TU Delft

Ranking Fusion Functions in Neural Ranking Models
The Impact of Ranking Fusion Function on Neural Ranking Models with Fast Forward Indexes

Gayeon Jee'
Supervisor(s): Avishek Anand', Jurek Leonhardt!

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 24, 2024

Name of the student: Gayeon Jee (G.Jee @tudelft.nl)
Final project course: CSE3000 Research Project
Thesis committee: Avishek Anand, Jurek Leonhardt, Alan Hanjalic

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

The research explores the impact of rank fusion
functions within the retrieve-and-rerank framework
with Fast-Forward Indexes. Using the BM25 sparse
model for retrieval and TCT-ColBERT dense model
for semantic score computation, various rank fu-
sion functions are experimented for the interpola-
tion stage. The interpolated rank in relation to the
semantic and lexical ranks is explored. Paramet-
ric approach allows to easily adjust the influence
of sparse and dense models on the final rank. On
the other hand, non-parametric approach lacks flex-
ibility and maintains an equal weight of sparse and
dense scores by default. Moreover, the ranking
effectiveness and latency are measured to further
evaluate each function. Due to flexibility of para-
metric functions, convex rank fusion function and
its normalized variants yield the best trade-off in la-
tency and ranking effectiveness followed by recip-
rocal rank fusion. On the contrary, non-parametric
functions, namely Inverse Square Rank Recipro-
cal, combMNZ, and Condorcet Fuse, generally per-
forms worse.

1 Introduction

Information Retrieval (IR) is about gathering relevant docu-
ments given a query from a collection. Nowadays, the avail-
able sets of data continuously, rapidly grows, and the ex-
tensive volume of the source databases cause difficulty in
efficient retrievals. There are various techniques produced
for addressing this issue. Nevertheless, there are limitations
in the existing architectures in aspects such as performance,
speed, and required computational resources. One of the re-
trieval techniques is retrieve-and-rerank which first selects
candidate documents based on lexical term matching. Then, it
reranks them using a dense retrieval method that encodes doc-
uments and queries in a vector space where distances between
points refer to relevance. [7] proposes the Fast-Forward In-
dex framework which aims for efficient reranking by using
a dual-encoder dense retriever with an optimized index. Ul-
timately, the final relevance rank is decided by interpolating
the sparse and dense scores via a rank fusion function.

Rank fusion function controls the influence semantic and
lexical scores have in the final reranking step. For some do-
mains, semantic scores yield a more informative, optimal rel-
evance assessment while for some it is the other way around.
The ratio of each score reflected on the final rank is manip-
ulated by the rank fusion functions. Thus, using the correct
function boosts the performance of the neural ranking model.

In this research, the impact of various rank fusion functions
are observed. Impact is broken down into three categories:
rank, ranking effectiveness, and latency. For clarification, la-
tency refers to how quickly the interpolated result is com-
puted. These elements are explored with distinct test datasets
and normalization technique for applicable datasets. The re-
search is formalized under the following three subquestions:

1. How does the rankings change in relation to semantic
and lexical scores using different rank fusion functions?

2. How does using different rank fusion functions impact
the ranking effectiveness in different domains?

3. How does using different rank fusion functions impact
the latency in different domains?

RQ 1 is answered by observing a heatmap that maps the lex-
ical and semantic scores on the axes and the final rank after
interpolation as the hue. It is discovered that the parametric
functions - convex rank fusion and reciprocal rank fusion - are
heavily affected by the input parameters. On the other hand,
the non-parametric functions take into account both scores
equally by default. Several experiments are computed for RQ
2 which evaluates the accuracy of the output ranked list via
the document and query relevance. The results prove that
parametric score-based functions most effectively computes
the rank in general. Finally, the latency is measured for RQ
3 and all functions have a similar speed except for Condorcet
Fuse which is substantially slower than other methods.

The literature first delves into the background behind infor-
mation retrieval, introducing the various model types as well
as the basic pipeline of Fast-Forward indexes framework in
section 2. Then, it moves onto the methodology in 3 which
explains the variables explored in the research. In section 4
and 5, the actual implementations and environments of the
experimental runs their results are elaborated. The ethical as-
pects and reproducibility of the research is discussed in 6.
Finally, the paper is concluded by stating the conclusions of
the research questions as well as the future works in 7.

2 Background

The basic IR models are introduced in 2.1 as a background
information to the Fast-Forward indexes pipeline and rank fu-
sion function elaborated in section 2.2.

2.1 Basic Information Retrieval Models

Nowadays, there are various approaches proposed for effi-
cient, effective information retrievals. Lexical or sparse re-
trieval simply conducts term matching on the queries and the
documents and BM25 is a classical example of lexical mod-
els [12]. These models are quick, but the performance is lim-
ited as contextual information is not captured.

Semantic or dense retrieval is another common tech-
nique that complements lexical retrieval [6]. Queries and
documents are encoded in a common vector space where
closer representations having higher relevance. Thus, differ-
ent words are in proximity if they have similar meanings un-
like lexical models. Although dense retrieval generally per-
forms better than lexical, it has disadvantages in terms of
speed and index maintenance.

Hybrid retrieval [8] and retrieve-and-rerank [11] are ap-
proaches which combine lexical and dense models. Hybrid
retrieval selects candidates using each model respectively and
ranks them based on the interpolated score calculated using
rank fusion functions. Since it performs dense retrieval, it
inherits its disadvantages. On the other hand, retrieve-and-
rerank uses only lexical retrieval for candidate collection.
Then, it computes the dense scores solely on the selected doc-
uments. The Fast-Forward Index is built upon retrieve-and-
rerank.

