making process of sorting and the physical sorting centre can be changed step by step because it is
such a fundamental change. One possibility is to demonstrate it, in a limited production run. For the
lower demand periods and perhaps the less critical evening delivery. This is to test it in a lower-risk
period, but it does not show the transition needed for the whole system.

One of the important factors of the current system is to know where in the system

each parcel is, having self-organising elements could reduce this situational awareness,

what do you think of this consideration?

One of the considerations for self-organising systems is the delivery date. Right now, the system is
predictable because it has been doing the same thing for 10 to 15 years. In a self-organising system,
parcels can be allocated immediately, but they can also be allocated over three days. You don’t have
that clarity.

The current method considers the dynamic assignment of the parcels. In the current

sortation process most information is already available, how would such a dynamic self-
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organising system be useful in the current system?

An application of this model could be on the allocation side. This could be in the last mile or the
first mile. Moreover, a connection between the last mile and the first mile can be made. In such a
situation the retailer talks directly to the system and passes on the characteristics and quantity of the
parcels. When the retailer places orders, these orders can then directly be linked to the available fleet.

By connecting the first and last mile when demand is high, you can create scarcity. By

linking the first and last miles via an auction system, a market structure can be created

in which the delivery prices go up when there is more demand. This results in a more

dynamic price range during peaks (e.g. Christmas)?

That is an interesting research topic, but pricing and how to do it for such a system is another
project. Besides, at the moment it is mostly settled by contracts.

What partners are necessary to roll out such a system?

At first, it is enough to have Prime Vision working with a logistics provider, but when you think
of a real system, it becomes more complicated. You would need new partners to make new sorting
machines, you would need new partners to make a handheld app and so on. You would have to create
a whole chain of partners.
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