1. Retrieve with Lexical Score

Sparse
Model

Candidates

[oZ.17.1TT

2. Compute Dense Score
using Dual Encoder Model
with Fast Forward Index

Rank Fusion
Function

3. Interpolate the
Lexical and Dense
Scores

Ranking

Figure 1: Fast-Forward Index Pipeline

2.2 Rank Fusion Functions in Fast-Forward Index

The foundation of the Fast-Forward indexes framework is a
retrieve-and-rerank model with dual encoder dense models
using Fast-Forward Indexes [7]. It employs techniques such
as sequential coalescing, dynamic token dropping, and early
stopping to optimize performance.

Figure 1 overviews the pipeline of the Fast-Forward index
model. It follows the retrieve-and-rerank procedure, and at
the end, rank fusion function combines the lexical and seman-
tic scores to get the final ranking. The focus of this research
is on the last procedure, rank fusion function.

Rank fusion functions computes the final score using the
lexical and dense score information as the input. Its purpose
is to precisely combine the output of lexical and semantic
models. The two are complementary and there is information
captured by only one of the models. Rank fusion functions
allow to utilize both of their advantages, delivering a more
precise relevance analysis. However, there is no one perfect
balance for fusing the lexical and semantic score that works
for all settings. Therefore, experimentation with various rank
fusion functions in distinct settings is essential for developing
an optimal model.

3 Methodology

The impact of the rank fusion functions are observed via ex-
periments. This section motivates the choice behind each
of the components in the experiment. 3.1 elaborates on the
retrieval model choice. Subsequently, dataset choice is ex-
plained in 3.2 and lastly the rank fusion functions in 3.3.

3.1 Retrieval Model

For first stage retrieval using a sparse model, BM25 [12] is
selected as it uses a basic term matching approach. It utilizes
a variation of the TF-IDF. TF, or Term Frequency, examines
the number of occurrences of a term in the document also
taking into account the length of the document. The score

computation is in favor of shorter documents. IDF, or Inverse
Document Frequency, observes the number of times a word
appears over all the documents, yielding higher score for doc-
uments with rare terms.

TCT-CoIBERT [6] pre-trained with MS MARCO dataset
[10] is selected for second stage dense retrieval. It is a BERT-
based [3] model which deeply analyzes every query-passage
pair.

3.2 Dataset

The main focus of the dataset selection are diversity and pres-
ence of a dev set. A dev set is used to validate the parameters
of the fusion functions which is an essential step to perfor-
mance optimization. The following datasets are selected from
the TREC [2] and BEIR [13] benchmarks (Table 1).

In-domain datasets refer to the corpus in the same do-
main as the model is trained on. Since the version of TCT-
CoIBERT used in this research used MS MARCO for train-
ing, TREC DL'19 MS MARCO Passage and TREC DL *20
MS MARCO Passage are in-domain datasets. Note that MS
MARCO passage vl is used instead of v2 due to the limita-
tion in memory.

The rest are classified as out-of-domain. However, the
datasets without a dev set like Arguana, CQADupStack, SCI-
DOCS, and Scifact are tested in zero-shot fashion as the
model has no past experience in their domain.

3.3 Rank Fusion Function

Rank fusion functions can be categorized into a score-based
function and rank-based function. The former directly in-
puts the lexical and semantic scores while the latter feeds the
ranks, pruning away details of the exact scores.

Score-based Fusion
In the score-based functions, convex rank fusion [1] is tested:

feconvex(q,d) = afsenm(q,d) + (1 —a)frex(q,d)

fsem(g,d) and frEx(q,d) correspond to the semantic
score and lexical score respectively for the query ¢ and docu-
ment d pair. « is a hyperparameter that should be adjusted on
the validation set.

The range of lexical and semantic scores are different, so
different normalization functions are explored: identity (no
normalization), min-max normalization, z-score normaliza-

tion [1].
_ .f()(q’d) —-m
¢A4M(f0(Q7d)) - Mq _ mq 1

fo(g,d) is the score output from retrieval model o given
query ¢ and document o. M, and m, represent maximum
and minimum score for query q.

fO(Q? d) - /’LO
0o

¢Z(f0(q7 d)) =

o 1s equal to the mean of scores from retrieval model o
and o, the standard deviation.

. Dev Set Test Set

Dataset Domain Task Availability | #Query #Corpus Avg. DIQ Query Document
TREC DL "19 MS MARCO Passage [2] | Misc Passage-Retreival Yes 43 9260 1.1 5.96 55.98
TREC DL *20 MS MARCO Passage [2] | Misc Passage-Retreival Yes 200 11386 1.1 5.96 55.98
BEIR NFCorpus Bio-Medical Bio-Medical IR Yes 323 2622 38.2 33 232.26
BEIR FiQA-2018 Finance Question Answering (QA) Yes 648 57638 2.6 10.77 132.32
BEIR QUORA Quora Duplicate-Question Retrieval | Yes 10000 522931 1.6 9.53 11.44
BEIR DBPedia Wikipedia Entity-Retrieval Yes 400 4635922 382 5.39 49.68
BEIR FEVER Wikipedia Fact Checking Yes 6666 5416568 1.2 8.13 84.76
BEIR ArguAna Misc Argument Retrieval No 1406 8674 1 192.98 166.8
BEIR CQADupStack English [4] Misc Argument Retrieval No 1570 40221 1.4 8.59 129.09
BEIR SCIDOCS StackEx. Duplicate-Question Retrieval | No 1000 25657 4.9 9.38 176.19
BEIR Scifact Scientific Fact Checking No 300 5183 1.1 12.37 213.63

Table 1: Domain, task, dev set availability, and corpus statistics of the selected datasets.

Rank-based Fusion

For score-based, following functions are chosen: reciprocal
rank fusion (RRF) [1], CombMNZ [5], Inverse Square Rank
Fusion [9], and Condorcet-Fuse [14].

1 1
+
a+rrex(q,d) B+rsem(q,d)

frrF(q,d) =

rrex(q,d) and rsgar(q, d) refer to the lexical and seman-
tic ranking of the document d for query g. RRF is parametric
function with two parameters, o and 3, that should be vali-
dated.

CombMNZ(q,d) =2 x [(L—rrex(q,d) + 1)

AL —rsem(gd) + 1)) D

CombMNTZ is analogous to a simple addition of the rank-
ings. As higher ranks should yield a higher score which the
documents are sorted on, it subtracts the rank from the num-
ber of candidates L and adds 1.

1 1

d) =2 x +
frsr(q.d) (TSEM(Q7d)2 roex(q,d)?

ISR employs the sum of the squared reciprocal as the inter-
polated score. It is analogous to a non-parametric approach
of RRF.

Note that the original CombMNZ and ISR computations
generalize for multi set results and leverages the number of
times the document appears as a candidate for each list. This
is not applicable in the scope of retrieve-and-rerank as the
dense model only reranks the candidates retrieved by the lex-
ical model. Thus, both functions have been simplified to this
particular setting.

Condorcet Fuse is an interpolation method motivated from
a voting rule which accounts for the pairwise preference rela-
tion between all the documents per query (Algorithm 1).

Algorithm 1 Algorithm for Condorcet Fuse score computa-
tion for all documents in a candidate list L for query ¢

procedure CONDORCETFUSE(L, q)
10
while i < |L| do
7«0
n < normalized convex fusion of L][i
score; <— score; +n
while j < i do
li — TLEX(L[Z'D
S; < ’I"SE]LI(L[Z.])
lj < reex (L[j])
s;j <= rspum(L[j])
ifl;, > lj Ns; > 85 then
score; <— score; + 1
end if
iflj > 1 A S > 8 then
score; < score; + 1
end if
end while
end while
end procedure

> r refers to rank

Suppose there are two documents a¢ and b. A document
gains a score if and only if a is preferred over b in both lexical
and semantic profile. The normalized convex fusion score
is added for each outer loop iteration to mitigate ties. As it
uses a parametric function, the corresponding parameter is
validated.

4 Experimental Setup

This section informs about the environment, tools used, and
procedure of experiments. Section 4.1 explains the library
versions, models, and datasets used. Subsequently, the meth-
ods of ranking effectiveness and latency experiments are elab-
orated in 4.2 and 4.3.

4.1 Setup and Tools

Specs and Tools Ranking effectiveness experiment uses In-
tel Xeon Gold 6248R CPU and NVidia Tesla A100 GPU,
and latency experiment uses Intel Core 17-1165G7 CPU. The
implementation is written in Python 3.11 with PYTERRIER!

"https://pypi.org/project/python-terrier/

framework version 0.10.0, and FAST-FORWARD INDEXES?
library version 0.2.0.

Models For the sparse model BM25, the PYTERRIER im-
plementation is used. The BM25 score on a dataset is ob-
tained via the BatchRetrieve function. TCT-colBERT from
the Fast-Forward indexes® is used which is modified from Py-
SERINI* toolkit TCT-colBERT encoder® pre-trained on MS
MARCO. The output representation has 768 features.

Dataset Parameter
’irds:msmarco-passage/dev/small’
MS MARCO ’irds:msmarco-passage/trec-dl1-2019’
’irds:msmarco-passage/trec-dl-2020’
“irds:beir/nfcorpus/dev’
NFCorpus ’irds:beir/nfcorpus/test’
. ’irds:beir/fiqa/dev’
FiQA-2018 ’irds:beir/fiqa/test’
’irds:beir/quora/dev’
QUORA ’irds:beir/quora/test’
. ’irds:beir/dbpedia-entity/dev’
DBPedia ’irds:beir/dbpedia-entity/test’
’irds:beir/fever/dev’
FEVER ’irds:beir/fever/test’
Arguana ’irds:beir/arguana’
CQADupStack English | ’irds:beir/cqadupstack/english’
SCIDOCS “irds:beir/scidocs’
Scifact ’irds:beir/scifact/test’

Table 2: Parameters used for dataset access

Dataset Indexing All the datasets are accessed via the
PYTERRIER get_dataset function with the parameters in 2.
Datasets with multiple lines have a dev set. The first line is
the command used for validation and the later lines for eval-
uation. Note that for MS MARCO, 3000 queries were sam-
ple using the pandas sample function with random_state
42 due to the massive corpus size.

Then, sparse and dense indexes of the retreived datasets
must be built in prior to the experiment runs. As indexing
is expensive, either a pre-built index is used if available or
it is constructed once and reloaded. PYTERRIER provides a
pre-built sparse index for MS MARCO. For other datasets,
the sparse indexes are created and saved in the format of a
dictionary. The Fast-Forward library is used to manufacture
the semantic indexes.

4.2 Ranking Effectiveness Experiment

There are three components to the experiment pipeline:
BM25 retrieval, dense score computation, then interpolation.
The interpolation transformer is modified to each rank fu-
sion function elaborated in section 3.3. Based on the interpo-
lated score, the documents are reranked and the nDCG @10,
RR@10, and MAP@ 100 scores are evaluated.

Zhttps://pypi.org/project/fast-forward-indexes/
*https://github.com/mrjleo/fast-forward-indexes
*https://github.com/castorini/pyserini
>https://huggingface.co/castorini/tct_colbert-msmarco/tree/main

Evaluation Metrics Ranking efficiency is measured via the
following metrics: nDCG@ 10, MAP@100, and RR@10.
nDCG@10 is presented as the official metrics for the
TREC [2] and BEIR [13]. Its provides an informative evalua-
tion which discounts the degree of relevance based on ranks.
However, MAP and RR are selected as supporting metrics
for validation as [7] includes them in the performance assess-
ment. Given that they are supporting metrics, decision and
discussions will be oriented around the nDCG metric. RR
is only computed over the top 10 documents as it only re-
flects the first relevant document found. On the other hand,
MAP@100 conveys the overall score on the amount of rele-
vant documents retrieved and their rank.

Validation Five rank fusion functions are parametric - con-
vex rank fusion and its two normalization variants, recipro-
cal rank fusion, and Condorcet Fuse which uses the normal-
ized convex rank fusion as a tie breaker. However, Condorcet
Fuse is distinct from the other functions as its primary scoring
mechanism is not parametric. It only uses convex rank fusion
as a tie-breaker so validation is less significant for Condorcet.

All intermediate values from [0.0, 1.0] with step 0.1 are
examined as « of convex rank fusion lies in the interval 0.0
to 1.0. If it is 0.0, then the semantic score equals the final
score, and lexical score for 1.0. The rank change is illustrated
in figure 2. It illustrates the ranks after applying the convex
interpolation with varying o on 500 samples of queries from
the QUORA dataset. Higher the «, documents with higher
lexical score are ranked higher and vice versa.

The parameters considered for the reciprocal rank fusion
are the following: (1, 1), (1, 100), (5, 10), (20, 80), (40,
60), (60, 60), (80, 20), (100, 1), (10, 5), (100, 100), (1000,
1000). Larger the parametric value, the effect of the lexical
and semantic ranks diminishes to a single point [1]. Thus, the
validation focuses on the parameters in the lower range in be-
tween 1-100. Low « in combination with the a high /3 largely
reflects the lexical ranking as the effect of semantic ranking
decreases and vice versa (Figure 3a and 3b). If « equals 3,
then both ranks are equally contributed as seen in figure 3c
and 3d. Note that the figure has the ranks in the axes, so un-
like figure 2, the lower values should be favored.

As aforementioned, there are datasets without a dev set.
The parameters for these datasets are estimated according the
jaccard similarity of domains [13]. The parameters of the
nearest datasets are used as described in Table 3.

FiQA Arguana, CQADupStack English
NFCorpus | SCIDOCS, Scifact
Table 3: Datasets used for validation estimation of zero-shot

datasets.

Given this setting, validation is completed via running the
PYTERRIER GridSearch function once for each metric. In
case of disagreements in the result, the parameter is selected
based on majority rule but nDCG is prioritized if there is a
tie.

Experiment Using the optimal parameter values retrieved
in the validation stage, the experiment is conducted using

100

V4 80 v
o c
& &
60
ks]
- c =
C o c
© a0 ©
IS IS
()] Q
wn wn

Lexical Rank

(@) a=0.0

Lexical Rank

(b)a=0.5

100 100 Trx; . 100
80 > 80
c
&
60 60
=8 =
T £ ©
c S o
40 g 40
o
n

60 80 100
Lexical Rank

©a=1.0

Figure 2: Rank in relation to lexical and semantic ranks for convex rank fusion with different o using. Lexical rank on the x-axis, semantic

on the y-axis, and final rank is the hue.

100 100
80 80

60 2 H 60

Rank

a0 a0

Semantic Rank
Rank
Semantic Rank

20§ 5 5 20

L & ccan |
20 0 20 0 100
Lexical Rank Lexical Rank

(@a=1,3=100 (b)a=100,8=1

Semantic Rank
Rank
Semantic Rank
Rank

A | bial]
20 100 100

Lexical Rank

Qa=1,=1

Lexical Rank

(d) o = 1000, 8 = 1000

Figure 3: Rank in relation to lexical and semantic ranks for reciprocal rank fusion with different « and 3. Lexical rank on the x-axis, semantic

on the y-axis, and final rank is the hue.

the PYTERRIER Experiment method and metrics from the
framework. For MS MARCO, the relevance level is adjusted
as 2 for MAP and RR as MS MARCO has multiple relevance
levels but the metrics are binary.

4.3 Latency Experiment

In prior to the experiment runs with latency, the functions get
fully loaded into memory. Due to the limitation in compu-
tational resource, 100 queries are sampled with random state
42 and 100 candidates are retrieved per query. The time is
measured for running an experiment on the interpolation and
evaluation metrics computation using pre-computed candi-
dates and index scores. The experiment is conducted using
the timeit module and obtains results for four runs, each ran
for three times. The datasets tested are Arguana and QUORA.
The test set is used for QUORA. These are selected based on
their size due to the limitation in resource. Finally, the av-
erage over of the fastest experimental run is reported as the
latency.

5 Experimental Results

This section explains the results of the experiments elaborated
in the previous section, answering the three research about
ranking change in relation the scores and ranks, ranking ef-
fectiveness, and latency. First, section 5.1 observes the pat-
terns of ranks versus the lexical and semantic scores or ranks.
Section 5.2 discusses the validation results, followed by the
result of ranking effectiveness and latency experiments in 5.3
and 5.4.

5.1 Ranking Change in Relation to the Score and
Rank

This section dives deeper into RQ 1, analyzing the rank
changes in relation to lexical and semantic ranks by scruti-
nizing Figures 2, 3, and 4. From the QUORA dataset, 500
queries are randomly selected and and the reranking is ap-
plied with a retrieval depth 100. The ranking difference for
each fusion function is visualized in a heatmap in which the
lexical and semantic ranks are graphed in the axes with the
rank after interpolation as the hue. Although convex rank fu-
sion uses the scores as the input, the ranks are used in the axes
for the sake of comparison.

Convex Rank Fusion Convex rank fusion is presented in
figure 2. When o = 0.0, there is a horizontal gradient and as
the parametric value increments, the gradient becomes more
diagonal, finally becoming vertical as « reaches 1.0. Higher
the a, there is more weight to the semantic rank. Thus, the
final ranks directly link to the semantic rank and ignores the
lexical rank. The same pattern is observed for lower « as
lexical rank dominates the interpolated rank.

Reciprocal Rank Fusion The effect of reciprocal rank fu-
sion function is illustrated in figure 3. Lower « in combina-
tion with a relatively higher (3 has a vertical gradient, pruning
away the semantic rank information as it diminishes the mag-
nitude of the dense rank term with a large denominator. The
same occurs for lexical ranks with higher « and lower f3 pair.
When both values are the same, both ranks are equally ac-
counted for. However, the final ranks are slightly different for

MS MARCO FiQA NFCorpus QUORA DBPedia FEVER
Convex 0.0 0.1 0.2 0.1 0.1 0.0
Convex (Min-Max) 0.2 0.5 0.6 0.5 04 0.1
Convex (Z Score) 0.1 0.3 0.4 0.4 0.4 0.1
Reciprocal (100, 1)* (1, 1) (60, 60) (1,1 (80,20) (100, 1)
Condorcet Fuse 0.3 0.5 0.1 0.5 0.3 0.2

Table 4: Validation result on dev sets. *First element is « and second element is 5.

TREC’19 TREC 20 FiQA-2018 NFCorpus QUORA DBPedia FEVER
BM25 (No Interpolation) 0.480 0.494 0.253 0.322 0.768 0.274 0.427
Convex 0.679 0.641 0.311 0.335 0.841 0.379 0.663
Convex (Min-Max) 0.683 0.655 0.310 0.336 0.842 0.381 0.670
Convex (Z Score) 0.682 0.652 0.310 0.335 0.842 0.378 0.672
Reciprocal 0.679 0.641 0.298 0.331 0.828 0.356 0.663
Condorcet Fuse 0.629 0.592 0.300 0.329 0.821 0.337 0.582
Inverse Square Reciprocal 0.603 0.592 0.294 0.330 0.824 0.352 0.622
CombMNZ 0.623 0.597 0.300 0.329 0.820 0.337 0.579

Table 5: nDCG@ 10 values before and after interpolation with sparse retrieval depth at 100 for datasets with a validation set. Yellow highlight
marks the best performing function. Red highlight marks the functions that have statistically significant difference from the convex rank

fusion function using p-value 0.05 with Bonferroni correction.

lower parametric values compared to higher. Lower values
have a curved gradient in contrast to higher with has a linear
gradient (Figure 3c and 3d). Smaller parametric values are
likely to be dominated by high rank in one of the list while
greater values mitigate them. For instance, suppose document
a has rank 1 and 100 given an arbitrary query. On the other
hand, there is document b with rank 40 and 40. If o, 8 = 1,
document a obtains a higher final rank while it is the opposite
when «, 8 = 1000. This example explains why figure 3d has
a linear gradient pattern unlike figure 3c.

Inverse Square Rank Fusion Inverse Square Rank Fusion
has a similar approach to reciprocal rank fusion (Figure 4a).
Since it takes the square of the reciprocal ranks, if a term has
a high rank (i.e. high denominator), its magnitude quickly
diminishes. Such characteristic resembles the reciprocal rank
fusion with lower, equivalent a and 3.

CombMNZ Rank Fusion CombMNZ rank fusion is a sim-
ple additive approach on ranks. Thus, there is also a linear
pattern (Figure 4b). This function does not leverage on or
penalize higher or lower ranks.

Condorcet Fuse Condorcet Fuse is distinct from all other
fusion function explored so far as it yields a circular gradient
as seen in figure 4c. For a document to earn scores in Con-
dorcet, they have dominate the other documents in both of
the ranking profiles. Therefore, it is impossible for the doc-
uments further below the rank in either of the two profiles to
be in higher ranks. Furthermore, heatmaps with a of 0.5 and
1.0 were additionally computed although not present in the
paper. Nevertheless, the variance in « did not affect the gen-
eral pattern of the graph as it is a supporting scoring metric
for tie breaking.

Semantic Rank
Rank
Semantic Rank

S A
20 0 100
Lexical Rank

Lexical Rank

(a) Inverse Square Rank Fusion (b) CombMNZ

100 100

80 . 80

60 {0 AN 60

Rank

204 : 20

Semantic Rank

20 b 20

20 40 60 100
Lexical Rank

(c) Condorcet Fuse o = 0.0

Figure 4: Rank in relation to lexical and semantic ranks for Inverse
Square Rank Fusion, CombMNZ rank fusion, and Condorcet Fuse.
Lexical rank on the x-axis, semantic on the y-axis, and final rank is
the hue.

5.2 Validation Result

Table 4 presents the validation results. The data shows that it
is more optimal for the model to grant more weight on dense
scores than lexical. For convex rank fusion functions, the al-
pha value stays in the range O to 0.6, only the min-max nor-
malized convex function exceeding 0.5. The same pattern
is observed in the reciprocal fusion function. Either higher
weight is placed on the dense ranks or two ranks have an

equal contributions. This patterns conveys that the semantic
scores are generally more informative and effective in terms
of document relevance evaluation.

Datasets can be categorized into two distinct types. There
are datasets that grant higher weight on the dense score and
some place equal weight on the two ranks. MS MARCO
and FEVER relies on the dense scores to accurately analyze
document relevance as it prefers lower o values for convex
and high « and lower S for reciprocal. DBPedia also fa-
vors semantic score over lexical although to a less extent than
MS MARCO and FEVER. On the other hand, the remain-
ing dataset - FiQA, NFCorpus, and QUORA - place almost
equivalent weight on sparse and dense scores for the nor-
malized and rank-based fusion functions which has an equal
range for both scoring profiles. Nevertheless, the « values
for convex identity and Condorcet Fuse are closer to 0.0 in
general. One hypothesis for the convex function without nor-
malization is the variance in semantic scores. Although the
convex function in the Condorcet Fuse is also normalized, it
has less impact as it is not the primary scoring method.

5.3 Ranking Effectiveness Result

The results from Table 5 and Table 6 explains the ranking ef-
fectiveness of each function, answering RQ 2. From the table,
it is clear that the convex rank fusion delivers the best ranking
effectiveness compared to all other functions. For all datasets,
variations of the convex has the optimal nDCG @ 10. Normal-
ization does not affect the performance significantly in gen-
eral as the p-value is not below 0.05 except for the FEVER
function. Although accuracy decreases for zero-shot datasets,
this might be a problem with validation.

Subsequently, the reciprocal rank fusion is the second best
rank fusion function. It has the least amount of times in which
its difference from the convex function is statistically signif-
icant. Thus, it cannot be concluded that the difference in be-
tween the two functions did not happen by chance. The other
functions - Condorcet Fuse, ISR, and CombMNZ generally
result in a lower nDCG@ 10 compared to all other functions.

Such order among functions suggest that non-parametric
functions perform worse than parametric functions when
evaluating document relevance (assuming that Condorcet
Fuse is non-parametric as its main scoring mechanism is not
parametric). While parametric functions must be validated, it
offers flexibility to adjust the weights of semantic and lexical
scores in return. Moreover, convex rank fusion may be more
accurate in relevance assessment than reciprocal as it directly
uses the exact score.

5.4 Latency Result

Arguana QUORA
Convex 171 446
Convex (Min-Max) 190 438
Convex (Z Score) 174 445
Reciprocal 174 446
Condorcet Fuse 42108 54190
Inverse Square Reciprocal 177 437
CombMNZ 172 460

Table 7: Latency measurement in ms for 100 queries with sparse
retrieval depth 100.

Rank Fusion Functions Comparing the rank fusion func-
tions, there is no clear difference in between the rank fusion
functions except for the Condorcet Fuse. Although the con-
vex rank fusion with min-max interpolation yields relatively
high latency in Arguana, it has a lower result in QUORA. As
the two results conflict, it is difficult to conclude about its
latency. A probable reason behind the variance is the flaky
nature of latency experiments. In contrast, Condorcet Fuse
is certainly slower than the other interpolation mechanisms.
While the other functions simply conduct a computation for
each candidate and sorting if applicable, Condorcet Fuse re-
quires pairwise iteration of each candidate group per query to
discover the preference relationship in between documents.
Thus, its latency is inevitably greater than the other functions.

Datasets The latency measurement involves interpolating
the scores and computing the evaluation metrics as stated in
section 4.3. The speed of the evaluation is affected by the
volume of the corpus qrels as it requires comparison of the
relevance judgements. As QUORA has 15675 grels in its test
set while has 1406. QUORA has about 10 times more grels
in comparison to Arguana which explains why experiment on
QUORA takes longer.

6 Responsible Research

This section elaborates on the responsible research feature
of the project, explaining how the project complies with the
FAIR principle. The responsible research of the Neural Rank-
ing Models project mainly concerns with the reproducibility
of the experimental results. Although the research also in-
herits the common problems of machine learning, such as ex-
cessive resource consumption and bias in models used, the
elements particular to this project is the main focus.

* Findable and Accessible - the codebase is uploaded on
the GitHub® which is publicly available.

* Interoperable - the codebase will be uploaded which can
be cloned and edited. Additionally, the csv files saving
the experimental results will be available in the reposi-
tory to reproduce results of aggregated data. This allows

®https://github.com/gjee22/CSE3000-Research-Project-Neural-
Ranking-Models

Arguana

CQADupStack SCIDOCS Scifact

BM2S5 (No Interpolation) 0.342
Convex 0.363
Convex (Min-Max) 0.336
Convex (Z Score) 0.340
Reciprocal 0.357
Condorcet Fuse 0.341
Inverse Square Reciprocal 0.352
CombMNZ 0.344

0.280 0.147 0.672
0.319 0.155 0.688
0.318 0.150 0.684
0.319 0.157 0.687
0.311 0.151 0.668
0.306 0.149 0.664
0.309 0.149 0.669
0.305 0.149 0.666

Table 6: nDCG@ 10 values before and after interpolation with sparse retrieval depth at 100 for datasets without a validation set (i.e. zero-
shot). Yellow highlight marks the best performing function. Red highlight marks the functions that have statistically significant difference
from the convex rank fusion function using p-value 0.05 with Bonferroni correction.

to ensure the correctness of the code as the newly ob-
tained result using the codebase can be cross checked
with the provided data.

* Reusable - the codebase contains comments and docu-
ments explaining the experimental setup. Further details
are overviewed in this paper which is publicly available
in the TU Delft repository’.

Thereby, the experiment is fully reproducible using the pub-
licly available documentation and codebase. The results can
be recovered and further analyzed.

7 Conclusions and Future Work

The research is about exploring the impact of ranking fu-
sion functions in the retrieve-and-rerank with Fast-Forward
Indexes setup. Impact is formalized into the three different
subquestions stated below.

RQ 1: How does the rankings change in relation to se-
mantic and lexical scores using different rank fusion func-
tions?

First, the parametric functions, convex rank fusion and re-
ciprocal rank fusion are heavily affected by the parameter val-
ues. As « is closer to 0, the lexical score is ignored and in-
terpolation rank solely depends on the semantic score. Then,
the impact of lexical score increases as o gets larger. There
are two parametric values v and f3 for reciprocal rank fusion.
The contrast between the them reflects the influence that the
lexical and semantic score possess. Higher a leads to lower
weight on the lexical as the additive parameter value dimin-
ishes the lexical term and vice versa. The same effect appears
for 4 and semantic score.

The non-parametric functions yield a fixed relation in be-
tween the final rank and the ranks output by two models. In-
verse Square Rank Reciprocal, CombMNZ, and Condorcet
Fuse grant equal influence for both ranks in all settings. How-
ever, there are distinct characteristics among the three func-
tions. ISR leverages the extreme ranks. Thus, maximum
ranks earn an excessive score while it is the opposite for min-
imum ranks. CombMNZ always grants equal weight on both

https://repository.tudelft.nl/

ranks via simple addition of the ranks. On the other hand,
Condorcet Fuse makes it impossible for elements to earn high
scores if it ranks lower in any of the semantic and dense score
lists.

RQ 2: How does using different rank fusion functions im-
pact the ranking effectiveness in different domains?

Convex fusion function offers the most effective ranking,
followed by reciprocal. Lastly, the non-parametric functions
performs the worst overall. Parametric functions have ad-
vantage over non-parametric functions for datasets evaluated
more effectively by dense models. Furthermore, score-based
function is better than rank-based as it preserves the score in-
formation of each model. Thereby, the distance in between
each rank is fully taken into account. Non-parametric rank-
based functions lacks these elements and inevitable performs
the worst.

RQ 3: How does using different rank fusion functions im-
pact the latency in different domains?

Overall, all the rank fusion functions have a similar latency
excluding the Condorcet Fuse. As it is an algorithm based
on the voting rule, preference relation is necessary which re-
quires iteration through all possible pairs for the candidates.
Furthermore, latency, particularly the metrics computation is
affected by the size of the qrels of the datasets.

Future Work The main points of focus for future research
are the hyperparameter observations and sparse and dense
model extension. Given that parametric rank fusions func-
tions are more effective to use in the framework, it implies
that validation is an essential stage to optimize a neural rank-
ing model’s performance. Especially for reciprocal rank fu-
sion functions, there is an extensive amount of possible com-
binations since it accepts two parametric values. In other
words, there is a lot of freedom for the weight adjustment
compared to a single parameter or no parameter function. In
this research, only a limited set of combinations were consid-
ered due to the time limit. However, it might be possible for
the function to outperform the convex rank fusion via a thor-
ough validation procedure. In addition, [7] experiments with
various sparse and dense models to evaluate the Fast-Forward
framework’s performance. Although only BM25 and TCT-
ColBERT were used in this research, extending the research

onto a wider range of models can yield distinct results, pro-
viding more points of analysis for the rank fusion functions.

References

[1]

(2]

[8]

[10]

[11]

[12]

Sebastian Bruch, Siyu Gai, and Amir Ingber. An analy-
sis of fusion functions for hybrid retrieval. ACM Trans-
actions on Information Systems, 42(1):1-35, 2024.

N. Craswell, B. Mitra, E. Yilmaz, D. Campos, E. M.
Voorhees, 1. Soboroff, and Machinery Assoc Comp.
Trec deep learning track: Reusable test collections in
the large data regime. In 44th International ACM SI-
GIR Conference on Research and Development in In-
formation Retrieval, pages 2369-2375, 2021. Craswell,
Nick Mitra, Bhaskar Yilmaz, Emine Campos, Daniel
Voorhees, Ellen M. Soboroff, Ian Voorhees, Ellen/0000-
0002-5658-2308.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding, October
01,2018 2018.

D. Hoogeveen, Karin M. Verspoor, and Timothy Bald-
win. CQADupStack: A benchmark data set for commu-
nity question-answering research. Proceedings of the
20th Australasian Document Computing Symposium,
2015.

Antonio Juarez-Gonzalez, Manuel Montes, Luis Vil-
lasefior-Pineda, David Pinto, and Manuel Pérez-
Coutifio. Selecting the N-Top Retrieval Result Lists for
an Effective Data Fusion, volume 6008. 2010.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. Dense passage retrieval for open-domain
question answering, April 01, 2020 2020. EMNLP
2020.

Jurek Leonhardt, Henrik Miiller, Koustav Rudra, Megha
Khosla, Abhijit Anand, and Avishek Anand. Efficient
neural ranking using forward indexes and lightweight
encoders. ACM Trans. Inf. Syst., 2023. Just Accepted.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
In-batch negatives for knowledge distillation with
tightly-coupled teachers for dense retrieval. Association
for Computational Linguistics.

André Mourdo, Flidvio Martins, and Jodo Magalhaes.
Inverse square rank fusion for multimodal search. 2014.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng. Ms
marco: A human generated machine reading compre-
hension dataset. 2016.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-
ranking with bert, January 01, 2019 2019.

Stephen Robertson, Steve Walker, Susan Jones, Miche-
line Hancock-Beaulieu, and Mike Gatford. Okapi at
TREC-3. 1994.

[13] Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-

hishek Srivastava, and Iryna Gurevych. Beir: A het-
erogenous benchmark for zero-shot evaluation of infor-
mation retrieval models, April 01, 2021 2021. Accepted
at NeurIPS 2021 Dataset and Benchmark Track.

[14] Shengli Wu and Xiaoqin Zeng. Condorcet Fusion for

Blog Opinion Retrieval. 2012.

A Ranking Effectiveness Complete Result

MS MARCO Psg TREC DL 19 MS MARCO Psg TREC DL 20 FiQA-2018 NFCorpus
nDCG@10 RR@10 MAP@I100 | nDCG@10 RR@10 MAP@I100 | nDCG@10 RR@10 MAP@I100 | nDCG@10 RR@10 MAP@I100
BM25 (No Interpolation) 0.480 0.640 0.232 0.494 0.615 0.275 0.253 0310 0.209 0.322 0.534 0.144
Convex Identity 0.679 0.833 0.336 0.641 0.803 0.390 0.311 0.380 0.258 0.335 0.540 0.149
Convex Min Max 0.683 0.828 0.338 0.655 0.805 0.397 0.310 0.382 0.257 0.336 0.541 0.150
Convex Z Score 0.682 0.831 0.338 0.652 0.831 0.396 0.310 0.380 0.259 0.335 0.541 0.150
Reciprocal 0.679 0.833 0.336 0.641 0.803 0.391 0.298 0.364 0.246 0.331 0.551 0.147
Condorcet Fuse 0.629 0.796 0.304 0.592 0.714 0.339 0.300 0.365 0.247 0.329 0.544 0.146
Inverse Square Reciprocal | 0.603 0.777 0.304 0.592 0.756 0.353 0.294 0.362 0.244 0.330 0.538 0.149
CombMNZ 0.623 0.809 0.306 0.597 0.728 0.341 0.300 0.365 0.246 0.329 0.549 0.147
QUORA DBPedia FEVER
nDCG@10 RR@10 MAP@100 | nDCG@10 RR@10 MAP@100 | nDCG@10 RR@10 MAP@I100

BM25 (No Interpolation) 0.768 0.758 0.727 0 0 0 0 0 0

Convex Identity 0.841 0.834 0.804 0.379 0.702 0.242 0.663 0.649 0.614

Convex Min Max 0.842 0.836 0.805 0.381 0.703 0.242 0.670 0.657 0.623

Convex Z Score 0.842 0.835 0.805 0.378 0.699 0.241 0.672 0.659 0.625

Reciprocal 0.828 0.819 0.789 0.356 0.661 0.229 0.663 0.649 0.614

Condorcet Fuse 0.821 0.815 0.783 0.337 0.638 0.219 0.582 0.556 0.535

Inverse Square Reciprocal | 0.824 0.813 0.784 0.352 0.665 0.225 0.622 0.590 0.563

CombMNZ 0.820 0.811 0.780 0.337 0.641 0.220 0.579 0.551 0.529

Table 8: nDCG@10, RR@10, MAP@100 values before and after interpolation with sparse retrieval depth at 100 for datasets with a validation
set

Arguana CQADupStack English SCIDOCS Scifact
nDCG@10 RR@10 MAP@I100 | nDCG@10 RR@10 MAP@I00 | nDCG@10 RR@I0 MAP@I00 | nDCG@I0 RR@I0 MAP@I00
BM25 (No Interpolation) 0.342 0.226 0.237 0.280 0.285 0.252 0.147 0.254 0.097 0.672 0.632 0.627
Convex Identity 0.363 0.241 0.252 0.319 0.331 0.289 0.155 0.275 0.104 .688 0.653 0.644
Convex Min Max 0.336 0.220 0.232 0.318 0.331 0.290 0.150 0.266 0.101 0.684 0.650 0.642
Convex Z Score 0.340 0.223 0.235 0.319 0.331 0.290 0.157 0.278 0.105 0.687 0.651 0.642
Reciprocal 0.357 0.232 0.246 0311 0.322 0.280 0.151 0.269 0.102 0.668 0.635 0.620
Condorcet Fuse 0.341 0.224 0.236 0.306 0.317 0.279 0.149 0.268 0.101 0.664 0.626 0.618
Inverse Square Reciprocal | 0.352 0.227 0.241 0.309 0.319 0.278 0.149 0.265 0.100 0.669 0.643 0.625
CombMNZ 0.344 0.226 0.239 0.305 0.315 0.278 0.149 0.271 0.101 0.666 0.631 0.620

Table 9: nDCG@10, RR@10, MAP@100 values before and after interpolation with sparse retrieval depth at 100 for zero-shot datasets

	Introduction
	Background
	Basic Information Retrieval Models
	Rank Fusion Functions in Fast-Forward Index

	Methodology
	Retrieval Model
	Dataset
	Rank Fusion Function
	Score-based Fusion
	Rank-based Fusion

	Experimental Setup
	Setup and Tools
	Ranking Effectiveness Experiment
	Latency Experiment

	Experimental Results
	Ranking Change in Relation to the Score and Rank
	Validation Result
	Ranking Effectiveness Result
	Latency Result

	Responsible Research
	Conclusions and Future Work
	Ranking Effectiveness Complete Result

